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This paper develops a switching feedback controller for the attitude of an underactuated spacecraft that exploits

two internal control torques provided by reaction wheels. The problem is challenging; for example, even in the zero

total angular momentum case, no smooth or even continuous time-invariant feedback law for stabilizing a desired

orientation exists. The method introduced here exploits the separation of the system states into inner-loop base

variables and outer-loop fiber variables. The base variables track periodic reference trajectories, the amplitude of

which is governed by parameters that are adjusted to induce an appropriate change in the fiber variables. Under

suitable assumptions on the total angular momentum, this controller stabilizes an equilibrium that corresponds to a

desired inertially fixed orientation. If the desired attitude violates the assumption on angular momentum, then

controlled oscillations in a neighborhood around the target orientation are induced by the switching controller. The

control scheme is based on several approximations and is designed for relatively small maneuvers close to the desired

attitude in a vicinity which may be achieved by thruster-based control schemes. Simulation results demonstrate that

the switching feedback law provides good performance in controlling the attitude of an underactuated spacecraft.

Nomenclature

A = dynamics matrix for the base variables
B = input matrix for the base variables
B = spacecraft bus fixed frame
b̂1, b̂2, b̂3 = orthogonal unit vectors of B
eθ = error between θ and �θ
eϕ = error between ϕ and �ϕ
eψ = error between ψ and �ψ
G = map from �α1; α2� to Δψ
Ga = map from �α1; α2� to Δaψ
Ga;h3 = map from �α1; α2� to Δa;h3ψ
Ga;δα2;e = map from δα2;e to Δa;h3ψ
H = physical total angular momentum vector
H = mathematical vector corresponding to H ex-

pressed in I
h1, h2, h3 = components of H
I = inertial frame corresponding to the desired

attitude
J1, J2, J3 = spacecraft bus principal moments of inertia
�J0 = inertia matrix of spacecraft bus relative to the

center of mass of the spacecraft assembly and
expressed in B

�Jw1, �Jw2 = inertiamatrices of reactionwheels 1 and 2 relative
to the center of mass of the spacecraft assembly
and expressed in B

Js1, Js2 = inertias of reactionwheels 1 and 2 about their spin
axes

�J = total inertia matrix
jl;m = �l; m�th component of matrix �J; in which l andm

are each equal to 1, 2, 3
k = cycle number
kl;m = feedback linearization parameters; in which l and

m are each equal to 1, 2
Mext = physical external moment vector
n = base dynamic excitation frequency
OB∕I = orientation matrix of B relative to I
T = time period of one base dynamic excitation cycle
u = mathematical vector of control inputs corre-

sponding to the accelerations of reaction wheels
v = control input to the linearized base dynamics
vfb = mathematical vector of feedback linearization

parameters
v1, v2 = Components of v
W = matrix of reaction wheel spin axes
�W = reaction wheel influence matrix
ŵ1, ŵ2 = physical unit vectors of reaction wheel spin axes
x = mathematical vector of base variables ϕ, θ, ω1,

and ω2

�x = mathematical vector of steady-state base variable
motions �ϕ, �θ, and �ω1, �ω2

α1, α2 = amplitude of base dynamic excitation
α2;e = value of α2 to counteract drift when h3 ≠ 0
βm = coefficients of steady-state base variable ampli-

tudes; in which m is equal to 1, 2, 3, 4
Γm = coefficients of Ga; in which m is equal to 1, 2, 3
�Γ0, �Γl;m = coefficients ofGa;h3 ; inwhich l is equal to 1, 2 and

m is equal to 1, 2, 3, 4
γm = parameters of steady-state base variable phase

shift; in which m is equal to 1, 2, 3, 4
�γ1, �γ4 = values of γ1 and γ4 for large n
Δψ = change inψ over one cycle of lengthT induced by

steady-state base variable motions
Δaψ = approximation of Δψ assuming small angles and

h3 � 0
Δa;h3ψ = approximation of Δψ assuming small angles and

h3 ≠ 0
δ1, δ2 = phase shift of base dynamic excitation
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δα2;e = deviation of α2 from α2;e
ϵ = control parameter for Algorithm (1)
ϵe = value of ϵ to counteract drift when h3 ≠ 0
Λa, Λb, Λc = coefficients for the mapping from �α2; ϵ� to

Δa;h3ψ
�Λ1, �Λ2 = coefficients of Ga;δα2;e
μ1 = parameter for decreasing the amplitude of base

variable excitation
μ2 = “dither” parameter to counteract error in

approximation
ν1, ν2 = speeds (spin rates) of reaction wheels 1 and 2,

respectively
ν = mathematical vector of reaction wheels speeds
Θ = mathematical vector of Euler angles
Φ�t; t0� = state transition matrix from t0 to t
Ξ = matrix representation of Ga

ξm,
m � 1; 2; 3

= initialization values for switching algorithms

ψ , θ, ϕ = 3-2-1 Euler angles yaw, pitch, and roll

�ψ , �θ, �ϕ = steady-state motions of ψ , θ, and ϕ
_~ψ = average rate of change of ψ over one steady-state

cycle
ω = physical angular velocity vector
ω = mathematical vector ω expressed in B
ω1, ω2, ω3 = components of �ω
�ω1, �ω2 = steady-state values of ω1 and ω2

Subscripts

���c = cosine of �
���s = sine of �
���sec = secant of �
�k = value of � at time kT

I. Introduction

I NTERNAL torque actuators, such as reaction wheels (RWs), can
execute high-precision pointing missions that external moment

actuationwith thruster pairs cannot achieve. However, unlike thruster
pairs, internal actuation is constrained by the total angular momen-
tum of the spacecraft. This constraint becomes more prevalent when
there are two or fewer RWs because the dynamics of the spacecraft
become inaccessible [1], which can severely impede achieving
mission objectives. There are numerous examples of recent space-
craft which, due to several failures, became underactuated. The
Kepler telescope [2], FUSE [3] and Hayabusa [4] all suffered multi-
ple RW failures within nominal RW design life that compromised
their respective missions. Hence, there is a growing interest in
developing methods for underactuated spacecraft attitude control
with internal torques.
Because the dynamics of the spacecraft are inaccessible with two

or fewer RWs, the attitudemotions that can be achieved are restricted.
In the case of zero total angular momentum, the spacecraft dynamics
are small-time locally controllable and arbitrary rest-to-rest
orientation maneuvers are possible [5], but the desired equilibrium
orientation cannot be stabilized by any smooth or continuous
feedback law due to Brockett’s condition [5–8]. Time-periodic laws
can achieve attitude stabilization with two RWs, but exponential
convergence rates cannot be achieved if the control law is smooth [9].
Much of the literature pertaining to the control of a spacecraft with

two RWs assumes that the total angular momentum is zero. For
instance, in [5], twomethods are proposed for attitude stabilization of
an underactuated spacecraft under this assumption. The first is a
finite-time discontinuous controller that induces a sequence of
rotations, while the second exploits a diffeomorphic transformation
that converts the equations of motion to a simpler form for controller
design. Ge and Chen [10] solve an open-loop trajectory optimization
problem with a genetic algorithm for a spacecraft with zero angular
momentum. In [11], a singular quaternion feedback approach is
implemented to stabilize the attitude of a spacecraft with no
momentum bias and uses a saturation function to avoid singularities.

The authors of [12–14] develop discontinuous control laws based on
Lyapunov theory that are able to stabilize to the desired orientation in
the zero total angular momentum case, while having bounded
oscillations with momentum bias present. Techniques from non-
holonomic control literature, in particular based on averaging [9,15],
have also been applied to underactuated spacecraft with zero total
angular momentum (e.g., [16–18]). Yamada et al. [18] exploits
related ideas to this work; however, the approach of this paper is
different in that it relies on a switching scheme, can be applied to
general spacecraft configurations, and can handle nonzero angular
momentum.
We note that the assumption of zero total angular momentum is

restrictive. First, zero total angular momentum is hard to achieve in
the space environment. Second, for an underactuated spacecraft, the
RWs must spin down to zero speed for inertial pointing. As the RWs
spin down, stiction and Coulomb friction take effect, reducing
accuracy of the RW control and lifetime of the rotor bearings.
The case of nonzero total angularmomentum is less studied. Boyer

and Alamir [19] considers a subspace of feasible attitudes defined by
the law of angular momentum conservation and defines a procedure
for constructing an open-loop control. A spin-axis stabilization is
performed about the uncontrollable axis of a spacecraft with nonzero
total angular momentum in [20], but the topic of inertial pointing is
not discussed. Katsuyama et al. [21] discuss the topic of control of an
underactuated spacecraft with two RWs and initial nonzero angular
momentum, but the proposed control law can send the spacecraft into
an uncontrolled rotation for some initial conditions. Solar radiation
pressure torques are taken into consideration in [22,23]; and, under
suitable asymmetry conditions, the underactuated spacecraft
dynamics become linearly controllable. Conventional linear qua-
dratic controllers can then be used to stabilize a spacecraft with two
RWs, but the maneuvers typically take time because the solar
radiation pressure torques are relatively small.
This paper describes a new attitude control scheme for an

underactuated spacecraft with two RWs when maneuvers being
performed are small and close to the desired pointing configuration.
The approach uses the switching feedback stabilization techniques of
[24,25], which exploit the decomposition of the system variables into
base variables and fiber variables. The base variables are stabilized to
periodic motions with feedback, and the parameters of these periodic
motions are adjusted at discrete time instants to induce a change in the
fiber variables toward the desired equilibrium. For a spacecraft
actuated with two RWs, the Euler angles and the angular velocities
corresponding to the two actuated axes are treated as base variables
while the Euler angle corresponding to the uncontrolled axis is
treated as the fiber variable. There are several advantages to this
control scheme. Firstly, exponential convergence rates can be
achieved. Secondly, this method is not restricted to the zero total
angular momentum assumption that most existing underactuated
control techniques exploit.
The conference paper [26] reported our preliminary results, which

are significantly extended in this paper. In particular, the develop-
ments proceed based on a more general spacecraft model. Additional
analysis and discussions are presented, and new simulation results are
included.
The paper is organized as follows. The underactuated spacecraft

model is presented in Sec. II, with the attitude kinematics and
dynamics derived in Secs. II.A and II.B. Angular momentum
conservation is discussed in Sec. III. Base and fiber variables are
defined explicitly in Sec. IV. Section V develops the switching
algorithms for underactuated attitude stabilization. Specifically,
Secs. V.A and V.B discuss local controllability in the fiber variable.
Section V.C presents a switching scheme that can stabilize an
underactuated spacecraft when there is no angular momentum along
the uncontrollable axis, and convergence properties are discussed in
Sec. V.D. Section V.E presents an alternative switching algorithm for
controlled oscillations in a neighborhood around the target pointing
configuration when there is a nonzero total angular momentum
component along the uncontrollable axis. The motions of the
underactuated spacecraft are then analyzed and their asymptotic
properties are characterized under high-frequency base dynamic
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excitations in Sec. VI. Results from simulating the switching
schemes on the full nonlinear model are presented in Sec. VII.
Concluding remarks are made in Sec. VIII.
Throughout this paper the following notation is used. Frames are

denoted by script, S. If a physical vector r is resolved in frame S and
becomes a mathematical vector r, then the notation r � rjS is used.
Physical unit vectors are expressed with an overscript hat r̂. The
notation for a mathematical vector obtained by resolving a physical
vector r in a given frame S is rjS . The time derivative of a physical
vector r with respect to a given frame S is r

S·
.

II. Spacecraft Modeling

In this paper, a spacecraft configuration consisting of a bus and two
RWs is considered. The equations ofmotion are definedwith the help
of two reference frames:
1) An inertial frame I with orthogonal axes whose origin is at the

center of mass (COM) of the total spacecraft assembly (including the
spacecraft bus and RWs).
2) A spacecraft bus body fixed frame B with orthogonal axes is

defined by unit axes b̂1, b̂2, and b̂3 and with the origin at the COM of
the total spacecraft.
The physical angular velocity vector of frame B relative to I is

written as

ω � ω1b̂1 � ω2b̂2 � ω3b̂3 (1)

and, therefore, ω � ωjB � �ω1 ω2 ω3 �T. We do not assume B is
a principal frame.Without loss of generality, we assume that frame I
is aligned to coincide with the desired inertial pointing attitude. The
RWs spin at speeds ν1 and ν2 about nonparallel axes defined by ŵ1

and ŵ2, which are fixed inB. We also assume that b̂1 and b̂2 lie in the
plane spanned by ŵ1 and ŵ2. This plane may be thought of as a plane
of controllability where all body-fixed torques induced by RWsmust
lie. The unit vector b̂3 is orthogonal to this plane and corresponds to
the underactuated axis. Figure 1 depicts the two frames, the RW spin
axes, and the plane of controllability.

A. Kinematics

The orientation of B relative to I is characterized by three
successive rotations, defined by 3-2-1 Euler anglesψ (yaw), θ (pitch),
and ϕ (roll). It is assumed that the maneuvers being performed
involve relatively small attitude adjustments near the desired pointing
orientation, and, therefore, the singularities in Euler angle attitude
representation are not of concern. Let Θ � �ϕ θ ψ �T . The
spacecraft kinematic equations, following from the derivations in
[27], are

_Θ � M�Θ�ω (2)

in which

M�Θ� � 1

θc

2
4 θc ϕsθs ϕcθs

0 ϕcθc −ϕsθc
0 ϕs ϕc

3
5 (3)

In Eq. (3), ���c � cos��� and ���s � sin���.

B. Dynamics of the Spacecraft

The dynamics of the spacecraft are derived from the relation

H
I ·

� Mext (4)

in which H is the total spacecraft’s angular momentum and Mext is
the total external moment about the COMof the spacecraft assembly.
Let �J0, �Jw1, and �Jw2 be the inertia matrices of the spacecraft bus, RW
1, andRW2, each relative to the COMof the spacecraft assembly and
expressed in B. Furthermore, let Js1 and Js2 be the inertias of RW 1
and RW 2 about their respective spin axes corresponding to unit
vectors ŵ1 and ŵ2. IfH � HjI , thenH is related to ω, ν1, and ν2 by

OB∕IH � �Jω� �Wν (5)

in which

�J � �J0 � �Jw1 � �Jw2;

�W � WJs;

W � � ŵ1jB ŵ2jB �;
Js � diag�Js1; Js2�;
ν � � ν1 ν2 �T;

OB∕I �

2
664

θcψc θcψ s −θs
ϕsθsψc − ϕcψ s ϕsθsψ s � ϕcψc ϕsθc

ϕcθsψc � ϕsψ s ϕcθsψ s − ϕsψc ϕcθc

3
775 (6)

Each of the variables in Eq. (6) has a physical significance. The
matrix �J is the total inertia of the spacecraft assembly about its COM.
The columns of �W define how much influence each RW has on the
spacecraft and in what direction. The matrix OB∕I specifies the
orientation of frame B relative to I .
It follows from Eqs. (4) and (5), as well as the derivations in [5],

that the dynamic equations of motion are of the form

�J _ω � −ω × � �Jω� �Wν� − �W _ν�Mext (7)

in which Mext � MextjB. In this work, the RW accelerations are
treated as the control inputs,

_ν � u (8)

Let the total inertia matrix �J have the following form,

�J �
2
4 j11 j12 j13
j12 j22 j23
j13 j23 j33

3
5 (9)

which will be useful in the derivation and analysis of the switching
controller.

III. Angular Momentum Conservation Law

Consider the case of an underactuated spacecraft that does not
experience any external moments (i.e.,Mext � 0). Equation (4) then
implies that the total angular momentum is conserved. Proposition 1Fig. 1 Physical vector descriptions.
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presents a requirement for Θ � ω � 0 to be an equilibrium, which

corresponds to maintaining inertial pointing at the desired attitude.
Proposition 1: Let H � � h1 h2 h3 �T and assume that Mext �

0 for an underactuated spacecraft satisfying the above assumptions.

Then Θ � ω � 0 is an equilibrium if and only if h3 � 0.
Proof: If Θ�t� � ω�t� � 0 for all t, then Eq. (5) reduces to

H � �Wν (10)

If the spacecraft fixed frame B is defined as in Sec. II, then

� 0 0 1 � �Wν � 0. Premultiplying Eq. (10) by � 0 0 1 � yields

h3 � 0 (11)

□

We make the assumption throughout this paper that the total

angular momentum is conserved, but we do not require that H � 0.
The angular velocity component ω3 can also be found from

the angular momentum expression in Eq. (5). Define ζ1 �
�ω1 ω2 0 �T and ζ2 � � νT ω3 �T . Then Eq. (5) can be written as

OB∕IH − �JZ1ζ1 � � �JZ2 � �WZ3�ζ2 (12)

in which

Z1 �
�
I2×2
01×2

�
; Z2 � diag�0; 0; 1�; Z3 � � I2×2 02×1 � (13)

Solving for ζ2 and extracting ω3 gives

ω3 � −
j13
j33

ω1 −
j23
j33

ω2 �
h1
j33

�ϕcθsψc � ϕsψ s�

� h2
j33

�ϕcθsψ s − ϕsψc� �
h3
j33

ϕcθc (14)

IV. Base and Fiber Variables

In the following switching scheme, the six-dimensional state

vector, consisting of Euler angles and angular velocities, is divided

into base variables and fiber variables. The base variables are chosen

to be the controllable variables ϕ, θ, ω1, and ω2. The uncontrolled

angle ψ is treated as a fiber variable. The reason why ω3 is not

included in either the base of fiber variables ismentioned in Sec. IV.B.

A. Base Variables

Consider a small angle assumption for the kinematics ofϕ and θ in
Eq. (2). This results in _ϕ � ω1 and _θ � ω2. Also, let the RW

accelerations be determined by the feedback law

u � �Z3
�J−1 �W�−1�Z3

�J−1�−ω × � �Jω� �Wν�� � �vfb − v�� (15)

in which

vfb �
�
k11ϕ� k12ω1

k21θ� k22ω2

�
; v �

�
v1
v2

�
(16)

Z3 is fromEq. (13), and k11, k12, k21, and k22 are constants. Under the
above control law and by defining x � �ϕ ω1 θ ω2 �T , the base
dynamics can be written as a linear system,

_x � Ax� Bv (17)

in which

A �

2
664

0 1 0 0

−k11 −k12 0 0

0 0 0 1

0 0 −k21 −k22

3
775; B �

2
664
0 0

1 0

0 0

0 1

3
775 (18)

The constants k11, k12, k21, and k22 are chosen to make A Hurwitz.
Now let the basevariables be excited by theT � 2π

n periodic inputs,

v1 � α1�nt� δ1�c; v2 � α2�nt� δ2�c (19)

in which n is the excitation frequency and α1, α2, δ1, and δ2 are
parameters. Because the base dynamics are exponentially stable, the
steady-state trajectories of Eq. (17) induced by the inputs in Eq. (19)
will be periodic and at the excitation frequency determined by

xss�t� � Re

�
�njI4×4 − A�−1B

�
α1 exp�jδ1�
α2 exp�jδ2�

�
exp�jnt�

�
(20)

in whichRef�g denotes the real part. More specifically, these steady-
state trajectories have the following form:

�x�t� �

2
664

�ϕ�t�
�ω1�t�
�θ�t�
�ω2�t�

3
775 �

2
664
α1β1�nt� δ1 � γ1�c
α1β2�nt� δ1 � γ2�c
α2β3�nt� δ2 � γ3�c
α2β4�nt� δ2 � γ4�c

3
775 (21)

in which

β1 � jk211 − 2k11n
2 � k212n

2 � n4j−1
2;

β2 � njk211 − 2k11n
2 � k212n

2 � n4j−1
2;

β3 � jk221 − 2k21n
2 � k222n

2 � n4j−1
2;

β4 � njk221 − 2k21n
2 � k222n

2 � n4j−1
2 (22)

γ1 � tan−1
�

−nk12
k11 − n2

�
;

γ2 � tan−1
�
−n2 � k11

nk12

�
;

γ3 � tan−1
�

−nk22
k21 − n2

�
;

γ4 � tan−1
�
−n2 � k21

nk22

�
(23)

In the sequel, δ1 and δ2 are constants chosen by the designer, whereas
α1 and α2 are treated as new control parameters that are adjusted at
every periodic cycle.

B. Fiber Variables

We treat ψ as the only fiber variable in our switching scheme. Note
that ω3 is determined by Eq. (14), and hence we choose not to
consider it as a fiber variable explicitly. To control ψ , its change over
one period of excitation induced by steady-state base variable
motions needs to be characterized. If the base variables are in steady-
state, ψ evolves in time according to

_ψ� �ω2
�ϕs
�θse�

�
−
j13
j33

�ω1−
j23
j33

�ω2

�
�ϕc
�θse

�
�
h1
j33

� �ϕc
�θsψc� �ϕsψ s��

h2
j33

� �ϕc
�θsψ s− �ϕsψc��

h3
j33

�ϕc
�θc

�
�ϕc
�θse

(24)

in which �ϕ, �θ, �ω1, and �ω2 are the steady-state trajectories from
Eq. (21) and sec��� � �se. Assuming small angles allows
simplification of Eq. (24) to
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_ψ �
�
h1
j33

�ϕ� h2
j33

�θ

�
ψ� �ω2

�ϕ� h1
j33

�θ−
h2
j33

�ϕ−
j13
j33

�ω1 −
j23
j33

�ω2 �
h3
j33

(25)

Using Eq. (21), Eq. (25) becomes

_ψ�
�
h1αβ1
j33

�nt�δ1�γ1�c�
h2α2β3
j33

�nt�δ2�γ3�c
�
ψ

�α1α2β1β4�nt�δ1�γ1�c�nt�δ2�γ4�c
�h1α2β3

j33
�nt�δ2�γ3�c−

h2α1β1
j33

�nt�δ1�γ1�c

−
α1β2j13
j33

�nt�δ1�γ2�c−
j23α2β4
j33

�nt�δ2�γ4�c�
h3
j33

(26)

We note that while the approximations in Eqs. (25) and (26) are

used as a basis for the subsequent control law design, the simulation

results in Sec. VII are performed on the original nonlinear model,

given by Eqs. (2), (7), and (8).

V. Switching Feedback Law

We now develop a switching feedback law that adjusts parameters

of periodic excitation amplitude of the base dynamics (α1 and α2), in
order to induce a change in the fiber variable (ψ) toward the desired
pointing equilibrium. The switching feedback law construction is

based on [24] and relies on the characterization of the change in ψ
induced by one cycle of periodic, steady-state base variable motion.
Let the exact change in ψ , determined by the integration of

Eq. (24), be denoted asΔψ . Note that Eq. (24) cannot be analytically
integrated. Thus an approximation ofΔψ , denoted asΔaψ and based

on the integration of Eq. (26), is used for analysis.
Two cases are considered when analyzingΔaψ . First studied is the

zero total angular momentum case (i.e. h1 � h2 � h3 � 0), which
yields an exact integration of Eq. (26). Then the nonzero total angular

momentum with h3 � 0 (consistent with proposition 1) is studied

using a second-order Taylor series expansion. In both cases, it is

required that themappingGa: �α1; α2� → Δaψ be open at �α1; α2� �
�0; 0� [i.e., an image of an open neighborhood of �α1; α2� � �0; 0�] is
an open interval, and hence the change ofψ over one period of steady-

state base variable motion can be made in any direction, regardless of

how small the magnitude of α1 and α2 is. This can be seen as a

controllability-like property of the fiber variables by periodic base

variable motions. It is shown that if Ga is open at �α1; α2� � �0; 0�,
then the map for the actual change in ψ , defined as

G: �α1; α2� → Δψ , is also open at �α1; α2� � �0; 0�.

A. Zero Inertial Angular Momentum

If h1 � h2 � h3 � 0, Eq. (26) reduces to

_ψ � α1α2β1β4�nt� δ1 � γ1�c�nt� δ2 � γ4�c
−
α1β2j13
j33

�nt� δ1 � γ2�c −
j23α2β4
j33

�nt� δ2 � γ4�c (27)

The right side of Eq. (27) is not a function of ψ . The change in ψ
induced by one period of steady-state base variable motion is then

approximated as

Δaψ � α1α2Γ (28)

in which

Γ � πβ1β4
n

�δ1 − δ2 � γ1 − γ4�c (29)

Note that Eq. (27) defines a function of α1 and α2, with all other

parameters considered fixed. Assuming that Γ ≠ 0, which can be

assured by choosing suitable values for k11, k12, k21, k22, δ1, and δ2, it
follows that the map Ga is open at �α1; α2� � �0; 0�.
We note that the derivation of Eq. (28) relies on the assumption of

small angles that was made in obtaining Eqs. (25) and (26). The

predicted changeΔaψ is very close toΔψ , provided that α1 and α2 are
sufficiently small. Figure 2 demonstrates this by showing the change

predicted byEq. (28) (represented by the dashed line in Fig. 2a) along

with a numerical integration of Eq. (24) (represented by the solid line

in Fig. 2a) using the spacecraft parameters outlined in Sec. VII.A and

the controller parameters listed in the table in Sec. VII.

B. Nonzero Inertial Angular Momentum with h3 � 0

Suppose now h1 and/or h2 is nonzero while h3 � 0, which is the

case consistent with proposition 1. Note that Eq. (26) is linear with

respect toψ . Because Eq. (26) is also a scalar differential equation, its
state transition matrix is computed as

Φ�t;t0��exp

�
h1α1β1
nj33

�nt�δ1�γ1�s�
h2α2β3
nj33

�nt�δ2�γ3�s
�

�exp
�
−
h1α1β1
nj33

�nt0�δ1�γ1�s−
h2α2β3
nj33

�nt0�δ2�γ3�s
�

(30)

Note that the state transition matrix is T periodic. Thus the change

in ψ over one period does not depend on the initial state at the

beginning of the period. Then

Δaψ �
ZT

0

Φ�t; τ�b�τ� dτ (31)

a) Exact vs. approximate change b) Error Magnitude
Fig. 2 Change in ψ due to periodic base dynamic excitation forH � 0.
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in which

b�τ� � α1α2β1β4�nτ� δ1 � γ1�c�nτ� δ2 � γ4�c
� h1α2β3

j33
�nτ� δ2 � γ3�c −

h2α1β1
j33

�nτ� δ1 � γ1�c

−
α1β2j13
j33

�nt� δ1 � γ2�c −
j23α2β4
j33

�nt� δ2 � γ4�c (32)

AlthoughΔaψ can be constructed by fitting numerical values, it turns
out that accurate analytical approximations can also be developed.
For sufficiently small α1 and α2, a second-order Taylor series
expansion about α1 � α2 � 0 can approximate Eq. (31),

Δaψ � αTΞα (33)

in which

α��α1 α2 �T;

Ξ�
� Γ1

1
2
Γ3

1
2
Γ3 Γ2

�
;

Γ1�
πj13β1β2h1

j233n
2

�γ1−γ2�s;

Γ2�
πj23β3β4h2

j233n
2

�γ3−γ4�s;

Γ3�
πβ1β4
n

�δ1−δ2�γ1−γ4�c−
πβ1β3
j233n

2
�h21�h22��δ1−δ2�γ1−γ3�s

−
πj13β2β3h2

j233n
2

�δ1−δ2�γ2−γ3�s�
πj23β1β4h1

j233n
2

�δ1−δ2�γ1−γ4�s

(34)

Note that the mapGa given by Eq. (33) is open at �α1; α2� � �0; 0� if
the symmetricmatrixΞ is indefinite (i.e., has a positive and a negative
eigenvalue). Under this condition, which can be satisfied by choosing
suitable values for k11, k12, k21, k22, δ1, and δ2, the exact map G can
also be shown to be open at �α1; α2� � �0; 0�. Note that (28) is
recovered from (33) if h1 � h2 � 0.
Figure 3 shows, based on the spacecraft parameters in Sec. VII.A

and control parameters in the table, that when h1 � h2 � 1 kg ·
m2∕s and h3 � 0 the approximation Δaψ from (33) (represented by
the dashed line in Fig. 3a) is fairly accurate to the actual change Δψ
(represented by the solid line in Fig. 3a) and that the mapping is open
at �α1; α2� � �0; 0�.

C. Hybrid Controller Scheme

A switching scheme, based on [24], that stabilizes the fiber and
base variables is now implemented for the case when h3 � 0. This is
consistent with proposition 1, and hence stabilization to the desired

pointing equilibrium is possible. The parameters that this algorithm
concerns itself with are α2 and ϵ, with α1 � ϵα2. Each of these
parameters are adjusted at the beginning of time duration T and are
kept constant throughout the cycle,

α2�t� � α2�kT� � αk2; kT ≤ t < �k� 1�T;
ϵ�t� � ϵ�kT� � ϵk; kT ≤ t < �k� 1�T (35)

Let k ≥ 0 represent the cycle number, ψk � ψ�kT�, and choose
μ1 ∈ �0; 1�, ξ1 to be sufficiently small, and ξ2 to be such that ξ1ξ2 is
sufficiently small. The switching scheme is then outlined by
Algorithm 1. Note that the computation involved for α1, α2, v1, v2,
and the control law in Eq. (15) rely on closed-form, algebraic
manipulations that do not require much processing power to execute.

The methodology of Algorithm 1 is as follows. The sign of ϵ
dictates the direction ofΔaψ (which can be seen from Figs. 2 and 3).

Furthermore, the magnitude ofΔaψ is dictated by α2. If the direction
ofΔaψ is to be reversed, the sign of ϵ is changed and themagnitude of

α2 is reduced by a factor of μ1. As α2 approaches zero so does ψ ,
which in turn causes the base variables to converge to zero. The initial

values for α2 and ϵ (i.e., α
0
2 and ϵ

0) are governed by ξ1 and ξ2, which
are chosen so as to not cause large transients in ψ .

D. Convergence Properties

In [24], global asymptotic convergence was proven for a cascade

connection of a linear time-invariant subsystem, representing the
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a) Exact vs. approximate change b) Error Magnitude
Fig. 3 Change in ψ due to periodic base dynamic excitation forH � � 1 1 0 �T kg · m2∕s.

Algorithm 1 Control computation for h3 � 0

Given:

k ≥ 0, μ1 ∈ �0; 1�, ξ1 sufficiently small, and ξ2 such that ξ1ξ2 is
sufficiently small

if k � 0 then
if ψk � 0 then

αk2 � 0, ϵk � 0
else

αk2 � ξ1, ϵ
k � −ξ2sign�Γ3ψ

0�
end if

else {k > 0}
Compute Ga�ϵk−1αk−12 ; αk−12 �ψk using Eq. (33)
if ψk � 0 or Ga�ϵk−1αk−12 ; αk−12 �ψk < 0 then

αk � αk−12 , ϵk � ϵk−1

else {Ga�ϵk−1αk−12 ; αk−12 �ψk ≥ 0}
αk � μ1α

k−1
2 , ϵk � −ϵk−1,

end if

end if

Control During Cycle k:
v1�t� � αk2ϵ

k�nt� δ1�c, v2�t� � αk2�nt� δ2�c, v�t� � � v1�t� v2�t� �T
for t ∈ �kT; �k� 1�T�

Compute u�t� from the feedback law in Eq. (15)
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base dynamics, and a subsystem of nonlinear integrators, re-

presenting the fiber dynamics. Related local stabilization results have

been obtained in [25] for themore general case of fiber dynamicswith

drift. For the zero angular momentum case, h1 � h2 � h3 � 0, the
results in [24] can be applied directly to demonstrate exponential

convergence. In the casewhen h1 and/or h2 are nonzerowhile h3 � 0,
the rationale for our switching feedback law is very similar; however,

existing theoretical guarantees appear to be insufficient, in particular,

due to the form of the fiber dynamics in Eq. (26) not being explicitly

treated in prior publications. For the proofs in [24] to carry over to our

present case, it is necessary to guarantee 1) thatGa does not rely on the

initial conditions of the fiber variable and 2) the boundedness of the

error between the fiber variable trajectory ψ induced by exponentially

convergent base variable motions to a periodic steady-steady state and

the fiber variable trajectory �ψ induced by the base variable motion in

the periodic steady state. Equation (30) shows that the state transition

matrix is T-periodic, and therefore Ga is independent of the initial

condition of ψ . Lemma 1 proves the boundedness of the error between

ψ and �ψ if the dynamics of the fiber variable are given by Eq. (25).
Lemma 1: Let the fiber variable dynamics for ψ be given by

Eq. (25) with h3 � 0. Then the error between ψ and �ψ remains

bounded over time.
Proof: Define eψ � ψ − �ψ . Then

_eψ � _ψ − _�ψ (36)

Using (25) with h3 � 0, Eq. (36) can be rewritten as

_eψ �
�
h1
j33

ϕ� h2
j33

θ

�
ψ � d�ϕ; θ;ω1;ω2� −

�
h1
j33

�ϕ� h2
j33

�θ

�
�ψ

− d� �ϕ; �θ; �ω1; �ω2� (37)

in which

d�ϕ; θ;ω1;ω2� � ω2ϕ� h1
j33

θ −
h2
j33

ϕ −
j13
j33

ω1 −
j23
j33

ω2 (38)

Adding and subtracting �h1j33 �ϕ� h2
j33

�θ�ψ from Eq. (37) and

simplifying then yields

_eψ �
�
h1
j33

�ϕ� h2
j33

�θ

�
eψ �

�
h1
j33

eϕ � h2
j33

eθ

�
ψ

� �d�ϕ; θ;ω1;ω2� − d� �ϕ; �θ; �ω1; �ω2�� (39)

in which eϕ � ϕ − �ϕ and eθ � θ − �θ. Equation (39) is linear with

respect to eψ , and its solution at time t can be written as

eψ �t� � Φ�t; 0�eψ �0� �
Zt

0

Φ�t; τ�f�τ� dτ (40)

in which eψ �0� is the initial error,Φ�t; 0� is the state transition matrix

from Eq. (30), and

f�t� �
�
h1
j33

eϕ � h2
j33

eθ

�
ψ � �d�ϕ; θ;ω1;ω2� − d� �ϕ; �θ; �ω1; �ω2�

(41)

The base variables converge exponentially to the steady-state

periodic motions, and ψ�0� is initially known and bounded. The

function f�t� given by Eq. (41) hence converges to zero expo-

nentially. This implies that there exists a constant c1 > 0 such that

jeψ �t�j≤ jΦ�t;0�eψ �0�j�
Zt

0

jΦ�τ;0�jjf�τ�jdτ≤ jΦ�t;0�eψ �0�j�c1

(42)

The state transition matrix Φ�t; 0� in Eq. (30) is bounded, and

therefore the error eψ is bounded. □

We summarize the theoretical convergence guarantees as follows:
Theorem 1:Consider the fiber dynamics [in Eq. (25)] with h3 � 0

and base dynamics [in Eq. (17)] with the switching controller given in

Algorithm 1 and Eq. (19). Under the above assumptions, αk1, α
k
2 → 0

as k → ∞, and ϕ�t�, θ�t�, ψ�t� → 0 as t → ∞. □

Remark 1: The development and analysis of convergence for the

above controller have relied on small angle approximation to simplify

the representation for the base variable kinematics and fiber variable

dynamics. Our subsequent simulations are performed on amodel that

does not use these approximations, thereby validating these desirable

convergence properties. Note also the theoretical results in [24] allow

for inexact knowledge of G in maintaining convergence properties.

E. Switching Scheme When h3 ≠ 0

Now consider the casewhen h3 ≠ 0. Stabilization atΘ � ω � 0 is
not possible by proposition 1 (i.e., it violates the law of angular

momentum conservation). If α1 � α2 � 0 at Θ � ω � 0, Eq. (24)
becomes

_ψ � h3
j33

(43)

which can be integrated over one steady-state cycle to give

Δψ � 2πh3
nj33

(44)

Equation (44) shows thatG is not open at �α1;α2� � �0; 0�, and thus
Algorithm 1 cannot be used. By modifying the algorithm, however,

controlled oscillations of Euler angles in the neighborhood ofΘ � 0
can be achieved.
Remark 2: The fact that G is not open in the case of h3 ≠ 0 gives

insight into the system’s controllability. In this case, if α1 and α2 are
made arbitrarily small, then the drift in ψ can only be induced in one

direction. This is in contrast to the case of h3 � 0, in which a

controlled drift in ψ can be made in both directions regardless of how

small α1 and α2 are.
Let the approximation of the change in ψ induced by one steady-

state cycle of base variable motions when h3 ≠ 0 be denoted by

Δa;h3ψ and define the map Ga;h3 : �α1; α2� → Δa;h3ψ . This

approximation is based on Eq. (26) and the small angles assumption.

Note that, even if h3 ≠ 0, the state transition matrix for Eq. (26)

remains the same as in Eq. (30). Then

Δa;h3ψ �
ZT

0

Φ�T; τ�
�
b�τ� � h33

j33

�
dτ (45)

inwhichb�t� is defined inEq. (32). Performing a second-order Taylor

series expansion of Eq. (45) about �α1;α2� � �0; 0�, Δψ for

sufficiently small α1 and α2 can be approximated by

Δa;h3ψ � �Γ0 � �Γ1;1α1 � �Γ1;2α2 � �Γ1 � �Γ2;1�α21
� �Γ2 � �Γ2;2�α22 � �Γ3 � �Γ2;3�α1α2 (46)

in which Γ1, Γ2, and Γ3 are given in Eq. (34) and
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�Γ0 �
2πh3
j33n

;

�Γ1;1 �
2πβ1h1h3
j233n

2
�δ1 � γ1�s;

�Γ1;2 �
2πβ3h2h3
j233n

2
�δ2 � γ3�s;

�Γ2;1 �
πβ21h

2
1h3

2j333n
3
�1� 2�δ1 � γ1�2s�;

�Γ2;2 �
πβ23h

2
2h3

2j333n
3
�1� 2�δ2 � γ3�2s�;

�Γ2;3 � −
πβ1β3h1h2h3

j333n
3

��δ1 � δ2 � γ1 � γ3�c

− 2�δ1 − δ2 � γ1 − γ3�c� (47)

Let α1 � ϵα2. Then Eq. (46) implies

Δa;h3ψ � Λc � Λbα2 � Λaα
2
2 (48)

in which

Λa � �Γ1 � �Γ2;1�ϵ2 � �Γ2 � �Γ2;2� � �Γ3 � �Γ2;3�ϵ;
Λb � �Γ1;1ϵ� �Γ1;2;

Λc � �Γ0 (49)

Because Eq. (48) is quadratic in α2, the equation Δa;h3ψ � 0 can be
solved if a specific constant ϵe is chosen. Denote α2;e as a solution to
Δa;h3ψ � 0 in Eq. (48)when ϵ � ϵe in Eq. (49). By selecting k11, k12,
k21, k22, δ1, δ2, and ϵe appropriately, Eq. (48) will have a positive real
solution. The significance of α2;e is that it corresponds to the periodic
excitation of the base dynamics, which on average counteracts the
drift caused by h3 ≠ 0. Let α2 � α2;e � δα2;e. Because
Ga;h3 �ϵeα2;e; α2;e� � 0, Eq. (48) can be rewritten as

Δa;h3ψ � �Λ1δα2;e � �Λ2δα
2
2;e (50)

in which

�Λ1� �Γ1;1ϵe� �Γ1;2�2α2;e��Γ1� �Γ2;1�ϵ2e��Γ2� �Γ2;2���Γ3� �Γ2;3�ϵe�;
�Λ2��Γ1� �Γ2;1�ϵ2e��Γ2� �Γ2;2���Γ3� �Γ2;3�ϵe (51)

Define the map Ga;δα2;e : δα2;e → Δa;h3ψ . If δα2;e is sufficiently
small, the linear term in (50) dominates the quadratic term. Therefore
Ga;δα2;e is open at δα2;e � 0 provided that �Λ1 ≠ 0.
Now the modified switching scheme is described. Let δα2;e be

adjusted at the beginning of each time interval of length T and held
constant:

δα2;e�t� � δα2;e�kT� � δαk2;e; kT ≤ t < �k� 1�T (52)

Furthermore, let μ1 ∈ �0; 1�, μ2 be sufficiently small, and ξ3 > μ2
be such that j �Λ1ξ3j > j �Λ2ξ

2
3j. Then the control scheme for the case

when h3 ≠ 0 is outlined by Algorithm 2.
The methodology of Algorithm 2 is as follows. It can be seen that

jΔa;h3ψ j is dictated by jδα2;ej whereas the direction of Δa;h3ψ is
determined by the sign of δα2;e. The initial value of jδα02;ej is
determined by ξ3, and it can be shown that jδαk2;ej is nonincreasing.
Furthermore, as k → ∞, jδαk2;ej → μ2, and, in the limit, αk2 can
assume either the value of α2;e � μ2 or α2;e − μ2. This steady-state
“dither” in δαk2;e is introduced to compensate for the error/uncertainty
in the approximation of Δψ by Δa;h3ψ. The value of μ2 must be
chosen as small as possible to minimize the dither, while satisfying
the following property,

G�ϵe�α2;e � μ2�; αe � μ2�G�ϵe�α2;e − μ2�; α2;e − μ2� < 0 (53)

for Algorithm 2 to be able to induce the changes in Δψ by the

intended sign, even in the presence of the approximation error.
Lemma 2 is a similar result to lemma 1.
Lemma 2: Let the fiber variable dynamics for ψ be given in

Eq. (25). The error between the fiber variable trajectory ψ induced by

base variable motions exponentially convergent to periodic steady

state and the fiber variable trajectory induced by base variable motion

in periodic steady-state �ψ remains bounded.
Proof: If h3 ≠ 0, then Eq. (38) in the proof of lemma 1 changes to

dh3�ϕ; θ;ω1;ω2� � ω2ϕ� h1
j33

θ −
h2
j33

ϕ −
j13
j33

ω1 −
j23
j33

ω2 �
h3
j33
(54)

and Eq. (41) changes to

fh3�t� �
�
h1
j33

eϕ � h2
j33

eθ

�
ψ � �dh3�ϕ; θ;ω1;ω2�

− dh3� �ϕ; �θ; �ω1; �ω2�� (55)

Because

dh3�ϕ; θ;ω1;ω2� − dh3� �ϕ; �θ; �ω1; �ω2�
� d�ϕ; θ;ω1;ω2� − d� �ϕ; �θ; �ω1; �ω2� (56)

it follows that fh3�t� � f�t� and fh3�t� converges exponentially to

zero. The rest of the proof follows as the proof of lemma 1. □

Although lemma 2 is a similar result to lemma 1, a convergence

result similar to Theorem 1 does not hold if h3 ≠ 0, because steady-
state oscillations in ψ , θ, and ϕ in a vicinity of zero will occur to

accommodate nonzero h3.
The amplitude of oscillations about Θ � 0 using this switching

law can be bounded. Consider the situation when α1 � ϵeα2;e,
α2 � α2;e, the base variable motion is in steady-state, and ψ�0� � 0.
If this is the case, then, from Eq. (21),

jϕ�t�j � jϵeα2;eβ1�nt� δ1 � γ1�cj ≤ jϵeα2;eβ1j ∀ t ≥ 0;

jθ�t�j � jα2;eβ3�nt� δ2 � γ3�cj ≤ jα2;eβ3j ∀ t ≥ 0 (57)

Furthermore, for 0 ≤ t ≤ T,

Algorithm 2 Control computation when h3 ≠ 0

Given:

k ≥ 0, α2;e and ϵe from Eqs. (48) and (49), μ1 ∈ �0; 1�, μ2, sufficiently
small, and ξ3 > μ2 such that j �Λ1ξ3j > j �Λ2ξ

2
3j

if k � 0 then
if ψk � 0 then

δα02;e � 0
else {ψk ≠ 0}

δα02;e � −ξ3sign� �Λ1ψ
0�,

end if

else {k > 0}
Compute Ga;δα2;e �δαk−12;e �ψk using Eq. (50)
if ψk � 0 or Ga;δα2;e �δαk−12;e �ψk < 0 then

δαk2;e � δαk−12;e
else {Ga;δα2;e �δαk−12;e �ψk ≥ 0}

δαk2;e � −minfμ1δαk−12;e ; μ2g
end if

end if

Control at Cycle k:
αk1 � ϵe�α2;e � δαk2;e�, αk2 � α2;e � δαk2;e
v1�t� � αk1�nt� δ1�c, v2�t� � αk2�nt� δ2�c, v�t� � � v1�t� v2�t� �T

for t ∈ �kT; �k� 1�T�
Compute u�t� from the feedback law in Eq. (15)
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jψ�t�j �
Zt

0

����Φ�t; τ�
�
b�τ� � h3

j33

�
dτ

����

≤
Zt

0

jΦ�t; τ�j
����
�
b�τ� � h3

j33

����� dτ;

≤
Zt

0

jΦ�t; τ�j
�
j�b�τ�j � jh3j

j33

�
dτ;

≤
ZT

0

exp�c2�
j33

�jα2;ejc3 � jh3j� dτ;

≤
2π exp�c2�

nj33
�jα2;ejc3 � jh3j� (58)

in which

c2�j α2;e
nj33

j�jϵeh1β1j�jh2β3j�;

c3�jα2;eϵeβ1β4j33j�jh1β3j�jϵeh2β1j�jϵeβ2j13j�jβ4j23j (59)

The value of α2;e decreases with the value of h3, and, furthermore,
limh3→0α2;e � 0. Therefore, the amplitude of the steady-state
oscillation in ϕ, θ, and ψ around zero will decrease as h3 decreases.

VI. Analysis of High-Frequency Response

We now consider the case when the base variable excitation
frequency n is large and analyze the motions of Euler angles ϕ, θ and
ψ when the total angular momentum is zero and when there is a
nonzero total angular momentum component about the uncontrol-
lable axis.

A. Zero Angular Momentum Case

Let h1 � h2 � h3 � 0 and assume that ϕ�0� � θ�0� �
ψ�0� � 0. Consider the spacecraft excited by base variable motions
[Eq. (21)] with constant α1 and α2, and let

_~ψ � Δaψ

T
(60)

in which Δaψ is given by Eq. (28). Equation (60) defines an average
rate of change of ψ over one steady-state cycle of period T.
Substituting Eqs. (28) and (29) into Eq. (60) gives

_~ψ � α1α2β1β4
2

�δ1 − δ2 � γ1 − γ4�c (61)

If n is large, (22) can be approximated by

β1 ∼O

�
1

n2

�
; β2 ∼O

�
1

n2

�
; β3 ∼O

�
1

n

�
; β4 ∼O

�
1

n

�

(62)

and (61) can be approximated by

_~ψ ∼
α1α2
n3

�δ1 − δ2 � γ1 − γ4�c (63)

in which γ1 and γ4 also depend on n. Let α1 and α2 be nonzero and
proportional to n

3
2, that is,

α1 � n
3
2ρ1; α2 � n

3
2ρ2 (64)

in which ρ1; ρ2 ∈ R \ f0g. The steady-state values of ϕ and θ from
Eq. (21) when n is large are approximated by

�ϕ�t� ∼ ρ1			
n

p cos �nt� δ1 � γ1�c; �θ�t� ∼ ρ2			
n

p cos �nt� δ2 � γ3�c
(65)

As n approaches infinity, for any t, it is clear from Eq. (65) that

lim
n→∞

�ϕ�t� � 0; lim
n→∞

�θ�t� � 0 (66)

Note that γ1 and γ4 have finite limits, �γ1 and �γ4, respectively, as n
increases. Then,

lim
n→∞

_~ψ � ρ1ρ2�δ1 − δ2 � �γ1 − �γ4�c (67)

Hence, as frequency increases, attitude trajectories of an

underactuated spacecraft with zero total angular momentum can

approach arbitrary close attitude trajectories of a spacecraft that has a

nonzero total angularmomentum component and rotates at a constant

angular velocity about the uncontrollable axis. Note that, as

frequency n increases, the amplitude of the spacecraft angular

velocity and RW speed oscillation increase as
			
n

p
.

B. Nonzero Angular Momentum Case

The same approach as in Sec. VI.A is used to analyze a spacecraft

that has nonzero total angular momentum about its uncontrollable

axis. Assume that ϕ�0� � θ�0� � ψ�0� � 0, h1; h2 ∈ R, and

h3 ≠ 0. Define,

_~ψh3 �
Δψh3

T
(68)

in which Δa;h3ψ is given by Eq. (46). Let α1 and α2 be defined as in
Eq. (64). If the frequency is increased to infinity, then

lim
n→∞

�ϕ�t� � 0;

lim
n→∞

�θ�t� � 0;

lim
n→∞

_~ψ � h3
j33

� ρ1ρ2�δ1 − δ2 � �γ1 − �γ4�c (69)

in which �γ1 and �γ4 denote finite limits of γ1 and γ4 as n increases.

Choosing ρ1 and ρ2 so that

ρ1ρ2 � −
h3

j33�δ1 − δ2 � �γ1 − �γ4�c
(70)

results in

lim
n→∞

_~ψ � 0 (71)

As n increases, attitude trajectories of the underactuated spacecraft
with a nonzero total angular momentum component about the

uncontrollable axis can approach arbitrarily close to a fixed inertial

pointing attitude. Similarly to the zero total angular momentum case,

as n increases, the amplitude of the spacecraft angular velocity and

RW speed oscillation increase as
			
n

p
.

Table 1 Controller and

algorithm parameters

Parameter Value

n 0.03 s−1

k11, k12 9 × 10−4, 0.0180
k21, k22 9 × 10−4, 0.0180
δ1, δ2

π
4
, − π

4
ξ1, ξ2, ξ3 1 × 10−4, 1.5, 2.5 × 10−5

μ1, μ2 0.5, 1 × 10−8
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Remark 3: The conclusions in this section may appear to be
counterintuitive at first glance given the angular momentum
conservation. In [28], similar results were derived using averaging
theory for a different system, a cylinder rotating about a fixed axis
with three movable links.

VII. Simulation Results

For the simulations, we consider a spacecraft buswith the principal
moments of inertia of 430, 1210, and 1300 kg · m2. The two reaction

wheels are assumed to be symmetric and thin and are mounted such
that the COM of the spacecraft bus and total spacecraft assembly
coincide. The inertias of the two functioning RWs about their spin
axes are given by Js1 � Js2 � 0.043 kg · m2. The matrices �J and �W
will be different between simulations as necessary to demonstrate
that our approach can handle different spacecraft scenarios. In the
first simulation, the spacecraft has zero total angularmomentum. The
second simulation involves a spacecraft with total angular
momentum satisfying proposition 1 (i.e., h3 � 0). In the third
simulation, h3 ≠ 0. All simulations are performed on the full

a) Euler angles b) Angular velocities

c) Wheel speeds d) Wheel accelerations

e) Excitation magnitude f) 2-norm of attitude error
Fig. 4 Response of the spacecraft assembly defined in Sec. VII.A using Algorithm 1 whenH � 0.
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nonlinear model and demonstrate successful convergence to the

desired pointing equilibrium in the case when h3 � 0 and controlled
oscillation about the desired pointing configuration when h3 ≠ 0.
The parameters for the controller and switching schemes, outlined by

Algorithms 1 and 2, are given in Table 1.

A. Simulation 1

Consider the case when the two RWs are aligned with the first two

principal axes of the spacecraft bus. Then

�J�
2
4430.043 0 0

0 1210.043 0

0 0 1300

3
5; �W�

2
40.043 0

0 0.043

0 0

3
5 (72)

The initial conditions of the spacecraft are ϕ�0� � θ�0� � 0 rad,
ψ�0� � 0.1 rad, ω1�0� � ω2�0� � ω3�0� � 0 rad∕s, and ν1�0� �
ν2�0� � 0 rad∕s. The total angular momentum is hence zero [i.e.,

H � � 0 0 0 �T �kg · m2�∕s] and satisfies proposition 1. The

simulation shows that, by using Algorithm 1, the spacecraft

a) Euler angles b) Angular velocities

c) Wheel speeds d) Wheel accelerations

e) Excitation magnitude f) 2-norm of attitude error

Fig. 5 Response of the spacecraft assembly defined in Sec. VII.B using Algorithm 1 when h3 � 0.
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successfully converges to the desired pointing orientation. See Fig. 4.
Note from Figs. 4a and 4e that, when α1 changes sign (which is
dictated by ϵ), the direction of Δψ also changes.
Remark 4: It should be noted that even though the convergence time

is exponential, the convergence time for this simulation is over two
hours. The convergence timecanbe improvedby tuning the parameters
in Table 1, specifically ξ1 and ξ2 (which govern the initial amplitude of
the excitation), μ1 (which controls the decay of excitation), and n
(which defines when the control parameters are switched).

B. Simulation 2

Now consider the case when the RWs are not aligned with the first

two principal axes of the spacecraft bus. After an appropriate

coordinate transformation, the matrices �J and �W are

�J�
2
4 865 0 −0.435

0 1210.043 0

−0.435 0 865.043

3
5; �W�

2
40.043 0

0 0.043

0 0

3
5 (73)

a) Euler angles b) Angular velocities

c) Wheel speeds d) Wheel accelerations

e) Excitation magnitude f) 2-norm of attitude error

Fig. 6 Response of the spacecraft assembly defined in Sec. VII.C using Algorithm 2 when h3 ≠ 0.
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The initial conditions for the spacecraft are the same as for
simulation 1 with the exception that ν1�0� � ν2�0� � 10 rad∕s,
yielding H � � 0.3849 0.4708 0 �T �kg · m2�∕s, which satisfies
proposition 1. The results are shown in Fig. 5. As is demonstrated,
even though the RWs are not aligned with the principal axes,
Algorithm 1 is still able to guide the system to the pointing
equilibrium. Note that the RW speeds are not zero in steady-state and
absorb the nonzero total angular momentum of the spacecraft. The
stabilization of this system takes a shorter amount of time compared
with simulation 1. In this case, the added angular momentum and the
nondiagonal shape of �J induce nonlinear terms that improve the
convergence time, but this may not be always the case.

C. Simulation 3

Consider now the case when the RWs spin about the first two
principal axes of the spacecraft bus. In this case, the matrices �J and �W
are the same as in simulation 1. Let ϕ�0� � 0.01 rad, θ�0� � 0 rad,
ψ�0� � 0.1 rad, ω1�0� � ω2�0� � ω3�0� � 0 rad∕s, and ν1�0��
ν2�0��10rad∕s. In this case,H��0.3849 0.4708 0.0043�T kg ·m2∕s,
and does not satisfy proposition 1. Figure 6 demonstrates the response
of the spacecraft using Algorithm 2. Note that the attitude error in
Fig. 6f reaches near zero but then increases. This is due to the fact that
simultaneous convergence of all three Euler angles to zero is
impossible because the spacecraft is underactuated and has a nonzero
total angular momentum component about the uncontrollable axis
(proposition 1). However, Fig. 6a demonstrates that, by using
Algorithm 2, controlled and bounded oscillations in a vicinity of
Θ � 0 can be performed.
Remark 5: As mentioned in the introduction, the treatment of an

underactuated spacecraft with nonzero total angular momentum has
been limited. Even in the casewhen total angular momentum is taken
into account, some proposed control schemes can send a spacecraft
into an uncontrolled drift (see [21]). In [12,14], it was shown that a
Lyapunov-based controller designed for zero total angular
momentum could perform oscillations about the desired pointing
configuration when there was a nonzero component of total angular
momentum about the uncontrollable axis. However, the Lyapunov
functions used for controller synthesis in each method become
undefined at certain orientations near the desired attitude, and thus
singularity avoidance must be performed. This method, in contrast,
does not have such singularity issues. Another benefit to the
switching law presented in our paper is that the total angular
momentum is taken into account when designing the controller,
which could improve overall performance.

VIII. Conclusions

This paper presented a switching feedback law to locally control
the attitude of an underactuated spacecraft with two reaction wheels
(RWs) to an inertial pointing configuration. The feedback law
exploits the decomposition of the system states into base variables
that are directly controllable and fiber variables that are not directly
controllable. By stabilizing the base variables to periodic motions, a
change in the fiber variables can be induced, which is regulated by
changing parameters at discrete time instants. The switching scheme
was shown to stabilize an underactuated spacecraft to the desired
pointing configuration when the component of the total, inertial
angular momentum vector along the uncontrollable axis is zero. If
this is not the case, controlled oscillations in a neighborhood around
the desired pointing configuration were achieved with a modified
switching scheme. Simulation results were reported that demonstrate
the proposed control scheme can successfully perform the desired
spacecraft attitude maneuvers. Additional analysis results of the
spacecraft response properties were presented to characterize
trajectory limits as the excitation frequency of the base variables
increases.
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