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Unmanned aircraft system navigation in urban environments requires consideration of which combination of

sensors can provide the most accurate navigation results in a dynamically changing environment. The traditional

Global Positioning System, although useful in open spaces, degrades severely when in urban canyons requiring other

complementary sensors to provide position and velocity measurements when necessary. One well-known solution is

vision-based sensors that provide measurements through optical flow. Another possibility is the long-term evolution

network that is currently used for cellular voice and data transmission as well, as coarse Global-Positioning-System-

independent navigation. This paper reviews sensor accuracy and availability as a function of environment

characteristics. A simulation framework integrates these different types of sensors to allow for efficient high-level

testing of sensor combinations and fusion algorithms. Results show that long-term evolution slightly improves

position accuracy unless another exteroceptive position sensor such as vision is available. Sinusoidal trajectories that

rise above the urban environment also show increases in accuracy as Global Positioning System navigation becomes

available during these short windows.

Nomenclature

A = state transition Jacobian matrix
B = control input Jacobian matrix
dt = simulation time step, s
FT = unmanned aircraft system propeller thrust, N
H = measurement sensitivity Jacobian matrix
h = unmanned aircraft system altitude above ground level, m
K = Kalman gain matrix
�K = linear quadratic regulator controller gain matrix
Np, Neff = number of particles and number of effective particles
P = estimated covariance matrix
p, q, r = unmanned aircraft system body-fixed roll rate, pitch rate, and yaw rate, rad∕s
Q = process noise covariance matrix
�Q = linear quadratic regulator state weighting matrix
~q = number of sensors providing measurement
R = measurement noise covariance matrix
�R = linear quadratic regulator control input weighting matrix
S = Kalman filter residual covariance matrix
u = control input vector
VT = unmanned aircraft system airspeed, m∕s
v = measurement noise vector
w = process noise vector
X = particle set
x, x̂ = true state vector and estimated state vector
xN = unmanned aircraft system longitudinal position, m
xN , xE, h = unmanned aircraft system longitudinal position, lateral position, and altitude, m
xi = particle vector
z = measurement vector
α, β = unmanned aircraft system angle of attack and angle of sideslip, rad
δa, δe, δr = unmanned aircraft system aileron deflection, elevator deflection, and rudder deflection, % deflection
ν = Kalman filter residual vector
�ρ = linear quadratic regulator tuning parameter
ϕ, θ, ψ = unmanned aircraft system roll angle, pitch angle, and yaw angle, rad

I. Introduction

A S TECHNOLOGY matures, small unmanned aircraft systems (UAS) can begin conducting urban missions such as law enforcement,
antiterrorism, riot control, traffic surveillance, natural disaster monitoring, emergency medical/flood delivery, agriculture, and

communication relay [1]. The biggest challenge is to navigate safely while avoiding the many obstacles in the urban environment, including
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buildings, overpasses, sky bridges, antennas, etc. In 2007, a study in the United Kingdom concluded that sensor obscuration would be an
impediment to enabling safe UAS operations for missions such as urban law enforcement, showing the need for navigation and control systems
independent of any one data source [2]. Global Positioning System (GPS) degradation, whether due to natural phenomena ormanmade structures
[3], is also problematic, due to increased geometric dilution of precision [4]. In 2003, the effects of the urban environment onGPS availability and
error were quantified in a study in theWan Chai district of Hong Kong [5]. GPS denial must also be considered, especially given an example such
as the inadvertent Newark Airport GPS outage event from November 2009 through April 2010 [6]. To address this problem, both the Defense
Advanced Research Projects Agency [7] and BAE Systems [8] examined signals of opportunity, including cellular network, television, wireless
fidelity (known asWi-Fi), and even signals emanating from other satellites to determine if any would be viable for GPS-independent navigation.
Although local signals from onboard sensors such as cameras and light detection and ranging (LIDAR) allowmapping the local environment,Wi-
Fi and cellular network protocols such as long-term evolution (LTE) also might support inertial navigation, particularly in GPS-denied urban
environments.

This paper investigates urban navigation for unmanned aircraft systems using a system simulation package developed for this purpose. The
simulation is built on generalized data objects that provide modularity and facilitate customization of air vehicle performance, sensor availability
and noise, estimation filter types and tunings, and urban environment characteristics. This structure facilitates trade studies of navigation
performance for different aircraft as a function of environments and available sensor suites. Specific innovations include the introduction of the
time-delayed LTEmeasurement as a measurement source, the use of environment-dependent GPS and LTE availability and accuracy values, and
fusion of any combination of navigation signals in the propagated state estimate. This paper also provides a concise summary of UAS sensor
measurement noise values over a variety of literature sources that can serve as a standalone reference for future research efforts.

This remainder of this paper is divided into background, simulation development, simulation execution, results, and conclusions/future work.
The background section discusses previous urban canyon navigation research, sensor measurement specifics including expected availability and
accuracy, and the proposed solution. The Simulation Development section (Sec. III) details the software framework; guidance, navigation, and
control modules; state estimation filters; and the proposed sensor fusion strategy. The Simulation Execution section (Sec. IV) discusses the
specific simulation parameters. TheResults section (Sec. V) presents navigation accuracy findings frommultiple urban environments, examining
the effects of delay GPS, LTE, and vision system delay as needed. The final section (Sec. VI) provides a summary of major conclusions and
proposes areas for further investigation.

II. Background

A. Previous Urban Navigation Work

Since the early 1990s, researchers have studied urban canyon vehicle navigation in the presence of degraded and sometimes unavailable GPS
sensor data. This research has motivated solutions ranging from GPS only to multisensor fusion using additional sources such as inertial sensors
[9–14], a priori urbanmaps [15–19], and ground-based navigation transmitters [20–22]. The large variety of contrasting stimuli and static objects
in the urban environment make vision and laser solutions appealing alternatives to GPS. Several works have studied the accuracy of vision-based
UAS navigation using either optic flow methods [23–26] or feature detection/localization based on environmental features [27–30]. With rigid
structures in the environment, lasers have also proven useful for urban navigation, giving submeter accuracy in ground applications [31,32].
Vision and laser solutions can even be used together, exploiting the benefits of the laser when in close proximity to surfaces and deferring to vision
when further from structures or terrain [33].

B. UAS Sensors

1. Inertial Measurement Unit

The inertial measurement unit (IMU) for a small UAS uses generally consists of three-axis gyroscopes, three-axis accelerometers, and a three-
axis magnetometer to provide measurements of the aircraft’s angular velocities as well as gravity and magnetic north vectors. These raw
measurements are postprocessed and filtered to convert data into roll, pitch, yaw, and angular rate information accounting for any noise and bias in
the data due to environmental conditions [34]. Some of the filters used to accomplish this include a complementary filter [34,35], an extended
Kalman filter (EKF) [36], and an unscented Kalman filter [37].

Since this research is focused on postprocessed attitude and heading reference system (AHRS)-type sensor outputs, the measurement models
for body-fixed angular rates and Euler attitude angles will add zero mean white Gaussian noise to the true values of the state. Typical angular rate
1σ noise values are generally close to 0.5 deg ∕s [38–40]. Euler angle 1σ noise values are generally similar for pitch and roll in the range of 0.6–
3 deg [34,37,41]. The main advantage of this sensor is that its measurements are based on inertial accelerations, which are not affected by urban
buildup. However, the main disadvantage is that the sensor data integration to approximate position and attitude suffers drift over time.

2. GPS/IMU

In navigation applications, an important part of theGPS receiver position calculation is determining the slowly time-varying position error. This
error can be calculated for 1σ root-mean-square (RMS) error as the product of the dilution of precision and the filtered user range equivalent error
(UERE) in the horizontal and vertical directions independently. The horizontal dilution of precision and vertical dilution of precision are
approximately 1.3 and 1.8, respectively, with theUERE ranging from 4 to 5.1mwhen taking into account factors such as clock error, atmosphere,
multipath, receiver, and ephemeris [42,43]. Using this model, the GPS 1σ position error in both horizontal dimensions is roughly 3.67m, and it is
roughly 7.2 m in the vertical direction.

When GPS measurements are combined with inertial measurements in a navigation filter, the UAS position, velocity, and attitude can be
estimated accurately. Nemra and Aouf [44] used a loosely coupled GPS/inertial navigation system (INS) with a state-dependent Riccati equation
filter to yield position errors between 1 and 3m.Rhudy et al. [45] also used a loosely coupled systemwithmultipleGPS antennas and an unscented
Kalman filter to yield roll and pitch errors between 0.8 deg and roughly 1.5 deg using different techniques to filter theGPS and INSmeasurements.

When in the urban environment, GPS degradation is common due to factors such as multipath, masking, or even intentional acts such as
jamming or spoofing. Past research has shownGPS availability rates in this type of environment range from 30 to 50% [5,10,13]. To quantifyGPS
accuracy in the urban environment, Lu et al. [5] conductedGPS accuracy trials in theWanChai area ofHongKong (seen in Fig. 1), which is known
to have one of the densest high-rise building cores on the island.When aGPS solutionwas available, the accuracywasworse than 20m for 40%of
the points and worse than 100 m for 9% of the points.

In a less dense but large urban environment,MacGougan et al. [46] conducted a driving trial inVancouver, BritishColumbia, Canada, as seen in
Fig. 2. They found that the two-dimensional root-mean-square position error ranged from 10.8 to 23.1 m, with the RMS horizontal dilution of
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precision ranging from 4.0 to 7.0. The RMS error for height ranged from 11.9 to 62.4 m. During a walking trial of Görlitz, Modsching et al. [47]
found that the mean two-dimensional error was 2.42 m in the case of less urban buildup (Fig. 3a) and 15.43 mwith more urban buildup (Fig. 3b).

3. Vision

An area of active research in UAS urban navigation is the use of computer vision to provide navigation information to a filter, generating
position, airspeed, and attitude estimates. One of the largest advantages of using this type of sensor is that it does not depend on any type of
manmade electromagnetic transmission to work properly, making it a complementary sensor to GPS. However, these sensors are only effective
when in properly lighted high-contrast environments. These sensors use a variety of different techniques broadly described as optical flow or
feature detection/localization.

a. Optical Flow. Optical flow is defined in [48] as the distribution of apparent velocities of brightness pattern movements in an image. It is
generally calculated by comparing pixels in sequential images to determine the local velocity of the camera that is capturing the images. This
concept can be applied to a UAS operating in an urban canyon by attaching a camera to the vehicle and calculating the apparent local velocities of
adjacent buildings or the street below.

An ideal optical flow application to the urban environment is the “centering response,” with biological inspiration from bees. Reference [49]
explains that bees are able to hold this centerline trajectory by equalizing the apparent motion images on their retinas. This phenomenon has been
demonstrated on UAS operating in urban canyons, both in simulations [23,50] and in experiments [51,52]. In addition tomaintaining a centerline
trajectory, further simulation and experiments have shown that vehicles equipped with combined optical flow-stereo sensors can also navigate
90 deg turns in a simulated urban canyon [25].

b. Feature Detection/Localization. One application of feature detection/localization uses vanishing points to measure both aircraft pitch and roll
angles [29]. Once these vanishing points are calculated at any time step in which they are available from the image (updated at 5 Hz), they can be
used in an EKF to reset the error in the IMU-based attitude angle estimate (updated at 100 Hz). Hwangbo and Kanade [29] demonstrated this
technique with simulation-based pitch and roll 1σ error in the range of 1.5–2.25 deg and flight-test-based pitch and roll 1σ errors between 0.85
and 2.5 deg.

Fig. 1 Wan Chai district of Hong Kong By WiNG (own work) (CC by 3.0, via Wikimedia Common).

Fig. 2 Vancouver urban street-level image (reproduced with permission) [46].
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4. Air Data System

In addition to the AHRS, another existing small UAS sensor is the air data system (ADS) [53]. Most ADSs include, at minimum, a static
pressure port to generate altitude measurements and a dynamic pressure port, which along with the static port generates airspeed measurements.
Others include multiple dynamic pressure and static pressure measurement locations to generate angle of attack α and angle of sideslip β values
[54,55]. Typical 1σ altitude accuracy ranges from 1.5 to 3m [56,57]. Airspeed 1σ accuracy is between 1 and 1.5 m∕s [54,57]. Angle-of-attack and
angle-of-sideslip 1σ accuracy, using a differential pressure probe, are roughly 1 deg. The main advantage of an air data system is that it provides
pressure-based measurements independent of all other sensors. However, in an urban environment with the potential for quickly shifting winds
and gusts, airspeed measurements could change quickly and drastically, and they may not always be reliable.

5. Long-Term Evolution

The long-term evolution cellular network provides another preexisting signal that might increase navigation accuracy [58]. Due to the Federal
CommunicationsCommission’s enhanced 911 location accuracy requirements, devicesmust alreadymeet network-calculated accuracy of at least
300m for 90%of the requested position fixes [59]. Although cellular carriers do not typically publish the accuracy of their geolocation techniques
(because these are considered proprietary), they may be as accurate as 3 to 31 m [60,61].

Figure 4 shows several types of available smart phone geolocation techniques with varying levels of quality of service (QOS), which is also
known as position accuracy (in meters) [62]. However, the tradeoff for better position accuracy is generally an increased response time (in
seconds) to determine the smart phone’s position. Within the LTE positioning protocol standard, the three defined techniques are enhanced

Fig. 3 Gorlitz urban buildup images (reproduced with permission) [47].

Fig. 4 Smart phone geolocation techniques courtesy of Ericsson [62]. UTDOA = uplink-time difference of arrival, AECID = adaptive enhanced cellular
identification, Rel-8 = release 8, Rel-9 = release 9, Rel-11 = release 11.
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cellular identification (E-CID), observed time difference of arrival (OTDOA), and assisted–global navigation satellite system (A–GNSS) [63].
Since OTDOA is independent of GPS, more accurate than E-CID [64], and an active area of research [65], it is used in this research.

The OTDOA technique uses multilateration (hyperbolic lateration) to determine the position of the smart phone. The process is initiated when
either the phone or the network requests an estimate of the position of the phone. Signals are then sent to the phone from at least three available
towers, and the difference in arrival time for each pair of signals is calculated by the phone. It then sends this information to the network to generate
a position update, or it can complete the calculation itself under certain conditions. The accuracy generally increases as a function of the number of
available towers [60,66,67], up through 18 available towers. Since the urban environment generally has a large number of towers, it would provide
the ideal situation for urban navigation. Simulation data show horizontal position errors ranging from 14.9 m with a standard deviation
of 11.4 m for five available towers to 3.1 m with a standard deviation of 1.9 m for 30 available towers [60]. Although exact accuracy statistics
are closely guarded by the companies developing this technology, Polaris Wireless currently advertises a 4 s Time to Fix with 40 m of
accuracy.

C. Light Detection and Ranging

LIDAR is another navigation sensor that could possibly be used on small UAS in urban canyons, since it can operate in both bad weather and
GPS degraded/denied conditions. It has been shown to increase urban canyon navigation accuracy by over an order of magnitude over the
traditional GPS/IMU/odometry solution [68]. When tightly coupled with GPS/INS [32], it has also been shown to have submeter delta position
accuracy in urban environments. However, these sensors have a high price tag of 2000 U.S. dollars at a minimum for a small low-cost UAS [69].
Their typical range of approximately 30 m limits the distance the UAS can fly from buildings to still effectively use this sensor [70].

III. Simulation Development

This section details the UAS guidance, navigation, and control simulation development within the framework seen in Fig. 5. It includes an
overview of the simulation software, creation of the urban environment, the UAS controller and dynamics, the proposed sensor measurement
generation algorithm, and a discussion of both the extended Kalman filter and the ensemble Kalman filter (ENKF).

A. Simulation Software Overview

Creating a realistic UAS guidance, navigation, and control (GNC) simulation requires a methodical system-level design with intuitive data
structures. Using an easy-to-follow framework allows for both ease of use and a rapid customization capability. The UAS GNC simulation
framework shown in Fig. 5 accomplishes that task, with each oval representing data inputs, whereas each block represents a GNC process
described later in this section. Multiple state estimation blocks are shown to highlight this simulation’s ability to incorporate different estimators.

B. Urban Environment Development

To navigate in an urban environment, simulations need to either use preloaded building and obstacle information, create their own urban
environments based on incoming sensor data, or both. These environments can either be fictitious or based on real urban databases, such as the
Primary Land Use Tax-Lot Output for the city of NewYork [71]. All landscapes developed using this tool assume, without loss of generality, that
the landscape is aligned in a north–south manner with direction of travel from south to north. Figure 6 shows a representative generated urban
environment, complete with sky bridges and antennas.

The UAS is assumed to have complete knowledge of the map to include all building, sky bridge, and antenna coordinates and heights, and the
coordinates of the four corners of each block along with the heights of the tallest and shortest buildings on each block. This environment plays a
critical role in determining the accuracy of the GPS and LTE sensor measurements used by the two state estimation filters.

C. UAS Dynamics Model and Controller

The nonlinear equations of motion for rigid-body fixed-wing UAS are in the form _x � f�x; u�, where x is the n × 1 state vector and u is the
m × 1 control input vector:

x � � xN xE h VT α β ϕ θ ψ p q r �T (1)

The state vector shown inEq. (1) consists of the inertial position coordinates: north position xN ; east position xE; altitudeh; airspeedVt; angle of
attack α; angle of sideslip β; the following Euler orientation angles of roll angle ϕ, pitch angle θ, and yaw angle ψ ; and the body-fixed angular
velocities of roll rate p, pitch rate q, and yaw rate r:

Fig. 5 UAS GNC simulation system diagram.
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u � � δa δe δr FT �T (2)

The control input vector shown inEq. (2) consists of the aileron deflection δa, elevator deflection δe, rudder deflection δr, and thrustFT . The full
set of differential equations is available in chapter 3 of the work by Ducard, with aircraft model properties available in appendix F [72].

For control, a steady-state linear quadratic regulator (LQR) [73] is selected due to its straightforward implementation and constant gains when
the UAS dynamics are linearized about a trim (steady flight) condition. These gains are shown in the appendices. The controller uses Eq. (3) as its
control law,where xcmdk

is the current commanded state vector, x̂k−1 is the previous estimated state vector, andutrim is the trim control input vector:

uk � �K�xcmdk
− x̂k−1� � utrim (3)

Since the longitudinal position cannot be directly commanded, the commanded state vector dimension is 11.

D. Sensor Measurement Generation

Figure 7 shows a systemdiagramof the possible sensors and existing urban canyonnavigation solutions. The postprocessed sensor output noise
characteristics are shownwith solid lines, and the integrated system output noise characteristics are shown as dotted lines. Each sensor is currently
available commercial off the shelf (COTS), and the integrated systems are available either as COTS or can be created using existing filtering
techniques. The vision signal is considered to be the measurements directly from a vision system using odometry, localization, or both.

The available postprocessed measured states for each sensor are shown in Table 1. Inertial airspeed components are also available for GPS/
IMU, but they are represented in the table asVT to be consistent with the previously defined states.With this architecture, sensor specifications can
be easily modified to account for changes in performance.

When a sensor measurement is available, it is generated using Eq. (4), where vk ∼N �0; Rk�, with Rk as the measurement noise covariance
matrix. The simplifiedmodel is used to allow focus on the state estimation process using several different sensors rather than the detailedmodeling
of any individual sensor:

zk � Hkxk � vk (4)

Fig. 7 Sensor system diagram.
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Fig. 6 Representative urban environment viewing from South to North.
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Some sensors such as an IMU or ADS have measurement noise covariance values that are determined through experimental testing. These
values are not generally environment specific, so they can be set as constant values for both the measurement generation block and the state
estimation filter block of Fig. 5. Sensors such as GPS, LTE, and vision require data manipulation to determine the most accurate measurement
noise covariance values at a given time step. GPS and LTE have measurement noise covariances that are dependent on the environment. This is
because GPS measurement accuracy is largely a function of satellite visibility among other factors [74], which is affected by the density of
buildings and other structures. The same is true conceptually for LTE, since its accuracy is a function of the number of available towers, which is
also dependent on the density of buildings and other signal blocking structures. In this paper, neither GPS nor LTE measurement accuracy was
modeled as continuously timevarying, since the paper’s focus is not the specific temporal characteristics of each sensor’smeasurements but rather
how themeasurements are fused in different urban environments. Sensor availability and covariance are instead switched over a discrete value set
as a function of the altitude and position in the urban canyon as described in the following.

An initialmodel to represent thevariability inmeasurement noisevalues is shown inTable 2,which assigns avalue based on the relative location
of the UAS within the urban environment using published results from the literature.

The ALTand SL headings in Table 2 are the vertical and lateral descriptions, respectively, of the UAS with respect to the urban environment.
ALT describes the UAS altitude (ALT) with respect to buildings, shown in Fig. 8; and SL describes the UAS street-level (SL) projection onto a
two-dimensional map, shown in Fig. 9.

To determine the UAS ALT category, its altitude is compared to the tallest building along the current city block or intersection it is traversing.
The UAS is in the ALT-1 category (Fig. 8a) when its altitude is higher than the tallest building on the current block or the buildings bordering the
intersection. It is in the ALT-2 category (Fig. 8b) when its altitude is higher than the shortest building on the block/intersection but lower than the
tallest building on that block/intersection. It is in the ALT-3 category (Fig. 8c) when it is lower than the shortest building on the block/intersection.

The UAS SL category is determined by comparing its lateral position to the surrounding buildings along the current block. It is in the SL-1
category when it is along a block with buildings on both sides of the street (Fig. 9a). It is in the SL-2 category when between canyons in an
intersection between city blocks (Fig. 9b). TheUAS is in the SL-3 categorywhen there are only buildings on one side of the current block (Fig. 9c).
Although the true measurement noise covariance model is most likely continuous and would need to be experimentally determined, this initial
model is representative of the changing noise throughout the environment.

The optical flowmeasurement noise standard deviation σpixels is generally reported in units of pixels per frame, making a conversion to meters
per second necessary. This is done by first determining the widthW of the captured image presuming the camera’s focal length f is known; the

Table 2 Measurement noise covariance
lookup table for GPS and LTE

SL-1 SL-2 SL-3

ALT-1 σ211 σ212 σ213
ALT-2 σ221 σ222 σ223
ALT-3 σ231 σ232 σ233

Fig. 8 Altitude classification examples.

Table 1 UAS sensor information

Sensor Measured states

GPS xN , xE, h, VT

AHRS ϕ, θ, ψ , p, q, r
Vision VT

ADS h, VT , α, β
LTE xN , xE
GPS/IMU xN , xE, h, VT , ϕ, θ, ψ , p, q, r
ADS/IMU VT , α, β, ϕ, θ, ψ , p, q, r
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imagewidth is calculatedwith a pinhole camera assumption using Eq. (5), whereL is the perpendicular distance from the camera to the real-world
object, d is the horizontal dimension of the image, and f is the focal length of the lens:

W � L � d

f
(5)

The optical flow*based inertial airspeed noise covariance value assuming zero wind is then scaled from squared pixels per frame to squared
meters per second using Eq. (6), where FR is the camera frame rate in frames per second and HR is the camera horizontal resolution in pixels. The
σpixels used in this work is 4.54 pixels per frame, with a frame rate of 0.15 s and horizontal resolution of 752 pixels that are each 24 μm wide:

σ2OF �
�
σOFpixelsFR �W

HR

�
2

(6)

E. State Estimation

State estimation filters enable feedback control for real-world systems. Bayesian filters accomplish this task through the use of a prediction-
correction structurewhere the estimated state vector is propagated forwardwith a processmodel and then corrected using availablemeasurements.
Since theUAS dynamics are in the form of Eq. (7), where x�t� is the state of the system at a given time, u�t� is the control input at a given time, and
the unknown process (plant) noise is w�t� ∼N �0; Q�t��, a nonlinear filtering techniques such as the EKF and ENKF can be used:

_x�t� � f�x�t�; u�t��� �w�t� (7)

1. Extended Kalman Filter

The EKF, a nonlinear extension of the Kalman Filter [75,76], linearizes the system dynamics [Eq. (7)] and the measurement model [Eq. (4)] at
each instance in time about themost recent estimated state and control input vectors [77]. A posterior Gaussian distribution is maintained to allow
the estimated state vector and covariance matrix to be calculated using a process almost identical to that of the Kalman Filter.

The initial estimated state vector x̂0 is drawn from N �x0; P0�, where x0 is the known initial true state vector and P0 is the known initial
covariance matrix. The predicted estimated state vector x̂−k and predicted covariance matrix P−

k are then calculated using Eqs. (8) and (9). Since
aircraft dynamics are typically written as differential equations, a technique such as the Runge–Kutta fourth-order method can be used for
propagation:

x̂−k � f�xk−1; uk−1� (8)

P−
k � Ak−1Pk−1A

T
k−1 �Qk (9)

Once the available measurement vector zk, calculated using Eq. (4), is received at the current time step, the filter calculates the corrected
estimated state vector x̂k and the corrected covariance matrix Pk shown in Eqs. (10) and (11), respectively:

x̂k � x̂−k � Kkνk (10)

Fig. 9 Street-level classification examples.
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Pk � �I − KkHk�P−
k (11)

2. Ensemble Kalman Filter

In contrast with the EKF, which uses a recursive calculation of the estimated state vector mean and covariance to represent the posterior belief
distribution of each unobservable state, particle filters use an ensemble of Np samples or particles to represent the distribution [78], where each
particle is drawn as shown in Eq. (12). In this type of filter, only the ensemble is calculated recursively:

xik ∼ p�xkjz1: k; u1: k� (12)

The ENKF, introduced in [79], is a variant of the particle filter in which all distributions are assumed to beGaussian. The ensemble is formed as
Xk � fx1k; x2k; : : : ; xNk gwith increasing accuracy asN → ∞. Similar to the EKF, the ENKF includes both prediction and correction steps, which
are called the forecast step and the analysis step, respectively. The ENKF filtering process [80] is initialized by drawing N particles from
N �x0; P0� to form the initial ensemble. Each of these particles is propagated during the forecast step using Eq. (13) to form Xi−

k , where
wi

k ∼N �0; Qk�:

xi−k � f�xi−k−1; uk−1� �wi
k (13)

The forecast statevector is created by calculating the ensemblemean usingEq. (14). The state error vector ensemble is calculated usingEq. (15),
and the forecast estimated state vector covariance is calculated using Eq. (16):

x̂−k � 1

Np

XNp

i�1

xi−k (14)

E−
xk � �x1−k − x̂−k : : : x

N−
k − x̂−k � (15)

P−
k � E−

xkE
−T
xk

Np − 1
(16)

In the analysis step,Np particles in the ensemble are corrected given the available measurement vector using Eq. (17) with the estimated state
vector mean calculated using Eq. (18). Gillijns et al. [80] provided more details on the intermediate calculations used in generating the corrected
estimate and covariance for the ENKF:

xik � xi−k � KkN
i
k (17)

x̂k �
1

Np

XNp

i�1

xik (18)

Delay compensation is necessary for GPS and LTEmeasurements, since they both become available at a later time than they are acquired. GPS
measurements are delayed 0.1 s according to [36] and LTE measurements are delayed between 4 and 10 s according to the Polaris Wireless
website‡ and [64]. A common technique to properly account for measurement delay is state augmentation or stochastic cloning [81,82]. A brief
summary of state augmentation is discussed here, with more details in [81]. For a measurement with a known delay ofm time steps that becomes
available at time step k, state augmentation keeps a copy of the estimated state vector at time step (k −m) and appends it to the bottom of the
estimate state vector until time kwhile expanding the estimated state covariance matrix accordingly. As the estimated state vector is propagated
forward, the augmented states are not propagated but are adjusted as the augmented covariance matrix is corrected using intermediate
measurements. At time step k, the simulated time-delayedmeasurement (i.e.,measurement acquired using true state vector at time step k −m) and
augmented estimated state vector are used to calculate the augmented innovation vector. Once the filter has completed the correction step at time
step k, the augmented states and their associated covariance matrix entries are marginalized out of the system and the process is repeated for the
next measurement from the delayed sensor.

Table 3 Simulation test matrix

Test identification Environment Altitude h Available sensors

1 Open space 125 m AHRS, ADS, GPS
2 Open space 125 m AHRS, IMU, ADS, GPS, LTE
3 High canyon 75 m AHRS, IMU, ADS, GPS, LTE, vision-OF x 2
4 Low canyon 50 m AHRS, IMU, ADS, LTE, vision-OF x 2
5 Varies Sinusoidal-up (75 m) AHRS, IMU, ADS, GPS, LTE, vision-OF x 2
6 Varies Sinusoidal-down (75 m) AHRS, IMU, ADS, GPS, LTE, vision-OF x 2

‡Available online at http://www.polariswireless.com/.
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IV. Simulation Execution

A. Test Matrix

Four tests, as shown as tests 1–4 in Table 3, were conducted to explore the effects of GPS, vision-optic flow (OF), and LTE in the simple and
consistent urban environment depicted in Fig. 10. Two additional sinusoidal trajectory tests (test 5 and 6) were conducted in a realistic urban
environment, as shown in Fig. 11. It was assumed that theUASwas equippedwith a vision sensor along bothwings, as denoted by “x 2” in Table 3
for vision-OF.

Test 1 served as a baseline using currently available sensors with published accuracy in an open spacewhere vision systems would not produce
useful information. Test 2 was conducted in the same environment but added the LTE sensor to determine what if any effect it had on navigation
accuracy.

Tests 3 and 4 explored navigation accuracy degradation when using optical flow only. All tests were conducted both with and without sensor
delay to show the effect of sensor delay on the system.

B. Simulation Parameters

To conduct the tests in Table 3, the available measurements, sampling rates, sampling delays, and measurement noise covariance values (with
the exception of GPS and LTE) for each sensor are defined in Table 4. GPS and LTE noise covariance values are shown in Tables 5 and 6,
respectively. Each was taken from published results or sensor/integrated system specification sheets. A complete listing of values is shown in
Table A1 of Appendix A to this paper.

Since each sensor measures a different set of states, none fully observes the state of the system at any given time. Because of this, estimates of
some of the states, such as the three-dimensional inertial position provided by GPS and LTE, are generally made without current measurement
data. This lack of available measurements causes an increase in estimate uncertainty in an environment that generally has little margin for
navigation errors. However, AHRS measurements are available at every time step, allowing accurate estimates of these states with little
uncertainty.

The vision-OF inertial airspeed noise covariance is converted to meters per second using specifications from the PX4FLOW Smart Camera,
which is a typical optical flow camera available on hobbyWeb sites, The PX4FLOWhas a resolution of 752 × 480with a 16mm focal length and
24 × 24 μm pixel size. The optical flow algorithm accuracy and computational speed data shown in Table 4 are taken from the Bartels and De
Haan algorithm [83] published in the Middlebury Optical Flow Evaluation results for synthetic urban images [84].

GPSALT-1measurement noise covariancevalueswere taken fromwork byBeard andMcLain [43] and u-blox [42],whereasALT-3/SL- values
were taken from work by MacGougan et al. [46]. The remaining position values were interpolated, and the airspeed noise covariance value was
taken fromwork by Langelaan et al. [38]. LTEOTDOAnoise covariance valueswere generated from [85], as this was the only identified source of
LTEpositioning accuracy as a function of the number of available towers. The simulation capped accuracy at 20 available towers, consistentwith a
review of the Cell Receptionwebsite§ for Detroit,Michigan, which indicated 22 cellular towers in and around the downtown core. All towerswere
presumed to be on the LTE network.

Table 7 shows the general simulation parameters, including time step, simulation length, number of Monte Carlo runs, and the number of
particles when using the ENKF.

Fig. 10 Urban environment for simulations with direction of travel indicated.

Fig. 11 Realistic urban environment for sinusoidal simulations.

§Available online at http://www.cellreception.com/coverage/mi/detroit/page1.html.
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C. State Estimation Filter Initialization

The initial true UAS state vector and diagonal covariance matrix values are shown in Table 8 for a steady-level trim flight condition. For both
filters, the initial estimated state vector for eachMonteCarlo simulationwas drawn fromN �x0; P0�. The constant process noise covariancematrix
Q was set to 10−4 � I12.

V. Results

A. Open Space

Table 9 shows the longitudinal and lateral RMS position error values at the final time step for the two open-space test environments. For both
filters, the position error is similar with and without the LTE measurement. However, in the no-delay case, the LTE measurement slightly aids in
decreasing the longitudinal error, whereas it causes a slight error increase in the delayed case for both filters. The difference in themagnitude of the
lateral and longitudinal errors in the open-space environments is due to the controller constantly attempting to correct the lateral position back to
the center of the canyon. This causes small overshoots of the trim position throughout the duration of the simulation. The ENKF did not show any

Table 4 Sensor simulation parameters

Sensor Sampling rate, Hz Sampling delay, s Measured states (noise covariance values)

GPS 1 0.1 xN , xE, h, VT (see Table 5)
Vision-OF inertial airspeed only 6.67 0.15 VT �4.54 frames∕s�2
AHRS 100 0 ϕ, θ, ψ �2.71 deg; 1.65 deg; 8.27 deg�2, p, q, r �0.6 deg ∕s; 0.6 deg ∕s; 0.6 deg ∕s�2
ADS 50 0 h, VT , α, β �1.5 m; 1 m∕s; 1 deg; 1 deg�2
LTE 1∕4 4 xN , xE (see Table 6)

Table 5 Location-based GPS receiver noise covariance data

σ2xN;E∕h
�m2�

SL-1 SL-2 SL-3

ALT-1 3.672∕7.22 3.672∕7.22 3.672∕7.22
ALT-2 6.962∕19.592 6.452∕17.992 5.682∕15.602
ALT-3 10.252∕31.982 9.232∕28.782 7.692∕23.992

Table 6 Location-based LTE noise covariance data

σ2xN;E
�m2� (number of available towers)

SL-1 SL-2 SL-3

ALT-1 4.38 (10–15) 4.38 (10–15) 4.38 (10–15)
ALT-2 4.38 (10–15) 3.48 (15–20) 4.38 (10–15)
ALT-3 6.26 (7–10) 4.38 (10–15) 6.26 (7–10)

Table 7 General simulation parameters

Parameter Value

Time step dt 0.01 s
Simulation length 20 s (600 m)
Number of Monte Carlo runs 500
Number of particles Np 1000

Table 8 Initial true state and initial covariance values

State Initial true value Initial covariance State Initial true value Initial covariance

xN 5 m �1 m�2 ϕ 0.0003 rad �1π∕180 rad�2
xE 0 m �1 m�2 θ 0.0893 rad �1π∕180 rad�2
h Varies per test �1 m�2 ψ 0.0005 rad �1π∕180 rad�2
VT 30 m∕s �0.5 m∕s�2 p 0 rad∕s �1π∕180 rad�2
α 0.0893 rad �1π∕180 rad�2 q 0 rad∕s �1π∕180 rad�2
β 0.0003 rad �1π∕180 rad�2 r 0 rad∕s �1π∕180 rad�2

Table 9 RMS position error at t � 20 s for open-space test environments

EKF (no delay) EKF (delay) ENKF (delay)

Environment xN , m xE, m xN , m xE, m xN , m xE, m
Open space (no LTE) 0.67 1.23 0.66 1.24 0.67 1.32
Open space 0.64 1.25 0.71 1.19 0.68 1.35
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improvement in longitudinal or lateral position errors, as it was simply calculating the estimated state vector and covariance empirically instead of
closed form in order to eliminate the need to generate the state transition Jacobian. Note that both the EKF and ENKF initial state estimates were
specified over the same initial distribution centered on the true initial state vector. However, since the EKF only draws one sample from the initial
distribution for eachMonte Carlo runwhile the ENKF draws 1000 samples for each run, the ENKF initial RMS error will average to a valuemuch
closer to zero.

Figures 12 and 13 show the horizontal RMSposition error trajectories of the two open-space environments. TheRMSposition error trajectories
are similar for both states when the EKF is used. The sawtooth pattern in the lateral states resulted frommeasurements being received to decrease
error but an overall increasing error as the controller constantly overshot the commanded positionvalue. The addition of LTE,with its 4 s delay, did
not give any better performance, since these measurements were not weighted as highly as the less-delayed GPS measurements in the correction
step. The ENKF gives a much lower initial RMS error for both states because it is able to average the entire initial ensemble. However, the error
increases to EKF levels during the simulation as the forecastedmean is propagatedwith process noise. In both environments, the delayed EKFand
ENKF longitudinal position errors approach the same value, showing that, in a steady-level trajectory with a nearly constant state transition
matrix, the EKF is tough to outperform.

Although the LTEmeasurements had little effect on increasing the accuracy of the position estimate, they did slightly increase confidence in the
estimate, as shown in Fig. 14. Here, the EKF and ENKF position error 3σ bounds are shown for the longitudinal position state (Fig. 14a) and the
lateral position state (Fig. 14b). The dotted lines represent the open-space environment with GPS only using the EKF (outer) and ENKF (inner).
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Fig. 12 RMS error trajectory for open-space environment with GPS.
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Fig. 13 RMS error trajectory for open-space environment with GPS and LTE.
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Fig. 14 Effect of adding delayed LTE sensor on horizontal position error 3σ bounds.
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The solid lines represent the open-space environment with the delayed LTE measurements added to the GPS using the EKF (outer) and ENKF
(inner). The increase in estimate confidence is shown by the slight divergence of the solid and dotted lines, with small but noticeable shrinking of
the bounds when the first delayed LTE measurement arrives at the 5 s point as more measurement information is received by the filter. Also, as
expected, the ENKF does give tighter bounds, since the covariance is empirically calculated and more closely approximating the true error of the
system.

B. Canyons

Table 10 shows the longitudinal and lateral RMS position error value at the final time step for the four canyon test environments. Vision-OF
provides airspeed updates such that longitudinal and lateral RMS errors are approximately 1 m and 2 m, respectively, in realistic delayed
measurement cases. Although the ENKF performed slightly better in the longitudinal direction with RMS errors just under 0.8 m, the lateral
position error became slightly worse as in the open-space tests as it attempted to keep the UAS on the canyon centerline with less accurate, low-
sampling rate, delayed measurements.

For vision-OF, the results are shown in Figs. 15 and 16 for the high and low canyon environments. These results show the same trends as the
open-space results, since the only position sensors areGPS and LTE in the high canyon and only LTE in the low canyon. However, the RMS errors
are higher, especially when using the EKF, because the GPSmeasurements are less accurate, when available, and the LTEmeasurements are only
available every 4 s and are delayed by 4 s. This effect is seen more in the lateral position errors as the controller attempts to center the UAS using
this delayed measurement. The ENKF does provide a more accurate initial estimate of the longitudinal position with these low sampling rate
sensors, but it degrades over time and is still increasing at 20 s. Overall, GPS and/or LTE can only provide a roughly 1 m RMS error (RMSE) in
longitudinal position estimation within an urban canyon as the RMS error in the lateral position estimate continuously degrades.

C. Sinusoidal Flight Path

For tests 5 (initial climb) and 6 (initial descent), the UAS flew a sinusoidal flight path through a realistic urban canyon. Figure 17 shows the
horizontal position RMSE trajectories when the UAS has an initial altitude of 75 m. Results from a constant 75-m-altitude flight-path simulation
are included for reference. For longitudinal and lateral position error trajectories in Figs. 17a and 17b, the initial descent flight path outperforms
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Fig. 15 RMS error trajectories for high canyon environment with GPS, LTE, and vision-OF.

Table 10 RMS position error at t � 20 s for canyon test environments

EKF (no delay) EKF (delay) ENKF (delay)

Environment xN , m xE, m xN , m xE, m xN , m xE, m

High canyon (vision-OF) 0.89 1.73 0.92 1.79 0.74 1.93
Low canyon (vision-OF/no GPS) 0.98 1.88 1.01 2.06 0.78 2.21
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Fig. 16 RMS error trajectories for low canyon environment with LTE and vision-OF.
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both the climbing flight path and the constant-altitude flight path. This is due to the UAS being above all buildings for all of the second canyon
where the climbing flight is primarily below building tops in the this canyon. In the lateral case, the climbing flight path has a sharp drop in error
during the first half of the third canyon as it climbs above the tops of all buildings, but this is brief as it descends back into the canyon and its lateral
error linearly increases. Even though a UAS may not fly these exact sinusoidal flight paths through the canyon, the noticeable trend is that rapid
changes in altitude induce rapid changes in RMS error as GPS measurements are lost and gained.

VI. Conclusions

In this paper, candidate urban navigation sensors and filtering techniques were characterized and evaluated. A modular UAS urban navigation
simulation frameworkwas proposed, enabling systematic tests of postprocessed sensormeasurement fusion using both an extendedKalman filter
and an ensemble Kalman filter. GPS and LTE environment-dependent measurement noise categories were presented to account for the role of the
urban environment as a factor in their noisevalues. Sincevision-OFonly provides an airspeedmeasurement in a canyon, itmust also be augmented
with another inertial position measurement sensor to provide adequate navigation accuracy. In this case, addition of LTE was not sufficient, as it
had little effect on increasing or decreasing the RMS horizontal position error. However, it did cause the covariance bounds to shrink slightly.
Should LTE technologymature to the point where its delay is substantially decreased, it can have amore beneficial effect on the navigation system
in the absence of reliable GPS.

Futureworkwill include exploringLTE further to determine the sampling frequency increase and corresponding delay decrease needed to show
increased performance. Also, transitions between categories of urban environments will be studied to determine how estimation error and
confidence bounds change during these sensor crossover periods, especially with the temporary loss of vision system measurements in
intersections. Wind models will be added to the UAS plant dynamics to better match the realistic conditions in an urban environment. Wind can
gust and can change direction quickly when deflected by buildings, billboards, overpasses, and other structures with noticeable impact on UAS
motion. Lastly, flight testing should be conducted to validate predictions; such testing is feasible once policy supports it, since most of the
referenced sensors have already been integrated onto small, lightweight commercial-off-the-shelf autopilots. The integration of a low-weight dual
camera system and LTE transceiver would be necessary, but they could be hosted on existing small UAS platforms.

Appendix A: Published Sensor and Integrated System Noise Values

Table A1 summarizes the literature survey of sensor and integrated sensor system noise. The information in Table A1 was gathered from
publications including sensor specification sheets, sensor user manuals, conference proceedings, journal articles, dissertations, and books. All
values shown with an asterisk (*) have been processed by the authors, either by averaging experimental data or interpolating plots.
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Fig. 17 Horizontal position RMSE trajectories for sinusoidal trajectories through the urban environment where h0 � 75 m.

Table A1 UAS sensor accuracy survey

Measured state Sensor type 1σ noise value Source

xN , xE, h, m GPS 3; 0.5; 3�h � 2�; 3.67� [38], [39], [57], [43]
GPS/IMU 4.05∕1.26∕3.07 [44]
Vision/IMU 0.36∕0.31∕0.33 [27]

h, m ADS 10 [54]
Altimeter 0.4, 1.5, 3 [39], [56], [57],

VT , m∕s GPS 0.1, 0.01 [38], [86]
ADS 0.2, 0.4, 1.5, 1 [87], [39], [57], [88]

α, β, deg ADS 1∕1, 1∕1 [87], [54]
Pitot tube/IMU 1.8∕0.95 [89]

ϕ, θ, ψ , deg AHRS 2∕2∕2, 1.65∕2.71∕−� [41], [34], [37]
GPS/IMU 3; 0.87�∕1.17�∕4.20�, 2.08∕2.21∕8.27 [36], [57], [86]

0.78∕0.80∕− [45]
Vision/IMU 1.52∕1.78∕− [29]

p, q, r, deg ∕s IMU 0.57, 0.29, 0.66� [38], [39], [40]
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Appendix B: Ensemble Kalman Filter Gain Approximation

In [80], Kk is calculated using Eqs. (B1) and (B2) to approximate P−
k H

T
k and Sk, respectively, where z

i
k is the ith column in Zk and �zk is the

measurement mean:

Pxz k �
E−
xk�z1k − �zk : : : z

N
k − �zk�T

Np − 1
(B1)

Pzz k �
�z1k − �zk : : : z

N
k − �zk��z1k − �zk : : : z

N
k − �zk�T

Np − 1
(B2)

To test this Kalman gain matrix approximation, 100 Monte Carlo runs were conducted to calculate the Frobenius norm of the difference
between the closed-form Kalman gain matrix and its approximation for the 12-state UAS equations of motion. Figure B1 shows the trajectory of
the norm for Np � f500; 1000; 5000; 10; 000g particles. The spikes in each trajectory represent the time step in which a delayed GPS

measurement was received. Although the norm of the difference decreases with the increase in number of particles, it reaches only a minimum of
five when using a 10,000-particle ensemble. This level of error suggests this approximation would be more useful in smaller-dimension systems
that have more precise measurements.

Appendix C: Linear Quadratic Regulator Controller Gain

Table C1 of this appendix contains the LQR gain matrices for the steady-level flight and wings-level descending flight trim conditions where
�ρ � 10 for both matrices.
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