
High-Order Output-Based Adaptive Simulations
of Turbulent Flow in Two Dimensions

Marco A. Ceze∗

NASA Ames Research Center, Moffett Field, California

and

Krzysztof J. Fidkowski†

University of Michigan, Ann Arbor, Michigan 48109

DOI: 10.2514/1.J054517

Output-based high-order adaptive results are presented for several benchmark two-dimensional turbulent-flow

simulations. The discretization is a high-order discontinuous Galerkin finite element method, and the equations

solved are compressible Navier–Stokes, Reynolds-averaged with a modified version of the Spalart–Allmaras one-

equation model. Mesh refinement requirements are studied through automated output-based adaptation in which a

discrete adjoint solution associated with an output (e.g., the drag coefficient) weights a fine-space residual and

automatically selects the elements that need more resolution. The roles of high-order and mesh anisotropy are also

investigated. Finally, differences are investigated between two mesh refinement strategies: hanging-node refinement

of structured meshes versus metric-based remeshing of unstructured triangles.

I. Introduction

A LTHOUGH improvements in computing capabilities have

made advanced computational fluid dynamics techniques such

as large-eddy simulation (LES) possible for a range of applications,

the Reynolds-averaged Navier–Stokes (RANS) equations remain an

invaluable tool routinely used in analysis and design. Compared with

LES, RANS simulations are much cheaper because they can take

advantage of anisotropic (stretched) computational elements that

reduce the degrees of freedom required to accurately resolve thin

boundary and shear layers.This advantage isnot always easy to realize,

in particular for high-order methods that require curved elements,

which are difficult to keep from tangling/inverting when stretched.

High-order methods for RANS suffer from additional debate and

scrutiny: RANS solutions often possess singular features that do not

lend themselves to high-order approximation, and RANS modeling

errors are generally viewed as dominant compared with numerical

resolution (discretization) errors that high order would address.

Regarding the latter point, our position is that both modeling and

numerical errors need to be estimated and controlled through meth-

ods appropriate for each error. For instance, modeling errors may be

addressed through an uncertainty quantification study, and this study

may require simulations with different model parameter settings but

low discretization errors to isolate the effects of the parameters on

the model.

Regarding the former point of RANS solutions containing singular

features, these features can be resolved via small elements using a

mesh adaptation technique: most flowfields will still possess large

smooth regions where high order will be advantageous [1]. In partic-

ular, output-based methods [2–5] offer a systematic approach for

identifying regions of the domain that require more resolution for the

prediction of scalar outputs of interest. These methods also return

error estimates that can improve robustness of solution verification

and uncertainty quantification studies. It is for these reasons that we
consider output-based methods in the present study.
In this paper, we apply a high-order adaptive solution technique to

several test cases modeled with the two-dimensional RANS equa-
tions, closed with a recent modification of the Spalart–Allmaras (SA)
one-equation model [6]. Many previous works have investigated
the RANS-SA equations, including in a high-order adaptive setting
[1,7–10]. The majority of the latter work has focused on demon-
strating benefits of adaptive refinement and/or high order over
uniform or heuristic refinement for such flows. These comparisons
have been done in solely structured and solely unstructured settings.
The present work distinguishes itself in that we compare both
structured and unstructured mesh refinement techniques, and that we
consider a set of well-defined benchmark test cases with available
previous (typically second-order) data.
The remainder of this paper is organized as follows. Section II

presents the RANS-SA equations, and Sec. III discusses their
discretization. Sections IVandV describe the output error estimation
and adaptation techniques, and Sec. VI presents results for the several
benchmark cases considered. Section VII concludes with a summary
and a discussion of possible future directions.

II. Turbulence Model

We use the Spalart–Allmaras turbulence model, modified for
stability for negative values of the turbulence working variable [6].
The RANS equations closed with this turbulence model read

∂tρ�∂j�ρuj��0

∂t�ρui��∂j�ρujui�pδij��∂jτij
∂t�ρE��∂j�ρujH��∂j�uiτij−qj�

∂t�ρ~ν��∂j�ρuj ~ν��∂j
�
1

σ
ρ�ν� ~νfn�∂j ~ν

�

−
1

σ
�ν� ~νfn�∂jρ∂j ~ν�

cb2ρ

σ
∂j ~ν∂j ~ν�P−D

1

σ
ρ∂j��ν� ~νfn�∂j ~ν��

cb2ρ

σ
∂j ~ν∂j ~ν�P−D

(1)

where ρ is the density, ρuj is the momentum, E is the total energy,
H � E� p∕ρ is the total enthalpy, p � �γ − 1��ρE − �1∕2�ρukuk�
is the pressure, γ is the ratio of specific heats, and i, j index the spatial
dimension (dim). The Reynolds stress τij is
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τij � 2�μ� μt��ϵij; �ϵij �
1

2
�∂iuj � ∂jui� −

1

3
∂kukδij

μ is the laminar dynamic viscosity, obtained using Sutherland’s law,

μ � μref

�
T

Tref

�
1.5
�
Tref � Ts

T � Ts

�
(2)

where T is the temperature, and the eddy viscosity μt is

μt �
�
ρ~νfv1 ~ν ≥ 0

0 ~ν < 0
fv1 �

χ3

χ3 � c3v1
; χ � ~ν

ν

The heat flux qj is given by

qj � �k� kt�∂iT; k � Cpμ∕Pr; kt � Cpμt∕Prt

The production term P is

P �
�
cb1 ~Sρ~ν χ ≥ 0

cb1Sρ~ν χ < 0

where the modified vorticity ~S is written as

~S�
(
S� �S �S≥−cv2S
S� S�c2

v2
S�cv3 �S�

�cv3−2cv2�S− �S
�S<−cv2S

; �S� ~νfv2
κ2d2

; fv2�1−
χ

1�χfv1

(3)

In Eq. (3), S � ����������������
2ΩijΩij

p
is the vorticity magnitude (summation

implied on i, j), andΩij � �1∕2��∂ivj − ∂jvi� is the vorticity tensor;d
is the distance to the closest wall. The destruction term D is given by

D �
(
cw1fw

ρ~ν2

d2
χ ≥ 0

−cw1
ρ~ν2

d2
χ < 0

; fw � g

�
1� c6w3
g6 � c6w3

�
1∕6

;

g � r� cw2�r6 − r�; r � ~ν
~Sκ2d2

Finally, the coefficient fn in Eq. (1) is one for positive ~ν and

fn � cn1 � χ3

cn1 − χ3
; when χ < 0 (4)

Relevant closure coefficients are

cb1 � 0.1355 cw1 �
cb1
κ2

� 1� cb2
σ

cv1 � 7.1

cb2 � 0.622 cw2 � 0.3 κ � 0.41

σ � 2∕3 cw3 � 2 Prt � 0.9

cn1 � 16 cv2 � 0.7 cv3 � 0.9

III. Discretization

We discretize Eq. (1) using a discontinuous Galerkin (DG)
finite element method [9,11]. Defining the state vector as
u � �ρ; ρui; ρE; ρ~ν�T , wewrite Eq. (1) in compact conservative form,

∂tu� ∇ · F�u;∇u� � S�u;∇u� � 0 (5)

where F is the combined inviscid/viscous flux vector, and S is
the source term associated with the turbulence closure equation.
We approximate the state as uh ∈ Vh, where Vh is the space of
elementwise discontinuous polynomials of order p.‡ Multiplying
Eq. (5) by test functions vh ∈ Vh, integrating by parts on each

element, and using the Roe [12] convective flux and the second form

of Bassi and Rebay [13] for the viscous treatment, we obtain the

following semilinear form:

Rh�uh; vh� � 0 (6)

Note that, in Eqs. (1) and (5), the RANS source term depends on the

gradient of the state. For the present work, we use an adjoint-

inconsistent treatment inwhich the gradient is taken pointwise directly

from the polynomial solution approximation, without consideration of

interface jump contributions [14]. Much of the DG discretization is

standard; the following sections outline a few practical details.

A. Wall Distance Calculation

Thewall distance d�x�, required in the SAmodel, is approximated

on each element by a polynomial of the same order p as the solution.

The procedure for calculating d�x� is brute force: Lagrange interpo-
lating polynomials are used, and at each node associated with a

Lagrange polynomial in every element, the wall distance is calcu-

lated. This calculation considers all of the boundary faces associated

with the walls in the domain. The distance to each boundary node is

calculated to preselect the closest boundary faces. For each of these

boundary faces, which are high-order/curved, the wall distance is

estimated by calculating the minimum distances to a set of facets

obtained by subdividing the high-order face into 2�Q� 1� linear

segments. Once the minimum-distance facet is found, reference-

space coordinates on the face corresponding to a projection onto this

facet are used to compute a point on the true high-order geometry. The

wall distance is then the distance to this point on the true geometry.

Although this distance function calculation could be made more

efficient, its cost is negligible compared with the flow solution.

B. Symmetry Boundary Conditions

Several test cases in the results call for symmetry boundary condi-

tions (BCs). In the continuous limit, symmetry requires vanishing

normal state derivatives. A finite-dimensional solution will generally

violate these requirements pointwise, so that we enforce the BCs

weakly. This enforcement involves transforming the state and gradi-

ent, similar to methods in previous works [15], thoughwe construct a

state/gradient on the boundary instead of employing a ghost cell.

Starting with the state, we require that, at a symmetry boundary, all

vectors in the state (e.g., a velocity) have their normal components

zeroed out. This results in a linear transformation from the interior u�
to the boundary ub state vector, which reads ub � Au�. A is the

identity matrix for all states except the momentum, which transforms

as �ρv�b � V�ρv��, where V � I − n ⊗ n � δij − ninj; n is the

outward-pointing normal, and I � δij is the dim× dim identity

matrix.
The state gradient transformation must account for possibly non-

zero normal velocity components. We first consider a hypothetical

ghost state u− and gradient ∇u−, obtained by reflecting the velocity
about the symmetry line. Specifically, u− � Bu�, where B is an

identity matrix for all states except the momentum, which transforms

as �ρv�− � W�ρv��, where W � I − 2n ⊗ n � δij − 2ninj. Note
that B � 2A − I and that W � 2V − I. Differentiating the expres-

sion for u− in space gives the gradient, which we must reflect by

applyingW, so that ∇u− � B∇u�WT . Finally, we obtain the gradi-

ent at the boundary ∇ub by averaging the interior and exterior

gradients; this is consistent with what would happen in the viscous

flux calculation if there were actually a symmetrical mesh on the

other side of the symmetry line. Therefore, we have

∇ub � 1

2
�∇u� � ∇u−� � 1

2
�∇u� � B∇u�WT�

� 1

2
�∇u� � �2A − I�∇u��2VT − I��

� ∇u� �A∇u��2VT − I� − ∇u�V

� ∇u�n ⊗ n�A∇u��I − 2n ⊗ n�‡This order may change from element to element in p refinement.
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C. Scaling of ~ν

The SAworking variable ~ν will generally be orders of magnitude
smaller than the other state components. We use scaling or
“nondimensionalization” of ~ν to make its range of numerical values
similar to the other state components. This proved to be effective in
improving the performance of the linear and nonlinear solvers [11].
We store the scaled quantity ρ~ν 0 given by

ρ~ν 0 � ρ~ν

κSAμ∞

where κSA is a scaling factor, typically O� ������
Re

p �, and μ∞ is the
freestream laminar dynamic viscosity. In addition, the SA ~ν equation
is divided by κSAμ∞.

D. Implicit Solver

The systemof nonlinear equations that forms the primal problem is
solved using Newton’s method with pseudotransient continuation
[16] for improved robustness. Two versions of the solver are consid-
ered: 1) a relatively aggressive Courant–Friedrichs–Lewy (CFL)
number evolution strategy in which the CFL grows by a factor of 2
after each full Newton update, in combination with incomplete
Newton updates when certain physical quantities (e.g., density and
pressure) change too drastically; and 2) a more moderate CFL
evolution strategy in which the increase factor is 1.2, but in which the
physical quantity changes are not limited, but rather the line search
prevents the residual fromgrowing too quickly and no update is taken
if physical constraints are violated. Both strategies are found to
perform similarly for the present test cases. The linear systems at each
Newton iteration are solvedwith an element-line preconditioned [17]
GMRES solver.

IV. Output Error Estimation

Choosing a basis for the test space in Eq. (6) gives a discrete system
of nonlinear equations

R�U� � 0 (7)

where U and R, both in RN are, respectively, the state and residual
vectors. For a scalar output J�U�, we define the discrete adjoint vector
Ψ ∈ RN as the sensitivity of J to perturbations in R [5]. The adjoint
satisfies the following linear equation:�

∂R
∂U

�
T

Ψ�
�
∂J
∂U

�
T

� 0 (8)

We use the adjoint to estimate the error in an output when comput-
ing on a finite-dimensional approximation space. Without access to
infinite resolution, estimating the true numerical error in an output is
practically out of reach for general nonlinear problems. We thus
restrict ourselves to estimating the output error between two finite-
dimensional spaces: a coarse approximation space VH on which we
calculate the state and output, and a fine space Vh (obtained by
incrementing the approximation order by one on the same mesh)
relative to which we estimate the error. Wewould like to measure the
output error in the coarse solution relative to the fine space:
Output error:

δJ ≡ JH�UH� − Jh�Uh� (9)

We assume that the fine approximation space contains the coarse
approximation space, so that the following lossless state injection is
possible, UH

h ≡ IHh UH , where I
H
h is the coarse-to-fine state injection

(prolongation) operator. On the fine space, the exact solution Uh ∈
RNh would give us zero fine-space residuals Rh�Uh� � 0. However,
the state injected from the coarse space will generally not be a fine-
space solution and hence will not give us zero fine-space residuals
Rh�UH

h � ≠ 0. Instead, the injected coarse state solves a perturbed
fine-space problem Rh�U 0

h� −Rh�UH
h � � 0. Because this is just the

fine-space problem with a residual perturbation, the fine-space
adjointYh tells us to expect an output perturbation given by the inner
product between the adjoint and the residual perturbation:

δJ ≈ −ΨT
hRh�UH

h � (10)

This derivation assumes small perturbations in the state when the
output or equations are nonlinear. Note that this error estimate does
not require the fine-space primal solutionUh. However, it requires the
solution of Eq. (8) with residual and output linearizations about UH

h .
In this work, we fully converge the fine-space adjoint, storing the
fine-space Jacobian and usingΨH

h ≡ IHh ΨH , as an initial guess in the
GMRES iterative solver for Ψh. This does not add a dominant
contribution to the total cost, which for these cases is dominated by
dozens of Newton–Raphson iterations of the primal problem. The
fine-space adjoint system, though larger, is linear and for these runs
remains less expensive than the coarse primal. For larger simulations,
techniques such as iterative smoothing or reconstruction can be used
to approximate the fine-space adjoint [5,9,11].

V. Mesh Adaptation

The adjoint-weighted residual error estimate in Eq. (10) can be
localized to the elements by keeping track of the contributions from
each fine-space element, indexed by k:

JH�UH� − Jh�Uh� ≈ −ΨT
hRh�UH

h � � −
X
k

ΨT
hkRhk�UH

h �

⇒ ϵk ≡ jΨT
hkRhk�UH

h �j

where the subscript k indicates restriction to element k, and the
adaptive indicator ϵk is obtained by taking the absolute value of the
elemental contributions. This indicator then drives mesh adaptation,
the goal of which is to reduce the output error. We consider two
adaptation strategies, as outlined next.

A. Hanging-Node Quadrilateral Refinement

The first adaptation strategy used in this work is hanging-node
refinement of an initially structured quadrilateral mesh [9,11,18]. In
this strategy, a fixed fraction ffrac of elements with the highest error
indicators is flagged for refinement. For the present results, we only
consider isotropic refinement in which each quadrilateral is sub-
divided uniformly into four quadrilaterals, as illustrated in Fig. 1.
This refinement is done in each element’s reference space by employ-
ing the reference-to-global coordinate mapping in calculating the
refined elements’ geometry node coordinates. The refined elements
inherit the same geometry approximation order and quadrature rules
as the parent coarse element. When curved boundary representations
are employed, new nodes introduced on the boundary are snapped to
the geometry; this perturbation is usually very small for high-order
curved elements on the boundary, because these already approximate
the geometry with high fidelity. For the cases involving curved
geometry in this paper, we use quartic polynomials as element edges
and the element’s interior mapping is generated via a tensor product
between those polynomials. At the boundaries, the quartic polyno-
mials interpolate the true mathematical description of the geometry.
Elements created in a hanging-node refinement can be marked for

h refinement again in subsequent adaptation iterations. In this case,
neighbors are divided in the minimal possible fashion, generally
anisotropically, to keep one level of refinement difference between
adjacent cells, as illustrated in Fig. 1.

B. Metric-Based Unstructured Remeshing

The second adaptation strategy used in this work is an unstructured
metric-based remeshing approach on triangles. The idea in this strate-
gy is to create, at every adaptation iteration, a new mesh using the
current mesh and the error indicator. During remeshing, the current
mesh serves as a background mesh on which the desired metric
field is prescribed. The program used for the remeshing is the
bidimensional anisotropic mesh generator [19]. This program
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generates straight-edged meshes, which are then curved via a linear

elasticity analogy to represent the curved geometry [20].
The first step is a calculation of the current metric field, computed

as the grid-implied metric on each element k:

Mc
k � �JkJTk �−1 (11)

where Jk ∈ Rdim× dim is the Jacobian of the geometric mapping of

the reference element to element k. The eigenvalues of the metric are

the inverse squares of the principal stretching magnitudes, and the

eigenvectors are the principal stretching directions. For curved

elements, Jk is evaluated at the centroid of the element. We now

describe twomethods used for determining the requested metric field

based on the error estimates: one based on a priori estimates and one

based on sampling.

1. Fixed Growth Using a Priori Estimates

Thismethod for constructing the requestedmetric field is similar to

that presented in previous work [21]. We assume a fixed-growth

refinement strategy in which the number of elements desired on the

refined mesh is Nf � fgrowthNc, where fgrowth > 1 is the growth

fraction and Nc is the current number of elements. We relate the

growth in elements to an error reduction factor through an a priori

estimate. In particular, we sum the error indicators on the current

mesh to obtain a conservative estimate of the current global error:

ec �
X
k

ϵck (12)

Assuming that, with adaptive refinement, the global error

decreases at a rate of r (with h ∝ N−1∕ dim), we calculate the global

error estimate on the refined mesh as

ef � ec
�
Nc

Nf

�
r∕ dim

(13)

We would like the error to be equidistributed on the fine mesh,

which means that every fine-space element should have an error of

ef∕Nf. We now apply the a priori estimate to each element, and we

assume that for anisotropic elements the error depends on the shortest

principal length h1. The resulting a priori relationship is

nk
ef

Nf
� ϵck

�
hf1
hc1

�rk

(14)

where nk is the number (not necessarily an integer) of refined

elements per current element k, hf1∕hc1 are the shortest principal

lengths on the refined/current meshes, and rk is a possibly element-

specific error convergence rate. We estimate the number of fine

elements for coarse element k as

where are the desired/current aspect ratios on element k.
Substituting Eq. (15) into Eq. (14), we obtain an expression for the

scaling of the shortest principal stretching length:

The desired aspect ratio on each element is calculated heuristically
from the Hessian (second derivative matrix) of the Mach number
scalar field [22,23]. Although only strictly applicable to linear
approximations, we have found that the directions obtained from the
Hessian often correlate reasonably well with directions obtained
from approaches that use higher-order derivatives [21].
For the a priori convergence rates in the present work, we use

r � rk � p� 1, where p is the solution approximation order. An
exception is “outlier” elements: those whose error indicator ϵk is
larger than five standard deviations from the mean error. On these
elements, we assume a first-order rate rk � 1.

2. Target-Cost Optimization Through Sampling

An alternate method that does not rely on a priori error estimates is
the sampling approach introduced by Yano [10]. Briefly, this method
constructsmodels for the error indicator and cost function (degrees of
freedom) on each element as a function of the metric step change
tensor. This construction proceeds via a regression over errors and
cost functions computed by sampling canonical subdivisions of the
element. An iterative optimization approach is then employed to
equidistribute the ratio of the marginal error to marginal cost over the
elements, at a fixed target cost.Multiple adaptive iterations at a single
cost target then ensure the construction of the optimal mesh at
that cost.
In the present work, we slightly modify the error sampling ap-

proach presented by Yano [10] to use projections of the fine-space
adjoint to the sampled subdivisions, to avoid having to solve local
problems that can be somewhat cumbersome. We test the modified
optimization approach for several cases and compare it to the
hanging-node refinement and a priori driven remeshing.

VI. Results

A. Flat Plate, ReL � 5 × 106, (L � 1), M � 0.2

The first case we consider is turbulent flow over a flat plate.
The geometry and boundary conditions for this case are set according
to NASA’s turbulence modeling resource website (Fig. 2a). The
inflow and far-field values for the eddy viscosity are set to 3 times
the value of the laminar viscosity, because this value corresponds to a
fully turbulent simulation. The laminar viscosity is calculated using
Sutherland’s law (2) with Ts � 110;000 and Tref � 300;000.
Figure 2b shows the initial mesh used for this case.
We initialize the flow with uniform conditions at M � 0.2 and

solve the discretized equations with p � 2 to a residual tolerance
of 10−8. The output of interest is the total drag on the plate, and we
consider both hanging-node adaptation and unstructured remeshing
using metric optimization. At each step of the hanging-node adapta-
tion, we select ffrac � 10% of the elements with the largest error
indicators and refine them isotropically. For the metric optimization,
we consider four degree-of-freedom (DOF) target values: 2000,
4000, 8000, and 16,000. We present a code-to-code comparison in
Fig. 3a of our simulations to the results from CFL3D and FUN3D,
provided by NASA’s turbulence modeling group. We see that our
results converge to both CFL3D and FUN3D (roughly; the FUN3D
results do not yet appear completely converged) results, and that the
unstructured metric-based optimization yields faster convergence

Fig. 1 Rule for hanging-node adaptation for quadrilaterals.
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compared with hanging-node refinement. This is expected because
the hanging-node refinement is constrained by the optimality of the
starting mesh. The skin-friction results in Fig. 3b show very good
agreement between all results. We also observe very good agreement
in the turbulent viscosity distribution (Fig. 3c), with just a small
discrepancy at the outer edge of the boundary layer.
Figure 4 shows the final hanging-node adapted mesh for this case.

Note that the adaptive procedure targets the outer edge of the turbu-
lent boundary layer where there is a rapid variation of eddy viscosity.
The component of the drag adjoint correspondent to the SAvariable
shows large negative values at the leading edge of the turbulent
boundary layer (Fig. 4b).
Finally, Fig. 5 shows the final metric-optimized meshes. Com-

pared with the hanging-node meshes, the refinement pattern is

similar: the near-wall region and the edge of the boundary layer, as
indicated by the eddy viscosity variable, are targeted for refinement.
However, the resultingmeshes aremore efficient because they are not
limited to the suboptimality of the structured starting mesh in the
hanging-node refinement case.

B. Smooth Bump, Re � 3 × 106, M � 0.2

This is another verification case from the NASA turbulence
modeling resource group. Reynolds numberReL � 3 × 106 (L � 1)
flow is simulated in a channel with a bump on the bottom wall.
Symmetry boundary conditions are used for the top and bottom of the
channel, with the exception of x ∈ �0; 1.5� on the bottom boundary,
where an adiabatic wall boundary condition is applied. A static

a) Drag convergence
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Fig. 3 Flat plate: drag convergence and comparison of skin-friction coefficient and turbulent viscosity distributions (at x � 0.97 on the flat plate).

Fig. 2 Flat plate: initial mesh and boundary conditions.

Fig. 4 Flat plate: final hanging-node drag-adapted mesh and field contours of eddy viscosity. Note different scales for horizontal and vertical axes.
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pressure is imposed at the right (outflow) boundary, and total temper-

ature, total pressure, and angle of attack (zero) are prescribed at the

inflow. Total/stagnation quantities are computed using aMach number

of M � 0.2. The dynamic viscosity is computed using Sutherland’s

law (2), with Ts � 110;000 and Tref � 300;000. The inflow

turbulence eddy viscosity μt is set to 3 times the laminar viscosity.

Initial structured and unstructured meshes for adaptation are

shown in Fig. 6. Adjoint-based adaptive runs are performed from

these meshes using the drag force as the target output and adaptive

factors of ffrac � 0.07 and fgrowth � 1.3. Figure 7 shows field plots

of the wall distance function and Mach number on one of the un-

structured adapted meshes. Note the heavy refinement in the bound-

ary layer, an area to which the drag output is highly sensitive.

As a code-to-code verification of the turbulence model, Fig. 8

shows the pressure and skin-friction distributions compared with

those of two other codes, CFL3D and FUN3D. Data for these codes

were obtained from the NASA turbulence modeling resource group.

The agreement in both of these quantities is very good: note that flow

singularities at the leading (x � 0) and trailing (x � 1.5) edges of the
bump cause oscillations there.

Figure 9 shows the convergence of the drag and lift coefficients

with adaptive mesh refinement at p � 2 solution approximation. In

these plots, the degrees of freedom are measured asDOF � Nen�p�,
where Ne is the number of elements and n�p� is the number of

unknowns per element:n�p� � �p� 1�2 for tensor-product approxi-
mation and n�p� � �p� 1��p� 2�∕2 for full-order approximation.

Fig. 6 Smooth bump: initial meshes for hanging-node (quad) and unstructured (tri) metric-based adaptation.
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Fig. 5 Flat plate: final metric-optimized drag-adapted meshes at two target DOF values. Note different scales for horizontal and vertical axes.

Fig. 7 Smooth bump: wall distance and Mach number on an adapted mesh with p � 3 approximation. Mach number color range is 0–0.3.
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Fig. 8 Smooth bump: pressure and skin-friction coefficients for the p � 2 drag-adapted triangular mesh.
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Fig. 9 Smooth bump: drag and lift coefficient convergence comparisons for drag adaptation with p � 2, using unstructured (tri) and hanging-node
(quad) meshes.

Fig. 10 Smooth bump: adapted meshes generated by unstructured metric-based remeshing with Mach–Hessian anisotropy detection and p � 2
approximation.
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Note the rapid convergence of the drag and lift coefficients to their

nearly asymptotic values, relative to the second-order codes. The

unstructured Mach–Hessian adaptive results show larger errors on

the initial meshes because these are relatively underresolved in the
critical boundary-layer region. However, after a few adaptive itera-

tions, the drag and lift “snap” to their asymptotic values. In addition,

the optimized triangular meshes yield smoother convergence and

lower errors compared with the Mach–Hessian results.
Figures 10–12 show selected meshes in the adaptive refinement

sequences. As expected, the adaptive refinement targets the boundary-

layer region,where anisotropic elements are possible, whereasmost of
the remainder of the flow is approximated with isotropic elements.

C. NACA 0012, Re � 6 × 106,M � 0.15

In this case, we consider a NACA 0012 airfoil in Re � 6 × 106,
M � 0.15 flow. The dynamic viscosity is computed using
Sutherland’s law (2), with Ts � 110;000 and Tref � 300;000. The
inflow turbulence eddy viscosity μt is set to 3 times the laminar
viscosity. Freestream boundary conditions are imposed at a far field
that is over 15,500 chords away from the airfoil in each direction.We
do not use a point vortex to correct the boundary condition.
This case was run adaptively at p � 2 using hanging-node refine-

ment of a structured initial mesh, with drag as the target output and a
fixed refinement fraction of ffrac � 0.07. Figure 13 shows the initial
mesh and adapted results for α � 10 deg. The regions targeted for

Fig. 11 Smooth bump: adapted meshes generated by hanging-node refinement and p � 2 approximation.

Fig. 12 Smooth bump: adapted meshes generated by unstructured metric-based optimization and remeshing, using p � 2 approximation.
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refinement include the boundary layer,wake, and leading-edge stagna-

tion streamline, where errors can have a large effect on the drag output.
Figure 14 shows a comparison of pressure coefficient and skin-

friction distributions for α � 0 and 10 deg. The comparison is made

against data fromCFL3Dwith a far field at 500c and a lift-based point
vortex correction, and the results are in excellent agreement: the

curves are virtually on top of each other. Figure 15 shows the lift

coefficient versus angle of attack and drag polar for the adapted

results. Again, excellent agreement with CFL3D data is observed.
Finally, Fig. 16 shows the convergence of the lift and drag

coefficients with adaptive refinement for two runs: α � 0 and 10 deg.

We see that drag converges faster than lift, which makes sense
because we are adapting on the drag outputs. In addition, conver-
gence slows with increasing angle of attack, likely because the flow-
field becomes more complex (e.g., the boundary layer on the upper
surface becomes thicker and requiresmore resolution). In all cases, for
the last several adaptive iterations, the outputs show little variation.

D. NACA 0012, Re � 6 × 106,M � 0.15, α � 10 deg

In this case, we consider a slight variant of the previous test case for
the purpose of verification with detailed data made available by the
NASA turbulence modeling resource group. The airfoil is still a

Fig. 13 NACA 0012: initial mesh, drag-adapted mesh, and Mach contours for α � 10 deg.
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Fig. 14 NACA 0012: pressure and skin-friction coefficient distributions for α � 0, 10 deg, comparing the final adapted mesh result with data from
CFL3D.
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Fig. 15 NACA 0012: lift coefficient versus angle of attack and drag polar, with comparison to CFL3D data.
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Fig. 16 NACA 0012: convergence of lift and drag coefficients with hanging-node adaptation and p � 2.

Fig. 17 NACA 0012, α � 10 deg: initial mesh, drag-adapted mesh, and Mach contours.
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NACA 0012, with a closed trailing edge as prescribed on the NASA

website. The far field is approximately 500 chords away from the

airfoil, but the far-field geometry is constructed to be consistent with

the far-field geometry of the grids provided on theNASAwebsite. No

vortex correction is employed on the far field. The website also

provides detailed conditions and setup information on the case.

This case was run adaptively at p � 2 using metric-based triangu-

lar refinement of a relatively coarse initial mesh. Drag is chosen as the

target output and a fixed growth fraction of fgrowth � 1.3 is used.

Figure 17 shows the initial mesh and adapted results. The regions

targeted for refinement include the boundary layer, wake, and

leading-edge stagnation streamline. Figure 18 shows a closeup of the

leading- and trailing-edge regions for the 12th adapted mesh.

Figure 19 shows the convergence of the lift and drag coefficients

with adaptive refinement. We see that both coefficients agree well

with the provided data obtained from the CFL3D, FUN3D, and TAU

codes. The adapted values still show variation on the finest grids, and

this variation could be due to insufficient resolution (i.e., more adap-

tations needed) or to an inadequate measure of anisotropy (currently

based on theMach–Hessian) during mesh optimization. Future work

will investigate the precise cause and possible mesh efficiency

improvements.

Finally, Fig. 20 shows the pressure coefficient off the bottom sur-

face of the airfoil trailing edge at x � 0.999c. This pressure coef-

ficient was obtained from a p � 3 run on the finest adapted p � 2
mesh. Data from the FUN3D on a sequence of grids are overlaid. As

Fig. 18 NACA 0012, α � 10 deg: close-up of leading and trailing edges for 12th adapted mesh in a drag refinement sequence.
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Fig. 19 NACA 0012, α � 10 deg: convergence of lift and drag coefficients with adaptive mesh refinement and p � 2.
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shown, the pressure coefficient is close to the fine grid data. It is
possible that the drag-adapted mesh, even at an increased approxi-

mation order, is not ideally suited for predicting the off-body pressure
coefficient distribution. Adapting on the lift, which would be more
sensitive to such pressure errors, could give even better results.
We now compare the efficiency of two adaptive runs for this case:

isotropic hanging-node adaptation on quadrilaterals, and triangular

anisotropic remeshing based on theHessian of theMach number. The
remeshing results are the same as those presented in Sec. VI.D,
whereas the hanging-node results are equivalent to what is presented

Sec. VI.C, with the exception that the far field is located at 500
chords. We emphasize that the CPU time is strongly dependent on

solver tuning and adaptive parameters (e.g., ffrac, fgrowth, and initial
mesh) and the solvers have not been meticulously optimized for the
present results. Instead, both runs used the same solver parameters.
The quadrilateral strategy starts with a fairly resolved initial mesh
(Fig. 13a), but it is restricted to the initial topology, whereas the
triangular remeshing strategy startswith a poormesh (Fig. 17a), but is
not restricted to the initial mesh topology and anisotropy distribution.
Figure 21 compares the two adaptive runs. In this case, the

quadrilateral hanging-node strategy is advantageous. The difference
observed in number of degrees of freedom is explained by comparing
the adapted meshes shown in Figs. 13b and 17b. Note that the
triangular remeshing approach using a priori estimates produces a
higher density of elements above and below the airfoil away from the
regions of interest (stagnation streamline, boundary layer, and wake)
than the quadrilateral hanging-node approach. This difference also
translates into slower convergence in terms of time. Figure 22 shows
the computational cost breakdown of both adaptive strategies. Note
that the primal solve is most expensive in the first adaptive step as the
flow is initializedwith freestream conditions. Then, as the differences
in the flowfield become small between consecutive adaptive steps,
the cost of the primal solve settles at approximately 60% for hanging
nodes and 70% for the remeshing strategy. The error estimation and
adaptation procedures represent a larger portion of the cost for hang-
ing nodes than for remeshing based on a priori estimates. Finally, we
note that the success of hanging-node refinement is tied to the type of
problem and the initial mesh. In the present case, the well-resolved
anisotropic initial quadrilateral mesh provides a very good distribu-
tion of degrees of freedom, so that the hanging-node refinement
converges in only a few iterations.

E. NACA 4412, Re � 1.52 × 106,M � 0.09, α � 13.87 deg

This test case consists of a NACA 4412 airfoil at high angle of
attack α � 13.87 deg, atRe � 1.52 × 106,M � 0.09. The dynamic
viscosity is computed using Sutherland’s law (2), with Ts � 110 K
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Fig. 20 NACA 0012, α � 10 deg: pressure coefficient profiles off the
bottom surface of the trailing edge.
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Fig. 21 NACA0012, α � 10 deg: efficiency comparison between hanging-node quadrilateral adaptation andMach–Hessian remeshing; shaded region
denotes JH � ec [Eq. (12)].
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Fig. 22 NACA 0012, α � 10 deg: breakdown of computational cost for adaptive strategies.
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and Tref � 297.8 K. The inflow turbulence eddy viscosity μt is set to
3 times the laminar viscosity. Freestream boundary conditions are

imposed at a far field that is over 1500 chords away from the airfoil in

each direction.

This case was run adaptively using hanging-node refinement of a

structured initial mesh, with drag as the target output and a fixed

refinement fraction of ffrac � 0.07. Figure 23 shows the Mach

number contours, an adapted mesh, wall distance contours, and the x
momentum component of the drag adjoint. The regions targeted for

refinement include the boundary layer and wake, but also a large

portion of the mesh in front of the airfoil, on the leading-edge

stagnation streamline; note that the adjoint exhibits rapid variation in

this area, indicating that error sources near the stagnation streamline

can have a large effect on the drag output.

Figure 24 shows velocity profiles along line probes extending

roughly normal to thewall at several locations on the aft portion of the

airfoil upper surface. Themesh used for this comparisonwas the final

p � 2 adapted mesh (after 10 adaptive iterations), uniformly refined

and with order increased to p � 3 (a total of 140,880 degrees of

freedom). Experimental data are available at points on these lines, as

Fig. 23 NACA 4412: Mesh and field plots from adaptive simulation results.
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b) Vertical velocity profiles

Fig. 24 NACA 4412: velocity profile comparisons for several wall-normal line probes.
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are data from other codes, including CFL3D; in this work, we focus
on code-to-code verification. Compared with CFL3D, the horizontal
and vertical velocities along the lines are very close. The agreement is
not exact, and the small differences could be due to variants in the
SA turbulence model or to numerical errors. Note that whereas our
data came from meshes adapted to reduce the numerical error, only
numerical errors affecting the drag output were targeted, so that the
velocity profiles could potentially not yet be converged.
Figure 25 shows the convergence of the drag and lift coefficients

with adaptive refinement. Though we only adapt on drag, lift is a
similar output and exhibits good convergence too. We see that the
drag converges rapidly with indiscernible variations past h � 0.01,
or 10,000 degrees of freedom for both p � 1 and 2 approxi-
mation. The lift takes a little longer, in part because of higher sensi-
tivity of the lift to refinement at the trailing edge and because we do
not specifically target the lift. For the drag, becausewe use an adjoint-
basedmethod,we have an output error estimate (the adjoint-weighted
residual) at each adaptive iteration. We can use this error estimate to
correct the drag; these corrected outputs are also shown in Fig. 25. As
we converge the adjoint solution to high precision on the fine space,
we obtain excellent error corrections: even with p � 1 approxi-
mation, the corrected drag varies little after about 5000 deg of
freedom.

VII. Conclusions

A high-order output-based adaptive solution technique has been
presented for the RANS equations closed with a recent variant of the
Spalart–Allmaras model, “SA-neg.” A discontinuous finite-element
method is used for the discretization and key practical details rele-
vant to the implementation are presented. The results compare two
variants of the high-order adaptive solution technique to each other
and to standard second-order techniques in terms of accuracy versus
degrees of freedom. Isotropic quadrilateral-element adaptation using
hanging nodes and an anisotropic initial mesh is found to yield
similar asymptotic results compared with metric-based unstructured
mesh refinement. Using the easy-to-generate isotropic unstructured
initial meshes considered, the unstructured adaptation produced
larger errors on the first adaptive iterations compared with hanging-
node refinement with a more meticulously tailored initial structured
mesh. This result is expected given the higher quality of the initial
structured meshes. The ability of the unstructured method to auto-
matically snap to the RANSmesh from an initially isotropicmesh is a
desirable capability, though it requires robustness of the solver to
underresolution.
Relative to uniform refinement at second order, high-order adapta-

tion is found to yield faster convergence: the adaptive runs often
quickly snap (close) to the correct solution in a few steps. This com-
parison does not take into account the computational cost of the error
estimation and adaptation, which is primarily that of the fine-space
adjoint solve. However, even though the fine space involves an order

increment, because the adjoint problem is linear, whereas the RANS
equations are highly nonlinear, the adjoint cost is less than (at most
∼25%) that of the primal for all cases considered. A topic for future
studies, however, is a reduction in the cost of the primal solve, which
for the current implementation is likely larger than that of the second-
order methods for a given error level.
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