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This paper presents an output-based error estimation and adaptation strategy
for hybridized discontinuous Galerkin discretizations of first- and second-order sys-
tems of conservation laws. A discrete adjoint solution is obtained by a Schur-
complement solver similar to that used in the primal problem. An error estimate
is obtained by computing the adjoint on an enriched solution space that consists of
uniform order refinement of both the element and the face approximations. The
error is given by the adjoint-weighted residual, the localized contributions of which
provide an adaptive error indicator for hanging-node h-refinement. Results for in-
viscid, laminar, and Reynolds-averaged turbulent compressible Navier-Stokes sim-
ulations in two and three dimensions demonstrate some of the potential gains of
output-based adaptivity for hybridized discontinuous Galerkin discretizations.

I. Introduction

The combination of high-order approximation and solution-based adaptivity has made possible
high-fidelity computations in which resources (e.g. degrees of freedom) are distributed in an optimal
manner throughout the computational domain. While high-order methods such as discontinuous
Galerkin (DG) offer an attractive prospect of hp-refinement, they are sometimes criticized for
their high computational expense. The fact that industrial applications still rely on traditional
second-order finite volume codes suggests that the accuracy gains of high-order have not as of yet
been sufficient to offset the increased expense.

To address the computational costs of high-order DG discretizations, a class of hybridized
methods, collectively termed HDG, has been recently introduced. HDG methods have a number
of unique properties making them especially useful for steady-state or very stiff time dependent
systems of equations. These methods discretize the solution variables as well as their gradients
simultaneously, so optimal convergence can be achieved in the state and its gradient.1 In a standard
DG method, gradients will suboptimally converge. Moreover, the resulting linear system in HDG
couples only degrees of freedom together on interior faces, resulting in a system that, for sufficiently
high order, is smaller than that obtained with DG. In fact, the growth rate of degrees of freedom
in the linear system is decreased from pd in DG to pd−1 in HDG, where p is the approximation
order and d is the spatial dimension. Hence, a benefit in terms of nonzeros in the linear system is
observed for sufficiently high order.

By way of a quantitative comparison, Table 1 presents the number of globally-coupled unknowns
per vertex of a mesh for different discretizations. This comparison assumes typical isotropic meshes
and ignores boundary effects.
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Table 1: The numbers in the below tables indicate approximately how many degrees of freedom
(per equation of a system) we need per vertex of the mesh. Note, CG refers to the continuous
Galerkin finite-element method.

Triangles:

method p = 1 p = 2 p = 3 p = 4

DG 6 12 20 30

CG 1 4 9 16

HDG 6 9 12 15

Quadrilaterals:

method p = 1 p = 2 p = 3 p = 4

DG 4 9 16 25

CG 1 4 9 16

HDG 4 6 8 10

Tetrahedra:
method p = 1 p = 2 p = 3 p = 4

DG 24 60 120 210

CG 1 8.2 27.4 64.6

HDG 36 72 120 180

Hexahedra:
method p = 1 p = 2 p = 3 p = 4

DG 8 27 64 125

CG 1 8 27 64

HDG 12 27 48 75

Some forms of mixed hybridized Galerkin methods have been used for quite some time. These
methods were developed for second-order elliptic problems.2,3 More recently hybrid mixed methods
have been applied to the convection-dominated regime,4,5, 6 and they have to-date been expanded to
include nonlinear convection-diffusion systems of equations, and they have been applied to adaptive
discretizations of two-dimensional laminar compressible Navier-Stokes equations.7,8

The aim of this paper is twofold: first, to present the HDG discretization with practical im-
plementation details for a general set of nonlinear convection-diffusion equations; and second, to
compare the effectiveness of adaptivity of the HDG and DG discretizations on a range of problems.
The rest of the paper is organized as follows. The discretization of the equations used for the com-
parison is described in Section II. Then the error estimation and adaptation procedure is described
in general for both methods in Section III. Section IV shows adaptive results ranging from scalar
advection-diffusion problems to Reynolds-averaged turbulent fluid flow. Finally, in Section V, we
conclude and look forward to additional improvements that can be made in the HDG discretization
and in output-based methods applied to HDG.

II. Discretization

The equations considered here arise from second-order conservation laws. In general, these are
written as a system of equations in the form

∂tu+ ∂iHi(u,∇u) = 0 in Ω, (1)

where u ∈ Rs is the state vector, Hi ∈ Rs is the ith component of the total flux, 1 ≤ i ≤ d
indexes the spatial dimension d, and summation is implied on the repeated index i. The total flux
is decomposed into convective and diffusive parts,

Hi = Fi(u) +Gi(u,∇u), (2)

Gi(u,∇u) = −Kv
ij(u) ∂ju, (3)

where Fi ∈ Rs is the ith component of the inviscid/convective flux, Gi ∈ Rs is the ith component
of the viscous flux, and Kv

ij ∈ Rs×s is the (i, j) component of the viscous diffusivity tensor.
Both methods considered here are finite element methods in which the state is spatially approx-

imated by polynomials on non-overlapping elements, which we denote by Ωe with e = 1 . . . Ne being
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the element index, together forming the set of elements or tessellation Th of the spatial domain.
The set of interior faces is denoted by Eh. Therefore, the approximated state vector uh formally
lies in the space Vh = [Vh]

s where

Vh =
{
v ∈ L2(Ω) : v|Ωe ∈ Pp(Ωe) ∀Ωe ∈ Th

}
. (4)

The polynomial order p could vary over the elements, but in this work we consider no varying
polynomial degree in space. We next briefly describe the DG method employed, then explain in
greater detail the HDG method.

A. Discontinuous Galerkin

The DG weak form is obtained by integrating the equations (1) against test functions, wh, which
lie in the same space as the solution,

Rh (uh, wh) =
∑
e

Rh (uh, wh|Ωe) = 0, ∀wh ∈ Vh.

The formulation used in this work employs the second form of Bassi and Rebay (BR2) for the viscous
discretization.9 Details of the discretization can be found in many previous works.10 Briefly, for the
viscous part, the idea is to rewrite the second-order equation as a system of first-order equations.
This introduces an auxiliary flux variable, which BR2 then locally eliminates from the resulting
bilinear form.11 The resulting semilinear form restricted to each element is

Rh(uh,wh|Ωe) =

∫
Ωe

wT
h ∂tuh dΩ−

∫
Ωe

∂iw
T
hHi dΩ

+

∫
∂Ωe

w+T
h

(
F̂i ni + Ĝi ni

)
ds+

∫
∂Ωe

∂iw
+T
h K̂v

ij

(
u+
h − û

)
ds, (5)

where (·)+ denotes the quantity is taken from the inside of the element, and (̂·) denotes some form
of averaging. The convective flux on interfaces, F̂, is obtained using the Roe approximate Riemann
solver.12 The BR2 method takes the state trace vector û =

(
u+
h + u−

h

)
/2, and the trace viscous

flux

Ĝi ni =
1

2

(
G+

i +G−
i

)
n+
i − η

1

2

(
δ+i + δ−i

)
n+
i .

The stabilization parameter η depends on the geometry of the elements and δ+i , δ
−
i ∈ [Vh]

d are
obtained by solving an additional system of equations locally for each face.

B. Hybridized discontinuous Galerkin

Assuming the second-order term is present in (1), in HDG we rewrite the second-order equations
as a system of first-order equations. The system of equations becomes,

qi − ∂iu = 0, i = 1 . . . d,

∂tu+ ∂iHi (u, ~q) = 0.
(6)

Instead of locally eliminating ~q, HDG solves for it. That is, ~qh ∈ [Vh]
d is an approximated

unknown. Some HDG works in the past have instead defined the diffusive flux as the auxiliary
variable, but we have found the definition ~q = ∇u to be more versatile.

DG defined a unique flux on an interface using the states on the two adjacent elements. HDG,
on the other hand, defines two fluxes at every point on an interface: one flux for the left element
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and one flux for the right element. Our conservation instinct tells us that multi-valued fluxes may
be problematic, but HDG resolves this duplicity by a weak flux-continuity enforcement, as we will
shortly see.

A “one-sided” flux in HDG is computed with the state on one of the elements, (~qh,uh), and a
“trace” state û defined on all faces. This flux, dotted with the normal, is

Ĥi ni = F̂i ni + Ĝi ni = Fi (û)ni +Gi (û,qh)ni + τ (û, ~n) (uh − û) , τ = τF + τG, (7)

where ~n (components ni) is an element-outward-pointing normal, and τ is a stabilization tensor
discussed shortly. The trace state is defined on interior faces, and the degrees of freedom in the
trace state approximation are treated as additional unknowns. On boundary faces, we compute
a boundary state from the neighboring element state and the boundary condition. We denote by
û = λh the unknown degrees of freedom on interior faces, so λh ∈ Mh = [Mh]

s where

Mh =
{
µ ∈ L2(Eh) : µ|F ∈ Pp(F ) ∀F ∈ Eh

}
.

∂Ωe ∪ ∂Ω

∂Ωe

~n

Ĥ · ~n
∣∣
interior

~H = ~F+ ~G

~q,u

Ĥ · ~n
∣∣
boundary

F ∈ Eh = set of interior faces

~n = normal pointing outward from Ωe

û = separate unknown on each face

Element Ωe ∈ Th

Figure 1: Definition of various quantities used in the HDG method.

The addition of the gradient variable as an unknown necessitates another set of equations that
enforce ~q = ∇u weakly. Similarly, the addition of the trace states as unknowns requires more
equations – these are the weak enforcements of flux continuity on the interfaces, as mentioned
above. Hence, the full set of semilinear forms reads,

Rq
h (·, ~vh) =

Ne∑
e=1

{∫
Ωe

vT
h,iqh,idΩ+

∫
Ωe

∂iv
T
h,iuhdΩ−

∫
∂Ωe

vT
h,iûni ds

}
= 0, ∀~vh ∈ [Vh]

d(8)

Ru
h(·,wh) =

Ne∑
e=1

{∫
Ωe

wT
h ∂tuhdΩ−

∫
Ωe

∇wT
h · ~H dΩ+

∫
∂Ωe

wT
h Ĥ · ~n ds

}
= 0, ∀wh ∈ Vh (9)

Rλ
h (·, µh) =

∑
F∈Eh

∫
F
µT
h JĤi niK ds = 0, ∀µh ∈ Mh(10)

In practice, the above semilinear forms are evaluated using element-local or face-local basis functions
as the test functions, resulting in discrete residual vectors on the elements and faces. We denote
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these residual vectors as RQ,RU associated with elements, and RΛ associated with interior faces.
Also denoting lumped vectors of unknowns via Q,U, and Λ, the resulting discrete equations are

RQ(Q,U,Λ) = 0,

RU (Q,U,Λ) = 0,

RΛ(Q,U,Λ) = 0.

(11)

C. Stabilization

An important choice in the HDG discretization is the type of stabilization, namely the tensor τ in
(7). Numerical evidence for systems of equations such as Navier-Stokes indicates that the choice
of flux stabilization, especially for the diffusive part, has an important effect on the stiffness of the
linear systems and the robustness of the nonlinear solver.

Some guidelines for choosing this stabilization term can be found in previous works.13 The
choice of convective stabilization is similar to choosing the numerical flux for DG. Nguyen, et
al present an energy inequality for the flux stabilization and give several examples.14 Literature
since then has primarily focused on two types of convective stabilization.1,15,8 The first, and most
straightforward, is to simply take τF = |cmax|I, where I is the s × s identity matrix. This can be
shown to be equivalent to the Lax-Friedrichs flux. The second, and the approach employed in this
work, yields a “Roe” flux from the choice

τF (û, ~n) =

∣∣∣∣∣∂~Fi (û)ni

∂û

∣∣∣∣∣ . (12)

Most previous works on HDG for systems of nonlinear convection diffusion equations have used
a constant diffusive flux stabilization, such as τG = (ν/`visc)I, where `visc is a viscous length scale.
However, this approach adds viscous stabilization to all equations, even those without a second-
order term. Our experience is that this adds stiffness to the problem and hinders convergence.
Instead, in the results shown here we set, unless otherwise noted,

τG =
niK

v
ijnj

`visc
. (13)

This has the benefit of adding stabilization only to the equations that require it, and adds it
proportional to the amount of viscosity in the equation. The somewhat-ambiguous length scale
`visc, must still be chosen, and we are presently working to remedy this remaining “knob” in the
discretization.

D. Hybridization

The introduction of the trace states, and the further localization of the numerical flux allows a
linear system to be efficiently built coupling only degrees of freedom of the trace together through
a process known as static condensation. The system of equations resulting from a Newton iteration
of the nonlinear set of equations in (11) have the form,

∂RQ

∂Q

∂RQ

∂U

∂RQ

∂Λ

∂RU

∂Q

∂RU

∂U

∂RU

∂Λ

∂RΛ

∂Q

∂RΛ

∂U

∂RΛ

∂Λ


=

 A B

C D

 , (14)
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where we have divided the matrix into blocks A,B,C,D as indicated by the lines on the left-hand
side. At this point we introduce the notation QU to denote the vector of unknowns on element
interiors, i.e. the concatenation of Q and U. So we can write A = ∂RQU/∂QU.

Taking the Schur complement of the matrix in (14) results in a smaller matrix K, which is the
same size as D,

K = D−CA−1B. (15)

This matrix contains information on coupling between face degrees of freedom after taking into
account the “transmission” of residuals across elements through element-interior degrees of freedom.
The sparsity pattern of K is such that off-diagonal blocks (groups of degrees of freedom associated
with faces) of K are nonzero only if the two faces are adjacent to the same element. Note that the
inversion of A in (14) is an element-local operation due to the fact that element-interior degrees of
freedom are not coupled to each other.

The reduced Jacobian (15) looks computationally expensive to build, but in fact may be ef-
ficiently computed by a single loop through elements Ωe. On each element, we compute the
element-interior and element-boundary (i.e. face) integral contributions to the residuals (and their
linearizations) in (11). Consider all pairs of faces adjacent to Ωe: label them f and g as illustrated
below. The contribution from the pair of faces added to the reduced Jacobian is

Ωe

g
f

Kfg +=
∂RΛ

f

∂Λg
δfg −

[
∂RΛ

f

∂Qe

∂RΛ
f

∂Ue

]
∂RQ

e

∂Qe

∂RQ
e

∂Ue

∂RU
e

∂Qe

∂RU
e

∂Ue


−1

︸ ︷︷ ︸
A−1

e


∂RQ

e

∂Λg

∂RU
e

∂Λg

 .

In this expression, the subscripts on the residuals and states indicate the components on an element
(e), or on a face (f, g). From an implementation standpoint, when assembling K, a certain amount
of local storage is needed for the local matrix blocks above. This local storage may be preallocated
and reused for efficiency.

In a direct implementation, extra cost is incurred when inverting the Ae matrix, which becomes
very large in multiple dimensions when diffusive terms are present. However, this cost can be greatly
reduced from the observation that againAe is not without a block structure, which may be exploited

in calculating its inverse. In fact for HDG, ∂RQ
e

∂Qe
consists of d block-diagonal mass matrices, which

are the same for every equation of the system and which are easily invertible (and likely already
available from real or pseudo time-stepping). Thus the cost of inverting the Ae matrix need not be
significantly higher for diffusive problems compared to inviscid problems.

As K is built, a similar procedure is performed to compute the statically-condensed residual
vector R̃ = RΛ −CA−1RQU . The Newton update for the discrete unknowns ∆QU and ∆Λ can
then be reduced to solving

K∆Λ+ R̃ = 0.

After the above linear system of algebraic equations is solved, the updates on the elements ∆QU
may be obtained element-wise by applying an element-wise static evaporation procedure,

∆QU = −A−1
(
RQU +B∆Λ

)
.

E. Solver

The nonlinear solver uses a preconditioned Newton-Krylov method with a pseudo-transient contin-
uation.16 The linear systems are solved with a preconditioned restarted General Minimal Residual
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(GMRES) Krylov subspace method. The initial guess is usually a constant state, and the pseduo
timestep is increased for every full Newton step until the nonlinear residuals drop below a certain
tolerance (typically 8-10 orders of magnitude). Care must be taken when adding the pseudo time-
step to the HDG system. Simply adding the weighted mass-matrices to the on-diagonal blocks of
K is incorrect – the weights must be added to the on-diagonal blocks of ∂RU/∂U prior to static
condensation.

Two preconditioners are used in this work: line-based Jacobi smoothing and zero-fill incomplete
lower-upper (ILU0) factorization. The line-based Jacobi algorithm for DG17 employs a connectiv-
ity measure based on the discretization of a linear advection-diffusion equation to determine the
inter-element coupling. In HDG, we instead need to know how faces are coupled, after static con-
densation, and for this we have found that the Frobenius norm of the off-diagonal Jacobian blocks
works well as a line connectivity measure.

For the linear systems resulting from the problems in this work, the ILU0 preconditioner with
minimal discarded fill18,19 seems to be superior to a line-based Jacobi smoothing for HDG, while
this is not always the case for DG. This finding motivates further investigation into solvers.

F. Parallelization

For large cases, even the reduced-size matrix K may be too large to fit on the memory allotted
to a typical computational core. Furthermore, the local element operations involved in the static
condensation are embarassingly-parallel, and hence splitting the problem up over many cores is
beneficial for performance.

When running in parallel, we partition the domain so that each processor is responsible for a
subset of the unknowns in the problem. Over all processors, these subsets need to be disjoint, and
their union needs to be the complete set of unknowns. However, for communication purposes, the
partitions residing on each processor (self) also include what we call “halo” degrees of freedom,
which are unknowns that reside on another processor but which are used by the self processor
for constructing the self residuals. For example, in HDG, to construct a Schur-complemented face
residual, we need unknowns on all adjacent faces, which are faces that border either of the two
elements next to the face in question.

Figure 2 defines the various types of faces and elements that occur when running HDG in
parallel. Partitioning is performed using ParMetis,20 called on the graph of elements. This returns
a load-balanced partition of the elements. However, we also care about load-balancing interior
faces. Interior faces between self elements are automatically associated with the processor of the
elements. Interior faces that straddle processor interfaces, i.e. those faces for which the adjacent
elements are on different processors, are assigned to the processor that, at the time of query, has
fewer interior faces. This is a greedy approach that works well as long as the partitioning is not
too fine-grained. Finally, Jacobian matrix storage is allocated for halo unknowns so that, after
communication, matrix-vector multiplication can proceed smoothly.

III. Output-based adaptation

The adaptation strategy employed in this work considers an output of interest, calculates an
error estimate, and based on this estimate adapts the mesh spatially to lower the numerical error
in the output. The central ideas of output-based error estimation and mesh adaptation have been
presented in numerous previous works,21 including recently in HDG,8 and in the following we
present a brief overview and some specifics relevant to HDG.
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= halo element

= self interior face (not regular)

= null interior face

= halo interior face

= self element

= self interior face(regular)

Figure 2: Definition of self and halo elements and faces. The “self” processor in this case contains
elements shaded in white and interior faces marked with solid black or gray squares. Interior faces
are “regular” if both adjacent elements are self elements. Calculations on non-regular self faces
may have to wait for communication of halo element data. Each self face needs to talk to a set of
surrounding faces for calculating residuals. This is why we introduce halo interior faces, marked
with white squares: the self processor does not own unknowns on these halo faces, but it makes
space for them and receives values for them during inter-processor communication. Halo elements,
marked with a red circle, are needed for computing residuals on non-regular self interior faces.

A. Output error estimation

The output error estimation uses an adjoint-weighted residual approach that calculates the approx-
imate output error relative to a finer discretization space. Consider first a scalar output JH(UH)
computed on a coarse (current) discretization level (H) with DG. The solution UH satisfies

RH(UH) = 0. (16)

Now, suppose we have access to a finer discretization space (h). Injecting the coarse solution into
the fine space gives UH

h ≡ IHh UH . This state does not in general satisfy the fine-space equations,
so that

Rh(U
H
h ) 6= 0. (17)

The fine-space discrete adjoint vector,Ψh, associated with the output of interest gives the sensitivity
of the output to residual source perturbations. From the point of view of the fine space, (17) is a
(negative) residual source perturbation, which means that we can estimate the output error via an
adjoint-weighted residual,

δJh = Jh
(
UH

h

)
− Jh (Uh) = −ΨT

hRh(U
H
h ).

We can also replace Ψh in this equation with Ψh−IHh ΨH , which will not change the error estimate
for discretizations with strict Galerkin orthogonality, and which otherwise will target the “remaining
error” (on which we want to adapt). The fine-space adjoint is then obtained by solving21(

∂Rh

∂Uh

)T

Ψh +

(
∂Jh
∂Uh

)T

= 0. (18)
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In HDG, the equations produce three sets of discrete residuals, RQ
h , R

U
h , and RΛ

h , and there
are adjoint variables associated with each residual. The adjoint system is given by (dropping the
subscript h for clarity) [

AT CT

BT DT

][
ΨQU

ΨΛ

]
+

[
∂J
∂QU

T

∂J
∂Λ

T

]
=

[
0

0

]
.

Statically condensing out the element-interior degrees of freedom, we obtain the following system
for the face adjoints,

[
DT −BTA−TCT

]︸ ︷︷ ︸
KT

ΨΛ +

[
∂J

∂Λ

T

−BTA−T ∂J

∂QU

T]
= 0.

So, as expected, the Schur-complement adjoint system matrix is just the transpose of the corre-
sponding matrix for the primal system. The adjoint residual is also of similar form. For HDG, the
output error estimate is

δJ ≈ −(ΨQ
h )

TRQ
h︸ ︷︷ ︸

δJQ

−(ΨU
h )

TRU
h︸ ︷︷ ︸

δJU

−(ΨΛ
h )

TRΛ
h︸ ︷︷ ︸

δJΛ

, (19)

where all the residuals are evaluated using the coarse state injected into the fine space, QH
h ,UH

h ,ΛH
h .

For the fine space, we increment the approximation order by one on each element and interface.
We obtain the fine-space adjoint by solving exactly or approximately (via iterative block-Jacobi
smoothing) on this fine space. Note that in (19) we separated the error estimate into three com-
ponents, one for each residual.

B. Adaptation

In the present work, we restrict our attention to adapting the mesh (h-adaptation). To do so, an
error indicator must be formed for each element. The adjoint-weighted residual error estimate may
be localized by considering only the terms of the summation using the degrees of freedom on the
mesh element. In DG, the error indicator associated with an element is given by

εDG
e = |δΨT

h,eRh,e

(
UH

h

)
|, (20)

where the subscript e on the adjoint and residual denotes components associated with element e.
In HDG, we can localize δJQ and δJU to elements, since both of these expressions involve

residuals associated with test functions on element interiors. Similarly, we can localize δJΛ to
faces because δJΛ involves residuals obtained from test functions on faces. What we do with these
error indicators depends in part on the chosen adaptation mechanics. In the most general case,
we could consider a situation where faces and elements are adapted independently, e.g. through
approximation order; we could then incorporate some measure of cost to define a merit function to
decide which elements or faces needed to be refined.

At present, however, since we restrict our attention to pure h-refinement, we only require error
indicators on the elements. The elemental error indicators are calculated as

εHDG
e = εQe + εUe , (21)

where εQe and εUe are localizations of δJQ and δJU , respectively. We could incorporate the lo-
calization of δJΛ from the faces, by, for example, equally distributing this error indicator to the
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two adjacent elements. However, in this work we simply ignore these face error indicators when
calculating the elemental error indicators for adaptation. The justification for this is that δJΛ is
typically much smaller in magnitude in comparison to δJQ and δJU – in fact, in certain cases we
can prove that δJΛ = 0.

Once the error indicator is obtained, a certain number of the highest indicators are chosen to
be adapted. These elements are adapted, allowing for the creation of hanging nodes on element
boundaries. This procedure is favorable, especially toward HDG, because very few new faces are
introduced and the adaptation is better able stay local in regions which require it most. To the
authors’ knowledge, this is the first adaptive study using HDG with hanging nodes.

IV. Results

In this section we demonstrate the adaptive HDG method on a number of test cases. First, a
linear scalar convection-diffusion equation on a square domain. Then we consider cases of aerospace
interest: inviscid and viscous turbulent Navier-Stokes equations.

A. Scalar Convection-Diffusion

First we consider the linear convection-diffusion equations, where

~F (u) = ~vu, ~v = [0.6, 0.8] ,

~G(∇u) = −ν∇u, ν = 0.02.

The domain is a unit square, Ω = [0, 1]2, and functional Dirichlet boundary conditions are imposed,
u|∂Ω = g(x, y), where

g(x, y) = exp[0.5 sin(−4x+ 6y)− 0.8 cos(3x− 8y)].

For the HDG stabilization, we set τ = |~v| + ν, so the viscous length scale is set to unity. The
output is set to the integral of ~G ·n over the right boundary of the domain. Initially, the mesh has
64 uniform quadrilateral elements. The solution and HDG adapted mesh are plotted in Figure 3.

Uniform and adaptive refinement are compared for both DG and HDG discretizations in Fig-
ure 4. The adaptation strategy used here chooses 10% of the elements at each adaptive iteration
for refinement. It is interesting to note that in this case HDG converges one order faster than DG.
This occurs here because HDG is discretizing the gradient ~q with an order-p polynomial, which is
converging optimally under these conditions. For the p = 1 results, the faster convergence of ~q is
enabling even the HDG corrected output to converge faster than the DG corrected output. This
effect disappears at p = 2, but even here the HDG corrected output seems to do as well or better
than that of DG.

B. Inviscid flow over NACA 0012 airfoil

Next, we consider adaptation for the two-dimensional inviscid Navier-Stokes equations at M∞ =
0.5, α = 2◦ angle of attack. Initially, the mesh consists of 140 q = 4 (i.e. quartically curved)
quadrilateral elements. The output for adaptation is the drag on the airfoil. The Mach contours
and an adapted mesh for the airfoil are shown in Figure 5.

Output convergence for both discretizations is plotted in Figure 6. The important takeaway
from this case is that the DG and HDG results are nearly identical for a given mesh. In fact, the
methods seem to target the same elements for refinement. So, under these conditions the optimal
mesh seems to be the same. The number of nonzeros required to obtain a certain drag error in DG
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(a) Solution (b) Final p = 1 HDG adapted mesh

Figure 3: Solution to the convection-diffusion problem and adapted mesh for the case described in
Sec. IV.A.
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(a) p = 1 output convergence
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(b) p = 2 output convergence

Figure 4: HDG and DG convergence results for the case described in Sec. IV.A. The p + 1 fine
space used in error estimation was solved exactly.
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(a) Mach contours (0− 0.6) (b) Final p = 1 HDG drag-adapted mesh

Figure 5: Mach contours and adapted mesh for the case described in Sec. IV.B.

seem to follow a trend for any order. In HDG, however, as the order increases, the increase in the
number of nonzeros is reduced, so a benefit at high order is achieved.

Recall that adaptation for HDG is ignoring the contribution from δJΛ. It turns out that
under these conditions, δJΛ is driven to machine zero. The only terms appearing in the flux
continuity equation, (10), are stabilization terms. If the face and both elements use degree p
solution approximations, and the stabilization is constant, testing against degree p polynomials will
always result in a pointwise zero integrand. Therefore, even on the fine space, these contributions
are zero.

C. Turbulent flow over RAE 2822 airfoil

For this test, we compare HDG output-based adaptation to DG for turbulent flow over an RAE
2822 airfoil. The conditions are M∞ = 0.5, Re = 105, α = 1◦ angle of attack, and the turbulence is
handled using the Spalart-Allmaras one-equation model for the Reynolds-averaged Navier-Stokes
equations.22 The output adaptation here is targeting the drag on the airfoil. The initial mesh for
the adaptation consists of 374 quadrilateral elements with high-aspect ratio (but relatively coarse
size) near the wall. At each adaptive iteration, 5% of the elements are isotropically refined, for a
total of 8 adaptive iterations. The turbulence working variable ν̃ and adapted mesh are shown in
Figure 7.

The convergence plotted in Figure 8 shows adaptive HDG working comparably to DG, but
with many fewer nonzeros in the Jacobian matrix, especially at p = 3. The adapted meshes are
quite similar, and we hypothesize that much of the difference in the outputs is due to differences in
stabilization – on the highly-anisotropic elements in these meshes, a constant viscous length scale,
`visc, may not be optimal for HDG.
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(a) HDG convergence
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Figure 6: HDG and DG convergence results for the case described in Sec. IV.B. Here the p+1 fine
space was only solved approximately, using 10 block-Jacobi smoothing iterations.
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(a) Turbulence SA working variable (b) Final p = 3 HDG drag-adapted mesh

Figure 7: SA working variable ν̃ and final HDG drag-adapted mesh for the RAE2822 airfoil case
described in Sec. IV.C.
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(a) Convergence with number of elements
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(b) Convergence with number of nonzeros in Jacobian

Figure 8: Convergence for the RAE2822 airfoil case described in Sec. IV.C.
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D. Three-Dimensional Body of Revolution

This case tests the output-based adaptation for the three-
dimensional Euler equations to calculate lift on an immersed
body. This test was used to assess the state of high-order
CFD codes at the 1st high-order CFD workshop.23 The
flow is described by the inviscid Navier-Stokes equations at
M = 0.5 and α = 1◦ angle of attack. The immersed body is
shown to the right with the HDG adapted boundary mesh.
Initially, the mesh has 768 q = 4 hexahedral elements.

Half-body, pressure contours

An interesting effect shows up in the adaptation for this case. Recall that in the inviscid NACA
0012 airfoil case shown previously, the convergence history between DG and HDG was nearly
identical, owing to the machine-zero δJΛ on the faces. In this case, although still inviscid, the
adaptation is targeting different elements. In fact, consider the two meshes at the same iteration
shown in Figure 9: most of the elements targeted for the next refinement in HDG are already
refined in DG. Further investigation is required to determine the source of these differences.

The convergence shown in Figure 10 is similar for both methods. HDG uses approximately a
factor of 8 fewer nonzeros for a nearly exact value of lift. It is interesting to note that here the
error estimates for HDG seem to decrease slower than those in DG, but are still quite accurate.

V. Conclusion and Future Work

In this paper we presented output-based error estimation and adaptation for an HDG method
applied to the compressible Navier-Stokes equations, including those augmented with a Reynolds-
averaged turbulence model. The HDG method takes advantage of a decoupled Jacobian matrix
structure to statically condense the system, thereby reducing the growth rate with order of the
globally-coupled system and the number of nonzeros in the resulting global Jacobian matrix. Some
practical details of the HDG discretization were presented, including parallelization on distributed-
memory architectures. A new viscous stabilization method was introduced, which applies diffusive
stabilization to only those equations that require it.

An h-adaptation method for HDG was discussed and the HDG method was compared to DG
in an existing solver framework for various problems of aerospace engineering interest. A computa-
tional benefit both in terms of memory was observed for all cases. It was shown that under certain
conditions the adaptive convergence is nearly identical for both methods.

Looking forward, the most pressing item is to improve viscous stabilization. Even when adding
only viscous stabilization to those equations that require it, a constant viscous length scale seems
to add stiffness. The largest benefits will likely come from combined hp adaptation, which is
forthcoming. Mechanics for addition of the face error indicators, and under what conditions to
choose h or p are slightly more difficult than in DG, so care must be taken to pick the correct
strategy.
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(a) HDG (b) DG

Figure 9: HDG and DG adapted meshes projected on the half-body at the same iteration colored by
the error indicator for the case described in Sec. IV.D. The meshes are very similar, and interestingly
many of the elements targeted for the next refinement in HDG are already refined with DG.

1000 1500 2000 2500
# Elements

10−4

10−3

c l

p=1 DG
p=1 HDG
p=2 DG
p=2 HDG
p=2 DG Corrected
p=2 HDG Corrected

(a) Convergence with number of elements

107 108

# Nonzeros

10−4

10−3

c l

p=1 DG
p=1 HDG
p=2 DG
p=2 HDG
p=2 DG Corrected
p=2 HDG Corrected

(b) Convergence with number of nonzeros in Jacobian

Figure 10: Convergence for the case described in Sec. IV.D.
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