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The flexrual response of a layer-to-layer orthogonal interlocked 3D textile composite
(3DTC) has been investigated through quasi-static three-point bending. Fiber tow kinking
on the compressive side of the flexed specimens has been found to be a strength limiting
mechanism for both warp and weft panels. The digital image correlation technique has
been utilized to map the deformation and identify matrix micro-cracking on the tensile
side prior to the peak load in the warp direction loaded panels. It is shown that the geo-
metrical characteristics of textile reinforcement play a key role on the mechanical response
of this class of material. A mechanism based multiscale computational model that considers
the influence of textile architecture has been developed to capture the observed damage
and failure characteristics. The fiber tows and surrounding polymer matrix are modeled
at the mesoscale, while the 3DTC is homogenized at the macroscale. The pre-peak non-
linear response of the fiber tow is modeled using a novel, two-scale model, in which the
subscale micromechanical analysis is carried out in close form. The influence of the matrix
microdamage at the microscale manifests as the progressive degradation of the fiber tow
stiffness at the mesoscale. The post-peak strain softening responses of the fiber tows and
the surrounding polymer matrix are modeled through the smeared crack approach (SCA).
The load-deflection response, along with the observed damage events, including matrix
cracking, tow kinking, and tow tensile breakage, are successfully captured through the
proposed computational model. Therefore, the proposed multiscale model is suitable for
progressive damage and failure analysis of 3DTCs and specifically to study the influence of
textile architecture on macroscopic response.

Nomenclature

Ee Elastic Young’s modulus
Es Secant Young’s modulus
E1 Axial Young’s modulus
E2 Transverse Young’s modulus
νe Elastic Poisson’s ratio
νs Secant Poisson’s ratio
ν12 Axial Poisson’s ratio
ν23 Transverse Poisson’s ratio
G12 Axial shear modulus
G23 Transverse shear modulus
K23 Plane-strain bulk modulus
σ Stress
σeq Equivalent stress
σy Yield stress
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σcr Crack stress
σcrnn Normal crack stress
τ crt Shear crack stress
scr Crack stress in crack coordinates
ε Strain
εeq Equivalent strain
εco Continuum strain
εcr Crack strain
ε̇cr Crack strain rate
εcrnn Normal crack strain
γcrt Shear crack strain
ecr Crack strain in crack coordinates
T Transformation matrix from crack to global coordinates
GC Critical energy release rate
gc Normalized critical energy release rate
u Sum of crack displacement
h Characteristic length
Dc Normal secant crack stiffness
Gc Shear secant crack stiffness
∆t Time increment
Dco Continuum stiffness matrix
Dcr Crack interface stiffness matrix
Dda Damping matrix
F Strain transformation matrix from matrix to fiber tow
K1 Material constant
K2 Material constant

Subscript
f Fiber
m Matrix
t Fiber tow

I. Introduction

3D textile composites (3DTCs) are attractive structural materials for a variety of reasons. They are
increasingly used in several aerospace, civil, mechanical and naval industrial applications. The term textile
here is referred to an interlaced structure, known as a dry preform, which consists of fiber tows that are either
woven or braided together. Compared with pre-preg laminated composites, 3DTCs offer better resistance to
delamination while demonstrating a cost advantage. It has been shown in previous studies that 3D textile
composites possess enhanced mechanical performance and the ability to contain (localize) the area of damage
due to delamination.1,2, 3

In order to obtain a thorough understanding on the deformation response of textile composites, a number
of analytical models have been developed to compute the elastic properties, including in-plane moduli4,5 and
bending stiffness.6 It has been pointed by many researchers7,8, 9 that although geometric distortions resulting
from curing and consolidation have little effect on elastic moduli, these manufacturing induced imperfections
can greatly affect the damage behavior and the resulting mechanical properties such as strength, strain to
failure, and fatigue life. The importance of incorporating any unintended geometric deviations of textile
architecture into micromechanics based finite element modeling has been addressed recently by Zhang et
al.10

The flexural response of textile composites has been investigated by Cox et al.11 and Quek et al.12

In their studies, fiber tow kinking on the compressive side of the specimen was reported, and this type of
failure mode was identified as a strength limiting mechanism. In the literature, the compressive strength of
a unidirectional composite has been studied by Budiansky and Fleck,13 Kyriakides et al.,14 Lee and Waas,15

Feld et al.16 The main physical event associated with kink band formation is the rotation of the fibers
in a band within a locally degrading matrix, with or without splitting. The rotation of fibers gives rise
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to high localized shear strains and transverse strain that drive further degradation of the matrix material
between the fibers within a tow. The shear degradation in turn increases the rotation of the fibers creating a
positive feedback loop that culminates in a limit-load type instability. During the kink band formation, the
degrading matrix can also split (transverse tensile failure), leading to a competition between splitting and
intact kinking, as recently studied by Prabhakar and Waas,17,18 following earlier work by Lee and Waas.15

The focus of this paper is to investigate the failure mechanisms in the flexural response of a quasi-statically
loaded 3DTC panel through experiment and an accompanying mechanism based model that considers the
influence of textile architecture. The deformation response is analyzed through a multiscale computational
model, in which the fiber tows and surrounding polymer matrix are modeled at the mesoscale, while the
3DTC is homogenized at the macroscale. The pre-peak nonlinear response of the fiber tow is modeled
using a novel, two-scale model, in which the subscale micromechanical analysis is carried out in close form.
The post-peak strain softening responses of the fiber tows and the surrounding polymer matrix are modeled
through the smeared crack approach (SCA). The predictive capability of the proposed model is illustrated by
comparing the computed results with the experimental investigation including the load-deflection response
and the failure characteristics, such as matrix cracking, tow kinking, and tensile fracture of the tows.

II. Material System

The material investigated in this paper is a layer-to-layer orthogonal interlocked 3DTC, in which the
warp tows are woven through five weft fiber layers alternating with a period of four along the weft direction
to achieve a repeated textile pattern, as schematically shown in Figure 1. The dry textile preform is made
of S2 glass fibers that are provided by Albany Engineered Composites, Inc., NY. Impregnation and cure of
the textile preform were carried out at the Army Research Laboratory in Aberdeen, MD, using a vacuum
assisted resin transfer molding (VARTM) process. VARTM is adapted from traditional Resin Transfer
Molding (RTM) by replacing the upper half mold with a vacuum bag to enhance the impregnation of the
fiber reinforcements. Details of the VARTM technique and fabrication process are provided in Refs.19,20

The matrix is SC-15 epoxy resin with two-phased toughened thermoset polymer containing part A (resin
mixture of diglycidylether epoxy toughener) and part B (hardener mixture of cycloaliphaic amine poluoxy-
lalkylamine).21 The elastic properties for the fiber and matrix are summarized in Table 1.

Weft
Warp

y

x

z
Warp
90º

Weft
0º

Figure 1. Ideal textile architecture of the layer-to-layer interlock glass fiber 3DTC.

The layer-to-layer architecture is vulnerable to the mold pressure during the fabrication process due to
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Table 1. Elastic properties for S-2 glass and SC-15 matrix.

E (GPa) ν

S-2 Glass Fiber 93.8 0.23

SC-15 Matrix 2.49 0.35

the large undulation of the warp weavers, as schematically shown in Figure 2. In VARTM process with
single-sided mold, atmospheric pressure is exerted on the textile preform through the vacuum bag covering.
The applied pressure on the preform forces the fiber tows to be settled in a new position that is different
from the ideal designed one. The cross-sectional microscopic images, shown in Figure 3, clearly shows this
manufacturing induced geometric imperfection in the final textile composite panels. It has been pointed
out by Song et al.22 that each manufacturing process is associated with a unique set of characteristics that
result in a produced part deviating from the expected ideal geometry. The set of such deviations, which
is unique to each manufacturing process, is termed the “manufacturing imperfection signature”. Obtaining
the manufacturing imperfection signature of the textile composite is important to determine the damage
characteristics, such as strength, strain to failure, and fatigue life.7,8, 9

Vacuum Bag

Mold Wall

Before

Vacuum Bag

Mold Wall

(a) Pressure is exerted during the curing cycle.

After

(b) Schematics of the actual textile architectures.

Figure 2. Manufacturing effect on the textile architectures.

Measurements were taken on the cross-sectional micrographs shown in Figure 3 to characterize the geom-
etry of the textile architecture. Fiber tow is idealized to undulate as a sinusoidal path with an elliptical cross
section. The measured tow dimensions are summarized in Table 2. The fiber volume fraction within a fiber
tow is determined to be 60% by analyzing a scanning electron microscopic (SEM) image. The volume fraction
of warp, weft, and matrix provided by the manufacturer are 24.78%, 32.76%, and 42.45%, respectively.10

III. Experimental Results

Three-point bend tests were performed using a screw-driven Instron machine at a loading rate of 1
mm/min to achieve a quasi-static loading condition. The center load and load point displacement were
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(a) Weft cross section.

(b) Warp cross section.

Figure 3. Optical micrographs. The fiber tow is idealized to undulate as a sinusoidal wave with an elliptical
cross section.

Table 2. Fiber tow geometry.

Weft tow Warp tow

Major axis (2a) (mm) 2.15 ± 0.11 2.51 ± 0.13

Minor axis (2b) (mm) 0.62 ± 0.05 0.53 ± 0.05

Wave length (2L) (mm) 11.80 ± 0.15 9.29 ± 0.16

Amplitude (A) (mm) 0.74 ± 0.07 0.45 ± 0.03

recorded, as schematically shown in Figure 4. Specimens were cut along the two major fiber directions,
warp and weft, to study the architecture-dependent effect. The specimen dimensions are as follows: 120 mm
long, 6.23 mm thick, and 19 mm wide, with a bottom span of 90 mm. In order to investigate the failure
modes associated with the deformation histories, the outer surface of the specimen is speckled, which can be
subsequently used to obtain surface strain fields via a digital image correlation (DIC) technique. Images of
the outer surface were taken during the deformation using a 12 Megapixel camera at 5-s time intervals. The
full field surface strain histories were obtained via the DIC software ARAMIS.

Representative load-displacement responses are shown in Figure 5(a). The load presented is normalized
with respect to the width of the specimen such that the variation in specimen width due to cutting can
be accounted for. The weft loading direction shows higher initial stiffness than the warp direction due to
the fact that there is one additional axial tow in the weft direction to carry the bending moment. Overall
for both directions the woven composites exhibit a similar softening type response, more representative of
metals, indicating considerable damage tolerance of this type of material. When the panel was loaded in the
weft direction, the first damage occurred at the point that deviates from the proportional loading due to
fiber tow kinking on the compression side. The kink band formation can be better observed under a SEM,
as shown in Figure 6. The DIC patterns before and after the first damage occurrence are shown in Figure
5(b). However, when the material was loaded in the warp direction, matrix cracking occurred on the tension
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P, ∆ Specked 

Surface 

L

w

h

Figure 4. Schematic of three-point bend test configuration. The side surface of the specimen is speckled as
indicated.

side and progressed in the center of the specimen prior to the kinking on the compression side. These cracks
were captured by the DIC patterns as shown in Figure 5(c). The surface strain contours show the area of
strain localization due to the textile architecture, indicating the location where the matrix materials start
to crack. In both cases, kink banding signals the onset of significant non-linearity.

It is worth noting that tensile matrix cracking has little impact on the recorded load, whereas the peak
load is determined by the fiber tow kinking strength. This agrees with the findings reported in Refs.7,12

that kink banding is the strength controlling mechanisms of failure. The observed damage characteristics
indicate the importance of the textile architecture on the failure mechanisms of this class of materials. Hence,
a textile architecture-based numerical model that incorporates constitutive relations that encompass damage
and failure is expected to predict the failure modes observed in the experiment, as discussed in Section IV.
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(a) Experimental load-displacement curves

(b) Axial surface strain patterns (weft)

(c) Axial surface strain patterns (warp)

Figure 5. Representative load-displacement curves for the 3DTCs subjected to quasi-static three-point bend
tests. Surface strain patterns captured the damage occurrences.
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Figure 6. Kink band formation on the compression side of the specimen.

IV. Multiscale Computational Model

Experimental observations suggest that the numerical model should consider the influence of textile
architecture on the macroscale response of 3DTCs. The proposed mechanism based finite element analysis
(FEA) model contains three scales as illustrated in Figure 7. For the region that is far away from the
loading point (or far away from “hot spots”), the composite beam is modeled as a homogeneous linear-
elastic orthotropic solid since no damage event is observed. The mesoscale model that contains the details
of the textile architecture, including the fiber tows and surrounding polymer matrix, is used in the region in
the vicinity of the loading point, where multiple failure modes have been observed. The mesoscale model is a
collection of representative unit cells (RUCs) created based on the micrograph in Figure 3 using the measured
tow geometry summarized in Table 2. In order to obtain the nonlinear constitutive relation of a single fiber,
micromechanical analysis is carried out at the fiber and matrix level, referred to as the microscale. The
determination of fiber tow response is discussed in Section VI.

As discussed in Section II, manufacturing induced effects on the textile architecture indicate rotations
of tows and interactions between each other. Modeling the full repeated textile pattern requires advanced
topology techniques and may result in meshing difficulties. At this point two different mesoscale models are
proposed with a focus on cross section. In each model only a unit width of fiber tows were modeled along
its axial direction, as illustrated in Figure 8. The tows running along the bending axis (or along the width)
are assumed to be straight. 3D linear tetrahedron solid elements are used in the mesoscale model, whereas
the homogenous model is meshed using 3D linear brick elements.

The connection between the micro and homogenous model is enforced by requiring displacement continu-
ity between the two regions across the common boundary, as shown in Figure 9. Since only a narrow width of
the specimen is modeled, it is assumed that the flexural response is uniform through the width. Symmetric
boundary conditions with respect to the z-axis are imposed on the surface EFGH to prevent out-of-plane
movement. The top roller is modeled as a rigid body with applied displacement along y− direction. Both
the left bottom edge BF and the right bottom edge CG are fixed in y− and z− directions to achieve a
three-point bend loading condition.
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Figure 7. Illustration of multiscale modeling strategy.

Figure 8. Construction of mesoscale model. In each model, only a unit width of fiber tows are modeled along
its axial direction. The tows running along the width are assumed to be straight.
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Mesoscale Model 

Displacement 

Continuity 

Figure 9. Boundary conditions of the global-local FEA model.
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V. Matrix Constitutive Model

Matrix cracking is observed on the tensile side of a flexed 3DTC panel and progressed throughout the
specimen. In addition, the polymer matrix material exhibits a nonlinear stress-strain response before failure.
In this paper, damage and failure are distinguished in such a manner that damage governs any nonlinear
response that preserves the positive definiteness of the material stiffness tensor; whereas failure is defined as
the microstructural changes that result in a post-peak strain softening in the stress-strain response. Figure 10
shows a representative full constitutive response of a polymer matrix including damage and failure behavior.
The pre-peak nonlinear behavior is attributed to matrix microdamage due to the growing of voids and flaws
in the polymer material, and is considered as a damage mechanism. The accumulation of matrix microdamge
finally results in matrix macroscopic cracking that is categorized as a failure mechanism due to the loss of
positive definiteness of the material tangent stiffness tenor.





y

cr

Damage Failure

Figure 10. Schematic of matrix constitutive behavior including damage and failure.

In this section, the modeling strategy for an isotropic matrix material is presented, including damage and
failure analysis. The matrix microdamage, manifested as pre-peak nonlinearity in the stress-strain response,
is modeled using a modified J2 deformation theory of plasticity, as formulated in Section V.A. The secant
moduli are degraded with the progression of microdamage, however, the positive definiteness of the stiffness
tensor is still preserved. When a critical stress state is reached, failure is initiated and the post-peak strain
softening behavior is modeled through the SCA to capture matrix macroscopic cracking, as given in Section
V.B. The implementation of this matrix material model to the mesoscale textile architecture based FEA
model is presented in Section IV.

A. Modeling the Microdamage in Polymer Matrix Based upon Modified J2 Deformation
Theory of Plasticity

It has been shown by Sicking23 that a polymer matrix exhibits limited loading path independence behavior
through combined tension and torsion tests. Hence, for such an isotropic material, the state of stress can
be uniquely determined from the state of strain through a secant modulus as long as the material does not
experience unloading. It further assumes that the evolution of damage is an irreversible process, therefore,
once the matrix stiffness tensor is degraded due to microdamage, it cannot be recovered. Such behavior
suggests that a modified J2 deformation theory of plasticity be employed to model the nonlinear stress-
strain relation of this type of material. In the present modified constitutive model, the degrading secant
moduli are utilized to compute the material stiffness tensor during unloading.

In order to utilize a uniaxial stress-strain curve to determine the material response under multi-axial
loading, two equivalent variables, the equivalent stress, σmeq, and the equivalent strain, εmeq, are introduced
and related through a secant Young’s modulus, Ems , as σmeq = Ems ε

m
eq. According to J2 deformation theory,

the two equivalent quantities are related to the corresponding stress or strain components as,
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σmeq =

√
1

2
[(σm11 − σm22)2 + (σm22 − σm33)2 + (σm33 − σm11)2] + 3

(
σm

2

12 + σm
2

13 + σm
2

23

)
(1)

εmeq =
1

1 + νms

√
1

2
[(εm11 − εm22)2 + (εm22 − εm33)2 + (εm33 − εm11)2] +

3

4

(
γm

2

12 + γm
2

13 + γm
2

23

)
(2)

where νms is the matrix secant Poisson’s ratio defined by

νms =
1

2
+
Ems
Eme

(
νme −

1

2

)
(3)

and Eme and νme are the matrix elastic Young’s modulus and elastic Poisson’s ratio, respectively.
It can be shown that when the matrix is subjected to a uniaxial tension (σm11 > 0 and other σmij = 0),

σmeq is reduced to σm11 according to Eq. (1). On the other hand, the non-zero strains in a uniaxial tensile
stress state are εm11 > 0 and εm22 = εm33 = −νms εm11. Substituting these relations into Eq. (2), εmeq is readily
reduced to εm11. Thus, a simple uniaxial stress-strain response from tensile testing can be used to construct
the effective stress-strain response, and no other measurements are required providing a convenient way to
capture pre-peak nonlinearity.

In this paper, the matrix nonlinear stress-strain relation is characterized using an exponential curve as,

σmeq = σmy −
K1

K2

(
e−K2ε

m
eq − e−K2

σmy
Eme

)
(4)

where σmy is the yield stress in a simple uniaxial tension, and K1 and K2 are the two material parameters that
govern the evolution of matrix microdamage which can be determined from an experimental stress-strain
response.24

B. Modeling the Failure of Polymer Matrix Using Smeared Crack Approach

The accumulation of matrix microdamage finally initiates matrix macroscopic cracking, followed by post-
peak strain softening response in the stress versus strain curve. In this study, the evolution of matrix failure
is modeled using the SCA, which is originally developed by Rots et al.25 to model crack propagation and
fracture in concrete. In the SCA, it assumes that distributed cracks are “smeared” out over a certain width
within the finite element such that the effect of progressive cracking is represented by a macroscopic strain
softening behavior in a continuum scheme. To restore mesh objectivity, a characteristic length is introduced
such that the total amount of energy dissipated during failure in a continuum element is equal to the fracture
toughness defined for a cohesive element of the same size. The fracture toughness, or the critical energy
release rate, GC , is defined by the area under the traction-separation law that dictates the cohesive behavior
of crack propagation (see Figure 11(b)) as,

GC =

∫ δf

0

σ du (5)

where u is the sum of crack displacements within the fracture zone, as schematically shown in Figure 11(a).
In the SCA, u represents the crack strain acting across a certain width within a finite element, denoted as the
crack band width, h, which is shown in Figure 11(b). Assuming that all the cracks are uniformly distributed
over the crack band, since u is the accumulation of all the crack strains over the fracture zone, it gives,

u = h εcr (6)

If gc is defined as the area under the softening branch of the stress-strain curve, gc and GC are related by,

GC = h gc (7)

Therefore, the strain-based description for a softening material is related to the displacement-based
traction-separation laws through the characteristic length, h. In a FEA setting, h is chosen based upon the
element type, element size, element shape, and the integration scheme.25 Typically the length of the element
projected onto the crack normal is used as a characteristic element length, as shown in Figure 13.
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u

(a) Discrete crack.

h

(b) Smeared crack.

Figure 11. Discrete cracks are smeared out within a finite element.

cr

0

Cg



crcr

f
(a) Critical stress-strain curve.

cr

f0

CG



cru h

C cG hg

(b) Traction-separation law.

Figure 12. Stress-strain softening curve is related to traction-separation law through a characteristic length,
h.

n

Crack

h

Figure 13. Characteristic element length. The length of the element projected on the crack normal is used as
characteristic element length.
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1. Formulations

The formulation of the SCA for an isotropic material presented in this section is similar to that in.25,26 In
the pre-peak regime, the material is governed by a standard continuum theory such as elasticity, plasticity,
or CDM. When failure initiates, it is assumed that the total strains, ε, is decomposed into continuum strains,
εco, and cracked strains, εcr, as,

ε = εco + εcr (8)

In a continuum scheme, εco can be further decomposed into elastic, plastic, and thermal strains, if
needed. In the current study, the matrix nonlinear response is modeled as a degrading secant solid, hence,
the secant strains at the onset of failure initiation is used for εco. Here, ε, εco, and εcr are presented in global
coordinates.

Figure 14 shows the crack morphology in 3D. At the crack interface, there exist three relative displace-
ments between the crack faces, one is the crack opening displacement, and the other two are the crack sliding
displacements. The subscript n and t are used to designate directions normal to the crack and tangential to
the crack, respectively. The key of the SCA is to embed cracks into a continuum, hence, the crack opening
displacement is represented by a local normal crack strain, εcrnn, and the two crack sliding displacements are
replaced by two local shear crack strains, γcrt1 and γcrt2 . These local crack strains are defined in the local co-
ordinates where the crack is oriented, and can be related to the global coordinates through a transformation
matrix, T , as,

εcr = Tecr = T


εcrnn
γcrt1
γcrt2

 (9)

where ecr is a vector that contains local crack strains, and T is a 6 by 3 transformation matrix depending
on the crack orientation. Similarly, the interface stresses at the crack interface, scr, can be transferred to
the global stress state, σ , through,

scr =


σcrnn
τ crt1
τ crt2

 = T Tσ (10)

n

t2

t1

cr

nn
2

cr

t

1

cr

t

Figure 14. Crack morphology. There exist one normal and two shear crack components at the crack interface
in 3D stress state.
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The crack interface stresses are related to the local crack strains through,

scr = Dcrecr (11)

where Dcr is the crack interface stiffness matrix that dictates the failure evolution in the post-peak strain
softening regime. For a single crack in a 3D solid, Dcr can be expanded as,

Dcr =

Dc 0 0

0 Gc1 0

0 0 Gc2

 (12)

where Dc is the secant stiffness across the crack interface due to crack opening, and Gc1 and Gc2 are the
two secant shear stiffness governed by crack sliding. These quantities identify the modes of failure and are
related to traction-separation laws with a characteristic length scale. The off-diagonal terms are assumed to
be zero, indicating that there is no coupling between the normal and shear crack components. The coupling
between the crack shear and opening displacements, known as crack dilatancy, has been extensively studied
by Bažant and Gambarova,27 Walraven,28 Walraven and Reinhardt,29 and Gambarova and Karakoç.30

It should be pointed out that the sudden loss of the positive definiteness of material global stiffness tensor
may result in oscillations of the solutions in the post-peak softening regime. Hence, a damping matrix, Dda,
is introduced to relate the stress-strain relation at the crack interface, and Eq. (11) becomes,26

scr = Dcrecr +Ddaėcr (13)

Consequently, the crack progression becomes a time dependent property by the use of damping matrix. The
crack strain rate, ėcr, is approximated at each time step using backward finite difference scheme as,

ėcr ≈ e
cr(t+ ∆t)− ecr(t)

∆t
=
ecr − ecrold

∆t
(14)

The constitutive relation for a continuum is,

σ = Dcoεco (15)

where Dco is the continuum stiffness tensor. In the current study, since the matrix material is dictated as a
secant degrading solid in the pre-peak regime, Dco is computed using the secant Young’s modulus, Es and
secant Poisson’s ratio (see Eq. (3)). Combining Eq. (8), (9), (10), (13), (14), and (15), it gives the relation
between the local crack strains and the total global strains can be obtained as,

ecr =

[
Dcr + T TDcoT +

1

∆t
Dda

]−1 [
T TDcoε+

1

∆t
Ddaecrold

]
(16)

Finally, the relation between the total stress and total strain in the post-peak regime is computed as,

σ =

[
Dco −DcoT

(
Dcr + T TDcoT +

1

∆t
Dda

)−1

T TDco

]
ε

− 1

∆t
DcoT

[
Dcr + T TDcoT +

1

∆t
Dda

]−1

Ddaecrold

(17)

The details of the numerical implementation of the SCA within a FEA setting including the iteration
scheme to determine the crack strains are discussed by Heinrich and Waas.26

2. Determination of the Crack Constitutive Relations

In the present study, 1D traction-separation laws are employed, consequently, Eq. (12) becomes,

Dcr =

Ecr 0 0

0 Gcr1 0

0 0 Gcr2

 (18)
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where Ecr is the secant crack modulus resulting from normal crack strain (mode-I type of failure), while
Gcr1 and Gcr2 are associated with shear crack strains (mode-II type of failure). In the current study, secant
crack stiffness is used so that the softening response follows the traction-separation laws exactly, as shown
in Figure 15. To prevent crack healing, it is required that,

Ėcr < 0 and Ġcr < 0 (19)

Hence, once the crack stiffness is degraded, it cannot be recovered. The loading and unloading behavior
during the evolution of the failure process is specified in Figure 15.

cr

nn

crhE

nn

cr

nnh

ICG

,

cr

nn fh

Figure 15. Crack evolution is dictated using degrading secant crack stiffness.

Matrix tensile cracking has been observed in the experiment. In a monolithic material, cracks are likely to
grow under pure mode-I conditions since this type of failure mode is energetically favorable. In 3DTCs, the
cracks in the surrounding matrix may be subjected to mixed-mode loading due to the presence of fiber tows,
or at microscale, the crack orientation of the matrix inside the fiber tow can be affected by the individual
fibers. However, in this study, it is assumed that the tensile cracks grow under pure mode-I condition, aligned
with the maximum principal stress plane. For a given stress state, the principal stresses, σ1, σ2, and σ3, and
the corresponding principal axes n1, n2, and n3, are first computed. Maximum tensile stress criterion is
used for tensile crack initiation as,

σ1 > σ2 > σ3 and
σ1
σcr

= 1 (20)

where σcr is the cohesive strength, or the critical stress, in the mode-I traction separation law. In practical
applications, it is further assumed that once a crack is initiated, the crack orientation, determined from the
principal stress directions, is fixed during the failure evolution. It is further assumed that the crack interface
is traction free in both normal and shear directions if all the fracture energy has been dissipated. The two
crack shear moduli, Gcr1 and Gcr2 , are degraded as a function of εcrnn, indicating that the cracks grow under
mode-I dominated conditions. It is possible that the crack shear moduli are degraded with respect to γcrt1 or
γcrt2 , and a mixed-mode traction-separation law should be introduced to ensure that the shear failure evolves
under mode-II conditions.31 However, such a complicated failure mechanism requires further study of the
crack progression at the microscale, and as such this is not considered in the current study. Matrix nonlinear
and fracture properties are provided in Table 3.

Table 3. Damage and failure characteristics of SC-15 matrix.

σmy (MPa) K1 (MPa) K2 σcr (MPa) GIC (N/mm)

25 1700 40 50 1.5
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VI. Fiber Tow Constitutive Model

In 3DTCs, a singer fiber tow consists of thousands of individual fibers embedded in the surrounding
matrix medium, the microstructure of which can be represented as a unidirectionally aligned fiber-reinforced
composite. When the fiber tow undulates along its longitudinal direction, each infinitesimal section of a
fiber tow can be considered as a unidirectional composite, with its local coordinates aligned with the tow
orientation,4 as schematically shown in Figure 16. Hence, computing the fiber tow stress versus strain
relation is equivalent to establishing a constitutive model for a unidirectional composite. The evolution of
matrix microdamage (discussed in Section V.A) at the microscale manifest as the degradation of the fiber
tow stiffness at the mesoscale, resulting in a pre-peak nonlinear stress-strain relation that can be captured
using a two-scale model established by Zhang and Waas.32 In their model, the subscale micromechanical
analysis on the fiber and matrix is carried out in close form, and the evolution of the fiber tow nonlinear
response is assumed to be governed by two strain based variables that are related the extreme values of an
appropriately defined matrix equivalent strain. The implementation of the two-scale model is presented in
Section VI.A.

In the experiment, catastrophic failure mechanisms have been observed, including fiber tow breakage, tow
kinking, and transverse cracking, resulting in a loss of load carrying capability at the macroscale, followed
by a post-peak strain softening response in the stress versus stress curve. Since the positive definiteness of
the tangent stiffness matrix is lost, the aforementioned two-scale model will provide mesh dependent results
in a FEA framework if no characteristic length is introduced. Therefore, the SCA established in Section V.B
is suitable for modeling the tow failure behavior, as presented in Section VI.B.

x1

x2

x3

Figure 16. Fiber tow is represented as a unidirectional fiber-reinforced composite.

A. Pre-peak Nonlinear Response

1. Microstructure of Fiber Tow

The microstructure of a single fiber tow is shown in Figure 16, in which the fibers are assumed to be infinitely
long with a statistically isotropic plane that is transverse to the fiber direction. The effective response of
such a material is transversely isotropic, requiring five independent constants to form the composite stiffness
tensor. Although the choices of these elastic constants are not unique, the axial modulus, Et1, the axial
Poisson’s ratio, νt12, the axial shear modulus, Gt12, the plane-strain bulk modulus, Kt

23, and the transverse
shear modulus, Gt23, are used throughout the paper. Therefore, the stiffness tensor for a transversely isotropic
fiber tow can be written in terms of these elastic constants as,

Ct =



Et1 + 4νt
2

12K
t
23 2νt12K

t
23 2νt12K

t
23 0 0 0

2νt12K
t
23 Kt

23 +Gt23 Kt
23 −Gt23 0 0 0

2νt12K
t
23 Kt

23 −Gt23 Kt
23 +Gt23 0 0 0

0 0 0 Gt23 0 0

0 0 0 0 Gt12 0

0 0 0 0 0 Gt12


(21)

Other important constants, including the transverse modulus, Et2, and transverse Poisson’s ratio, νt23, can

16 of 30

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
13

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
4-

01
57

 



be computed as,

Et2 =
4Gt23K

t
23

Kt
23 + ψGt23

(22)

νt23 =
Kt

23 − ψGt23
Kt

23 + ψGt23
(23)

where,

ψ = 1 +
4Kt

23ν
t2

12

Et1

In the pre-peak nonlinear regime, the fiber is assumed to be linear elastic, transversely isotropic, with
“1” designating its longitudinal direction. Its stiffness tensor, Cf , can be written in terms of fiber properties
using Eq. (21) by replacing the superscript “t” with “f”. The matrix material is an isotropic elastic-damaging
solid, and its nonlinear response is modeled using a modified J2 deformation theory of plasticity through
a secant moduli approach, as discussed in Section V.A. As a result, the composite effective stress-strain
response is extended to the nonlinear regime by substituting secant moduli into Eq. (21).

2. Micromechanics Model

The key to the micromechanics model proposed by Zhang and Waas32 is to relate the fiber tow strains
(the strain applied on the fiber-matrix microstructure) to the local matrix strain fields through a 6 by 6
transformation matrix, F , as,

εm11
εm22
εm33
γm12
γm13
γm23


=



F11 F12 F13 F14 F15 F16

F21 F22 F23 F24 F25 F26

F31 F32 F33 F34 F35 F36

F41 F42 F43 F44 F45 F46

F51 F52 F53 F54 F55 F56

F61 F62 F63 F64 F65 F66





εt11
εt22
εt33
γt12
γt13
γt23


(24)

The Fij components can be computed by imposing a single non-zero composite strain on the fiber-matrix
microstructure and solving the resulting matrix strain fields. In particular, the axial properties, including
the axial tension (Et1 and νt12) and axial shear (Gt12), are computed through a two-phase concentric cylinder
model (CCM),33 which is subsequently used for the computation of Fi1, Fi4, and Fi5. The rest of the
components in the F matrix are determined via an extended three-phase generalized self-consistent model
(GSCM),34 which also gives the composite transverse properties, Kt

23 and Gt23. The computation of each
component in the F matrix as well the composite effective constants are provided in Appendix. It should
be noted that the proposed micromechanics model is based upon the homogenization techniques that are
originally used to compute the composite effective moduli, hence, both the fiber and matrix are assumed to
be linear elastic. When the matrix stiffness is reduced due to microdamage, the nonlinear response of the
matrix is modeled through a secant moduli approach, in which the matrix elastic properties are replaced
with the corresponding secant moduli.

3. Modeling Methodology for Nonlinear Fiber Tow

The modeling methodology for nonlinear fiber tow is based upon two scales. The mesoscale tow-level
analysis is conducted by utilizing effective homogenized properties to compute the local fields in each fiber
tow. Simultaneously, it is intended to carry out the micromechanical analysis, at the fiber and matrix level,
using the micromechanics model presented in Section VI.A.2, in which the constituent stress and strain
fields are provided in close form. The commercially available finite element software, ABAQUS (version
6.12), is used for the mesoscale FEA, and the micromechanics model at the subscale is implemented at each
integration point of the mesoscale model, using a user defined material subroutine, UMAT. This subroutine
is called at each integration point at each increment, and the material constitutive law is updated through
user-defined options.

At the start of each increment, the fiber tow states (stress, strain, and solution-dependent state vari-
ables) from the previous equilibrium step and the strain increments in the current step are passed into the
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UMAT through the ABAQUS solver. In the nth increment, the total strain, εnij , is calculated by adding the

current strain increment, dεnij , to the strain in the previous step, εn−1
ij , as εnij = εn−1

ij + dεnij . In the multi-
scale computational scheme, the strains at each integration point in the FEA, are applied to the subscale
micromechanics model. These integration point strains can be treated as the effective tow strains that are
applied on a discrete fiber-matrix microstructure. The constituent strain fields therefore can be computed
in close form by knowing the globally applied strains through the F matrix in Eq. (24).

It should be noted that the resulting matrix strain fields vary in space,32 hence the matrix equivalent
strain, computed using Eq. (2), has spatial variation as well. In the current fully analytical computational
scheme, it is hypothesized that the composite nonlinear behavior can be characterized using two scalar
variables that are related to the matrix equivalent strain. This idea is similar to the mean-field theories
in which the average value of the strain fields are utilized to determine the matrix nonlinear progression.
In the present study, the two scalar variables that govern the evolution of matrix microdamage are defined
based upon the maximum and average value of the square of the matrix equivalent strain at the fiber-matrix
interface, respectively, as,

Vmax = max

{
1

2

[
(ε̄m11 − ε̄m22)

2
+ (ε̄m22 − ε̄m33)

2
+ (ε̄m33 − ε̄m11)

2
]

+
3

4

(
γ̄m

2

12 + γ̄m
2

13 + γ̄m
2

23

)}
(25)

Vavg = avg

{
1

2

[
(ε̄m11 − ε̄m22)

2
+ (ε̄m22 − ε̄m33)

2
+ (ε̄m33 − ε̄m11)

2
]

+
3

4

(
γ̄m

2

12 + γ̄m
2

13 + γ̄m
2

23

)}
(26)

where ε̄mij is the matrix strain at the fiber-matrix interface. Physically, the average term is dominant in the
matrix strain field when the fiber volume fraction is low, while the maximum value dominates the result for
high fiber volume fraction. Therefore, a weight function of Vmax and Vavg can be written as,

Vweight = V nf Vmax + (1− V nf )Vavg (27)

where n is dependent on the fiber-to-matrix stiffness ratio such that the effect of constituent properties can
be accounted for. In this paper, it is assumed that,

n = 2

√√√√(Em
Ef2

+
Gm

Gf23

)
(28)

Consequently, two matrix equivalent strains can be computed; one is based upon the weight function in Eq.
27, while the other is based upon the average value in Eq. (26), as,

εeqm,1 =
1

1 + νs

√
Vweight and εeqm,2 =

1

1 + νs

√
Vavg (29)

In the present study, since the fiber is significantly stiffer than the matrix material, Vweight ≈ Vmax. Once
the matrix equivalent strain is resolved, the matrix stiffness tensor is degraded as a secant solid according
to the nonlinear damage model presented in Section V.A. It is further hypothesized that the matrix secant
moduli calculated using εeqm,1 are subsequently used to compute the tow effective secant moduli, Et1, νt12, Kt

23,
and Gt23 using Eq. (30), (31), (33), and (34), respectively; whereas the matrix secant moduli determined
from εeqm,2 is used to compute Gt12 using Eq. (32). Consequently, if matrix microdamage occurs, the stiffness
of the subscale microstructure is reduced based upon the proposed secant moduli approach. The subscale
stiffness tensors are subsequently used to update the fiber tow stiffness and stresses in the mesoscale FEA.
Therefore, the influence of matrix microdamage at the subscale manifests as the degradation of the tow
stiffness in the mesoscale model discussed in Section IV.

B. Post-peak Failure Response

In 3DTCs, fiber tows are surrounded by polymer matrix material, resulting in a complicated state of stress.
Due to the heterogeneity of the microstructure and the complexity of the local fields, fiber tows exhibit
multiple failure modes, including tow kinking in compression, tow breakage in tension, shear banding, and
transverse and shear cracking. In some instance, the fiber tow can be delaminated from the surrounding
matrix at high strain rates, as shown by Pankow et al.35 through a split Hopkinson pressure bar test. Shear
bands are observed when the textile composite is subjected to the through-the-thickness compression.20,35
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Cracks that grow along the transverse normal, axial shear, and transverse shear directions are considered as
the matrix failure mode, dominated by the strength and toughness of the polymer matrix material.

In the present study, fiber tow kinking and breakage are considered as the two major failure modes for
3D textile composites subjected to flexural loading, which is evident from the experimental investigation
discussed in Section III. Since it is difficult to experimentally measure the compressive strength of a fiber
tow, a micromechanical analysis based upon the two-scale model proposed in Section VI.A is carried out to
determine the compressive strength of a fiber tow, as presented in Section VI.B.1. The obtained compressive
strength is used as the failure initiation criterion for a fiber tow subjected to compression. The progressive
failure is modeled within a FEA framework as demonstrated in Section VI.B.2.

1. Compressive Failure: A Micromechanical Study on Kink Banding

The compressive strength of a unidirectional fiber-reinforced composite is significantly lower than the tensile
strength due to the unique failure mechanism of kink banding. Since the load carrying capability has been
limited by the compressive strength, kinking has been determined as a strength controlling mechanism
of failure for this type of materials. This critical failure mode has been extensive studied by a number
of researchers, such as Budiansky and Fleck,13 Kyriakides et al.,14 Schultheisz and Waas,36 Waas and
Schultheisz,37 Lee and Waas,15 Basu and Waas,38 Feld et al.,16,39 and Prabhakar and Waas.17,18 The
main physical event associated wit the kink band formation is the rotation of the fibers in a band within a
degrading matrix. The rotation of fibers gives a rise to localized shear strains that drive the shear degradation
of the matrix material between the fibers. The shear degradation in turn increases the rotation of the fibers,
creating a positive feedback loot that culminates in a limit-load type instability. It is important to note
that the formation of kink banding is an evolutionary event that is driven by the external loading with the
evolutionary parameters being the band rotation and the fiber rotation within the bands.

Since kink banding occurs at the fiber level, it is motivated to model the evolution of kinking through
a full micromechanics FEA model, as presented by Kyriakides et al.,14 Vogler et al.,40 Hsu et al.,41 and
Yerramalli and Waas.42 These FEA models containing individual fibers and surrounding matrix provide
deep understanding on the kink band formation and the subsequent evolution process. On the other hand,
a more computationally efficient model on the lamina level (or tow-level) has been developed to predict the
kinking strength. In these models, the influence of matrix nonlinearity at the microscale manifests as the
nonlinear stress versus strain relation of the lamina at the mesoscale. The lamina nonlinear response can be
obtained either from simple tension and shear tests23 or from a micromechanics based computational model.
The nonlinear progression can be dictated through a nonlinear constitutive law, such as Schapery theory43

or Hill’s anisotropic plasticity theory.44 The direct implementation of the lamina level nonlinear constitutive
relations within a FEA framework to predict the kind band formation has been presented by Basu et al.,38

Song et al.,45 and Zhang et al.10

In this paper, the two-scale model established in Section VI.A is used to predict the kinking strength of
a fiber tow. The details of the procedure are provided in Refs.38,45,10 The predicted kinking strength for
the three different fiber misalignment angles are summarized in Table 4. The kinking strength of 592 MPa,
which results from an initial fiber misalignment of 1.5◦, is used as the fiber tow compressive strength in the
subsequent failure analysis.

Table 4. Computed tow kinking strength using various initial fiber misalignment angles.

Misalignment Angle 1◦ 1.5◦ 2◦

Kinking Strength (MPa) 741 592 497

2. Implementation of the SCA to Model the Failure Response of a Single Fiber Tow

Failure analysis of a single fiber tow requires micromechanical consideration to couple the influence of mi-
crostructure on the macroscale response. Therefore, performing failure analysis on the fiber and matrix level
is motivated. The transverse compression and shear of a unidirectional fiber-reinforced composite have been
studied by Totry et al.46,47,48 through a micromechanics FEA model. Recently, Pineda et al.49 studied
the progressive failure behavior of a unidirectional lamina subjected to transverse tension and compression
by implementing the crack band theory within the high-fidelity generalized method of cells model. These
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computational micromehanics models provide better understanding on the failure progression of a compos-
ite material, however, they are computationally expansive, and are not suitable to be implemented within
a fiber tow of a 3D textile composite. Alternatively, phenomenological failure criteria can be utilized to
predict the macroscopic failure response of a unidirectional composite or a single fiber tow by assuming the
existence of certain types of failure modes. This work was pioneered by Hashin,50 and was later improved and
implemented within a FEA framework by a number of researchers51,52,31,53 to demonstrate the predictive
capability of this methodology. The use of phenomenological failure criteria offers distinct computational
efficiency compared with the micromechanics model, while in the latter, the physics of the failure mechanism
is preserved.

The SCA formulated in Section V.B is utilized to model the failure progression of a single fiber tow. Two
major failure modes, compressive kinking and tensile breakage, are considered as the two major failure modes
in this paper. It further assumes that when the critical stress (either tension or compression) is reached,
the crack plane aligns perpendicular to the fiber direction. Therefore, the crack orientation transformation
matrix, T , is determined by the material orientation rather than the state of stress. Since a fiber tow can
fail either in tension or compression, a specific traction-separation law is designed as illustrated in Figure
17. It is worth noting that when the failure progresses in compression, the stress at the crack interface does
not drop completely. In the experiment, the formation of kink band limits the peak load, while additional
kink bands are developed with continued deformation, resulting in a “load plateau”. It indicates that even
though fibers are broken within the kink band, load are still transferred through the band, allowing for stress
redistribution. In this study, it is assumed that the crack interface can carry 50% of the kinking strength.
Study on the post-kinking response is motivated to determine the amount of the load that can be transferred
after kink band formation.54 The failure characteristics used in the FEA model are given in Table 5. The
tensile strength is taken from Ref.55

Table 5. Failure characteristics of fiber tow.

σcr (MPa) GIC (N/mm)

Tension 1900 200

Compression 572 10

ICG

ICG

nn

cr

nnh

cr 

cr 

Figure 17. Traction-separation law for fiber tow.
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VII. Results and Discussion

The orthotropic material properties for the homogenous model in the far field are calculated using the
analytical model developed by Quek et al.,4 and the material constants are summarized in Table 6. The
subscripts “x”, “y”, and “z” designate the axes illustrated in Figure 1. The elastic and fracture properties
for the fiber and matrix are provided in Table 1, 3, and 5. The length of the mesoscale model is 40 mm so
that the damage and failure modes can be fully developed within in the RUCs. The analysis is carried out
using dynamic implicit method in ABAQUS standard solver.

Table 6. Homogeneous properties of the macroscale model. x, y, and z designate the axes shown in Figure 1.

Ex Ey Ez Gxz Gxy Gzy νxz νxy νzy

GPa GPa GPa GPa GPa GPa - - -

19.0 5.34 16.7 2.32 2.63 3.20 0.06 0.35 0.46

The computed load-displacement curve for the specimen loaded along the warp direction is compared
against the experimental results, as shown in Figure 18. The proposed model offers good prediction on
the elastic flexural stiffness, kink band initiation and progression. However, the computed result shows an
increase in load for the deformation between 9.4 mm and 12.3 mm (between point (4) and (5) in Figure 18),
while in the experiment the load is still in the plateau regime. The fiber tow progressive failure response is
shown in Figure 20, where the color contours illustrate the absolute values of tow crack strains. Since the
fiber tow is modeled using the SCA, the crack strains indicate kink band formation on the compression side
and tow breakage on the tension side. As shown in Figure 20, the predicted “load plateau” between point (2)
and (4) dictates the progression of kink banding on the compression side. Even though kink bands continue
to progress between point (4) and (5), the resulting load increases with increased deformation. One possible
reason is the ignorance of nonlinearity in the macroscale model. Although no visible damage and failure
modes were reported in these areas according to the experiment, the homogenized parts can experience
nonlinear response due to large deformation. Another possible reason for this artificial load increase is that
the shear failure in fiber tow is ignored when the fiber tow is subject to tension. The coupling effect between
the shear and tension failure of a fiber tow is currently under investigation. A significant load drop occurs
at point (6), where the bottom fiber tow breakage is observed, as shown in Figure 20(f). The ABAQUS
standard solver encounters convergence difficulty after point (6). The evolution of matrix cracking is shown
in Figure 19.
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Experiment1

Experiment2

FEA

(1)

(2)

(3) (4)

(6)

(5)

Figure 18. Comparison of the load-displacement curves obtained from the experiment and the computational
model. The specimen is loaded along the warp direction.
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The difficulty in the analysis of 3DTCs lies in the fact that it is hard to individually characterize the
constitutive response of each constituent (fiber tows and surrounding polymer matrix) within in the com-
posite, while the macroscale structure fails progressively, coupled with multiple damage and failure modes.
Therefore, the proposed model is useful in understanding the influence of the constituent properties on the
macroscale response of the 3DTCs. Work is continuing to investigate the effect of failure characteristics,
including the tensile and compressive strength of the fiber tow, and the associated fracture toughness, on
the predicted flexural response of the 3DTCs.

VIII. Conclusions

The flexural response of a 3D layer-to-layer orthogonal interlocked textile composite has been examined
experimentally and modeled using a multiscale FEA based mechanics model. Fiber tow kinking on the
compressive side of the flexed beams has been found to be a strength limiting mechanism for both warp and
weft specimens. Surface strain patterns, using digital image correlation show that tensile matrix cracking is
initiated prior to the peak load in the warp direction loaded specimens.

A multiscale computational model, in which the detailed textile architecture is modeled at the mesoscale,
has been developed to capture the observed damage and failure characteristics. The pre-peak nonlinear
response of the fiber tow is modeled using a novel, two-scale model, in which the subscale micromechanical
analysis on the fiber and matrix is carried out in close form. The influence of the matrix microdamage at the
microscale manifests as the progressive degradation of the fiber tow stiffness at the mesoscale. The post-peak
strain softening responses of the fiber tows and the surrounding polymer matrix are modeled through the
SCA. The load-deflection response, along with the observed damage events, including matrix cracking, tow
kinking, and tow tensile breakage, are successfully captured through the proposed model. Since all the inputs
are from the constituent level, the model is useful in understanding how the 3DTC response is influenced
by the geometry and textile architecture, the constitutive response of the constituents, and details of any
unintended geometrical deviations of the textile architecture.
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+8.33e−01
+9.17e−01
+1.00e+00

(a) At point (1)

(Avg: 75%)
SDV10

+0.00e+00
+8.33e−02
+1.67e−01
+2.50e−01
+3.33e−01
+4.17e−01
+5.00e−01
+5.83e−01
+6.67e−01
+7.50e−01
+8.33e−01
+9.17e−01
+1.00e+00

(b) At point (2)
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+0.00e+00
+8.33e−02
+1.67e−01
+2.50e−01
+3.33e−01
+4.17e−01
+5.00e−01
+5.83e−01
+6.67e−01
+7.50e−01
+8.33e−01
+9.17e−01
+1.00e+00

(c) At point (3)

(Avg: 75%)
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+0.00e+00
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+2.50e−01
+3.33e−01
+4.17e−01
+5.00e−01
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+6.67e−01
+7.50e−01
+8.33e−01
+9.17e−01
+1.00e+00

(d) At point (4)

(Avg: 75%)
SDV10

+0.00e+00
+8.33e−02
+1.67e−01
+2.50e−01
+3.33e−01
+4.17e−01
+5.00e−01
+5.83e−01
+6.67e−01
+7.50e−01
+8.33e−01
+9.17e−01
+1.00e+00

(e) At point (5)

(Avg: 75%)
SDV10

+0.00e+00
+8.33e−02
+1.67e−01
+2.50e−01
+3.33e−01
+4.17e−01
+5.00e−01
+5.83e−01
+6.67e−01
+7.50e−01
+8.33e−01
+9.17e−01
+1.00e+00

(f) At point (6)

Figure 19. Evolution of matrix cracking during the deformation. The cracked elements are shown in red.
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(a) At point (1)
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(c) At point (3)
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(d) At point (4)
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(e) At point (5)
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+5.75e−01

(f) At point (6)

Figure 20. Evolution of fiber tow crack strains during the deformation. The crack strains are shown in absolute
values.

24 of 30

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
13

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
4-

01
57

 



Appendix

The five effective fiber tow constants defined in Section VI are computed based upon the fiber and matrix
properties as,

Et1 = Ef1 Vf + Em(1− Vf ) +
4Vf (1− Vf )(νf12 − νm)2Gm

Gm(1−Vf )
Kf

23

+
GmVf
Km

23
+ 1

(30)

νt12 = νf12Vf + νm(1− Vf ) +
Vf (1− Vf )(νf12 − νm)

(
Gm

Km
23
− Gm

Kf
23

)
Gm(1−Vf )

Kf
23

+
GmVf
Km

23
+ 1

(31)

Gt12 = Gm
Gf12(1 + Vf ) +Gm(1− Vf )

Gf12(1− Vf ) +Gm(1 + Vf )
(32)

Kt
23 = Km

23 +
Vf

1

Kf
23−Km

23

+
1−Vf

Km
23+G

m

(33)

Gt23 is computed through a quadratic equation as,

A

(
Gc23
Gm

)2

+B

(
Gt23
Gm

)
+ C = 0 (34)

where,

A = a0 + a1Vf + a2V
2
f + a3V

3
f + a4V

4
f

B = b0 + b1Vf + b2V
2
f + b3V

3
f + b4V

4
f

C = c0 + c1Vf + c2V
2
f + c3V

3
f + c4V

4
f

with,

a0 = −2 (Gm +Km
23)
[
2Gf23G

m +Kf
23(Gf23 +Gm)

] [
2Gf23G

m +Km
23(Gf23 +Gm)

]
a1 = 8

(
Gf23 −Gm

) [
2Gf23G

m +Kf
23(Gf23 +Gm)

] (
Gm

2

+GmKm
23 +Km2

23

)
a2 = −12Km2

23

(
Gf23 −Gm

) [
2Gf23G

m +Kf
23(Gf23 +Gm)

]
a3 = 8

{
Gf

2

23G
m2

Kf
23 +Gf

2

23G
mKm

23(Kf
23 −Gm) +Km2

23 [Gf23G
m(Gf23 − 2Gm)+

Kf
23(Gf23 −Gm)(Gf23 +Gm)]

}
a4 = 2

(
Gf23 −Gm

)
(2Gm +Km

23)
[
Kf

23G
mKm

23 −G
f
23

(
2Gm(Kf

23 −Km
23) +Kf

23K
m
23

)]

b0 = 4Gm
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2Gf23G

m +Kf
23(Gf23 +Gm)
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2Gf23G

m +Km
23(Gf23 +Gm)

]
b1 = 8Km

23

(
Gf23 −Gm
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2Gf23G

m + (Gf23 +Gm)Kf
23
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23)
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(
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2Gf23G
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23 +Gf

2
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Kf
23(Gf23 −Gm)(Gf23 +Gm)]

}
b4 = −4Gm

(
Gf23 −Gm

) [
Kf

23G
mKm

23 −G
f
23

(
2Gm(Kf

23 −Km
23) +Kf

23K
m
23

)]

25 of 30

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
13

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
4-

01
57

 



c0 = 2Km
23

[
2Gf23G

m +Kf
23(Gf23 +Gm)

] [
2Gf23G

m +Km
23(Gf23 +Gm)

]
c1 = 8Km2

23

(
Gf23 −Gm

) [
2Gf23G

m +Kf
23(Gf23 +Gm)

]
c2 = −12Km2

23

(
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23G
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2

23G
mKm

23(Kf
23 −Gm) +Km2

23 [Gf23G
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Kf
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) [
Kf

23G
mKm

23 −G
f
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(
2Gm(Kf

23 −Km
23) +Kf

23K
m
23

)]
The non-zero Fij components in Eq. (24) are computed using the CCM in conjunction with the GSCM,

in which the unidirectional composite is represented by an inner fiber core and an outer matrix annulus.
The derivation for the F matrix is provided in Ref.,32 and the results are summarized in Eq. (35)-(39) as,

F11 =1

F21 =
Vf

(
νf12
Km

23
− νm

Kf
23

)
Vf

Kf
23

+ 1−2νm

Kf
23

+
1−Vf
Km

23

[
1 +

(
b

r

)2

cos 2θ

]
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23
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23
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Kf
23

+
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(
b

r

)2

cos 2θ

]

F61 =2
Vf
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+
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(35)
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+
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[
Gt23

(
3C2

b4

r4
+ 2D2

b2

r2

)]
cos 4θ
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(36)
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sin 2θ

(38)

F26 =
Gt23

4Gmσ̄

[(
3C2

b4

r4
+ 2D2

b2

r2

)
sin 4θ + 2

Gm

Km
23

(
3B2

r2

b2
−D2

b2

r2

)
sin 2θ

]
F36 =

Gt23
4Gmσ̄

[
−
(

3C2
b4

r4
+ 2D2

b2

r2

)
sin 4θ + 2

Gm

Km
23

(
3B2

r2

b2
−D2

b2

r2

)
sin 2θ

]
F66 =

Gt23
2Gmσ̄

[
−
(

2A2 + 6B2
r2

b2

)
+
(

3C2
b4

r4
+ 2D2

b2

r2

)
cos 4θ

] (39)

where b is the matrix outer radius. The unknown constants, N1, M2, N2, and M3, are computed by solving
Eq. (40). 

1 − 1
2 ( 1
Vf

) −1 0

2
Gf23
Kf

23

Gf23
Gm

1
Vf

−2
Gf23
Km

23
0

0 1
2 1 − 1

2

0 −G23

Gm 2G23

Km
23

1



N1

M2

N2

M3

 =
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0

0

σ̄

2G23

K23
σ̄

 (40)

The remaining unknown constants, A1, B1, A2, B2, C2, D2, C3, and D3 are determined from Eq. (41).

[B] {d} = {f} (41)

where,

B =


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d =
[
A1 B1 A2 B2 C2 D2 D2 C3 D3

]T
f =

[
0 0 0 0 σ̄ −σ̄ 2σ̄ −2σ̄

]T
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47Totry, E., González, C., and LLorca, J., “Prediction of the failure locus of C/PEEK composites under transverse com-
pression and longitudinal shear through computational micromechanics,” Composites Science and Technology, Vol. 68, No.
15-16, Dec. 2008, pp. 3128–3136.
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