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ABSTRACT 
Organizations now face a new challenge of encouraging their 
employees to work alongside robots. In this paper, we address 
this problem by investigating the impacts of human–robot 
similarity, trust in a robot, and the risk of physical danger on 
individuals’ willingness to work with a robot and their 
willingness to work with a robot over a human co-worker. We 
report the results from an online experimental study involving 
200 participants. Results showed that human–robot similarity 
promoted trust in a robot, which led to willingness to work with 
robots and ultimately willingness to work with a robot over a 
human co-worker. However, the risk of danger moderated not 
only the positive link between the surface-level similarity and 
trust in a robot, but also the link between intention to work with 
the robot and willingness to work with a robot over a human co-
worker. We discuss several implications for the theory of 
human–robot interaction and design of robots. 

CCS CONCEPTS 
• Human-centered computing → Human-computer interaction 
(HCI) 

KEYWORDS 
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1 INTRODUCTION 
Robots are increasingly being adopted to both replace and work 
alongside humans [72]. Robots are being employed across 
assembly lines, order fulfillment centers, and product inspections 
service centers [32]. For instance, Amazon is adding 15,000 

robots yearly to work alongside employees across its 20 
fulfillment centers [46, 56]. In fact, robots are expected to replace 
as much as half the workforce in 10‒20 years [1, 48, 66].  

Organizations like Amazon are now facing a new challenge 
of integrating humans and robots into one cohesive workforce. 
The challenge is made harder, in part, by the fear many workers 
have about their future employment [60]. There is a growing 
concern that robots are taking jobs away from humans [43, 60]. 
This fear has spread from blue-collar workers performing 
physical labor to white-collar workers performing more mentally 
intensive labor [36, 59]. This fear has engendered negative 
attitudes toward working with robots [43]. Many organizations 
are now seeking ways to help their employees overcome their 
negative attitudes toward working with robots [39]. Considering 
the importance of the topic, more theoretical and empirical work 
is needed [71]. 

Similarity between humans and robots is an important 
facilitator of positive attitudes toward robots [35, 68]. The more 
an individual believes that a robot is similar to them, the more 
they like and prefer to interact with them [5, 54, 61, 70]. For 
instance, research has found that individuals tend to like more 
and build stronger emotional attachment toward robots that 
appear to have a similar personality to theirs [35, 68]. Therefore, 
the literature on human–robot similarity provides an excellent 
foundation to identifying the work conditions that may 
encourage humans to work with robots. 

Although the research on human–robot similarity can be 
used to understand when people are likely to be willing to work 
with robots, several important areas still need to be explored. 
First, the prior research on human–robot similarity has paid little 
attention to whether or how the type of similarity may matter. 
For example, do we expect all types of similarity to have the 
same effect on one’s willingness to work with robots? Second, 
we know very little about when such similarities are less 
important. More specifically, robots are often employed to 
perform very dangerous and in some cases undesirable tasks [2, 
21, 60]. These tasks often have the potential to be physically 
harmful to humans. It is reasonable to assume that the degree of 
risk to physical danger might influence the importance of 
human–robot similarity. Yet, research exploring the impact of 
human–robot similarity has not incorporated the impacts of such 
risks.  
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To address these shortcomings, we propose a research model 
(see Figure 1 on page 3). This research model identifies trust in a 
robot as a key mediating variable between human–robot 
similarity and one’s willingness to work with a robot. It also 
differentiates between the surface-level human–robot similarity 
and the deep-level human–robot similarity. Surface-level 
similarity refers to similarity based on demographic 
characteristics that are typically more visible [24]. These 
represent social categories such as a robot’s gender. Deep-level 
similarity represents similarity that is often less visible [24]. 
These include similarity in values, attitudes, beliefs and/or 
knowledge such as one’s personality. The impact of the risk of 
physical danger is incorporated into the model as a boundary 
condition regarding both the impact of human–robot similarity 
on trust in a robot and the impact of one’s willingness to work 
with a robot on one’s willingness to work with a robot over a 
human co-worker.  

To empirically examine this research model, we conducted an 
experimental study with 200 participants on Amazon Mechanical 
Turk. Participants were randomly assigned to one of the eight 
conditions using a 2 (surface-level similarity: same gender vs. 
different gender) x 2 (deep-level similarity: same work style vs. 
different work style) x 2 (risk of physical danger: high vs. low) 
between-subjects design. Participants were presented with a 
scenario where they were asked to imagine performing a 
collaborative task with an intelligent robot. Then they were 
asked a series of questions regarding their attitudes toward 
working with the robot under a specific set of conditions.   

We had several interesting findings. First, the surface-level 
human–robot similarity in gender enhanced trust in a robotic co-
worker only when the risk of physical danger was low. 
However, the deep-level similarity in workstyle enhanced trust 
in the robotic co-worker regardless of the level of risk. Trust in 
the robot increased the participant’s willingness to work with 
the robot. Willingness to work with the robot led to subsequent 
willingness to work with a robot over a human co-worker. 
However, this was somewhat moderated by the risk of physical 
danger. Participants were more willing to replace their human 
co-worker when the risks were high. 

Based on the findings, this study contributes to human–robot 
interaction (HRI) research in the following ways. First, we 
highlight the importance of the type of similarity relative to the 
level of risk of physical danger. Second, we demonstrate that 
trust in the robot is vital to understanding the relationship 
between human–robot similarity and one’s willingness to work 
with the robot. Third, we highlight the impact of the risk of 
physical danger as a moderator in understanding when 
similarity is likely to promote trust in the robot. Finally, we 
introduced the outcome variable willingness to work with a 
robot over a human co-worker. This dependent variable better 
reflects the desired outcome needed to help organizations 
overcome the challenge of integrating humans and robots into 
one cohesive workforce. Overall, this study has potential to 
inform the practice of human–robot collaboration and design of 
its robots. 

2 BACKGROUND 

2.1 Similarity in HRI 

Similarity between co-workers has been a strong predictor of 
interpersonal work relationships [57]. In general, individuals 
prefer to interact and trust others they believe are similar to 
them [57, 63]. Similarity is often grouped into two categories: 
surface-level and deep-level [24, 47]. Surface-level similarity 
refers to similarities in visible physical characteristics such as 
gender, age, and race [24]. On the other hand, deep-level 
similarity is related to less visible characteristics such as 
knowledge, skills, values, and attitudes [24]. Surface-level and 
deep-level similarity have both been shown to promote positive 
perceptions between individuals and better work outcomes [12, 
37].  

Similarity has also shown to be central to understanding 
interaction with robots [13, 14]. This research can also be 
categorized into surface-level and deep-level similarity. Surface-
level similarity has led to positive attitudes toward robots [33]. 
Eyssel and Kuchenbrandt [14] found that people rated robots 
manufactured in their own country more positively and more 
humanlike. Another study, by Eyssel and Loughnan [16], showed 
that similarity could be invoked by a robot’s projected gender 
and ethnicity.  

HRI scholars have also examined what can be classified as 
deep-level similarity [41]. Research shows that people can form 
beliefs about a robot’s personality or attitude based on simple 
conversational cues and behaviors [35, 68]. Bernier and 
Scassellati [5] demonstrated that robots that appear to have the 
same preference as their operators were rated as friendlier. 
Similarity with regard to personality is an important topic in 
HRI. Many studies have shown that when people believe that 
their robots are similar to them in personality, they are more 
motivated to interact with their robot, more engaged with the 
interaction with their robot, and do so for longer periods of time 
[3, 35, 61, 67]. 

2.2 Trust in HRI 

Trust in robots has been an important topic in HRI [10, 19, 22]. 
The prior literature can be divided into factors that are related to 
the human and those related to the robots (see [22] for a review). 
Human-related factors include disposition to trust, negative 
attitudes toward robots, and individuals’ personality [22, 29, 42, 
44]. For instance, people with high levels of disposition to trust 
tend to trust robots more, whereas people with general negative 
attitudes toward robots tend to trust robots less [22, 44]. 
Kuchenbrandt and colleagues [34] found gender differences. 
Specifically, females tended to trust robots more than males. 
Haring et al. [23] found that people who were extroverts trusted 
robots more than introverts.  

Robot-related factors that promote trust have also been found 
to be important. Particularly, a robot’s performance influences 
whether humans trust it [10, 22, 54]. Trust was found to be a 
function of a robot’s performance and its fluency in motions [6]. 
For instance, Desai  et al. [11] reported that drops in reliability of 
robot autonomy decreased trust in a robot. It has also been found 
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that robots that are functionality sophisticated are more trusted 
than robots with social abilities [19]. 

The literature on human–robot similarity and trust has 
provided new insights, but several areas call for further 
attention. First, little attention has been directed at examining 
whether similarity and trust can be leveraged to encourage 
someone to work with a robot, or at understanding when they 
might prefer to work with a robot over a human co-worker. Yet, 
both may be fundamental to identifying the conditions that 
encourage human–robot work collaboration. Second, no study 
has examined both surface-level and the deep-level similarities at 
the same time. Yet, one might be more or less important in the 
presence of the other [47]. Therefore, examining only one aspect 
of similarity can limit our understanding of how human–robot 
similarity influences our perceptions of robots. Third, we know 
little about the boundary conditions of the impacts of human–
robot similarity. Previous HRI findings suggest that future 
research begin to examine moderators [34, 40, 62]. Robots are 
deployed to work with humans on tasks that often involve 
physical danger [9]. From a human worker’s perspective, risks 
related to  physical danger are often viewed as a more important 
motivator for working with robots than other types of risk (e.g., 
financial cost) [2]. This would suggest the need to investigate the 
risk of physical danger as a potential moderator in human–robot 
collaboration. This area should become more important because 
robots are expected to be involved in 30‒45% of all work in the 
United States by 2025 [58]. Nonetheless, it is unclear whether 
individuals’ positive attitudes toward working with robots lead 
to the preference for a robotic co-worker over a human. 

3 RESEARCH MODEL AND HYPOTHESES 
We put forth a research model in which the surface-level and the 
deep-level similarity increase trust in the robot, intention to 
work with the robot, and intention to work with a robot over a 
human co-worker. These relationships are moderated by the risk 
of physical danger. A summary of these arguments is presented 
in Figure 1. 

 

 

Figure 1: Research Model 

The first hypothesis proposes that higher levels of similarity 
between a human and a robot will foster trust in the robot. Trust 
in robots has been viewed to include both interpersonal and 
technological trust due to robots’ physical embodiment, which 
manifests human attributes [21, 22]. Thus, this study employs a 
conceptualization of trust in a robot that involves both 
interpersonal and technological aspects of trust: an individual’s 
willingness to be vulnerable to and dependent on the robot. 

The idea that similarity can increase trust in a robot is based 
on the similarity and attraction theory (SAT) [7, 35, 57]. SAT 
asserts that individuals are more attracted to those whom they 
believe are similar to them [7, 57]. They often base their 
judgment of similarity on gender and personality [50, 57]. 
Individuals who are believed to be similar are often considered to 
be more trustworthy, while those that are not similar are 
considered less trustworthy [50, 55]. 

Similarity can be based on both surface-level and deep-level 
characteristics. For surface-level similarity among humans, 
gender is one of the most salient surface-level cues [53]. Gender 
has been found to be an important cue for similarity between 
humans and robots. For instance, Eyssel et al. [15] reported that 
gender similarity between a robot and an individual led to more 
positive feelings and psychological closeness. Deep-level 
similarity between humans and robots has also been shown to 
have positive impacts [5]. Andrist et al. [3] found that matching 
a user’s and a robot’s personality led to more positive evaluation 
of the robot. Similarity in personality has also been shown to 
promote trust in robots [5, 67]. Therefore, the surface-level and 
the deep-level similarity should promote trust in a robot co-
worker. 

H1) (a) Surface-level similarity and (b) deep-level similarity are 
positively related to trust in the robot. 

The risk of physical danger should moderate the positive 
effects of similarity on trust in the robot. The risk of physical 
danger is a situational moderator, which is related to the nature 
of work performed by a human and a robot [52, 60]. When the 
risk of physical danger is low, individuals are likely to build trust 
based on perceptions of similarity. In these situations, 
individuals have less need to assess anything other than the 
salient similarity cues, so the similarity should have a strong 
impact on individuals’ trust in their robot co-worker. This might 
explain why robotic pets and rehabilitation robots, used in low-
risk situations, are preferred when they demonstrate similarities 
in things like appearance rather sophisticated technical features 
and computational power [18, 35, 68]. 

On the other hand, when the risk is high, the positive link 
between similarity and trust in the robot weakens. When the risk 
of physical danger is high, individuals rely less on the similarity 
to determine trust in the robot. Individuals rely on the robot’s 
capabilities rather than just how similar it is when assessing 
their level of trust in the robot. For instance, aspects other than 
similarities, such as the robot’s technical specifications and 
intelligence, also come into play in determining trust in the 
robot. This means that individuals rely less on similarity to 
determine trust in their robotic co-worker. In this respect, 
Groom and Nass [21] argued that trust in a robotic teammate 
should not simply be a function of liking of the robot and that 
various factors should be considered to ensure safety and trust in 
high-stakes situations like space missions and military 
operations. As such, we hypothesize that: 

Surface-
level	

Similarity

Deep-level	
Similarity

Trust	in	
Robot

Intention	to	
Work	with	
Robot

Willingness	
to	Work	with	
a	Robot	over	
a	Human	

Risk	of	
Danger

H1a	(+)

H1b	(+)

H2a	(-)

H2b	(-)

H3	(+)

H4	(+)

H5	(+)

H6	(+)

Need for 
Cognition Gender

Note:	Need	for	Cognition	and	Gender	are	control	variables	in	the	model.
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H2) The risk of physical danger moderates the effects of (a) 
surface-level similarity and (b) deep-level similarity on trust in 
a robot, such that increases in risk weaken the relationship 
between both types of similarity and trust.  

The heightened trust in the robot leads to greater intention to 
work with the robot as a team. This is in part because trust in 
the robot creates positive attitudes toward the robot [19, 62]. 
Positive attitudes toward the robot include reduced fear of 
failure of the robot’s functionality and reduced concern that 
working with the robot will require consistent and effortful 
monitoring [19, 42, 65]. Moreover, trust in the robot reduces 
uncertainty about the robot’s behavior and helps enhance a 
feeling of control over interactions with the robot [19]. The 
sense of control is also an element of positive attitudes that 
result in greater behavioral intention [51]. In sum, trust in a 
robot promotes positive attitudes and a sense of control by 
reducing uncertainty and generating expectations of positive 
experiences, which result in intention to work with the robot. 

H3) Trust in the robot is positively related to intention to work 
cooperatively with the robot. 

However, the positive link between trust in a robot and 
intention to work with the robot may not be uniform in all 
circumstances. The risk of physical danger regulates the impact 
of trust in the robot on one’s intention to work with the robot. 
Specifically, when the risk of danger is present, trust in a robot 
demonstrates a stronger impact on intention to work with the 
robot. As stated, the risk of danger alters an individual’s 
cognitive process and dictates what cognitive resources 
influence intention to work with a robot [21, 38]. When there is 
a higher risk of danger, individuals perceive greater uncertainty 
in the task and seek ways to regain the perception of control [20, 
45]. In this case, the role of trust in a robot becomes more salient 
as a cognitive basis for reducing uncertainty and maintaining 
control. Therefore, the effect of trust in a robot on intention to 
work with the robot is stronger in high-risk situations. 

H4) The risk of physical danger moderates the relationship 
between trust in a robot and intention to work with the robot, 
such that the effect is stronger when risk is higher. 

Using the research model, we examined whether the 
intention to work with the robot promotes the willingness to 
work with a robot over a human co-worker. It seems natural to 
speculate that the greater the intention to work with the robot is, 
the more likely it is that an individual will reveal a stronger 
preference for robots. A strong preference for robots is an 
indicator that an individual might choose a robot over a human 
teammate. 

H5) Intention to work with a robot is positively related to 
willingness to work with a robot over a human. 

Risk of physical danger should moderate the impact of 
intention to work with a robot on willingness to work with a 
robot over a human co-worker. The risk of danger triggers the 
deliberate and conscious cognitive process when judging 
whether to work with a robot or with a human teammate [38, 
50]. In this case, individuals might conclude that it is better to 
deploy robots to a risky and dangerous situation than to risk 

precious human lives. Based on this judgment, individuals will 
perceive that working with the robot is more beneficial than 
risking human safety. On the other hand, when the risk is low, 
the positive impact of intention to work with the robot on the 
willingness to work with a robot over a human co-worker might 
be weaker, or not present. Low-risk situations are less likely to 
trigger and will not make individuals engage in a careful 
reasoning when choosing between working with a human and 
working with a robot [38, 50]. When the risk is low, there might 
be no potential benefit of working with a robot because no 
teammates have to risk their lives. 

H6) The risk of danger moderates the relationship between 
intention to work with a robot and willingness to work with a 
robot over a human co-worker, such that the relationship is 
stronger when the risk is high than when the risk is low. 

4 METHOD 
We conducted a 2 (surface-level similarity: the same gender vs. 
different gender) x 2 (deep-level similarity: same work style vs. 
different work style) x 2 (risk of danger: high vs. low) between-
subjects online experiment. In the experiment, participants were 
randomly assigned to one of the eight conditions and viewed a 
video about a robot and a hypothetical scenario, in which 
collaboration between a human and a robot would be essential. 

4.1 Participants 

We recruited a total of 200 participants (77 male; mean age = 
36.5 years, standard deviation [SD] = 10.77 years; min. age = 18 
years, max. age = 68 years) through Amazon Mechanical Turk 
(MTurk). Individual participants completed a short self-report 
questionnaire individually and were paid at the completion of an 
experimental session. The sample consisted of people of diverse 
education levels, ages, genders, and ethnicities. The sample 
included MTurk workers in the United States with good 
performance histories (having 95% or more of their previous 
online tasks marked as high quality by requesters). The sample 
turns out to have been ethnically diverse: 64% White, 10% Asian, 
8% Black and African American, 6% Hispanic and Latino, with 
the rest including Native American or Alaskan Native and 
Native Hawaiian. 

4.2 Scenario and Robot 

This study employed a hypothetical scenario where participants 
would be working with a robot collaboratively in a warehouse. A 
PR2 robot was used for the videos (Figure 2). The robot was 
chosen based on several criteria. First, the robot was gender-
neutral in its appearance. This is because the robot’s gender was 
going to be manipulated only through its voice and name, ruling 
out any visual aspects of robots that might influence individuals’ 
gender perception. Second, the form of the robot should imply 
some degree of motor abilities such as navigating and moving 
objects from one place to another location. The hypothetical 
scenario in the online experiment involved physical tasks, so it 
was important to use robots that could complete such tasks to 
provide believable portrayals of a robot and an individual 
working together. The identical robot was used for all 
participants across the different experimental conditions. 
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4.3 Experimental Manipulations 

Surface-level similarity had two conditions: same gender vs. 
different gender between an individual and the robot. Robot 
gender was manipulated using video clips that contained a 
synthesized computer voice and a name suggesting a typical 
gender attribution. Specifically, the female robot had a female 
voice and had the model name “RX-01 Jessica,” whereas the male 
robot had a male voice and was named “RX-01 David.” The 
videos were not skippable and were 40 seconds long. 

 

Figure 2: Screenshots from videos for the surface-level 
similarity manipulation. 

Deep-level similarity had two levels: the same work style vs. 
a different work style. Individual participants were given a series 
of nine questions regarding work-style preferences generated 
based on work-style dimensions in Zellmer-Bruhn et al. [73]. In 
the same work-style condition, a robot chose the same answer as 
the participant after the participant made his or her choice, and 
showed the sentence, “I also chose the same statement. Your 
answer was [It is not okay to be 20 minutes late for a meeting 
because others team members’ time will be wasted due to the 
delay]. My answer was [It is not okay to be 20 minutes late for a 
meeting because others team members’ time will be wasted due 
to the delay].” On the other hand, in the different work-style 
condition, a robot chose the other answer and showed the 
opposite choice to the participant. 

The risk of danger in the task was manipulated to have two 
levels: high risk and low risk. In the high-risk condition, 
participants were given a scenario with images, in which they 
had to collaborate with the robot to clear an area by loading 
highly toxic and hazardous containers onto a truck for disposal. 
In the low-risk condition, participants were given a similar 
scenario with images, but with wooden boxes to load onto the 
truck for home delivery. 

4.4 Procedure 

Participants were greeted and asked to fill out a consent form. 
To ensure that participants’ paid attention during the 
experiment, we used several questions that asked specific details 
about the study’s manipulations. On the first page of the 
experiment, participants were made aware that they would be 
asked detailed questions about the experiment to ensure that 
they paid attention. Then, they were given brief instructions 
about the experimental procedure and task. Next, they 
completed a pre-task questionnaire that included questions 
regarding demographic information including gender, age, and 
ethnicity, and control variables. 

Then, participants were randomly assigned to either the 
same-gender condition or different-gender condition based on 
the gender information indicated in the pre-task questionnaire. 
Next, they were asked to choose responses to the nine questions 
about work styles. Immediately after the participant chose a 
response to a question, the robot’s choice was shown on the 
following screen next to the participant’s choice, according to 
the condition they were assigned. Once all the questions were 
shown, a summary table that compared the robot’s and the 
participant’s answers to all questions was given to the 
participants. Participants were then asked to view a scenario 
about collaboration with the robot with accompanying 
illustrative images. It was expected to take 5‒10 minutes for 
participants to view the scenarios. 

Finally, participants were asked to fill out a post-task 
questionnaire, which included dependent measures such as trust 
in the robot, intention to work with a robot cooperatively, and 
willingness to work with a robot over a human co-worker. 

4.5 Measures 

4.5.1 Manipulation Check Measures. To check the success of the 
surface-level similarity, participants were asked which gender 
they thought the robot was after the video was shown. All 
participants answered the robot’s gender correctly according to 
the gender in the video, which indicates the successful 
manipulation. Deep-level similarity was ensured by a series of 
five of questions regarding perceived similarity in work style 
adopted from [73] based on a 5-point scale. Example items 
include “The robot has similar work habits with me,” and “The 
robot has similar interaction styles with me.” The scale was 
reliable (Cronbach’s α = 0.98). Results of a t-test showed that 
perceived similarity in work style was significantly higher in the 
same-work-style condition (M = 4.29, SD = 0.83) than in the 
different-work-style condition (M = 1.69, SD = 0.77) (t(198) = 
22.99, p < 0.001). 

As a manipulation check for the risk of physical danger, 
perceived risk of physical danger was measured using an index 
of four items adapted from [31] and [27] based on a 5-point scale. 
Examples include “I will encounter personally hazardous 
situations during the task when I work with the robot” and “The 
task seems to be risky.” The scale was reliable (α = 0.91). 
Perceived risk of danger was significantly higher in the high-risk 
condition (M = 4.58, SD = 0.50) than in the low-risk condition (M 
= 3.42, SD = 0.76) (t(198) = 12.71, p < 0.001). 

4.5.2 Control Variables. We collected age, gender, and 
ethnicity of participants and Negative Attitudes toward Robots 
Scale (NARS) ratings [43]. Also, we measured the dispositional 
need for cognition using an index of 14 items adapted from 
Cacioppo et al. [8] based on a 5-point scale. The scale captures 
the degree to which an individual participant is likely to engage 
in cognitive processes in general [8, 30]. Sample items include “I 
really enjoy a task that involves coming up with new solutions 
to problem.” The scale was reliable (Cronbach’s α = 0.96). 

4.5.3 Dependent Measures. We measured trust in the robot to 
capture the degree to which an individual believed the robot was 
dependable and trustworthy. The scale consisted of eight items 
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adapted from Jian et al. [28] and was measured using a 5-point 
scale. The questions included items such as “I am able to trust 
the robot,” and “The robot is reliable.” The scale was reliable 
(Cronbach’s α = 0.92). 

We measured intention to work with the robot to capture an 
individual’s willingness to admit the robot as a team member 
and work together as a team. An index of five items was adapted 
from Venkatesh and Davis [64] based on a 5-point scale. The 
questions included “Assuming I had another project similar to 
this one and access to this robot, I am willing to work with this 
robot as a team,” and “This robot and I will likely make a good 
team.” The scale was reliable (Cronbach’s α = 0.95). 

Finally, we measured willingness to work with a robot over a 
human co-worker to capture the degree to which an individual 
wanted to work with the robot instead of a human teammate. 
We developed an index of three items that were measured using 
a 5-point scale. The three items included “For this job, I would 
prefer to work with the robot instead of a human,” “For this job, 
I would rather replace a human with the robot,” and “For this 
job, I would rather team up with the robot than a human." The 
scale was reliable (Cronbach’s α = 0.83). 

5 RESULTS 
All analyses in the following section were conducted by 
following the partial least squares (PLS) approach using 
SmartPLS 3.2. Age, ethnicity, and NARS were not significant and 
were excluded from results. 

5.1 Measurement Validity 

We assessed discriminant validity of the measures based on a 
factor analysis. All items loaded at 0.70 or above on each of their 
constructs and indicated no cross-loadings above 0.4. The results 
of the factor analysis indicate discriminant and convergent 
validity of the measurable latent variables in the model [17]. The 
correlation matrix, shown in Table 1, indicates that correlations 
among all constructs were well below the square roots of the 
average variance extracted (AVE). Finally, the internal 
consistency of the variables was assessed by calculating internal 
composite reliability (ICR). All variables indicated values well 
above 0.70, which is evidence of internal consistency. 

Table 1 Descriptive statistics and correlations 

 

5.2 Hypothesis Testing 

H1 posited that (a) surface-level and (b) deep-level similarity 
would increase trust in the robot, respectively. Surface-level 
similarity did not increase trust in the robot (ß = -0.01, p = 0.87). 
However, there was a significant positive impact of deep-level 
similarity on trust in the robot (ß = 0.39, p < 0.001), which 
indicates that only H1b was supported.  

H2a and H2b posited moderation effects of the risk of danger 
for the relationships between surface-level and deep-level 
similarity and trust in a robot, respectively. There was a 
significant interaction effect between surface-level similarity and 
the risk of danger in predicting trust in the robot (ß = -0.17, p < 
0.01). As hypothesized in H2a, the risk of danger moderated the 
impact of surface-level similarity on trust in the robot, such that 
the positive impact of surface-level similarity was found only in 
the low-risk condition (Figure 3). However, an interaction effect 
was not found between deep-level similarity and trust in the 
robot (ß = 0.05, p = 0.48). Thus, only H2a was supported. 

H3 hypothesized that trust in the robot would increase an 
individual’s intention to work with the robot as a team. H3 was 
fully supported based on the significant path coefficient (ß = 
0.58, p < 0.001). H4 posited a moderation effect of risk of danger 
for the relationship between trust in the robot and intention to 
work with the robot, such that the positive impact of trust in the 
robot would be stronger in the high-risk condition. H4 was not 
supported (ß = -0.08, p = 0.22). H5 posited the positive impact of 
intention to work with the robot on the individual’s willingness 
to work with a robot over a human co-worker. H5 was fully 
supported (ß = 0.55, p < 0.001).  

Finally, H6 posited that the positive impact of an intention to 
work with the robot would be strengthened in the high-risk 
condition, whereas the impact would not be present or would be 
weakened in the low-risk condition. The model demonstrated a 
marginally significant interaction effect (ß = 0.09, p < 0.1). The 
interaction effect was tested by a separate analysis employing a 
linear regression. A plot based on the results of the regression 
analysis showed that intention to work with the robot increased 
the willingness to work with a robot over a human co-worker 
only in the high-risk condition (ß = 0.32, p < 0.05) (Figure 4). 
Thus, H6 was partially supported. 

 

 

Figure 3: Moderation effect of risk of danger for the 
relationship between the surface-level similarity and trust 
in the robot 

Variable Mean SD 1 2 3 4 5 6 7 8

1. Gender 0.39 0.49 NA

2. Need for Cognition (NCOG) 3.50 0.91 -0.21** 0.80 
(0.96)

3. Surface-level Similarity (SLS) 0.45 0.50 -0.26 0.06 NA

4. Deep-level Similarity (DLS) 0.51 0.50 0.23 0.04 -0.4 NA

5. Risk of Physical Danger (RPD) 0.49 0.50 0.67 0.05 0.03 0.07 NA

6. Trust in Robot (TR) 3.71 0.76 0.11 0.12 -0.03 0.38** -0.15* 0.79 
(0.94)

7. Intention to Work with the 
Robot (IWR) 4.23 0.80 0.11 0.16* -0.01 0.24** -0.03 0.56** 0.92 

(0.96)
8. Intention to Replace a Human 
with the Robot (IRHR) 3.50 1.00 0.14* 0.06 0.05 0.19** 0.14* 0.33** 0.52** 0.86 

(0.90)

Note: N  = 200; SD = standard deviation. Values on the diagonals represent the square root of the AVE for each factor. ICR is 
indicated in parantheses on the diagonals. * p < .05, ** p < .01. "Gender" was coded binary (0 = male, 1 = female). Experimental 
conditions, "Surface-level Similarity" and "Deep-level similarity" were coded using 0 and 1 (0 = different and 1 = same between 
a robot and a participant). "Risk of Physical Danger" was coded binary (0 = low risk. 1 = high risk).

1

2

3

4

5

Low Surface-Level SimilarityHigh Surface-Level Similarity

T
ru

st
 in

 R
ob

ot

Low Risk of 
Physical Danger

High Risk of 
Physical Danger



Human–Robot Similarity and Willingness to Work with Robots HRI 2018, March 2018, Chicago, Illinois USA 
 

 7 

 

Figure 4: Moderation effect of risk of danger for the 
relationship between intention to work with the robot and 
willingness to work with a robot over a human co-worker 

Based on the hypothesis testing, the final model was derived 
from the research model (Figure 5). The model illustrates the 
results of the model testing, where R2 indicates the variance 
explained and ß indicates the standardized path coefficients of 
each path in the structural model. R2 indicates that trust in the 
robot was explained by 26%. Intention to work with the robot 
and willingness to work with a robot over a human co-worker 
were explained by 37% and 36%, respectively. 

6 DISCUSSION 
Our goal was to identify ways to help employees overcome their 
negative attitudes toward working with robots. Results from an 
online experiment showed that surface-level similarity increased 
trust in a robot, but only when the risk was low. However, deep-
level similarity increased trust in the robot regardless of the risk. 
Trust in the robot was found to increase intention to work with 
the robot and subsequently willingness to work with a robot 
over a human co-worker. The risk of physical danger also 

marginally moderated the relationship between intention to 
work with the robot and willingness to work with a robot over a 
human co-worker. This study has several implications for 
research and practice.  

6.1  Implications for Research 

First, our findings contribute to the literature on perceptions of 
robot similarity. This literature has not focused on whether the 
type of similarity matters with regard to human–robot 
interaction (e.g., [3, 5, 33]). We demonstrate that the type of 
similarities should be taken into account when trying to 
encourage individuals to work with a robot. Under the 
conditions of low physical risk, both surface-level and deep-level 
similarity can be used to promote trust in a robot. However, 
when the risk of physical danger was high, surface-level 
similarity had no impact on trust. Our findings showed that risk 
of physical danger has a role in moderating the relationships 
among human–robot similarity and trust in a robot. Identifying 
the boundary condition related to the surface-level similarity is 
especially vital for work settings. Unlike social robots, which are 
mostly deployed to safe environments like homes, robots used in 
work settings may be required to fulfill dangerous tasks with a 
higher risk of physical danger. In doing so, we highlight the 
importance of deep-level similarity over surface-level similarity 
in conditions of high risk. 

This finding calls for future research in several important 
areas. Future research seeking to promote trust in robots 
through similarity should consider the risk of physical danger. 
More specifically, future research should focus on the deep-level 
similarity when robotic co-workers are involved in dangerous 
tasks. Future research should identify other factors that alter the 
impacts of similarity, such as task interdependence, task 
duration, and competitive structure of the task. For instance, do 
similarity effects on trust in a robot change over time after a few 
initial interactions with the robot? Also, similarity with a robot 
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may yield a negative perception of the robot when someone is 
competing with the robot rather than cooperating [40]. 

Second, our findings contribute to the literature on robot 
acceptance. Prior researchers have paid little attention to the 
potential moderating role of risk in human–robot interaction 
(e.g., [19, 26]). Yet, robots are often employed to perform very 
dangerous tasks [2, 60]. Therefore, it is reasonable to assume 
that the degree of risk to physical danger could be important. 
Despite this, results of this study highlight that risk did not 
moderate the relationship between trust and intention to work 
with the robot. This was contrary to our speculation that risk 
would amplify the importance of trust. This implies that trust is 
an essential and salient element to promoting workers’ attitudes 
toward robotic co-workers regardless of the risk involved in the 
interaction. Trust appears to be a much more robust facilitator of 
intention to work with a robot than we originally thought. 
Future research should be done to determine whether the type of 
trust matters. For example, different types of trust (i.e., affect vs. 
cognitive) might be more or less robust in the presence of risk.  

Finally, our results extend the literature on intention to work 
with or interact with a robot. Unlike prior literature (see [15]), 
we examined the moderation effect of risk on the relationship 
between intention to work with and the willingness to work 
with a robot over a human co-worker. Our results showed that 
the more individuals are willing to work with the robot, the 
more likely they are to choose a robot over a human co-worker. 
However, the results also demonstrated that this phenomenon is 
somewhat governed by risk. Intention to work with a robot had 
a much stronger relationship with willingness to work with a 
robot over a human co-worker when the task was considered to 
be high in physical risk. These results suggest that humans do 
account for the level of risk when determining whether a human 
co-worker should be replaced. We also highlight that the 
willingness to work with a robot over a human co-worker is 
conceptually distinct from an intention to work with a robot. 
Unlike an intention to work with a robot that is determined 
solely by a robot’s characteristics, the willingness to work with a 
robot over a human co-worker may address the comparative 
benefit of working with a robot. Future research should identify 
other important moderators. This might include the guilt of 
undermining employment opportunities for other human co-
workers. 

6.2 Implications for Practice 

First, robots deployed to work with humans should be designed 
to display similarity with the humans to ensure higher levels of 
trust and intention to work with the robots. Given that deep-
level similarity yielded a strong impact, robots should be 
designed to manifest similarity with workers on a deep level, 
such as work styles, values, preferences, and personality. For 
instance, designers could embed a conversational protocol to a 
robot’s software and customize it to express similar preferences 
on things that a worker liked. Designers could also employ 
surface-level similarity to robots. For instance, similar color 
schemes and logos are effective visual cues to highlight surface-
level similarity. However, the application of surface-level 

similarity should take into account that it can work only in low-
risk situations. 

Second, managers of teams working with robots should be 
wary of the level of risk in a workplace where a robot and an 
individual collaborate with each other. In many cases, decisions 
about adopting a robot in a work environment are made at an 
executive level and may not reflect individual workers’ intention 
to work with them. Based on our results, teams should be 
knowledgeable about the level of risk in the task where a robot is 
deployed. Particularly when robots replace human laborers and 
become part of human–robot teams, managers of such teams 
should be aware that merely highlighting some similarity with 
their employee will not necessarily result in greater intention to 
choose to work with a robot instead of a human teammate. 

6.3 Limitations 

There are several limitations in this study. First, this study was 
conducted through an online experiment that involved 
interacting with a robot by watching a pre-recorded video. 
Results might differ in magnitude if an individual interacted 
directly with a robot viewing a scenario with potential 
interactions. Second, we should also note that our participants 
were MTurkers. There has been much discussion with regard to 
the use of MTurkers. Many studies have found MTurkers to be a 
valid and appropriate sample [4, 25]. Nonetheless, like all studies, 
we caution against over-generalizing our findings to broader 
contexts. Third, the context of this study involved only one robot 
and one person per collaborative working relationship. Yet, such 
collaborative relationships with robots can include more than 
one person and more than one robot [70, 71]. These relationships 
can also be much more dynamic in many cases [69, 71]. Finally, 
this study examined only one aspect of surface-level and deep-
level diversity, respectively. Perceptions of similarity can be 
elicited by many factors other than gender and work style, such 
as place of origin, ad-hoc membership, abilities, and knowledge 
[33, 49]. 

7 CONCLUSION 
It is vital for teams working with robots to attain positive 
attitudes regarding the robots and working with them in order to 
succeed. This study examined the impacts of similarity between 
an individual and a robot on fostering trust in the robot and 
intention to work with the robot in tasks of different levels of 
danger risk. Results showed that the positive impacts of 
similarity are contingent upon the degree of danger risk in a 
task. Results also demonstrated that trust in a robot positively 
predicts subsequent intention to work with the robot and 
willingness to work with a robot over a human co-worker. 
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