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ABSTRACT

Work in graphical models for game theory typically borrows from results in probabilistic graph-

ical models. In this work, we instead consider the opposite direction. By using recent advances

in equilibrium computation, we propose game-theoretic inspired, practical methods to perform

probabilistic inference. We perform synthetic experiments using several different classes of Ising

models, in order to evaluate our proposed approximation algorithms along with existing methods

in the probabilistic graphical model literature. We also perform experiments using Ising models

learned from the popular MNIST dataset. Our experiments show that the game-theoretic inspired

methods are competitive with current state-of-the-art algorithms such as tree-reweighed message

passing, and even consistently outperform said algorithms in certain cases.
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Chapter I: Introduction

The connection between graphical games and probabilistic graphical models (PGMs) has been

explored and exploited in a variety of works. These works typically use results from performing

inference in PGMs to help facilitate equilibrium computation in graphical games. However, this

approach has led to computational roadblocks, since exact inference in PGMs is tractable in graphs

with bounded treewidth, but intractable in general (Cooper, 1990; Shimony, 1994; Istrail, 2000).

Meanwhile, recent work in graphical games has produced efficient algorithms to compute corre-

lated equilibria (Papadimitriou, 2005; Jiang and Leyton-Brown, 2015). Is there a way to apply

these efficient algorithms to belief inference in PGMs, using the aforementioned connection be-

tween graphical games and PGMs? Trying to answer this question led us to take an approach

contrary to most other works in this subject: We use results from equilibrium computation to help

facilitate inference in PGMs.

It is well-known that pure strategy Nash equilibrium (PSNE) can be cast as a maximum a

posteriori (MAP) assignment estimation problem in Markov random fields (MRFs). We briefly

explore how more general forms of equilibria relate to belief inference. We focus on a special

type of game called graphical potential games (Ortiz, 2015), for which an equivalent MRF can be

constructed whose “locally optimal” solutions correspond to arbitrary equilibria of the game. Thus,

finding the equilibria in a graphical potential game would lead one to solutions in the equivalent

MRF. We employ ideas from the literature on learning in games (Fudenberg and Levine, 1999),

such as no-regret algorithms and fictitious play, to propose game-theoretic inspired, practical, and

effective heuristics for belief inference in MRFs. We then experimentally evaluate our proposed

algorithms, along with existing techniques from PGM literature.
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Chapter II: Preliminaries

In this section we will briefly define various concepts and notation used in the remainder of

this thesis.

2.1 Terminology and Notation

Denote x ≡ (x1,x2, . . . ,xn) as an n-dimensional vector, and x−i ≡ (x1, . . . ,xi−1,xi+1, . . . ,xn) as

the same vector without component i. For every set S⊂ [n]≡ {1, . . . ,n}, denote by xS ≡ (xi : i ∈ S)

the sub-vector formed from x using only components in S. Sc ≡ [n]−S denotes the complement of

S. We can denote x≡ (xS,xSc)≡ (xi,x−i) for every i. If A1, . . . ,An are sets, denote by A≡×i∈[n]Ai,

A−i ≡× j∈[n]−{i}A j and AS ≡× j∈SA j.

Let G = (V,E) be an undirected graph, with a finite set of n vertices or nodes V = {1, . . . ,n}

and a set of undirected edges E. For each node i, let N (i)≡ { j | (i, j)∈ E} be the set of neighbors

of i in G, not including i, and N(i) ≡ N (i)∪{i} be the neighbors set including i. A clique C

of is a set of nodes in G that are mutually connected: for all i, j ∈ C,(i, j) ∈ E. In addition, C

is maximal if there is no other node k outside C that is also connected to each node in C: for all

k ∈V −C,(k, i) /∈ E for some i ∈C.

Hypergraphs are generalizations of regular graphs. A hypergraph graph G = (V,E ) is defined

by a set of nodes V and a set of hyperedges E ⊂ 2V . The primal graph of the hypergraph is the

graph induced by taking each hyperedge and forming cliques of nodes in a regular graph.
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2.2 Probabilistic Graphical Models

Probabilistic Graphical Models (PGMs) are models which have shown themselves to be suit-

able for complex, structured, high-dimensional systems found in the real world. At the most basic

level, PGMs consist of a graph in which each node i represents a random variable Xi, and the edges

represent conditional independence assumptions about those random variables.

2.2.1 Markov Random Fields and Other Definitions

By definition, a joint probability distribution P is a Markov random field (MRF) with respect

to (wrt) an undirected graph G, if for all x, for every node i, P(Xi = xi | X−i = x−i) = P(Xi = xi |

XN (i) = xN (i)). In other words, the probability of Xi being some value is the same whether all

other nodes are given or only the neighbors of Xi are given. The neighbors of Xi, XN (i) are referred

to as the Markov blanket of node/variable Xi.

Also by definition, a join distribution P is a Gibbs distribution wrt an indirected graph G if

it can be expressed as P(X = x) = ∏C∈C ΦC(xC). C represents the set of all maximal cliques in

G. ΦC are some functions indexed by C ∈ C which map every possible value of xc (the random

variables associated with the nodes in C) can take to a non-negative number.

Finally, the Hammersly-Clifford Theorem (Hammersley and Clifford, 1971; Besag, 1974) states:

Let P be a positive joint probability distribution. That is, P(x) > 0 for all x. Then, P is an MRF

with respect to G if and only if P is a Gibbs distribution with respect to G.

In the context of the theorem, the functions ΦC are in fact positive, which allows us to define

MRFs in terms of local potential functions {φC} over each clique C in the graph. Define the

function Ψ(x)≡ ∑C∈C φC(xC). Let us refer to any function of this form as a Gibbs potential with

respect to G. Another way to express an MRF is P(X = x) ∝ exp(∑C∈C φC(xC)) = exp(Ψ(x)).

Ising models (IMs) are a special class of MRFs originating from statistical physics. An Ising

model (IM) wrt an undirected graph G = (V,E) is an MRF wrt G such that Pθ (x) ∝ exp(∑i∈V bixi+

∑(i, j)∈E wi, jxix j) where θ ≡ (b,W) is the set of node biases bi’s and edge-weights wi j’s, which are

the parameters defining the joint distribution Pθ over {−1,+1}n.
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2.2.2 Inference-related Problems in MRFs

Several problems of interest exist in the context of MRFs. One problem is to compute a most

likely assignment x∗, the most likely outcome for MRF P. More precisely, x∗ ∈ argmaxx P(X =

x) = argmaxx ∑C∈C φC(xC)). A related problem is to compute the individual marginal probability

P(Xi = xi) = ∑x−i P(Xi = xi,X−i = x−i) ∝ ∑x−i exp(∑C∈C φC(xC))) for each variable Xi. Another

related problem is to compute the normalizing constant Z = ∑x exp(∑C∈C φC(xC))) (also known as

the partition function of the MRF).

There is also a set of problems which concern “belief updating.” These problems involve com-

puting information related to the posterior probability distribution P′, after having observed the

outcome of some variables (the evidence). For MRFs, this problem is computationally equivalent

to that of computing prior marginal probabilities.

2.2.3 Brief Overview of Computational Results in PGMs

Exact versions of most inference-related problems in MRFs are in general intractable, though in

certain cases polynomial-time algorithms do exist (for example, Istrail (2000), Wang et al. (2013)).

Typically, running times for exact algorithms are polynomial only for graphs with bounded tree-

width (Russell and Norvig, 2003).

Several heuristic approaches to approximate inference exist, although approximate inference is

also intractable in general. One approximation approach of particular interest to us is variational

inference (Jordan et al., 1999; Jaakkola, 2000). The general idea is to approximate an intractable

MRF P with a “closest” probability distribution Q∗ within a “computationally tractable” class Q.

More formally: Q∗ ∈ argmaxQ∈Q KL(Q ‖ P), where KL(Q ‖ P)≡ ∑x Q(x) ln Q(x)
P(x) is the Kullback-

Leibler (KL) divergence between probability distributions P and Q wrt Q. The simplest example is

the mean-field (MF) approximation, in which Q = {Q |Q(x) = ∏i Q(xi) for all x ∈Ω} consists of

all possible product distributions.
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2.3 Game Theory

Game theory (von Neumann and Morgenstern, 1947) mathematically models how rational

agents interact with each other and make decisions in a system (a “game”). In this paper we

focus on non-cooperative settings, where individuals act independently and only seek to maximize

their own utility.

2.3.1 Game Representations

Basically speaking, games consist of three components: players of the game, actions for those

players, and payoffs for those actions. Let V = [n] denote a finite set of n players. For each player

i ∈ V , let Ai denote the set of actions or pure strategies that i can choose to play. Let A ≡ ×i∈V Ai

denote the set of joint actions, and let x ≡ (x1, ...,xn) ∈ A denote one joint action. Denote xi as

the action of player i in x, and x−i ≡ (x1, ...xi−1,xi+1, ...xn) as the joint action of all players other

than i. Finally, let Mi : Ai→ R denote the payoff/utility function of player i. If the Ai’s are finite,

then Mi is called the payoff matrix of player i. Games represented this way are called normal- or

strategic-form games.

Games which include a large number of players and actions can have impractically large

normal-form representations. Probabilistic graphical models offer options for more compact rep-

resentations of games (La Mura, 2000; Kearns et al., 2001; Koller and Milch, 2003; Leyton-Brown

and Tennenholtz, 2003; Jiang and Leyton-Brown, 2008). In particular, this paper is presented in

the context of a generalization of graphical games (Kearns et al., 2001) called graphical multi-

hypermatrix games (GMhG).

A GMhG consists of a directed graph G = (V,E) in which there is a node i ∈ V in G for each

of the n players in the game. The set of directed edges E defines a set of neighbors N (i) ≡ { j |

( j, i)∈ E, i 6= j}whose actions affect the payoff function of i. Each player i∈V has a set of actions

Ai, a hypergraph where the vertex set is the player’s inclusive neighborhood N(i) ≡N (i)∪{i}

and the hyperedge set is a set of cliques Ci ⊂ 2N(i), and a set of local-clique payoff hypermatrices

{M′i,C : AC→ R |C ∈ Ci}. Finally, local and global payoff hypermatrices M′i : AN(i)→ R and Mi :
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Ai→ R of player i are defined as M′i(xN(i))≡ ∑C∈Ci M′i,C(xC) and Mi(x)≡M′i(xN(i)), respectively.

GMhGs have a special class of instances referred to as Graphical potential games. A detailed

characterization and discussion can be found in (Ortiz, 2015). Graphical potential games will be

referenced later in Section 3.1.

2.3.2 Equilibria as Solution Concepts

Equilibria are generally considered to be the solutions of a game. Several different notions of

equilibria exist, though the common theme among them (at least in the non-cooperative setting) is

that there exists some situation where no players can improve their payoffs by deviating from their

current course of action. Perhaps the most straightforward form of equilibrium is a Pure Strategy

Nash Equilibrium (PSNE). A PSNE is a joint action x∗ such that for all players i, and for all actions

for those players xi, Mi(x∗i ,x
∗
−i) ≥Mi(xi,x∗−i). Essentially, if player i always takes action x∗i , there

is no other action that player could always take to improve their payoff, assuming no other player

changes either. Only some games have a PSNE, however. The Prisoner’s Dilemma is a famous

example of a game with PSNE. On the other hand, even a simple game like “Rock, Paper, Scissors”

does not have a PSNE.

For games like “Rock, Paper, Scissors,” a more general form of equilibrium called mixed strat-

egy Nash equilibrium (MSNE) is used. As the name implies, MSNEs involve players using mixed

strategies instead of pure strategies. A mixed strategy of player i is a probability distribution Qi

over Ai such that Q(xi) is the probability that i chooses to play action xi. A joint mixed strat-

egy a joint probability distribution Q encompassing all players’ mixed strategies. Because play-

ers are assumed to play independently, Q is a product distribution: Q(x) = ∏i Qi(xi). The joint

mixed strategy without player i is: Q−i(x−i) ≡ ∏ j 6=i Q j(x j). When employing a mixed strategy

Q, a player i’s payoff function becomes an expected payoff : ∑x Q(x)Mi(x), which we denote

as simply Mi(Q). The conditional expected payoff of player i given that they play action xi is

∑x−i Q−i(x−i)Mi(xi,x−i), which we denote as Mi(xi,Q−i).

An MSNE is a joint mixed strategy Q∗ that is a product distribution formed by each player’s

6



current mixed strategy Q∗i , such that, for all players i, Q∗i leads to a better expected payoff than

any alternate mixed strategy Q′i: Mi(Q∗i ,Q
∗
−i) ≥ Mi(Q′i,Q

∗
−i). Every game in normal form has at

least one such equilibrium (Nash, 1951). However, finding these equilibria exactly can be difficult

if the game contains many players and actions. A useful relaxation of MSNE is treat cases where

players can only gain a very small amount ε if they deviate as though they were at equilibrium.

This relaxation allows for approximate equilibria solutions instead of exact ones, which eases

computation. Given ε ≥ 0, an (approximate) ε-Nash equilibrium (MSNE) is defined as above,

except that the equilibrium condition becomes Mi(Q∗i ,Q
∗
−i)≥Mi(Q′i,Q

∗
−i)− ε .

Another form of equilibrium which is more general than MSNE is called correlated equilibrium

(CE) (Aumann, 1974). Unlike MSNE, a CE can be a full joint distribution rather than a product

distribution. Formally, a CE is a joint probability distribution Q over A such that, for all players

i, xi,x′i ∈ Ai, xi 6= x′i, and Q(xi) > 0, ∑x−i Q(x−i|xi)Mi(xi,x−i) ≥ ∑x−i Q(x−i|xi)Mi(x′i,x−i), where

Q(xi) ≡ ∑x−i Q(xi,x−i) is the (marginal) probability that player i will play xi according to Q and

Q(x−i|xi) ≡ Q(xi,x−i)/∑x′i
Q(x′i,x−i) is the conditional probability given xi. The ε relaxation can

also be applied to CEs, by adding the term “−ε ′′ to the right-hand side of the condition above,

given that ε > 0. This gives us the definition of an approximate ε-CE.

2.3.3 Brief Overview of Results in Computational Game Theory

In two-player zero-sum games, where the sum of the entries in the payoff matrices equals zero,

an MSNE can be computed in polynomial time. In fact, the game is equivalent to linear program-

ming (von Neumann and Morgenstern, 1947; Szép and Forgoó, 1985; Karlin, 1959). However,

the complexity of computing MSNE in any normal form game was not settled until recently. For

a more detailed discussion of recent results in this area, see (Ortiz and Irfan, 2017). The general

theme of most results is that computing MSNE, and even PSNE in some cases, is intractable in the

worst case.

Computing PSNE and MSNE in graphical games is similar to MRFs and constraint networks

in terms of complexity: polynomial time for a bounded treewidth graph, but intractable in gen-
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eral (Kearns et al., 2001; Gottlob et al., 2003; Daskalakis and Papadimitriou, 2006; Ortiz, 2014).

Several heuristics for MSNE computation have been developed for use in general graphs (Vick-

rey and Koller, 2002; Ortiz and Kearns, 2003; Daskalakis and Papadimitriou, 2006). In contrast,

computing CE can be done in polynomial time, both in normal form games, and other compactly

representable games, including graphical games (Papadimitriou, 2005; Jiang and Leyton-Brown,

2015).
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Chapter III: Theoretical Connections and Implications

Given the recent advancements in equilibria computation, we asked ourselves the following

question: Can we leverage advances in computational game theory for problems in the probabilis-

tic graphical models community? Establishing a strong bilateral connection between equilibria

computation in games and inference in PGMs could allow us to apply algorithms from one area

to the other. It is important to note that the idea of adopting methods from PGMs in order to

compute equilibria in graphical games is not new. However, the focus of this paper is to go the

opposite direction: using algorithms for computing equilibria in games to perform belief inference

in PGMs.

3.1 PSNE and Approximate MAP Inference

It is possible to show that PSNE in a potential game can be considered as MAP assignments

in an equivalent MRF. Consider an MRF P with respect to graph G and Gibbs potential Ψ defined

by the set of potential functions {φC}. For each node i, denote by Ci ⊂ C the subset of cliques

in G that include i. The inclusive neighborhood of player i is given by N(i) = ∪C∈CiC. Define an

MRF-induced GMhG with the same graph G, and for each player i, a hypergraph with hyperedges

Ci and local clique payoff hypermatrices M′i,C(xC) ≡ φC(xC) for all C ∈ Ci. This MRF-induced

game has two important properties:

Property 1. The representation size of the MRF-induced game is the same as that of the MRF: not

exponential in the largest neighborhood size, but the size of the largest clique in G.

Property 2. The MRF-induced game is a graphical potential game (Ortiz, 2015) with graph G

and (Gibbs) potential function Ψ: i.e., for all i, x and x′i, Mi(xi,x−i)−Mi(x′i,x−i) = M′i(xi,xN (i))−

9



M′i(x
′
i,xN (i))

= ∑
C∈Ci

φC(xi,xC−{i})− ∑
C∈Ci

φC(x′i,xC−{i})

= ∑
C∈Ci

φC(xi,xC−{i})+ ∑
C′∈C−Ci

φC′(xC′)−

∑
C∈Ci

φC(x′i,xC−{i})− ∑
C′∈C−Ci

φC′(xC′)

=Ψ(xi,x−i)−Ψ(x′i,x−i).

Remark 1. The MRF-induced game from the last property is guaranteed to be solvable with a

PSNE by using sequential best-response dynamics, since it is a potential game. In fact, a joint

action x∗ is a PSNE of the game if and only if x∗ is a local maxima or critical point of the original

MRF P. Therefore, the MRF-induced game always has PSNE. Going the other direction, one can

define a game-induced MRF for any potential game by using the potential function of the game.

The set of local maxima and critical points of the game-induced MRF corresponds exactly to the

set of PSNE of the potential game. This connection means that solving the local-MAP problem in

MRFs is PLS-complete in general (Johnson et al., 1988).

In short, we can use algorithms for PSNE computation as heuristics to compute locally optimal

MAP assignments of P and vice versa.

3.2 CE and Belief Inference

Shifting our focus to more general types of equilibrium like CE allows us to make other connec-

tions between equilibria computation and probabilistic inference. Let S be a subset of the players,

and denote by QS(xS) ≡ ∑xV−S
Q(x) the marginal probability distribution of Q over possible joint

actions of players in S. In the MRF-induced game, we can express the condition for CE as: for all

i,xi,x′i 6= xi, ∑xN (i)
QN(i)(xi,xN (i))∑C∈Ci φC(xi,xC−{i})≥∑xN (i)

QN(i)(xi,xN (i))∑C∈Ci φC(x′i,xC−{i}).

10



By commuting the sums and simplifying we get the following equivalent condition:

∑
C∈Ci

∑
xC−{i}

Q(xi,xC−{i})φC(xi,xC−{i})

≥ ∑
C∈Ci

∑
xC−{i}

Q(xi,xC−{i})φC(x′i,xC−{i}) (3.1)

This simplification is important because it shows that we only need distributions over the orig-

inal cliques, not the induced neighborhoods, in order to represent CE in MRF-induced games. We

are able to keep the CE representation size to be the same as the game’s representation size, unlike

in Kakade et al. (2003).

An alternative but equivalent condition can be found by using the fact that the MRF-induced

game is also a potential game, along with some other definitions.

∑
x−i

Q(xi,x−i)Mi(xi,x−i)≥∑
x−i

Q(xi,x−i)Mi(x′i,x−i)

∑
x−i

Q(xi,x−i)
(
Mi(xi,x−i)−Mi(x′i,x−i)

)
≥ 0

∑
x−i

Q(xi,x−i)
(
Mi(xi,x−i)−Mi(x′i,x−i)

)
≥ 0

∑
x−i

Q(xi,x−i)
(
Ψ(xi,x−i)−Ψ(x′i,x−i)

)
≥ 0

∑
x−i

Q(xi,x−i)
(
lnP(xi,x−i)− lnP(x′i,x−i)

)
≥ 0

The last expressions leads to the following equivalent condition:

∑
x−i

Q(xi,x−i)[− lnP(xi,x−i)]

≤∑
x−i

Q(xi,x−i)[− lnP(x′i,x−i)] (3.2)

Next, we will borrow some concepts from information theory, like (Shannon’s) entropy, cross

entropy, and relative entropy (or Kullback-Leibler divergence) to make some additional statements
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about the previous condition’s implications. For an introduction to these topics, see Cover and

Thomas (2006).

Remark 2. For any distribution Q′, let H(Q′,P) ≡ ∑x Q′(x)[− log2 P(x)] be the cross entropy be-

tween probability distributions Q′ and P, with respect to P. Let Q−i(x−i) ≡ ∑xi Q(xi,x−i) be the

marginal distribution of play over the joint-actions of all players except player i. Finally, Q′iQ−i is

the joint distribution defined as (Q′iQ−i)(x)≡Q′i(xi)Q−i(x−i) for all x. Then, condition 3.2 implies

the following sequence of conditions, which hold for all i:

∑
x

Q(x)[− lnP(x)]≤∑
x−i

Q−i(x−i)[− lnP(x′i,x−i)] for all x′i

H(Q,P)≤min
x′i

∑
x−i

Q−i(x−i)[− log2 P(x′i,x−i)]

= min
Q′i

∑
x

Q′i(xi)Q−i(x−i)[− log2 P(xi,x−i)]

= min
Q′i

H(Q′iQ−i,P)

Any CE of the MRF-induced game is an approximate local optimum (or critical point) of an

approximation of the MRF based on a special type of cross entropy minimization. In actuality, the

condition is that of a coarse CE (CCE) (Hannan, 1957; Moulin and Vial, 1978), which is a superset

of CE. We will discuss the impact of this later in this section. The following property summarizes

this remark.

Property 3. For any MRF P, any correlated equilibria Q of the game induced by P satisfies

H(Q,P)≤mini minQ′i
H(Q′iQ−i,P).

Remark 3. For any player i, for any marginal/individual distribution of play Q′i, let H(Q′i) ≡

∑xi Q′i(xi)[− log2 Q′i(xi)] be its marginal entropy. The Kullback-Leibler (KL) divergence between Q′

and P, with respect to Q′ for any distribution Q′ and P is KL(Q′ ‖P)≡∑x Q′(x) log2(Q
′(x)/P(x))=

H(Q′,P)−H(Q′). Denote by H(Qi|−i)≡
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∑xi,x−i Q(xi,x−i) log2(Q(xi,x−i)/Q−i(xi)) = H(Q−i)−H(Q) the conditional entropy of the indi-

vidual play of player i given the joint play of all the players except i, with respect to Q.

We can express condition 3.2 as the following equivalent conditions, which hold for all i.

KL(Q ‖ P)+H(Q)

≤min
Q′i

KL(Q′iQ−i ‖ P)+H(Q′iQ−i)

KL(Q ‖ P)+H(Qi|−i)

≤min
Q′i

KL(Q′iQ−i ‖ P)+H(Q′i)

Any CE of a MRF-induced game is an approximate local optimum (or critical point) of a

special kind of variational approximation of the MRF. This leads us to another property.

Property 4. For any MRF P, any correlated equilibria Q of the game induced by P satisfies

KL(Q ‖ P)≤mini

[
minQ′i

KL(Q′iQ−i ‖ P)+H(Q′i)
]
−H(Qi|−i).

3.2.1 MSNE and Mean-Field Approximations

MSNE are a special case of CE, where the joint mixed strategy Q(x) = ∏i Qi(xi) is actually

a product distribution. Denote by Q×−i(x−i)≡∏ j 6=i Q j(x j) = ∑xi Q(x) the marginal joint action of

play over all the players except i, and denote by (Q′iQ
×
−i) the probability distribution defined such

that the probability of x is (Q′iQ
×
−i)(x)≡ Q′i(xi)Q×−i(x−i).

For MSNE, the equilibrium conditions imply the following conditions, for all i, for all xi such

that Qi(xi)> 0:

∑
x−i

Qi(xi)Q×−i(x−i)[− lnP(xi,x−i)]

= min
x′i

∑
x−i

Qi(xi)Q×−i(x−i)[− lnP(x′i,x−i)]
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If we denote by X +
i ≡ {xi ∈ Ai | Qi(xi)> 0, the last condition implies that:

∑
xi∈X +

i

∑
x−i

Qi(xi)Q×−i(x−i)[− lnP(xi,x−i)] = ∑
xi∈X +

i

Qi(xi)

min
x′i

∑
x−i

Q×−i(x−i)[− lnP(x′i,x−i)]

The previous condition is equivalent to:

∑
xi

∑
x−i

Qi(xi)Q×−i(x−i)[− lnP(xi,x−i)]

=min
x′i

∑
x−i

Q×−i(x−i)[− lnP(x′i,x−i)] ,

which in turn is equivalent to the following two expressions:

H(Q,P) = min
Q′i

H(Q′Q×,P)

KL(Q ‖ P)+H(Qi) = min
Q′i

KL(Q′iQ
×
−i ‖ P)+H(Q′i)

A NE Q of the MRF-induced game is almost a locally optimal mean-field approximation, except

for the extra entropic term. For MSNE, we have the following condition which is tighter than for

arbitrary CEs.

Property 5. For any MRF P, any MSNE Q of the game induced by P satisfies KL(Q ‖ P) =[
minQ′i

KL(Q′iQ
×
−i ‖ P)+H(Q′i)

]
−H(Qi), for all i.

Remark 4. This discussion suggests that one could use modified versions of existing algorithms

for computing MSNE, as heuristics to finding a mean-field approximation of the true marginals.

Recent work in the other direction explores connections between learning in games and mean-field

approximations in machine learning (Fudenberg and Levine, 1999).
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3.2.2 Some Computational Implications

Algorithms developed by Kakade et al. (2003) can be used to compute a CE of an MRF-induced

game in polynomial time. The resulting CE will be a polynomially-sized mixture of product distri-

butions. However, these algorithms make a polynomial number of calls to an “ellipsoid algorithm,”

which is known to be slow in practice. Thus, these algorithms may not be very practical when used

with large input sizes.

As an alternative, our discussions above (specifically that of condition 3.2) suggest that any

learning algorithm that guarantees convergence to the set of CCE can be used as a heuristic for

approximate inference. There exist “no-regret” learning algorithms which satisfy those conditions.

These algorithms will be included in our experimental evaluation (Chapter IV).

3.3 Approximate Fictitious Play in a Two-player Potential Game for Belief Inference in

Ising Models

This section presents a game-theoretic fictitious play approach to estimation of node marginal

probabilities in MRFs. We focus on Ising models, a type of MRF which are simple and have uses in

machine learning and AI applications. Generalizing this algorithm to arbitrary MRFs is possible,

but not included here as it is not our focus.

The fictitious play algorithm constructs a two-player potential game, where both players have

identical payoffs. This kind of game has the fictitious play property (Monderer and Shapley, 1996),

which says that the empirical play of fictitious play is guaranteed to converge to an MSNE of the

potential game. In fictitious play, each player uses the empirical distribution of play as an estimate

of how the other players would behave in the future, then responding to that estimate. This is in

contrast to sequential best-response, where players only look at other players’ last action, to make

their response. Sequential best-response converges to PSNE in potential games.

The algorithm goes as follows: denote by TG the set of all spanning trees of connected (undi-

rected) graph G = (V,E) that are maximal with respect to E. If spanning tree T ∈ TG, de-

note by E(T ) ⊂ E the set of edges of T . Let M̃T (µ,T ) ≡ ∑(i, j)∈E 1[(i, j) ∈ E(T )]wi jµ(i, j) and
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ΨX ,T (x,T )≡ ∑i∈V bixi +∑(i, j)∈E 1[(i, j) ∈ E(T )]wi jxix j.

Initialize x(1)← Uniform({−1,+1}n), and for each (i, j) ∈ E, µ̂
(1)
(i, j)← x(1)i x(1)j . At each itera-

tion l = 1,2, . . . ,m,

1: T(l)← argmaxT∈TG
M̃T (µ̂

(l)
(i, j),T )

2: T (l)← Uniform
(

argmaxT∈TG
T(l)
)

3: sl ← Uniform({1, . . . , l})

4: X (l+1)← argmaxx∈{−1,+1}n ΨX ,T (x,T (sl))

5: x(l+1)← Uniform
(
X (l+1)

)
6: for all (i, j) ∈ E do

7: v(l+1)
(i, j) ← x(l+1)

i x(l+1)
j ×


1, if MSNE,

1

[
(i, j) ∈ E(T (sl))

]
, if CE

8: µ̂
(l+1)
(i, j) ←

l µ̂
(l)
(i, j)+v(l+1)

(i, j)
l+1

9: end for

Lastly, for each Ising-model’s random-variable index i= 1, . . . ,n, set p(m+1)
i = 1

m+1 ∑
m+1
l=1 1

[
x(l)i = 1

]
as the estimate of the exact Ising-model’s marginal probability pi ≡ P(Xi = 1).

The running time of the algorithm is dominated by the computation of the maximum spanning

tree in Step 1, which is O(|E|+n logn). All other steps take O(|E|) or less.

The two-player potential game implicit in the algorithm consists of a “joint-assignment” (JA)

player and a “spanning-tree” (ST) player. The potential function is ΨX ,T (x,T ). The payoff func-

tions for both players equals the potential function. Determining the ST player’s best response

during each iteration involves computing a maximal spanning tree over the graph (Step 1), which

can be done easily. However, for the JA player, finding the best response is as hard as computing

a MAP assignment of another IM with the same graph, same node biases, and slightly different

edge-weights. To circumvent this problem, we draw one tree uniformly at random from the empir-

ical distribution (Step 4), rather than take the entire distribution into account. Then, the JA player

simply uses the best-response to that randomly drawn tree.
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While the ST player conducts standard fictitious play, the JA player actually behaves accord-

ing to stochastic fictitious play (Fudenberg and Levine, 1999), since they are randomly picking

from the empirical distribution. Stochastic fictitious play also converges to MSNE in potential

games (Hofbauer and Sandholm, 2002). It is important to note that stochastic fictitious play actu-

ally involves simultaneous play, rather than sequential (as in this algorithm). Thus, we have a sort

of “hybrid” sequential fictitious play algorithm.
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Chapter IV: Experiments

In this section we present the results and methodology of our experimental evaluation of the

performance of game-theoretic inspired heuristics compared to other popular approximation algo-

rithms in PGM literature.

4.1 Synthetic Models

We performed experiments on synthetic models using the fictitious play heuristic proposed

in this paper, as well as other popular algorithms and heuristics in PGM literature, as part of an

empirical evaluation on these algorithms’ relative performance in the context of belief inference.

4.1.1 Experimental Design

We used Ising models with d× d planar grid graphs. The number of nodes in these models

is d2, while the number of edges is (d− 1) ∗ d ∗ 2. The models consists of node biases bi, which

correspond to the a-priori probability of a node i taking the value +1 or -1, and edge weights wi j,

which correspond to the likelihood of two neighboring nodes i and j sharing the same value (if wi j

is positive), or taking opposite values (if wi j is negative).

We generated Ising models of size d ∈ {8,12} by setting bi to a value in the real-valued interval

[-1, 1] uniformly at random and i.i.d. for each node i (bi ∼ Uniform([−1,1]), i.i.d.). To generate

the wi j’s , we considered three different scenarios. First, we considered a “mixed” case, where

the wi j’s could be positive or negative. For each edge (i, j) in the set of edges E, we set wi j ∼

Uniform([−w,w]), i.i.d., where w was the maximum weight magnitude. Next, we considered an

“attractive” case, where wi j could only be non-negative. That is, wi j ∼ Uniform([0,w]), i.i.d.
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Finally, we considered a “constant” case, where the values of wi j could only be w or −w, but

the probability of any wi j being positive was given by some probability q. In these models we

independently set each wi j’s value to w with probability q and −w with probability 1−q.

For all three cases, we considered models generated with different maximum weight magni-

tudes w. In the “mixed” and “attractive” cases, we generated 50 models for each w∈ {2.0,2.5,3.0,

3.5,4.0}. In total, this gave us 250 “mixed” models and 250 “attractive” models of size d.

In the “constant” case, we generated 5 models for each w ∈ {2.0,2.5,3.0,3.5} and for each

q ∈ {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}. 50 models were generated for w = 4.0 and

for each value of q. In total this gives us 770 “constant” models of size d.

We evaluated several different approximation algorithms in the context of these synthetic Ising

models. One set of algorithms we used is based on the Multiplicative Weight Update (MWU) algo-

rithm (Blum and Mansour, 2007), which is a type of no-regret algorithm. In our implementation

of the MWU algorithm, for each player i at each round t ≥ 1, we set the probability of playing ac-

tion xi at round t +1, which we denote by x(t+1)
i , to be pt+1(xi) ∝ pt(xi)

(
1−ηt(1− M̄i(xi,x

(t)
−i))

)
,

where ηt is analogous to a learning rate in ML, and M̄i is the normalized payoff function for player

i. η is set to ηt =

√
ln(2)

t . In this case, the players have no external regret, so we label the algorithm

as “mw er”. We also run a variant of mw er with a constant η = 0.01, labeled as “mw er cf,” in

which players have approximately no external regret. The minimization of external regret means

mw er has guaranteed convergence to the set of CCE, whereas mw er cf converges to the set of

approximate CCE. MWU can also be adapted to minimize swap regret instead of external regret.

In that case, it would converge to the set of CE or approximate CE, depending on if η is a constant

or not. We include “mw sr” and “mw sr cf” implementations, the former using η =

√
ln(2)

t like

above and the latter using a constant η = 0.01.

We also include another approximate no swap-regret algorithm devised by Hart and Mas-Colell

(2000), which we label as “nr”. Since this algorithm minimizes swap regret, it has guaranteed

convergence to the set of approximate CE. Our implementation deviates slightly from the original.

Specifically, we evaluate a version in which we update the mixed-strategy each player uses to draw
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an action at every iteration t as follows. For each player, (1) we set the probability of switching

the player’s last action being equal to the empirical regret, or 0 if the empirical regret is negative;

and (2) we set the player’s probability of playing action +1 by “damping” the currently suggested

probability of playing +1, pt(1), using the update 0.99× pt(1)+ 0.01× (0.5). This was done as

an adaptation to our belief-inference setting.

In addition to the mw-type algorithms and nr, we include standard mean-field approximation

(“mf”), standard belief propagation (“bp”), TRW (“trw”), and the Gibbs sampler (“gs”). Finally,

we also include our sequential, “semi-stochastic” fictitious play algorithm discussed in Section 3.3.

As a simple baseline estimator (“bl”), we simply assign 0.5 as the exact marginal distribution of

each variable. We compare the output of these approximation algorithms to that of exact inference

(Kakade et al., 2003). Table 4.1 shows the running time (big O) for each algorithm, the maximum

number of iterations we chose, as well as other implementation notes.

Algorithm Run Time O() Max. Iterations Notes

exact O(2d) N/A requires O(2d) memory

bl O(1) N/A

mw-type O(|E|) 105

nr O(|E|) 105

fp (ce) O(|E|+n logn) 15

mf O(|E|) 106 sequential axis-parallel updates

bp O(|E|) 105 simultaneous updates

trw O(|E|) 105 ρ = 0.55

gs O(|E|) 106

Table 4.1: Algorithm Properties and Notes

As mentioned earlier, the maximum weight magnitudes we used were all greater than 2.0, and
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the maximum bias magnitude was always 1.0. This is because when the weights are closer to 1.0

(or closer to the bias magnitude), the Gibbs sampler easily outperforms the other approximation

algorithms. When the weight magnitudes are larger than the bias magnitudes (at least two or

three times as large), gs doesnt perform nearly as well, and the other algorithms then become

competitive. These kinds of problems appear to be harder, which is why we will focus on them for

our experiments.

4.1.2 Experimental Results, Quantitative Evaluation

After running the various algorithms on the generated Ising models, we performed hypothe-

sis testing on the individual differences between the algorithms’ output versus the exact inference

output. Specifically, we take the absolute difference between the estimated and exact marginal

probability of each random variable corresponding to a node in the IM, average across those vari-

ables, then average again across all generated models for that case. The tests were done using

paired z-tests with p-value 0.05. Here we present results for the 12×12 models which are statis-

tically significant with respect to these hypothesis tests. The 8×8 results were nearly identical in

terms of relative performance, so we omit a thorough discussion.

In each type of model (“mixed,” “attractive,” and “constant”), mw er cf consistently performed

best among the mw-type algorithms, so we refer to mw er cf as simply “mw”.

“Mixed” 12× 12 results, (Fig. 4.1). The figure shows average marginal error across different

weight levels w. As shown in the plot, gs clearly performs the best for all w. For the other

algorithms, we observed the following:

1. Fp (ce) is worse than bp for w < 3.5, and indistinguishable from bp for w≥ 3.5.

2. Fp (ce) is consistently better than trw.

3. Trw is consistently worse than bp.

4. Mw is worse than fp (ce) for w < 3.0 and indistinguishable from fp (ce) for w≥ 3.0.
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5. Mf and nr are consistently worse than bl, while all other methods are consistently better than

bl.

6. Mf is better than nr for w≥ 3.0, but indistinguishable from nr for w < 3.0.

Figure 4.1: Evaluation on IMs with 12×12 Grids, “Mixed” Case

“Attractive” 12× 12 results, (Fig. 4.2). In this case there is no clear overall best. We also

observe the following:

1. Trw is best among all methods for w≥ 3.0, indistinguishable from gs for w = 2.5, and worse

than gs for w = 2.0.

2. Fp (ce) is worse than gs for w = 2.0, but better than gs for w = 4.0, and indistinguishable

from gs otherwise.
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3. Mw and fp (ce) are consistently indistinguishable.

4. Mf, nr, and bp are consistently indistinguishable from each other, except for w = 2.0 where

bp is better than nr.

5. Bp and bl are consistently indistinguishable, except for w = 4.0, where bp is better.

Figure 4.2: Evaluation on IMs with 12×12 Grids, “Attract” Case

Next, we consider the ”constant” Ising model case. This class of models appear to lead to

”harder” instances. Since these models are generated in a slightly different way than the others

(i.e., we tried different probabilities of attractive interactions q, in addition to different weight

magnitudes), we present the results in a slightly different way. First we present a set of “aggregate”

results, in which we average the marginal errors across all q’s and all models. Then, we present

“detailed” results for w = 4, in which we show the marginal errors for each q, averaged across all
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models at each q.

Earlier we mentioned that for w = 4, we generated 50 models as samples for each q, while for

w ≤ 3.5 we generated only 5 models as samples for each q. For w = 4, hypothesis testing was

done in the same way as in the “mixed” and “attractive” cases. For w≤ 3.5, we used 100 bootstrap

samples taken from the 5 original samples, then performed the pairwise individual z-tests with p-

value 0.05 as in the other cases. The following statements are statistically significant with respect

to their corresponding hypothesis tests.

“Constant” 12×12 aggregate results, (Fig. 4.3).:

1. Fp (ce) is best among all methods except for when w = 2.0, where gs is better.

2. Trw is second best among all methods, except for when w= 2.0, where it is third best (behind

fp (ce) and gs).

3. Bp is consistently better than mf and nr except when w = 3.5, where it is indistinguishable

from nr (but still better than mf).

4. Mf is consistently worse than bl, except when w = 4.0, where they are indistinguishable. Nr

is also consistently worse than bl, except when w = 2.5, where they are indistinguishable.

5. Gs is consistently better than mf, nr, and bl, except when w = 4.0, where gs and bl are

indistinguishable.

6. Mw is better than bl when w < 3.5, but indistinguishable from bl when w >= 3.5.
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Figure 4.3: Evaluation on IMs with 12×12 Grids, “Constant” Case

“Constant” 12× 12 detailed results for w = 4, (Fig. 4.4).: Most algorithms were unable to

outperform bl in this case, remaining statistically indistinguishable from it across all q. Other

observations include:

1. Trw, mw, and fp (ce) beat bl at extreme q, i.e q ∈ {0.0,1.0}.

2. Fp (ce) is consistently better than bl.

3. Trw is better than fp (ce) for q ∈ {0.0,1.0}, and worse or indistinguishable otherwise.

4. Mw and fp (ce) are indistinguishable, except for q ∈ {0.0,1.0}, where fp (ce) is better.
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Figure 4.4: Evaluation on IMs with 12×12 Grids, “Constant” Case, Edge Weight Magnitude

w = 4.0, Varied Probability of Attractive Interactions

Results for MWU algorithm variants. Fig 4.5 compares the performance of the four types

of MWU algorithms described earlier. It is evident from the plots (and reinforced by the same

hypothesis testing done for the other methods) that mw er cf consistently does the best, or at least

no worse than the other variants. This is somewhat unexpected, since the external regret versions

of MWU converge to the set of CCE, whereas the swap regret versions converge to CE, which is a

smaller and less relaxed set of equilibria. One possible explanation is that the swap regret variants

are simply better at avoiding “bad” local minima, but are much slower to converge overall. The

qualitative visual results appear to support this idea, as the swap regret variants’ results roughly

match the results of exact inference, albeit with much greater uncertainty.
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Figure 4.5: Evaluation on IMs with 12×12 Grids, MWU Variants

Results of varying the number of maximum iterations. We tried running our proposed fp (ce)

algorithm with different numbers of iterations. We found that increasing the number of iterations

from 15 to 50 (and greater) only leads to minimal improvement in average marginal error, as

shown in Fig 4.6. The average marginal error is shown as a line, and is obtained from 20 randomly

generated Ising models and corresponding estimates. The marginal error of each individual model

is represented by a circle on the graph. Each marginal error is the result of averaging over all values

of the probability of attractive interaction q ∈ {0.0,0.1, . . . ,0.9,1.0}, like what was done for the

“constant” aggregate results.

The plot also shows that each run of fp (ce) on different models results in a consistent level of

error. That is, the variance of the error is low. Compare this with a similar experiment on trw and

gs, which exhibit greater error variance, even when the number of iterations is much higher. This
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suggests that fp (ce) converges to an estimate in a lower number of iterations than gs and trw, and

does so with better consistency.

Figure 4.6: Evaluation on IMs with 12× 12 Grids, “Constant” Case, Uniform Interaction

Magnitude (w = 4.0): Marginal Error by Number of Iterations

4.1.3 Experimental Results, Qualitative Evaluation

In addition to the results discussed above, we also produced visualizations of each algorithm’s

output for visual comparison. This helped us see if certain algorithms which performed poorly in

the quantitative evaluation were at least producing estimates which seem reasonable or not. The

visual representations also highlight how the structure of the “mixed,” “attractive,” and “constant”

models differ from each other in certain situations.

To build the visualization, we simply used the final estimated marginal probabilities produced

by each algorithm and created a corresponding gray-scale d× d image. Each pixel in the image

represents one node variable in the original Ising model. Whether a pixel is white, black, or gray is

determined by the estimated marginal probability of the corresponding node’s assignment. White
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pixels represent nodes whose estimated probability of being assigned “+1” is 1.0, while black

pixels represent nodes with estimated probability 0.0. Gray-scale pixels represent non-extreme

node probabilities of varying magnitude, depending on how light or dark the pixel is.

Note that the visualizations only show the result of one of the models generated for each case.

We did not perform any sort of aggregation (such as averaging) to try to represent every model’s

results, like what was done in the quantitative evaluation. Therefore, we cannot say that the visu-

alizations shown in each case are truly representative of the behavior of each algorithm overall.

“Mixed” 12× 12 results (Fig. 4.7). Each algorithm used in the quantitative evaluation is in-

cluded in the visualization, with the exception of baseline. This is because bl would simply show

up as a completely gray image, since every node’s estimated probability is 0.5. We can see from the

exact inference result that these “mixed” models lead to chaotic assignments without any sort of

discernible pattern. This makes intuitive sense, because “mixed” models have edge weights which

are equally likely to be positive or negative. Positive edge weights cause neighboring nodes to be

more likely to be the same, whereas negative edge weights make them more likely to be different.

There do not appear to be many general differences between the w = 2.0 and w = 4.0 models, at

least based on the exact inference output.

We can see that the output of gs almost exactly mirrors that of exact inference in the w = 2.0

case. This is not too surprising, given that gs performed very well in the “mixed” case at lower

values of w. On the other hand, in the “harder” w = 4.0 case, the gs estimation was not quite as

accurate, though from a qualitative standpoint it still appears to be fairly good. Compare that to the

results of trw, which in the w = 2.0 case gives a reasonably accurate estimation, but in the w = 4.0

case does not produce a useful estimate at all. The resulting estimation puts nearly all nodes at

about 0.5 probability of positive assignment, putting this estimation more or less on par with our

simple baseline estimator. Consider the results of mf, which in the quantitative evaluation we found

to be “consistently worse than bl”. However, even this method appears to be better in a qualitative

sense than trw, especially in the w = 4.0 case, where mf at least estimates some portions of the
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distribution correctly. We can also see that certain methods, specifically mf, mw er, mw er cf, and

nr, seem to converge to mostly pure strategies. That is, the resulting node probabilities are almost

always very close to zero or one. This is a trend that we observe in other cases as well.

w = 2.0 w = 4.0

Figure 4.7: Visual Representation of Two Example IMs with 12× 12 Grids, “Mixed” Case,

Edge Weight Magnitude w ∈ {2.0,4.0}

“Attractive” 12×12 results (Fig. 4.8). Exact inference results in a fairly homogeneous assign-

ment, especially in the higher weight case. This makes sense because every edge weight is positive,

meaning nodes will generally take the same value as their neighbors. This leads to a more “struc-

tured” appearance than the “mixed” models.

For w = 2.0, gs once again performs very well, finding a distribution which appears identical

to exact inference. The other algorithms do not perform quite as well, but most of them are able

to get some elements of the distribution correct. For example, bp’s estimate of the left half of

the model appears correct, while trw, mw er cf, and fp (ce) found the dark box in the upper right

corner. Like the high weight “mixed” models, the high weight “attractive” models appeared to lead

to harder problems, as evidenced by the fact that none of the evaluated algorithms produced a good
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estimation. It is interesting how different algorithms seem to produce similar (but not necessarily

good) results. For example, in the w = 4.0 case, gs, trw, mw er cf, fp (ce), and even mw sr and

mw sr cf all have roughly similar output, with the bottom left being dark and the upper right being

light. These methods also produce roughly similar estimates in the w = 2.0 case, though only gs,

and trw to a lesser extent, closely match exact inference.

w = 2.0 w = 4.0

Figure 4.8: Visual Representation of Two Example IMs with 12× 12 Grids, “Attract” Case,

Edge Weight Magnitude w ∈ {2.0,4.0}

“Constant” 12× 12 results (Fig. 4.9, Fig. 4.10, Fig. 4.11). Since the “constant” models were

built with different probabilities of attractive interaction q, we include one visualization each for

q = 0.0, q = 0.5, and q = 1.0. First we will focus on the q = 0.0 models (Fig. 4.9). We can see

that these models exhibit a very distinctive “checkerboard” pattern in the inference results. This

is caused by the fact that when q = 0.0, every edge weight is negative. Thus, every node is likely

to have a different assignment than its neighbors. In addition, because all the edge weights are

the same constant −w, any two neighboring nodes are just as likely to be different than any other

two neighbors. Note that because every edge weight is identical, the node biases are the deciding
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factor between whether the checkerboard is “black-white-black” or “white-black-white,” starting

from the upper left corner. Note also that the w = 2.0 checkerboard is “fuzzier” than the w = 4.0

checkerboard, that is, the node probabilities are not as close to zero or one. This is simply because

the lower weight model has a weaker negative interaction between neighbors, so the probability

that the neighbors are actually different is not as high as in the higher weight model.

All of the approximation algorithms were able to find at least a “checkerboard-like” strategy.

However, simply having a checkerboard strategy does not mean the estimation is accurate. For in-

stance, in the w = 4.0 case, trw matches exact inference perfectly, but bp has every node assigned

incorrectly. Recall that in the quantitative evaluation, trw and fp (ce) performed very well in the

extreme q models. This implies that these two algorithms are able to use information from the node

biases effectively in cases where the edge weights are identical, while the other algorithms cannot.

On a related note, the mw sr and mw sr cf methods produce what appear to be “fuzzy checker-

boards”. Although a checkerboard pattern exists, it is “fuzzified” across all nodes seemingly at

random. This can be explained by the fact that node biases are still generated uniformly at ran-

dom, even though the edge weights are not in this case. This tells us that the mw sr and mw sr cf

algorithms are strongly affected by node biases even when the edge weight magnitudes are much

greater than the node bias magnitudes. We will observe this phenomenon again in Section 4.2.3,

when we look at similar experiments done on MNIST-derived Ising models.
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w = 2.0 w = 4.0

Figure 4.9: Visual Representation of Two Example IMs with 12×12 Grids, “Constant” Case

with q = 0.0, Edge Weight Magnitude w ∈ {2.0,4.0}

Next is the q = 0.5 case (Fig. 4.10). Based on the exact inference results, these models appear

similar to the “mixed” case models discussed earlier. In the low weight case, every algorithm

other than trw was able to find a solution which at least bear some semblance to exact inference.

The output of trw is especially interesting. We can see that it is able to perform the inference

well in a small region, while the rest of the model remains quite fuzzy, with node probabilities

near 0.5. Perhaps given many more iterations, it would eventually converge to a good estimate.

However, it turns out that about half the time in non-extreme “constant” cases, trw simply finds a

local minimum where every node probability is approximately 0.5, and stops early. That is, about

half the time trw performs approximately as well as a simple baseline estimator. This highlights

how these “constant” models can be tricky to solve even for state-of-the-art algorithms.
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w = 2.0 w = 4.0

Figure 4.10: Visual Representation of Two Example IMs with 12×12 Grids, “Constant” Case

with q = 0.5, Edge Weight Magnitude w ∈ {2.0,4.0}

Finally, we have the q = 1.0 case (Fig. 4.11). In these models, every edge weight is positive

with value w. Thus it makes sense that, in contrast to the q = 0.0 “checkerboard” where every

neighbor is different, here a “sheet” is formed where all neighbors (and thus all nodes) have the

same assignment. Like when q = 0.0, the w = 2.0 case has a fuzzier exact inference result, leading

to either a light gray or dark gray assignment rather than white or black. From the quantitative

evaluation, we know that trw and fp (ce) should perform very well in this extreme q setting. While

trw outputs all-black or all-white, fp (ce) produces mostly-black or mostly-white due to influence

from the node biases. It is worth noting that mw sr and mw sr cf also visibly contain the same

node bias influence that fp (ce) does. Despite being able to find checkerboard assignments when

q = 0.0, mw er, mw er cf, and nr do not seem to be able to find a simple all-white or all-black

assignment when q = 1.0.
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w = 2.0 w = 4.0

Figure 4.11: Visual Representation of Two Example IMs with 12×12 Grids, “Constant” Case

with q = 1.0, Edge Weight Magnitude w ∈ {2.0,4.0}

4.2 MNIST-based Models

After conducting our empirical evaluation on synthetically generated Ising models, we inves-

tigated using Ising models created in a more “realistic” context. To that end, we used the popular

MNIST image dataset (LeCun et al., 1998) to build Ising models for the purpose of soft de-noising.

It is important to note that our primary interest in these experiments is not classifying the images,

or performing a MAP estimation. Instead, we are interested only in belief inference; that is, using

the individual marginal probabilities as a confidence measure of the individual pixel values of the

de-noised image.

4.2.1 Experimental Design

The MNIST images are 28× 28 grayscale pixel images of handwritten digits. Therefore, we

construct 28×28 simple planar Ising models, again consisting of node biases bi and edge weights

wi j, just like in the synthetic experiments. Instead of randomly generating the bias and edge values,

35



we use the following process. First, we convert the grayscale pixels to black (-1) and white (+1)

using a threshold of 0.5. Next, for each pixel, we find the average value of that pixel across

all training images, which is used as the node bias. Finally, we compute the average product

between neighboring pixels, taken across all training images, and use that average product as the

edge weight between those neighboring pixels. Said more precisely: Denote Il as the matrix

representation of the I-th image in the MNIST training dataset, and denote by m the number of

images in that training dataset. The node bias b(i, j) for node or pixel (i, j) is given by:

b(i, j) ∝
1
m

m

∑
l=1

Il(i, j)

The edge weights between node (i, j) and neighboring node (i, j+1), for example, is given by:

w(i, j),(i, j+1) ∝
1
m

m

∑
l=1

Il(i, j+1) Il(i, j)

We apply a normalization factor to both the weights and biases such that max(i, j) |b(i, j)| = 1, in

order to more closely replicate the environment of the synthetic experiments, where the maximum

node bias magnitude was also 1.0. It is important to note that these values are calculated from

all training images, regardless of label. Thus we are building models of “handwritten digits” in

general rather than “handwritten 1,” “handwritten 2,” and so forth.

After building these node biases and edge weights, we prepare test images for evaluation.

We select uniformly at random 100 images from the MNIST test dataset, and convert them to

black/white images using the same thresholding method as above. Then, we add noise to the

black/white image by independently flipping each pixel value with some probability p (the “noise

level”). Then, we modify our existing node biases for each noisy image by taking into account our

“observation” of the noisy image. If I denotes the matrix representation of the noisy black/white

test image, the Gibbs potential of that image’s Ising model is

ΨI(x)≡ ∑
((i, j),(r,s))∈E

w(i, j),(r,s)x(i, j)x(r,s)+∑(i, j)b̃(i, j)(I(i, j))x(i, j)
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where

b̃(i, j)(I(i, j)) ∝ b(i, j)+
1
2

I(i, j) ln
1− p

p

We re-normalize such that max(i, j) |b̃(i, j)| = 1. Note that each model has different node biases

based on the observation of their associated noisy image, but have identical edge weight values.

We ran the exact same algorithms on the MNIST-based Ising models as in the synthetic exper-

iments, with one major exception. It was not possible to run exact inference on the MNIST image

models, since the associated Ising models were 28× 28 instead of 12× 12 like in the synthetic

experiments and thus had exponentially greater memory requirements. We also used a slightly

different number of maximum iterations for most of the other algorithms: 104 for bp, nr, and mw

(all variants), 105 for trw and gs, and 106 for mf. fp (ce) remained at 15 iterations.

4.2.2 Experimental Results, Quantitative Evaluation

Fig. 4.12 shows the results of our experimental quantitative evaluation on MNIST-based Ising

models, using a noise level p = 0.05. Like in the synthetic experiments, we performed hypothesis

testing on the results using paired z-tests on the individual differences, each with p-value 0.05.

Since we do not have the results of exact inference to compare differences to, we instead use gs as

a stand-in for exact inference. The MNIST-based Ising models have low maximum edge weight

magnitude compared to the node bias magnitudes, and as we mentioned earlier, the Gibbs sampler

easily outperforms all other approximation algorithms in this type of situation.

The computed edge weights for our MNIST-based Ising models were almost all positive, mean-

ing the soft de-noising problem closely corresponded to the “attractive” case in the synthetic ex-

periments. However, because the edge weight magnitudes were quite low as we mentioned earlier,

these instances were much “easier” to solve than the synthetic instances. This is evidenced by

the plot, since it is clear that every approximation algorithm performs much better than baseline.

Compare this result to the attractive synthetic experiments, where many algorithms could not con-

sistently beat the simple baseline estimator. One result which stands out in particular is mf, as it

was often indistinguishable from bl in the synthetic experiments, but easily outperforms bl in this
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experiment. In order, the statistically best performing algorithms were: 1) bp, 2) trw, 3) mf, 4)

mw er, 5) mw er cf, 6) fp, 7) nr, 8) mw sr, 9) mw sr cf, and 10) bl.

Figure 4.12: Evaluation on IMs Derived from MNIST Images, 28×28 Grids

Our models were originally built using examples of all possible types of handwritten digits.

However, we also tried building models using only a specific digit. We computed edge weights

and biases using only images in the MNIST training dataset with a label of “1,” and observed

only image samples from the test dataset with a label of “1”. The results of the handwritten

“1” experiment are shown in Fig. 4.13. Although the algorithms retain their relative order to each

other when run on “only 1’s” versus “all” digits, the range of average marginal errors they achieved

tightened.
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Figure 4.13: Evaluation on IMs Derived from MNIST Images, 28×28 Grids

4.2.3 Experimental Results, Qualitative Evaluation

We performed additional preliminary experiments with the intent of making the MNIST-based

Ising models “harder,” by increasing the magnitude of the edge weights wi j, while keeping the

node biases bi low. The most straightforward way to accomplish this was to simply increase the

noise level p. Increasing p will lead to b̃(i, j) decreasing, which in turn decreases the normalization

factor, which makes wi j larger. As we know from the synthetic experiments, once the wi j mag-

nitudes increase to values above 2.0 or so, the Gibbs sampler no longer performs exceptionally

well. Therefore we cannot necessarily use Gibbs sampler as a proxy for exact inference in the

higher noise settings, which means we do not have an appropriate way to quantitatively measure

the quality of a result.

This limitation was our main motivator for creating visual representations of the results for
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inspection. The algorithms’ output at noise levels p ∈ {0.05,0.10,0.15,0.25} are shown in Fig-

ure 4.14. The grayscale images show the corresponding marginal probability estimate for each

individual pixel/node in the Ising model. Note that while we do include the original handwrit-

ten digit, it is not fair to compare the results directly to that original image. We are interested in

probabilistic inference, while the original image is akin to a MAP assignment.

The noise level p = 0.05 results are comparable to the quantitative evaluation in the previous

section. We can see that all methods output estimates which are close to gs, our “ground truth”

algorithm in this case. We can say that the inference done by gs does appear to be good quality,

since if we were to build a MAP assignment based on the inference we would recover the original

digit with very good accuracy. However, as the noise level increases, the inference done by gs

becomes less and less good. The quality of bp, mf, nr, mw er, and mw er cf deteriorate as well.

At noise level p = 0.25, the image becomes obscured to a point where even a human may not be

able to confidently recover the original digit. Only trw, fp (ce), mw sr, and mw sr cf maintain a

reasonable quality of estimation at this noise level.

40



p = 0.05 p = 0.10

p = 0.15 p = 0.25

Figure 4.14: Visual Representation of MNIST-based IMs with Increasing Noise Levels

Upon inspection of the output files, we found that the weight magnitudes wi j ranged between

0.45 and 0.70, depending on the noise level. To highlight how these edge weight magnitudes can

affect the quality of estimation, we simply ran the experiment again, but with all edge weights

multiplied by a constant factor 2.0. The results of this experiment are shown in Figure 4.15.
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p = 0.05 p = 0.10

p = 0.15 p = 0.25

Figure 4.15: Visual Representation of MNIST-based IMs with Increasing Noise Levels, Dou-

bled Edge Weights

Now with the doubled edge weights, we observe the following. Like before, the estimates

appear reasonably good at lower noise levels, but get worse as noise level increases. At noise

level p = 0.15, however, we notice some discrepancies with the previous experiment. Here, gs,
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bp, and mf were unable to output anything resembling the original digit, unlike before. In the

p = 0.25 case, the only algorithms able to produce a reasonable qualitative estimation were mw sr

and mw sr cf. The other methods either produced nothing (all black), or shapes which do not

appear to strongly correlate with the original digit.

Figure 4.16: Visual Representation of MNIST-based IMs at Noise Level p = 0.50

In Section 4.1.3 we observed that mw sr and mw sr cf may be more strongly influenced by

node biases than other methods. This property could explain why only those two methods were
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able to consistently output good estimations, since in this MNIST setting, the only thing which

differentiates two image examples are the node biases. We can highlight the influence of the node

bias by running an experiment where the noise level is p = 0.50. Under these conditions, the entire

image becomes entirely noise. This makes the observed node bias b̃(i, j)(I(i, j)) equivalent to b(i, j),

since the difference 1
2 I(i, j) ln 1−p

p becomes zero when p = 0.50. In Figure 4.16 we can see that

mw sr and mw sr cf still output a very fuzzy shape, despite the input being just noise. In fact,

those two methods always output the same fuzzy shape in every model at p = 0.50, which makes

sense since b(i, j) is the same across all images. One can think of the fuzzy shape as an average

MNIST handwritten digit.

The effect of the edge weight magnitudes was much more apparent in the MNIST setting than in

the synthetic setting. Once the edge weights became large enough, almost all methods were unable

to recover anything about the original digit. There is a simple explanation for this phenomenon,

however. We mentioned that the MNIST-inspired models have nearly all positive, or attractive

edge weights. As the edge weights become larger, each pixel is more strongly encouraged to be

the same as its neighbors. Handwritten digit images typically contain more black pixels than white

pixels, especially along the outer edges. In other words, most nodes/pixels are already biased to

be black or at least partially black. This bias towards black, coupled with the strong attractiveness

of the edge weights, means that all the nodes/pixels are estimated as very likely to be black, thus

resulting in all-black output. Remarkably, only mw sr and mw sr cf did not appear to be strongly

affected by the edge weight magnitudes. In fact, despite performing worse than other methods

according to the quantitative evaluation, mw sr and mw sr cf consistently performed the best in

“harder” MNIST-based instances, qualitatively speaking.
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Chapter V: Conclusions

In this thesis, we provide general formulations of the problem of belief inference in MRFs

as equilibrium computation in graphical potential games, as well as some immediate algorithmic,

computational, and theoretical implications derived from this connection. We propose several

game-theoretic inspired methods which can be applied to the problem of belief inference in PGMs.

We evaluate the effectiveness of these proposed algorithms in the context of Ising models with grid

graphs, in both synthetic randomly generated problems as well as problems derived from a real-

world data set. We show that many methods, even state-of-the-art algorithms from PGM literature,

are often not better than a simple baseline estimation (that all marginal probabilities are equal to

0.5). We show that certain classes of synthetic Ising models lead to “harder” instances where

our proposed game-theoretic methods compete with and even beat state-of-the-art algorithms like

TRW. The subsequent MNIST-based experiments highlight how these game-theoretic methods can

excel even in a “real-world” image de-noising application. We encountered “harder” instances of

MNIST-derived Ising models where a game-theoretic method based on the Multiplicative Weight

Update algorithm clearly outperformed all other evaluated algorithms. Although we cannot claim

that game-theoretic inspired algorithms excel in every situation, this promising result gives us

confidence that there are other practical applications for these methods waiting to be discovered.

In closing, our goal is that the work presented in this paper can establish sufficient precedent for

research in formulating probabilistic inference problems as problems of equilibrium computation.

We believe that the synergy between equilibrium computation and belief inference can potentially

lead to many new and interesting discoveries in both computational game theory and probabilistic

graphical models.
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