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ABSTRACT

Electric ships experience large propulsion-load fluctuations on their drive shaft

due to encountered waves and the rotational motion of the propeller, affecting the re-

liability of the shipboard power network and causing wear and tear. This dissertation

explores new solutions to address these fluctuations by integrating a hybrid energy

storage system (HESS) and developing energy management strategies (EMS). Ad-

vanced electric propulsion drive concepts are developed to improve energy efficiency,

performance and system reliability by integrating HESS, developing advanced control

solutions and system integration strategies, and creating tools (including models and

testbed) for design and optimization of hybrid electric drive systems.

A ship dynamics model which captures the underlying physical behavior of the

electric ship propulsion system, is developed to support control development and

system optimization. To evaluate the effectiveness of the proposed control approaches,

a state-of-the-art testbed has been constructed which includes a system controller, Li-

Ion battery and ultra-capacitor (UC) modules, a high-speed flywheel, electric motors

with their power electronic drives, DC/DC converters, and rectifiers.

The feasibility and effectiveness of HESS are investigated and analyzed. Two

different HESS configurations, namely battery/UC (B/UC) and battery/flywheel

(B/FW), are studied and analyzed to provide insights into the advantages and limi-

tations of each configuration. Battery usage, loss analysis, and sensitivity to battery

aging are also analyzed for each configuration. In order to enable real-time applica-

tion and achieve desired performance, a model predictive control (MPC) approach

is developed, where a state of charge (SOC) reference of flywheel for B/FW or UC

xvii



for B/UC is used to address the limitations imposed by short predictive horizons,

because the benefits of flywheel and UC working around high efficiency range are ig-

nored by short predictive horizons. Given the multi-frequency characteristics of load

fluctuations, a filter-based control strategy is developed to illustrate the importance

of the coordination within the HESS. Without proper control strategies, the HESS

solution could be worse than a single energy storage system solution.

The proposed HESS, when introduced into an existing shipboard electrical propul-

sion system, will interact with the power generation systems. A model-based analysis

is performed to evaluate the interactions of the multiple power sources when a hybrid

energy storage system is introduced. The study has revealed undesirable interactions

when the controls are not coordinated properly, and leads to the conclusion that a

proper EMS is needed.

Knowledge of the propulsion-load torque is essential for the proposed system-level

EMS, but this load torque is immeasurable in most marine applications. To address

this issue, a model-based approach is developed so that load torque estimation and

prediction can be incorporated into the MPC. In order to evaluate the effectiveness

of the proposed approach, an input observer with linear prediction is developed as

an alternative approach to obtain the load estimation and prediction. Comparative

studies are performed to illustrate the importance of load torque estimation and

prediction, and demonstrate the effectiveness of the proposed approach in terms of

improved efficiency, enhanced reliability, and reduced wear and tear.

Finally, the real-time MPC algorithm has been implemented on a physical testbed.

Three different efforts have been made to enable real-time implementation: a specially

tailored problem formulation, an efficient optimization algorithm and a multi-core

hardware implementation. Compared to the filter-based strategy, the proposed real-

time MPC achieves superior performance, in terms of the enhanced system reliability,

improved HESS efficiency, and extended battery life.

xviii



CHAPTER I

Introduction

1.1 Background

1.1.1 All-Electric Ships with Integrated Power System

Electric propulsion in marine applications is not a new concept, dating back over

100 years [6, 7, 8]. Recently, marine electrification has become increasingly popular

after the development of high power variable speed drives (VSDs) in the 1970’s-1980’s

[6, 9, 10]. With the introduction of VSDs, a common set of generators could power

both the ship service and propulsion systems. This concept is referred to as an

integrated power system (IPS), which is the characterizing element of an all-electric

ship (AES) [1, 9, 10, 11, 12]. The comparison of traditional mechanical drive and

IPSs is shown in Figure 1.1.

The IPS architecture provides the electrical power for both ship service and electric

propulsion loads by integrating power generation, distribution, storage and conver-

sion. Compared to the traditional mechanical drive, the benefits of IPS are summa-

rized in the following:

• IPS improves the efficiency of the prime movers [1, 2, 3, 6, 7, 13, 14, 15]: The

optimal operating power of marine diesel engines is typically between 70%-90%

of their rated power; however, they often operate at 20-50% of their rated power

1



Figure 1.1: A comparison of traditional mechanical drive and IPSs. MD: motor drive;
Mtr: motor; Gen: generator. [1]

Figure 1.2: Specific fuel consumption vs percent rated power of a typical marine diesel
engine. [2]

[2], especially for large military ships. The specific fuel consumption of a typical

marine diesel engine is shown in Figure 1.2. Since the prime movers do not
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Figure 1.3: SFC curves for k active diesel engines. [3]

operate in their most efficient speed and power range under many operating

conditions, the overall prime mover efficiency can be significantly degraded.

IPS is able to optimize the number of operating prime mover and generator sets

based on the overall power of the propulsion system and ship service systems.

For example, as shown in Figure 1.3 [3], when the total power requirement is

less than 300kW, only 1 prime mover and generator set will operate; if it is

between 300kW and 500kW, then 2 generators are preferred. Therefore, the

overall system efficiency of an IPS configuration can be considerably higher

than that of an equivalent mechanical drive design, particularly at low power

levels. As a result, fuel consumption and emissions are reduced [6].

• IPS improves the efficiency of the propulsors [1, 13, 15]: In an integrated power

system, the traditional controllable-pitch propeller (CPP) in the propulsion-

shaft line can be replaced by a high-efficiency fixed-pitch propeller (FPP). The

CPP is able to control the ship’s speed, both forward and reverse. This is im-

portant when the propeller is coupled with prime movers such as diesel engines

and gas turbines that are not reversible and may have a minimum operating
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rotational speed. Compared to FPP, CPP needs a large hub to hold the appa-

ratus in order to adjust its pitch. Due to this large hub, the efficiency of CPP

will be reduced. In contrast, the motors in IPS are able to operate from zero

to their maximum speed for both forward and reverse operation. As a result of

this characteristic, a high-efficiency FPP can be employed in IPS.

• IPS provides flexibility of arrangements [1, 7, 13, 14, 16]: For the electrical

network, the prime mover and generator sets can be placed almost anywhere,

which offers flexibility to the designers. Furthermore, long shaft lines can be

simplified with direct motor drives, leading to space saving.

• IPS improves the survivability of electrical systems [1, 7, 14, 15, 16, 17]: IPS

supports zonal survivability, which is the ability of a distributed system to

ensure that loads in one zone do not experience a service interruption by faults

which occurs in other zones. Zonal survivability also facilitates the ship’s ability

to maintain or restore the damaged zones without interrupting other zones.

• IPS supports high-power mission systems, such as high-power radar and weapon

systems [1, 15]: As the demand of power missions increases [4, 18], it is essential

to support high-power mission systems for future naval ships. IPS outperforms

traditional mechanical drives in coordinating the propulsion system with ship

service systems. Usually, the need for high-power mission systems is not re-

quired at the same time as maximum propulsion. The power sharing ability

of IPS requires less generator sets than non-integrated power systems to sup-

port the same high-power mission systems, contributing to acquisition savings,

reduced maintenance costs, and reduced volume.

• IPS offers a more comfortable residential environment [15, 16]: Because of the

reduction of mechanical equipment, such as long shafts and large gearboxes,

noise and vibration, can be significantly attenuated by an electric propulsion
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system. This is one of the main reasons that IPS has become standard in large

cruise ships [16].

IPS provides considerable benefits to modern ships; at the same time, it faces

challenges. One of these challenges is propulsion load fluctuations from the propeller.

These load fluctuations do not affect the electrical shipboard network in traditional

mechanical drives, because the fluctuations are isolated by the non-integrated power

system. For the integrated power system, however, these fluctuations can affect the

electrical shipboard network.

Three different types of propulsion load fluctuation are studied in the literature

[19, 20, 21, 22, 23, 24, 25, 26]:

• fluctuations from the impact of the first order wave at the encounter wave

frequency (load periods typically from seconds to minutes),

• fluctuations from the in-and-out-of-water effect (load periods in seconds),

• fluctuations caused by the propeller rotation at the propeller-blade frequency

(i.e. number of blades times shaft speed in revolutions per second).

The impact of the encounter-wave-frequency fluctuations combined with the in-

and-out-of-water effect has also been reported in the literature [19, 20, 21, 22, 23].

These fluctuations, especially when the propeller is in-and-out-of-water, will signifi-

cantly reduce electrical efficiency, affect power quality on the shipboard power net-

work, and cause wear and tear. The fluctuations caused by the in-and-out-of-water

effect can be as high as 100% of the nominal power. These two load fluctuations are

defined as low-frequency fluctuations in this dissertation.

The high-frequency fluctuation discussed in this dissertation is at the propeller-

blade frequency (i.e. number of blades times shaft speed in rps) [19, 20, 21, 22].

This fluctuation, caused by the wake field, has been discussed in [24]. The Fourier
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analysis of the wake field, discussed in Chapter 5 of [25], is used to capture these high-

frequency dynamics. It it worth noting that the fluctuations at the propeller-blade

frequency can be very significant during ventilation [19]. The experimental results of

the propeller at both non-ventilation and ventilation conditions were provided by [26],

where significantly large torque fluctuations at both high and low frequencies were

observed. The importance of the mechanical effects caused by the propeller-blade

frequency fluctuations has been discussed in [19, 20, 21, 22]. This high-frequency

fluctuation is reported as one of the main causes for severe mechanical wear and tear

of the propulsion unit. The impact on the electrical system, however, highly depends

on the propeller inertia and the associated controller.

1.1.2 Energy Storage Devices for All-Electric Ships

The importance of Energy Storage Device (ESD) development in the electrifica-

tion of ships is highlighted in the Naval Next Generation Integrated Power System

Technology Development Roadmap in 2007 and 2013 [4, 18], where batteries, ultra-

capacitors (UCs), and flywheels are discussed as possible ESDs. The battery is an

electrochemical device with high energy density but relatively poor power density. In

contrast, ultra-capacitors store energy in an electric field without chemical reactions,

while flywheels store energy mechanically in the form of kinetic energy, both yielding

power densities that are much higher than that of batteries. However, their lower

energy densities make ultra-capacitors and flywheels unsuitable for sustained oper-

ation. The Ragone plot of batteries, ultra-capacitor (double-layer capacitors) and

flywheel is shown in Figure 1.4. These complementary characteristics of batteries,

ultra-capacitors, and flywheels suggest that different combinations of ESDs should

be considered for different applications [4, 27]. Only using one single type of ESD

can result in increased size, weight and cost for electric ship operations [28]. The

combination of different ESDs is defined as a Hybrid Energy Storage System (HESS).
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Figure 1.4: Ragone plot: Comparison of energy storage energy and power density. [4]

ESDs (namely batteries, UCs and flywheels) and their combinations (i.e., HESS)

have been explored by the automotive, power system and control engineering commu-

nities. ESDs and HESSs are widely used in applications, such as electric/hybrid elec-

tric vehicles [29, 30, 31, 32, 33, 34, 35], micro grids [36, 37, 38, 39], and uninterruptible

power supplies (UPS) [4, 40]. However, the ESDs/HESSs in marine applications are

still understudied [4]. The potential benefits of integrating ESDs/HESSs have been

reported in the literature. In order to support pulse power loads, such as high-power

radar and lasers, UCs have been used in [41, 42] and flywheels have been studied in

[43, 44, 45]. The combination of the battery, UC and flywheel for mitigating pulse

power loads is studied in [46]. Note that the studies in [41, 43, 44, 45, 46] are based

on simulations, while the approach in [42] is experimentally validated. In order to

reduce wear and tear on the generator sets, batteries are used in [2, 47] to “smooth”

the generator power. In [17], battery modules are used to assist the turbine and

fuel cell in tracking the power command. The reduction of fuel consumption using

ESD/HESS has been explored in [3, 48, 49, 50]. A battery ESD is used in [3], and an

HESS, which combines batteries with UCs, is studied in [48, 49, 50]. In order to ad-

dress propulsion load fluctuations, batteries, UCs, flywheels and their combinations,
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i.e., HESS, have been studied in [51, 52, 53, 54, 55].

According to the literature review, UCs and flywheels are the best candidate for

mitigating pulse power effects. This is because the pulse power load is usually of

high power and short duration. The UC and flywheel have higher power density

than the battery. Additionally, the UC and flywheel have fast dynamic response to

compensate the pulse power load. For a long-duration load, the battery is preferred

due to its high energy density. Compared to UC and flywheel, however, the main

disadvantages of the battery are its relatively short cycle life and limited recharge

rate. Furthermore, as the capacity of the battery degrades, the internal resistance

will be increased, leading to increased losses. In order to address the limitations of

the battery, the HESS, thanks to its complementary characteristic, is one of the most

popular solutions. The characteristics of each ESD are summarized in Table 1.1.

Note that the preferred characteristics are in blue and undesirable ones are in red.

Table 1.1: The characteristics of battery, UC and flywheel.
Battery UC Flywheel

Energy density High Low Medium
Power density Low High Medium
Cycle life Short Medium Long
Recharge rate Low High Medium
Self-discharge Low Medium High

1.1.3 Energy Management for All-Electric Ships

Energy/power management strategies coordinate multiple power sources and mul-

tiple power loads, in order to achieve robust and efficient operation and to meet var-

ious dynamic requirements. An effective energy management system is needed to

provide improved fuel efficiency, enhanced response speed, superior reliability and

reduced mechanical wear and tear [17, 42, 47, 56]. In order to achieve these expec-

tations, optimization-based energy management is required to address the trade-offs

among these objectives. Furthermore, optimization-based energy management is also
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suggested in the Naval Power Systems Technology Development Roadmap [4]. The

characteristics of IPS in all-electric ships have been summarized in [56], including:

• Nonlinear and multi-input-and-multi-output plant characteristics;

• Reconfigurable underlying physical components;

• Multi-scale time dynamics;

• Multiple operating constraints.

These characteristics suggest model predictive control (MPC) as a natural choice

for optimization-based energy management strategies. Energy management strate-

gies using MPC have been investigated in the literature. A sensitivity-function-based

approach is proposed in [17], which achieves real-time trajectory tracking. In [42, 57],

a nonlinear MPC is developed to compensate pulse power loads and follow the desired

references, including the desired bus voltage, desired reference power for generator sets

and desired reference speed for the motor. In [47], a stochastic MPC is developed to

smooth out power fluctuations. A multi-level MPC is used in [50] to address distur-

bances from the environment. The main challenge to implement the model predictive

control approaches discussed above is to solve the optimization problem in real-time

within a relatively short sampling time. In order to evaluate the effectiveness of the

proposed approach, the energy management strategy developed in this dissertation

is implemented on a test-bed. To our best knowledge, the study in [42] is the only

one prior to this work, which has demonstrated the feasibility of optimization-based

shipboard energy management with test results on a physical platform.

1.2 Motivation

Ship electrification has been a technological trend in commercial and military ship

development in response to recent energy efficiency and environmental protection ini-
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tiatives [4, 18]. Electric propulsion plays a central role in this design paradigm shift.

The introduction of electric propulsion has brought about new opportunities for tak-

ing a fresh look at old problems and developing new solutions. Thrust and torque

fluctuations due to the hydrodynamic interactions and wave excitations have been

identified as inherent elements in the ship propulsion system [19, 20, 24, 26, 58]. As

discussed in Section 1.1.1, three different propulsion load fluctuations are studied in

this research: fluctuations from the impact of the first order wave at the encounter

wave frequency, fluctuations from the in-and-out-of-water effect (load periods in sec-

onds) and fluctuations at the propeller-blade frequency (i.e. number of blades times

shaft speed in rps). These fluctuations significantly affect the performance and life

cycle of both mechanical and electrical systems involved, as has been analyzed in

[21, 22, 23, 59]. For mechanical systems, excessive fluctuations on torque and power

will increase mechanical stress and cause wear and tear. The importance of the me-

chanical effects caused by propeller-blade frequency fluctuations has been discussed

in [19, 20, 21, 22]. For electrical systems, power fluctuations, especially when the pro-

peller is in-and-out-of-water, will reduce electrical efficiency and affect power quality

on the shipboard power network [19, 20, 21, 22, 23, 24, 25, 26]. In order to address

these issues, several studies have been discussed in the literature, such as using thrust

control for power smoothing [19, 20]. The trade-offs between speed control, torque

control, and power control of the motor have been studied in [19]. Using thruster bi-

asing for vessels with dynamic positioning systems has been proposed in [60, 61, 62] to

reduce load fluctuations. These methods deal primarily with low-frequency variations

and are typically applied to dynamic positioning systems.

In order to address the load fluctuations, a hybrid energy storage system solu-

tion is proposed. The concept of the proposed system is shown in Figure 1.5. The

energy storage elements serve as a buffer to absorb energy when the motor is under-

loaded and supply energy when overloaded, thereby isolating the power network from
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Figure 1.5: Diagram of the conceptual electric propulsion system with hybrid energy
storage.

propulsion load fluctuations and improving overall system efficiency. Using different

energy storage mechanisms allow one to exploit their different characteristics to ad-

dress different frequency components in the power and thrust fluctuations. Besides

the well-configured HESS, the integration and operation of a shipboard electrical

propulsion system with HESS relies on effective power/energy management strate-

gies in order to mitigate the load power fluctuation effects and achieve the desired

benefits, in terms of increased system efficiency, improved reliability, and reduced

wear and tear. To improve the robustness of the control strategy, addressing the un-

certainties in the model, especially in the propulsion load torque model, is one of the

key issues. Furthermore, a physical test-bed is required for implementing the control

strategies in real-time and evaluating their effectiveness. In summary, the motivation

of this research is to answer the following questions:

• How to capture the underlying dynamics in the electric ship propulsion sys-

tem, especially the propulsion load dynamics, to support control and system

integration?

• How to evaluate the benefits and limitations of different energy storage/hybrid
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energy storage configurations?

• How to develop an energy management strategy to achieve the desired perfor-

mance?

• How to accurately estimate and predict the propulsion load torque and demon-

strate robustness of the energy management solution?

• How to build a physical test-bed for implementing and evaluating the proposed

approaches?

1.3 Main Contributions

This research aims to address propulsion load fluctuations in all-electric ships with

HESS. Although HESS has been investigated in many applications, such as hybrid

electric vehicle, this is the first attempt to exploit HESS to address propulsion-load

fluctuations in all-electric ships. Configuration optimization and energy management

strategy development has been studied. A coordinated approach is used to exploit the

complementary characteristics of HESS. A system-level energy management strategy

is developed using model predictive control. This strategy encompasses the controls of

the primary power sources and propulsion motor, in addition to the HESS, and allows

judicious coordination to achieve desired performance in terms of increased system

efficiency, enhanced reliability, reduced mechanical wear and tear, and improved load-

following capability. The main contributions of this research are summarized in the

following:

1) Model development [63]: To support research activities associated with the

control and optimization of electric ship propulsion systems, a control- and

optimization-oriented model is an essential tool for feasibility analysis and sys-

tem design. The models developed in this dissertation include the propeller

12



and ship dynamic model, hybrid energy storage models, the diesel engine and

generator set model, electrical motor models and the DC bus dynamic model.

The main contribution of model development is the propeller and ship dynamic

model. To the best knowledge of the author, this is the first model to capture

both high- and low-frequency load fluctuations on the propeller.

2) Test-bed development [64, 65]: In order to provide a flexible hardware envi-

ronment for testing and validation of control algorithms for electric propulsion

systems with HESS, the Advanced Electric Drive with Hybrid Energy Storage

test-bed has been constructed in the University of Michigan Power and Energy

Lab (MPEL). This state-of-the-art test-bed, which includes a system controller,

Li-Ion battery modules, ultra-capacitor modules, a high speed flywheel, perma-

nent magnet motors, induction motors, DC/DC converters, and three-phase

inverters, is uniquely designed for HESS development to address the load fluc-

tuation problem in electric ship propulsion systems. The test-bed will be used

to implement and validate the proposed control approaches.

3) Evaluation of energy storage configurations [53, 66]: Since there is no literature

to report the effectiveness of HESS in addressing the multi-frequency propulsion-

load fluctuation problem for all-electric ships, we first explore the HESS solution

as a buffer to isolate the load fluctuations from the shipboard power network.

Two different HESS configurations, namely battery combined with UC and

battery combined with flywheel, are studied. We first quantitatively analyze the

performance of these two configurations and provide insights into the advantages

and limitations of each configuration. The battery usage, loss analysis, and

sensitivity to battery aging of these two configurations are also analyzed.

4) Control development and performance evaluation of HESS [51, 52, 66, 67]: In or-

der to enable real-time applications and achieve desired performance, a model
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predictive control (MPC) strategy is developed. In this MPC formulation, a

state of charge (SOC) reference is used to address the limitations imposed by

short predictive horizons. Furthermore, because of the multi-frequency char-

acteristics of load fluctuations, a filter-based control strategy is investigated to

illustrate the importance of coordination. Without proper control strategies, the

HESS solution could be worse than a single ESD solution. The proposed MPC

and filter-based control strategies are implemented on the physical testbed. The

experimental results demonstrate the effectiveness of the proposed MPC strat-

egy.

5) Development of energy management strategy [54, 55]: When the HESS is in-

troduced into the existing system, there are two potential configurations: a

‘plug-in configuration’ and an ‘integrated configuration’. For ‘plug-in’ configu-

ration, a novel energy management strategy is developed to avoid undesirable

interactions between multiple energy sources. Compared to conventional strate-

gies, the comparison study demonstrates the effectiveness of the proposed en-

ergy management strategy. For ‘integrated configuration’, an integrated energy

management strategy is developed to fully coordinate generator sets, HESS, and

motor drive. A cost function is formulated to achieve desirable performance in

terms of improved efficiency, enhanced reliability, and reduced mechanical wear

and tear.

6) Estimation and prediction of propulsion-load torque [68]: The propulsion-load

torque is not measurable in most marine applications. To address this issue,

we develop a model-based approach to estimate the propulsion-load torque for

all-electric ships. Due to the complexity of the propulsion-load torque model,

we first develop a simplified model which is able to capture the key dynamics,

including both high- and low-frequency load fluctuations. Because of uncer-
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tainties in the model parameters, adaptive load estimation is used, leading to

improved control performance. This model-based approach can be easily inte-

grated with the MPC to formulate an adaptive load estimation/prediction with

MPC (AMPC).

Most of the results outlined above have been documented and published in archived

journals and/or referred conference proceedings [51, 52, 53, 54, 55, 63, 64, 69]. Other

results are under reviewed or preparation for archived journals [65, 66, 67, 68].

1.4 Outline

The dissertation is organized as follows:

In Chapter II, control-oriented models are presented for all-electric ships with

hybrid energy storage. These models include the propeller and ship dynamic model,

hybrid energy storage models, the diesel engine and generator set model, electrical

motor models and the DC bus dynamic model.

Chapter III presents the development of the Advanced Electric Drive with Hy-

brid Energy Storage test-bed for electric ship propulsion systems at the University of

Michigan Power and Energy Lab. To address load fluctuations in electrical propul-

sion systems, this test-bed is developed to validate modeling and control solutions.

Experimental test results, which demonstrate the energy cycling capability of the

test-bed to mitigate the impact of load fluctuations on the bus, are documented in

this chapter.

Chapter IV evaluates different HESS configurations and provides the insights into

the advantages and limitations of each HESS configuration. Two main objectives are

power-fluctuation compensation and HESS loss minimization. Since these objectives

conflict with each other in the sense that effective compensation of fluctuations will

lead to HESS losses, the weighted-sum method is used to convert this multi-objective
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optimization problem (MOP) into a single-objective problem. Global optimal solu-

tions are obtained using dynamic programming (DP) by exploiting the periodicity of

the load. These global optimal solutions form the basis of a comparative study of

B/FW and B/UC HESS, where the Pareto fronts of these two technologies at different

sea state (SS) conditions are derived. The analysis aims to provide insights into the

advantages and limitations of the B/FW and B/UC HESS solutions. To enable real-

time application and achieve desired performance, a model predictive control (MPC)

strategy is developed. In this MPC formulation, a state of charge (SOC) reference is

used to address the limitations imposed by short predictive horizons.

Chapter V evaluates the control strategies of HESS. Since the effectiveness of

HESS highly depends on its control strategies, two strategies for real-time energy

management of HESS are analyzed in this chapter. The first one splits the power

demand such that high- and low-frequency power fluctuations are compensated by

fast- and slow-dynamic energy storage devices, respectively; the second considers the

HESS as a single entity and coordinates the operations of the hybrid energy storage

system. Results show that the coordination within HESS provides substantial bene-

fits in terms of reducing power fluctuation and losses. The battery/ultra-capacitors

(B/UC) configuration is used to elucidate the control implications in this chapter.

Chapter VI introduces two approaches to integrate the new HESS with an existing

propulsion system: the first one is defined as a ‘plug-in approach’, i.e., the new HESS

controller does not change the existing propulsion system; the other one is defined

as an ‘integrated approach’, in which a new integrated controller is developed for the

HESS and propulsion system. For the plug-in approach, the interaction analysis of

different control strategies is performed. The integrated approach takes advantage

of the predictive nature of MPC and allows the designers to judiciously coordinate

the different entities of the shipboard network under constraints, thereby providing

benefits to system performance.
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In Chapter VII, load torque estimation and prediction for implementing MPC-

based energy management strategies is addressed. An AMPC approach is developed

to estimate the unknown parameters in the propulsion-load model. Due to the com-

plexity of the propulsion-load torque model, a simplified model is developed for the

proposed AMPC to capture the key dynamics. In order to evaluate the proposed

AMPC approach, an alternative approach is developed where an input observer (IO)

is used to estimate the propeller-load torque, and a linear prediction is combined

with the IO to predict the future load torque. A comparative study is performed

to evaluate the effectiveness of the proposed AMPC, in terms of minimizing the bus

voltage variation, regulating the rotational speed, and reducing the high-frequency

motor torque variations. The implications of accurate estimation and prediction are

also illustrated and analyzed in this study.

In Chapter VIII, real-time MPC is implemented on an AED-HES testbed. In

order to achieve real-time feasibility, three different efforts have been made: properly

formulating the optimization problem, identifying efficient optimization algorithm,

and exploiting a multi-core system controller. First, a problem formulation of the

proposed CC-MPC is crafted to achieve the desired performance with a relatively

short predictive horizon. Then, an integrated perturbation analysis and sequential

quadratic programming (IPA-SQP) algorithm is developed to solve the optimization

problem with high computational efficiency. Finally, a multi-core code structure is

developed for the real-time system controller to guarantee system signal synchroniza-

tion and to separate system-level and component-level controls, thereby increasing

the real-time capability. Compared with the filter-based control strategy, the im-

provements provided by the proposed real-time MPC demonstrated on the testbed

can be over 50% in terms of reduced bus voltage variations, reduced battery peak

and RMS currents, and reduced HESS losses. Furthermore, given the uncertainties

presented in any testbed, the experimental results also demonstrate the robustness of
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the real-time MPC.

Chapter IX provides conclusions and presents future research directions.
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CHAPTER II

Dynamic Model of An Electric Ship Propulsion

System with Hybrid Energy Storage

The schematic of the electric propulsion system under investigation is shown in

Figure 2.1. The system consists of a prime mover and a generator (PM/G) for power

generation, an electric motor for propulsion, the ship and its propeller, and a hybrid

energy storage system (HESS). Note that the battery/ultra-capacitor HESS is used as

an example in Figure 2.1. Power converters (i.e., DC/DC and AC/DC converters) are

used to connect electrical components. The modeling of each component is described

in this chapter and the resulting control-oriented models are presented.

2.1 Propeller and Ship Dynamic Model

The focus of the propeller and ship dynamic model is to capture the dynamic

behavior of the propeller and ship motion, including the power and torque fluctuations

induced on the motor drive shaft. The characteristics of the propeller, subject to the

wake field and in-and-out-of-water effects, are investigated and simulation results

are presented. As shown in Figure 2.2, the ship dynamics, propeller characteristics,

and motor dynamics are mechanically coupled; they influence each other through

mechanical connections and internal feedback [63].
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Figure 2.1: Model structure of the electric ship propulsion system with HESS.

Figure 2.2: Propeller and ship dynamics model structure.

2.1.1 Propeller Characteristics

The propeller responses, in terms of thrust T and torque Q, are nonlinear functions

of propeller rotational speed n (in rps), ship speed U , and propeller parameters (e.g.

pitch ratio, propeller diameter, loss factor). In this work, we assume that the propeller

speed n is kept at the nominal set point and address the load power fluctuation

problem by integrating an HESS system and developing an optimized control solution

to manage the power.

The thrust, torque, and power can be expressed as:

T = sgn(n)βρn2D4fKT
(JA, P itch/D,Ae/Ao, Z,Rn) , (2.1)
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Q = sgn(n)βρn2D5fKQ
(JA, P itch/D,Ae/Ao, Z,Rn) , (2.2)

P = 2π sgn(n)βρn3D5fKQ
(JA, P itch/D,Ae/Ao, Z,Rn) , (2.3)

where β is the loss factor, ρ is the density of water, D is the diameter of the propeller,

and fKT
and fKQ

are the functions of thrust and torque coefficients, respectively [70]-

[71].

In fKT
and fKQ

, JA is the advance coefficient, Pitch/D is the pitch ratio, Ae/A0 is

the expanded blade-area ratio, with Ae being the expanded blade area and A0 being

the swept area, Z is the number of propeller blades, and Rn is the Reynolds number.

The parameters of the propeller used in this dissertation are listed in Table 2.1.

The loss factor β is used to account for the torque and thrust reduction experienced

by the propeller when it goes in-and-out-of-water.

In our case, we assume βT = βQ = β, and the dynamic effects of ventilation and

lift hysteresis are neglected. The effects of propeller in-and-out-of-water motion and

the sensitivity to submergence, however, will be captured in the loss factor using the

following expression, originally given in [21]:

β =


0, h/D ≤ −0.24;

1− 0.675(1− 1.538h/D)1.258, −0.24 < h/D < 0.65;

1, h/D ≥ 0.65;

(2.4)

where h is the propeller shaft submergence. A positive value of h means that the

propeller stays in the water, and a negative value means the propeller is out of the

water.

To complete the propeller model, one needs to know Va, the advance speed, in

order to calculate the advance coefficient JA = Va

nD
. Note that the wake field, defined
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as w = U−Va

U
, should be taken into account. The wake field model is taken from [25],

which includes the average and fluctuation components. In this model, we assume that

the fluctuation component consists of 5 terms which are harmonic to the fundamental

cos(θ), given as follows:

w =
1

Z

Z−1∑
i=0

[0.2 + 0.12cos(θ − i

2
π)

+ 0.15cos(2θ − 2i

2
π) + 0.028cos(3θ − 3i

2
π)

+ 0.035cos(4θ − 4i

2
π)− 0.025cos(5θ − 5i

2
π)],

(2.5)

where θ ∈ [0, 2π] is the angular position of a single blade. The parameters in equation

(2.5) are estimated from [25]. The fluctuation component of the wake field is related

to the blade motion, which causes the high-frequency fluctuations on the shipboard

network.

Remark 2.1: The resulting fluctuations on the power bus will largely depend

on the motor control strategy used. If the rotation speed and the parameters of

the propeller are constant, the thrust, torque, and power will depend on the ship

speed U , loss factor β, and wake field w. The wake field oscillation in w results in

high-frequency fluctuations, and the wave effect leads to low-frequency fluctuations

through the ship speed U .

2.1.2 Ship Dynamics

The ship dynamics encompass the response of the ship speed to different forcing

functions, including those from the propulsion system, wave excitations, wind, and

hydrodynamic resistance from water, as well as from the environment:

(m+mx)× dU

dt
= T (1− td) +Rship + F, (2.6)

22



where m is the mass of the ship, mx is the added-mass of the ship, td is the thrust

deduction coefficient, which represents the thrust loss due to the hull resistance, F

is wave disturbances, Rship is the total resistance including frictional resistance RF ,

wave-making resistance RR, wind resistance Rwind [25, 72]:

Rship = RF +RR +Rwind, (2.7)

where 
RF =

1

2
CFρU

2S,

RR =
1

2
CRρU

2S,

Rwind =
1

2
CairρU

2AT .

(2.8)

In equation (2.8) S is the wetted area of the ship, and AT is the advance facing

area in the air. Parameters CF , CR, and Cair are the drag coefficients for the water-

ship friction, wave-making, and wind resistance, respectively, and they are assumed

to be constant.

In equation (2.6), the average ship speed is determined by T (1− td) +Rship, and

the oscillation of ship speed is primarily caused by the wave excitation term F [73, 74].

In our work, the first-order wave excitation is considered, while the second-order drift

force due to waves is ignored. The first-order wave excitation has little effect on the

average speed of the ship motion, but it will introduce fluctuating components to the

ship motion, which is essential to our model. The second-order wave force can add

resistance to the ship; however, the force is very small in low sea state, and neglecting

its effects will not change the nature of the problem in our study. The regular wave

model is used here to demonstrate the effectiveness of the proposed method. Irregular

wave models could represent more realistic sea conditions, and will be investigated in

future work.

The model structure and dynamic equations presented in this chapter are rather
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Table 2.1: Ship parameters
Description Parameter Value
Ship length Lship 190m
Ship breadth Bship 28.4m
Ship draft H 15.8m
Ship Mass m 20000ton
Added-mass mx 28755ton
Propeller diameter D 5.6m
Number of propeller blades Z 4
Propeller pitch ratio Pitch/D 0.702
Expanded blade-area ratio Ae/Ao 0.5445
Reynolds number Rn 2× 106

Thrust deduction coefficient td 0.2
Wetted area S 12297m2

Advance facing area in the air AT 675.2m2

Water resistance coefficients CF + CR 0.0043
Air resistance coefficient Cair 0.8

generic. For this study, however, we use an electric cargo ship as the example, whose

design is documented in detail in [75], and whose key parameters are shown in Table

2.1.

For this ship and propeller combination, large fluctuations are observed in the

power and thrust due to propeller rotational motion and regular wave encounters.

Particularly in rough sea conditions (e.g., sea state 6), the propeller will be in-and-

out-of-water, causing large and asymmetric fluctuations. A sample result of the model

response, in both the time domain and frequency domain, is shown in Figure 2.3,

where the torque and power responses of the model in two sea states (sea state 4 and

sea state 6) are shown side-by-side. The propeller and ship dynamic model is used to

capture the power load fluctuations in the propulsion system, and provides the power

demand (PFL) for the HESS. In Chapters IV - VI, the load fluctuations are assumed

to be known. In Chapter VII, a more realistic case is taken into consideration, where

the load fluctuations are unknown and the parameters of the model presented above

have uncertainties.
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Figure 2.3: Load power fluctuations (top plots), zoomed-in fluctuations (middle
plots), and their frequency spectrums (bottom plots).

2.2 Hybrid Energy Storage System Model

Batteries, ultra-capacitors (UCs), and flywheels are energy storage systems with

different characteristics in terms of their energy and power densities: batteries provide

high energy density, while UCs have high power density; flywheels offer an intermedi-

ate solution. An HESS can therefore combine their complementary features and offer

superior power and energy density over a single type of energy storage. Furthermore,

UCs or flywheels allow the battery to reduce its high power operation and thus extend

its life.

For the HESS model, we define the states as the state of charge (SOC) of the

battery, UC and flywheel, and the control variables as the battery and UC currents
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(IB and IUC) and flywheel torque (TFW ):

x =


xB

xUC

xFW

 =


SOCB

SOCUC

SOCFW

 , u =


uB

uUC

uFW

 =


IB

IUC

TFW

 . (2.9)

The SOC of the battery is defined as the electric charge available relative to the

maximum capacity, namely SOCB =
Qbattery

QB
× 100%, where Qbattery and QB in amp-

hours(Ah) are the current and maximum capacity of the battery, respectively. The

SOC of the ultra-capacitor is defined as SOCUC = VUC

Vmax
×100%, where VUC and Vmax

are the voltage and maximum voltage of the ultra-capacitors. The SOC of the flywheel

is defined in terms of its rotational speed [39], namely SOCFW = ω
ωmax
×100%, where

ω and ωmax are the flywheel current and maximum speed, respectively. The HESS

model is described as follows:

ẋB =
−uB

3600QB

,

ẋUC =
−uUC

VmaxCUC

,

ẋFW =
−b

ωmaxJFW

xFW −
uFW

ωmaxJFW

,

(2.10)

where CUC is the capacitance of the ultra-capacitor, and b and JFW are the friction

coefficient and inertia of the flywheel. Note that using battery and UC currents and

flywheel torque as the control variables allows us to derive a linear model for HESS

in the form of (2.10). The terminal power of these ESDs are obtained as follows:

PB =NB × (VOCuB −RBu
2
B),

PUC =NUC × (VmaxxUCuUC −RUCu
2
UC),

PFW =NFW ×

[
ωmaxxFWuFW −

3

2
Rs

(
uFW

3
4
pPMΛFW

)2

− b(ωmaxxFW )2

]
,

(2.11)
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Table 2.2: Hybrid energy storage parameters.
Description Parameter Value
Open-circuit voltage of one battery module VOC 128V
Internal resistance of one battery module RB 64mΩ
Maximum speed of one FW module ωmax 36750rmp
Stator resistance of one FW module Rs 6mΩ
Inertia of one FW module JFW 0.6546kgm2

Capacitance of one UC module CUC 63F
Maximum voltage of one UC module Vmax 125V
Internal resistance of one UC module RUC 8.6mΩ

where NB, NFW and NUC are the numbers of battery, flywheel and ultra-capacitor

modules, respectively; VOC and RB are the open-circuit voltage and internal resistance

of a battery module; Rs, pPM and ΛFW are the stator resistance, the number of poles

and the permanent magnet flux of a flywheel module, respectively; and RUC is the

internal resistance of a ultra-capacitor module. The parameters of B/FW and B/UC

HESS configurations are shown in Table 2.2. The SOC of the battery is controlled

to be within 20%-90%, and the open-circuit voltage is assumed to be constant in

this range. For dynamic applications, as the standby losses of the battery [76] and

the ultra-capacitor [77] can be ignored, only conductive losses are considered in the

battery and ultra-capacitor models. However, the standby loss of the high-speed

flywheel, due to the spinning of its rotor, is one of its main losses that cannot be

ignored [78]. The conductive losses of the battery, flywheel and ultra-capacitor are

RBu
2
B, 3

2
Rs

(
uFW

3
4
pPMΛFW

)2

and RUCu
2
UC , respectively, and b(ωmaxxFW )2 is the spinning

loss of the flywheel, including core losses and windage losses.

Sea state 4 is defined as the nominal condition in our design. The HESS sizing

in this dissertation is based on an energy and power requirement analysis at sea

state 4, shown in Table 2.3, where the maximum absolute power in one cycle, and

energy stored or drawn in one half-cycle, are listed. According to this requirement

and the frequency characteristics of the load power, the sizes of the energy storage

are selected and shown in Table 2.4, where the assumed operating conditions are:

IB = 150A, SOCB = 80%, SOCFW = 80%, SOCUC = 80%, PFW = 80% × PFWmax
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Table 2.3: Requirement based on sea state 4
Low Frequency High Frequency Total

Maximum Power 114KW 194KW 308KW
Energy Storage 121Wh 2.05Wh 123Wh

Table 2.4: HESS configuration and size selection.
B only UC only FW only B/FW B/UC

NB 18 0 0 6 6
NUC 0 14 0 0 9
NFW 0 0 5 3 0
Peak Power (KW) 346 336 360 331 331
Energy Storage (KWh) 184.32 1.23 4.31 69.2 62.23
Weight (Kg) 2520 910 1020 1452 1425
Volume (m3) 1.71 1.14 1.01 1.18 1.3

and PUC = 80%× PUCmax .

2.3 DC Bus Dynamic Model

A simplified representation of the DC bus dynamics is shown in Figure 2.4. Since

the currents of HESS are defined as the control variable, the DC bus dynamics based

on the current flow is expressed as follows:

ẋDC = V̇DC =
Iin
CBus

, (2.12)

where VDC is the DC bus voltage, CBus is the DC bus capacitance, Iin = (PGen +

PHESS −PM)/VDC is the current flowing into the bus capacitor, PGen is the electrical

output power of the generators, PHESS is the HESS output power, and PM is the

electrical input power of the induction motor.

2.4 Electric Power Generation and Propulsion Motor Model

The electric power generation system includes diesel-generator sets and their asso-

ciated rectifiers. The diesel engine is used as the prime mover (PM), and is connected
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Figure 2.4: DC bus dynamic representation.

to the synchronous field-winding generator to generate AC power. The rectifier con-

verts the AC power into DC power. A speed regulator is used to control the diesel

engine so as to keep the generator at the reference speed. A diagram of the electric

power generation is shown in Figure 2.5. In order to develop a control-oriented model,

a linearized average model of the electric power generation system is developed in this

section. The field-winding voltage of the generator is defined as the control variable

uG, and the DC output current of the rectifier is defined as the state variable xG. The

desired DC bus voltage is assumed as the reference value when linearizing the power

generation system. As shown in Figure 2.6, the first-order linearized model captures

the underlying dynamics of the generator and the rectifier with sufficient accuracy.

Therefore, the electric power generation system can be described as:

ẋG =
−1

τPG

xG +
GPG

τPG

uG, (2.13)

where τPG and GPG are the time constant and DC gain of the linearized generator

set model, respectively.

For the propulsion motor, the control variable uM is the torque command TM ,

and the state variable xM is the shaft rotational speed ω. The motor shaft dynamics

can be described in the following:
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Figure 2.5: Model structure of electric power generation system.
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Figure 2.6: Linearized model responses of the generator and the diode rectifier at
three different operating points.

ẋM =
−βM
H

xM +
1

H
uM −

1

H
TLoad, (2.14)

where βM is the viscous damping coefficient of the motor and propeller, H is the total

inertia, and TLoad is the propulsion load torque.
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2.5 Summary

In this chapter, the control- and optimization-oriented models are developed to

capture the key dynamics of the shipboard electric propulsion system in order to

provide an essential tool for feasibility analysis and system design. The models devel-

oped in this dissertation include the propeller and ship dynamic model, hybrid energy

storage models, the diesel engine and generator set model, the electrical motor model

and the DC bus dynamic model. The propeller and ship dynamic model captures

both high- and low-frequency fluctuations on the propeller.
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CHAPTER III

A Low-Voltage Test-bed for Electric Ship

Propulsion Systems with Hybrid Energy Storage

Electric propulsion systems with HESS are of interest for future ship electrifica-

tion. In order to experimentally validate power and energy management strategies for

electric drive systems with HESS, the Michigan Power and Energy Lab (MPEL) has

constructed the Advanced Electric Drive with Hybrid Energy Storage (AED-HES)

test-bed, which includes a system-level controller that can simultaneously control all

of the power electronic converters interfacing with the HESS and other system com-

ponents. This chapter presents the development of this test-bed. The preliminary

experiments aims to mitigate the effects of power fluctuations on the DC bus. The

experimental results demonstrate the capabilities of the MPEL AED-HES test-bed in

control implementation and system integration for electric drive systems with HESS.

3.1 MPEL AED-HES Test-bed

In order to provide a flexible hardware environment for the testing and validation

of control algorithms for electric propulsion systems with HESS, the Advanced Elec-

tric Drive with AED-HES test-bed has been constructed in MPEL. The AED-HES

is developed based on the schematic shown in Figure 3.1. Two 3-phase AC power
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Figure 3.1: Electrical schematic of the MPEL test-bed.

sources (480VAC/400A and 208VAC/100A) are available to be used as the external

power source, which is converted by a diode rectifier and a DC/DC converter to pro-

vide a DC bus for experiments at various power levels. Two electric machines are

connected at the shaft; one corresponds to the propulsion electric machine, and the

other represents the propeller load. Li-Ion batteries, ultra-capacitors and a flywheel

are integrated with the DC bus using DC/DC converters in order to provide energy

cycling to address the load fluctuations in the propulsion system.

The test-bed photo is shown in Figure 3.2. In the test-bed, the power electronic

converters, which serve as actuators in directing the power flow to and from various

components of the test-bed, are controlled by a central micro-controller. To reduce

cost and development time, the test-bed is constructed largely from commercially-

available hardware. Currently, a pair of induction machines, as well as a pair of

permanent magnet synchronous machines, are available for testing. This configuration

allows us to easily mimic realistic load profiles while recycling a large portion of the

power absorbed by the load machine. The HESS, integrated via power electronic

converters to the DC bus of the test-bed, provide complementary “reservoirs” for

energy which may be used to compensate disturbances caused by load fluctuations.

My contribution to the test-bed development is the system controller and energy
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Figure 3.2: MPEL AED-HES test-bed.

storages as well as their DC/DC converters.

3.1.1 System Controller

To enable rapid prototyping of advance control algorithms for electric drives and

energy cycling, the AED-HES test-bed utilizes software and hardware solutions from

Mathworks R© and Speedgoat R©. Control algorithms are tested numerically in Mat-

lab/Simulink on models of the system, and then implemented for experimental val-

idation on a Speedgoat R© real-time target machine through automatic generation of

C-code from Simulink R© controller models. Specifications for the Speedgoat R© system

controller are provided in Table 3.1. Utilizing a single controller for both high- and

low-level control not only simplifies the development process, but also helps reduce

the effects of noise, as the switching of the power electronic transistors and the sam-

pling of the analog-to-digital converters are synchronized such that sampling occurs

in between switching events, avoiding the pick-up of electromagnetic interference.
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Table 3.1: Manufacturer specifications for system controller.

System Controller

Manufacturer: Speedgoat R©

Processor: Intel Core i5-680 3.6 GHz

Main drive: 320GB SATA Hard Disk

Memory: DDR3 4096 MB

Serial ports: 4×RS232

Software: Simulink Real-Time R©

PWM outputs: 18

Quadrature decoding inputs: 2

Digital inputs/outputs: 4

Analog-to-digital inputs: 16 in differential mode

Controller area network (CAN): 1

Ethernet communication block: 1

3.1.2 Electric Machines and Power Electronic Inverters

The test-bed consists of two pairs of electric machines, with identical specifica-

tions, which are mechanically coupled at the shaft and powered by variable frequency

drives utilizing power electronic inverters. The “Propulsion Drive Machine” in Figure

3.1 represents to the ship propulsion drive (electric machine and variable speed drive)

depicted in Figure 1.5, while the “Load Emulation Machine” is controlled in a way

that mimics the hydrodynamic load fluctuations encountered in the ship propulsion

system. Machines are sized for light-duty EV/HEV applications, and their specifica-

tions are listed in Table 3.2.

The three-phase power electronic inverters used to drive the electric machines,

manufactured by Applied Power Systems R© (part no. IAP600T120H-01), utilize par-

alleled Insulated-Gate Bipolar Transistors (IGBTs) to yield a 600 ampere maximum

phase current. The inverters, which use forced-air cooling, accept PWM signals from

the centralized controller via fiber-optic cables and provide analog feedback signals
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Table 3.2: Manufacturer specifications for electric machines.

PMSM

Manufacturer: UQM Technologies R©

Rotor Type: Surface Mount

No. Phases: 3

Max. Cont. Power: 85 kW

Peak Power: 145 kW

Peak Torque: 400 N-m

Max. Speed: 8000 RPM

Peak Efficiency: 94 %

Induction Machine

Manufacturer: Azure Dynamics R©

Rotor Type: Squirrel Cage

No. Phases: 3

Max. Cont. Power: 20 kW

Peak Power: 47 kW

Peak Torque: 92 N-m

Max. Speed: 12000 RPM

Peak Efficiency: 87%

for bus voltage, temperature, and phase current measurements, as well as a digital

fault-status signal.

3.1.3 Energy Storage

As mentioned earlier, the (hybrid) energy storage available in our test-bed consists

of a lithium ion battery pack, an ultra-capacitor bank, and a flywheel, which provide

energy cycling capability at various complementary time scales. The battery pack and

flywheel are custom solutions, while the ultra-capacitors are commercially available.

As depicted in Figure 3.1, each energy storage element interfaces with the DC bus

via a DC/DC converter (Buck or Boost converters, as applicable), which control the
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flow of power into and out of each element.

3.1.3.1 Flywheel

The flywheel is custom built by Vycon R©, as shown in Figure 3.3, to store and

supply energy to the power network. Energy is stored mechanically in the inertia

of the high-speed flywheel, which is mechanically coupled to an electric machine to

convert electrical energy to mechanical energy (i.e., motoring operation) and vice

versa (i.e., generating operation). The flywheel unit includes a frictionless magnetic

bearing for rotor support, a motor/generator, a high strength steel hub as rotor, and a

vacuum containment housing. A long-life rotary-vane oil-filled vacuum pump is used

to evacuate the flywheel chamber, virtually eliminating windage losses. The flywheel

specifications are listed in Table 3.3.

Table 3.3: Manufacturer specifications for flywheel.

Flywheel

Manufacturer: Vycon R©

Maximum charge power: 90 kW

Maximum discharge power: 54 kW

Rotational speed: 10000 RPM - 36750 RPM

Hub inertia: 0.618 kgm2

DC voltage: 400 V-600 V

Efficiency: 99.4% at peak power

3.1.3.2 Battery System

A Lithium-Iron-Phosphate battery chemistry has been selected for its high energy

density and superior thermal and chemical stability. The battery system is custom

built out of commercially-available components. While the resulting battery system

is not as compact as commercial packs for automotive applications, it does have the
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Figure 3.3: Flywheel module of MPEL test-bed.

distinct advantage of providing flexibility. Currently, the battery consists of four 36V,

100 Ahr modules, as shown in Figure 3.4, which can be connected in series to provide

a pack voltage of up to 144 V. The individual cells have bolted interconnections via

copper bus bar, and a Battery Management System (BMS) from Flux Power R© uti-

lizes a distributed architecture, where every BMS module manages 4 cells via passive

(resistive shunting) cell balancing. The Battery Control Module (BCM) measures

battery current to compute the State-Of-Charge (SOC) of the pack in addition to

monitoring cell voltages and thermal feedback from the individual BMS’s via a CAN-

bus network. In the event of a problem (over/under-voltage cell or over-temperature

cell), the BCM will open contactor relays to prevent damage to the battery system.

3.1.3.3 Ultra-capacitors

The test-bed has four 63 farad / 125 volt ultra-capacitors from Maxwell Technologies R©,

as shown in Figure 3.5, which can be connected in series/parallel combinations to suit

testing needs. The modules provide analog feedback measurements of temperature
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Table 3.4: Specifications for the battery system.

Li-ION Battery

Manufacturer: Flux Power R©(BMS) & Winston R©(cells)

Voltage limits (max/min): 3.9 V/ 2.5 V

Max. continuous current: 3C

Capacity: 100 AHr

DC voltage: 36-144 V (in 36 V increments)

Communication Interface: CAN bus

Figure 3.4: Battery module of MPEL test-bed.

and voltage, and interface with the DC bus via a current-regulated power electronic

converter. Manufacturer specifications for the ultra-capacitors are provided in Table

3.5.

Table 3.5: Specifications for the ultra-capacitors.

Ultra-capacitor

Manufacturer: Maxwell Technologies R©

Rated Capacitance: 63 F

Rated Voltage: 125 V

Max. continuous current: 240 A at 40◦C

Max. equivalent series resistance: 18 mΩ
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Figure 3.5: UC module of MPEL test-bed.

3.2 Energy Cycling Capability of Battery and Ultra-capacitor

In this chapter, two sets of experimental results will be presented. The first

experiment demonstrates the energy cycling capabilities when using batteries and

ultra-capacitors, and provides experimental validation for baseline control strategies

to mitigate multi-frequency load fluctuations. The second experiment shows the

energy cycling capability when using the flywheel and ultra-capacitors together in

the AED-HES test-bed.

The experimental setup for the first experiment is shown in Figure 3.6. Power from

the battery and ultra-capacitor modules is used to isolate the power fluctuations from

the DC bus, and the resistive load bank emulates the fluctuating load power, as shown

in Figure 3.7. In this experiment, the 480 VAC power source is converted to a 670V

DC power source by a three-phase diode rectifier, and then a DC/DC converter is

used to buck this voltage down to the desired DC bus voltage of 240V.

The effect of the load fluctuations on the DC bus without regulation is shown

in Figure 3.8. Due to the relatively slow dynamic of the battery, the bus voltage

regulation using batteries alone is only effective in reducing the low frequency distur-

bance. In order to eliminate the high frequency disturbance, bus voltage regulation

using the ultra-capacitor is introduced to assist the battery modules. To exploit the

hybrid configuration of ESDs, two independent voltage regulators using batteries and
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Figure 3.6: Experimental setup for the energy cycling test using batteries and ultra-
capacitors.
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Figure 3.7: Multi-frequency load power fluctuations generated by the resistive load
bank.
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Figure 3.8: DC bus voltage without HESS bus voltage regulators.
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Figure 3.9: Schematic of the independent bus voltage regulation control using bat-
teries and ultra-capacitors.
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Figure 3.10: DC bus voltage with independent bus voltage regulators using batteries
and ultra-capacitors: (a) bus voltage (left) and (b) UC voltage (right).

ultra-capacitors, respectively, are implemented, as shown in Figure 3.9, and the de-

sired DC bus voltage is achieved, as shown in Figure 3.10(a). Note that the solid line

represents the electric power and the dashed line represents the control and feedback

signals. However, regulating the bus voltage using two independent voltage regulators

causes a significant drop in ultra-capacitor voltage (shown in Figure 3.10(b)), leading

to large output current and requiring frequent recharging.

A filter-based control strategy is demonstrated in the next experimental test.

The schematic of the filter-based control strategy is shown in Figure 3.11, where

the battery compensates the low-frequency load fluctuations, and the ultra-capacitor

compensates the high-frequency fluctuations. To deal with uncertainties in the load

information, a bus voltage regulator is integrated with the feedforward portion of
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Figure 3.11: Schematic of the filter-based control using batteries and ultra-capacitors.
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Figure 3.12: DC bus voltage with filter-based control using batteries and ultra-
capacitors: (a) bus voltage (left) and (b) UC voltage (right).

the ultra-capacitor controller. The DC bus voltage regulation performance and the

ultra-capacitor voltage change are shown in Figure 3.12(a) and (b), respectively. Note

that the only load power in this experiment is from the load resistive bank, which

represents the load fluctuations. Because the batteries and ultra-capacitors isolate

the load fluctuations from the DC bus, the power from the AC power source is almost

zero. Furthermore, the ultra-capacitor voltage change is reduced to 1.88V with the

filter-based baseline control.

These two baseline control strategies demonstrate the energy cycling capability of

the batteries and ultra-capacitors. It is clear from the experimental results for the

baseline control strategies that coordinated control strategies are needed to maximize

the benefits of using HESS.
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Figure 3.13: Experimental setup for the energy cycling test using the flywheel and
ultra-capacitors.

Figure 3.14: Schematic of the filter-based control using the flywheel and ultra-
capacitors.

3.3 Energy Cycling Capability of Flywheel and Ultra-capacitor

The energy cycling capability of the HESS configuration consisting of the flywheel

and ultra-capacitors is demonstrated in the second experiment, where the flywheel

is used to compensate the low-frequency load fluctuations and the ultra-capacitors

address the high-frequency fluctuations. In this experiment, the rectified 480 VAC

power source is bucked down to 400 V, which is the nominal voltage of the flywheel.

The load fluctuation is again generated by the load resistor bank. The corresponding

experimental setup developed for this test, and the schematic of the control strategy,

are shown in Figures 3.13 and 3.14, respectively. Results are given in Figure 3.15,
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Figure 3.15: DC bus voltage with filter-based control using the flywheel and ultra-
capacitors: (a) bus voltage (left) and (b) UC voltage (right).

which demonstrate the effectiveness of the flywheel and ultra-capacitors to compen-

sate the load fluctuations and to regulate the DC bus voltage at the desired value.

These experimental tests not only demonstrate the energy cycling capability of

the AED-HES test-bed, but also illustrate the importance of the control strategy.

3.4 Summary

This chapter presents the development and experimental demonstration of the

AED-HES test-bed for electric ship propulsion systems at the University of Michigan

Power and Energy Lab. A system-level controller, electric machines, high-power con-

verters, and energy storage devices (batteries, UCs, and flywheel) are integrated in the

AED-HES test-bed. The AED-HES test-bed facilitates efforts to address load fluctua-

tions in propulsion systems, and can be used as an essential tool to evaluate modeling

and control solutions. Two experiments with different energy storage devices are

performed to demonstrate the energy cycling capability of AED-HES testbed. The

experiential validation of advanced control approaches will be presented in Chapter

VIII.

45



CHAPTER IV

Hybrid Energy Storage Configuration Evaluation:

Battery with Flywheel vs. Battery with

Ultracapacitor

This chapter investigates the feasibility and effectiveness of introducing a hybrid

energy storage system (HESS) to an electric propulsion system for mitigating load

power fluctuation effects on a shipboard network. The potential of Battery with Ultra-

capacitor (B/UC) and Battery with Flywheel (B/FW) HESS in counteracting load

fluctuations is formulated as a multi-objective optimization problem (MOP). Two

main objectives are power-fluctuation compensation and HESS loss minimization.

Since these objectives conflict with each other in the sense that effective compensation

of fluctuations will lead to HESS losses, the weighted-sum method is used to convert

this MOP into a single-objective problem. Global optimal solutions are obtained

using dynamic programming (DP) by exploiting the periodicity of the load. These

global optimal solutions form the basis of a comparative study of B/FW and B/UC

HESS, where the Pareto fronts of these two technologies at different sea state (SS)

conditions are derived. The analysis aims to provide insights into the advantages

and limitations of each HESS solution. To enable real-time application and achieve

desired performance, a model predictive control (MPC) strategy is developed. In this
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MPC formulation, a state of charge (SOC) reference is used to address the limitations

imposed by short predictive horizons.

4.1 Performance Evaluation of B/FW And B/UC HESS Con-

figurations

4.1.1 Problem Formulation

In this study, the control strategies of HESS are designed to achieve two objectives:

one is to minimize the power tracking error, measured by the root mean square (RMS)

error for power fluctuation mitigation, and the other is to reduce HESS losses to

improve energy efficiency:

J1 =

NT∑
k=0

(PFL(k)− PHESS(k))2, (4.1)

J2 =

NT∑
k=0

(PHESSLoss
), (4.2)

where NT = [(tT − t0)/Ts], with [·] being the integer rounding of ·, t0 and tT are the

initial and final values of the time period being investigated, Ts is the sampling time,

PFL is the load power fluctuation from the propeller and ship dynamics model, PHESS

is the power generated by HESS to compensate the load fluctuations, and PHESSLoss

is the HESS losses. Note that the RMS tracking error can be expressed as
√
J1/NT .

Since NT is constant, minimizing J1 is equivalent to minimizing the RMS tracking

error.

Because J1 and J2 compete in the sense that reducing the tracking error would

cause increased HESS losses and vice versa, the weighted-sum method, which converts

the multi-objective optimization problem (MOP) to a single-objective optimization

problem, is used to find the non-dominated solutions (i.e., Pareto front) in this prob-

lem. The problem formulation of B/FW is expressed as follows. Minimize:
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JHESSB/FW
(x(k), u(k))

=

NT∑
k=0

(1− λ)(PFL(k)− PB(k)− PFW (k))2

+ λ

[
NBRBu

2
B(k) +NFW

(
b(ωmaxxFW (k))2 +

3

2
Rs

(
uFW (k)

3
4
pPMΛFW

)2
)]

,

(4.3)

subject to the constraints:

20% ≤ xB ≤ 90%,

30% ≤ xFW ≤ 99%,

−200A ≤ uB ≤ 200A,

−40Nm ≤ uFW ≤ 40Nm,

−90KW ≤ uFWxFWωmax ≤ 90KW,

(4.4)

 xB(k + 1)

xFW (k + 1)

 =

 1 0

0 1− bTs

ωmaxJFW


 xB(k)

xFW (k)


+

 Ts

3600QB
0

0 Ts

ωmaxJFW


 uB(k)

uFW (k)

 ,
(4.5)

while the problem formulation for the B/UC HESS is given by:

JHESSB/UC
(x(k), u(k)) =

NT∑
k=0

(1− λ)(PFL(k)− PB(k)− PUC(k))2

+ λ(NBRBu
2
B(k) +NUCRUCu

2
UC(k)),

(4.6)
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subject to the constraints:

20% ≤ xB ≤ 90%,

30% ≤ xUC ≤ 99%,

−200A ≤ uB ≤ 200A,

−240A ≤ uUC ≤ 240A,

(4.7)

 xB(k + 1)

xUC(k + 1)

 =

 1 0

0 1


 xB(k)

xUC(k)


+

 Ts

3600QB
0

0 Ts

VmaxCUC


 uB(k)

uUC(k)

 ,
(4.8)

where λ ∈ [0, 1] is a weighting factor that allows us to put different relative emphasis

on each attribute to investigate the performance trade-off.

4.1.2 Performance Evaluation

In order to evaluate the feasibility and effectiveness of the B/FW HESS, we per-

form a comparative study to determine the advantages and disadvantages of B/FW

and B/UC HESS configurations. In this case study, the sampling time for the control

update is chosen as 0.02 sec, which is properly matched with the underlying system

dynamics. We define the time interval that the HESS can be used as the energy

buffer for the electric propulsion system without requiring charging or discharging

from external power sources (such as the diesel generator) as the self-sustained op-

eration period. A longer self-sustained operation could offer more flexible charging

or discharging for the HESS, therefore leading to better efficiency. The self-sustained

operation time is chosen to be 30 minutes, over which the resulting performance is

evaluated in terms of the following two metrics that are closely related to the afore-

mentioned objectives:
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Figure 4.1: Pareto-fronts of B/FW and B/UC HESS at sea state 2.

1. RMS tracking error:
√
J1/NT ;

2. HESS losses: Loss% = J2∑NT
k=0 PDemand(k)

× 100%.

The weighting factor λ allows us to put a different relative emphasis on each

attribute to investigate the performance trade-off. The global optimal solutions of

B/FW and B/UC MOPs are obtained by dynamic programming (DP). The Pareto-

fronts of these two configurations, which represent the best achievable performance

for the system with B/FW HESS and B/UC HESS, are shown in Figures 4.1-4.3. The

Pareto fronts provide insight into the effectiveness of HESS and the trade-off between

the tracking RMS error and the HESS losses. The key observations are summarized

in the following remarks:

Remark 4.1 (Performance trade-off features): The tracking performance can be

improved over a wide range at little cost of system efficiency for low and medium

sea states (sea states 2 and 4). This feature can be observed for both B/FW and

B/UC HESS solutions. Furthermore, the general trends and Pareto front shapes are

the same for both HESS configurations at all sea states. In terms of managing the
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Figure 4.2: Pareto-fronts of B/FW and B/UC HESS at sea state 4.

1 1.2 1.4 1.6 1.8 2 2.2 2.4

Loss (%)

0.8

0.9

1

1.1

1.2

1.3

R
M

S
 E

rr
or

 (
%

)

105 SS6 (B/FW vs B/UC)

B/FW Pareto-front
B/UC Pareto-front

RP 5

RP 6

RP 8RP 7

Figure 4.3: Pareto-fronts of B/FW and B/UC HESS at sea state 6.

trade-off, they both have the same features and issues.

Remark 4.2 (B/FW vs. B/UC): As shown in Figures 4.1-4.3, the B/FW HESS is

able to achieve superior performance at sea state 6. However, at sea states 2 and 4,

the B/UC HESS achieves better performance than B/FW HESS, but the difference

between B/FW HESS losses and B/UC HESS losses at sea state 2 (around 0.22%)
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is about twice as large as that at sea state 4 (around 0.11%). Note that the load

power fluctuations at sea state 2 are smaller than those at sea state 4. The analysis

indicates that B/FW HESS is more suitable for the high sea state, while the B/UC

HESS has performance advantages at low sea states.

To reveal more details of the HESS performance, several representative points

(RP) are highlighted in Figures 4.1-4.3 for further analysis. As shown in Figures

4.1-4.2, those points reflect the best trade-off between two objectives and they are

closest to the “utopia” points (J1min, J2min). Therefore, RP1-RP4 are the design

points analyzed here. The RMS tracking errors of these design points, i.e., RP1-RP4,

are almost the same at the same sea state. RP5-RP8 are the points with comparable

performance in one of the attributes at sea state 6. Besides the two main objectives in

Figures 4.1-4.3, several other metrics are used for evaluating these solutions as shown

in Table 4.1:

Table 4.1: Performance metrics.
IBRMS

Battery currents measured by the rms (root mean square) value.
IBPeak

Battery currents measured by the maximum absolute value.
TIB1.5C

% The time spent charging/discharging the battery with high currents:
the percentage of high current operation (|IB| ≥ 1.5C).

LossB% Battery conduction loss: LossB% =
∑NT

k=0(PowerB−loss(k))∑NT
k=0 PDemand(k)

× 100%.

LossUC% Ultra-capacitor conduction loss: LossUC% =
∑NT

k=0(PowerUC−loss(k))∑NT
k=0 PDemand(k)

×
100%.

LossFWRs
% Flywheel conduction loss: LossFWRs

% =
∑NT

k=0(PowerFWRs−loss(k))∑NT
k=0 PDemand(k)

×
100%.

LossFWf
% Flywheel spinning loss: LossFWf

% =
∑NT

k=0(PowerFWf−loss(k))∑NT
k=0 PDemand(k)

× 100%.

The metrics IBRMS
, IBPeak

and IB1.5C
% are used to evaluate the battery usage, as

they have high impact on the battery life; the power losses of each energy storage as

well as the losses due to different mechanisms in the flywheel provide insight into the

operation of HESS. The key observations about the reference points are summarized

in the following remarks:
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Table 4.2: Performance comparison of the selected design points.
RP1 RP2 RP3 RP4 RP5 RP6 RP7 RP8

Sea State 2 2 4 4 6 6 6 6
IBRMS

12.13A 17.33A 16.02A 21.51A 51.59A 55.86A 74.96A 95.62A
IBPeak

31.48A 52.85A 72.00A 82.00A 200A 200A 200A 200A
TIB1.5C

% 0 0 0 0 3.67% 4% 8.50% 19.0%
LossB% 0.05% 0.09% 0.07% 0.13% 0.39% 0.46% 0.82% 1.34%
LossUC% NA 0.80% NA 0.99% NA 0.75% NA 0.88%
LossFWRs

% 0.53% NA 0.48% NA 0.35% NA 0.36% NA
LossFWf

% 0.54% NA 0.67% NA 0.43% NA 0.44% NA

Remark 4.3 (Battery usage): B/FW HESS is more ‘friendly’ to batteries with

smaller IBRMS
, IBPeak

, and less time spent at high-current operation TIB1.5C
%, as

shown in Table 4.2. At sea state 2, IBRMS
and IBPeak

of the B/UC HESS are almost

twice as large as those of B/FW HESS. At sea state 4, the B/FW HESS requires

less IBRMS
and IBPeak

than B/UC to achieve almost the same tracking error. At sea

state 6, RP5 and RP6 have almost the same HESS losses, but RP5 (B/FW) achieves

much smaller power tracking RMS error. B/FW HESS requires less battery usage

and high-current operation, while achieving improved power tracking performance.

For RP7 and RP8, the battery high-current operation for B/UC HESS is even more

than twice that of the B/FW.

Remark 4.4 (Loss analysis): At sea state 2, even though both the battery RMS and

peak current with B/FW are less than those with B/UC, the loss of B/FW is larger

than that of B/UC. The reason for this is that the standby loss of the flywheel, namely

the spinning loss (including core losses and windage losses), is significant at the low sea

state. In particular, the battery needs to discharge more to compensate the spinning

losses of the flywheel in order to keep the flywheel working at its optimal speed.

Therefore, the drag coefficient is the key design parameter of the flywheel, especially

for a high-speed flywheel. At high sea state, the spinning loss of the flywheel is not

the main issue of the B/FW HESS configuration. The high power demand of the

low-frequency load fluctuation requires the HESS to provide or absorb the maximum

power for several seconds. The flywheel working in its high speed range sustains for
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a longer period of time to generate or absorb the maximum power when compared

to the ultra-capacitor. Therefore, as shown in Table 4.2 and Figure 4.3, B/FW can

outperform B/UC in terms of improved tracking performance, reduced HESS losses,

and extended battery life cycle. Note that some flywheel motor/generators have much

lower spinning core loss (e.g., synchronous reluctance machines), but have lower power

density and full-load efficiency.

Remark 4.5 (Sensitivity to battery aging): It has been widely reported that batter-

ies degrade over their life cycle, as the battery capacity will decrease and the battery

resistance will increase [79]. A sensitivity study is performed to provide insights into

the impact of the battery state of health (SOH) on the proposed HESS solutions.

In this study, SOH is characterized by battery capacity reduction and resistance in-

crease. As shown in Figure 4.4, the increased battery resistance has a more significant

impact on the proposed solutions compared to the decreased battery capacity. The

HESS works as an energy buffer instead of an energy source, as the generator sets

provide the average power for the electric propulsion system. Due to the high energy

density of the battery, the battery SOC variation within the self-sustained time is

very small. Although the degraded capacity can increase the SOC variation, the bat-

tery open circuit voltage VOC(x1) is in general insensitive to this small SOC variation.

Therefore, the impact of the decreased capacity is relatively small. The impact of

increased battery resistance on the B/UC HESS at sea states 2 and 4 is larger than

it is on the B/FW HESS. As discussed in the previous remarks, the spinning losses

of the flywheel is dominant in B/FW HESS at low sea state, as shown in Table 4.2,

whereas the battery resistance, which affects the battery loss, has less of an effect.

However, at high sea state, due to the high-power fluctuations, the battery losses

become more significant even in the B/FW configuration. Therefore, the sensitivity

to battery resistance is noticeable for both B/FW and B/UC HESS.
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The MOP formulated here can be used to evaluate the effectiveness of different

HESS configurations and analyze their advantages and limitations. However, the

solution of the MOP cannot be used for real-time applications. It is an open-loop

optimization without feedback. Furthermore, this optimization problem has a very

long horizon in the sense that 90,000 steps are involved when the minimum self-

sustained operation time of HESS is chosen to be 30 minutes. This requires a long

computational time and large memory, which makes it computationally prohibitive

to solve in real time, and leads to the MPC formulation discussed in the next section.

4.2 Receding Horizon Control for Real-Time Power Manage-

ment

In this section, the receding-horizon approach is applied to develop a real-time

energy management scheme. To capture the dynamics of HESS and address the

associated operation constraints, MPC emerges as a natural choice. The general

MPC problem, which minimizes a cost function subject to constraints within the

predictive horizon, can be mathematically expressed as:

J = Φ(x(t+N)) +
t+N−1∑
k=t

L(x(k), u(k)), (4.9)

subject to:

x(k + 1) = f(x(k), u(k)), x(t) = x0, (4.10)

C(x(k), u(k)) ≤ 0, (4.11)

where Φ(x(t + N)) and L(x(k), u(k)) are the terminal and instantaneous cost func-

tions, N is the time window over which the cost will be evaluated, x(k) and u(k)

are the instantaneous values of the states (x ∈ <2) and controls (u ∈ <2) at time k,

respectively, C(x(k), u(k)) represents the inequality constraints, and t represents the
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Figure 4.4: Pareto-fronts of B/FW and B/UC HESS at sea states 2,4 and 6 with
different battery state of health.

current sample time. By minimizing (4.9) subject to (4.10) and (4.11), an optimized

control sequence u∗(t), u∗(t + 1), ..., u∗(t + N − 1) can be obtained. The standard

receding horizon MPC then applies the first element of the sequence as the control

action before moving to the next sample, when new measurements are collected and

the optimization is repeated with new initial conditions [80]-[81].
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The cost function in MPC is formulated based on the MOP by using the weighted-

sum method. We discretize the system model developed in Chapter II with sampling

time Ts. No terminal cost is incorporated in this MPC formulation. Therefore, the

MPC formulation of B/FW is defined as:

JHESSB/FW
=

t+N−1∑
k=t

LHESSB/FW
(x(k), u(k)), (4.12)

where

LHESSB/FW
(x(k), u(k))

= (1− λ)(PFL(k)− PB(k)− PFW (k))2

+ λ

[
NBRBu

2
B(k) +NFW

(
b(ωmaxxFW (k))2 +

3

2
Rs

(
uFW (k)

3
4
pPMΛFW

)2
)]

,

(4.13)

subject to the constraints (4.4) and (4.5), where λ ∈ [0, 1] is the weighting factor

that allows us to put different relative emphasis on each attribute to investigate the

performance trade-off.

The short-horizon MPC, however, cannot incorporate the long-term perspectives

of operation. As a result, we observed that the SOC of the flywheel drops quickly. As

it decreases, delivering the same output power requires larger torque, thereby leading

to significantly increased losses and power tracking error, as shown in Figure 4.5.

To keep the flywheel working in a high-efficiency range without having to extend

the MPC predictive horizon, we analyzed the DP results to help us find mechanisms to

assure long-term system efficiency. The representative point RP3 as shown in Figure

4.2 is used as a benchmark in this section. As shown in Figure 4.6, the B/FW HESS

operation can be divided into three phases: transient, sustaining, and final. Given

different initial SOCs of the flywheel, it converges to the same SOC range, which is

the high-efficiency range for B/FW HESS, during the transient interval. When the

B/FW HESS is operating during the sustaining interval, the battery will keep the
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Figure 4.5: B/FW HESS performance at sea state 4 without any penalty on the speed
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flywheel SOC in its high-efficiency range to minimize the cost in (4.3). During the

final interval, the battery is not required to maintain the flywheel SOC, and so the

flywheel will be used as much as possible. In order to maximize the benefits of B/FW

HESS, a long self-sustained time is preferred, which requires that the flywheel works

in its high-efficiency SOC range. This observation motivates us to add another term
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into the cost function with a penalty on the SOC deviations from the optimal settings

(4.3):

γFWSOC
(xFW (k)− SOCFWd

)2, (4.14)

The cost function used in the MPC optimization formulation then has the form:

LHESSB/FW
(x(k), u(k))

= (1− λ)(PFL(k)− PB(k)− PFW (k))2

+ λ

[
NBRBu

2
B(k) +NFW

(
b(ωmaxxFW (k))2 +

3

2
Rs

(
uFW (k)

3
4
pPMΛFW

)2
)]

+ γFWSOC
(xFW (k)− SOCFWd

)2;

(4.15)

Increasing γ initially improves the performance, but further increases in γ beyond

a certain value will lead to deteriorated performance. The reason is that, when

initially increasing γ, the flywheel can operate around its optimal SOC, leading to

improved efficiency. However, if γ is too large, then the flywheel is forced to operate

close to its optimal SOC with small variations, which leaves most of the compensation

function on the batteries. That makes the HESS function essentially a battery energy

storage system, thereby losing the advantage of the hybrid configuration. By varying

γ, we are able to obtain the best achievable solution. In this study, γ is tuned off-line.

Note that how to obtain the optimal reference SOC is an open question, and will be

explored in future work.

The performance of the proposed MPC energy management strategy and DP is

shown in Figure 4.7. As shown in the zoom-in plots of Figure 4.7, the flywheel

SOC under the proposed MPC can achieve the same trajectory as DP during the

sustaining interval. The battery output current and flywheel output torque of MPC

and DP are also almost the same, thereby achieving almost equivalent performance.
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Figure 4.7: The performance comparison: MPC vs. DP.

The performance metrics in Table 4.1 and the two main objectives, i.e., RMS tracking

error (RMS Error) and HESS losses (Loss%), are used to evaluate the performance of

the proposed MPC and DP with different initial flywheel SOC. The initial SOC of the

battery is xB(t) = 80%. The first group is defined as “DP (50%)” and “MPC (50%)”,

i.e., the initial SOC of the flywheel is xFW (t) = 50%, and the second one is defined as

“DP (60%)” and “MPC (60%)”, i.e., the initial SOC of the flywheel is xFW (t) = 60%.

For different initial SOCs, γ is fixed. The best performance metrics are in blue, and

the worst are in red. As shown in Table 4.3, the performance of MPC is close to that

of DP. The DP global optimal solution achieves better performance in terms of two

main objectives in the cost function, i.e., “Loss%” and “RMS Error”. MPC achieves

smaller peak current (IBPeak
) and less battery usage (IBRMS

) (which are not in the cost

function), leading to reduced battery losses and extended battery life. Note that the

differences between MPC and DP are relatively small. This case study demonstrates
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Table 4.3: Performance comparison of the proposed MPC and DP.
DP (50%) MPC (50%) DP (60%) MPC (60%)

IBRMS
16.75A 16.25A 15.57A 14.81A

IBPeak
101A 101A 66.48A 60.4A

IB1.5C
% 0 0 0 0

LossB% 0.08% 0.08% 0.07% 0.06%
LossFWRs

% 0.48% 0.49% 0.48% 0.48%
LossFWf

% 0.67% 0.67% 0.67% 0.69%

Loss% 1.23% 1.24% 1.22% 1.23%
RMS Error 153.39W 197.54W 148.57W 179.63W

the effectiveness of the proposed MPC in terms of power-fluctuation compensation,

HESS energy saving, and reduction of the battery usage; in particular, high-current

operation.

The proposed MPC can be easily and effectively extended to the B/UC HESS

solution. As shown in Figure 4.8, without the SOC penalty of UC, the short-horizon

MPC is not able to maintain the UC operating in its high SOC range, because the

benefit of maintaining it is too small in the short term and is therefore ignored in

the optimization. As a result, the SOC of the UC drops quickly. As it decreases,

the delivery of the same output power requires a larger current, thereby leading to

significantly increased losses and power tracking error.

Therefore, to keep the UC working in a high efficiency range, another penalty on

the UC SOC is considered for B/UC HESS:

γUCSOC
(xUC(k)− SOCUCd

)2, (4.16)

With this SOC penalty, the UC supplies or absorbs as much power as possible,

and the battery charges the UC to maintain its operation in a high SOC range. The

effectiveness of this γUCSOC
penalty is demonstrated by Figure 4.9.
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Figure 4.8: MPC (N=20, without UC SOC penalty) performance at sea state 4.

0 500 1000 1500

P
ow

er
 (

W
) ×104

-1

0

1 Power tracking error

0 500 1000 1500

C
ur

re
nt

 (
A

)

-200

0

200 Current of Battery

time(sec)
0 500 1000 1500

C
ur

re
nt

 (
A

)

-200
0

200
Current of UC

0 200 400 600 800 1000 1200 1400 1600 1800

S
O

C
 (

%
)

78.5

79

79.5

80

80.5
SOC of Battery

time (sec)
0 200 400 600 800 1000 1200 1400 1600 1800

S
O

C
 (

%
)

60

80

100

SOC of UC

Figure 4.9: MPC (N=20, with UC SOC penalty) performance at sea state 4.

4.3 Summary

This chapter investigates the feasibility and effectiveness of different HESS con-

figurations, namely batteries combined with flywheels and batteries combined with

UCs, to mitigate load fluctuations. A comparative study is performed to provide

insights into advantages and limitations of each configuration. A multi-objective op-

timization problem (MOP) is formulated to minimize the power tracking error and

HESS losses. The best achievable solutions, namely Pareto fronts, are obtained by

using dynamic programming. The comparison results indicate that the B/FW HESS

configuration outperforms B/UC HESS at high sea state in terms of power fluctu-

ation compensation and HESS efficiency. However, the spinning loss of the B/FW
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HESS configuration will cause more losses at low sea state, which makes B/UC HESS

configuration more suitable in these conditions. Furthermore, B/FW HESS is more

“friendly” to batteries in terms of less battery usage, reduced peak current, and less

high-current operation for batteries.

In this chapter, in order to enable the real-time implementation, a model predictive

control algorithm is formulated to minimize the tracking RMS error and HESS losses

for B/FW HESS. In order to overcome the limitations caused by the short predictive

horizon of MPC, an additional penalty on the flywheel SOC is introduced to keep

it working in the high-efficiency operation range. The comparison results of MPC

and MOP demonstrate the effectiveness of the proposed MPC in terms of power-

fluctuation compensation, HESS energy saving, and reduction of the battery usage

and high-current operation. The proposed MPC can be easily and effectively extended

to B/UC HESS in the way that an additional penalty on the SOC of UC is required.
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CHAPTER V

Control Strategies Evaluation: Coordinated

Control vs. Pre-filtered Control

In this chapter, we consider an HESS consisting of batteries and ultra-capacitors,

and explore two control strategies with different levels of coordination among the

HESS elements. The first approach decomposes the power command that is needed to

counteract the fluctuation according to frequency range, and then controls the battery

packs and ultra-capacitor banks independently. This approach will be referred to as

control with pre-filtering (PF) in this chapter. In this case, the charging/discharging

of the two components in HESS are optimized separately so that the ultra-capacitors

handle high-frequency fluctuations, while the batteries handle low-frequency varia-

tions. The other approach, referred to as coordinated control (CC), treats the batter-

ies and ultra-capacitors as a single entity and coordinates their charging/discharging

to counteract the total load fluctuation through an optimization algorithm. The goal

of this study is to quantify the performance difference and understand the critical

roles of a control strategy in HESS implementation. In pursuing this goal, this study

aims to provide insights into the trade-off between performance and control complex-

ity. It should be noted that, while the PF leads to a relatively simple low-dimensional

optimization problem, the CC is expected to offer improved performance. To charac-

terize the performance of HESS, the performance of a single type of energy storage
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Figure 5.1: Control strategy diagram: left: PF-MPC, right: CC-MPC.

will be included in this study as a benchmark.

5.1 MPC Problem Formulation

In this section, we apply the receding-horizon approach to develop a real-time

energy management scheme that incorporates feedback and is amenable for real-

time computation. Given the nature of the energy storage system, as well as the

operating constraints involved, MPC becomes the natural formulation. Because of the

distinctive frequency components in the load power fluctuation PFL, and the different

dynamic responses of the battery and UC, two ways of structuring the MPC problem

are considered, as illustrated in Figure 5.1. One is control with pre-filtering, where

the charging/discharging of UC and battery modules are optimized such that the UC

power PUC counteracts high-frequency fluctuations PFL−High while the battery power

PB deals with low-frequency variations PFL−Low. PFL−High and PFL−Low refer to the

high-and low-frequency components in PFL, respectively. The other, referred to as

coordinated control, coordinates the charging/discharging of the battery together with

UC to optimize the power split between them to deal with the total power fluctuation.

Similar to MOP, the uncertainties in PFL are not taken into consideration.
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The cost function in MPC is formulated based on the minimization of RMS track-

ing error and HESS losses. We discretize the system model developed in Chapter II

with the sampling time Ts. No terminal cost is incorporated in this MPC formulation.

As discussed in Chapter IV, the SOC penalty γUCSOC
in Equation (4.16) can effec-

tively improve the system performance by ensuring that the UC is operating in its

high-efficiency range. Therefore, the specific variables and functions in the CC-MPC

formulation are defined as:

JHESS =
t+N−1∑
k=t

LHESS(x(k), u(k)), (5.1)

where,

LHESS(x(k), u(k)) =λTracking(PFL(k)− PB(k)− PUC(k))2

+ λLoss(NBRBu
2
B(k) +NUCRUCu

2
UC(k))

+ γUCSOC
(xUC(k)− SOCUCd

)2;

(5.2)

subject to the same constraints in Equations (4.7) and (4.8), and u = [uB, uUC ],

where λTracking, λLoss, and γUCSOC
are the weights on power tracking error penalty,

the energy loss penalty, and UC SOC charging penalty, respectively.

In the PF strategy, the batteries compensate low-frequency fluctuations and UCs

compensate high-frequency fluctuations. As shown in Figure 2.3 of Chapter II, the

high-frequency component in the load power fluctuation frequency spectrum is around

8Hz, while the low-frequency components are smaller than 1Hz. A second-order

butterworth low-pass filter, whose cutoff frequency is set at 1Hz, is used to split

the HESS power demand PFL into high (PFL−High) and low-frequency (PFL−Low)

components. Since both batteries and UCs are subject to constraints in (4.7), MPC

will also be used in the PF strategy. The two separate MPC problems are defined for

PF as:

MPC-B:
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JB =
t+N−1∑
k=t

LB(xB(k), uB(k)), (5.3)

where,

LB(uB(k)) =λTracking(PFL−Low(k)− PB(k))2

+ λLoss(NBRBu
2
B(k)),

(5.4)

subject to constraints related to battery in (4.7)-(4.8); and

MPC-UC:

JUC =
t+N−1∑
k=t

LUC(xUC(k), uUC(k)), (5.5)

where,

LUC(x2(k), u2(k)) =λTracking(PFL−High(k)− PUC(k))2

+ λLoss(NUCRUCu
2
UC(k))

+ γUCSOC
(xUC(k)− SOCUCd

)2,

(5.6)

also subject to constraints related to UC in (4.7)-(4.8).

To quantify the improvement in the HESS system performance, we also formulate

the MPC problem for a system where only ultracapacitors are used. Because there is

no battery to maintain the UC at a high SOC level, the penalty in Equation (4.16)

is not included, which prevents the occurrence of an extremely large error on power

tracking. Therefore, for the “UC only” configuration (UC-Only), the MPC problem

is defined as:

JUCOnly =
t+N−1∑
k=t

LUCOnly(x(k), u(k)), (5.7)

where,

LUCOnly(xUC(k), uUC(k)) =λTracking(PFL(k)− PUC(k))2

+ λLoss(NUCRUCu
2
UC(k)),

(5.8)

subject to the constraints related to UC in (4.7) and (4.8).
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Note that NUC for the HESS configuration is 9, and for the “UC only” configura-

tion, it is 14.

5.2 Performance Comparison and Results Analysis

With the models built in Chapter II and the HESS components determined above,

we present a case study for quantifying the effects of different control strategies on

the electric drive system with HESS. In the case study, the sampling time for the

control update is chosen as 0.02 sec, which is properly matched with the underlying

system dynamics. The self-sustained operation period is defined as the continuous

time that the HESS can be used as the energy buffer for the electric propulsion system

without requiring charging or discharging from external power sources (such as the

diesel generator). This is determined to be 40 minutes for SS4 and 30 minutes for

SS6. The generator will slowly charge the battery to the initial SOC after 40 minutes

of continuous operation at SS4, and 30 minutes at SS6. The optimization problem

is solved by sequential quadratic programming (SQP). The resulting performance is

evaluated in terms of the following two metrics:

1. RMS tracking error:
√
J1/NT ;

2. HESS losses: Loss% = J2∑NT
k=0 PDemand(k)

× 100%.

Two case studies are performed in the following subsections. In the first case study,

the rotational speed is assumed as constant, which means that the load torque is fully

balanced by the motor torque. This gives us the worst-case scenario in terms of the

mechanical power fluctuations being transferred to the electrical system. We focus

on this worst case first since an attempt will be made to balance the motor torque

given that ‘the torque imbalance is responsible for the propeller wear and tear’, as

discussed in Section 5.5.5 of [20]. In the second case study, where the rotational speed

is regulated by a PI controller, the filter effect of the propeller is considered.
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Figure 5.2: Pareto-fronts of UC-Only, CC-MPC and PF-MPC at sea state 4 (N=20).

5.2.1 Case I: Constant Propeller Rotational Speed

The weighting factors allow us to put different emphasis on each attribute to

investigate the performance trade-off. By varying λTracking, λLoss and γUCSOC
, the

UC-Only (5.7), the PF-MPC (5.3)-(5.5) and the CC-MPC (5.1) problems are solved

at sea states 4 and 6. The Pareto-fronts of these three solutions, which represent the

best achievable system performance with HESS and only ultra-capacitors, are shown

in Figures 5.2-5.3 with the predictive horizon N = 20. The results indicate that the

CC-MPC has substantial advantages over the PF-MPC and UC-Only configurations

in terms of mitigating the load power fluctuations and reducing losses at both sea

states 4 and 6. Note that the constraints are not active in these simulation results.

However, after a long self-sustained operation period, the SOC constraint of the

battery will become active. MPC is able to guarantee the battery working within

these constraints. If the performance is degraded, the HESS can be recharged before

the battery reaches its constraints.

The key observations are summarized in the following remarks:

Remark 5.1: The Pareto-fronts give insight into the effectiveness of HESS with
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Figure 5.3: Pareto-fronts of UC-Only, CC-MPC and PF-MPC at sea state 6 (N=20).

MPC and the trade-off between the tracking RMS error and the HESS losses. As

shown in Figures 5.2-5.3, the CC-MPC strategy has substantial advantages with

regard to tracking error mitigation compared with the energy storage system with

only ultra-capacitors. Furthermore, the CC-MPC strategy can reduce the tracking

RMS error without significant increase in losses at sea states 4 and 6 compared with

the PF-MPC strategy.

Remark 5.2: A proper control strategy is critical for capitalizing on the benefits

of HESS. As can be seen from Figures 5.2 and 5.3, UC can do as well as (and even

better than) the HESS if PF-MPC is used. Without proper coordination, the HESS

does not have a convincing performance advantage.

Remark 5.3: Under coordinated control, the battery will properly charge the

UC to keep it working in an efficient operating range to achieve a desired tracking

performance with high efficiency, as shown in Figure 5.4 (a). In contrast, without

coordination, the UC cannot assist the battery to reduce the losses, and the battery

cannot properly charge the UC when needed, leading to a shortened self-sustained

operation time and degraded performance, as shown in Figure 5.4 (b). Compared to
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Figure 5.4: CC-MPC and PF-MPC performance at sea state 4.

the UC SOC result in Figure 5.4 (b), Figure 5.4 (a) shows a large variation of the SOC

of the UC. This is because the UC in the CC-MPC compensates both high- and low-

frequency fluctuations, but the UC in the PF-MPC compensates only high-frequency

fluctuations. Therefore, the UC in the CC-MPC is used more efficiently than it is in

the PF-MPC. Furthermore, the high-frequency fluctuations in the PF-MPC cannot

be cancelled out or reduced to the level achieved by CC-MPC, as shown in Figure 5.4

(a), because of the penalty of the UC SOC in (5.6). Without this penalty, the UC

SOC in PF-MPC will decrease quickly, and the tracking performance will deteriorate.

Moreover, only when the UC is operating at high current levels will the batteries in

the CC-MPC strategy start to work to assist in reducing the power tracking error and

minimizing the losses, as shown in Figure 5.4 (c). With pre-filtering, however, the

battery and UC can be working at cross purposes; namely, when one is charging the
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Figure 5.5: Sensitivity analysis of predictive horizon for CC-MPC at sea state 4.

other may be discharging. This causes additional losses and degrades power tracking

performance, as shown in Figure 5.4 (d). Consequently, the overall energy consumed

in the PF-MPC, as shown in Figure 5.4 (b), is much more than that in the CC-MPC

shown in Figure 5.4 (a).

Remark 5.4: Extending the predictive horizon will generally improve performance,

at the cost of increased computational complexity. To make the proposed solution

feasible for real-time implementation, a short predictive horizon is used. A sensitivity

analysis of the predictive horizon for CC-MPC is performed to gain insights into

the trade-offs between these design attributes. As shown in Figures 5.5 and 5.6,

the performance is relatively insensitive to the predictive horizon for this problem.

Given that the required computation time depends on not only the algorithm but

also the computation hardware, the work in this section does not directly prove real-

time feasibility. Nevertheless, by providing evidence that a long prediction horizon is

not needed for this problem, it provides strong support that an MPC-based solution

can be practical. Moreover, this sensitivity analysis provides insight that can help

designers manage the trade-off between performance and control complexity.
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Figure 5.6: Sensitivity analysis of predictive horizon for CC-MPC at sea state 6.

5.2.2 Case II: Regulated Propeller Rotational Speed by a PI Controller

In order to consider the filter effect of the ship propeller, another case study is

performed where the rotational speed of the propeller is regulated by a PI controller.

The PI controller for the speed regulation is developed and tuned based on the algo-

rithm given in Appendix B.1 in [19]: KP = 1
a

Is
Tsum

and KI = KP/Ti, where a=3 is a

constant related to the damping ratio, Is = 4800kgm2 is the total propeller rotational

inertia, Tsum = 0.011sec is the lumped time constant of the motor and the shaft speed

sensor filter, and Ti = 0.1sec is the PID controller integral time constant. Since the

high-frequency fluctuations are significantly filtered in Case II, batteries instead of

ultra-capacitors are used as the single type of energy storage. The number of battery

modules is set at 18, as shown in Table 2.4. This “battery only” configuration is

defined as “B-Only” in this case study.

The Pareto-fronts of Case I and II are shown in Figure 5.7 and 5.8. The key

observations are summarized in Remark 5.5.

Remark 5.5: As shown in Figure 5.7 and 5.8, the performance of PF-MPC in

Case II is even worse than that in Case I. The reason for this can be explained
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Figure 5.8: Pareto-fronts of Case I and II at sea state 6 (N=20).

as follows: The high-frequency power fluctuation in Case II is around 40% of that

in Case I, due to the low-pass filter effect of the inertia and the speed controller

in Case II. However, the low-frequency power fluctuations are almost the same,

which means the battery losses
∑N

k=0(Powerbattery−loss(k)) are almost the same un-

der the PF-MPC strategy. Because the losses of batteries are dominant among the

total losses
∑N

k=0(Powerbattery−loss(k) + PowerUC−loss(k)), the performance metric

74



204 206 208 210 212 214 216

C
ur

re
nt

 (
A

)

-200

0

200
CC-MPC HESS Current (Case II)

Current of Battery

time(sec)
204 206 208 210 212 214 216

C
ur

re
nt

 (
A

)

-200

0

200

Current of UC

Figure 5.9: The HESS output currents of CC-MPC (Case II) at sea state 4.

Loss% =
∑N

k=0(Powerbattery−loss(k)+PowerUC−loss(k))∑N
k=0 |PDemand(k)| × 100% gets worse as the total com-

mand power decreases. On the other hand, the performance of CC-MPC in Case

II is better than that in Case I at sea states 4 and 6, as UCs with CC-MPC not

only cancel out the high-frequency fluctuations but also help in dealing with the low-

frequency fluctuations, as shown in Figure 5.9. As can be seen, the output currents

of batteries and UCs are both reduced, as shown in Figure 5.9, compared to Figure

5.4(d), which indicates that the total HESS losses are significantly reduced and the

battery life is extended. Compared to B-Only in Figure 5.7 and 5.8, CC-MPC out-

performs B-Only at both sea states 4 and 6. This result provides the insight that,

even though the high-frequency fluctuations are significantly filtered, with a proper

strategy, UC is still essential to improve performance in terms of minimizing track-

ing error and losses. In summary, Case II also demonstrates the effectiveness of the

proposed strategy CC-MPC under more realistic conditions.
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5.3 Summary

In this chapter, control strategies with different levels of coordination among the

HESS elements are studied, and the importance of the coordination is demonstrated.

Due to the frequency characteristics of the power fluctuations, coordinated control

(CC) and pre-filtering (PF) control strategies are investigated. A model predictive

control is formulated based on the multi-objective optimization problem to minimize

the tracking RMS error and HESS losses. A single type of energy storage is also

studied to provide a benchmark in characterizing the performance of HESS. For the

control strategy of HESS, two MPC-based strategies, CC-MPC and PF-MPC, are

designed and evaluated. The comparison results indicate that the CC-MPC strategy

outperforms the PF-MPC strategy in terms of power tracking, HESS efficiency, and

self-sustained operation time. The sensitivity analysis of the predictive horizon for

the coordinated control shows the feasibility of the MPC-based strategies for real-time

applications. In summary, coordinated control is preferred to mitigate the shipboard

load power fluctuations with HESS, given its superior performance and ability in

trading off between achieving power tracking and reducing energy losses.

This study establishes a foundation for pushing HESS technology forward. The

controllers of the generator sets, motor and other components in the electrical propul-

sion have not been taken into consideration in this chapter. The interaction analysis

and energy management strategy design and evaluation for the HESS integrated with

the existing electrical propulsion system will be presented in the next chapter.
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CHAPTER VI

Energy Management Strategies for An Electric

Ship Propulsion System with Hybrid Energy

Storage

The integration and operation of a shipboard electrical propulsion system with

HESS relies on well-configured HESS hardware and effective power/energy manage-

ment strategies in order to mitigate the load power fluctuation effects and achieve

the desired benefits of increased system efficiency, improved reliability, and reduced

wear and tear. When the HESS is introduced into the existing shipboard electri-

cal propulsion system, it will interact with the generator control systems. Without

proper coordination, the HESS system and the generator control system could inter-

fere with each other, thereby defeating the purposes of HESS. In [19], the widely used

voltage regulator is applied to battery packs to regulate the DC bus voltage, in order

to support the propulsion power. The PI controller is used in [41] for UC to deal with

the pulse power load, leading to system efficiency improvement. In [49], the batteries

and UC work with generators to follow the load profile and reduce fuel consumption.

These control strategies are used to accommodate step or pulse changes in load power,

which differ from the propulsion load fluctuations caused by the hydrodynamic in-

teractions and wave excitations. To the best knowledge of the author, the special
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challenges associated with the multi-frequency characteristics of the propulsion load

fluctuations and HESS control, as well as the interactions between the HESS control

and primary power generation control systems in dealing with dynamic load fluctua-

tions, have not been well addressed. To address this problem, four control strategies

are studied and analyzed in the first section.

In order to develop a proper control strategy, there are two ways to integrate a new

HESS with the existing propulsion system. One is defined as a ‘plug-in configuration’,

i.e., the new HESS controller works by itself without active coordination with the

existing propulsion system. The other is defined as ‘integrated configuration’, in which

a new integrated controller is developed for the whole propulsion system, including

HESS, propulsion motor, and other power generation systems. In this chapter, energy

management strategies for both plug-in and integrated configurations are studied and

analyzed. The HESS studied in this chapter is based on the B/UC HESS in Chapter

V; i.e., six battery modules and nine UC modules. Similar analysis can be extended

to a battery with flywheel HESS.

6.1 Energy Management Strategies for the Plug-in Configu-

ration

The HESS needs to work with existing control systems in the shipboard power

network in order to achieve the expected benefits of efficiency and reliability improve-

ment. To understand the benefits and limitations of different control designs, four

strategies are investigated in this section, as described in Table 6.1. The general

diagram of the system that embodies these different strategies is shown in Figure 6.1.
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Table 6.1: Properties of control strategies.

Strategies Properties

1. Baseline System (BL) without HESS Generator control only, HESS is discon-
nected.

2. Motor Load Following (MLF) with
HESS

HESS control is based on the motor load
information, the bus voltage and motor
power information is not used.

3. Bus Voltage Regulation (BVR) with
HESS

HESS control is based on the bus volt-
age information, the information about the
motor load and motor power is not used.

4. Coordinated Energy Management
System (EMS) with HESS

HESS control is based on system informa-
tion, including the bus voltage, generator
output power, motor input power, and mo-
tor load power.

Figure 6.1: Schematic of the electric propulsion system with HESS control strategies
for the comparative study.

6.1.1 Baseline Control System without HESS

In the baseline (BL) case, a propulsion motor is controlled by a load-following

strategy, and a PI bus voltage regulator is used as the generator control. Without

the HESS, the response of the baseline system serves as a benchmark to evaluate the

benefits or drawbacks of the other strategies. The PI voltage regulator with anti-

windup for the generator control has been successfully used in marine applications

[19, 82]. In this section, the same PI voltage regulator for the generator control is used

for the BL system, as well as for the other three control strategies, when evaluating
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the performance of each strategy.

To simplify the control system, linearized models are developed around an oper-

ating point. The block diagram of the feedback system for BL is shown in Figure

6.2, where GGen, GBus, and GIM are the transfer functions for the generator with

its rectifier, DC bus, and induction motor with its drive, respectively. The current

changes in the induction motor (IM) caused by the load fluctuation are treated as a

disturbance on the bus. The overall system response, treating the desired bus volt-

age Vd and the load fluctuation LF as the external inputs and the bus voltage error

EDC = Vd − xDC as the performance variable, can be characterized as follows:

EDC =
1

1 +GGenGBus

Vd +
GIMGBus

1 +GGenGBus

LF. (6.1)

The time response of the baseline system is shown in Figure 6.3. Note that all the

simulation results presented herein are implemented at Sea State 4 and the average

ship speed is 12.4 knots.

Figure 6.2: The block diagram of the feedback system with the baseline strategy.

6.1.2 Motor Load Following Control with HESS

The motor load-following (MLF) strategy for HESS has been explored in many

power and energy applications, such as hybrid electric vehicles. This strategy often

exploits a given load profile or a predictive model. In this section, it utilizes the

motor load information to develop HESS energy management and achieve the optimal
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Figure 6.3: The bus voltage response with the baseline strategy at sea state 4.

performance. However, as shown in Figure 6.4, while HESS control reduces the low

frequency content on the DC bus, it generates more high frequency fluctuations,

leading to deteriorated performance. At a high sea state when the low frequency

disturbance is dominant, as shown in Figure 2.3, this strategy could be effective.

Unfortunately, at a low sea state it will result in a performance that is even worse

than that of the baseline, due to the interaction and the lack of coordination between

the voltage regulation loop and load following loop.

To understand and explain the responses shown in Figure 6.4, a model-based

analysis is performed. To simplify the analysis, the HESS is assumed to follow the

load fluctuation command without tracking error. The block diagram of the simplified

feedback system for MLF is shown in Figure 6.5, whose bus error dynamics can be

described by:

EDC =
1

1 +GGenGBus

Vd +
(GIM − 1)GBus

1 +GGenGBus

LF. (6.2)

Compared with Equation (6.1), MLF does not influence the system sensitivity

function, which represents the dynamic relationship from the command to the output
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Figure 6.4: Performance comparison of BL and MLF: bus voltage response (top plots)
and their frequency spectrums (bottom plots) at sea state 4.

error. However, the disturbance transfer function, namely from the load fluctuation

to output error, differs from that of the BL strategy. As shown in Figure 6.6, the

bus voltage variation is significantly reduced at low frequencies, compared to BL, but

noticeably increased at high frequencies, which explains the dynamic behavior shown

in Figure 6.4. The result can be attributed to the fact that this strategy does not take

the motor dynamics and the generator dynamics into consideration in HESS energy

management. It uses only the load information and ignores some system information

(especially the DC bus information), and therefore works independently from the

generator control.

6.1.3 Bus Voltage Regulation with HESS

Bus voltage regulation (BVR) is one of the most widely used control strategies

for energy storage systems, especially in uninterruptible power supply (UPS) applica-

tions. It is a simple control architecture (voltage measurement and feedback) which

aims to stabilize the bus voltage. When HESS is introduced, BVR is a natural choice
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Figure 6.5: The block diagram of the feedback system with the MLF strategy.

Figure 6.6: Bode plot of load fluctuation response (LF → EDC) by BL and MLF.

for controlling the energy storage to reduce the bus voltage fluctuation caused by

power and thrust variations on the electric drive. Here two PI controllers are used

for batteries and UCs, as expressed in the following:

IB = (KPb
+KIb/s)× (Vd − xDC),

IUC = (KPuc +KIuc/s)× (Vd − xDC),

where KPb
, KIb , KPuc and KIuc are the control parameters of batteries and UCs.

The BVR strategy implements bus voltage regulation on the generators and HESS.
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Figure 6.7: Performance comparison of BL and BVR: bus voltage response (top plots)
and their frequency spectrums (bottom plots).

Compared to the baseline performance, the HESS introduces some benefits by reduc-

ing the DC bus voltage variations in both the low frequency and high frequency range,

as shown in Figure 6.7.

To perform the interaction analysis of BVR, the block diagram of the feedback

system for BVR is given in Figure 6.8, and the simplified system dynamic can be

represented by:

EDC =
1

1 + (GGen +GHESS)GBus

Vd

+
GIMGBus

1 + (GGen +GHESS)GBus

LF,

(6.3)

where GHESS represents the dynamics of HESS with PI controllers.

As shown in Figure 6.9, compared to the BL strategy, the load fluctuation effect in

both the low frequency and high frequency range is reduced. Note that the generator

and battery controls are additive, as shown in Figure 6.8. The current IDC (sum

of the currents from generator, IGen, and HESS, IHESS) aims to mitigate the load
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Figure 6.8: The block diagram of the feedback system for the BVR strategy.

Figure 6.9: Bode plot of load fluctuation response (LF → EDC) by BL and BVR.

fluctuation current (ILF ) effect on the DC bus. Without proper coordination, IGen

and IHESS may cancel each other before dealing with the load fluctuation. This

is indeed the case as highlighted in Figure 6.10, which shows that IGen and IHESS

are flowing in the opposite direction. These phenomena will result in unnecessarily

high currents for both generators and HESS, leading to increased losses and reduced

efficiency.

To summarize, the problem in MLF and BVR is that the HESS does not properly

coordinate with other components and fails to take advantage of all system infor-

85



time [sec]
508.8 508.9 509 509.1 509.2

C
ur

re
nt

 [A
]

-40

-20

0

20

40

60
I
Gen

I
HESS

I
DC

Figure 6.10: Undesirable interaction: fluctuating currents from the generator and
battery pack for the system with BVR.

mation. Hence, to deal with the load fluctuation problem in electric ship propulsion

system, a coordinated energy management strategy (EMS) is proposed in the follow-

ing.

6.1.4 Coordinated HESS EMS

Optimization-based control is used for the proposed EMS to improve system effi-

ciency and reliability. The optimization goals are to minimize the DC bus variation,

power tracking error and HESS losses, and avoid the battery high current operation.

Taking the induction motor dynamics into consideration, the power tracking com-

mand PFL = PM−PDCM is the fluctuation of the induction motor input power, where

PM is the motor input electrical power and PDCM is the DC value of PM , obtained

by passing PM through a low pass filter. The bus voltage defined by Equation (2.12)

is introduced to the dynamic system equation and incorporated in optimization. The

MPC formulation for this EMS takes the following specific form:

P (x0) : min
x:[t,t+N ]→Rnu:[t,t+N−1]→Rm

J(x, u), (6.4)
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where:

J(x(t), u(t)) = Φ(x(t+N)) +
t+N−1∑
k=t

L(x(k), u(k)), (6.5)

Φ(x(t+N)) =λV DC(Vd − xDC(t+N))2, (6.6)

L(x(k), u(k)) =λe(PFL(k)− PB(uB(k))− PUC(xUC(k), uUC(k)))2

+ λHESS(RBu
2
B(k) +RUCu

2
UC(k))

+ λV DC(Vd − xDC(k))2,

(6.7)

subject to the constraints:

20% ≤ xB ≤ 90%,

75% ≤ xUC ≤ 99%,

−200A ≤ uB ≤ 200A,

−240A ≤ uUC ≤ 240A,

(6.8)

xB(k + 1) =xB(k)− Ts
3600QB

uB(k),

xUC(k + 1) =xUC(k)− Ts
VmaxCUC

uUC(k),

xDC(k + 1) =xDC(k) +
Ts

CBusxDC(k)
(PGen − PM)

+
Ts

CBusxDC(k)
(PB(uB(k)) + PUC(xUC(k), uUC(k))),

(6.9)

where PB and PUC are the power generated by the battery and UC in Equation (2.11),

λe is the power tracking error penalty, λHESS is the penalty for losses in the batteries

and UCs, and λV DC is the penalty for DC bus voltage variation. Equation (6.9) is

discretized from Equation (2.10) and (2.12) with a sampling time of Ts. The MPC

solves the optimization problem in Equation (6.4) at each sampling time instance,

implements the first element of the control sequence from the solution of Equation

(6.4), and then moves on to the next sample time with a receding horizon.

The EMS strategy is developed using the system information, including the bus
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Figure 6.11: Performance comparison of BL and EMS: bus voltage response (top
plots) and their frequency spectrums (bottom plots).

voltage, motor power, and ship propulsion load. This strategy is to minimize a cost

function that includes the power tracking error, DC bus voltage variation and HESS

electrical losses, subject to constraints of battery and ultra-capacitor SOC limits

and charging/discharging limits. As shown in Figure 6.11, the EMS more effectively

reduces the DC bus variation than the BL strategy does. Since the bus voltage error

is significantly reduced by the EMS, the generator will provide almost constant power,

which results in reduced fuel consumption.

6.1.5 Comparative Study and Simulation Results

To validate the interaction analysis and evaluate the different coordination strate-

gies, a comparative study is performed for the four strategies using the simulation-

oriented model. In order to quantify the performance of each strategy, the corre-

sponding performances have been evaluated in terms of the following metrics:

1. DC bus voltage variations measured by rms and maximum absolute value.
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Table 6.2: Performance comparison of different control strategies.

Sea State 2.

BL MLF BVR EMS
Bus RMS Error 8.401V 11.76V 4.33V 2.16V
Bus Max Error 28.91V 39.15V 9.07V 6.10V
PM/G RMS 23.18kW 27.65kW 8.01kW 4.14kW
PM/G Max 72.77kW 103.59kW 27.36kW 10.01kW
HESS Loss% N/A 0.34% 0.79% 0.24%
IBhigh% N/A 0.0% 3.542% 0.0%

Sea State 4 (nominal condition).

BL MLF BVR EMS
Bus RMS Error 10.89V 11.75V 4.74V 2.47V
Bus Max Error 37.28V 40.51V 14.24V 3.24V
PM/G RMS 31.75kW 27.14kW 10.83kW 4.69kW
PM/G Max 97.22KW 104.67kW 38.64kW 13.12kW
HESS Loss% N/A 0.44% 0.87% 0.29%
IBhigh% N/A 0.146% 7.188% 0.0%

Sea State 6.

BL MLF BVR EMS
Bus RMS Error 24.87V 12.67V 9.70V 4.75V
Bus Max Error 52.32V 42.53V 21.28V 7.68V
PM/G RMS 74.29kW 28.96kW 32.07kW 7.32kW
PM/G Max 197.26kW 138.53kW 188.61kW 51.21kW
HESS Loss% N/A 1.51% 1.70% 1.18%
IBhigh% N/A 11.685% 38.771% 7.103%

2. Diesel-generator power fluctuations measured by rms and maximum absolute

value. The power fluctuations could cause additional fuel consumption and

mechanical wear and tear.

3. Efficiency in terms of power losses in the electrical system due to energy cycling.

4. Battery “friendliness” in terms of the time spent charging/discharging the bat-

tery at high currents. Numerous research results show that fast charging/discharging

can cause accelerated degradation in lithium battery systems [33]. We define

IBhigh% as the percentage of the high current operation (Ibattery ≥ 150A) over

the total operation time.

A quantitative comparison of different strategies is summarized in Table 6.2 at

three different sea states for a 24 second time frame. As can be seen, the results in

89



480 490 500 510 520
4120

4140

4160

4180

4200

[V
]

 

 BL:Bus Voltage
BVR:Bus Voltage

480 490 500 510 520
4120

4140

4160

4180

4200

[V
]

 

 BL:Bus Voltage
EMS:Bus Voltage

480 490 500 510 520
3.25

3.3

3.35

3.4

3.45

3.5
x 10

6

[W
]

 

 
BL:PM/G Power
BVR:PM/G Power

480 490 500 510 520
3.25

3.3

3.35

3.4

3.45

3.5
x 10

6

[W
]

 

 
BL:PM/G Power
EMS:PM/G Power

500 505 510 515 520 525
84

85

86

87

88

89

90

[%
]

 

 
BVR:UC SOC
EMS:UC SOC

500 505 510 515 520 525
79.98

79.99

80

80.01

80.02

80.03

80.04
[%

]

 

 
BVR:Battery SOC
EMS:Battery SOC

500 505 510 515 520 525
−150

−100

−50

0

50

100

150

time [sec]

[A
]

 

 BVR:Battery Current

500 505 510 515 520 525
−150

−100

−50

0

50

100

150

time [sec]

[A
]

 

 
EMS:Battery Current

Figure 6.12: Performance comparison: BL, BVR and EMS.

Table 6.2 validate the interaction analysis discussed above. The performance from

best to worst are colored in the following sequence: blue, green, brown and red.The

MLF strategy achieves better performance at high sea states due to its effectiveness

in reducing the low frequency variation. However, at the nominal and low sea states,
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Figure 6.13: Schematic of HESS-EMS for the electric propulsion system with HESS.

MLF performs much worse than the BL strategy because of its problems in the high

frequency range. The BVR strategy could better reduce some of the variations in the

DC bus voltage and generator power compared with the BL strategy. However, due to

the undesirable interaction with the generator, the BVR strategy incurs higher losses

and is less “friendly” to the battery, as shown in Table 6.2 and Figure 6.12. Compared

to the BVR case (see Figure 6.12), less SOC variations are observed for EMS. This

translates into an extended self-sustained operation time. To summarize, the EMS

achieves the best performance compared to other strategies in all the performance

metrics considered at all sea states.

6.2 Energy Management Strategies for the Integrated Con-

figuration

The EMS proposed in Section 6.1 incorporates information from the existing con-

trol system of the electric generation system and induction motor, and coordinates

the operation of the batteries and ultra-capacitors. While this strategy has the ad-

vantage of being “add-on” and “plug-in” in the sense that it requires no changes

to the existing control system of the generator sets and propulsion motor, it has no
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authority to affect the generator and motor operation. This means that it is limited

in dealing with system interactions. Because of these limitations, large torque and

bus voltage variations have been observed in dynamic operation (such as pulse power

loads [41]-[43]), which force the HESS to operate at its limits.

This section proposes a new integrated EMS to encompass the controls of the

primary power sources and propulsion motor in addition to the HESS, to allow judi-

cious coordination that can achieve desired performance. The new integrated EMS

aims to increase system efficiency, enhance reliability, reduce mechanical wear and

tear, and improve load-following capability by eliminating unintended and adverse

interactions among the subsystems, especially in the dynamic load-following condi-

tions. The model-based analysis and simulation demonstrate the benefits, as well as

the potential cost, associated with the integrated EMS with system-level full-scale

coordination. The HESS EMS with HESS-level coordination presented in last section

is included to serve as a benchmark for the evaluation of the integrated EMS. This

benchmark is referred to as an HESS energy management strategy (HESS-EMS), be-

cause it is developed for HESS alone. The general diagram of the HESS-EMS system

is shown in Figure 6.13. While HESS-EMS can deal with some interactions among

subsystems, its effectiveness is limited because the actions it can take are limited by

the energy storage components. Compared to the benchmark, a comparison study

is performed using model predictive control to demonstrate the proposed integrated

EMS benefits.

6.2.1 Integrated System-Level EMS

To overcome the limitations of HESS-EMS in coordinating the power systems con-

nected to the shipboard micro-grid, The new EMS will integrate the generator sets,

electric motor, and HESS. It will be referred to as the system energy management

strategy (SYS-EMS), given that it breaks the boundaries of HESS and other subsys-
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Figure 6.14: Schematic of SYS-EMS for the electric propulsion system with HESS.

tems. The general diagram of SYS-EMS is illustrated in Figure 6.14. In addition

to minimizing power tracking error, HESS energy loss, and bus voltage variation as

considered in HESS-EMS, the objectives of SYS-EMS include:

• keeping the motor shaft at its reference speed: min(ωd − xM);

• making the electric power generator and induction motor operate near their

most efficient operating points: min(P ref
Gen − PGen) and min(P ref

M − PM);

• reducing the generator output variations: min(xG(k + 1)− xG(k));

• reducing mechanical wear and tear: min(uM(k)− uM(k − 1));

where ωd is the reference speed of the propulsion motor, and P ref
Gen and P ref

M are the

reference powers of the generator sets and motor, respectively.

Therefore, the MPC formulation for SYS-EMS takes the following forms:

Φ(x(N)) =λV DC(Vd − xDC(N))2 + λω(ωd − xM(N))2, (6.10)
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L(x(k), u(k)) =λV DC(Vd − xDC(k))2 + λω(ωd − xM(N))2

+ λPGen
(P ref

Gen − xDC(k)xG(k))2

+ λPM
(P ref

M − xM(k)uM(k))2

+ λ∆IPG
(xG(k + 1)− xG(k))2

+ λ∆TM
(uM(k)− uM(k − 1))2

+ λHESS(RBu
2
B(k) +RUCu

2
UC(k)),

(6.11)

subject to the inequality constraints:

20% ≤ xB ≤ 90%,

75% ≤ xUC ≤ 99%,

0 ≤ xG ≤ 1000A,

0 ≤ xM ≤ 160RPM,

−200A ≤ uB ≤ 200A,

−240A ≤ uUC ≤ 240A,

−10V ≤ uG ≤ 10V,

−1.25× 106Nm ≤ uM ≤ 1.25× 106Nm,

(6.12)
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and the equality constrains:

xB(k + 1) =xB(k)− Ts
3600QB

uB(k),

xUC(k + 1) =xUC(k)− Ts
VmaxCUC

uUC(k),

xDC(k + 1) =xDC(k) +
Ts

CBusxDC(k)
(PB(uB(k)) + PUC(xUC(k), uUC(k))

+
Ts

CBusxDC(k)
(NGenxDC(k)xG(k)− xM(k)uM(k)/ηM),

xG(k + 1) =xG(k) +
Ts
τPG

(−xG(k) +GPGuG(k)),

xM(k + 1) =xM(k) +
Ts
H

(−βMxM(k) + uM(k)− TLoad(k)),

(6.13)

where λω, λPGen
and λPM

are the penalties of tracking performance of motor speed,

generator power and motor power, respectively; λ∆IPG
and λ∆TM

are the penalties

of the variations of generator output DC current and motor torque, respectively;

NGen = 2 is the number of generator sets, and ηM is the efficiency of the motor.

The main differences and the potential impact on performance and complexity

are discussed in the following remarks.

Remark 6.1: HESS-EMS is responsible for controlling the battery and UC charg-

ing/discharging, while SYS-EMS controls the entire electric propulsion system. HESS-

EMS has no authority to control the generator or propulsion motor. As shown in

Equations (6.10)-(6.11), comprehensive objectives, which consider the entire propul-

sion system performance, can be better formulated in SYS-EMS, leading to improved

performance over HESS-EMS. This will be shown in the next subsection, especially

when HESS is forced to operate at its limits.

Remark 6.2: Compared with SYS-EMS, HESS-EMS has the advantage of having

a “plug-in” capability. When a new HESS is introduced into the existing electric ship

propulsion system, HESS-EMS requires no change the existing control systems of the

generator sets and propulsion motor. A further advantage of HESS-EMS is that it
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has a lower computational cost than SYS-EMS.

6.2.2 Comparative Study and Simulation Results

To evaluate the proposed SYS-EMS and quantify the performance advantages

introduced by system-level coordination, a comparative study is performed and the

following key metrics are used for both HESS-EMS and SYS-EMS:

1. DC bus voltage variations measured by rms and maximum absolute value;

2. Motor speed variations measured by rms and maximum absolute value.

3. High frequency variations of propulsion motor torque measured by the maxi-

mum amplitude of the torque frequency spectrums in the high-frequency range

(i.e., greater than 1Hz);

4. Efficiency in terms of power losses of HESS in the electrical system due to energy

cycling;

5. Battery “friendliness” in terms of the time spent charging/discharging the bat-

tery with high currents.

As shown in Figure 6.15, both the HESS-EMS and SYS-EMS offer good regula-

tion of the DC bus voltage. However, the SYS-EMS significantly reduces the torque

variation with almost the same performance in motor speed tracking compared to

HESS-EMS. Due to the multi-frequency characteristics of the load fluctuations, there

is a trade-off among speed variation, torque variation, and power variation. Desired

performance can be achieved in SYS-EMS by tuning the penalties in the cost function.

When a large pulse load is applied, the coordination of the generator sets, propulsion

motor, and HESS is able to address the dynamic operating conditions. As shown in

Figure 6.16, when a 500KW pulse load of 1 second duration and 6 second period is

applied, SYS-EMS uses all the subsystems, including the generator and propulsion
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Figure 6.15: Performance of HESS-EMS and SYS-EMS at Sea State 4.

motor control, to maintain a stable DC bus voltage. Specifically, the power to the

motor is reduced so that more power is directed to meet the large pulse load de-

mand. This does lead to slightly reduced motor speed for a short time period, but

it is inconsequential given the magnitude of the reduction. For HESS-EMS, since

the motor control works independently, such control authority is not available and

therefore large ripples occur on the DC bus, as shown in Figure 6.16.

The performance of HESS-EMS and SYS-EMS is summarized in Table 6.3. Based

on the comparison study presented above, the key observations are summarized in
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Figure 6.16: Performance of HESS-EMS and SYS-EMS with pulse power load at Sea
State 4.

the following remarks.

Remark 6.3: Due the full coordination of the overall electric propulsion system,

SYS-EMS has a significant advantage over HESS-EMS in terms of improving system

efficiency, enhancing reliability, and reducing mechanical wear and tear. The gener-

ator sets and battery can properly charge the UC when it reaches its limits without

generating large ripples on the DC bus. When the ship encounters large waves, the

propulsion motor will coordinate with the generator sets and HESS to maintain a

stable DC bus voltage. As shown in Figures 6.16, SYS-EMS is able to deal with
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the load fluctuations and pulse power load simultaneously and achieve the desired

performance.

Remark 6.4: The disadvantage of SYS-EMS compared to HESS-EMS is the high

computational cost. Therefore, to implement SYS-EMS in real-time control applica-

tions, computationally-efficient optimization algorithms are needed.

The proposed two EMSs, namely HESS-EMS and SYS-EMS, effectively mitigate

the propulsion load effect on the shipboard network, in terms of enhanced reliability,

improved efficiency, reduced mechanical wear and tear. The study in this chapter

assumes the propulsion load torque is known. However, in most marine applications,

the propulsion load torque is immeasurable and unpredictable. In order to address

this issue, the load torque estimation and prediction are studied in the next chapter.

6.3 Summary

In this chapter, two configurations are studied to integrate the new HESS with

an existing propulsion system: a ‘plug-in’ configuration and an ‘integrated’ config-

uration. The trade-off between control simplicity, modularity and overall system

performance is discussed. The ‘plug-in’ configuration provides a simple and modular

control solution. The interaction of different control strategies for ‘plug-in’ configu-

ration is analyzed. For the ‘integrated’ configuration, the integrated approach takes

advantage of the predictive nature of MPC and allows the designers to judiciously

coordinate the different entities of the shipboard network under constraints, thereby

providing benefits to system performance. This ‘integrated’ strategy requires the

information of propulsion-load torque, which will be studied in the next chapter.
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Table 6.3: EMS performance comparison.

Sea State 4.
Operation time:1200 sec; without pulse power load

HESS-EMS SYS-EMS
Bus Voltage RMS Error 0.9148V 0.0005V
Bus Voltage Max Error 61.0588V 0.0015V
Motor Speed RMS Error 0.0851rad/sec 0.11rad/sec
Motor Speed Max Error 0.1004rad/sec 0.2017rad/sec
Motor Torque Variation 11.747KNm 0.799KNm
HESS Loss% 1.496% 0.3754%
IBhigh% 0.7133% 0.0%

Sea State 6.
Operation time:1200 sec; without pulse power load

HESS-EMS SYS-EMS
Bus Voltage RMS Error 20.6632V 0.001V
Bus Voltage Max Error 159.1228V 0.0023V
Motor Speed RMS Error 0.0849rad/sec 0.3923rad/sec
Motor Speed Max Error 0.1036rad/sec 1.0686rad/sec
Motor Torque Variation 24.903KNm 0.83KNm
HESS Loss% 2.3391% 1.157%
IBhigh% 5.7767% 0.0%

Sea State 4.
Operation time:12 sec; with 500KW pulse power load

HESS-EMS SYS-EMS
Bus Voltage RMS Error 3.1259V 0.7016V
Bus Voltage Max Error 32.3337V 8.83841V
Motor Speed RMS Error 0.0851rad/sec 0.2206rad/sec
Motor Speed Max Error 0.1004rad/sec 0.6536rad/sec
Motor Torque Variation 12.88KNm 0.96KNm
HESS Loss% 1.7602% 1.7543%
IBhigh% 4.8333% 0.1667%

Sea State 6.
Operation time:12 sec; with 500KW pulse power load

HESS-EMS SYS-EMS
Bus Voltage RMS Error 3.1296V 0.6182V
Bus Voltage Max Error 28.169V 9.8445V
Motor Speed RMS Error 0.0849rad/sec 0.4301rad/sec
Motor Speed Max Error 0.1036rad/sec 0.8820rad/sec
Motor Torque Variation 12.86KNm 0.879KNm
HESS Loss% 2.3391% 1.3573%
IBhigh% 5.7767% 0.1667%
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CHAPTER VII

Load Torque Estimation and Prediction for An

Electric Ship Propulsion System

In previous chapters, we have developed an integrated EMS using MPC to address

the effects of the load fluctuations and achieve the desired performance. However, it is

assumed that the propulsion-load torque is known and can be accurately predicted. In

most marine applications, however, the propulsion-load torque is difficult to measure

and includes multi-frequency fluctuations. Given the importance of the propulsion-

load torque, this chapter focuses on its estimation and prediction for implementing

MPC.

Load-torque estimation has been explored in a number of studies [19, 21, 22, 83,

84, 85]. In [19, 21, 22, 83], the load torque is assumed to be constant or slowly

time-varying. For our problem, the load torque investigated here consists of multi-

frequency fluctuation components. The disturbance observer or input observer (IO)

approach presented in [84, 85], on the other hand, is not based on the assumption that

the load torque is constant or slowly time-varying. Note that the input observer is

also referred to as the disturbance observer in the literature, since the unknown input

can be considered as a disturbance [86]. Despite the contributions of these works,

the aforementioned approaches do not take advantage of the physical characteristics

of the propulsion-load dynamics, especially the fast dynamics. Furthermore, those

101



approaches cannot be directly used to predict the future load torque, which is required

for implementing MPC. Additional load predictive capabilities are therefore required.

In this chapter, we develop a model-based approach to estimate the propulsion-

load torque for all-electric ships. Due to the complexity of the propulsion-load torque

model, we first develop a simplified model which is able to capture the key dynam-

ics. Because of uncertainties in the model parameters, parameter identification is

used, leading to improved robustness of the control system. This model-based ap-

proach can be easily integrated with the MPC to formulate an adaptive load esti-

mation/prediction with MPC (AMPC). In order to evaluate the proposed AMPC

approach, the IO presented in [85] is used as an alternative technique to estimate

the propeller-load torque. In this alternative control, linear prediction (LP) [87] is

combined with IO to predict the future propulsion-load torque. A comparative study

is performed to evaluate the effectiveness of the proposed AMPC in terms of mini-

mizing the bus voltage variation, regulating the rotational speed, and reducing the

high-frequency motor torque variation. The implications of accurate estimation and

prediction are also illustrated and analyzed in this study.

Table 7.1: Control objectives and their mathematical expression.
Control objectives Mathematical expression
System reliability min(Vd − xDC(k))2

Thrust production min(ωd − xM (k))2

System efficiency
min(P ref

Gen − xDC(k)xG(k))2

min(P ref
M − xM (k)uM (k))2

min(RBu
2
B(k) + RUCu

2
UC(k))

Wear-and-tear mitigation
min(xG(k + 1)− xG(k))2

min(uM (k)− uM (k − 1))2

min(xM (k + 1)− xM (k))2
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7.1 Energy Management Strategy Formulation

7.1.1 AMPC Problem Formulation

In order to achieve enhanced system reliability, desired thrust production, im-

proved system efficiency, and reduced wear and tear, the corresponding control ob-

jectives and their mathematical expressions are summarized in Table 7.1, where Vd is

the desired bus voltage, ωd is the desired reference speed of the propulsion motor, and

P ref
Gen and P ref

M are the reference powers of the generator sets and motor, respectively.

Since the propulsion-load torque TLoad in (2.14) is difficult to measure for ma-

rine applications, estimation of TLoad is required. Furthermore, in order to implement

MPC, prediction of TLoad in the MPC prediction windows is also required. To address

the estimation and prediction of the propulsion-load torque, an adaptive load estima-

tion/prediction with MPC is developed which minimizes a cost function subject to

constraints within the prediction horizon. This can be mathematically expressed as

follows:

P (x0) : min
x:[t,t+N ]→R5u:[t,t+N−1]→R4

J(x, u, T̂Load) (7.1)

where:

J(x, u, T̂Load) = Φ(x(t+N)) +
t+N−1∑
k=t

L(x(k), u(k), T̂Load(k|t)), (7.2)

subject to:

x(k + 1) = f(x(k), u(k), T̂Load(k|t)), x(t) = x0, (7.3)

C(x(k), u(k)) ≤ 0, (7.4)

where Φ(x(N)) and L(x(k), u(k), T̂Load(k|t)) are the terminal and instantaneous cost

functions, N is the time window over which the cost will be evaluated, C(x(k), u(k))
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represents the inequality constraints, t represents the current time, and x(k), u(k)

are the instantaneous values of the states and inputs at time k, respectively. The

instantaneous estimation of the propulsion-load torque is represented by T̂Load(t|t),

and T̂Load(k|t) for k = t + 1, ..., t + N − 1 are the predictions of the load torque at

time t.

According to the control objectives as shown in Table 7.1, the AMPC formulation

takes the following form:

Φ(x(N)) =λV DC(Vd − xDC(N))2 + λω(ωd − xM(N))2, (7.5)

L(x(k), u(k), T̂Load(k|t)) =λV DC(Vd − xDC(k))2

+ λω(ωd − xM(k))2

+ λPGen
(P ref

Gen − xDC(k)xG(k))2

+ λPM
(P ref

M − xM(k)uM(k))2

+ λHESS(RBu
2
B(k) +RUCu

2
UC(k))

+ λ∆IPG
(xG(k + 1)− xG(k))2

+ λ∆TM
(uM(k)− uM(k − 1))2

+ λ∆ω(xM(k + 1)− xM(k))2,

(7.6)

for all k ∈ [t, t + N − 1], subject to (6.12) and (6.13), where λV DC , λω, λPGen
, λPM

,

λHESS, λ∆IPG
, λ∆TM

and λ∆ω are the weighting factors for the penalties of DC bus

voltage variation, tracking performance of motor speed, generator and motor power,

HESS losses, variations of generator output DC current, motor torque and motor

speed, respectively. The estimation and prediction of propulsion load torque is ad-

dressed in the following section.

104



7.2 Propulsion-load Torque Estimation and Prediction

7.2.1 First Approach: Input Observer with Linear Prediction

In order to estimate the propulsion load torque, the input observer (IO) presented

in [85] is used. The general propeller-motor dynamic is described by the following

equation:

ω̇ =
TM(t)− βMω − TLoad(t)

H
. (7.7)

We define

uL(t) = TLoad(t)/H,

zL(t) =
TM(t)− βMω(t)

H
,

yL(t) = ω(t) + ξL(t),

(7.8)

where ξL(t) is the measurement noise.

The unknown input uL(t) can be then estimated by the following equations [85]:

ûL(t) = εL(t) + αLy(t) + φL(t),

φ̇L = −αLφl − αLzL,

ε̇L = −αLεL − α2
LyL,

T̂Load(t) = ûL(t)H,

(7.9)

where αL > 0 is the observer gain and the states of the observer are φL and εL.

Since the input observer cannot predict future load torque, linear prediction is

used. Linear prediction incorporates the knowledge of the signal frequency spectrum

(autocorrelation) to determine the linear prediction coefficients (LPCs). Only past

data, which can be obtained from IO estimation results, is required for LP. To predict

the load torque at time t+1, linear prediction is formulated as follows:
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T̂Load(t+ 1|t) =

NLP∑
i=1

βLPi
T̂Load(t− i+ 1|t), (7.10)

where NLP is the prediction order, and βLPi
(i = 1, ..., NLP ) are the linear prediction

coefficients. The coefficients can be calculated using the Matlab function “lpc”. The

inputs of “lpc” are the past data and the desired prediction order. We then com-

bine IO with LP. The algorithm can be easily implemented, as shown in Figure 7.2.

However, there are several limitations of this approach, summarized in the following.

Remark 7.1: The gain αL in (7.9) is the only parameter used to tune IO. Since

the high-frequency fluctuation is at the propeller-blade frequency, i.e., around 8Hz,

the minimum cut-off frequency is designed at 8Hz, leading to a minimum observer

gain αL = 50. As shown in Figure 7.1, the phase shift at the cut-off frequency is

about 45 degrees, which might significantly affect the estimation performance. In

order to reduce the estimation error, the high-gain input observer is a reasonable

choice if the noise can be ignored. However, noise is an issue under many conditions;

the estimation performance of a high-gain observer, e.g. αL = 400, might be even

worse than one using the minimum gain. The maximum observer gain is difficult to

determine when the noise is random and unknown.

Remark 7.2: The predictive performance of LP highly depends on past data. The

performance of IO directly affects LP. Furthermore, the predictive error could be

accumulated as the predictive horizon extends. For example, predicting T̂Load(t +

2|t) requires the prediction value T̂Load(t + 1|t), which means the predictive error of

T̂Load(t+ 1|t) affects the prediction of T̂Load(t+ 2|t).

Since only the general propeller-motor model (7.7) is used in this approach, the

dynamics of the propeller load torque are not taken into consideration. In order to

address the limitations discussed in Remarks 7.1 and 7.2, a model-based approach

is required, leading to the adaptive load estimation/prediction with model predictive

control discussed in the next section. The major challenge of this approach is the
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Figure 7.1: Bode plot of the input observer.

Figure 7.2: Schematic diagram of the first approach (IO-LP).

complexity of the load torque model (7.11). The focus of the next section is to

develop a simplified model of (7.11), which is able to capture the key dynamics of the

propeller-load torque.

7.2.2 Second Approach: Adaptive Load Estimation/Prediction with Model

Predictive Control

Instead of using only the general propeller-motor model (7.7), this model can

be augmented by the propeller-load torque model presented in Chapter II to provide

additional useful information to estimate the load torque. This propulsion-load torque
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model is expressed in the following:

TLoad(t) = sgn(n)βρn2D5fKQ
(JA, P itch/D,Ae/Ao, Z,Rn)

= sgn(n)βρD5

(
c0n

2 + c1
U(1− w)

D
n

)
+ sgn(n)βρD5c2

(
U(1− w)

D

)2

+ sgn(n)βρD5c3

(
U(1− w)

D

)3
1

n
,

(7.11)

where,

n = ω/2π,

1− w = M0 −M1cos(4θ),

θ is the angular position of one blade; ci (i=0,1,2,3), M0 and M1 are unknown param-

eters; β is the loss factor; ρ is the density of water; D is the diameter of the propeller;

and fKQ
is the torque coefficient function. In fKQ

, JA is the advance coefficient;

Pitch/D is the pitch ratio; Ae/Ao is the expanded blade-area ratio, with Ae being

the expanded blade area and Ao being the swept area; Z is the number of propeller

blades; and Rn is the Reynolds number.

The parameters in (7.11) are usually fitted off-line. For example, parameters c0,1,2,3

in the function fKQ
are based on the fitted KQ curves for the Wageningen B-Series

Propellers [70] and the KQ correction multiplier [71]. The multiplier in [71] is chosen

to minimize the error in the range of the maximum efficiency. If the propeller is not

operating in the range of maximum efficiency, the error could be significantly larger.

Furthermore, the coefficients in fKQ
can vary with the wear and tear of the propeller.

As the operating environment changes, the parameters in the propeller-load model

(7.11) can also change. Therefore, to use (7.11) for load torque estimation, online

parameter identification is necessary.

In this detailed load model (7.11), six parameters (c0, c1, c2, c3,M0,M1) are used in

the nonlinear parametric model, making parameter estimation difficult. To facilitate
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Figure 7.3: Outputs of the detailed and simplified propeller-load torque models at
sea state 4 (top) and sea state 6 (bottom).

online parameter estimation, we propose the following simplified model (7.12), whose

derivation is given in the Appendix (Section 7.5).

TLoad ≈ C̄1 + C̄2cos(4θ) + C̄3(n− nref ). (7.12)

The output of the detailed propeller-load torque model and the simplified model

(7.12) at sea states 4 and 6 are shown in Figure 7.3.

With the combination of (7.7) and (7.12), the new propeller-motor model is de-

veloped in the following:

ω̇ =
TM(t)− βMω − (C̄1 + C̄2cos(4θ) + C̄3∆ω/2π)

H
. (7.13)

For parameter estimation, a parametric model is defined as follows:

zpar = C∗Tparφpar, (7.14)
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where

zpar =

{
λpar

s+ λpar

}(
ω̇ − 1

H
(TM − βMω)

)
,

C∗par =[C̄1 C̄2 C̄3]T ,

φpar =

{
−λpar
s+ λpar

}
[1 cos(4θ) ∆ω/2π]T ,

λpar is the filter gain, and {·} represents the dynamic operator of the filter, whose

transfer function is (·). The filter is introduced to avoid taking numerical derivatives

in estimation.

The normalized gradient algorithm is chosen as the adaptive law and presented in

the following [88]:

Cpar(t) = Cpar(t− 1)+
TsΓφpar(t)εpar

1 + φpar(t)Tφpar(t)
,

where

εpar = zpar(t)− Cpar(t− 1)Tφpar(t),

and Γ = ΓT is a positive-definite matrix satisfying the criteria that the real part of

its eigen-values are between (0, 2/Ts), which affects how fast Cpar updates.

The speed variation within the predictive horizon is assumed to be very small,

i.e., xM(t + N − 1) ≈ xM(t + N − 2) ≈ ... ≈ xM(t). This results in an estimation of

the future propeller-blade position at time k as follows:

θ(k) = θ(t) + (k − t)Tsx2(t). (t ≤ k ≤ t+N − 1)

Therefore, the schematic diagram of the proposed AMPC is shown in Figure 7.4, and

the new propeller-motor dynamic is expressed in the following:
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Figure 7.4: Schematic diagram of the AMPC controller.

Table 7.2: Performance metrics.

Performance Mathematical expression

“Voltage Regulation”

√∑NT
k=0(Vd−xDC(k))2

NT +1

“Speed Regulation”

√∑NT
k=0(ωd−xM (k))2

NT +1

“Gen Power Tracking”

√∑NT
k=0(P ref

Gen−xDC(k)xG(k))2

NT +1

“Motor Power Tracking”

√∑NT
k=0(P ref

M −xM (k)uM (k))2

NT +1

“HESS Losses Reduction”

√∑NT
k=0(RBu2

B(k)+RUCu2
UC(k))

NT +1

“Gen Oscillation Reduction”

√∑NT
k=0(xG(k+1)−xG(k))2

NT +1

“Torque Oscillation Reduction”

√∑NT
k=0(uM (k)−uM (k−1))2

NT +1

“Speed Oscillation Reduction”

√∑NT
k=0(xM (k+1)−xM (k))2

NT +1

“Total Cost”

√∑NT
k=0 L(x(k),u(k),TLoad(k))

NT +1

xM(k + 1) =xM(k)− TsC̄3

2πH
(xM(k)− ωd)

+
Ts
H

(uM(k)− βMxM(k)− C̄1)

− Ts
H
C̄2cos(4(θ(t) + (k − t)TsxM(t))),

(7.15)

for all k ∈ [t, t+N − 1].
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7.3 Performance Evaluation and Discussion

According to the control objectives, the performance metrics are presented in

Table 7.2, where NT equals [(tT − t0)/Ts], with [·] representing integer rounding, t0

and tT are the initial and final values of the time period being investigated, and

L(x(k), u(k), TLoad(k)) represents the cost function in Equation (7.6). In order to

evaluate the proposed approaches to load torque estimation and prediction, the results

obtained by six cases have been studied and analyzed in this section. These six cases

are described in the following:

• Case 1 “Ideal”: In this case, the detailed propulsion-load torque model (7.11)

without any uncertainty is used to obtain the load torque. Nonlinear MPC uses

the perfect model to predict the future load torque in its optimization. Because

there is no uncertainty in this case, it is referred to as “Ideal”.

• Case 2 “Frozen prediction”: In this case, the instantaneous load torque is ob-

tained from the load torque model (7.11) without any uncertainty. Compared

to Case 1, the future load torque used in the MPC is assumed to be same as

the instantaneous load torque, i.e., TLoad(t + N − 1|t) = TLoad(t + N − 2|t) =

... = TLoad(t|t), so called “Frozen prediction”.

• Case 3 “LP-Only”: Different from Case 2, the future load torque in this case

is predicted using LP. The true load torque is used as the instantaneous load

torque.

• Case 4 “IO-Frozen prediction”: In this case, the input observer is used, instead

of the true load torque. The future load torque is assumed to be the same as

the IO estimation.

• Case 5 “IO-LP”: The first approach, i.e., IO combined with LP, is used in this

case.
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• Case 6 “AMPC”: This case is the proposed AMPC.

We first evaluate the estimation performance. Among these six cases, Cases 4, 5,

and 6 require estimation of the load torque. As shown in Figure 7.5, adaptive load

estimation has better estimation performance than the input observer. The reason

is that more propeller-load information is taken into consideration in this adaptive

approach.

The key performance metrics and results are presented in Table 7.3. The perfor-

mance results of each case are normalized by Case 1. The smaller value represents

the better performance. Note that the performance of Cases 2-6 from best to worst

are colored in the following sequence: blue, green, yellow, brown and red. The

degraded performance (%) is defined as the performance of Case 2 5 in Table 7.3

minus 1 (as all of the performance are normalized by Case 1), and then times 100%.

As can be seen in Table 7.3, the performance of Case 6 is the closest to Case 1.

Case 1 uses the accurate detailed propeller-load model and takes its dynamics into

consideration, leading to the best performance among all of the investigated cases.

The “Total Cost” in the performance metrics represents the overall performance,
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Table 7.3: Performance comparison.

Sea State 4.
Performance Metrics Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
“Voltage Regulation” 1 27.77 27.76 28.15 28.07 1.036
“Speed Regulation” 1 1.043 1.043 1.057 1.057 0.995

“Gen Power Tracking” 1 1.095 1.057 1.251 1.179 1.148
“Motor Power Tracking” 1 1.116 1.162 1.154 1.185 1.151

“HESS Losses Reduction” 1 1.185 1.189 1.247 1.227 1.184
“Gen Oscillation Reduction” 1 1.055 1.011 1.384 1.286 0.985

“Torque Oscillation Reduction” 1 2.803 1.792 3.067 2.609 2.172
“Speed Oscillation Reduction” 1 1.186 1.178 1.198 1.194 1.025

“Total Cost” 1 1.412 1.335 1.456 1.414 1.106

Sea State 6.
“Bus Regulation” 1 24.63 24.61 24.97 24.97 1.328

“Speed Regulation” 1 1.032 1.029 1.045 1.045 1.027
“Gen Power Tracking” 1 1.267 1.254 1.438 1.318 1.241

“Motor Power Tracking” 1 1.147 1.144 1.163 1.151 1.099
“HESS Losses Reduction” 1 1.166 1.174 1.189 1.197 1.194

“Gen Oscillation Reduction” 1 1.307 1.578 2.167 1.649 1.128
“Torque Oscillation Reduction” 1 2.206 1.590 2.376 2.178 1.230
“Speed Oscillation Reduction” 1 1.216 1.196 1.246 1.242 1.052

“Total Cost” 1 1.123 1.085 1.149 1.130 1.009

which takes all of the other metrics along with their priorities (i.e., their weighting

factors) into consideration. According to “Total Cost”, the performance from the

best to the worst are Case 1 (“Ideal”), Case 6 (“AMPC”), Case 3 (“LP-Only”), Case

2 (“Frozen prediction”), Case 5 (“IO-LP”), and Case 4 (“IO-Frozen prediction”) at

both sea states 4 and 6. Based on the performance comparison, the key observations

are presented in the following Remarks.

Remark 7.3 (Effects of load prediction): Cases 1, 2 and 3 all assume perfect load

estimation at time t, but use different load predictions. Case 1 takes the load dynam-

ics into consideration, and Case 3 uses the signal spectrum (correlation) information

to predict future torque, while Case 2 uses none of these, leading to the worst per-

formance of the three cases. The “Total Cost” performance degradation of Cases 2

and 3 compared to Case 1 is shown in Figure 7.6. Another comparative result can be

shown between Cases 4 and 5. Both Cases 4 and 5 use the input observer to estimate

T̂load(t|t), but differ in the prediction scheme. The “Total Cost” degradation of Cases

4 and 5 compared to Case 1 is shown Figure 7.7. Note that the difference between

114



SS4 SS6

D
eg

ra
de

d 
P

er
fo

rm
an

ce
 (

%
)

0

10

20

30

40

50
Total Cost

Case 2
Case 3

Figure 7.6: Cases 2 and 3 degraded “Total Cost” performance compared to Case 1.
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Figure 7.7: Cases 4 and 5 degraded “Total Cost” performance compared to Case 1.

Cases 4 and 5 is smaller than that between Cases 2 and 3, because the estimation

error in Case 5 influences the prediction performance.

Remark 7.4 (Effects of load estimation): The difference between Case 2 and Case

4 is in the load torque estimation, where the former uses the accurate load torque

model but the latter employs an IO to estimate the load torque. Case 2 outperforms

Case 4 in most of the performance metrics. Their “Total Cost” performance is shown
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Figure 7.8: Cases 2 and 4 degraded “Total Cost” performance compared to Case 1.

in Figure 7.8. Similarly, Case 3 and Case 5 use the same prediction method, but have

different load estimation. As shown in Figure 7.9, the difference between Cases 3 and

5 is larger than that between Cases 2 and 4. This is because the estimation affects

not only the instantaneous information, but also the prediction in Cases 3 and 5.

Case 1 has better performance than Case 6 as expected, due to the uncertainties in

the dynamic model used for AMPC. These comparisons demonstrate that load torque

estimation plays a key role in achieving good performance.

Remark 7.5 (Effects of data-based LP): Except for Cases 1 and 6, Case 3 has the

best performance among the remaining 4 cases. Even though Case 3 only has the

data-based load predictor, the prediction still contributes some benefits, especially

with regard to reducing wear and tear. As shown in Figure 7.10, the metric “Torque

Oscillation Reduction” demonstrates that Case 3 can achieve almost the same small

motor torque variations as Case 6. Moreover, Case 3 outperforms Cases 2, 4 and 5 in

terms of metrics “Gen Oscillation Reduction” and “Speed Oscillation Reduction”, as

shown in Table 7.3, further demonstrating the benefits of LP in performance metrics

of reducing the wear and tear of the motor and generator sets. Compared to Case 3,
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Figure 7.9: Cases 3 and 5 degraded “Total Cost” performance compared to Case 1.

Case 5 also uses LP to predict future torque. However, the estimation error of the

input observer affects the prediction performance, as discussed in Remark 7.2. As

can be seen, at sea state 4, Case 5 can achieve performance similar to Case 2. At sea

state 6, the performance of Case 5 is worse than Case 2. This comparison illustrates

that the load torque estimation is essential to improve the performance of data-based

LP.

Remark 7.6 (Effects of adaptation): Case 6 is the only case that achieves compet-

itive performance to Case 1. This is because only these two cases truly capture the

load dynamics by using the propulsion-load torque model, thereby maintaining the

motor and generator sets working around the reference points through coordination of

subsystems. Without the ability to capture the load torque dynamics, however, other

cases need the assistance of the motor and generator sets to mitigate the bus voltage

variations, leading to degraded system efficiency and increased wear and tear. In

order to evaluate the effects of adaptation, a comparative study is performed between

Case 6 and Case 1 with 2% modeling errors (2%Err), where 2% modeling errors are

added on c0 and M0 (which have the most significant effects in the propulsion-load
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Figure 7.10: Cases 2-6 degraded “Torque Oscillation Reduction” performance com-
pared to Case 1.

torque model). As shown in Table 7.4, these 2% modeling errors (without adapta-

tion) can cause “Total Cost” 100% and 40% higher than Case 6 (with adaptation)

at sea state 4 and 6, respectively. Moreover, the performance of 2%Err is even much

worse than Case 5 (IO-Only). The key factors that renders favorable performance of

AMPC are summarized in the following:

• The foundation of AMPC is a well-developed simplified model that captures the

essential dynamics of the load torque. With accurate parameter identification,

AMPC can predict the future load torque much better than LP.

• When the load torque dynamic model is integrated into the MPC controller,

AMPC truly takes the load torque dynamic into consideration, resulting in the

unique advantage of AMPC compared to the other 4 cases (Case 2, 3, 4 and 5).

Remark 7.7 (Effects of weighting factors): The weighting factors can undoubtedly

influence the performance of the proposed AMPC. Each weighting factor λ assigns

a relative priority to a performance aspect. As the main objectives, the system

reliability and thrust production have the highest priority. The weighting factor can

be tuned with emphasis being placed on different performance attributes, such as
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Table 7.4: Performance comparison: Case 6 vs. Case 1 with 2% modeling error.

Performance Metrics
SS4 SS6

Case 6 2% ERR Case 6 2% ERR
“Voltage Regulation” 1.036 11.26 1.328 9.125
“Speed Regulation” 0.995 2.074 1.027 1.585

“Gen Power Tracking” 1.148 3.226 1.241 1.827
“Motor Power Tracking” 1.151 1.598 1.099 7.829

“HESS Losses Reduction” 1.184 3.438 1.194 1.502
“Gen Oscillation Reduction” 0.985 4.038 1.128 2.885

“Torque Oscillation Reduction” 2.172 1.467 1.230 1.155
“Speed Oscillation Reduction” 1.006 1.014 1.052 1.02

“Total Cost” 1.106 2.190 1.009 1.410

Table 7.5: Performance comparison: weighting factor effects.

Sea State 4.
Performance Metrics Case 6 Test 1 Test 2
“Voltage Regulation” 1.036 1.040 7.882
“Speed Regulation” 0.995 1.210 1.168

“Gen Power Tracking” 1.148 1.064 6.634
“Motor Power Tracking” 1.151 1.0185 0.697

“HESS Losses Reduction” 1.184 1.023 0.553
“Gen Oscillation Reduction” 0.985 1.075 7.522

“Torque Oscillation Reduction” 2.172 0.271 3.928
“Speed Oscillation Reduction” 1.025 1.006 1.065

Sea State 6.
“Bus Regulation” 1.328 1.395 6.689

“Speed Regulation” 1.027 1.461 1.275
“Gen Power Tracking” 1.241 1.150 3.941

“Motor Power Tracking” 1.099 0.980 0.449
“HESS Losses Reduction” 1.194 1.017 0.390
“Gen Oscillation Reduction” 1.128 1.188 1.541

“Torque Oscillation Reduction” 1.230 0.418 1.314
“Speed Oscillation Reduction” 1.052 1.140 1.034

reducing wear-and-tear and improving the efficiency of different subsystems. One

metric can be improved by tuning its weighting factor, but other metrics could be

negatively affected. Two tests are studied to demonstrate how the weighting factors

affect the performance. These two tests are described in the following:

• Test 1 : 10λ∆TM
is used in this test to further reduce the motor torque oscilla-

tions.

• Test 2 : 10λHESS is used with emphasis on improving the efficiency of HESS.

As shown in Table 7.5, the motor torque oscillation has been significantly reduced

by increasing the weighting factor λ∆TM
in Test 1. As shown in Figures 7.11, there
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Figure 7.11: Torque comparison at sea states 4 and 6: Case 6 vs. Test 1.

is almost no motor torque oscillation in Test 1. Similarly, the losses of HESS are

significantly reduced in Test 2. However, the high weighting factor λHESS forces the

HESS to operate only at very low currents, leading to a loss of ability in isolating

the load fluctuations from the DC bus. This causes negative effects on most of other

performance metrics. Test 2 also provides the insights into the importance of HESS

on mitigating the effect of the load fluctuations.

7.4 Summary

In this chapter, load torque estimation and prediction for implementing MPC-

based energy management is addressed. This chapter develops a new energy man-

agement strategy, AMPC, to integrate power generation, electric motor, and hybrid

energy storage control for electric ship propulsion systems in order to address the

effects of propulsion-load fluctuations in the shipboard network. In order to evaluate

the proposed AMPC, an alternative control is developed by integrating the input

observer with linear prediction into the MPC strategy. Compared to the alterna-

tive approach, the proposed AMPC achieves much better performance in terms of

improved system efficiency, enhanced reliability, improved thrust production, and re-

duced mechanical wear and tear. In addition to the alternative control, other cases

are studied in this chapter to illustrate the importance of the load estimation and

prediction.
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7.5 Appendix of Chapter VII: Derivation of simplified propulsion-

load model

Considering the propeller load torque model of (7.11) with c̄i = sgn(n)βρD5ci
(
U
D

)i
,

(i = 0, 1, 2, 3) and 1− w = M0 −M1cos(4θ), we have the derivation of the simplified

model (7.12) presented in the following:

TLoad =c̄0n
2 + c̄1(1− w)n+ c̄2(1− w)2 + c̄3(1− w)3 1

n

=c̄0n
2 + c̄1M0n+ c̄2(M2

0 + 0.5M2
1 ) +

c̄3

n
(M3

0 + 1.5M0M
2
1 )

−
(
c̄1M1n+ 2c̄2M0M1 + 3

c̄3

n
M1M

2
0

)
cos(4θ)

+
(

0.5c̄2M
2
1 + 1.5

c̄3

n
M0M

2
1

)
cos(8θ)− c̄3M

3
1 cos(4θ)

3

≈c̄0n
2 + c̄1M0n+ c̄2(M2

0 + 0.5M2
1 ) +

c̄3

n
(M3

0 + 1.5M0M
2
1 )

−
(
c̄1M1n+ 2c̄2M0M1 + 3c̄3M1M

2
0

1

n

)
cos(4θ)

≈c̄0(n2
ref + 2nref∆n) + c̄1M0(nref + ∆n)

+ c̄2(M2
0 + 0.5M2

1 ) + c̄3
1

nref

(M3
0 + 1.5M0M

2
1 )

− (c̄1M1(nref + ∆n) + 2c̄2M0M1)cos(4θ)

− 3c̄3M1M
2
0

1

nref

cos(4θ)

=C̄1 + C̄2cos(4θ) + C̄3∆n+ C̄4∆ncos(4θ)

≈C̄1 + C̄2cos(4θ) + C̄3∆n.
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where,

C̄1 = c̄0n
2
ref + c̄1M0nref + c̄2(M2

0 + 0.5M2
1 )

+ c̄3
1

nref

(M3
0 + 1.5M0M

2
1 ),

C̄2 = −(c̄1M1nref + 2c̄2M0M1 + 3c̄3M1M
2
0

1

nref

),

C̄3 = 2nref c̄0 + c̄1M0,

C̄4 = −c̄1M1,

∆n = n− nref .

The first step of simplification is to ignore the high-frequency terms, i.e., the

terms
(
0.5c̄2M

2
1 + 1.5c̄3M0M

2
1

1
n

)
cos(8θ)− c̄3M

3
1 cos(4θ)

3, which are greater than the

propeller blade frequency. This is because the amplitudes of these high-frequency

terms are much smaller than other terms, and are usually filtered significantly by the

inertia of the propeller. The second step is to linearize the load torque model around

the reference speed.

In this linearized model, the component C̄4∆ncos(4θ) only contains the variation

terms, such as M1, ∆n, cos(4θ), and can be considered as a high order component.

Because C̄4∆ncos(4θ) is much smaller than other components, i.e., C̄1, C̄2cos(4θ)

and C̄3∆n, C̄4∆ncos(4θ) can also be ignored. Finally, the linearized model C̄1 +

C̄2cos(4θ) + C̄3∆n has only three unknown parameters. According to the time-scale

separation approach, these three parameters are assumed to be slowly time-varying.
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CHAPTER VIII

Experimental Implementation of Real-time Model

Predictive Control

In this chapter, we implement a real-time model predictive controller (MPC) on

a physical testbed, namely the Michigan Power and Energy Lab (MPEL) Advanced

Electric Drive with Hybrid Energy Storage (AED-HES) testbed described in Chapter

III, and evaluate the effectiveness of real-time MPC. Given the multi-frequency char-

acteristic of the load fluctuations, a filter-based strategy is used as a baseline control

to demonstrate the benefits of the proposed MPC. The objective of the real-time

MPC is to address the shipboard load fluctuations, including pulse power load and

propulsion load fluctuations, and validate the effectiveness of the proposed energy

management strategy (EMS) on a physical testbed. The battery with ultra-capacitor

(UC) hybrid energy storage system (HESS) configuration is considered in this chapter.

In order to achieve real-time feasibility, three different efforts have been made:

• Modifying MPC formulation: the CC-MPC with SOC reference is used to

achieve the desired performance with a relatively short predictive horizon.

• Developing efficient optimization solver: An integrated perturbation analysis

and sequential quadratic programming (IPA-SQP) algorithm [89, 90] is used to

solve the optimization problem with high computational efficiency.
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Figure 8.1: Simplified DC bus dynamic model of the AED-HES test-bed.

• Exploiting hardware: a multi-core structure is used for the real-time system

controller to guarantee system signal synchronization and separate system-level

and component-level controls, thereby increasing the real-time capabilities.

8.1 Problem Formulation

In DC shipboard networks, the DC bus voltage can be used to identify the stability

of the DC ship power system [91]. The AED-HES test-bed differs from other DC

micro-grids as there is no LC filter between the DC bus and power converters. Such a

filter can greatly impact the stability of DC micro-grids [92]. However, without these

filters there is only a bus capacitor on the DC bus, as shown in Fig.8.1 (simplified

DC bus dynamic model). This configuration only requires balanced input and output

power to maintain a stable bus voltage. Therefore, the first control objective is

system reliability, which is validated by a stable DC bus voltage. In this experiment,

the desired DC voltage is chosen to be 200V.

The second control objective is system efficiency. The plug-in configuration de-

scribed in Chapter V is considered in this chapter. We assume the motor is working

at the nominal operating point and the generator sets provide the average power.

Since there is no generator in our testbed, we use a DC/DC converter to provide the

average power to the DC bus in order to emulate the generator sets. In order to im-

prove the system efficiency, the losses of the HESS must be minimized. Furthermore,
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Figure 8.2: Schematic of the filter-based control.

as discussed in Chapter V, a long self-sustained time is preferred to take advantage

of the battery’s high energy density. The battery power is used to ensure the UC is

operating in its high-efficiency range. In this experiment, the battery power keeps

the UC operating around 145V.

Finally, the third control objective is to extend the battery life cycle. Along with

the reduction of battery life cycle, the battery degradation causes its capacity to

decrease and its resistance to increase [79, 93]. The battery C-rate and usage are two

important factors for battery life cycle [94, 95]. In this chapter, the battery peak and

RMS currents are used to represent high C-rate operation and battery usage.

The control objectives are therefore summarized as follows:

• System reliability: maintain the DC bus voltage at 200V.

• System efficiency: Minimize HESS losses.

• Extend battery life cycle: reduce battery peak and RMS currents.
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Figure 8.3: Schematic of the real-time MPC.

8.2 System-level Controller Development: Energy Manage-

ment Strategy

In Chapter III, experimental results show that the filter-based control strategy

outperforms the independent PI control strategy. In this chapter, the filter-based

strategy is used as a baseline control to evaluate the effectiveness of the proposed

real-time MPC strategy. The schematic of the filter-based controller is shown in Fig.

8.2. In order to perform a fair comparison, the same voltage regulator is used in the

real-time MPC. The schematic of the real-time MPC is shown in Fig. 8.3. In order to

achieve the control objectives discussed in previous section, the optimization problem

is formulated as follows:

JHESSB/UC
(x(k), u(k)) =

N∑
k=0

(1− λ)(PFL(k)− PB(k)− PUC(k))2

+ λ(NBRBu
2
B(k) +NUCRUCu

2
UC(k))

+ γUCSOC
(xUC(k)− SOCUCd

)2,

(8.1)
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subject to the constraints:

20% ≤ xB ≤ 90%,

50% ≤ xUC ≤ 99%,

−30A ≤ uB ≤ 30A,

−30A ≤ uUC ≤ 30A,

(8.2)

 xB(k + 1)

xUC(k + 1)

 =

 1 0

0 1


 xB(k)

xUC(k)


+

 Ts

3600QB
0

0 Ts

VmaxCUC


 uB(k)

uUC(k)

 .
(8.3)

In order to solve the optimization problem efficiently, we use the IPA-SQP al-

gorithm, which includes prediction-correction in approximating the optimal solution

numerically. It uses neighboring extremal (NE) updates in the prediction step to

improve computational efficiency [90]. The IPA-SQP approach combines the solu-

tions derived using perturbation analysis (PA) and SQP. This approach updates the

solution to the optimization problem at time t by considering it as a perturbation to

the solution at time (t − 1) using neighboring optimal control theory [96] extended

to discrete-time systems with constraints, and then corrects the results using SQP

updates. The merged PA and SQP updates exploit the sequential form of predictor

and corrector steps, thereby yielding a fast solver for nonlinear MPC problems [89].

The flowchart of IPA-SQP is shown in Figure 8.4 [5, 97], and illustrates the main

steps of the IPA-SQP algorithm to obtain the NE solutions and to deal with changes

in the activity status of constraints.

To implement the system-level controller, namely the EMS, component-level con-

trollers are required to follow the reference power commands, as shown in Fig. 8.5. In

the following sections, the component-level control development and validation will

be presented first, then real-time feasibility is demonstrated by real-time simulation
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Figure 8.4: Flowchart of the IPA-SQP algorithm [5].

results. Finally, the overall experimental results are presented and analyzed.

8.3 Component-level Controller Development: Current Reg-

ulators for HESS

In our testbed, bi-directional DC/DC converters are used for HESS control. The

circuit diagram of the bi-directional DC/DC converters is shown in Fig. 8.6. The
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Figure 8.5: Hierarchical control structure for real-time control implementation.

Figure 8.6: Circuit diagram of bi-directional DC/DC converters for HESS.

average-value model of the HESS can be described as follows:

V̇1 =− V1 + i1Rbat − Ebat

C1Rbat

,

V̇2 =− V2 + i2RUC − EUC

C2RUC

,

i̇1 =
V1 − i1(RL1 +Ron2)− V0 +D1[i1(Ron2 −Ron1) + V0]

L1

,

i̇2 =
V2 − i2(RL2 +Ron4)− V0 +D3[i2(Ron4 −Ron3) + V0]

L2

,

V̇0 =
i1 + i2 − iload −D1i1 −D3i2

C0

,

(8.4)
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where C0 is the bus capacitor; C1, and C2 are the capacitors in parallel with the bat-

tery and UC, respectively; V0, V1 and V2 are the voltages corresponding to capacitors

C0, C1, and C2, respectively; L1, and L2 are the inductors of the bi-directional DC/DC

converters; i1 and i2 are the inductor currents; RL1, and RL2 are the resistance of

inductor L1 and L2, respectively; and D1 and D3 are the duty cycle commands of the

DC/DC converters.

As shown in Equation (8.4), the HESS with bi-directional converters is a non-

linear system, which requires a robust nonlinear approach. Sliding-mode control is

a robust nonlinear control approach, which has been successfully applied to robot

manipulators, vehicles, high-performance electric motors, and power systems [98]. In

this chapter, the sliding-mode control is used to control the bi-directional DC/DC

converters [69]. The sliding surface is defined as S = [S1, S2]T , where S1 = i1ref − i1

and S2 = i2ref − i2.

In order to ensure the existence of the sliding-mode surface, the condition ṠS < 0

must be satisfied. The differential sliding variable is set as:

Ṡ = −kS − εsat(S), (8.5)

where the saturation function sat(S) is defined as:

sat(Sn) =


1, Sn ∈ (1,∞),

Sn, Sn ∈ [−1, 1],

−1, Sn ∈ (−∞,−1),

(8.6)

n = 1, 2, k and ε are the sliding-mode gains.

To simplify the solution, we assume that Ron1 = Ron2 and Ron3 = Ron4. Assuming

a time scale separation (i.e., the current dynamic is much faster than the voltage

dynamic due to large values for the capacitances C0, C1, and C2), the voltages V0,1,2
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are assumed to be constant. Therefore, the sliding-mode control law is developed as

follows:

 D1

D3

 =

 1− V1

V0
+ i1

RL1+Ron2

V0
+ k1

L1

V0
(ibat,ref − i1) + ε1

L1

V0
sat(ibat,ref − i1)

1− V2

V0
+ i2

RL2+Ron4

V0
+ k2

L2

V0
(iUC,ref − i2) + ε2

L2

V0
sat(iUC,ref − i2)

 .
(8.7)

Figure 8.7: The implementation of Speedgoat controller.

To validate the performance of component-level controllers, the proposed sliding-

mode control has been implemented in the MPEL AED-HES test-bed. The system

controller, Speedgoat, supports Matlab Real-Time Simulink (xPC Target) to enable

rapid prototyping of advanced control algorithms. The implementation of the Speed-

goat controller is shown in Fig. 8.7. A center-based PWM trigger signal enables the

synchronization of the PWM waveforms and analog-to-digital measurements. The

trigger signal is generated at the center of PWM waveforms. The kernel of Speed-

goat receives this trigger signal to read A/D feedback, and then initials the controller

computation. Once the controller computation is completed, the PWM counter val-

ues are updated for the next switching period. This center-based trigger reduces the

effects of noise, as the switching of the power electronic transistors and the sampling

of the analog-to-digital converters are synchronized. Consequently, sampling always

occurs in between switching transitions, avoiding the pick-up of electromagnetic in-
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Figure 8.8: Matlab/Simulink program of the local controllers.

terference caused by the transitions. Center-based sampling is also able to measure

the average value of the inductor current. However, due to hardware delays, a phase

shift can cause measurement errors, which can be significant when the value of the

measurement is small. Our double-sampling method, which samples twice within one

switching period, can achieve more accurate average feedback. The Matlab/Simulink

code is developed as shown in Fig. 8.8. As shown in Fig. 8.9, the actual output

power of the HESS can follow the power reference quite accurately.

8.4 Experimental Implementation and Performance Evalua-

tion

In addition to the efficient optimization algorithm described in the previous sec-

tion, parallel computing using a multi-core structure can also increase the compu-

tational capabilities of our system [99, 100]. In this experiment, the system-level

controller is executed in core 1, while the component-level controllers are executed in

core 2. Both system-level and component-level controllers are synchronized with the

center-based trigger signal. The multi-core structure in Matlab/Simulink is shown

in Figure 8.10. A real-time simulation is performed to evaluate the computational
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Figure 8.9: Control performance: battery and UC command power and actual power
(zoom-in plots in the bottom).

capability of our proposed hierarchical real-time MPC. As shown in Figures 8.11 and

8.12, the maximum execution time for both cores 1 and 2 are much smaller than their

corresponding sampling times.

In this experiment, the maximum voltage and the desired reference voltage of UC

are defined as 150V and 145V, respectively. The maximum and minimum output

currents of the battery and UC are 30A and -30A, respectively. The load fluctuations

are scaled to a peak value of 2kW. Uncertainties, such as load uncertainties, parameter

uncertainties, modeling uncertainties, and measurement uncertainties, exist in the

system and can be used to evaluate the robustness of the proposed controller. A

diagram of this experimental setup is shown in Fig. 8.13. A three-phase diode rectifier

converts the AC power from the grid to DC power, and then a DC/DC converter
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Figure 8.10: Multi-core structure of Speedgoat.

Figure 8.11: Real-time simulation evaluation of system-level controller (core1).

Figure 8.12: Real-time simulation evaluation of component-level controllers (core2).

“bucks” the DC voltage down to the nominal voltage. We note that a constant duty

cycle is used for this DC/DC converter. In order to emulate the generator sets, the

second DC/DC converter is controlled to provide the average power for the DC bus.

The resistive load bank is controlled to emulate the load fluctuations by using the
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propulsion-load model described in Chapter II. The HESS compensates the load

fluctuations to maintain a constant DC bus voltage. The predictive horizon is chosen

to be N=20. The experimental results of the filter-based and real-time MPC strategies

are shown in Figs. 8.14 (sea state 4) and 8.15 (sea state 6).

The pulse power load is another important load fluctuation in the shipboard net-

work. In the following experiments, we also evaluate the capability of the proposed

HESS solution to address the propulsion load fluctuations with pulse power loads,

as shown in Fig. 8.16. The following normalized performance metrics are used to

compare the real-time MPC with the filter-based strategy:

1. Voltage variation (Vol%):
rms(V busMPC−V busref )

rms(V busfilter−V busref )
× 100%;

2. Estimated HESS losses (HESS%): LossesMPC

Lossesfilter
× 100%;

3. Battery peak current (Peak%):
max(|IB,MPC |)
max(|IB,filter|)

× 100%;

4. Battery RMS current (RMS%):
rms(IB,MPC)

rms(IB,filter)
× 100%.

Table 8.1: Performance comparison: filter-based vs. MPC.
SS4 SS6 SS4 with Pulse

Vol% 61.96% 63.95% 71.10%
HESS% 34.05% 49.77% 35.82%
Peak% 51.11% 67.35% 53.50%
RMS% 40.99% 64.19% 50.36%

As shown in Table 8.1, compared with the filter-based strategy, the proposed

real-time MPC can reduce the bus voltage variation to as low as 62% of the filter-

based approach, and HESS total losses are reduced as low as 35% of the filter-based

approach. Furthermore, the real-time MPC operates with much smaller battery peak

and RMS currents than the filter-based strategy, leading to an extended battery life

cycle. As shown in Figs. 8.14 - 8.16, the UC is operating around the desired reference

voltage under the real-time MPC strategy, while the voltage of UC keeps decreasing

under the filter-based strategy. The efficiency of the filter-based strategy will decrease
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Figure 8.13: Diagram of real-time MPC experiment.
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Figure 8.14: Experimental results of sea state 4: MPC vs. filter-based control
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Figure 8.15: Experimental results of sea state 6: MPC vs. filter-based control.

as the UC voltage drops, and so the self-sustained time of the filter-based strategy is

much shorter than the real-time MPC. In summary, compared to the baseline control,

this experiment shows the effectiveness of the proposed real-time MPC in terms of

enhanced system reliability, improved HESS efficiency, long self-sustained time, and

extended battery life cycle.

The predictive horizon was found to be an important design parameter. Extend-

ing the predictive horizon will generally improve performance, at the cost of increased

computational complexity. However, when uncertainties exist, performance improve-

ment with increasing horizon is not guaranteed. In order to provide insight into the
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Figure 8.16: Experimental results of pulse power load: MPC vs. filter-based control.

predictive horizon, the real-time MPC with an extended predictive horizon N=40 is

implemented on the testbed. The experimental results are shown in Figs.8.17 - 8.19.

The normalized performance metrics are presented as follows:

1. Voltage variation (Vol%):
rms(V busN=40−V busref )

rms(V busN=20−V busref )
× 100%;

2. HESS losses (HESS%): LossesN=40

LossesN=20
× 100%;

3. Battery peak current (Peak%):
max(|IB,N=40|)
max(|IB,N=20|)

× 100%;

4. Battery RMS current (RMS%):
rms(IB,N=40)

rms(IB,N=20)
× 100%.
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Table 8.2: Performance comparison: MPC(N=20) vs. MPC(N=40).
SS4 SS6 SS4 with Pulse

Vol% 102.27% 100.52% 101.45%
HESS% 101.86% 110.59% 98.55%
Peak% 107.69% 107.67% 98.30%
RMS% 105.94% 108.36% 100.44%
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Figure 8.17: Experimental results of sea state 4: MPC(N=20) vs. MPC(N=40).

As shown in Table 8.2, MPC with N=40 does not outperform MPC with N=20

in most performance metrics. The real-time MPC only applies the first element of

the control sequence as the control action before moving to the next sample, when

new measurements are collected and the optimization is repeated with new initial

conditions. This feedback mechanism is helpful to improve the robustness of the MPC

strategy. However, as the predictive horizon increases, it is seen that uncertainties

can affect the control performance more significantly than a short predictive horizon.

In this study, therefore, the predictive horizon was chosen to be N=20.

Remark 8.1 As shown in Equation (8.1), this is nonlinear and nonconvex opti-
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Figure 8.18: Experimental results of sea state 6: MPC(N=20) vs. MPC(N=40).

mization problem. To solve this optimization problem is a challenge for implementing

the proposed MPC-based EMS in real-time applications. In this experiment, the out-

put currents of HESS do not reach their corresponding physical constraints, namely

-30A and 30A. It is important to understand the impact of constraints on solving the

optimization problem, so a new real-time simulation case study is performed. The

constraint of UC output current is changed from [−30A, 30A] to [−5A, 5A], and sea

state 6 load profile is used. In this case study, the real-time simulation results are

shown in Figure 8.20, where the UC current is always within its constraints. Fur-

thermore, the iteration to solve the optimization problem is significantly increased

when the UC current reaches its constraint. For example, the iteration is less than

15 (minimum: 3 times; maximum: 14 times) from 9 second to 11 second, while the

iteration can be as high as 30 when the constraint is active, such as from 4 second

to 6 second. The maximum execution time are shown in Figure 8.21 to validate the
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Figure 8.19: Experimental results of pulse power load: MPC(N=20) vs. MPC(N=40)
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Figure 8.21: Real-time simulation comparison of maximum execution time.

real-time feasibility when the constraint is active. The blue and red bars represent

the maximum execution time with the UC current constraint as [−30A, 30A] and

[−5A, 5A], respectively. The green bar represents the sample time. As shown in Fig-

ure 8.21, although the computational time is increased when the constraint is active,

it is still much smaller than its sample time.

8.5 Summary

In this chapter, the proposed real-time MPC has been implemented on the AED-

HES testbed. In order to achieve real-time feasibility, three different efforts have

been made: properly formulating the optimization problem, identifying an efficient

optimization solver, and implementing the controller with a multi-core structure.

Furthermore, effective HESS component current regulators using sliding-mode con-

trol have been developed and validated. Compared to the filter-based control, the

proposed MPC demonstrated on the testbed can achieve superior performance in

terms of reduced bus voltage variation, battery peak and RMS currents, and HESS

losses. Given the uncertainties in the testbed, the robustness of the proposed MPC

is also demonstrated.
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CHAPTER IX

Conclusions and Future Work

9.1 Conclusions

This research has focused on the modeling, analysis, and control of an electric

ship propulsion system with hybrid energy storage system (HESS), aiming at miti-

gating the effect of the propulsion load fluctuations. The tools development, namely

modeling and testbed development, are presented in Chapter II and III, respectively.

The feasibilities and effectiveness of HESS have been investigated in Chapter IV and

V. Two energy management strategies (EMSs) have been proposed and analyzed

with simulation results presented in Chapter VI. In Chapter VII, the propulsion

load torque estimation and prediction that are needed to implement model predic-

tive control (MPC) have been addressed by two approaches: adaptive load estima-

tion/prediction with model predictive control and input observer with linear predic-

tion. The real-time MPC is implemented on the test-bed in Chapter VIII. Compared

to the filter-based strategy, the experimental results demonstrate the effectiveness of

the proposed real-time MPC.

The main work and results are summarized as follows:

• Developed a control-oriented model for an all-electric ship propulsion system

with hybrid energy storage. This model included a propeller and ship dynamic
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model, hybrid energy storage models, a diesel engine and generator set model,

a electrical motor model and a DC bus dynamic model. The propeller and ship

dynamic model is the main contribution, which captured both high- and low-

frequency load fluctuations on the propeller. The in-and-out-of-water effect are

also taken into consideration in this model.

• Developed a hardware test-bed in order to support and demonstrate model-

ing and control solutions on a hardware platform. This test-bed included a

system-level controller that can simultaneously control all of the power elec-

tronic converters interfacing with the HESS. My contributions to the test-bed

development include the system controller, energy storages and DC/DC convert-

ers. Two preliminary experimental results, i.e., battery with UCs and flywheel

with UCs, were presented to demonstrate the capabilities of the test-bed in

control implementation and system integration for electric drive systems with

HESS.

• Investigated the feasibility and effectiveness of different hybrid energy storage

system configurations, namely battery combined with ultra-capacitor (B/UC)

and battery with flywheel (B/FW), to mitigate load fluctuations. Dynamic

programming was used to obtain the global optimal solutions. These global

optimal solutions formed the basis of a comparative study of B/FW and B/UC

HESS, where the Pareto fronts of these two technologies at different sea state

(SS) conditions were derived. The analysis aimed to provide insights into the

advantages and limitations of each HESS solution.

• Two MPC-based control strategies, coordinated model predictive control (CC-

MPC) and pre-filtered model predictive control (PF-MPC), were designed and

evaluated. The results indicated that the CC-MPC strategy outperforms the

PF-MPC strategy in terms of power tracking, HESS efficiency, and self-sustained
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operation time. A sensitivity analysis of the predictive horizon for the coordi-

nated control showed the feasibility of MPC-based strategies for real-time ap-

plications. This study provided insights into the importance of the coordination

of HESS.

• Developed two energy management strategies based on different integration

configurations, namely “plug-in” and “integrated”. For the “plug-in” approach,

different strategies were investigated to address the effect of the load fluctuation

in the electric ship propulsion system. Model-based analysis was performed to

understand the interactions between HESS and generator control systems. To

validate the interaction analysis and evaluate the benefits or limitations for each

strategy, a comparative study was performed. Results showed that the proposed

energy management system, i.e., the coordinated HESS EMS, is more effective in

improving the system efficiency and reliability than other strategies. This work

illustrated that a properly coordinated control is critical when introducing HESS

into an existing electric ship propulsion system. For the “integrated” approach,

a new energy management strategy was proposed to integrate power generation,

electric motor, and hybrid energy storage control for electric ship propulsion

systems in order to address the effects of power fluctuations in the shipboard

network. Simulation results showed that the proposed strategy is effective at

improving system efficiency, enhancing reliability, and reducing mechanical wear

and tear.

• Developed two approaches to address propeller-load torque estimation and pre-

diction. The first combined an input observer with linear prediction, and the

second integrated parameter identification with model predictive control. A

comparative study was performed to illustrate the effectiveness of the proposed

model-based approach. The importance of load torque estimation and predic-
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tion was also determined through this comparative study.

• The real-time MPC was implemented on the physical testbed. Three different

efforts have been made to enable real-time feasibility: a specially tailored prob-

lem formulation, an efficient optimization algorithm and a multi-core hardware

implementation. Component-level control was also developed to guarantee the

system-level control performance. Compared to the filter-based control strat-

egy, the proposed real-time MPC achieved much better performance in terms of

the enhanced system reliability, improved HESS efficiency, long self-sustained

time, and extended battery life cycle.

9.2 Ongoing and Future Research

Although substantial progress has been made on the modeling, analysis, optimiza-

tion, and control of all-electric ship propulsion systems with hybrid energy storage to

mitigate the impact of the propulsion load fluctuations, there are several ongoing and

future research topics to address open issues. These research activities are highlighted

in the following:

• Improve computational efficiency for solving the load-following optimization

problem with periodic load profiles

Propulsion-load fluctuations caused by the encounter waves and propeller ro-

tation have a periodic characteristic, which could potentially be exploited to

improve the computational efficiency and reduce the memory required for the

load-following optimization problem. How to take advantage of this periodic

characteristic is an ongoing research problem.

• Energy management strategy implementation for integrated approach
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The energy management strategy for the plug-in approach has been imple-

mented on the testbed and achieves desired performance. The EMS for the

integrated approach requires more efforts on both system-level control and

component-level control, as well as the hardware. The experimental validation

of EMS for the integrated approach will be performed in the future research.
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