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Abstract 
 
Urban watersheds are being stressed beyond their capacity as storms are becoming more frequent 

and intense. Flash flooding is the leading cause of natural disaster deaths in the United States. 

Simultaneously, population pressures are changing landscapes and impairing water quality by 

altering the composition of urban stormwater runoff. Presently, the only solution to combat these 

challenges relies on the construction of larger infrastructure, which is cost prohibitive for most 

cities and communities.  

 

Advances in technology and autonomous systems promise to usher in a new generation of 

“smart” stormwater systems, which will use city-scale sensing and control to instantly “redesign” 

themselves in response to changing inputs. By dynamically controlling pumps, valves and gates 

throughout the entire city this paradigm promises to push the performance of existing assets 

without requiring the construction of new infrastructure. This will allow for entire urban 

watersheds to be dynamically controlled to meet a variety of desired outcomes.  

 

Despite technological advances and an established fundamental knowledge of water systems, it 

is presently entirely unclear how “smart” stormwater systems can actually be built. This 

dissertation conducts a review of existing “static” solutions and provides an assessment of a 

number of limited, but highly promising, real-world control studies. An analysis of sensor 

network scalability is then carried out, focusing on how large water sensor networks can be 



xvii 
 
 

enabled by leveraging wireless connectivity and web-services. A study of urban water quality 

follows, which shows how real-time data improve our watershed-scale understanding of 

pollutant loads during storm events. In turn, through an unprecedented real-world study, it is 

illustrated how this improved understanding can be used to control flows across a watershed. A 

feedback control-based approach is then introduced to enable the control of urban watersheds. 

Through extensive simulation, this framework is applied to identify which control assets have the 

highest potential to improve watershed performance and to determine how many sites must be 

retrofitted to achieve desired outcomes. Finally, an analysis of input uncertainty is carried out, 

which quantifies the importance of weather forecasts in improving control performance across 

the scale of urban headwater catchments. The dissertation closes by laying out future directions 

in the emerging field of “smart” stormwater research.  
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Chapter 1  Introduction 
 
 
 
 
 

 

 

 

1.2   “Smarter” stormwater systems 

Aging urban stormwater systems are being stressed beyond their capacity as storms are 

becoming more frequent and intense [1-3]. Flash flooding is the leading cause of natural disaster 

deaths in the United States [4]. Simultaneously, population pressures are changing landscapes 

and thus altering the composition of urban stormwater runoff. Runoff pollution is readily 

acknowledged as one of our most pressing environmental challenges [5]. Presently, the only 

Figure 1.1. System-level stormwater measurement and control. 
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solution to combat flooding and water quality impairments involves the construction of larger 

infrastructure, which is cost prohibitive for most cities and communities. Traditional 

infrastructure solutions are inherently static and are unable to adapt to highly dynamic storms 

and changing landscapes. As such, new solutions are direly needed to improve the stability and 

health of urban watersheds.  

 

Advances in technology and autonomous systems are promising user in a new generation of 

“smart” stormwater systems, which will use city-scale sensing and control to instantly “redesign” 

themselves in response to changing inputs (Figure 1.1). By dynamically controlling pumps, 

valves and gates throughout the entire city, this paradigm promises to push the performance of 

existing assets without requiring the construction of new infrastructure. This will allow for entire 

urban watersheds to be dynamically controlled to meet a variety of desired outcomes. This brings 

to bear the classic representation of a feedback loop (Figure 1.2), wherein the physical state of 

the watershed is measured by sensors, which then inform the control logic that ultimately 

changes the configuration of infrastructure to push the system toward a desired state. 

 

 

 

Figure 1.2. The chapters in this dissertation address the major components necessary for the 
intelligent control of a watershed. 
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Despite technological advances and our fundamental knowledge of water systems, presently, it is 

entirely unclear how “smart” stormwater systems can actually be built. System-level control of 

urban watersheds requires the fusion of various domain expertise, spanning hydrology, water 

quality, sensing, signal processing, and control theory. As such, a number of fundamental 

knowledge gaps impede our ability to translate the vision of “smart” water systems into reality: 

•   We do not understand what benefits, if any, real-time stormwater systems provide when 

compared to static infrastructure solutions.   

•   We do not understand how recent technological innovations in sensing, communications 

and cloud computing can be combined to enable massive-scale water sensor and control 

networks. 

•   We do not understand the dynamic composition of urban runoff, which impedes our 

ability to decide how the flow of water should be controlled to improve water quality. 

•   We do not understand how domain knowledge from hydrology and hydraulics should be 

placed into a control-theoretic context to allow for system-level control of urban 

watersheds.   

•   Finally, we do not understand the extent to which uncertainty, inherent in highly dynamic 

weather, will affect the performance of watershed-scale control approaches.  

Bridging these knowledge gaps will require a systems-level research approach. 

 

1.3   Thesis contributions  

The goal of this dissertation is to enable the real-time study and control of urban watersheds. To 

that end, the specific contributions of this thesis tackle a variety of theoretical and technological 



 

 
 
 

4 

challenges that will ultimately underpin a complete framework for the study of “smart” 

stormwater systems. In summary: 

•   Chapter 2: The contribution of this chapter is a review of existing “static” solutions and 

an assessment of limited, but promising, real-world case studies that highlight the future 

promise and research challenges of real-time control.  

•   Chapter 3: The contribution of this chapter is an analysis of sensor network scalability, 

focusing on how large water sensor networks can be enabled by leveraging wireless 

connectivity and web-services. 

•   Chapter 4: The contribution of this chapter is a study of urban water quality, which 

shows how real-time data improve the watershed-scale understanding of pollutant loads 

during storm events. In turn, we then illustrate, through an unprecedented real-world 

study, how this improved understanding can then be used to control flows across a 

watershed.  

•   Chapter 5: The contribution of this chapter is a dynamical feedback approach for the 

control of urban watersheds. This formulation is used in extensive simulation to identify 

which control assets have the highest potential to improve watershed performance and 

how many sites must be retrofitted to achieve desired hydraulic outcomes. 

•   Chapter 6: The contribution of this chapter is an analysis of input uncertainty, which 

quantifies the importance of weather forecasts in improving control performance across 

the scale of urban headwater catchments.  

 

In Chapter 2, we summarize the challenges of stormwater infrastructure solutions. Case studies 

and possibilities for real-time stormwater control are explored, while research challenges and 
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knowledge gaps are identified. The chapter explores how existing stormwater systems require 

significant investments to meet challenges imposed by climate change, rapid urbanization, and 

evolving regulations. We then illustrate how there is now an unprecedented opportunity to 

improve urban water quality by equipping stormwater systems with low- cost sensors and 

controllers.  Most importantly, we outline the most urgent fundamental research challenges that 

must be addressed before these systems become ubiquitous.  

 

In Chapter 3, motivated by the lack of real-time data and insufficient environmental sensing 

platforms, we investigate how large sensor and control systems can be realized. While real-time 

sensor feeds have the potential to transform both environmental science and decision-making, 

such data are rarely part of real-time workflows, analyses and modeling tool chains. Despite 

benefits, ranging from the detection of malfunctioning sensors to adaptive sampling, the limited 

number of existing real-time platforms across environmental domains pose a barrier to the 

adoption of real-time data. We present an architecture built upon 1) the increasing ability to 

expose environmental sensors as web services, and 2) the merging of these services under recent 

innovations on the Internet of Things (IoT). By leveraging recent developments in the IoT arena, 

the environmental sciences stand to make significant gains in the use of real-time data.  

 

In Chapter 4, we apply the discoveries of Chapter 3 to the study of a real-world watershed in the 

Midwestern US. Before controlling flows, we focus on controlling sensing resources to improve 

our understanding of runoff dynamics, the knowledge of which will subsequently be used to 

inform how control algorithms should be parameterized. An approach to adaptively measure 

runoff water quality is introduced, focusing specifically on characterizing the timing and 
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magnitude of urban pollutographs. Rather than relying on a static schedule or flow-weighted 

sampling, which can miss important water quality dynamics if parameterized inadequately, novel 

Internet-enabled sensor nodes are used to autonomously adapt their measurement frequency to 

real-time weather forecasts and hydrologic conditions. This dynamic approach has the potential 

to significantly improve the use of constrained experimental resources, such as automated grab 

samplers, which continue to provide a strong alternative to sampling water quality dynamics 

when in situ sensors are not available. Compared to conventional flow-weighted or time-

weighted sampling schemes, which rely on preset thresholds, a major benefit of the approach is 

the ability to dynamically adapt to features of an underlying hydrologic signal. A 28 km2 urban 

watershed was studied to characterize concentrations of total suspended solids (TSS) and total 

phosphorus. Water quality samples were autonomously triggered in response to features in the 

underlying hydrograph and real-time weather forecasts. The study watershed did not exhibit a 

strong first flush, and intra-event concentration variability was driven by flow acceleration, 

wherein the largest loadings of TSS and total phosphorus corresponded with the steepest rising 

limbs of the storm hydrograph. The scalability of the proposed method is discussed in the context 

of larger sensor network deployments, as well the potential for improving the control of urban 

water quality. We conclude with an unprecedented real-world case study, in which this same 

watershed is then controlled using valves, with a specific objective of reducing stream erosion 

and sediment loads.  

 

Having verified the real-world promise of real-time control, Chapter 5 focuses on investigating 

the real-time control of entire urban watersheds. Specifically, through exhaustive simulation we 

seek to answer the question: Where should urban catchments be retrofitted for real-time control 
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and what performance gains can be achieved compared to passive alternatives? Using model of a 

complex stormwater network, a linearized dynamical representation is developed and paired with 

a linear quadratic regulator controller. The chapter identifies which combination of controllable 

sites best achieve the outcome of minimizing flooding while improving water quality, as 

informed by the studies in prior chapters. We show that control of every storage asset may not be 

needed, but rather than a small subset of the overall watershed can be controlled to achieve 

desired outcomes. 

 

In Chapter 6, we examine the importance of weather uncertainty in the control of stormwater 

systems. Motivated by limitation of feedback control, we quantify the benefits and challenges of 

using weather forecasts to prepare watersheds in anticipation of rain events. Using both design 

storms and real weather data, this chapter tests the ability for system-wide control to reduce 

flooding, limit flowrates, and maximize the retention of stormwater runoff.  We show that 

forecast integration helps to proactively release captured stormwater to prevent flooding while 

simultaneously achieving the objectives for flow and retention. 

 

Finally, chapter 7 presents a summary of results, highlights the key takeaways, and poses a 

number of future research questions to promote the continuation of this work. 

 



 

 
 
 

8 

Chapter 2  Smarter stormwater systems 
 

 

 

 

 

 

 

 

2.1   Introduction 

The design of stormwater and sewer systems is based on historical observations of precipitation 

and land use. These systems are inherently static, requiring significant investments to meet 

challenges imposed by climate change, rapid urbanization, and evolving regulations. As a result, 

Figure 2.1. System-level stormwater measurement and control. 
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runoff from urban environments is threatening environmental health by lowering the quality of 

receiving waters, including fisheries, recreational sites and sources of drinking water. There is an 

unprecedented opportunity, however, to improve urban water quality by equipping existing 

stormwater systems with low-cost sensors and controllers. This will enable a new generation of 

intelligent green and gray stormwater networks, which will adapt their operation to maximize 

water quality benefits in response to individual storm events and changing landscapes. 

 

2.2   Static Solutions to a Dynamic Problem 

The vast majority of the world’s population resides in or near urban centers, underscoring the 

need to sustainably manage anthropogenic environmental impacts [6, 7]. Urbanization and land 

development are disruptive to the hydrologic cycle since they result in an altered, more 

impervious landscape, which promotes increased runoff at the expense of infiltration and 

evapotranspiration. While most cities maintain a dedicated stormwater infrastructure, ecosystems 

near many post-industrial cities in the US are adversely impacted by overflows from combined 

sewers [8-10]. These overflows have increased due to leaks in aging infrastructure and shrinking 

municipal budgets.  

 

The increase in the volume, velocity and contaminants in stormwater runoff has caused a crisis in 

receiving water bodies [11-14]. Harmful algal blooms, associated with anthropogenic inputs of 

nutrients, have resulted in unsafe drinking water, impaired fisheries and damage to recreational 

waters [15-19]. As such, managing pollutant loadings from urban stormwater has become one of 

our most pressing environmental challenges [5, 20].  
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Expansion and upsizing of gray infrastructure are perhaps the most common solutions to coping 

with increased runoff resulting from changing weather and land use [21]. Aggressive climate 

adaptation via traditional tools may lead to over-designed gray infrastructure, which conveys 

water too quickly to streams, leading to floodplain encroachment, increases in runoff volumes, 

and stream erosion. To preserve stream stability and ecological function, advances in stormwater 

science are calling for traditional peak attenuation designs to be replaced with those that reduce 

stream erosion during smaller, more frequent storms [22]. As communities seek more resilient 

and adaptive stormwater solutions, novel and nontraditional alternatives to new construction 

must be considered.  

 

One such alternative is provided by green infrastructure (GI), which augments impervious urban 

areas with pervious solutions such as bioswales, green roofs and rain gardens [23-25]. GI is 

designed to restore some ecosystem functions to pre-urbanization levels by capturing runoff and 

contaminants before they enter the stormwater system. These solutions have experienced a 

significant rise in popularity due to their promise to offer a low impact alternative toward 

buffering flows and improving runoff water quality [26]. Much research remains to be 

conducted, however, to test the efficacy and scalability of GI as an alternative to gray 

infrastructure. To that end, more cost-effective sensing solutions are required to assess the in-situ 

performance and improve the maintenance of GI [27, 28].   

 

While stormwater systems do change (albeit slowly), their design performance is often regarded 

as static due to limited ability to adapt to changing climate and land uses. More importantly, 

stormwater solutions are engineered on a site-by-site basis, with little consideration given to 
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ensuring that local benefits are actually adding up to achieve a collective outcome [29]. Rather 

than offering an alternative, a new solution promises to augment, rather than replace, green and 

gray infrastructure. This approach relies heavily on sensor and information technology to make 

existing stormwater systems more adaptive by embedding them with real-time intelligence.  

 

2.3   Real-time Adaptive Management 

The past decade has witnessed significant advances and reduction in the cost of novel sensors, 

wireless communications and data platforms. In large, much of this development has 

accompanied the recent boom on the Internet of Things (IoT), a technological movement that 

promises to build the next generation of interconnected and smart buildings and cities [30]. The 

stormwater sector has been slow in its adoption of these technologies, especially in the context of 

high-resolution and real-time decision-making. Present uses of sensors range from regulatory 

compliance [31, 32] to performance studies of individual stormwater facilities [33]. These 

technological advances have the potential to become highly transformative, however, by 

enabling stormwater infrastructure to evolve from static to highly adaptive (Figure 2.1). By 

coupling the flow of water with the flow of information, modern stormwater infrastructure will 

adapt itself in real-time to changing storms and land uses, while simultaneously providing a 

highly cost-effective solution for cities that are otherwise forced to spend billions on stormwater 

reconstruction [34]. 

  

Given advances of modern sensors and data acquisition systems, it is now feasible to monitor 

green and gray infrastructure projects pre- and postconstruction to provide in situ performance 

metrics. This is afforded by a significant reduction in the cost of sensors and cloud-hosted real-
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time data systems. Many commercial and open-source platforms, specifically geared toward 

demands imposed by storm and sewer applications, are now available and promising to lower the 

cost of wireless sensor deployments. Water flow, stage, precipitation and soil-moisture can now 

be measured seamlessly and continuously. The development of robust and affordable in situ 

water quality sensors for nutrients, metals or bacteria is still evolving. 

 

While new measurements will provide significant insight into the study and management of 

stormwater systems, it is the ability to directly and proactively control these systems that 

presents the biggest potential impact to water quality. Low-cost, reliable and secure actuators 

(e.g., valves, gates, pumps) can now be attached to existing stormwater systems to control the 

flow of water in pipes, ponds and green infrastructure. Examples include inflatable pillows that 

can be used to take advantage of underused inline storage [35] or smart outlet structures that 

control water levels in response to real-time data and weather forecasts (Figure 2.2). 

 

Figure 2.2. Example sensing and control devices. (a) Remote valve for basin control, (b) smart 
sensing manhole cover, and (c) an open-source sensor node for distributed measurement and 
control [36]. 
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While real-time process control in water and wastewater treatment has been studied extensively 

and continues to be a fruitful area of research [37], there is now the opportunity to distribute 

these treatment ideas to the watershed scale. This presents an exciting new paradigm: retrofitting 

existing stormwater infrastructure through cost effective sensors and actuators will transform its 

operation from static to adaptive, permitting it to be instantly “redesigned” to respond to 

changing conditions. There is an inherent complexity associated with control of city-scale 

systems, however, as they are comprised of a variety of gray and green solutions and driven by 

complex storm patterns, hydrologic phenomena, and water quality dynamics. The number of 

studies addressing real-time water quality control is limited but promising, ranging from local- to 

city-scale control. 

 

2.4   Real-time Control of Individual Stormwater Facilities 

Many existing studies focus on the real-time control of stormwater basins and ponds, which are 

some of the most common elements in a stormwater system [38-40]. Pollutant removal in basins 

comprises a complex interaction between a number of mechanisms, including sedimentation, 

flotation, infiltration, biological conversion, and degradation [41]. Traditionally, these facilities 

are designed as compromises between flood control (detention) and water quality control 

(retention), with limited ability to adapt functionality to individual storm events. Retrofitting an 

existing site with a real-time control valve permits it to serve both as a detention and retention 

basin, as well as a spectrum of in-between configurations. One control rule, for example, opens a 

valve to drain a pond if a storm is forecasted, which creates additional storage for incoming 
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runoff. Similarly, runoff can be strategically retained after a storm to improve settling and 

biological uptake. It has been shown, for example, that by temporarily converting a detention 

basin to a retention basin, the removal efficiency of total suspended solids (TSS) increased from 

39% (189 120 g inflow vs 98 269 g outflow) to 90% (e.g., 59 807 g inflow vs 8055 g outflow) 

and ammonia-nitrogen increased from 10% (101.1 g inflow vs 79.2 g outflow) to nearly 90% 

(e.g., 163.5 g inflow vs 7.8 g outflow) [38, 41]. Using data from these studied, Mushalla et al. 

[42] simulated that retaining water using real-time controls may result in up to a 60% 

improvement in small particle removal compared to a traditional design. 

 

Some studies are also beginning to show that real-time control can play a significant role in 

removing biological, metal and dissolved contaminants. A controlled basin in Pflugerville, 

Texas, achieved 6-fold reduction in nitrate plus nitrite-nitrogen compared to the same preretrofit 

dry basin (0.66 mg/L to 0.11 mg/L) by extending detention time and releasing water before a 

storm to create additional storage [43]. While biological uptake likely contributed to nitrogen 

removal, reliable and affordable in situ sensors for many dissolved pollutants are still needed to 

fully understand the impacts of control to dissolved pollutant removal in natural treatment 

systems. 

 

Real-time control of a retrofitted detention pond showed that the removal of Escherichia coli was 

improved by strategically retaining water for 24 h after a storm rather than allowing the water to 

flow though the pond as originally designed [44]. For the controlled basin the outlet 

concentrations were an order of magnitude lower than inlet concentrations (1940 MPN/100 mL 

in vs 187 MPN/100 mL out; and 3410 MPN/100 mL in vs 768 MPN/100 mL out), whereas the 
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uncontrolled basin showed limited removal and even increased E. coli at the outlet (4350 

MPN/100 mL in vs 8860 MPN/100 mL out; 10800 MPN/100 mL in vs 11000 MPN/100 mL 

out). Since streambed concentrations of E. coli were three times higher than in the streamwater, 

the primary mechanisms for removal were attributed to sedimentation and increased exposure to 

sunlight. This example also speaks to the need to be cognizant of flow releases from controlled 

basins, as high outflows can resuspend pollutants. As such, real-time control can be used to 

modulate the flow rate from storage facilities to reduce downstream erosion and pollutant loads. 

Such strategies begin to place real-time control into a much broader systems context, whereby 

each individual stormwater facility not only generates local benefits, but can also be used to 

improve flow and water quality at the city-scale. 

 

Flow modulation for stream protection was demonstrated at two pilot sites owned by Clean 

Water Services (CWS) in Washington County, Oregon. In one system (sized to retain 0.2 in. of 

rainfall), the addition of real-time control to an existing wet pond reduced the volume and 

duration of channel forming discharges by approximately 25%. In a second facility (a dry 

detention pond), the use of real-time control was used to minimize release rates in smaller, more 

frequent storm events while maintaining the ability to match predevelopment peak flows during 

larger storms. This enhancement was modeled to reduce the volume of erosive flows by nearly 

60% and the volume of wet weather discharges by nearly 70% compared to a passive basin 

(Figure 2.3). Additionally, the use of real-time control increased the average residence time of 

this facility from 1 to 19 h. In a simulation case study real-time control reduced the required 

pond volume by 30−50%, compared to a passive facility, while achieving the same level of flow-

duration control performance. Finally, based on whole lifecycle cost estimates, it was determined 
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that a real-time control retrofit of an existing stormwater detention facility would be 

approximately three times lower in lifecycle cost than the equivalent passive alternative [43]. 

 

 

2.5   Scaling up 

An insight into the scalability of real-time control is provided by a large-scale control network 

that is presently deployed in South Bend, Indiana [45]. The network encompasses 100 km2 and is 

comprised of 120 real-time flow and water depth sensors (Figure 2.4), which share information 

every 5 min. The system has been retrofitted with control valves located at nine CSO regulators 

to modulate flow into the city’s interceptor line. The control valves allow more water to enter the 

interceptor line when conveyance capacity is available, while avoiding surcharging the 

interceptor, which may cause surface flooding or structural damage. The system operates by 

taking advantage of excess conveyance capacity within the interceptor line, which is driven 

dynamically by spatial or temporal features of specific storms. 

 

Figure 2.3. Improvement achieved by retrofitting an existing basin to reduce erosive flows. 
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The distributed control strategy uses an agent-based control scheme to optimize the water 

collection system, whereby each infrastructure component trades its own storage or conveyance 

capacity to other upstream assets, similar to traders in a stock market [46]. Even before the 

system was controlled, benefits were achieved by means of monitoring alone. By isolating 

maintenance issues in its first year of operation (2008), the system helped the utility eliminate 

critical dry weather sewer overflows, which were occurring an average of 27 times per year. 

Overall, the control system reduced total sewer overflow volumes from 2100 MGal to 400 MGal 

from 2006−2014 (Figure 2.4). Even after adjusting for total annual rainfall, a near 5-fold 

performance improvement (ratio of overflows to precipitation) was achieved. While a reduction 

in E. coli concentrations (443 cfu/100 mL to 234 cfu/100 mL) in the downstream sewer locations 

was also observed, a more comprehensive ecological study is warranted to study the impacts of 

real-time control to E. coli removal mechanisms. It is estimated that over one billion gallons of 

untreated sewer flows were blocked from flowing into the river, suggesting that real-time control 

played a role in improving water quality 

Figure 2.4. Comparison of combined sewer overflows (CSOs) before and after commissioning 
of real-time sensing and control system in South Bend, IN. 
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2.6   Knowledge Gaps  

2.6.1   Systems Thinking 

While nascent, research on real-time stormwater control is not limited by technology, but rather 

by a much more fundamental need to understand the complex spatiotemporal dynamics that 

govern water flow and quality across large urban areas. One of the largest challenges with 

existing stormwater solutions relates to their design as single entities. This means that benefits 

achieved at a local scale may often be masked or eliminated at the city scale if the performance 

of an individual element is not designed in a broader systems context [29, 47]. Perhaps the 

biggest benefit of control relates to the ability to leverage real-time interconnection to guide the 

behavior of individual elements to achieve city-scale benefits.  

 

There is a need to build upon prior and ongoing research efforts on best management practices 

(BMPs) [24, 33, 48, 49] to understand how individual green and gray stormwater solutions 

perform when stressed by varying climate, storms, and runoff dynamics. Many studies focus on 

hydrologic control and removal of solids and bacteria, but much work still remains to be done to 

determine the impacts of these solutions to the treatment of metals, nutrients and emerging 

contaminants. This will require the expanded development of cheap and reliable sensors for these 

pollutants. Furthermore, there is an urgent need to fill a knowledge and measurement gap on the 

interconnectedness of BMPs across various scales and runoff dynamics (e.g., first flush vs peak 

flow). By improving the understanding of stormwater networks as a function of scale, it will then 

be possible to posit how very large systems (ten to a hundred ponds, for example) should be 

controlled or tuned in real-time to achieve a collective outcome. 
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2.6.2   Uncertainty 

The role of uncertainty is rarely acknowledged in the design of traditional stormwater systems, 

since it is assumed that many transient system behaviors will average out into a cumulative 

performance over time. The benefits of real-time control, however, are highly underpinned by 

uncertainties related to weather forecasts, models, control algorithms, and sensor measurements. 

Some elements of the system will always remain unmeasured or not understood. Furthermore, 

many control decisions will continue to be based on hydraulic parameters, such as flow or 

residence time. Until reliable and low-cost water quality sensors become available, water quality 

control decisions will rely on statistical correlations or physical models. It will be important to 

quantify the role of the resulting “error bars” on the performance of real-time control. 

 

As with many controlled systems, there may be an inherent risk to infrastructure, private 

property, or even human life due to poorly designed control algorithms. Since risk relates 

directly to uncertainty, reliable and consistent real-time operations can only be achieved by 

exhaustively quantifying the role of uncertainty in control operations. Furthermore, even the best 

controllers and sensors may only achieve marginal benefits if storms cannot be predicted 

adequately, thus calling for the need to begin investigating the value of weather forecasts in 

control operations. Many other examples can be given, but studies exploring the role of 

uncertainty have yet to be conducted. 
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2.7   Outlook and Broader Adoption 

Real-time control promises to revolutionize the management of urban water quality by providing 

the ability to significantly improve the operation of existing stormwater assets. As the 

community of researchers grows, there will be a need to develop baseline performance metrics, 

study sites, measurement platforms, and data sets. Research on stormwater capture and direct use 

(reuse) has recently increased [50] due to the potential of reclaimed stormwater to serve arid 

regions. In drought-prone regions of the U.S., where stormwater direct use is becoming one of 

the few viable water recovery options, sensing and real-time control will improve stormwater 

extraction compared to static or natural treatment options. Controlling the timing and magnitude 

of flows and improving removal of contaminants before they reach the plant will also result in a 

reduction in resources required for treatment in combined sewer systems. 

 

Outfitting stormwater infrastructure with sensors and digital control systems introduces new 

opportunities for efficiency and new risks of failure. Responsible use of these systems extends 

beyond deployment, requiring ongoing effort to maintain trust in the data produced and the 

integrity with which control actions are followed. As with all Best Management Practices [24], 

standards will be required to facilitate broader adoption of real-time control and to assess the 

risks introduced by the use of information sourced from these embedded systems. Future 

standards may focus around data formats, sensor requirements or actuator specifications, and will 

need to ensure interoperability between various sites. Failure to recognize, plan for, and manage 

the ongoing cyber security risks introduced by the distributed installation of sensors and 

actuators in stormwater infrastructure will result in new risks to public health and safety, which 

may undermine trust in broader efforts to deliver the potential benefits of these technologies. 
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There will be a need to address regulatory compliance, ownership, governance, and operational 

jurisdictions relating to real-time controlled systems. Unlike existing deployments of sensor and 

control systems in wastewater treatment, digital stormwater infrastructure is deployed across a 

watershed, outside of buildings staffed by an operations team. A key tension relates to 

jurisdiction, both in terms of who owns the infrastructure being controlled and which software 

system provides this dynamic capacity. Many cities may only wish to try retrofitting some sites, 

with the plan to augment their systems over time as they see benefits. This raises the possibility 

that many software systems may operate simultaneously and interfere with a global goal. If 

control systems are deployed by a spectrum of public and private stakeholders, they should 

nonetheless interoperate to provide capacity for watershed-scale control and maintenance. 

Governance models must be explored to facilitate cooperation and liability concerns. While 

solutions to these concerns can build on successful models used for ownership and operation of 

passive controls, they may require further thought in their translation to real-time controlled 

systems.  

 

Beyond technical challenges, the ecosystem of municipalities and engineering firms must adapt 

to accommodate real-time control within a large umbrella of green and gray infrastructure 

solutions. Broader community engagement is necessary to facilitate dissemination and adoption 

of real-time stormwater control. Compliance regulators, such as state and federal environmental 

protection agencies, must be highlighted as members of this community, since many cities are 

wary of innovation because of perceptions that regulators will reject nontraditional solutions. 

Environmental consulting firms, municipalities, and researchers will need to acquire 



 

 
 
 

22 

nontraditional skillsets, which span electrical engineering and computer science. To help with 

this effort, a major initiative is presently underway to organize an open-source consortium and 

share reference implementations on real-time stormwater control (http://open-storm.org). While 

open-source options for sensing and control are alluring due to their perceived cost, examples of 

holistic open-source approaches, which integrate environmental science, technology and 

engineering design, have yet to be developed. To that end, this consortium will serve as a hub for 

reference applications, standards, architectures, sensors, hardware and algorithms, to show that it 

is well within the abilities of most academic groups, municipalities and engineering firms to 

begin instrumenting and controlling stormwater infrastructure. 
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Chapter 3  Real-time environmental sensor data: an application to water quality using web 
services 

 

 

 

 

3.2   Introduction 

Before control can be carried out, real-time measurements have to be made first, which poses 

significant challenges considering the size and complexity of urban watersheds. Recent advances 

in sensing, computation and communications have enabled a massive suite of low-cost, low-

power connected devices. This is particularly true for modern wireless sensor networks [51, 52], 

which now support the reliable, low-cost, near-instant transmission of measurements from field-

deployed sensors. For enterprise-scale web applications, RESTful web services have also 

witnessed a surge in popularity [53] while advances in the hardware realm have been 

accompanied by new architectures and protocols that exploit the bidirectional communication 

and Internet-connectivity of embedded devices. As such, libraries and application programming 

interfaces (APIs) enable users to quickly deploy RESTful web services on almost any software 

or hardware platform. This is significant, as most new devices from popular hardware and 

datalogger manufacturers increasingly support web communication via Wi-Fi, Ethernet, cellular, 

and other physical channels. Through these efforts, the Internet of Things (IoT) has recently been 

proposed as the backbone that will route and manage the vast quantities of data collected by 
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these sensor networks [54, 55]. In many environmental applications, however, these 

technological advances merely serve as a convenience to reduce field visits, provide data 

visualization, and simplify data collection by streaming sensor data to central repositories for 

subsequent analysis. Real-time data are rarely used as part of automated workflows, analyses and 

modeling tool chains.  

 

In the computer science communities, in particular the area of embedded systems, the definition 

of real-time carries with it explicit performance guarantees, such as deadlines and timing 

constraints [56]. Such a strict definition, however, may be too technical to appeal to the broader 

environmental communities. While an actual definition may be out of reach considering the 

diversity of applications in the environmental sciences, an underlying principle persists: real-

time data are data available for use as soon as they are collected to make a decision within a 

constrained time window, independent of sampling frequencies. This principle does not seek to 

distinguish between notions of real-time or near real-time, as is often the case in many studies 

[51, 57, 58].  

 

While not ubiquitous across the broader environmental domains, the use of real-time data for 

decision-making is not novel in some fields. For example, in the atmospheric sciences, satellite 

data is assimilated daily into advanced models which are used by various scientists and decision 

makers [59], while across meteorology, real-time radar feeds and terrestrial sensors inform stake 

holders across agriculture, transportation and disaster response [60]. However, despite the 

availability of low-cost, low-power hardware and data platforms, the benefits of these real-time 

resources have yet to be leveraged broadly across the remaining environmental sciences.  
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Scientific data analyses are more commonly conducted after an experiment has been completed, 

which for many studies could last months or years. A reason for the lack of real-time data 

adoption relates to the fact that most scientists may simply be satisfied with continuous, rather 

than real-time, data. The use of sensors across the environmental sciences thus appears to be 

retroactive, rather than adaptive. This would suggest that the major benefit of real-time data 

relates to decision-making, where assimilation of sensor information into models will enable 

rapid response to extreme events such as floods, wildfires and earthquakes.  

 

While the ability to respond to natural disasters is invaluable, significant benefits of real-time 

data arise to environmental researchers as well, especially in the detection of faulty sensors and 

data acquisition systems. This is particularly true for experiments in harsh or remote 

environments where site visits may be infrequent and equipment outages can result in significant 

lapses in continuous data streams. For such experiments, real-time alerts will go a long way 

toward improving the quality of continuous data sets.  

 

Perhaps the most compelling benefit of real-time data relates to the ability to usher in a new 

generation of adaptive scientific experiments. By adding real-time functionality to non-real-time 

studies, scientists will be able to perform innovative studies that respond to dynamic 

experimental conditions. As illustrated in this chapter, this includes the ability to guide an 

experiment in real-time to adaptively sample signals or locations of interest during the most 

relevant intervals, which will significantly improve the use of constrained experimental resources 

and thus the quality of scientific experiments.    
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Across many domains, the notion of real-time is often complicated by operational requirements, 

which drive a lack of consensus around the definition of the actual term. Regardless of 

application, however, the utility of real-time data is governed by constrained time windows 

during which decisions have to be made. These time windows can range from days (e.g. climate 

modeling and data assimilation [57]) to minutes or seconds (e.g. flood or wildfire forecasting 

[58]). Outside of these time windows the data can be classified as historical, thereby limiting 

their utility for immediate decision-making. A wealth of tools have been developed to store, 

process and visualize historical sensor data [61-65], but these frameworks have yet to be 

extended to provide real-time functionality.  

 

In this chapter, we present a summary of existing efforts to enable the use of real-time data 

across a broad set of domains, showing that the complexity and limited number of these existing 

real-time data platforms limits their adoption by the environmental sensing community. The 

majority of these platforms requires persistent expert support and cannot always be easily ported 

to existing field equipment and sensor networks, even by experienced researchers who readily 

operate continuous sensing campaigns. With real-time data systems also come different 

operational requirements, including the ability to continuously update and operate on new data, 

communicate with remote sites, monitor the operational status of devices, and manage user 

privileges throughout the system.  We discuss these barriers to adoption and present a solution 

built upon two cornerstones: 1) the shift of environmental sensors and actuators1 to a more 

                                                
1 Sensors generate an electrical signal in response to stimuli from the environment. Actuators respond to an 
electrical signal and act upon their environment (e.g. a gate that opens or closes). 
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generic web service model, and 2) the merging of these services under the recent architectural 

innovations on the Internet of Things.  

 

To that end, we introduce a web service-centric approach to enable a flexible, reliable and 

powerful means by which to store, transmit and analyze real-time data. By focusing on recent 

advances in the IoT arena, we will show that the environmental sciences stand to make rapid 

gains in the use of real-time data while simultaneously improving flexibility related to 

implementation and maintenance. Rather than building a new platform, we will show how 

existing IoT platforms already provide a backbone to integrate real-time data from web-enabled 

environmental sensors and devices to meet requirements of interoperability, support, reliability, 

and security. By leveraging the services provided by these platforms, these web-enabled sensors 

and devices can also seamlessly interact with a multitude of web resources, including powerful 

cloud computing services and web-based models. A use case from the hydrologic sciences 

illustrates how a script can be deployed as a web service within this framework to enable low-

power sensor networks to adaptively sample dynamic water quality parameters during storm 

events.  While not a one-size-fits-all solution, our approach is expected to conform well to the 

requirements of most environmental applications, particularly for those where large sensor 

networks are deployed. 

 

3.2.2   Existing platforms and real-time data efforts 

Data systems employed across the environmental domains may be broadly classified into two 

groups: 1) systems used for the storage, retrieval and visualization of data, and 2) data systems 

designed explicitly for real-time operations.  While the former do not explicitly treat real-time 
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data, they do provide powerful mechanisms by which to standardize data retrieval and storage 

[51, 61, 63-65].  Some of these platforms conform to a set of community standards (e.g. 

WaterML, DelftFEWS, etc., see [66]) that reduce operational overhead and enable the seamless 

use of standard-compliant tools for scalable storage, management and visualization of data. 

However, interactions with data are often carried out through direct user queries to the system, 

with no or limited mechanisms in place to automatically notify users of new readings or events 

as they occur. Furthermore, such architectures are not typically designed to enable alerts or the 

discovery and access to field-deployed sensors or actuators, thus limiting their use in control-

centric and decision-making applications.  

 

A number of these systems are also designed for domain-specific applications, thus limiting their 

use across a broader set of domains. In most cases, end-users are required to implement and host 

these real-time systems, which introduces deployment and maintenance complexities in addition 

to those inherent to deploying and maintaining field-deployed sensors and actuators. This 

includes, but is not limited, to setting up dedicated servers, installing necessary tool chains, 

adopting specific programming languages, and guaranteeing system up-time.   

 

A number of platforms have been designed to explicitly treat real-time data. DataTurbine [67] is 

an open source, Java-based platform for managing and transporting data from sensor networks 

and video feeds. Designed for environmental applications, DataTurbine implements a ring 

buffer, much like a size-limited first in, first out queue, to temporarily store the most recent 

sensor data and reliably route data streams to visualization and storage modules. Given the 

emphasis on streaming, high data rates can be supported (over 16 Msamples/sec). DataTurbine 
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was developed as a generic streaming data middleware for real-time data acquisition systems, 

independent from a specific application niche. Some uses of DataTurbine include oceanic 

studies, climate change research, earthquake engineering, and lake monitoring [68]. However, 

users are required to run individual DataTurbine services on all servers and field-deployed 

devices, which limits the number of supported data loggers and controllers to those compatible 

with Java. In addition to the complexities of setting up a monitoring system, the explicit 

emphasis on a particular programming language makes it difficult for users unfamiliar with Java 

to deploy the platform.  

 

An extension to DataTurbine is Wavellite, an open source Java suite that supports real-time 

situational knowledge of heterogeneous datasets and observations [69]. The software interprets 

data as it streams in by using a suite of machine learning algorithms. One example study using 

Wavellite applied artificial neural networks to process aerosol and weather data to identify and 

characterize the formation of particles that could act as cloud condensation nuclei [69]. While 

powerful, the system is designed to support specialized operations and exhibits limited storage 

support. Moreover, since Wavellite is built upon DataTurbine, its deployment requires 

implementation expertise of both platforms.   

 

IBM’s InfoSphere Streams is another real-time data analysis tool chain that enables the rapid 

analysis of real-time data feeds before data is saved into databases [70]. The Streams tool chain 

has been applied across a broad set of industries, including financial services and transportation, 

to continuously use machine learning to extract information for decision-making.  However, 

given its emphasis on machine learning and its current price point (thousands to tens of 
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thousands of dollars), this tool chain appears to be primarily geared toward larger groups and 

companies and may thus be out of reach of smaller scientific research groups.  

 

One of the most established real-time data systems is UNIDATA’s Local Data Manager (LDM) 

[71]. LDM is a package of UNIX-based modules designed for event-driven applications, 

particularly those relating to atmospheric science data.  Users must however host their own 

servers and setup any relevant UNIX-based tool chains before installing and maintaining LDM. 

Additionally, porting the system to domains outside of atmospheric sciences introduces further 

complexity, which may deter use by a broader community.  

 

Another popular real-time data system is Antelope2, which supports a number of language 

interfaces, including C, Fortran. Perl, Python and MATLAB. Originally designed for storing and 

streaming seismic data, the system is also built upon a ring buffer and accompanied by a suite of 

signal processing tools to analyze waveforms and detect events. The suite of tools resembles a 

real-time signal-processing platform targeted towards seismic applications. While some broader 

communities may be too unfamiliar with signal processing and its nuances to adopt this system, 

the suite of seismological tools may also be too specialized for those seeking more general real-

time data functionalities.  

 

3.2.3   Overcoming barriers to real-time data adoption  

To address an increasing interest in real-time data applications across the environmental 

sciences, a working group was formed under the broader umbrella of the U.S. National Science 
                                                
2 http://www.brtt.com  
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Foundation’s EarthCube3 initiative. The EarthCube initiative was launched in 2011 to discover 

transformative concepts and approaches to create integrated data management infrastructures 

across the geosciences. A real-time data workshop was organized in 2013 to determine the needs 

experienced by a broad spectrum of scientific groups [72]. Discussions and surveys nearly 

unanimously reported that while there was significant interest in real-time data, users were 

unsatisfied with the limited set of existing tools, citing their complexity and ease of use (or lack 

thereof) as a major barrier to adoption4.   

 

When deploying environmental sensors, the resources required to program firmware and 

maintain hardware already pose significant demands on research groups. Substantial additional 

overhead is incurred if real-time functionality is desired. Existing real-time data platforms 

impose significant requirements in the form of system architectures, operating systems, 

programming languages, and even sensing platforms, which makes their deployment labor 

intensive, even for users who already maintain sensor networks for continuous data. For 

example, DataTurbine requires users to manually start and maintain Java instances of the 

software both as servers and on field hardware, while packages such as LDM require users to 

compile binaries from source code to match their specific UNIX-based environments. To that 

end, physical protocol compliance has been proposed as a means of tying into these systems and 

to reduce implementation overhead. In one study, the authors suggest that to enable the use of 

their platform [73] sensors should conform to a standard hardware interface, in particular an 

Ethernet port. Field experience and the sheer variety of sensor platforms significantly undermine 

                                                
3 http://www.nsf.gov/geo/earthcube 
4 Efforts are now underway to further study these findings and investigate real-time architectures under the 
EarthCube Cloud Hosted Real-time Data Services (CHORDS) project. http://earthcube.org/group/chords 
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the real-world applicability of such requirements and further illustrate the disconnect between 

those deploying sensors and those designing data platforms. These and other usability constraints 

raise the barrier to real-time data adoption by enforcing non-trivial design and implementation 

challenges on users.  

 

The adoption of real-time data across the environmental sciences hinges upon the resolution of a 

number of broader challenges: 

•   Interoperability: Existing real-time data platforms impose non-trivial requirements on 

users. Real-time data systems should be designed to permit users to retain their existing 

toolchains and hardware platforms inasmuch as possible without imposing major 

additional requirements to maintain servers, compile libraries, or support specific 

hardware interfaces.  

•   Support for real-world, low-power devices: Sensor selection should be governed by the 

application and should not be limited by the capabilities of the underlying data 

infrastructure. Due to power constraints, real-world, battery-powered sensing platforms 

must duty cycle their web connectivity in exchange for battery life [51, 52, 58, 74]. In 

such instances, it is unreasonable to expect persistent bi-directional communications 

between sensors and data services. To further limit the power draw from network 

communications, data must be transmitted as size-efficiently as possible. A real-time data 

framework must develop means by which to interact with such devices, balancing 

intermittent transmissions and wide-ranging bandwidths.  

•   Reliability and usability: Many presently existing real-time platforms and open source 

projects lack the infrastructure and reliability to support a large user base, including 
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novice and technically savvy users alike. While these systems are being improved, we 

contend that reliable and feature-rich commercial platforms should be considered 

inasmuch as possible to allow those deploying sensors to leverage enterprise-scale 

reliability on their projects. This will permit users to focus on applying their domain 

knowledge towards developing applications and experiments, rather than data system 

design and administration.  

•   Security: Given the nature of real-time data, proper security measures must be taken to 

ensure that the streams of data from sensors and control of devices are protected via 

modern encryption and authentication techniques. Existing real-time platforms, such as 

DataTurbine and UNIDATA’s LDM, recommend limiting web connections to specific 

trusted IP addresses and encrypting packets using a digital signature. However, keys to 

read, write, create, and delete web resources are not implemented in these platforms, and 

neither is HTTP Secure (HTTPS), a common protocol used for information-sensitive web 

applications such as email and online banking. 

 

Rather than enforcing highly specific hardware and software requirements, web services are 

emerging as a powerful and versatile interfacing mechanism to connect disparate sensors, data 

sources and models [62]. The availability of reliable, low-cost wired and wireless technologies 

has increased significantly over the past decade, permitting most field devices to be connected to 

the Internet [75, 76]. New Internet Protocol (IP) addressing schemes are currently shifting from 

the traditional IPv4 addressing to IPv6 addressing, which will ensure any device or service can 

be uniquely identified and accessed [77, 78]. This is particularly useful for wireless sensor 

networks, such as those based on Ethernet, mesh, Wi-Fi or cellular protocols, where such 
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networking platforms are shifting toward IPv6-based connectivity to accommodate larger 

network deployments [77]. As the scale of sensor networks continues to grow, requiring IP 

connectivity for real-time data applications is not just realistic but inevitable. While some of the 

existing or legacy commercial hardware platforms may not directly support Internet connectivity 

(TCP/IP), they can either be equipped with communications modules or will soon be replaced by 

modern platforms that support remote data access. Those platforms that ultimately do not adopt 

Internet connectivity may still perform well for applications requiring continuous, but not real-

time data. As such, in the building of real-time data applications, a paradigm shift toward web 

services becomes a reasonable requirement for users wishing to take advantage of modern data 

platforms and cloud-hosted services. 

 

3.2.4   Leveraging IoT Platforms 

Platforms from the Internet of Things (IoT) community have recently arisen in response to the 

rapidly increasing number of wireless devices, which are becoming ubiquitous in the 

measurement and automation of residential and industrial processes. IoT platforms have been 

designed to support sensor discovery, real-time data routing and remote device control. Rather 

than writing firmware code, users can use popular high-level languages, such as Python or 

MATLAB, to analyze data and actuate a remote device. Much of this logic can even be set up 

using configurable services with little to no additional programming required (e.g. trigger an 

alert if a sensor value exceeds a threshold). Users can directly subscribe to real-time data feeds or 

notifications, which are used to monitor the state of field devices and provide a means by which 

to transmit alerts. Despite their significant adoption across the sensor and automation 

communities [54, 77], IoT platforms have yet to penetrate a user base within the environmental 
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domains. A variety of both open source and commercial IoT platforms exist (Table 3.1). When 

comparing the platforms of the IoT ecosystem, their core functionalities can be broken down into 

administrative features, transfer protocols and data management. 
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COMMERCIAL  

Amazon  IoT      √   √   √   √      √   √   √            √   √   √   √     

Beebotte   √   √   √   √   √   √   √   √   √         √   √      √   √   √  

Exosite   √   √   √      √   √   √   √   √      √      √   √      √   √  

GroveStreams   √   √   √   √   √            √         √   √   √   √   √   √  

Open.Sen.Se   √   √   √      √            √                     √   √  

SensorCloud   √   √   √      √                                 √     

Ubidots   √   √      √   √         √   √         √      √   √   √   √  

Xively   √   √   √   √   √   √   √   √   √   √   √      √   √   √   √     

OPEN SOURCE  

KSDuino   √   √   √               √            √            √     

Nimbits   √   √   √   √   √            √               √   √   √     

phant.io   √   √   √               √   √   √   √               √     

ThingSpeak   √   √   √   √   √   √   √   √   √   √   √      √   √   √   √   √  

Table 3.1. Comparison of IoT Platforms. 
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Each IoT platform supports data exchange via web services and a set of standard protocols, the 

majority of which relies on RESTful data transfer. Some platforms also support more modern, 

low-power protocols alternative to HTTP, such as MQTT and CoAP [79, 80], which provide 

additional sensor-centric functionalities and are designed to improve device battery lifetimes by 

optimizing the size of packet headers. While raw or comma-separated data formats can be 

exchanged between web services and devices, the majority of platforms support APIs and 

formats built around popular framing protocols such as JavaScript Object Notation (JSON) or 

Extenstible Markup Language (XML) [81, 82], which permit for rapid integration with various 

programming languages and tools. The content and syntax of the payload may vary based on the 

IoT platform, but many platforms, such as ThingSpeak and Xively, support a broad selection of 

operating systems and languages. Many platforms also provide APIs that encode data into the 

required payload syntax, thus reducing the amount of software development required of the user. 

As such, the payload is similarly encoded amongst these platforms and interoperability between 

IoT platforms can be achieved through relatively straightforward content mappings. These APIs 

are available even for low-level languages, such as C, which permits them to be ported to low-

power microcontrollers and data-loggers. For those deploying sensor hardware, the steps to 

connect to an IoT platform involve a relatively small addition to already existing code. At its 

simplest implementation, this involves opening a TCP/IP port and transmitting a relatively 

intuitive JSON-encoded or Comma Separated Values (CSV)-encoded string. While the CSV 

encoding is relatively self-explanatory, the JSON string can often be generated on the IoT 

platform’s website and pasted into the low-level code. For those wishing to support remote 

actuation of a field-deployed device, a callback function can also be implemented to parse and 

respond to messages received by the IoT platform. 
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All of the major IoT platforms support administrative control via public and private key access. 

Field-deployed devices and other web services (e.g. models, visualization services, etc.) that 

interact with these IoT platforms must be authenticated via these keys to access the services 

provided by an IoT platform. Key permissions can be generated and configured on the platform 

without needing to change device firmware. To our knowledge, such authentication systems are 

rarely implemented on existing real-time environmental data systems (LDM, Antelope, etc.), 

where access is instead controlled by less complex measures such as limiting connections to 

specific IP addresses or digitally signing packets with a shared password. Presently, however, 

few IoT platforms support multiple keys and permissions, which is particularly useful where one 

would like to limit control of specific resources for certain users. For example, depending on 

their role, a group of users may be allowed only to subscribe to and view real-time data from 

devices and may not be permitted to control sensors and actuators. With tiered authentication 

systems, one can dictate which web resources are available publicly or privately.  

 

To varying degrees, IoT platforms support the long-term storage of data and metadata, thus 

serving both as real-time data and historical data platforms. Some platforms only focus on 

limited data handling and storage, primarily serving to buffer data for decision-making, 

actuation, and alerts. While storage may not be an explicit requirement for most real-time 

applications, long-term storage can be achieved by routing real-time feeds from an IoT platform 

into community-maintained and domain-specific databases and storage facilities (e.g. The 
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CUAHSI Water Data Center5). Commercial IoT platforms operate on service-based models [83], 

where providers launch, scale and maintain the platform, allowing users to focus on the actual 

applications. Most platforms support a free plan, which permits small projects (1-50 sensors) to 

leverage the services without a fee. Typically, such plans limit the number of sensors and the 

frequency at which data can be transmitted. In the case where applications require additional 

sensors or data transmission at higher frequencies, commercial platforms offer very affordable 

pricing plans, where fees are charged on a per-use basis. For example, at the time of this study, 

Amazon’s IoT Service6 supported the transmission of one million messages (512 bytes per 

message) at a cost of $5 USD, which falls well below the cost that a small scientific group would 

have to expend on developing, hosting and maintaining a comparable data service.   

 

While the open source platforms are powerful, the benefits of the commercial, enterprise-grade 

data services cannot be discounted. Most open source platforms must be installed and maintained 

by the user whereas commercial platforms are oftentimes cloud hosted and can be readily 

accessed within a few mouse clicks. As with any open source platform, significant expertise and 

resources are required to ensure robust functionalities that include, but are not limited to, routing 

feeds, issuing alerts, storing data, adhering to protocols and standards, and coordinating security 

and user privileges. Although open source versions of these platforms offer such features, it may 

be unrealistic to assume that all scientific users or decision makers have the expertise or 

resources to deploy and maintain these complex systems.  

 

                                                
5 https://www.cuahsi.org/wdc 
6 https://aws.amazon.com/iot 
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We contend that the burden of hosting and maintaining complex, real-time web service 

architectures should not be offloaded to the user, but, where feasible, should be deferred to 

reliable hosting providers. Most recently, this has been the case with the paradigm shift toward 

cloud computing, where commercial computing services are replacing local hosting and 

computations in various applications [84], including many across the environmental domains. A 

similar paradigm shift in real-time environmental data services is needed. Commercial sensor 

data services are hosted and maintained by experts, permitting users to launch an instance at their 

convenience and focus on their applications rather than system administration. It should be noted 

that in this chapter our goal is not to advocate any IoT platform in particular, but rather to 

promote their broader adoption.  

 

3.3   Use case  

Motivated by the need to improve our understanding of water quality in streams and rivers, our 

specific objective was to better understand the dynamics of nutrient loadings to urban and 

agricultural sources. Large nutrient loads are considered the primary cause of harmful algal 

blooms and dead zones witnessed most recently in the Great Lakes [85] and Gulf of Mexico 

[86].  Despite the insight provided by dynamic models, our understanding of these nutrient 

loadings and their origins is still limited significantly by a lack of real-world data. As such, more 

measurements are needed to resolve the spatiotemporal dynamics of nutrient fluxes into aquatic 

ecosystems.  
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3.3.1   Challenges in the measurement of water quality  

Compared to water flow, water quality parameters are still relatively difficult to measure [87, 

88]. This is particularly true of some water quality constituents (e.g. nutrients, metals and 

bacteria), where in-situ sensors either do not exist or are too cost-prohibitive to be deployed at 

meaningful resolutions. In such instances, samples collected by automated samplers are an 

effective alternative to in-situ measurements [89]. When triggered manually or through a timer 

mechanism, these samplers actuate a motor to pump a water sample directly from a stream into 

one of a number of available bottles that are later taken to a laboratory for analysis. Since each 

sample is time stamped, the laboratory results can then be used to correlate water quality 

parameters with known physical characteristics or measurements taken by accompanying in-situ 

sensors.  

 

The number of sample bottles is limited in an automated sampler and its power consumption is 

very large due to its motorized mechanical components. Given these resource constraints, it 

becomes necessary to optimize sampling times and frequencies to capture events of interest. 

Sampling too fast can cause the number of available samples to be depleted before an event is 

captured. Furthermore, “wasted” samples occur when a storm does not happen as predicted, 

while “missed” samples occur if the duration of a storm is longer than anticipated. Most often, 

events of interest include storms, which can cause significant quantities of surface water to flow 

into nearby streams and rivers, thereby discharging nutrients that have accumulated on land. 

Nutrient loadings during the beginning of a storm, or the first flush, are often considered an 

indicator of the effect of nearby land use practices on water quality. When measuring the flow of 

water in a stream or river, the first flush is often evident as a spike in the hydrograph signal [90, 
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91]. To capture these events, automated samplers have mainly been used on an as-needed basis, 

where units are placed on a site in anticipation of storm events and programmed to take readings 

at regular intervals. The feasibility of using automated samplers thus becomes burdensome in 

terms of cost, battery consumption and manual labor. 

 

3.3.2   Adaptive sampling of hydrologic signals 

The drawbacks of automated samplers can be minimized through adaptive sampling [92, 93] 

where, rather than evenly sampling a signal, a controller or algorithm persistently updates a 

model of a phenomenon using real-time data and then samples only during events of interest. In 

our approach, the algorithm was a configurable web application that queried a public weather 

forecast to determine the probability of impending precipitation. The algorithm monitored the 

hydrograph signal in real-time to determine sudden state changes, such as a rapid rise in the 

hydrograph. A rule-based optimization procedure was then used to determine when to take the 

next sample. A theoretical description and evaluation of the algorithm are given in [94].  The 

algorithm encoded the objective of minimizing the samples required to characterize the first 

flush of the hydrologic catchment by triggering a sample of water quality to be taken right before 

a storm (based on weather predictions), a number of samples during the rising limb and 

inflection points of the hydrograph, and a smaller number of samples following the hydrograph 

recession. As such, the algorithm guided the automated sampler to respond to both weather 

forecasts and changes in measured flow values. The implementation assumed a sensor node 

equipped with an Internet connection, which received sampling commands from a web 

application.  
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3.3.3   Hardware 

A water quality sensor node was developed using the NeoMote wireless sensing platform [95]. 

This FPGA-based platform (Cypress PSoC5LP) is programmed in C and features an ultra-low 

power ARM-Cortex M3 microprocessor, 20-bit low-noise analog to digital converter, 

configurable on-board storage via an SD card, and variable, low-noise power supplies for 

sensors.  Given the urban study site (Ann Arbor, MI Lat. 42.264855, Lon. -83.688347), cellular 

coverage was readily available, which thus enabled the use of a low-cost IP-enabled cellular 

module (Telit CC864-DUAL) for Internet connectivity. The NeoMote platform consumed an 

average current of 30 micro-amps. The cellular module consumed significantly more, requiring 

nearly 200 milli-amps during transmission events. To conserve power, the cellular module was 

duty cycled, where power was cut entirely to the module when it was not being actively used to 

transmit sensor readings. With the addition of a low quiescent current (1 micro-amp) lithium-ion 

solar charge controller and a solar panel, the sensor node was designed to operate for years 

without the need for battery replacements or line power.  

 

The sensor node (Figure 3.1) was interfaced with an automated sampler (ISCO 3700) using a 

transistor-transistor logic interface (TTL). The automated sampler had a 24-bottle capacity, a 

standby current of 10 milli-amps and an energy consumption of 2 Amps at 12 VDC during 

sampling. Even with duty cycling, the use of the automated sampler provided the largest 

constraint on battery resources, further emphasizing the need to limit sampling to only events of 

interest. A suite of hydrologic sensors was also attached to the data logger, including an 

ultrasonic depth sensor (MaxBotix MB7384) and a pressure transducer (Solinst 3001 

Levelogger® Edge) for stage measurements. The data logger interfaced with the ultrasonic 
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sensor in TTL serial mode, the pressure transducer via SDI-12, and the conductivity sensor via 

analog output. The data from the ultrasonic sensor was used to derive an estimate of the 

hydrograph stage, which was then used by the adaptive sampling algorithm to determine when to 

trigger the next water quality sample. Data from the pressure transducer was initially used to 

verify the hydrograph estimates derived by the cheaper ultrasonic sensor as a means of vetting its 

use for future studies. While not used in this study, an analog conductivity sensor (Campbell 

Scientific CS547A) was also connected to the platform to assess benefits of triggering water 

quality samples based on conductivity thresholds.  

 

 

Figure 3.1. IP- enabled hydrologic sensor node which consists of a wireless logger, automated 
sampler, and a suite of sensors to measure depth and conductivity. 



 

 
 
 

44 

3.3.4   Software architecture  

To enable rapid deployment and reliable and secure operations, we designed and implemented a 

real-time data architecture around an Internet of Things platform. At the time this study was 

done, there were a number of IoT platforms known to the authors (Table 3.1). During the 

platform selection process, the features that were considered included authentication and security 

mechanisms, data storage, throughput limitations, device management interfaces, and available 

libraries or APIs. The choice to build our architecture around the platform offered by Xively7 was 

driven primarily by the availability of easy-to-use libraries for a diversity of programming 

languages, as well as the ability to support multiple authentication keys and user privileges. 

Given the emphasis on web services, the same architecture and features could have also been 

implemented using other IoT platforms with some minor payload syntax modifications. 

 

At the lowest level, the platform assumes that all devices and applications are IP-enabled, 

whether through wired (Ethernet) or wireless (Wi-Fi, cellular, etc.) interfaces. Data transfer can 

take place either via TCP or UDP protocols, which was chosen based on application-specific 

performance requirements. While data can be exchanged in a raw format through these low-level 

socket connections, a number of application-layer protocols, including HTTP, HTTPS and other 

low-power protocols, such as CoAP and MQTT, are supported to permit the system to interface 

with popular tools and programming languages. This significantly reduced implementation 

overhead while simultaneously providing a large support infrastructure in the form of a broad 

user community, and thus enabled us to focus on the implementation of adaptive sampling rather 

than the details of low-level data transfer.  

                                                
7 https://xively.com 
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To illustrate the flexibility afforded by web services, our architecture (Figure 3.2) implemented 

three separate web services on three separate devices, each of which was programmed in a 

different language. Each service was implemented using Xively’s RESTful API and was written 

in a programming language most suitable to its purpose and ease of implementation. The first 

web service was written in C and executed on the sensor node to transmit data and receive 

sampling commands via a cellular data connection. The second web service was the adaptive-

sampling algorithm (controller), whose logic was controlled by a Python script, which could be 

executed on a local machine or web server to send sampling commands via a RESTful interface 

in response to the real-time sensor measurements. A third, client-side service was implemented 

in JavaScript and used a RESTful interface to interface with the IoT platform. It provided access 

to historical data and allowed a user to issue commands to the sensor node via a website. Each 

service was individually authenticated and interacted through the IoT platform, which was 

Figure 3.2. Web service based real-time data architecture and platform stack. 
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hosted by a commercial service. The code for this entire reference implementation is available on 

our public repository8.  

 

The IoT platform not only interfaced each web service, but also enabled a suite of data discovery 

and management mechanisms. This allowed any number of authenticated web services to query 

the system for historical data and metadata, register for alerts, and to obtain direct links to real-

time feeds. Organization, exchange and storage of data interacted through a hierarchical structure 

that is applicable to most types of data streams from any number of devices (Figure 3.3). Each 

field device (sensor node) was assigned a unique data feed, which was further subdivided into 

individual streams (individual sensors and actuators).  Users accessed individual feeds or groups 

of feeds based on their privileges and authentication keys. For example, some users could only 

view sensor data and metadata, while others can also control sensors or actuators.  

 

 

 

                                                
8 https://github.com/kLabUM/IoT  

Figure 3.3. Data transport, discovery and storage. All data and services interact through the IoT 
Platform. Each service is assigned a separate authentication key based on its role and privileges. 
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Data and commands were embedded in this structure and exchanged between the individual web 

service applications using CSV (sensor node) and JSON encodings (sampling controller and web 

browser application). While XML encodings were also an option, JSON was chosen due to its 

smaller packet size to reduce cellular transmissions and increase battery life. Given the 

popularity of these encoding formats across Internet services [81, 82], powerful libraries now 

exist for almost any programming language to simplify the conversion of sensor readings to 

formatted data packets, further reducing programming-related overhead. While our application 

did not explicitly demand the use of domain-compliant syntaxes (e.g. WaterML, SensorML, 

DelftFEWS, etc.), this feature can be added as a relatively lightweight web service or library that 

maps between the desired syntax formats to drive the adoption of the proposed architecture by 

domain-specific communities.  

 

3.4   System implementation 

Our use case architecture was implemented in three web service modules: the embedded sensor 

node (programmed in C), the adaptive sampling controller (programmed in Python), and a front-

end visualization and control interface (programmed in JavaScript). All services were tied 

together via the Xively IoT platform, which served as the interface and data storage mechanism. 

 

3.4.1   Sensor node 

The majority of the time, the sensor node operated autonomously at a constant measurement 

frequency, sampling the suite of sensors and transmitting data via the cellular connection. The 

sensor node’s sampling frequency or sampling schedule could be changed remotely via an IoT 
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web service request by authorized users, in particular by the adaptive sampling controller. To 

control any additional sensor nodes, a user only had to know the unique data feed and 

authentication key assigned to each device. 

 

Given the rising popularity of ultra-low-power micro-controllers [88], including ARM- [87], 

AVR- [74] and 8051-based architectures [52], C continues to be the de-facto programming 

language for the majority of embedded devices. The exchange between the sensor node and the 

IoT platform was also programmed in C and the Xively platform offers a comprehensive C 

library, which includes the methods that provide the additional functionality of RESTful 

communications and data formatting to exchange information with the platform. A number of 

older or popular data loggers (such as those made by Campbell Scientific9) are written in 

proprietary or legacy languages, for which there may not be an explicit IoT library. Nonetheless, 

these loggers still support TCP/IP functionality via a number of communicating links. To that 

end, we decided to forgo the existing Xively library to illustrate the steps that could be followed 

to interface most IP-enabled data loggers to the IoT platform. To transmit data, our code opened 

a TCP/IP port and wrote a CSV or JSON-delimited set of sensor values using a RESTful 

command to the IoT platform. To receive commands from the IoT platform, the node listened on 

a given port and parsed an incoming string for relevant commands. On our C-based platform, 

this was achieved in as little as four lines of code by leveraging an existing TCP/IP library. 

 

                                                
9 http://www.campbellsci.com/ 
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3.4.2   Adaptive sampling controller 

Implemented as a Python script, this controller sought to maximize the probability of capturing 

first flush events while minimizing the number of water quality samples.  The controller 

persistently updated its knowledge of local weather forecasts by leveraging Weather 

Underground’s Weather API web service10. Once notified of the most recent sensor node 

measurements through Xively, the controller then updated the node’s sampling frequency (a 

variable stored on Xively) based on anticipated storm events.  

 

The algorithm was initially developed and tested on an Internet-connected desktop, after which it 

was deployed as a dedicated web application using Amazon’s cloud-based Elastic Beanstalk11 

service. This service permits non-expert users to develop code on their own workstation and 

launch it as a web service by simply uploading the script to the platform. The process involves 

no further programming beyond what is already written on the desktop computer, which makes it 

appealing to users who do not wish to support their own dedicated server. The service self-

balances computational loads, is pre-configured to support a variety of programming languages, 

and removes any hosting requirements on the part of the user. Not unique to AWS, a number of 

other cloud-based platforms offer similar services, including, but not limited to AppFog, 

CloudBees, Google App Engine, Engine Yard, Heroku, OpenShift, and Windows Azure12.  

 

                                                
10 http://www.wunderground.com/weather/api  
11 http://aws.amazon.com/elasticbeanstalk  
12 https://www.appfog.com/, http://www.cloudbees.com/, https://appengine.google.com/, 

https://www.engineyard.com/, https://www.heroku.com/, https://www.openshift.com/, 
http://azure.microsoft.com/en-us/. 
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While the adaptive sampling controller could have also been implemented on the actual sensor 

node in C, we envision future applications where sampling frequencies are guided by 

measurements made by a distributed network of sensor nodes, rather than just local 

measurements. In such cases an off-site sampling controller is not only more easily maintained 

and deployed, but also capable of coordinating a global response to signals from multiple 

sources. Furthermore, implementing the sampling logic in Python permitted the sampling logic 

to be updated rapidly (and remotely) through a web interface without having to update the lower 

level firmware of field devices.  

 

3.4.3   Visualization interface 

A front-end web application (Figure 3.4) was implemented as a webpage using the Xively 

JavaScript API to visualize data and system states. The API provided methods to authenticate 

with the Xively platform and exchange data in JSON format, which is widely compatible with 

popular visualization platforms (d3.js; for examples, see [96]). Data and commands were 

transmitted directly to Xively, while a subscription feature in the API enabled callbacks 

whenever new readings were received from the sensor node. As such, data on the interface were 

visually updated as soon as they were received by Xively, without requiring the user to refresh 

the page. A set of controls also allowed users to trigger the sensor node remotely, permitting 

them to override the logic of the automated sampler if needed.  
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3.4.4   Web service interactions 

The sensor node was programmed to spend the majority of time in a sleep state, where cellular 

and sensing capabilities were turned off to conserve battery resources, which was required to 

enable long-term, battery-powered deployments in remote areas. Upon transmitting a new 

sample, the sensor node remained connected to the Internet for a short duration, giving external 

services enough time to respond to the new measurements if needed. When in the sleep state, the 

node did not immediately respond to commands sent by the adaptive sampling controller or the 

web interface. Rather, it checked for the need to update its sampling schedule once it obtained an 

Internet connection during its next wakeup cycle. This flow of actions also removed the burden 

on the adaptive sampling controller to monitor the connectivity of the node, which allowed both 

processes to remain uncoupled. 

Figure 3.4. Example web front-end used to monitor readings from the sensor node and control 
its sampling frequency. 
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A typical set of actions (Figure 3.5) involved a sensor node taking readings and transmitting 

them to the IoT platform, which then pushed a notification to the adaptive sampling algorithm 

and web visualization interface, both of which were subscribed to the data feed via their 

respective library callback mechanisms. The adaptive sampling algorithm then computed the 

optimal sampling frequency and updated it if necessary, in which case the sensor node was 

notified via a push notification through the IoT platform. If the sensor node was in a sleep state 

when the readings had to be updated (for example, due to an unforeseen storm forecast), the 

adaptive controller updated the sampling frequency on the IoT platform. Upon regaining Internet 

connectivity, the sensor node could then compare this variable with its current settings and 

update itself if needed.   

 

 

3.5   System performance and discussion  

Results from the use case indicate that the sensor node, when guided by the off-site, real-time 

adaptive sampling controller, resolved local hydrographs while simultaneously collecting water 

Figure 3.5. Hydrologic use case action flow. 
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quality samples during events of interest (Figure 3.6). In particular, the node was very effective 

at managing the number of water quality samples required to characterize the “first flush” 

behavior of the study basin. Specifically, the node captured valuable baseflow samples right 

before the onset of a storm, while spacing out the remaining samples to measure water quality 

during the inflection points, peak, and recession of the hydrograph.  At least six samples were 

used to characterize the dynamics of each distinct rain episode. In many instances, only a single 

set of samples (no more than 24) was necessary to capture storm events across multiple days 

without the need to service the node or replace sampling bottles. This would not have been 

feasible without a real-time sampling approach and has vastly improved the quality of our 

existing experiments.  

 

During the entire three-month study period, only two baseflow samples were triggered falsely as 

a result of inaccurate weather forecasts, suggesting that publicly available weather feeds may 

have high potential to improve urban water experiments. The samples were analyzed for total 

suspended solids (TSS) to assess impacts of upstream stormwater runoff, showing that peak 

solids correlated with peak flows. An in-depth water quality analysis, described in [94], 

concluded that no first flush behavior was observed in the catchment with regard to TSS, which 

may have significant implications to existing stormwater management practices in the basin. It 

should be noted that the analysis of a number of other water quality parameters has to conform to 

maximum holding times (e.g. 24-hour maximum for phosphate), as the constituents may react 

while the sample is held in the bottle. In these instances, the benefit of real-time data is twofold: 

permitting for alerts to be sent when samples have to be picked up, and secondly minimizing the 

number of samples that need to be analyzed in the laboratory.  
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Overall, adaptive sampling significantly reduced fieldwork and improved the power 

consumption of the sensor node when compared to traditional sampling approaches. Compared 

to these approaches, which may take water samples once an hour (or more rapidly) during a 

storm to resolve relevant features of the hydrograph, our implementation was able to more 

effectively and more densely collect samples storm events. This reduced power draw by nearly 

75% since the automated sampler was the largest battery drain due to its mechanical 

components. The system also provided a number of alerts to users, such as when sample bottles 

were about to expire, which limited site visits significantly. This reduced requirements on 

manpower and freed up experimental resources, permitting a multi-node network to be 

effectively maintained by a small team of investigators.  Adaptively sampling these and other 

Figure 3.6. Measured hydrologic signal: stage height (blue) and instances of adaptively sampled 
water quality data (red). 
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signals, however, was highly contingent upon responding to in-situ measurements and weather 

forecasts in real-time, which required a real-time architecture, such as the one proposed here.  

 

By leveraging a commercial cloud-hosted IoT cloud platform, our real-time use case yielded 

significant benefits. Using a free account with a cloud-hosted IoT platform, we were able to 

make our real-time data available on the Internet through a password-protected, web-accessible 

endpoint, as well as interface our sensor node with a cloud-hosted adaptive sampling algorithm 

and web application. Development was focused largely on the sensor node and adaptive 

sampling algorithm. Particularly, no IoT platform outages were experienced throughout the 

three-month summer sampling campaign (July 1 to October 1, 2014) due to guaranteed uptimes 

by the platform provider.  Building the architecture around a commercial platform also ensured 

that the overall system would benefit from security and system updates at no expense to the user. 

The IoT platform also served as an effective data storage, retrieval and visualization engine for 

continuous sensor streams. As such, the experiment was afforded the benefits of a conventional, 

non real-time platform as well. 

 

The majority of our use case efforts focused on implementing modular web services, each of 

which was written in a different programming language and deployed on a system deemed most 

suitable for its use. The interoperability of web services provided significant flexibility during 

development and deployment, as it permitted us to focus on the application and leverage our core 

competencies rather than having to conform to specific languages, operating systems and 

hardware architectures. Moreover, adjustments could be made to individual web services without 

affecting or compromising the functionality of the rest of the system. For example, implementing 
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our Python-based adaptive sampling controller as a web service allowed us to rapidly change 

sampling strategies without having to modify any low-level firmware on the sensor node.  

 

In the example use case, all of the web services interacted through the IoT platform. In such an 

architecture, feeds and alerts must be routed rapidly enough to meet the needs of the application. 

Latency thus becomes a concern when framing any architecture around an IoT platform. To 

address this concern, we carried out an experiment in which two web services were created and 

connected via the Xively IoT platform. The controlled experiment was designed to emulate an 

adaptive sampling procedure where a sensor node first transmits a reading that is interpreted by 

an off-site controller, which then instructs the sensor node of its new sampling schedule. Three 

hundred data packets were transmitted from one web service, forwarded by Xively to the second 

service, and then transmitted back through Xively to the first service. The total travel time was 

measured, yielding an average of 0.2 seconds round-trip (min 0.002 seconds, max 2 seconds). 

This overall latency was not only guided by the response time of IoT platform, but by other 

factors such as network connectivity and bandwidth. In our hydrologic use case, where the 

average sampling interval was rarely required to drop below five minutes, this response time was 

more than adequate to meet the needs of the application. Such a performance should also 

adequately meet the needs of the vast majority of real-time environmental applications, most of 

which rarely require sub-second temporal resolutions for purposes of control and decision-

making. Applications requiring very fine-grained response times (milli- to micro-seconds) can 

still leverage the majority of features offered by IoT platforms but should consider more 

localized, on-board signal processing and control where possible (e.g. on the sensor node, as 

opposed to off-site services). In the case where an IoT platform still does not meet the needs of 
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such applications, it can still serve as a directory and discovery mechanism that interfaces web 

services, which can then communicate with each other directly. Such customized architectures 

should, however, rarely be required for the vast majority of environmental sensor network 

applications.  

 

Aside from latency concerns, a web-service architecture could suffer from connectivity outages 

as well.  As pointed out by [62], the overall functionality of a web-coupled architecture may 

suffer if it is entirely reliant upon being interconnected by the Internet, especially when services 

are hosted at different locations. Connectivity outages (for example, those experienced in 

wireless sensor network applications) may thus intermittently affect portions of a real-time 

architecture. To that end, a level of autonomy should always be built into individual services to 

ensure that they maintain their core set of functionalities even if connectivity is compromised. In 

our use case, the sensor node would continue to sample and transmit data at a default sampling 

interval, even if the adaptive sampling controller were to experience an outage. On-board storage 

on the sensor node also maintained a local copy of the data that could then be re-uploaded in the 

future, ensuring a continuous stream of data regardless of IoT functionality.  

 

In most real-time environmental applications, particularly those relating to smaller-scale 

scientific studies, commercial platforms will often provide low-cost or free operations, with 

minimal overhead to setup and begin using real-time services provided by the platform. 

However, the management and control of commercial IoT platforms is subject to provider 

policies and subject to future changes. As is the case with most commercial software and systems 

(e.g. cloud computing services), potential drawbacks include throttled usage and loss of support 
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for certain features. The benefits offered by open source platforms make them a viable real-time 

alternative for users willing to commit resources to both developing maintaining the platform. 

While they require more expertise during setup and maintenance, open source platforms may be 

a viable option for more advanced users already experienced in developing and deploying web 

applications as they allow more control over their system and their data. These platforms provide 

more low-level configurability to the user and collected data does not have to reside on third 

party databases. Furthermore, users are not explicitly restricted by usage limitations or by data 

formats. Nonetheless, when considering the use of IoT platforms and web services for real-time 

environmental applications, users will also ultimately need to weigh the benefits of and 

drawbacks of commercial platforms against their open source counterparts.  

 

3.6   Conclusions 

Recent advances in sensing, computation and communications have enabled the rapid 

deployment of real-time data systems for environmental applications. In particular, most modern 

sensor systems can now seamlessly connect to the Internet via standard web protocols, 

permitting the use of web services as an ideal interoperability mechanism between sensors, 

actuators, models and decision support systems.  

 

The ability to respond to data as it is measured brings two major benefits to environmental 

applications: 1) it enables a means by which to significantly improve the quality and reach of 

experiments (as illustrated by our hydrologic use case), and 2) it serves as a powerful tool for 

decision-making and control (e.g. contaminant warning systems, flood control, etc.). Even with 

the current ecosystem of open source platforms, the deployment of current real-time 
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environmental data systems is largely non-trivial, which significantly limits their adoption. To 

that end, we have shown that commercially available IoT platforms, which have been designed 

for a broad suite of applications, provide a secure and scalable mechanism for processing, 

storing, and visualizing ever increasing amounts of data.  

 

The flexibility afforded by the web service-driven nature of these platforms loosens the 

architecture-, hardware- and software-specific requirements that often underpin several existing 

real-time data platforms.  As illustrated by our hydrologic use case, this flexibility reduces the 

barrier of entry for most environmental applications as it permits users, novice and experienced, 

to build upon existing projects and work with the programming languages and platforms that 

they find most appealing. Regardless of the ease of use, demands on the user are not entirely 

eliminated.  An initial investment to develop the appropriate skillset to work with IoT platforms 

will inevitably have to be made by end users. We contend, however, that learning how to 

integrate web services into already existing code provides a compelling value proposition given 

the large community of adopters and supporters that is growing in the IoT space.  

 

While the availability and features of open source IoT platforms continue to expand, 

environmental applications presently stand to gain the most from leveraging commercial IoT 

systems, which offer a vast suite of features at the click of a mouse. Presently, these enterprise-

quality platforms have the potential to enable the ubiquitous use of real-time environmental 

sensor data and to usher in a new generation of adaptive scientific experiments.   
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Chapter 4  Adaptive measurements of urban runoff quality 
 

 

 

 

 

4.2   Introduction  

The ability to seamlessly measure urban watersheds, which was enabled by the technological 

outputs of the prior chapter, now enables highly tailored experiments to be carried out to 

determine unique water quality dynamics that may be inherent in a given watershed. In turn, this 

will permit control of infrastructure to be finely tuned to watershed-specific outcomes. Nonpoint 

source pollution is a leading cause of surface water impairment in the United States and 

represents a major management concern as rapid urbanization continues to strain local and 

regional water resources [97, 98]. The emergence of reliable environmental sensors is poised to 

transform our understanding of nonpoint source pollution and broader water systems [99, 100]. 

In hydrologic studies, new sensors are revealing previously unmeasured dynamics that govern 

water quality across large watersheds. For example, new optical nitrate sensors are improving the 

quantification of loads, flow paths, and nutrient dynamics [101-103]. Furthermore, the recent 

ability to continuously measure turbidity and sediments has challenged existing assumptions of 

sediment variability, suggesting that nutrient concentrations exhibit complex dynamics that often 

cannot be attributed to storm features [104].  
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While these sensor measurements will help to fill critical scientific knowledge gaps, the 

management of water systems also stands to significantly benefit from an improved 

understanding of water quality dynamics. Much of urban water quality management is tuned to 

handle the storm as a whole, seeking to control and treat the cumulative event rather than affect 

its dynamics. This is accomplished through a variety of green or gray infrastructure solutions 

[105, 106], the choice of which is often based on assumptions of stationarity and few or no 

measurements. While improved measurements of water quality will help to guide the design and 

maintenance of these systems, a new generation of intelligent infrastructure (controllable ponds, 

tanks, weirs, bioswales, etc.) stands to benefit even more from improved quantification of 

pollutant dynamics. Modern infrastructure will soon route water in real-time to respond to 

individual storm events [45, 107-109] to reduce flooding and improve water quality. Such finely 

grained control will benefit from an equally finely grained understanding of water quality 

dynamics. 

 

However, the widespread use of in-situ sensors is still limited by costs, high power consumption, 

and maintenance requirements.  Moreover, for many important parameters, such as metals, there 

are no in-situ sensors to provide such measurements. For emerging contaminants, including 

viruses and industrial chemicals, in-situ sensors may never become available unless regulations 

or research drive their development. Automated samplers, which retrieve water samples for 

subsequent laboratory analysis, may be used to fill these measurement gaps. While they may 

incur considerable expense for installation, maintenance, and repair [110], automated samplers 
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provide a flexible and automated means by which to reduce man-hours that would otherwise be 

required to achieve the same task. 

 

Advances in wireless communications and data architectures are now significantly reducing the 

overhead required to deploy environmental sensor networks [111-113], enabling the adaptive and 

real-time study of water systems. These advances are however not being leveraged to their 

maximum potential [114, 115], as the majority of presently deployed sensor platforms are still 

used in an off-line fashion. By adapting a study to in-situ conditions and various public sources 

of real-time data such as weather forecasts or streamflow measurements, the quality of the final 

experiment stands to significantly improve. This is particularly pertinent in the study of 

hydrologic systems and nonpoint source water quality, where abrupt changes in water quality 

due to unanticipated flashy storms often contain critical information about water quality 

dynamics in watersheds [116].  

 

The goal of this chapter is to investigate a scalable approach by which to adaptively measure 

nonpoint source water quality in urban watersheds with the specific objective of characterizing 

dynamics (timing and magnitude) of pollutant runoff.  An adaptive sampling algorithm is 

introduced, which executes on sensor nodes and queries local weather forecasts to anticipate 

state changes in a hydrograph signal. These state changes are then used to guide an online 

sampling schedule to minimize the resource consumption of a sensor node, while simultaneously 

maximizing the information content of the acquired water quality measurements. The adaptive 

sampling method is evaluated during the 2014 rain season to study the dynamics and first flush 

behavior of total phosphorus and total suspended solids (TSS) in an urbanized watershed. While 
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urban nonpoint source water quality is the focus of this chapter, the methods presented herein 

can readily be adapted to a broad suite of other resource-constrained hydrologic and water 

quality studies. 

 

4.3   Background 

4.3.2   Problem description 

The study and management of watersheds and drainage networks often hinges upon an accurate 

detection and characterization of transient events, as the remainder of the system is often in a 

steady, relatively well-understood state.  For many urban hydraulic and hydrologic systems these 

rapid changes are driven by highly uncertain phenomena, such as precipitation [117, 118]. 

Knowledge of water quality dynamics during storm events provides a guiding principle for 

nonpoint source urban water quality control, which has most recently been brought to the 

public’s attention through the meteoric rise of green infrastructure, particularly across much of 

the United States [119]. Beyond green infrastructure, many cities also implement a variety of 

Best Management Practices [120], several of which are designed to route initial flows toward 

large retention or detention basins for settlement or infiltration. In the American Midwest, some 

of the most critical water quality measurements include nutrients, particularly runoff-generated 

phosphorus. While algal blooms and eutrophication are driven by complex dynamics that require 

both nitrogen and phosphorus, in many freshwater systems, such as the Great Lakes, 

phosphorous is often the limiting nutrient [121, 122].  

 

A large body of research has shown that runoff pollutant concentrations exhibit highly complex 

dynamics that depend, among many other factors, on the type of pollutant, intensity of rain 
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events, the physiography of watersheds, local flow regimes, and antecedent dry periods [117, 

118, 123-125]. One popular concept in urban hydrologic research is the “first flush” of pollutants 

into streams and rivers [104, 126, 127]. This effect has been known to occur particularly in urban 

streams that display leading hysteresis, where the highest concentration of contaminants occurs 

at the beginning of a storm event, as contaminants are first washed off roads and other 

impervious surfaces. However, a number of studies have not observed the first flush [104, 128-

130], showing that peak pollutant concentrations do not always arrive within a small fraction of 

the initial runoff (Figure 4.1). While the first flush is an important phenomenon, this initial 

fraction of runoff may not be the primary or only source of pollutant loadings for some 

watersheds and chemical constituents. In some streams, high levels of erosion caused by local 

flow regimes that exceed geomorphically significant levels are a leading cause of suspended 

sediment and nutrient loads [22]. For such streams, peak loads of sediments are often correlated 

to flows rather than a first flush.  To that end, there is a need to collect representative 

measurements of storm-driven water quality dynamics to improve our fundamental 

understanding of land-use practices on water quality. 

 

 
Figure 4.1. Characterizing the peak pollutant runoff arrival is critical to informing impacts of 
land use and water quality control practices, which often rely on assumptions of a first flush. 
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4.3.3   Instrumentation 

When compared to water flow, water quality remains relatively expensive and difficult to 

measure [116]. Even today, despite advances in telemetry and low-power microcontrollers, a 

dense spatial coverage of in-situ water quality measurements is still hindered by a lack of reliable 

and cost-effective sensors. For many important parameters, such as nitrate, the cost and power 

consumption of sensors inhibit their ubiquitous deployment, while for other parameters, such as 

phosphorus and phosphates, non-colorimetric or in-situ sensing technologies do not even exist 

[131]. Many water quality sensors also consume more energy than the entire remainder of the 

data acquisition system and require frequent servicing to mitigate field effects such as biofouling 

[101, 132]. As such, maintaining sensor networks to measure water quality across large 

geographic areas is a resource-intensive task that presently poses a major barrier to the 

ubiquitous measurements of urban water quality. 

 

When continuous in-situ sensing becomes too expensive or infeasible, field-hardened automated 

samplers can be used to collect samples, which can be subsequently analyzed in the laboratory 

for a variety of water quality parameters (e.g. nutrients, metals, solids, bacteria, and other 

emerging contaminants) [89, 110, 116, 129]. These units are programmed to pump a sample of 

water into one of a number of bottles. Depending on the study objectives, these samples usually 

range from one 20-liter bottle to as many as 24 one-liter bottles.  The use of automated samplers 

presents a set of unique deployment challenges compared to in-situ sensors. In the absence of 

grid power, the significant mechanical energy required to physically pump samples places a 

major drain on battery resources. Additionally, samples may need to be refrigerated or 
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chemically treated for preservation depending on the constituents of interest [133, 134]. As is the 

case in the use of most other sensors, autosamplers are also plagued by the need to calibrate 

readings to variability in a stream cross-section.	  For dissolved constituents, selecting a well-

mixed site can remedy this variability as a sample at a single point may then be assumed to be 

representative of the entire stream cross-section. 

 

While one-bottle samplers are a practical means by which to study the composite effects of a 

storm event, they do not provide insight into the detailed dynamics of an event, which is 

important if they are to be used as substitutes for continuous, in-situ sensors. When using 

multiple sample bottles to resolve urban pollutograph dynamics, the limited number of available 

bottles becomes a major constraint. If the timing, magnitude, and duration of storms are not 

accurately anticipated, ‘wasted’ or missed samples often become a common experimental 

occurrence.  Measuring too slowly can entirely miss the dynamics of an underlying pollutograph 

(Figure 4.2a). On the other hand, measuring too fast or too early may deplete the number of 

sample bottles before an event is fully captured, which is particularly common if storms last for 

multiple days (Figure 4.2b). To mitigate this, units can be configured to acquire samples if a pre-

set flow threshold is exceeded, after which the hydrograph can be sampled according to 

predetermined flow- or time-weighted intervals [89, 135]. However, this strategy may miss 

important baseflow samples. Also, as storm duration and intensity can be highly variable, setting 

triggers or intervals to static values may not consistently sample a wide range of storm events. 

Flow-weighted sampling cannot account for storm intensities that deviate far away from the 

design storm or have multiple distinct discharge peaks (Figure 4.2c). Furthermore, the number of 

available bottles may still be depleted before an event is fully captured if the storm lasts longer 
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than expected. While missed baseflow concentrations can sometimes be estimated from samples 

taken during other dry weather periods [136, 137], such estimates may be inaccurate since 

elevated concentrations may occur at the onset of a storm [138]. None of the conventional 

sampling techniques distinguish between important points of the flow hydrograph, such as the 

peak and inflection points, which may often contain significant information with regard to the 

effect of land-use variability on the pollutograph. 

 

 

4.3.4   Adaptive sampling  

The concept of adapting measurement strategies or detecting events of interest has been 

introduced broadly in the signal processing and machine learning literature for a variety of 

applications but has seen limited use in hydrology. Often, adaptive sampling revolves around 

spatial measurement strategies, where measurements at one location are used to inform locations 

of new measurements [139]. The problem can also be extended to the temporal domain, where 

sampling frequencies are changed during events of interest [140].  The task of detecting these 

events falls broadly into the literature of change-point detection [141, 142], where a signal is 

monitored to isolate abrupt state changes or transient events. While few studies couple these two 

Figure 4.2. (a) Undersampling reduces the use of constrained experimental resources but can 
lead to an improperly reconstructed water quality signal, (b) rapid sampling may deplete all of 
the sampling resources before the event is complete, (c) triggering on flow thresholds or storm 
intensities alone may miss the onset of smaller events. 



 

 
 
 

68 

objectives, in the case of water quality, adaptive sampling and change-point detection are 

inherently coupled, as the detection of a hydrograph change must be accompanied by a change in 

the sampling schedule to resolve the features of the pollutograph. Much of the existing literature 

on these topics does not explicitly incorporate the physical dynamics or nuances of such 

phenomenon, which limits their benefit to many real-world experiments.  

 

While automated samplers provide a way to sample many water quality parameters 

simultaneously, the off-line use of these devices impedes their scalability as an experimental 

platform. The use of in-situ measurements coupled with real-time data, which is readily afforded 

by current technologies, has the potential to transform these sampling strategies from static to 

highly adaptive. For example, [89] reprogrammed an automated sampler to distribute 20 

sampling bottles throughout a storm event.  This approach, however, did not consider explicit 

hydrograph states or weather forecasts, which may cause valuable measurements to be missed. 

To that end, real-time data processing and adaptive sampling will allow sensing resources to be 

continuously optimized around site-specific conditions to ensure that measurements are taken at 

the most informative points.  

 

4.4   Methods  

A real-time framework for the adaptive sampling of water quality is presented, which controls 

automated samplers to minimize the number of sampling bottles required to reconstruct the 

temporal dynamics of the pollutograph. The method continuously adapts to individual storm 

events by incorporating real-time weather forecasts and updating a local model of flow 

conditions to trigger samples in response to hydrograph features rather than predetermined 
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timing or flow thresholds.  The technique is designed to be computationally simple enough to be 

executed efficiently on a field-deployable microcontroller, but can also be readily ported to the 

cloud or remote servers. The approach (Figure 4.3) forms an embedded processing chain, 

leveraging local and remote computational resources to assimilate real-time sensor 

measurements into a model of local water flow. The core of the architecture is comprised of 

embedded, remotely-deployed, and internet-connected sensor nodes, which obtain live 

meteorological forecasts from public web services to persistently update the probability of 

precipitation in the study area. Measurements from a local depth sensor are continuously fed to a 

state estimator, which estimates the flow dynamics of the stream. These estimates are then fused 

with the latest weather forecast and routed to a sampling controller, which determines when the 

next sample should be taken by the autosampler.   

 

 

 

 

Figure 4.3. Forecast data is acquired in real-time from the Internet and fused with filtered, real-
time sensor data to trigger the automated sampler based on relevant hydrologic states. 
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4.4.2   State estimation 

The state of the hydrograph must first be estimated before water quality measurements can be 

scheduled. Let the state 𝑥(𝑡) denote the flow (or stage) of the hydrograph at time 𝑡. We assume 

that the measured flow is corrupted by noise,	  𝜀(𝑡), such that a sensor measurement 𝑦(𝑡) is given 

by (4.1): 

𝑦 𝑡 = 𝑥 𝑡 + 𝜀(𝑡) 

 

where 𝜀(𝑡)~𝑁 0, 𝜎4  is normally distributed, zero mean. Given the real-world performance of 

most sensors, the measurement noise can be taken as stationary, with a variance 𝜎4 that can 

readily be obtained from manufacturer datasheets or a simple laboratory evaluation.  

 

In most applications, rather than triggering new samples based on the actual flow, it may be more 

relevant to trigger samples based on the first or second derivatives of the flow, which are 

indicators of important hydrograph features independent of storm duration and magnitude.  For 

example, it is often of interest to distinguish between the rising or falling limbs of the 

hydrograph: 

𝑑𝑥
𝑑𝑡 ≥ 0	  	  	  rising hydrograph limb	  

𝑑𝑥
𝑑𝑡 < 0	  	  	  falling hydrograph limb. 

 

The first derivative can be used to detect the onset of a storm event or find the hydrograph peak, 

while the second derivative of the flow 𝑑4𝑥 𝑑𝑡4 can be used to detect inflection points, which 

are indicators of precipitation intensity or baseflow conditions. For notational simplicity, let 𝑥 =

(4.1) 

 (4.2) 
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𝑑𝑥 𝑑𝑡 and 𝑥 = 𝑑4𝑥 𝑑𝑡4. Given the noise in real-world signals, directly differentiating the noisy 

signal 𝑦 would only amplify the effects of the noise, thus obscuring any meaningful estimate of 

derivatives. Thus, an improved estimate of 𝑥 must first be obtained in real-time before 𝑥 and 𝑥 

can be used to make sampling decisions.  This is particularly true in smaller storms, for which 

changes in flow may be subtle. 

 

We derive a noise-free estimate 𝑥(𝑡) through a non-parametric kernel smoother [143]. For a 

noisy observation 𝑦@ at time 𝑡@ let 𝑥 𝑡@ :	  ℝC → ℝ be a function that obtains a local estimate of 𝑥@ 

through the kernel operation:  

𝑥 𝑡@ = 𝑥@ =
𝐾(𝑡@, 𝑡F)C

FGH 𝑥F
𝐾(𝑡@, 𝑡F	  )C

FGH
 

where 𝐾(∙)	   is the kernel function and n is the number of observed points to be weighted. Given 

the normally distributed noise assumption, a good choice of kernel is given by the radial basis 

function: 

𝐾 𝑡∗, 𝑡F = 𝑒𝑥𝑝 −
𝑡∗ − 𝑡F 4

2𝑟4  

where 𝑟 is the length-scale parameter. This kernel smoothing operation weighs the importance of 

neighboring measurements based on their distance (time, in this case) to the measurement of 

interest. This smoother is ideally suited for the proposed application, as it does not assume that 

measurements are taken at even time intervals. Furthermore, this state estimator is very 

computationally efficient, permitting its implementation on computationally-constrained, low-

power microcontroller platforms or data loggers. Once the measured data has been filtered, an 

estimate of the noise free derivative can be obtained by numerically differentiating the smoothed 

state.  

(4.3) 

(4.4) 
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4.4.3   Adaptive sampling algorithm 

Once estimates of 𝑥, 𝑥, and 𝑥 have been obtained, the sampling objective becomes to decide 

when to take the next measurement. This can be accomplished by scheduling a future sensor 

reading at time 𝑡 + 𝑡P, or by changing the sensor sampling frequency to 𝑓P = 𝑡P RH.  Often, the 

sensor used to derive the flow estimates 𝑥(𝑡) consumes fewer resources than the sensor used for 

water quality measurements, as is the case with the automated sampler used in this study. As 

such, measurements of water height or flow can be made at a higher frequency and used to drive 

measurements of water quality.  

 

A real-time probability of precipitation, obtained in our case by querying the public 

WeatherUnderground forecast [144], is used to trigger the autosampler to take a water quality 

sample before a storm. This provides a valuable baseflow measurement and safeguards from 

missing measurements during instances when the hydrograph changes too rapidly or at too small 

of an amplitude to be detected by flow sensors alone. The sampling algorithm (Figure 4.4) uses 

the weather forecast to trigger a sample when the chance of precipitation exceeding 5 mm within 

the hour surpasses 10% (empirically determined based upon an analysis of historical forecasts 

and the resulting hydrologic response). Samples are then subsequently triggered based on the 

estimates of the hydrograph state. While many sampling strategies are possible, in the case of 

this study, the states of interest included (1) baseflow conditions right before a storm, (2) the 

onset of the hydrograph to detect a potential first flush, (3) the inflection-point of the rising limb 

of the hydrograph (4) the peak of the hydrograph, (5) the inflection-point of the falling limb of 

the hydrograph, and (6) the falling limb of the hydrograph as it returns to within 10% of the pre-
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storm baseflow. In the case that the weather forecast is erroneous, the initiation of a storm event 

is also marked when the slope in the hydrograph exceeded 7.5 m3 over 5 minutes, which for our 

study site corresponded with the minimum observed change in flow from baseflow conditions 

caused by 5 mm of precipitation in one hour. The algorithm can also be viewed as a state 

machine, where samples are triggered during state transitions, as determined by estimates of the 

flow 𝑥 and its derivatives. The state machine is designed to account for multiple flow regimes 

(such as delayed surface flows from neighboring slopes), taking additional samples if multiple 

inflection points or local hydrograph peaks are detected.  

Algorithm 1 

0: Inputs: Rain Forecast (R), Flow or Stage (x) 

1:    Initialize the current state s to “Baseflow” 

2:     while TRUE do 

3:     Update the state s and sample time ts based on (𝑥, 𝑥) 

4:  if s changed 

5:                        Trigger Sample 

6:  else if R and s = “Baseflow” then 

7: 

  Trigger Sample 

 Wait ts before next update 
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4.4.4   Study area, sensors, and cyberinfrastructure 

The adaptive sampling algorithm was tested on a sensor node deployed during the 2014 rain 

season at the outlet of an urban watershed near Ann Arbor, Michigan (Figure 4.5), Latitude 

42°15'53", Longitude –83°41'18"). The outlet drains into an end-of-line water quality detention 

basin located along the Huron River. Ann Arbor’s climate is classified as humid continental with 

severe winters, hot summers, no dry season, and strong seasonality. Annual precipitation is 955 

mm and snowfall is 1450 mm. The study area comprises a 28 km2 catchment that is over 80% 

impervious with the large concentration of impervious surfaces located near the centroid of the 

watershed. By the Richards-Baker flashiness index [145], the catchment has a seasonal index of 

0.653, which is relatively high for streams in Michigan.  

Figure 4.4. Adaptive sampling algorithm (above) and corresponding state machine (below). 
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A sensor node and real-time cyberinfrastructure, whose technical details are described in [94, 

146], were deployed in the northeastern outlet of the watershed.  The sensor node is equipped 

with a low-power microcontroller (ARM Cortex-M3 architecture) and a low-power wireless 

module (Telit CC864-DUAL) to take advantage of urban cellular coverage. For the purposes of 

this experiment, the node was interfaced with a low-cost, low-power ultrasonic depth sensor 

(MaxBotix MC7384, 3.1mA at 5VDC) to measure the stage of the hydrograph every five 

minutes, as well as an automated sampler (ISCO 3700, standby: 10 mA at 12VDC, sampling: 

2000mA at 12VDC) that drew samples from the run of a stream, where channel features were 

deemed moderate and homogenous [147]. To resolve runoff-driven quality dynamics, a 24-bottle 

configuration of the automated sampler was used. Weather forecast data was queried every five 

minutes.  For comparison of stage measurements, the node was collocated with a USGS gage 

(USGS 04174518). Upon validation of the stage estimates, the rating curve of this gage was used 

to derive flow from our depth readings.  In this study, this permitted for flow, rather than stage, 

to be used to trigger the automated sampler.  

 

4.4.5   Water quality analysis 

The samples taken the by the automated sampler were analyzed for total phosphorus and TSS 

according to EPA Methods 365.3 and 160.2, respectively [133]. EPA Method 365.3 uses a two-

step pretreatment and colorimetric approach to determine total phosphorus concentrations while 

EPA Method 160.2 determines TSS concentrations by first filtering a sample and drying the non-

filterable residue in an oven to a constant weight.  Bottles were pretreated and collected within 

twenty-four hours of each storm event to ensure samples were properly preserved prior to 
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analysis. TSS was chosen due to its surrogate relationship with many other contaminants 

including total phosphorus [148, 149], which was analyzed due to the study site’s proximity to 

Lake Erie, where loadings of total phosphorus are of interest to the study of algal blooms [150].  

 

 

To characterize nutrient dynamics and first flush behavior, lab results for each storm event were 

analyzed using cumulative mass-volume curve or M(V) curve analysis [104, 128], which 

compares the dimensionless ratio (percentage) of the cumulative flow-weighted concentration 

with the cumulative runoff over the course of a storm event. This analysis permits the water 

quality dynamics within multiple storm events to be compared by normalizing for factors such as 

storm duration or quantities of loading. To identify the existence and strength of a first flush, 

each M(V) curve was approximated with a power law function: 

𝑀(𝑘) = 𝑉 𝑘 W 

=
𝐶F𝑄F∆𝑡F[

FGH

𝐶F𝑄F∆𝑡F\
FGH

=
𝑄F∆𝑡F[

FGH

𝑄F∆𝑡F\
FGH

W

 

where 𝑀(𝑘) and 𝑉(𝑘) are the normalized cumulative mass and volume, respectively, up to the 

kth sample of a given storm event over which N total samples are taken; 𝐶F, 𝑄F, and ∆𝑡F are the 

Figure 4.5. The study was conducted in Southeast Michigan at the outlet a 28 square kilometer 
urban watershed. 

(4.5) 
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concentration, discharge, and sampling frequency, respectively, of the ith sample [104, 128]. The 

value of b is inversely proportional to the strength of the first flush (i.e., a value much less than 

unity, 0 ≤ b < 0.185, would correspond to a strong first flush) and the fit is considered 

satisfactory for r2 > 0.9 [128]. For each event, the b-value was estimated by minimizing the least-

squares fit between equation (5) and the individual data points.  

 

To characterize the variability of pollutant concentrations between storms, the event mean 

concentration (EMC) was also calculated. The EMC normalizes the total event load by the total 

event runoff volume, yielding a flow-weighted average of the pollutant concentration [104, 117, 

127]. It has been shown that in urban environments, peak EMC of pollutants in stormwater 

runoff can be as much as twenty times larger than baseflow EMC during dry weather conditions 

[127]. The EMC was used in this study to quantify the constituent concentrations carried by 

runoff in comparison to baseflow conditions for each storm event. The influence of other factors 

to event mean concentrations, such as antecedent dry conditions [151] and storm intensity [128], 

was also considered in the analysis. 

 

4.5   Results 

4.5.2   Adaptive sampling algorithm 

During the 2014 deployment season, the adaptive sampling algorithm was evaluated on four 

storm events (July 1, August 11, August 19, and September 10). Each event was preceded by at 

least a 48-hour antecedent dry period followed by a storm where at least 5 mm of precipitation 

fell within 24 hours (Table 2).  The July 1 event was driven by a 9.4 mm storm over 2 hours with 

a peak flow 2.78 m3/s; the August 11 event was driven by a 24 mm storm over 7 hours, 
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characterized by an initial peak flow of 1.30 m3/s followed 2 hours later by a peak flow of 2.01 

m3/s; the August 19 event was driven by a 9.4 mm storm over 2 hours with peak flow of 4.33 

m3/s; the September 10 event was driven by a 36 mm storm over 5 hours with an initial peak 

flow of 4.70 m3/s followed 2 hours later by a peak flow of 5.27 m3/s.  

 

The state estimator and real-time kernel smoother correctly identified the pertinent flow regimes, 

triggering the automated sampler within an average of 3.5 minutes (standard deviation σ = 3.8 

minutes) to collect water quality samples as dictated by the control logic (Figure 4.6, example of 

August 19 event). The relation between the stage y, as estimated by the sensor node, and the 

discharge Q measured by the nearby USGS gage was found to be 𝑄 = 0.729	  (𝑦 − 32.5)4.ab and 

was derived using a least-squares fit (r2 = 0.993). The real-time kernel smoothing operation was 

important to obtaining accurate state estimates, as directly taking the derivative of the sensor 

signal yielded a noisy, zero-mean signal that could not be used to determine meaningful changes 

in the hydrograph. Integration of real-time weather forecasts into the control logic ensured that 

the automated sampler was triggered just before the onset of a storm, allowing for baseflow and 

background conditions to be decoupled from storm-driven water quality dynamics. 
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4.5.3   Water quality  

Concentrations for both TSS and total phosphorus showed a positive linear correlation with flow 

(R2 = 0.346 for TSS; R2 = 0.437 for TP and standard deviations σ = 198.6 mg/L and σ = 0.272 

mg/L, respectively). Samples taken particularly during peak flows had the highest concentrations 

and there was no observed hysteresis between peak concentration and peak flow. With the 

exception of the August 11th event, peak concentrations strictly corresponded with peak flows 

(Table 4.1). The 7-hour storm event on August 11th drove two distinct discharge peaks. During 

this event, the largest concentrations occurred during the first peak while the largest flows 

occurred during the second. In general, for the storms with multiple distinct hydrograph peaks, 
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Figure 4.6. Forecasted rainfall and measured hyetograph from Weather Underground (top). 
Hydrograph reported by nearby USGS gage and estimated by local depth sensor (middle). 
Linearly interpolated pollutograph for total suspended solids (TSS) and total phosphorus 
(bottom). Markers indicate samples triggered by the algorithm. 
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the intra-storm hydrograph with the relatively steeper rising limb (larger flow acceleration) had 

the largest pollutant concentration. This was also seen during the September 10th storm event, 

which also exhibited two distinct discharge peaks. During this event, the second peak, while 

relatively larger, was also characterized by a steeper rising limb and higher concentrations.  

 

 

 

Temporal comparison of hydrograph and pollutograph peaks showed no discernable leading 

hysteresis. Similarly, through an M(V) curve analysis, none of the water quality dynamics could 

be classified as exhibiting a strong first flush. Overall, the b-values range from 0.684 to 0.908 

and r2 < 0.9 (Table 4.2). Six or more samples were collected for each event and M(V) curves 

were generated using a spline interpolation (Figure 4.7). Similar M(V) curves were observed for 

both TSS and total phosphorus. TSS could not be analyzed from the July 1 event as the 

automated sampler was not initially configured to sample a large enough volume to provide 

aliquots for TSS analysis.   

 

Table 4.1. The characteristics for each measured storm event, including peak flow information, 
rainfall, and the event mean concentrations (EMCs) for total phosphorus (TP) and total 
suspended solids (TSS). 
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Peak concentrations of TSS and total phosphorus were neither correlated with rainfall intensity 

(r2 = 0.105 and r2 = 0.0277 for TSS and total phosphorus, respectively) nor antecedent dry 

weather periods (r2 = 0.142 and r2 = 0.0841 for TP and TSS and total phosphorus, respectively). 

The largest of the storm events (September 10th, as measured by stage height and cumulative 

flow volume) recorded the lowest concentrations of TSS and total phosphorus. Overall, the EMC 

of total phosphorus was at least three times greater during runoff than during baseflow conditions 

and the EMC of TSS was at least three times greater (Table 4.1). For both TSS and total 

phosphorus, the runoff EMC of each pollutant did not exhibit a linear trend over time.   
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Table 4.2. The coefficients of determination and b-values for power law functions for total 
phosphorus (TP) and TSS. 

Figure 4.7. Cumulative mass volume curves for total phosphorus (left) and total suspended 
solids (right).  Dashed line indicates uniform pollutant concentration. 
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4.6   Discussion  

4.6.2   Adaptive sampling  

Compared to conventional flow- or time-weighted sampling schemes, which rely on preset 

thresholds, a major benefit of the proposed approach is the ability to anticipate and dynamically 

adapt to features of an underlying hydrologic signal. This is particularly valuable when resolving 

pollutograph dynamics across a variety of storm durations and intensities, as it ensures that each 

distinct hydrograph is characterized using a similar number of samples. Depending on the 

objectives of the study, this enables the ability to resolve flashy events to the same extent as 

larger events using the same sampling logic. This not only introduces an element of consistency 

for inter-storm comparisons, but also reduces the occurrence of missed or excessive samples that 

are common in conventional sampling approaches. In turn, this improves the use of constrained 

experimental resources.  

 

If storm patterns drive multiple discharge peaks, such as those experienced on August 11th and 

September 10th, the smaller peak or the secondary peak, even if short in duration or magnitude, 

may carry the majority of the pollutant loadings. The use of a flow-weighted approach may have 

missed such events if parameterized inadequately. A more dynamic estimation approach, as used 

in this study, is needed to track not only the flow, but also changes in the underlying hydrologic 

signal. In more advanced experiments, rather than just triggering baseflow samples, the weather 

forecast could also be used to anticipate the number and timing of samples. In-situ and real-time 

sensor readings (such as stage or turbidity) will still be required, however, to adapt to site-

specific dynamics that cannot be captured by a weather forecast alone. Given the flexibility of 
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our proposed framework, such modifications can be made easily and the sampling logic can be 

updated in real-time without the need to visit the study site.  

 

The flexibility of the framework proposed in this chapter is perhaps its biggest benefit.  While 

our sampling approach focused on site-specific hydrograph features, the sampling logic could be 

changed relatively easily to enable a suite of novel and uniquely targeted experimental 

objectives. Sampling strategies could be modified to detect debris or faulty sensors by tuning the 

length-scale parameter of the kernel in real-time, or by implementing more complex fault-

detection algorithms [152]. Future experiments could also be designed to use distributed rainfall 

data and measurements from other sensor nodes to optimize sampling around spatial phenomena 

of interest. For example, sudden changes in flow at upstream sensor nodes could be used to alert 

downstream nodes or to track a storm as it moves through a region. Additionally, real-time 

hydrologic models could be used to enable more complex sampling strategies during different 

seasons. For example, a snowmelt model and a conductivity sensor could be used to guide 

chlorine sampling during road salting periods. By leveraging an Internet connection, the majority 

of this control logic could be implemented on off-site computers, improving ease of use by 

permitting researchers to implement the control logic using systems and languages they are most 

comfortable with.  

 

The benefits of adaptive water quality sampling can be achieved at a relatively small overhead. 

In fact, in their simplest implementation, the methods presented in this study could be readily 

repeated by simply connecting a cellular modem to the autosampler, relying only on a remote 

computer and public data (for example, streamflow and precipitation obtained from CUAHSI’s 



 

 
 
 

84 

Water Data Center[153] to control the sampling schedule. The need to process real-time sensor 

feeds comes at a slight computational expense, but is well achievable using already existing 

technologies and data services [154, 155]. By adding in-situ sensors, such as the low-cost water 

level sensor used in this study, the capabilities of the automated sampler can be extended even 

further to enable more responsive and complex sampling strategies. For example, given the 

observed correlation between TSS and total phosphorus, as well as known correlations between 

those parameters and turbidity [148, 149], an in-situ turbidity sensor could be used to design an 

adaptive sampling regimen for total phosphorus. Rather than sampling around distinct features of 

the hydrograph, such a study could focus on sampling around the most uncertain statistical 

parameters of the regression relationship. This may increase the complexity of the sampling 

strategy, but it improves the quality of the data input to the regression, and, in turn, the 

confidence of the statistical relationship.  

 

4.6.3    Water quality  

While the occurrence of a first flush may be variable or specifically associated with large and 

intense storm events [120], no correlation was found between increasing storm intensity and the 

likelihood of a strong first flush. Similar conclusions have been drawn in other studies that 

analyzed loading dynamics of urban runoff [104, 126, 129]. The lack of an observable first flush 

in our watershed could be attributed to a number of causes, including the relatively large size of 

our study area (28 km2). Within our study area, a first flush may have existed in much smaller 

sub-catchments, as suggested by prior studies (less than 1 km2, see [127]. However, first flush 

may not be evident for larger watersheds, particularly if the pollutograph travel times for each 

sub-catchment superimpose, as their confluence may obscure or widen the concentration profile 
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at the outlet of the larger watershed [91, 130]. Furthermore, if one specific area of the watershed 

contributes the major pollutant runoff, its travel time in relation to peak discharge at the outlet of 

the watershed could impact the perceived first flush dynamics.  

 

In our study watershed, a large concentration of solids would be expected from the dominant, 

heavily urbanized and impervious surfaces of the watershed, which all exhibit very short travel 

times and should have contributed to a first flush if it existed. To that end, it is likely that 

erosion, caused by flashy hydrographs or high flows, was the primary driver of water quality in 

the watershed. Studies have shown that the majority of the phosphorus in runoff is sediment-

associated [156, 157], but in many highly urbanized watersheds, this may need to be directly 

confirmed since many management practices are still geared towards treating the first flush [119, 

158]. The urban areas in our study watershed may thus not be a major source of nutrient runoff. 

While outside of the scope of this study, a small number of the events were also analyzed for 

other dissolved pollutants, which also did not exhibit first flush characteristics.  

 

Although peak pollutant loads corresponded with peak flows, this relationship was nuanced, 

where a higher fraction of contaminants arrived after peak flow rather than before. This has also 

been seen in prior studies [104]. Furthermore, b-values were much greater than 0.185, indicating 

a lack of a strong first flush in our study catchment. As such, flow values may need to exceed 

geomorphically significant levels to begin moving sediment [11].  However, this would need to 

be studied in detail by augmenting the sampling strategy.   
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Peak concentrations were also poorly correlated with rainfall intensity and duration of antecedent 

dry weather periods.  While this is contradictory to some studies [151], it has been observed by 

others [104]. The relationship between EMC and rainfall has been generally noted to be weak, 

suggesting that EMC is likely driven by location- rather than storm-specific features [159].  As 

such, EMC may not be the best sole measure of water quality characteristics, particularly when 

studying pollutant dynamics of individual storms. Concentrations for any given event are a 

complex function of buildup and washoff characteristics [104] and spatial rainfall variability, 

which thus suggests that any given storm event may exhibit unique concentration magnitudes 

and temporal characteristics. 

 

Throughout this study, pollutograph dynamics were driven by variable storm patterns, a number 

of which contained multiple hydrograph peaks. Low correlations between concentration and 

discharge were observed and have been similarly reported for other urban catchments[160], 

indicating that concentration may not be fully explained by discharge alone. While lower 

concentrations of TSS and total phosphorus may have resulted from dilution, caused by 

increased flows mobilizing more coarse-grained sediments [161], this could not be confirmed 

consistently across all events. Within storm events with multiple peaks, the peak concentration 

did not just correspond with the peak flow, but rather with the hydrograph peak that had the 

steeper rising limb (larger flow acceleration). On an intra-event scale, this suggests that rather 

than a lag in the pollutograph, as would be suggested by M(V) analysis alone, the concentrations 

are heavily driven by the hydrograph features.  The acceleration of flows may correspond with 

increased forces exerted on solids, which raise the erosive action on the stream. In our watershed, 
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the “flashiness” of the hydrograph, a well-known symptom of the urban stream syndrome [162], 

is thus perhaps the best predictor of peak concentrations within an individual event.  

 

Better characterizations of water quality thus demand more spatially dense measurements and an 

improved understanding of pollutograph dynamics, a task which will be made easier by the 

adaptive sampling methods presented in this chapter. In particular, more samples will be required 

to determine if a first flush is evident in smaller upstream locations, where the pollutograph may 

be dominated by runoff from impervious regions, rather than stream dynamics. That said, up-

scaling the adaptive sampling framework will need to be done carefully, as optimal sampling 

schedules may likely be guided by site-specific features. Even sites that are very close to one 

another may exhibit distinctly different pollutograph dynamics. As such, initial measurements 

and calibrations will likely still need to be carried out on each site, after which the most suitable 

adaptive sampling strategy can be tuned. A feature-driven approach, such as the one presented 

here, will form a good starting point to help formulate a site-specific sampling strategy. The 

proposed adaptive sampling framework will provide a flexible and low-overhead means by 

which to reduce the resources required to investigate the dynamics that are most uncertain at any 

site.  

 

4.7   Conclusions   

Increasing the temporal resolution of measurements will significantly improve our fundamental 

understanding of water quality dynamics. Understanding these dynamics across various scales 

can also help decision-making by guiding watershed-specific solutions that strike a balance 

between local treatment (e.g. green infrastructure), restoration, or end-of-line solutions. Until 
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reliable and cost-effective in-situ sensors are available for most important parameters, multi-

bottle automated samplers will continue to provide a strong alternative to resolving the water 

quality dynamics of hydrologic systems.  

 

Given real-time notifications and the convenience of using a feature-driven approach to 

automatically collect samples, the method proposed in this chapter could lower barriers for small 

research groups, agencies or even individuals to now seamlessly maintain large networks of 

autosamplers (networks of ten or more samplers). The flexibility the framework presented herein 

not only makes this possible for automated samplers, but also for in-situ sensors that consume a 

significant amount of power or are limited by reagent availability or electrode duty cycling.  

 

The lack of an observed first flush in our watershed cautions the implementation of many 

popular stormwater control measures for improving urban runoff quality. The majority of these 

systems, such as retention ponds and constructed wetlands are designed to capture a maximum 

volume of flow (one to two year storms), which is retained for settling while excess flows are 

released through overflow structures. However, if the inflows to the basin do not exhibit a first 

flush, the basin may only retain the initial, lower concentration flows, while discharging higher 

concentrations once storage capacity has been reached.  

 

An exciting paradigm may arise from this realization however: by equipping urban stormwater 

systems with sensors and controllers (valves, gates, pumps, etc.), it will be possible to maximize 

the treatment of runoff through real-time control [163]. While this idea will require significant 

future studies to vet its promise, the site-specific characterization of water quality dynamics (or 
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corresponding proxies), as provided by our approach, will allow controllers to be optimally tuned 

to individual storm events. For example, a gate could be opened at the beginning of a storm to 

allow lower-concentration flows to exit the watershed, while closing to capture the highest 

concentration inflows and retain them as long as possible before the next storm event. Similarly, 

these solutions could be implemented upstream to reduce the exceedance of geomorphically 

significant flows, and thus downstream erosion and nutrient loads. These real-time systems are 

presently being constructed in this study watershed and will be evaluated in the future. 

 

4.8   Follow-up study: building real-world control networks 

Using the lessons learned from controlling an automated sampler (Figure 4.8), a follow up study 

was carried out to control actual stormwater basins. After some software and firmware 

modifications, using the same hardware developed for the autosampler, the sensor node was soon 

transformed into a wireless gateway for controlling valves in real-time. The first basin, located in 

Ann Arbor, Michigan. was retrofitted with a controllable valve in September 2016 (Figure 4.9) 

and the first watershed-scale experiment was carried out the following December. 
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Figure 4.8. Sequence of field deployments for adaptive sampling, with the (a) initial field 
installation of wireless sensor node, (b) completed assembly with automated sampler, and (c) a 
close up of the latest design iteration. 
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This case study on watershed-scale control was carried out in urban watershed in the City of Ann 

Arbor, Michigan (Figure 4.5). The Malletts Creek watershed – a 28 km2 tributary of the Huron 

River—has traditionally served as a major focal point in the city’s strategy to combat flooding 

and reduce runoff-driven water quality impairments [164]. Given its proximity to the Great 

Figure 4.9. (a) Field deployment of a remotely controllable valve at the Ellsworth basin (b) 
breaking ground installing the electronics, as well as the water level at the County Farm Park 
basin downstream before (c) and after (d) the installation of another valve. Designs are available 
freely on Open-Storm.org. 
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Lakes, water resource managers have placed an emphasis on reducing nutrient loads from urban 

runoff. A majority of the discharge in Malletts creek originates from the predominantly 

impervious upstream (southwestern) reach of the watershed, while a significant, but smaller 

portion of the discharge originates from the central reach of the watershed. For this reason, local 

water resource managers have constructed a number of flood-control basins in the upstream 

segments of the catchment. It is these basins that are now modified to allow for real-time control 

of the watershed.  

 

The watershed was modified for real-time control at two locations by retrofitting existing basin 

outlets with remotely-operated valves (Figure 4.9). The first control point is a stormwater 

retention pond in the southern part of the watershed (shown in red in Figure 4.10). While 

originally designed as a flow-through (detention) pond, the addition of two 30 cm diameter gate 

valves allows for an additional 19 million liters of water to be actively retained or released. The 

second control point is a smaller retention pond, located in the central reach of the watershed 

(shown in green in Figure 4.10). This control site is retrofitted with a rugged 30 cm diameter 

butterfly valve. The position of each valve is controlled via an attached sensor node, which 

relays commands from a remote server. Each sensor node is equipped with a pair of ultrasonic 

sensors: one to measure the water depth at the pond, and one to measure the depth of the outflow 

stream. Measurements from the sensor network were validated using an external United States 

Geological Survey flow measurement station (USGS station 04174518), located at the watershed 

outlet.  
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We confirm the effectiveness of the control network through a simple experiment. In this 

experiment, stormwater is retained at an upstream control site, and then released gradually to 

maximize sedimentation and reduce erosion downstream. While it is known that the addition of 

control valves affords many localized benefits – such as the ability to increase retention and 

capture sediments [38] – the goal of this experiment was to test the extent to which control of 

individual sites can improve watershed-scale outcomes. The control experiment takes place on a 

river reach that stretches across three sites: a retention pond (upstream), a constructed wetland 

(center), and the watershed outlet. Figure 4.10 (left) shows the three test sites within the 

watershed, with the fractional contributing area of each site indicated by color. In this system, 

runoff flows from the retention pond (red) to the watershed outlet (blue) by way of an end-of-line 

constructed wetland (green) designed to treat water, capture sediments, and limit downstream 

erosion. Erosion, in particular, has been shown to be primary source of phosphorus in the 

watershed [165], thus emphasizing the need to reduce flashy flows. While the wetland serves a 

valuable purpose in improving water quality, it is sized for relatively small events. Specifically, 

Figure 4.10. Malletts Creek control experiment in Ann Arbor. The left panel shows time series 
of water depth from 12:00 pm on December 2 to 6:00 am on December 4, 2016. The right panel 
shows the location of the three sites in the watershed, with the partitioned contributing areas of 
each location corresponding to the colors of the time series plots. 
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the basin is designed to hold up to 57 million liters of stormwater but experiences as much as 760 

million liters during a ten-year storm. Thus, it often overflows during storms, meaning that 

treatment benefits are bypassed. To maximize treatment capacity, a sensor node was placed into 

the wetland to measure the local water level and determine the optimal time to release from the 

retention pond upstream.  

 

At the onset of the experiment, water was held in the upstream retention pond following a storm 

on December 1, 2016. Residual discharge from the original storm event can be observed as a 

falling hydrograph limb at the USGS gaging station (blue) during the first 10 hours of the 

experiment (Figure 4.10). The sensor located at the wetland is used to determine the time at 

which it is safe to release upstream flows without overflowing the wetland (Figure 4.10). Water 

is initially released from the pond at 4:00 pm on December 2, as indicated by a drop in the water 

level of the pond. Two hours later, the water level in the wetland begins to rise due to the 

discharge arriving from upstream. Finally, after another three hours, the discharge wave reaches 

the outlet, where it is detected by the USGS flow station. Over the course of the controlled 

release, the station registers roughly 19 million liters of cumulative discharge.  

 

The control experiment shows demonstrable improvements in system performance compared to 

the uncontrolled case. While the water quality benefits will be measured in the coming year, a 

number of likely benefits can be posited. As measured, over 19 million liters were removed from 

the storm window and retained in the basin following the storm event. The residence time of the 

water in the pond increased by nearly 48 hours, increasing the potential for sedimentation [38]. 

The removal of stormwater flows also resulted in attenuation of the downstream hydrograph. The 
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peak flows at the watershed outlet were measured to be 0.28 m3/s during the storm, but would 

have been nearly 0.60 m3/s had the valves in the basin not been closed. Based on prior chapters 

in this dissertation – which showed that flows in the stream correlate closely with suspended 

sediment concentrations – it can be estimated that the flows from the basin were discharged at 

roughly 60 mg/L, rather than 110 mg/L, thus nearly halving the concentration of suspended 

solids and total phosphorus in the flows originating from the controlled basin [165]. Moreover, 

the controlled experiment enhanced the effective treatment capacity at the wetland downstream, 

which would have overflowed during the storm, thus not treating the flows from the upstream 

pond. As such, the simple addition of one upstream valve provided additive benefits across a 

long chain of water assets, demonstrating firsthand how system-level benefits can be achieved 

beyond the scale of individual sites. While the water quality impacts of active control deserve 

further assessment, this study opens the door for adaptive stormwater control at the watershed 

scale. 
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Chapter 5  Real-time control of urban headwater catchments: performance, analysis, and 
site selection 

 
 

 

 

5.2   Introduction 

Having demonstrated the real-world potential of stormwater control, this chapter seeks to 

determine how control valves can be coordinated across entire watersheds. It is important to note 

again that population pressures continue to drive land use changes, often resulting in more paved 

and impermeable urban landscapes. Stormwater runoff has become more flashy and polluted, 

leading to flooding, erosion, and ecosystem impairments [166]. Often referred to as the urban 

stream syndrome [162], this collection of challenges is compounded by changing climate, which 

drives storms of increasing intensity and frequency [167, 168]. At a time of declining 

infrastructure funding [169, 170], pressure is mounting on urban watershed managers to do more 

with less.  

 

Traditionally, flooding and stream erosion have been mitigated through expansion of constructed 

stormwater infrastructure, which conveys runoff from buildings and roads through a complex 

system of below- and above-ground infrastructure, such as pipes, detention basins, and 

constructed wetlands. Most recently, green infrastructure, has risen to prominence in the form of 

many smaller and distributed assets, such as bioswales, rain gardens, and green roofs [171, 172]. 
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Watershed managers thus have a large portfolio of stormwater options, which from large 

centralized assets to smaller distributed solutions, most of which are very expensive. Once 

constructed, stormwater systems are very difficult to adapt to changing land uses and weather. 

Furthermore, recent studies have shown that aggressive adaptation via many large or distributed 

stormwater assets can actually lead to worse watershed outcomes if individual elements are not 

tuned to system-level outcomes [29, 47, 173]. As such, there is an urgent need to find new 

adaptive solutions that are aware of the larger watershed.  

 

“Smart” stormwater systems have recently been proposed to achieve adaptation and system-level 

control [109, 174]. In lieu of new construction, this paradigm proposes to use many distributed 

and low-cost sensors and controllers (valves, gates, pumps, etc.) to coordinate flows across the 

scales of entire watersheds, transforming existing systems to be used much more effectively by 

adapting them on a storm-by-storm basis. While the technologies to enable this vision have 

mostly been developed [175], as demonstrated in prior chapters of this dissertation, much 

fundamental research remains to be conducted to determine how stormwater systems can be 

controlled safely and reliably across the scale of entire watersheds. This requires an 

interdisciplinary knowledge of domains spanning hydrology, infrastructure, data sciences, and 

control theory.  

 

In this chapter we take a step toward the real-time control of urban watersheds by asking the 

question: Where should urban catchments be retrofitted for real-time control and what 

performance gains can be achieved compared to passive alternatives? The fundamental 

contributions of this chapter are: 
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●   A feedback control methodology, which mathematically formulates stormwater 

catchments as dynamical systems and controls them via linear-quadratic (LQ) control. 

●   A simulation-based approach to help identify how many distributed control valves are 

needed and where they should be placed to achieve the best real-time control outcomes, 

focusing specifically on reducing flooding and erosion.  

●   A holistic equivalence analysis, which compares the real-time controlled system to 

passive solutions across many storms of varying intensities and durations. 

 
Given that “smart” stormwater systems have yet to be constructed at large scales, this analysis 

will be carried out in simulation, which will allow for a variety of scenarios to be evaluated 

before results can be used to build real-world control networks. Furthermore, the analysis will 

focus on the scale of urban headwater catchments (1-5km2), which will serve as building blocks 

to inform the control of larger watersheds in the future.  

 

5.3   Background 

Sensors are becoming progressively cheaper [114].  When coupled with now readily-available 

wireless connectivity, these devices are able stream unprecedented amounts of real-time 

measurements about the health and performance of large watersheds [165, 175]. Real-time 

information becomes particularly important when used in a bidirectional fashion. Namely, rather 

than simply receiving measurements, commands may be transmitted back to watersheds to 

change flows and hydrologic behavior. A simple example involves the addition of an 

inexpensive control valve to the outlet of a stormwater basin, such as those currently being 

retrofitted by the authors in the Midwestern United States [165, 175]. Compared to static 
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solutions, where the outflows are determined by a fixed outlet geometry, real-time control 

provides the ability to actively modulate runoff and adapt site behavior based on real-time 

hydrologic states and future forecasts [176]. 

 

 

	  
	  
Even just a single remotely-controlled valve can yield significant benefits [42, 177, 178]. For 

example, a valve can also be used to extend hydraulic retention time, and thus promote the 

capture of sediment-bound pollutants [41, 44, 179]. Water can then be released if another storm 

is forecasted or detected to create additional storage capacity. By extension, modulation of flows 

(hydrograph shaping) from a site could reduce erosion at downstream locations by ensuring that 

stream flows do not exceed critical downstream levels. Such an approach thus adaptively 

balances water quality and flooding benefits, which is difficult to accomplish using passive 

solutions. However, given the recent advent of these technologies, research studies addressing 

the benefits of real-time control are limited to the site-scale, focusing almost entirely on the 

control of individual ponds and basins using a single valve.  

 

Perhaps the biggest frontier of real-time stormwater control is the ability to achieve watersheds-

scale outcomes. Given the complexity of urban watersheds, which spans an interconnection 

Figure 5.1. Example real-time control sites currently being deployed by the authors. Each site is 
equipped with water level sensors and a remotely-controllable butterfly valve.	  
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between hydrology and man-made infrastructure, it presently remains unclear how to orchestrate 

the operation of multiple controlled sites to achieve watershed-scale outcomes. Guidance on 

controlling flows across large spatial scales may be taken from seminal research on reservoir 

operations, open channel irrigation systems, water distribution systems, and sewer systems [49, 

175-177]. One of the earliest examples of dynamic control for river systems was the use of linear 

quadratic control to regulate the daily operation of large hydropower reservoirs [180]. Rather 

than building control rules into a complex physical model, this study highlighted the benefit of 

abstracting the physical system into a simpler matrix-based dynamical model, which could be 

used to apply feedback control. More advanced methods, such as distributed linear quadratic 

control [181] and model predictive control [182-184], have been successfully applied for the 

control of canal networks. While these approaches show great promise, they do not explicitly 

account for the types of time-scales, complexities and feedbacks inherent in urban watersheds. 

As such, it is presently unclear which real-time control approaches will meet performance goals 

without risking the safety of nearby residents, property, and downstream ecosystems. This study 

takes a step toward closing this knowledge gap by formulating and evaluating a dynamical 

control approach specifically for an urban watershed. 

 

5.4   Methods  

5.4.2   Approach 

When retrofitting urban watersheds for real-time control, a choice must be made in regard to the 

spatial scales at which these technologies will first be implemented and analyzed. We contend 

that the analysis of real-time stormwater control strategies should begin at the scale of urban 

headwater catchments. These subcatchments are as large as 5 km2 (2 mi2), and can be found in 
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most cities, small and large [47, 185, 186]. Overall, the choice to focus on this scale is motivated 

by a number of fundamental and practical factors. Fundamentally, the scalability of real-time 

watershed control requires smaller-scale systems to be analyzed and understood first [127]. If 

feasible at these scales, the control of smaller catchments will ultimately underpin the control of 

the larger watershed.  

 

Practically, it is unlikely that entire cities will be retrofitted with control valves all at once. 

Rather, valves will be evaluated one-by-one or as part of controlled clusters. In the United States, 

decisions to build or upgrade stormwater infrastructure are often driven by new residential or 

commercial development projects, which impact flows at the scale of local pipe and stream 

networks [187, 188]. Given the recent emphasis on distributed stormwater management, these 

measures often include ponds, basins and wetlands at commercial complexes, subdivisions, 

neighborhoods, and precincts. Urban flash flooding occurs at the scale of local road networks, 

which suggests that control strategies should operate to prevent flooding even as far upstream as 

first-order catchments. In fact, the US Federal Emergency Management Agency (FEMA) 

provides flood advisory and insurance information at scale of 5 km2 (2 mi2) sub-watersheds13, 

which makes them of particular interest for analysis. Most existing radar and gage rainfall 

products are offered at 1-5 km2 resolution as well, which is relevant if rainfall forecasts are to be 

integrated with real-time control. As such, both fundamental and practical considerations suggest 

that the scale of headwater catchments (1-5km2) provides a good starting point to answer the 

questions posed in this chapter. Future studies can then analyze how the control of larger 

watersheds can be achieved through lessons learned at the catchment scale.  

                                                
13 https://msc.fema.gov/portal/search  
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5.4.3   Dynamical System Representation 

Most modern physical models of urban watersheds, such as EPA’s Stormwater Management 

Model[189], are based on a coupled hydrologic-hydraulic approach, where hydrologic dynamics, 

such as runoff and infiltration, are represented via physical or empirical sub-models. Flows are 

subsequently routed using a hydraulic engine, typically based on nonlinear Saint-Venant 

equations for shallow water flow [190]. Given the high degree of detail, complexity, and 

nonlinearities inherent in these models, the application of formal control and optimization 

approaches becomes intractable. Fortunately, for many complex control systems, such as those 

used on autopilots and factory processes, perfect models are not necessary to achieve desirable 

control outcomes. Rather, a control model that approximates the dynamics of the underlying 

system is often sufficient, since the actual control actions will often steer the system back into 

domains where the approximations hold true. In feedback control, this is often accomplished by 

linearizing the system dynamics around desired setpoints (e.g. flows, flood stages, etc.), after 

which modern control techniques can be applied. For the specific control of water flows in pipes 

and canals, examples of approximated models have included the integrator delay [191], 

integrator delay zero models [192], reduced Saint-Venant [193], Muskingum [194], and linear 

tank models [107].  

 

For our approach, the control model is based on a state-space representation of the hydraulic 

dynamics as an integrator delay model [191]. In recent studies, this representation has been used 

for the control of water levels in irrigation canals that are connected in series [193]. However, the 

use of this formulation for urban watersheds presents additional complexities, making it unclear 



 

 
 
 

103 

how well it will work in the control for stormwater systems, if at all. These include the need to 

accommodate hydrologic effects (runoff, antecedent moisture, etc.) and rainfall, as well as 

complex and interconnected infrastructure topologies (parallel storage nodes or tree-like 

networks). Our choice to adopt this approach is based on our expectation that it will sufficiently 

capture hydrologic and shallow-water flow dynamics. Most importantly, however, the matrix-

based representation will allow for the application of modern state-space based control 

algorithms. 

 

5.4.4   State-space representation of an urban watershed 

 

 

The linearized state-space representation (5.1) of an urban stormwater catchment, modeled as an 

integrator delay model, can be decomposed into two parts (5.3). The integrator models the 

change in height of the storage node as a function of the current height hi(k), inflows qi(k) from 

upstream nodes, inflows from local runoff di(k), and the controlled outflows ui(k). The delay 

component models the travel time of water from one storage node to through a channel to the 

next node (Figure 5.2a). The full time-varying state-space representation is then given by: 

 

Figure 5.2. Graphical representation of (a) an integrator-delay model and (b) the block-diagram 
of the feedback controller. 
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a. The State-space model 

𝑥(𝑘 + 1) = 𝐀(𝑘) 𝑥(𝑘) + 𝐁𝐮(𝑘) 𝑢(𝑘) + 𝐁𝐝(𝑘) 𝑑(𝑘)	  

𝑦(𝑘) = 𝐂 𝑥(𝑘)	  

b. The Integrator component 

𝑥(𝑘 + 1) = ℎF(𝑘 + 1) ,	  where	  

ℎF 𝑘 + 1 = ℎF 𝑘  	  

+
−𝑇

𝐴P,F(𝑘)
𝟏{pqFrFstP}(𝑖) 𝑄spCwqpx(𝑘)  +

𝑇
𝐴P,F(𝑘)

𝟏{PyWszws{|tCwP}(𝑖) 𝑄qyCprr(𝑘)	  

ℎF(𝑘 + 1) = 𝑨FCwt}qzwpq F 𝑘 	  ℎF(𝑘)  + 𝑩y, FCwt}qzwpq F(𝑘) 𝑄spCwqpx(𝑘)  + 𝑩�, FCwt}qzwpq F  𝑄qyCprr(𝑘)	  

 

c. The Delay component 

𝑥(𝑘 + 1) =

𝑄F(𝑘 + 1)
𝑄F(𝑘)

𝑄F(𝑘 − 1)
⋮

𝑄F(𝑘 − 𝑛)

, where	  

𝑄F(𝑘 + 1)
𝑄F(𝑘)

𝑄F(𝑘 − 1)
⋮

𝑄F(𝑘 − 𝑛)

=

0 0 ⋯ 0 0
1 0 0
0 1 ⋮
⋮ ⋱ ⋱ 0 0
0 ⋯ 0 1 0

𝑄F(𝑘)
𝑄F(𝑘 − 1)
𝑄F(𝑘 − 2)

⋮
𝑄F(𝑘 − 𝑛 − 1)

+

1
0
0
⋮
0

𝟏{pqFrFstP}(𝑖) 𝑄spCwqpx(𝑘)	  

𝑄F(𝑘 + 1)
𝑄F(𝑘)

𝑄F(𝑘 − 1)
⋮

𝑄F(𝑘 − 𝑛)

= 𝑨�txz� F(𝑘)

𝑄F(𝑘)
𝑄F(𝑘 − 1)
𝑄F(𝑘 − 2)

⋮
𝑄F(𝑘 − 𝑛 − 1)

+ 𝑩y, �txz� F(𝑘) 𝑄spCwqpx(𝑘)	  

	  

d. The Indicator function 

𝟏{�}(𝑎) = 𝑥H 𝑥4 ⋯ 𝑥C ,  𝑤ℎ𝑒𝑟𝑒 𝑥F =
1,
0,

𝐸𝑙𝑒𝑚𝑒𝑛𝑡	  ξF 𝑓𝑙𝑜𝑤𝑠 𝑖𝑛𝑡𝑜 𝑛𝑜𝑑𝑒 𝑎
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

	  

 

The state vector, x(k), is composed of the heights, hi(k), and flows Qi(k) of all storage nodes in 

the system at the kth timestep; the control vector, u(k), contains the control outflow Qcontrol, i(k) 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 
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for each controllable orifice/valve; and the disturbance vector, d(k), is a vector of the total runoff 

Qrunoff, i(k) from all local subcatchments that flow into the ith storage node. The state matrix, 

𝐀 𝑘 , relates the heights and flows from the current timestep to the next; the control matrix, 

𝑩y 𝑘 , links the control outflow to its associated storage node; and the disturbance matrix, 𝑩� 

routes the rainfall-generated runoff from a given subcatchment to its associated storage node. 

These matrices are dependent on properties of the physical system, including the sampling 

period, T, the cross-sectional area of each integrator node at the current timestep, 

𝑨FCwt}qzwpq F 𝑘 , and the channel characteristics between storage nodes. The output vector, y 𝑘 , 

is composed of the height and outflow of each storage node while the output matrix 𝑪 relates the 

state vector to the output vector. In this study, all states are assumed observable (measured by 

sensors), allowing us to focus solely on the evolution of the state vector, x(k). 

 

5.4.5   Estimating outflow due to valve opening 

To set the outflow for each controlled node Qi(k) from the control vector u(k), the effective 

cross-sectional of each valve (how far the valve is opened), 𝐴�zx�t 𝑘 , was obtained by inverting 

the equation for flow through a free-flowing undershot gate (5.7) [195].  

 

𝐴�zx�t 𝑘 =
𝑄 𝑘

𝐶𝜇 2𝑔ℎ 𝑘
 

 

Here, Q(k) is the desired controlled outflow; 𝐶 is a calibration coefficient; µ is the contraction 

coefficient; 𝑔 is the gravitational acceleration; and h(k) is the water level of the storage node. To 

approximate the outflow for an uncontrolled orifice, the equation for flow through a submerged 

(5.7) 
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undershot gate was linearized about the height of the storage node (5.8). This was necessary to 

linearly model the outflow from uncontrolled storage nodes to the connected links each timestep. 

𝑄(𝑘)  = 𝐶𝜇𝐴�zx�t(𝑘) 2𝑔ℎ(𝑘) ≅ 𝜆(𝑘) ℎ(𝑘)	  	  	  

𝜆(𝑘)  =
𝑔𝐶𝜇𝐴�zx�t(𝑘)

2𝑔 ℎ(𝑘) − 𝜇 ⋅ 𝐴�zx�t(𝑘)𝑊𝑖𝑑𝑡ℎ�zx�t

	  

	  

5.4.6   Constructing the system matrices from a physical representation  

To construct a state-space representation from a physical model or real-world system, the state 

matrix, 𝑨(𝑘), can be assembled by combining the integrator, delay, and link components (5.10): 

𝑨(𝑘) =

𝑨FCwt}qzwpq H(𝑘) 𝑨xFC[ H4(𝑘) ⋯
𝑨xFC[ 4H(𝑘) ⋱

⋮ 𝑨FCwt}qzwpq |(𝑘)
𝑨�txz� H(𝑘)

⋱
𝑨�txz� C(𝑘)

	  

 

where the link component is derived from the linearized equation for flow through a submerged 

undershot gate (5.9). The link component joins the integrator and delay components (5.11): 

 

𝑨xFC[ F,@(𝑘) =
0 ⋯ 𝑎(𝑘)
⋮ ⋱ ⋮
0 ⋯ 0

,	  where	  𝑎(𝑘) =
1,
�

��,�([)
,

0,

𝑨F,  𝑨@ are delay	  terms
𝑨F is an integrator	  term

otherwise
	  

 

The control matrix, 𝑩y(𝑘), is similarly assembled by iterating through all storage nodes and 

vertically concatenating the integrator components, 𝑩y, FCwt}qzwpq F(𝑘), followed by 

concatenating the delay components, 𝑩�txz�(𝑘). The disturbance matrix, 𝑩�, is assembled by 

(5.8) 

(5.9) 

(5.10) 

(5.11) 



 

 
 
 

107 

iterating through all storage nodes and vertically concatenating the integrator components, 

𝑩y, FCwt}qzwpq F(𝑘), and padding the remaining rows with zero for the delay components: 

𝑩y(𝑘) =

𝑩y, FCwt}qzwpq H(𝑘)
⋮

𝑩y, FCwt}qzwpq |(𝑘)
𝑩y, �txz� F(𝑘)

⋮
𝑩y, �txz� C(𝑘)

   𝑩�(𝑘) =

𝑩�, FCwt}qzwpq H(𝑘)
⋮

𝑩�, FCwt}qzwpq |(𝑘)
0
⋮
0

 

 

5.4.7   Control algorithm 

A linear-quadratic regulator (LQR) was used to control the outflows from each controllable 

storage node (Figure 5.2b). Linear-quadratic (LQ) control is a matrix-based, closed-loop 

feedback control method that incorporates open loop dynamics to achieve desired set points 

[196]. In this case, set points include water level and flows throughout the system. LQR is 

suitable for real-time control since the matrix computations are relatively fast, making it possible 

to run even on modern microcontrollers. LQR controls a system described by linear differential 

equations (5.1) with respect to a quadratic cost function J: 

𝐽 = 𝑥�(𝑁) 𝐐 𝑥(𝑁) + 𝜌 ⋅ 𝑥�(𝑘) 𝐐 𝑥(𝑘) + 𝑢�(𝑘) 𝐑 𝑢(𝑘)
\RH

[G¥

 

Cost matrices, 𝐐 and 𝐑, need to be tuned to generate a cost function that produces results aligned 

with the desired setpoints. The parameter ρ shifts the weight of the cost between states and 

control inputs. Over the period which the system dynamics are constant, the performance cost of 

LQ control for linear, time-invariant systems, if it exists, is optimal, minimal and bounded [197, 

198]  

 

 

(5.12) (5.13) 

(5.14) 
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Given the cost matrices and assuming the state and input matrices (𝐀(𝑘),  𝐁(𝑘)) from the state-

space representation are stabilizable, the controlled outflow for each storage node is then given 

by the control vector: 

𝑢(𝑘) = −𝐊x(k) 

 

where K is the gain matrix: 

𝐊 = 𝐁𝐮𝐓(𝑘) 𝐏 𝐁𝐮(𝑘) + 𝐑 RH 𝐁𝐮𝐓(𝑘) 𝐏 𝐀  

 

and the cost-to-go matrix P is the solution to the discrete time Ricatti equation:  

𝐀𝐓(𝑘) 𝐏 𝐀(𝑘) − 𝐏 − 𝐀𝐓(𝑘) 𝐏 𝐁𝐔𝐓(𝑘) 𝐁𝐮𝐓(𝑘) 𝐏 𝐁𝐮(𝑘) + 𝐑 RH 𝐁𝐮𝐓(𝑘) 𝐏 𝐀 + 𝐐 = 0	  

 

To ensure a gain matrix could be computed for every valve placement combination, the system is 

factored into controllable and uncontrollable components using Kalman decomposition [199]. 

The transformed system is obtained by applying a linear transformation T, where: 

𝑥 (𝑘) =
𝑥ª (𝑘)
𝑥\ª (𝑘)

= 𝐓𝑥(𝑘)	  

𝐀 (𝑘) =
𝐀ª (𝑘) 𝐀H4 (𝑘)
𝐀4H (𝑘) 𝐀44 (𝑘)

= 𝐓𝐀(𝑘)𝐓RH	  

𝐁𝐮 (𝑘) = 𝐁«,ª (𝑘)
𝟎

= 𝐓𝐁𝐮(𝑘)	  

where matrices 𝑨𝑪(𝑘)and 𝑩y,ª(𝑘) are the controllable components. Applying the same 

transformation to the cost matrices yields: 

𝐐 = 𝐓𝐐𝐓RH	  

𝐑 = 𝐑	  

	  

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 
(5.22) 
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Since the resulting pair (𝑨ª(𝑘), 𝑩y,ª(𝑘)) is stabilizable, the gain matrix 𝑲 can be obtained for 

the controllable subsystem using transformed cost matrices and the same method (5.16). Finally, 

the control input can be computed as: 

𝑢(𝑘) = 𝑢 (𝑘)
𝟎

= −𝐊𝑥 (𝑘)
𝟎

	  

 

The form of the resulting control signal u(k) remains unchanged and contains the outflow of each 

controllable valve just as before. 

 

5.4.8   Enforcing physical constraints 

Before applying the controller inputs, a clipping component was used to enforce real-world 

constraints on the outflow and opening of each valve (Figure 5.2b). At each timestep, once all 

control outflows were calculated, values were constrained to a nonnegative range limited by the 

maximum allowable outflow. The clipping function for flow is given by a piecewise function: 

 

𝑢F(𝑘) =
𝑄F,|z®,
𝑢F(𝑘),
0

𝑢F(𝑘) > 𝑄F,|z®
0 ≤ 𝑢F(𝑘) ≤ 𝑄F,|z®

𝑢F(𝑘) < 0
	  

 

Once the control outflows were clipped, they were transformed using (5.24) to determine the 

opening of each orifice. A second clipping component was used to constrain each orifice to a 

nonnegative area limited by the maximum orifice area. Once these values were determined, they 

were used to set the state of each valve. 

 

(5.23) 

(5.24) 
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5.5   Implementation 

5.5.2   Physical modeling 

Many studies often evaluate the performance of control algorithms on the linear models they are 

based on. If this simplified linear model does not adequately capture the physical hydraulic-

hydrologic dynamics, however, it may give the impression that the controller performs better 

than it actually would in the real-world. To address this concern, our approach applied the linear 

controller to a physical model. In this fashion, the linearized model is used to make control 

decisions, while the physical model reflects what real-world and nonlinear outcomes may be. 

Control performance was evaluated using the US Environmental Protection Agency Stormwater 

Management Model (SWMM), a popular hydrologic-hydraulic computational model that has 

been successfully used in the planning, analysis and design of urban drainage systems [189]. 

SWMM numerically solves the one-dimensional Saint-Venant equations to accurately model 

transient surface runoff and open-channel flow. Stormwater hydrology is modeled based upon a 

collection of homogeneous sub-catchment areas that receive precipitation and generate runoff, 

while stormwater hydraulics are modeled by routing runoff through a network of channels, 

storage units, and orifices. Although SWMM is computationally more complex than our 

integrator-delay model, accurately modeling the water levels in the storage nodes and channel 

flows is vital to understanding the proposed algorithms may actually perform when subjected to 

real-world physics.  

 

While the SWMM model provides a powerful simulation engine and rudimentary control rules 

(e.g. site-scale water level control), it was not designed to be use with system-level control 

algorithms, such as the one in this study. To that end, we implemented a customized modeling 
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framework that uses the SWMM engine, but executes the model in a stepwise fashion [200]. 

Rather than running the model for the duration of an entire storm, the model is halted every time 

step, after which the states can be extracted and an external logic module can be used to set the 

states of valves and gates across the entire system. Since the physics engine, which is written in 

the C programming language, is implemented as a stand-alone library, the framework provides a 

wrapper to interface SWMM with modern and popular languages, including Python and Matlab. 

This allows for the seamless interaction of modern computational and control libraries with the 

physical modeling of SWMM without necessarily having to implement the controller in the 

original SWMM model itself.  

 

The first step in the simulation process involves the abstraction of the physical watershed into a 

linearized control model. While this can be achieved manually, on a case-by-case basis, our 

approach automates this by first extracting physical parameters from a SWMM model and then 

converting them to the state-space formulation. Constructing a state-space representation of a 

SWMM model begins with importing the properties of the SWMM model, including storage 

curves, contributing subcatchments, and the connectivity between links (pipes, channels, etc.) 

and storage nodes. These properties are then used to build the state, control, and disturbance 

matrices 𝐀 𝑘 , 𝐁« 𝑘 ,	  and 𝐁𝐝. The construction of these matrices is detailed in Algorithm 5.1 

and Algorithm 5.2. 
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storages, junctions, conduits ← load_swmm_model() 
T  ← simulation timestep 
As ← average pond area 
n  ← 1 
 
for each node in storages 
      A(n,n) = A_integrator_matrix(T, As) 
      n ← n+1 
endfor 
 
for each node in junctions 
      A(n,n) = A_delay_matrix(T, As) 
      n ← n+1 
endfor 
 
for each link in conduits 
      m,n ← indices_of( link.head_node, link.tail_node ) 
      if head_node(link) is in storages 
            A(m,n) = A_link_matrix( lambda(k) ) 
      else        
      if head_node(link) is in junctions 
            A(m,n) = A_link_matrix(1) 
      endif 
endfor 
 

 

 

 

 

 

 

 

Algorithm 5.1. Algorithm to construct the state matrix, A, using properties from a SWMM 
model. 
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storages, junctions, conduits ← load_swmm_model() 
n ← 1 
 
for each node in storages 
      Bu(n) = integrator_control_matrix(T, As) 
      Bd(n) = integrator_disturbance_matrix(T, As) 
      n ← n+1 
endfor 
 
for each node in junctions 
      Bu(n) = delay_control_matrix(1) 
      Bd(n) = 0 * delay_control_matrix(1) 
      n ← n+1 
endfor 
 

 

If the physical model is not controlled, it can be executed in a stepwise fashion in Matlab or 

Python using Algorithm 5.3. The states of the model (water levels, flows, etc.) can then be 

extracted or visualized and the model can be halted once a specific state has been reached or total 

duration has been exceeded. For the controlled case, the model is halted every step, after which 

the control matrixes of the linear model are updated (Algorithm 5.4). The outflow for each 

storage node is given by the control gain computed via an LQR control function and clipped, if 

necessary. The valve and gate positions are then set as a relative percentage of the total area. The 

loop is then repeated until the simulation period expires or specific state is reached.  

 

 

 

 

Algorithm 5.2. Algorithm to construct the control matrix, Bu, and disturbance matrix, Bd. 
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while simulation is not over 
      swmm.step_forward 
      k ← k+1 
endwhile 

 

 

get_properties(swmm) 
 
while simulation is not over 
            swmm.step_forward 
            xhat[k] ← T * swmm.get_states() 
            Ahat, Bhat, Qhat, Rhat ← update_system_matrices(xhat[k]) 
            Khat ← dlqr(Ahat, Bhat, Qhat, Rhat ) 
            Qoutflow ← Khat * xhat[k] 
            Qclipped ← clip( Qoutflow, 0, Qmax ) 
            PercentOpen ← clip( Agate(Qclipped)/ Amax, 0, 1) * 100 
            swmm.update_gate_positions(PercentOpen) 
            k ← k+1 
endwhile 

 

Algorithm 5.3. Executing a SWMM model simulation without a controller in Matlab using the 
MatSWMM toolbox. 

Algorithm 5.4. Implementing the LQR control algorithm in Matlab using the MatSWMM 
toolbox. 
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5.5.3   Study Area 

 

 
 

The control approach was simulated on a 3 km2 catchment in Southeast Michigan, which is 

presently under consideration for real-time control (Figure 5.3). This catchment has been of 

particular interest to local officials due to stream erosion, who have been calling for improved 

means to reduced flows at the outlet of the watershed. The catchment is comprised of 11 basins 

or ponds, ranging in volume from 370 m3 to 32000 m3. A calibrated SWMM model of the 

catchment was made available to the authors by city managers, thus reflecting the most up-to-

date knowledge of the real system. To represent valves, each storage node in the model was 

retrofitted with an adjustable 0.1 m2 (12 inch) orifice, located at the outlet of the site. Each 

orifice had a higher invert elevation than its overflow height and all conduits between storage 

Figure 5.3. The (a) study catchment, (b) model representation in SWMM, and (c) network 
representation for the linearized model. 



 

 
 
 

116 

nodes were circular in geometry, with a maximum diameter of 0.3 m. A Green-Ampt model was 

used to model soil infiltration in the subcatchments [201]. 

 

A linear control model was formulated from the SWMM model using the methods described 

previously. For the catchment in this study, 𝐀(𝑘) was a 55 x 55 matrix; 𝐁«(𝑘) was a 55 x 11 

matrix; and 𝐁± was a 55 x 19 matrix. The state vector x(𝑘) was a 55 x 1 vector and the control 

vector u(k) was an 11 x 1 vector. The transformation matrix, 𝐓, was obtained using the minreal() 

function in Matlab. Finally, applying the transformation to decompose the integrator-delay 

model and isolate the controllable components, the dlqr() function was used in Matlab to 

compute the gain matrix, 𝑲(𝑘) =dlqr(𝑨𝑪(𝑘), 𝑩𝒖,𝑪(𝑘), 𝑸, 𝑹). The resulting linear representation 

for this catchment has been attached in the appendix. While the model executed at a five second 

resolution, control actions were constrained to five minute windows to be consistent with the 

sensor and control networks currently being deployed by the authors [202]. All simulations were 

carried out on a high-performance Linux cluster at the University of Michigan.  

 

Following common practice in stormwater engineering, the modeled catchment was subjected to 

a variety of synthetic design storms [203]. To account for storms of various intensity and 

duration, the physical model was simulated with rainfall from Soil Conservation Survey (SCS) 

Type-II design curves [204], which are commonly used in the United States infrastructure design 

[205]. Statistical storm data provided by NOAA Atlas 14 was used to define the intensity of the 

storms for a given storm duration and return period [206]. For example, a design storm of 24-

hour duration with a 10-year return period, henceforth referred to as a 10-year, 24-hour storm, 
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has an average cumulative rainfall of 83 mm. The storms were sampled at five-minute resolution 

and used inputs into the simulation.   

 

5.6   Performance evaluation 

To evaluate the performance of the LQR-based feedback controller, a baseline performance 

objective was first established by evaluating how the uncontrolled system responds to a 

relatively small event (2-year, 24-hour storm). During this storm, there were no overflows at any 

of the storage nodes and the peak flows in the catchment reached 0.3m3/s at the outlet. It was 

then evaluated if the controlled system could reach the same baseline performance during larger 

events. This was intended to reflect the benefits of control in terms of flooding, as well as stream 

erosion, which is often triggered through the exceedance of geomorphically significant flow 

magnitude [207-209]. This reasoning also aligns with many current infrastructure design 

philosophies, which seek to capture larger storms and release them as smaller storms [210-212] 

(e.g. capture a 10-year event and release with outflows comparable to a 2-year event prior to the 

addition of control measures). To maintain a clear relationship between tuning parameters and 

LQR control performance, the tuning parameter ρ was set to 3500 following manual tuning 

during the 10-year storm, while the 𝐐 and 𝐑 matrices were set to be identity matrices. In this 

configuration, 𝐐 was a 55 x 55 identity matrix, and 𝐑 was an 11 x 11 identity matrix. 

 

The performance was evaluated across the entire system by combining the volume of flooding 

along with the flow exceedance (𝑄pyw∗ =	  0.29 m3/s) across the duration of an entire storm. 

Specifically  

, 
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𝑃 = 𝑄F,rxpp�
wF|tPwt·PCp�tP

(𝑘) + 𝛼 ⋅ 𝑚𝑎𝑥(𝑄F,pywrxp¹(𝑘) − 𝑄pyw∗ ,  0)	  

	  

The weighing 𝛼 can be tuned to reflect the relative importance of each objective (flooding vs. 

erosion, for example). In this analysis, 𝛼	  was	  chosen	  to	  be 0.1 to scale the outflows to have the 

same magnitude as the overflows. First, the performances of the controlled and uncontrolled 

systems were compared for a 10-year, 24-hour event, assuming that all eleven storage nodes 

were controlled. In our study area, this event is designated by regulatory guidelines as the design 

storm that all new developments must meet [213]. Next, using the same storm, all 2048 

possibilities of controlled configurations were evaluated, ranging from only one site being 

controlled to all eleven sites being controlled. These configurations were then ranked to 

determine which specific configuration provided the best performance, seeking to identify which 

sites and features may be indicative of good performance.  This search was then repeated for 5-, 

25-, 50-, 100-, and 200-year, 24-hour storms to confirm if the same configuration was consistent 

for larger storm events of similar duration. Once the top configuration was identified, its 

performance was compared to the uncontrolled case over a comprehensive array of storms, 

raging across 5-, 10-, 25-, 50-, 100-, and 200-year return periods, across durations from 15 

minutes to 24 hours. Finally, to investigate how much smaller storage volumes could be 

constructed when control is used, the volume of the controlled storage nodes was reduced until 

the overall catchment matched the performance of the uncontrolled systems.  

 

(5.25) 
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5.7   Results 

5.7.2   Performance for the fully-controlled network 

On average, when all storage nodes (SNs) were controlled, the LQR-based control approach 

outperformed the uncontrolled system, both at the scale of individual sites as well as at the 

watershed outlet. Specifically, when evaluated on the 10-year 24-hour all but one of the SNs did 

not overflow, nor did their individual outflows exceed the critical flow level of 0.3 m3/s. Plotted 

in (Figure 5.4) is a dynamic comparison for controlled and uncontrolled SNs across the system 

for a 10-year storm. The outflows of the uncontrolled SNs exhibited the familiar hydrograph 

shape, with a distinct peak and recession period. The outflow hydrographs from the controlled 

sites exhibited a table-like shape, where flows were controlled up to the desired setpoint and 

maintained for the duration of the storm event. This also resulted in longer retention times and 

higher water levels in the controlled system since water was held in SNs so as to not exceed the 

outflow threshold.  
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Figure 5.4. System diagram of storage nodes and their response in height, flow, overflow, and 
valve opening. Labeled are cases with zero controllers (no control, dashed line), four controllers, 
and eleven controllers. In the case with four controllers, nodes 4, 6, 10, and 11 were controlled. 
The connected box represents the fractional area of the total subcatchment where rainfall flows 
to the given node. 
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5.7.3   Best individual control sites 

For the 10-year, 24-hour storm, when only one storage node (SN) was controlled at a time, six of 

the eleven possible sites showed a notable improvement compared to the uncontrolled system, as 

measured by the performance across the entire catchment (5.25). The control of one site, in 

particular (SN4) exhibited a significant relative improvement. Control of three of the eleven SNs 

did not result in improvements compared to the uncontrolled system because the uncontrolled 

system already met the control objectives. Only one site (SN9) performed worse when 

controlled, exhibiting local flooding compared to the uncontrolled case. This SN had the smallest 

storage capacity in the entire systems, but a relatively large contributing catchment area. Adding 

a controller led to closure of the valve at the onset of a storm, after which the storage node filled 

up and could not be drained fast enough once the peak of the storm arrived.  

 

 

	  

5.7.4   Impact of increasing the number of controlled sites 

The addition of the first control valve added the biggest benefit. The addition of more control 

valves improved the performance, but each successive valve led to marginal returns (Figure 5.6). 

Figure 5.5. Performance improvement, as evaluated by equation (5.25), compared to baseline 
when only one valve is controlled at a time. 
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The major exception to this trend occurred when the control network was expanded to include 

ten and eleven controlled SNs, which resulted to slight degradation in performance due to local 

flooding at smaller storage nodes. In all, over 15,000 simulations (carried out across all possible 

2048 possible control configurations and over 24-hour 1-, 2-, 5-, 10-, 25-, 50-, 100-, 200-year 

storms) showed that adding more control valves improved the relative performance of the overall 

system, as measured by the cost function. 

 

 

 

When analyzing the performance of all possible 2048 control configurations, SNs 4, 6, 10, and 

11 consistently appeared in configurations that ranked in the top ten percent (Figure 5.7). 

Interestingly, these same SNs were those showed the relatively best performance when 

controlled individually. Overall, out of all 2048 possible combinations of controlled sites, the 

control of SNs 4, 6, 10, and 11 resulted in the best performance for the 10-year, 24-hour storm 

using the least number of control points. No physical features (volume, location in watershed, 

etc.) were consistent across SNs 4, 6, 10, and 11 as an explanation as to why these sites 

Figure 5.6. The best performance achieved with a given number of controllers for a 10-year, 24-
hour storm event. 
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performed the best. The performances of this particular control configuration are compared to the 

uncontrolled system in Figure 5.8. 

 

 

 

A comparison of the same control configuration (SNs 4, 6, 10, and 11) to the uncontrolled 

system across a variety of storms (5-200 year, and 15 min, 24-hour storms), showed a better 

performance. Overall, the number of cases, or zones, associated with relatively high performance 

(no overflows and low outflows) expanded notably for the controlled case, as indicated by the 

larger dark blue region in Figure 5.8. In fact, during approximately a 30-year, 24-hour storm, the 

controlled system had the same performance as the uncontrolled system during a 10-year, 24-

hour event. In other words, the controlled system was able to handle much bigger storms, 

without compromising performance. Furthermore, it was determined that the SNs that were 

controlled could be reduced in volume by over 50% and still achieve the same performance as 

the original uncontrolled system.  

 

Figure 5.7. The ranking and location of the sites that appeared most in the top ten percent of 
performances for all controller combinations. 
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5.8   Discussion 

5.8.2   Control performance  

Despite the hydraulic and hydrologic complexity inherent in urban stormwater catchments, a 

linear-quadratic feedback controller was able to significantly improve the modeled flows in this 

study. It is important to note that there was, at the onset, no guarantee that this was going to be 

the case, since the linear representation of the control dynamics may have seemed over-

simplified compared to more traditional and physically-based stormwater models. This validates 

the use of feedback-based methods, even for the control of complex and nonlinear stormwater 

catchments. It is likely that nonlinearities may become more important as the scale of the 

controlled systems grows. While this may be worth exploring in future studies, it may result in 

the need for more complex control approaches. Rather, the authors contend that the control of 

larger watersheds could be achieved by controlling individual sub-watersheds and setting their 

Figure 5.8. System performance for a range of design storms with various intensities. Nodes 4, 
6, 10, and 11 are controlled in the controlled case. The controlled system “shifts” the 
performance zone notably, achieving the same performance for a 30-year storms as the 
uncontrolled system for a 10-year storm.  
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outflows to meet a cumulative goal at the larger scale. As alluded to earlier, this may also be 

more realistic, since many management and design decisions occur at these smaller headwater 

scales. To that end, this approach shows great promise at the urban headwater scale (1-5km2). 

While the deployment of real-time controllable stormwater valves is still growing, the results of 

our simulations suggest that the control of entire urban watersheds may be very feasible future 

goal.  

 

In our study, the control objectives were tuned to reducing outflows and flooding, but the 

controller and cost function could readily be extended to meet other goals. For example, systems 

could be tuned to maximally retain water by keeping storage levels near capacity. This would 

increase hydraulic residence time after storms and thus help with the treatment of sediment-

bound and dissolved pollutants. Our study also showed how outflows from the catchment could 

be “shaped” beyond a traditional hydrograph. In this study, the controlled hydrograph was flat 

for the majority of its duration, rather than exhibiting a clear peak. By dynamically changing the 

setpoint of the controller, other outflows patterns could be achieved.  

 

The opportunity to set desired outflows and water levels based on management objectives will 

open up entirely management possibilities, which should be evaluated through future research. 

For example, control valves could be used to mimic “pre-development” conditions, which is 

often the goal of many stormwater infrastructure projects. Furthermore, rather than operating the 

system in a one-size-fits-all configuration, valves could be controlled based on multi-objective 

management goals. For example, the system could be operated for water quality benefits during 

smaller, more frequent storms, and operated for flood control during large storms. This further 
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highlights the flexibility of real-time controlled systems, as their operation can adapt with 

changing watershed-level management goals, something that is difficult to accomplish using 

passive infrastructure. 

 

5.8.3   Number of control points 

As expected, the addition of each subsequent valve improves the performance of the control 

system. This is intuitive, since each control point provides additional dynamic storage and 

flexibility to buffer flows. More importantly, however, the benefit of successively adding valves 

is marginal, whereby adding more valves may not improve performance significantly. 

Economically, this is important, since it suggests that the entire catchment may not need to be 

controlled, but rather that simulation and engineering judgment can be used to determine the 

number of required control valves for a catchment. The number of required valves could then be 

chosen based on a specific management goal, or by finding the point at which investment into 

more valves will not provide significant returns.   

 

Ultimately, each stormwater system has performance limits, which are a function of the 

hydrology, infrastructure, control objectives and costs, as well as the specific control algorithms. 

Real-time control will only be able to push water system to a certain point, beyond which new 

infrastructure construction may need to be considered. As illustrated in our own study, if 

construction is needed, new sites can be significantly smaller when real-time control is used. 

This is particularly important in many urban areas, where cost of construction is high and land 

availability may be limited.  
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In addition to having a sufficient number of control points, it is also important to determine 

where to place valves to maximize catchment-wide benefits. Given the lack of prior studies on 

this topic, our approach exhaustively simulated every possible configuration of valves across the 

entire catchment, which required over 15,000 model runs. For the catchment studied in this c, the 

locations selected for control could be prioritized based on their individual performance. For our 

study catchment, this means that the simulations of only one valve at a time (all other sites 

uncontrolled) could be used to rank sites, after which multi-valve configurations could be made 

by combining valves that had the best individual performance. As such, the number of 

simulations required for valve selection may only need to be high as the number of candidate 

sites in a catchment, which may significantly speed up future analyses for site selection. 

Practically, rather than requiring a specific configuration for a given number of valves, valves 

could be added without needing to change the location of the valve placed before it. This is very 

important, since valves can be added one-by-one to benefit the overall system, rather than 

requiring a pre-set configuration. Beyond exhaustive simulation, theoretical placement 

approaches (e.g. [214]) should also be evaluated, but they will need to be adapted to the unique 

dynamics of stormwater systems.  

 

The physical characteristics of what makes one site more suitable for control than another are 

still not very clear. In our study, most of the ponds that ranked the highest in their ability to 

improve catchment-wide performance had a relatively low catchment area to volume ratio. In 

other words, they received very limited local runoff, but had large storage volume. This made 

them relatively suitable for buffering flows from upstream sites. As such, in-line storage may be 

a big factor in the ability of a site to contribute to catchment-wide benefits. However, this was 
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not necessarily true of all “good” control sites and instead may be dependent on the actual 

catchment being studied. As such, more studies will be required in the future to determine if this 

is a reliable feature when selecting new control sites.  

 

It did become clear in our study, however, that there are types of sites that may lead to worse 

performance compared to the uncontrolled case. This was particularly evident for SN5 and SN9, 

which overtopped when controlled. This occurred because the site had a small storage volume 

but large contributing runoff area, which did not permit it to react to rapid changes in runoff. For 

such storage nodes, feedback control should likely not be applied unless the cost function is 

adjusted for more conservative outcomes. This may also be overcome by predictive control, 

which will not only respond to real-time states, but also to forecasts for weather and runoff. 

Given the performance of the LQR-based approach, however, the application of model predictive 

control [182-184] of urban hydrologic catchment now appears very promising and will be 

evaluated in future studies. In fact, the role of weather uncertainty remains unstudied in the 

emerging field of real-time stormwater control and poses a promising research frontier.   

 

This study serves as a baseline for assessing the integration of active control measures into urban 

catchments using dynamical control. While the approach shows great promise, several limiting 

assumptions were made that will need to be addressed in future studies. In all simulations, the 

storage nodes were initially empty and some remained filled after a storm. Once the storm had 

passed, nodes could be slowly drained to meet the outflow constraint. While this is not possible 

in passive systems, it may also become a problem if another storm begins before the storage 

nodes have been entirely drained. Alternatively, some catchments, such as those in the dry 
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regions of the world may be configured for stormwater capture and reuse. In those cases, keeping 

storage nodes full becomes an objective, which poses risks to the control of the system if not 

enough storage is available to buffer incoming storms. This, again, stresses the importance of 

weather forecasts and their inherent uncertainty, which will need to be studied to determine how 

a system can be prepared ahead of incoming storms.  

 

Given the nascent nature of real-time control, there is an urgent need to develop a framework to 

compare controlled and uncontrolled catchments on an equal footing. While it may be tempting 

to showcase plots of controlled hydrographs, the number of plots can quickly balloon, even for 

small systems. The cost functions that are used to parameterize control algorithms do not 

underpin the language used by decision makers and may ineffectively communicate the benefits 

to be gained by real-time control. To that end, an equivalence analysis will be necessary to 

contextualize and synthesize these benefits in terms of traditional systems. We believe that 

visualizations, such as those in (Figure 5.8) will provide a baseline intuition that can be used 

promote adoption.  

 

Further, our centralized LQ controller assumed full knowledge of all states and zero noise, but 

the impacts of input and measurement uncertainty remain to be investigated. While modern 

sensors are becoming much more reliable and accurate, the role of sensor placement, 

measurement uncertainty, and sensor reliability must be studied to ensure robust control 

performance. Given the dynamical formulation of our framework, this could be accomplished 

through formal estimation approaches (e.g. Kalman filters [215]).    
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5.9   Conclusion 

In the era of the self-driving car and smart energy grids, active control stands to transform the 

management of urban watersheds. We introduce a novel framework for analyzing the impact of 

real-time control across urban headwater catchments. By confirming the ability of feedback 

control to achieve desired flows and reduce flooding, the approach offers an alternative to new 

construction, which is currently the only solution to cope with changes in landuse and weather. 

The approach would, of course, need to be evaluated in the real-world, however, this should now 

be very feasible given that the necessary sensing and control technologies have been developed. 

The retrofitting of catchments should also be aided by the discovery that only a few key locations 

may need to be controlled, but this should still be validated on catchment-by-catchment basis. 

 

Much research remains to be conducted to determine the generalizability and scalability of the 

methods proposed in this chapter. In particular, the control of larger urban watersheds should be 

evaluated. The authors contend that control at this larger scale may be most effectively achieved 

through the control of many smaller catchment “building blocks”. The need to segment control 

into smaller clusters may also be motivated by the practicality of working across ownership 

boundaries, insurance requirements, and social constraints. Social factors may ultimately become 

the most important barrier to the adoption of real-time control, since the best control algorithms 

may only be as good as the willingness of the public to adopt them. As such, there will be many 

opportunities to engage other disciplines in the emerging area of research. To promote 

transparency and accelerate future research of these topics, all of the models and source code 

from this study has been made available as part of an open source effort. Those interested in 

applying or contributing to these efforts are encouraged to join this web portal (open-storm.org).   
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Chapter 6   
On the importance of weather forecasts in the control of stormwater systems 

 
 

6.2   Introduction 

As alluded to in earlier chapters, real-time control of stormwater infrastructure stands to 

drastically expand the possibilities for urban watershed management [38, 42]. While the results 

of the prior chapter show great promise, they also highlight a number of limitations that must be 

addressed. In particular, it was shown that in some instances, real-time control could lead to 

worse site-level outcomes when compared to static solutions. This may occur when aggressively-

tuned cost functions push a site to an unsafe state, beyond which it cannot recover if 

overwhelmed by large or sudden inputs. Specifically, it was shown that controlling outflows 

requires the closure of valves, which, in turn, increases the amount of stored water. If a storm 

were to change abruptly and a site was already close to its storage capacity, local flooding may 

be inevitable if a valve could not be opened in time.  

 

Forecasting poses a serious limitation for many stormwater applications, in particular for those in 

“dry” regions of the country. For example, in the city of Los Angeles, it is estimated that a single 

1-inch summer storm may deliver as much as ten billion gallons of water [216]. Capturing this 

water would help provide direly needed water for this drought-stricken region. Unlike in the 

prior chapter, this would require that the system remain as “full” as possible, rather than draining 

during and after the storm. As illustrated, however, keeping a storage node full comes at the risk 
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of local flooding if inflows change too rapidly. Releasing water in anticipation of a rain even 

may also be problematic, however. If a storm delivers less water than was anticipated this could 

lead to wasted water that could otherwise been held in the system. As such, there is a practical 

need to maximize captured stormwater without risking local flooding (Figure 6.1).  

 

 

 

Since capacity cannot be created instantaneously, excess volume must be released in a timely 

fashion to lower the risks of local flooding and downstream erosion. In these cases, it would 

seem that the ability to forecast future states would improve performance by allowing the system 

Figure 6.1. Capturing water at the scale of individual sites without causing flooding requires 
predictions across the scale of the entire watershed.   
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to respond proactively rather than reactively. While forecasting will be critical to anticipating 

sudden changes in system states, weather patterns remain challenging to predict, particularly 

during large storm events. Not only is there variability in total rainfall, but the rainfall intensity 

also evolves over the duration of the storm event, as does the accuracy of the forecast (Figure 

6.2). To the best of our knowledge, no prior studies have addressed these challenges in the 

context of stormwater control. Bridging this knowledge gaps stands to transform how far we can 

push stormwater systems without compromising the safety of inhabitants and property.  

 

 

 

In this chapter, we investigate the extent at which knowledge of future states improves control 

performance. Specifically, we ask the questions: (1) how should a stormwater system be 

prepared ahead of a storm to improve performance compared a feedback-only control approach, 

and (2) if forecasts are needed, how much of a warning window is enough to achieve desired 

performance (e.g. minutes, hours, days) and how accurate does the forecast need to be? 

 

Figure 6.2. Sources of uncertainty include a) magnitude of the total rainfall during an event and 
b) the temporal uncertainty. In reality, the same weather forecast for one storm may manifest 
itself in any of these final outcomes. 
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6.3   Case study 

We revisit the model of a 0.83 km2 urban catchment used in the previous chapter. However, this 

time we augment the control objective to meet the outflow objectives of the prior chapter while 

also keeping each storage node as full as possible to capture water for reuse. The highly 

impervious, urban subcatchment consists of a complex network of eleven storage nodes varying 

in volume from 370 m3 to 32000 m3 and overflow height set at 2.75 m. Each storage node was 

fitted with a controllable 0.1 m2 square orifice located at the bottom of the node. Each orifice 

drained into a circular orifice, which varied in length from 40 to 360 m, each with a maximum 

depth of 0.275 m with a roughness of 0.01.  

 

As an illustrative example, if the system is initialized at capacity (all storage nodes at 2.75m 

height) and controlled using the LQR approach from the previous chapter, flooding occurs 

because the system cannot respond rapidly enough to a storm (middle row of plots in Figure 6.3). 

However, if the storage nodes are drained partially before a storm, enough capacity is created to 

buffer incoming runoff while simultaneously ending up at the desired storage heights (bottom 

row of plots in Figure 6.3). In this chapter, we formalize how this can be accomplished.   
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6.4   Methods 

Here, we compare two control approaches that rely on the linear dynamics described in the prior 

chapter. The first approach provides a baseline case. It is a setpoint-based LQR controller, 

similar to that of the prior chapter. It starts with the storage nodes at full height and attempts to 

keep the nodes as full as possible during storm events. This may lead to flooding, however, if the 

system cannot adapt quickly enough in response to sudden inflows. The alternative approach 

relies on forecasting. It still uses the LQR controller, but prepares the starting heights based on a 

forecasted weather (drains the storage nodes before a storm).  

Figure 6.3. Network representation of the study catchment, with the fraction of the contributing 
subcatchment delineated for each storage node. System response with feedback control (middle 
row), and the benefit of creating storage ahead of a storm to avoid flooding (bottom row). 
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6.4.2   Linear representation  

In the previous chapter, an integrator-delay model was shown to be suitable for existing control 

methods and was used to produce a linearized state-space representation of the stormwater 

network (6.1). This state-space representation is also well suited for methods used for systems 

level analysis and control, such as reachability analysis, linear quadratic control, and model 

predictive control. The model is based upon physical dimensions of the network (e.g. ponded 

surface area, canal length, etc.) and was constructed from a SWMM model using the same 

approach outlined in Section 5.4.6.  

𝑥 𝑘 + 1 = 𝐀 𝑥 𝑘 + 𝐁𝐮 𝑢 𝑘 + 𝐁𝐝 𝑑 𝑘 	  

𝑦(𝑘) = 𝐂 𝑥(𝑘) 

This study assumed a time-invariant system, as well as full knowledge of all states with zero 

noise. The state vector 𝑥(𝑘) is a 66 x 1 element vector consisting of 11 storage elements and a 

total of 55 flow delay terms; 𝑢(𝑘) is an 11 x 1 vector of the control out flows for each storage 

node; d is a 19 x 1 vector of the storm water runoff from each subcatchment. 𝐀 is a 66 x 66 

matrix, 𝐁𝐮 is a 66 x 11 matrix, and 𝐁𝐮 is a 66 x 19 matrix.  

 

6.4.3   Modified Feedback Control 

Unlike in the prior chapter, where LQR-control was used to drive the system toward a zero-state, 

a modification has to be made to allow non-zero set points. This is important to allow storage 

nodes to be controlled to specific heights. LQR can be formulated to track a given reference 

[217, 218]. Given a cost function 𝐽:  

(6.1) 
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𝐽 = 𝑥�(𝑁) 𝐐 𝑥(𝑁) + 𝜌 ⋅ [𝐇 𝑥(𝑘) − ℎ∗ ]� 𝐐 [𝐇 𝑥(𝑘) − ℎ∗ ] + 𝑢�(𝑘) 𝐑 𝑢(𝑘)
\RH

[G¥

 

 

Where 𝐇 is the setpoint matrix is used to extract the states that are to be controlled. In this case, 

the matrix 𝐇 is an 11 x 66 matrix that extracts the height of each storage node from 𝑥(𝑘). The 

control outflow is given by the vector 𝑢 𝑘 : 

𝑢 𝑘 = −𝐊 𝑥 𝑘 + 𝐄 ℎ∗  

where: 

𝐐 = 𝐐𝐓 ≥ 𝟎, 𝐑 = 𝐑𝐓 > 𝟎, 

𝐊 = 𝐑 + 𝐁𝐮�𝐏𝐁𝐮
RH𝐁𝐮�𝐏𝐀  

𝐄 = 𝐑 + 𝐁𝐮�𝐏𝐁 RH𝐁𝐮�𝐓 

 

and the matrix 𝐏 = 𝐏� ≥ 𝟎 is the solution to the Discrete Time Ricatti Equation (6.7): 

 

𝐀𝐓𝐏𝐀 − 𝐏 − 𝐀𝐓𝐏 𝐁𝐔𝐓(𝑘) 𝐁𝐮𝐓𝐏 𝐁𝐮 + 𝐑 RH 𝐁𝐮𝐓𝐏 𝐀 + 𝐇�𝐐𝐇 = 0 

 

Solving for 𝐏 can be accomplished using the solution from the prior chapter in Section 5.4.7. To 
solve for 𝐓: 
 

𝐓 = −[𝐀 − 𝐀�𝐏𝐁𝐮 𝐑 + 𝐁𝐮�𝐏𝐁 RH𝐁𝐮� − 𝟏C®C]RH𝐐 

 

 

6.4.4   Preparatory LQR (pLQR) Feedback Control  

The alternative approach addresses the limitations of feedback control by adding a preparatory 

step. Given a forecasted storm disturbance it calculates the starting heights of the storage nodes 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 
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ahead of time, with the goal of creating enough storage to capture incoming flows without 

flooding. In simpler terms, it estimates how much water will be delivered by a storm and then 

removes just that much volume from the storage nodes before the storm begins. This can be 

accomplished deterministically across entire systems by inverting the linear dynamics and back-

calculating a best estimate of initial state for a given forecast (6.15). Similar approaches have 

been studied before in the context of scheduling for irrigation canals using both heuristic 

algorithms and by inverting the solution for unsteady, open-channel flow [219, 220]. By 

induction, we can deterministically express the state at timestep, k, using (6.9): 

𝑥(𝑘) = 𝑥¥(𝑘) + 𝑥y(𝑘) + 𝑥�(𝑘)	  

𝑥¥(𝑘) = 𝐀[𝑥(0)	  

𝑥y(𝑘) = 𝐀 [RHR@
[RH

@G¥

𝐁𝐮 𝑢(𝑗)	  

𝑥�(𝑘) = 𝐀 [RHR@
[RH

@G¥

𝐁𝐝 𝑑(𝑗)	  

	  

Assuming a simulation has N timesteps, 𝑥𝑑(𝑁) represents the total change in height by the end of 

the simulation. Disregarding the control input and focusing only on the effects of runoff, 

the estimated initial state 𝑥 (0) to reach the desired final state 𝑥(𝑁) is approximated by (6.15): 

 

𝑥(𝑁) = 𝐀\ 𝑥 (0) + 𝐀 [RHR@
\RH

@G¥

𝐁𝐝 𝑑(𝑗)	  

𝐀\ 𝑥 (0) = 𝑥(𝑁) − 𝐀 [RHR@
\RH

@G¥

𝐁𝐝 𝑑(𝑗)	  

(6.9) 

(6.10) 

(6.11) 

(6.12)	  

(6.13) 

(6.14) 
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𝑥 (0) = 𝐀R\ 𝑥(𝑁) − 𝐀 [RHR@
\RH

@G¥

𝐁𝐝 𝑑(𝑗) 	  

 

In practice, since 𝑥 (0) represents the heights of each storage node and must be non-negative, the 

implemented initial state x(0) are given by the vector (6.16): 

 

𝑥(0),  where 𝑥F(0) = 𝑚𝑎𝑥(𝑥F (0),  0) 

Given a “perfect” storm forecast and assuming that the linear dynamics fully describe the 

system, this approach would require little to no feedback control, as the initial state could 

theoretically always be driven to the desired final state by the rainfall alone. This is, however, 

unrealistic since storms patterns are uncertain and the linearized system does not capture the 

complete dynamics. As such, our control approach takes the initial state but still applies feedback 

control to remedy unforeseen future states. Since LQR is used in this study as the feedback 

controller, the approach will hereby be referred to preparatory LQR, or pLQR. While beyond the 

scope of this chapter, the process to obtaining the initial state 𝑥 0  can be extended further 

(please see Appendix 7.2A.5.2) to evaluate what the controlled outflows should be in order to 

reach the desired final state when starting from 𝑥 0 .	  

 

6.4.5   Simulating Weather 

The two approaches were evaluated across a series of synthetic storm events. To simulate 

forecast uncertainty for the synthetic events, a stochastic sampling approach was developed 

using designs storms. For storm synthesis, this study used regionalized statistical data provided 

(6.15) 

(6.16) 
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online14 from Precipitation-Frequency Atlas 14 of the United States [206]. Point estimates of the 

average intensity with upper and lower limits of the 90% confidence interval were used to 

generate a distribution for rainfall intensity for 10-year, 24-hour storm events. In the case of Ann 

Arbor, Michigan, based upon the regional data for a 10-year, 24-hour storm, the average was 83 

mm with lower and upper bounds of 74 mm and 93 mm, respectively (Figure 6.4). Rainfall 

intensity was modeled using a gamma distribution, one of the most common models used for 

modeling rainfall distribution [221, 222], particularly for daily rainfall [223]. The gamma 

distribution was parameterized such that the mean and variance approximated both the average 

rainfall intensity and the 90% confidence interval, respectively. Using a gamma distribution also 

ensured all randomly generated precipitation values would be non-negative. 

 

Atlas 14 also provides temporal distributions for heavy rainfall amounts [206]. The online 

database hosts regionalized statistical rainfall timeseries curves expressed as the average 

cumulative percentage of total precipitation. In addition to the average, four separate distribution 

curves were also available, sorted by the quartile within which the greatest amount of 

precipitation fell (Figure 6.4). For example, a second-quartile 24-hour storm would have the 

highest percentage of total rainfall occurring between the sixth and twelfth hours. The likelihood 

of each distribution for 24-hour storms in the North Plains region is 50%, 21%, 16%, and 13% 

for the first-, second-, third-, and fourth-quartiles, respectively15. Each quartile was refined into 

ten deciles for further temporal variation.   

 

                                                
14Precipitation data frequency server http://hdsc.nws.noaa.gov/hdsc/pfds/  
15Table A.5.1 - NOAA Atlas 14 Volume 8 Version 2.0 
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When synthesizing a storm, the first step was to sample twice from a uniform distribution to 

determine the quartile and decile and generate a temporal curve with unit intensity. Each 

temporal curve was then fit with a tenth-order polynomial, per recommendation [206], and then 

scaled by a rainfall intensity that was randomly sampled from the gamma distribution. The 

scaled temporal curve was finally interpolated every five minutes to generate the timeseries for 

the storm event used in the simulation. Spatial variability was not considered as rainfall was 

assumed to be uniform across the entire subcatchment. In all, 3300 10-year, 24-hour storms were 

synthesized, where the average rainfall intensity was 83 mm with a standard deviation of 7.4 

mm, agreeing with the point precipitation frequency estimates hosted by NOAA14 (Figure 6.4). 

Of these storms, 49.7%, 21.9%, 15.9%, and 12.7% were first-, second-, third-, and fourth-

quartile cases.  

Figure 6.4. Rainfall and temporal variability of the 3300 synthesized storms. 
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6.5   Implementation and Evaluation 

6.5.2   Simulation Framework 

A Matlab-based, open-source co-simulation framework was used to model the hydraulic and 

hydrologic dynamics, following the same steps as in the prior chapter. A total of 3300 rainfall 

timeseries were generated (Figure 6.4) at five-minute resolution to simulate design storms with 

varying intensities and temporal variability. The control inputs for both LQR and pLQR were 

computed at each timestep using (6.3). Simulations were run in Matlab using up to one hundred 

cores in parallel on a high-performance Linux computing cluster16.  

 

6.5.3   Performance Evaluation 

The control approaches, LQR and pLQR, were compared across the synthetic design storms. For 

LQR, it was assumed that all storage nodes started at full capacity (2.75 m height) at the onset of 

the storm, whereas pLQR was initialized at the height calculated using relation (6.15). 

Specifically, the pLQR-controlled system was initialized based the average rainfall of 83 mm, 

the average of the synthesized rain events. Control cost functions were tuned to i) mitigate 

flooding, ii) capture stormwater runoff and iii) limit outflows beyond a flow threshold to 

minimize critical sheer stress for mobilizing solids and leading to stream erosion [207-209]. The 

recommended critical flow limit was 25% of 2-year peak flows [224]. The final performance 

metric in this study evaluated mainly flooding and stream erosion (outflows exceeding a critical 

threshold) since both control approaches always met the desired set point height of 2.75 m 

                                                
16Flux http://arc-ts.umich.edu/systems-and-services/flux/  
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(Figure 6.3). Practically, the final comparison primarily evaluated how much flooding was 

reduced while still capturing the maximum amount of water.  

 

6.5.4   Controller comparison  

The performance each approach is presented in Figure 6.5. In both cases, the LQR and pLQR 

controllers were able to meet the final setpoint heights of all storage nodes within a respectable 

0.05 m margin. As expected, however, pLQR improved on flood reduction compared to LQR 

due to more available storage at the onset of the storm. Overall, pLQR was able to reduce flood 

volumes by over 71%, on average, compared to LQR. In fact, in over 1030 instances, pLQR 

simulations saw no flooding at all, while flooding was evident in every LQR simulation. The 

pLQR controller also achieved improved outflow characteristics and greatly reduced the total 

time outflows exceeded the critical erosion threshold (by nearly 20% reduction on average). The 

resulting outflow distribution for pLQR had a near bi-modal shape with peaks near 16 and 28 

hours, where the peak near the 28-hour mark is attributed to storms with intensities greater than 

0.5 mm/hr. These large, flashy first-quartile storms made up 1135 of the 3300 stochastically 

generated storms (~33%).  
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6.6   Exploring real-world constraints: a case study   

The prior section illustrated the benefit of preparing a stormwater system in anticipation of a 

storm event. While this worked well for the series of synthetic storms, the pLQR method will be 

challenged by a number of real-world considerations. In particular, weather forecasts are often 

notoriously inaccurate across long time horizons. A real-world forecast is shown in Figure 6.6 

for the city of Ann Arbor, illustrating that the daily forecast (green), differs distinctly from the 

hourly (yellow) and minute-by-minute (blue) forecast. As such, preparing the system a day ahead 

of time, without being certain about the magnitude and dynamics of the event, may compromise 

control performance. Secondly, and more importantly, many storms rarely occur on their own. 

Namely, one storm is often forecasted while another is still ongoing. As such, any notion of “pre-

draining” the system is limited during long or multi-peak storms.  

 

Figure 6.5. Histogram of total flooding volume and total time critical outflow levels were 
exceeded for all design storms using LQR and preparatory LQR (pLQR) controllers.  
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Given that the value of predictive control has been verified, rather than adopting the pLQR 

method to these challenges it may be quicker, for the illustrative purposes of this final chapter, to 

simply apply more modern predictive controllers. To that end, we close this dissertation by 

applying model predictive controller (MPC) to the problem of controlling a system of 

stormwater ponds given a rainfall forecast. The use of MPC will permit for control decisions to 

be made continuously throughout the storm, while also considering future rain inputs. The 

performance of this approach will be evaluated using our own archived weather forecasts and 

recorded rainfall data for our study catchment17. Over the month of May 2017, forecasts were 

archived from Weather Underground every five minutes. The measured rainfall was also 

recorded and used as the true rainfall during the control simulations. Overall, thirteen storms of 

                                                
17 Weather Underground https://www.wunderground.com/  

Figure 6.6. Evolution of precipitation forecasts over time, showing that the chance of rainfall 
differs between the daily, minute, and even on a minute-scale resolution. 
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various size and duration were reported. May 3rd marked the largest event that lasted twenty-four 

hours with a cumulative rainfall of 21 mm and a temporal variability that included two peaks. 

 

6.6.2   Model Predictive Control (MPC) 

Model predictive control (MPC) has received much attention in process control systems [225, 

226] and more recently in irrigation and canal systems [182, 183, 227, 228], however MPC has 

yet to be applied for system-level control of urban watersheds. MPC is a predictive approach, 

which computes a new control solution at each time step with the ability to account for forecasts 

of future inputs. This is unlike LQR, which uses a single (optimal) solution for the entire event 

[229]. While the controller generates a sequence of control inputs to optimize the performance 

over a potentially long-time window, typically only the first timestep is implemented and the 

process is repeated given new input forecasts. This makes MPC highly attractive for use in 

stormwater systems, since weather forecasts improve closer in time to the storm event. Unlike 

our second approach, pLQR, this means with MPC that smaller control actions can be taken 

using more recent forecasts, without needing release water well ahead of the storm. 

 

Our implementation of MPC also relies on the same linear dynamics given by the integrator 

delay model and is subject to a cost function (6.17). The cost function penalizes deviation from 

desired storage height, outflows, and the change in outflow. MPC was implemented using a 3-

hour prediction window with a 1-hour control horizon. Outflows were constrained to be between 

0 and 0.29 m3/s and the observed heights constrained between 0 and 2.75 meters. There was no 

constraint on the rate of change for the control outflow from any storage node. The weights for 
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all outflows, change in outflow, and deviation from desired heights, ℎ∗, were 𝑤Á =	  1, 𝑤ÂÁ =	  0.1, 

and 𝑤{ =	  3500, respectively. The cost function at timestep 𝑘 is given by: 

𝑃[ = 𝑤Á ⋅ 𝑄� 𝑘 + 𝑖  𝑄 𝑘 + 𝑖 + 𝑤ÃÁ ⋅ 𝛥𝑄� 𝑘 + 𝑖  𝛥𝑄 𝑘 + 𝑖 + 𝑤{ ⋅ [ℎ(𝑘
Å

FG¥
+ 𝑖) − ℎ∗(𝑘 + 𝑖))�(ℎ(𝑘 + 𝑖) − ℎ∗(𝑘 + 𝑖)]  

 

where 𝑃[ is the performance measure at timestep 𝑘, and 𝑤®, 𝑤y, 𝑤Ãy are weights and 𝐻 is 

the number of timesteps in the prediction horizon.  

 

6.6.3   Archived forecasts and evaluation  

The MPC approach was compared to the feedback-only LQR approach by simulating the system 

during a series of real-world weather events and forecasts. MPC was evaluated using the original 

forecasts as well as the measured rainfall. The latter was intended to illustrate the case of a 

“perfect” weather forecast to provide an upper bound on performance. Throughout May 2017, a 

total of 62 mm of precipitation fell over 39 hours, resulting in approximately 41,000 m3 in runoff 

throughout the study subcatchment (Figure 6.7). In particular, there was a 21-mm storm on May 

4. Scaling the rainfall such that the May 4 storm was an 83 mm, 24-hour storm resulted in a total 

of 248 mm of precipitation over 39 hours and approximately 160,000 m3 in runoff. For the full 

set of simulations, this required recurrently simulating the runoff over a 24-hour horizon with the 

updated rain forecast for each five-minute time step, resulting in over 8900 simulations during 

the 744-hour (1 month) time window. Furthermore, to simulate the impacts of larger storm 

events, the three cases (LQR, MPC with real forecast, and MPC with “perfect” forecast) were 

(6.17)  
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then repeated by scaling up the rainfall intensity such that the largest storm had an intensity of 82 

mm over a 24-hour period, approximately that of a 10-year, 24-hour storm for the region14.  

 

 

6.6.4   MPC Performance  

Both MPC and LQR were able to meet the desired setpoint heights (full storage nodes) across all 

simulations. For the scenario with the smaller set of storms in May of 2017, LQR and MPC 

showed nearly identical performance across all criteria (Table 6.1). Since the storms were 

relatively small, no flooding occurred in any of the cases, thus highlighting no discernable 

benefit of using forecasts for control. However, when scaling the precipitation up, the model 

predictive controller performed better across all categories (Table 6.2). The MPC approach 

showed a 10% reduction in flooding volumes when using the forecasts, and a 26% reduction in 

flooding when using a “perfect” forecast. As such, there is a significant benefit to using 

forecasts, but the performance is highly reliant on the quality of the weather forecast.  

Figure 6.7. Recorded and scaled rainfall in Southeastern Michigan throughout May 2017. 
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MAY 2017 (744 HR) SIMULATION RESULTS 
 avg. final height (m) time (hr) outflows > 0.29 m3/s volume (m3) flooding 
FEEDBACK 2.75 0.12 0.0 
MPC REAL FORECAST 2.75 1.3 0.0 
MPC PERFECT FORECAST 2.75 1.2 0.0 
*	  41	  000	  (40	  873)	  cubic	  meters	  total	  runoff	  volume;	  total	  rainfall	  duration:	  39	  hours 

 

 

MAY 2017 (744 HR) SIMULATION RESULTS  

 avg. final height (m) time (hr) outflows > 0.29 m3/s volume (m3) flooding 
FEEDBACK 2.75 8.3 19 600 
MPC REAL FORECAST 2.75 6.9 17 400 
MPC PERFECT FORECAST 2.75 7.7 15 400 
*	  170	  000	  (168	  916)	  cubic	  meters	  total	  runoff	  volume;	  total	  rainfall	  duration:	  39	  hours 

 
 

6.7   Takeaways on the role of weather 

This chapter provided an introductory note on the role of weather uncertainty in the multi-

objective control of stormwater systems, a topic which has little, if any, attention from the 

research community. Our analysis illustrated that there are clear benefits to predictive control 

approaches, especially during large storm events. The objectives in used in the example case 

study, which required all storage nodes to remain full, may seem extreme, but the results indicate 

that it may actually be possible to push stormwater systems towards these performance zones. As 

storms continue to grow in frequency, intensity, and duration, this opens the opportunity to begin 

using real-time control for multiple purposes including stormwater capture, without 

compromising safety of the public and nearby property through flooding and pollution.   

 

Much future work remains to be conducted on this topic however. Better weather forecasts 

clearly improve the performance of predictive controllers, but the controllers will also ultimately 

Table 6.1. Simulation results for all storms throughout May 2017  

Table 6.2. Simulation results for storms throughout May 2017 up-scaled to 10-year storms. 
MPC outperforms the non-predictive approach reducing flooding as well as erosive outflows.   
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be limited by their formulation and assumption of linear dynamics. As such, it is still unclear if 

robust control algorithms are more important than better weather forecasts. Furthermore, non-

uniform rainfall patterns and their associated uncertainty should also be evaluated in future 

studies.  
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Chapter 7  Conclusion 
 

7.1   Summary of Discoveries  

The goal of this dissertation was to enable a foundation for the real-time study and control of 

urban watersheds. To that end, the specific contributions tackled a variety theoretical and 

technological challenges, which ultimately led to a number of fundamental conclusions:  

•   Chapter 2: We illustrated that real-time controlled stormwater systems have great 

potential to transform how we manage flows and water quality in urban watersheds.    

•   Chapter 3: We learned that web-services and wireless connectivity offer scalable and 

reliable means to build and deploy large water sensors networks.  

•   Chapter 4: We discovered that water quality dynamics are site-specific and vary across 

scales, thus calling for more dynamic management approaches, such as those offered by 

real-time control. We also illustrated how this could be achieved using an unprecedented 

real-world study, in which a watershed was controlled using valves.  

•   Chapter 5: We learned that linear-feedback control has the potential to drastically 

change the flows in urban headwater catchments and illustrated that only a relatively 

small number of sites have to be controlled to achieve these benefits.   

•   Chapter 6: We discovered that the use of weather forecasts stands to play a large role in 

improving control performance, especially for scenarios that would otherwise be too 

risky with non-predictive approaches.   
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7.2   Future directions 

Due to its modular nature, the web-based framework introduced in Chapter 3 can be expanded to 

use more robust platforms and technologies as they emerge. This includes web platforms (e.g., 

CHORDS, InfluxDB [154] and Amazon IoT [155]), sensors (e.g., water quality and air quality), 

and wireless technologies (e.g., Wi-Fi, Bluetooth, and mesh networks). The framework has 

already been used in other environmental sampling applications, such as adaptively sampling 

lake conditions for hypoxic regions that may be indicative of harmful algal blooms [230], and 

can be readily scaled up and ported to other sensing and control applications. 

 

The adaptive sampling algorithm from Chapter 4 could be extended to incorporate real-time 

stormwater modeling by combining it with the co-simulation framework from Chapters 5 and 6 

to better forecast and estimate flows throughout the catchment. Lessons from these controller 

developments can be applied to develop more complex sampling schemes that integrate upstream 

sensor data and forecasts. As the network of autosamplers is expanded, they could be deployed 

to capture spatial variability throughout a watershed, as well as configured to sample around 

valves to capture the effects of real-time control on water quality.  

 

In chapter 5, the goal to identify the “best” sites for control may have yielded results that were 

site specific. It remains to be determined what can be generalized so that exhaustive simulations 

may no longer be necessary to pinpoint which sites should be retrofitted for real-time control. 

After investigating the role of weather uncertainty in Chapter 6, better forecasting techniques 

must be developed to estimate the peak rainfall intensity and cumulative rainfall of a storm 

event. It remains to be evaluated if this is still valid for storms of different durations and 
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intensities, such as 2-year, 6-hour storms up to 100-year, 96-hour storms. The spatial variability 

in rainfall also poses an unstudied challenge in systems-level stormwater control. The controllers 

in Chapter 5 and Chapter 6 assumed perfect state information and that the system was fully 

observable. This may not always be the case due to sensor noise compounded with outages in 

communication and sensing technologies. The integration of data assimilation and techniques, 

such as Kalman filtering, is much needed and remains to be explored.  

 

Since its inception, Open-storm.org has grown into a diverse community of all those interested in 

sensing for stormwater. With quick access to the latest technologies, methods, case studies, and 

results, developers and researchers can now more easily engage decision-makers and 

stakeholders. To broaden the exposure of real-time storm water measurement and control, Open-

storm should also be expanded as an educational tool for secondary schools and used as a means 

for neighborhood involvement and community outreach. 

 

This thesis has only begun to tackle the challenges in the nascent field of “smart” stormwater 

systems. While many technological and theoretical challenges remain, there are also many social 

barriers that will determine if these systems will be adopted. Economics and the social sciences 

will play a vital role in convincing the public and decision makers of the value and safety of 

“smart” systems. This promises to expand this already multidisciplinary field into an even 

broader research community. As the achievements in this thesis were made possible by 

integrating other disciplines to solve problems in stormwater, by extension, it is reasonable to 

assume these advances are applicable to other fields of work, including but not limited to 

agricultural fields and beyond.  
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Appendix  
 

A.1   Chapter 3 Software and data availability 

The use case in Chapter 3 was implemented using the Xively Internet of Things platform and a 

Flask web-server (written in Python 2.7) running on an Elastic Beanstalk t2.micro instance 

provided by Amazon Web Services. All experimental data from the study are hosted on a secure 

Xively feed and available upon request. The source code and implementation parameters are 

available on a public repository: https://github.com/kLabUM/IoT. As of 2015, all of these tools 

are available at no cost for a project of the scale discussed in this chapter. Web connectivity is 

required of all hardware and software. 

 

A.2   Chapter 4 Software, Hardware, and Data Availability 

Data and source code, as well as hardware and sensor schematics used to produce the figures in 

this chapter can be obtained by directly contacting the authors or visiting their website 

(http://www.tinyurl.com/bkerkez). 

 

A.3   Chapter 5 Resource Availability 

To promote transparency, all resources from this chapter, including the physical simulation 

framework, control algorithms, and example models, are available as an open source package on 
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http://github.com/open-storm. All interested parties are invited to replicate our analyses or adapt 

the toolbox to their own control of water systems. 

 

A.4   State-space model of the study catchment 

State-space representation of the study catchment as a discrete, time-variant system is defined by 

the state vector, 𝑥(𝑘) – which is composed of the heights, ℎF(𝑘), and flows 𝑄F(𝑘) of all storage 

nodes in the system at the kth timestep; the control vector, 𝑢(𝑘), contains the control outflow 

𝑄spCwqpx,	  	  F(𝑘) for each controllable orifice/valve; and the disturbance vector, 𝑑(𝑘), is a vector of 

the total runoff 𝑄qyCprr,	  	  F(𝑘) from all local subcatchments that flow into the ith storage node. The 

state matrix, 𝑨(𝑘) relates the heights and flows from the current timestep to the next; the control 

matrix, 𝑩𝒖(𝑘), links the control outflow to its associated storage node; and the disturbance 

matrix, 𝑩𝒅, routes the rainfall-generated runoff from a given subcatchment to its associated 

storage node.	  

𝑥(𝑘 + 1) = 𝐀(k) 𝑥(𝑘) + 𝐁𝐮(𝑘) 𝑢(𝑘) + 𝐁𝐝 𝑑(𝑘)	  

𝑦 𝑘 = 𝐂 𝑥 𝑘 	  

An example of the time-invariant case where all eleven storage nodes are controllable is 

presented below. The non-zero elements of each matrix are plotted and the values are presented 

in sparse format.  

 

Additional details can be found in Sections 5.4.4 and 5.5.2. 
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A.4.1   State Matrix, A 

The non-zero (nz) elements of the state matrix, 𝑨, are plotted and reproduced below: 
 
 

 
 

 
   (1,1)          1 
   (2,2)          1 
   (3,3)          1 
   (4,4)          1 
   (5,5)          1  
   (6,6)          1 
   (7,7)          1 
   (8,8)          1 
   (9,9)          1 
  (10,10)       1 
  (11,11)       1 
  (13,12)       1 
  (11,13)       0.0270 
  (14,13)       1 
  (16,15)       1 
  (17,16)       1 
  (18,17)       1 
   (9,18)        0.0175 
  (19,18)       1 

  (21,20)       1 
  (22,21)       1 
  (23,22)       1 
  (24,23)       1 
  (25,24)       1 
   (3,25)        0.1324 
  (26,25)       1 
  (28,27)       1 
  (29,28)       1 
  (30,29)       1 
  (31,30)       1 
  (32,31)       1 
   (5,32)        0.0105 
  (33,32)       1 
  (35,34)       1 
  (36,35)       1 
  (37,36)       1 
   (4,37)        0.0048 
  (38,37)       1 

   (9,39)        0.0175 
  (40,39)       1 
   (4,41)        0.0048 
  (42,41)       1 
  (44,43)       1 
  (45,44)       1 
  (46,45)       1 
  (47,46)       1 
   (6,47)        0.0050 
  (48,47)       1 
   (8,49)        0.2040 
  (50,49)       1 
  (52,51)       1 
  (53,52)       1 
  (54,53)       1 
   (7,54)        0.0044 
  (55,54)       1 

 

A.4.2   Control Matrix, Bu 

The non-zero (nz) elements of the disturbance matrix, 𝑩𝒖, are plotted and reproduced below: 
 

Figure A.1. The non-zero elements of the state matrix, 𝑨. 
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  (2,1)        0.1520 
 (14,1)      -0.3605 
 (11,2)       0.0097 
 (19,2)      -0.3605 
  (9,3)        0.0063 
 (26,3)      -0.3605 
  (5,4)        0.0038 

 (38,4)      -0.3605 
  (1,5)        0.0108 
 (33,5)      -0.3605 
 (10,6)       0.0258 
 (40,6)      -0.3605 
  (3,7)        0.0477 
 (42,7)      -0.3605 

   (4,8)        0.0017 
  (48,8)      -0.3605 
   (6,9)        0.0018 
  (50,9)      -0.3605 
  (8,10)       0.0735 
 (55,10)     -0.3605 
  (7,11)       0.0016 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.2. The non-zero elements of the control matrix, 𝑩𝒖. 
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A.4.3   Disturbance Matrix, Bd 

The non-zero elements (nz) of the disturbance matrix, 𝑩𝒅, are plotted and reproduced below: 
 

 
  

 
(10,1)       0.0716 
  (9,2)       0.0175 
  (1,3)       0.0300 
  (1,4)       0.0300 
  (3,5)       0.1324 
  (5,6)       0.0105 
  (4,7)       0.0048 

  (8,8)        0.2040 
 (11,9)       0.0270 
 (10,10)     0.0716 
  (1,11)      0.0300 
  (1,12)      0.0300 
  (1,13)      0.0300 
  (7,14)      0.0044 

  (6,15)      0.0050 
  (4,16)      0.0048 
  (5,17)      0.0105 
  (2,18)      0.4216 
  (3,19)      0.1324 

 
 

A.4.4   Output Matrix, C 

 
 

  
  (1,1)        1 
  (2,2)        1 
  (3,3)        1 
  (4,4)        1 

  (5,5)        1 
  (6,6)        1 
  (7,7)        1 
  (8,8)        1 

  (9,9)        1 
 (10,10)     1 
 (11,11)     1 

 

Figure A.3. The non-zero elements of the disturbance matrix,	  𝑩𝒅. 

Figure A.4. The non-zero elements of the output matrix,	  𝑪 
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A.5   Supplementary Information for Chapter 6 

A.5.1   Regional precipitation data  

 

 

Table A.1. Total number of 24-hour precipitation cases in each quartile for the North Plains 
climate region (Reproduced from NOAA Atlas 14 Volume 8 Version 2). 
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Figure A.5. Example temporal distribution curves for cumulative precipitation. Curves for 24-
hour duration are highlighted. 
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A.5.2   Reachability Analysis (continued) 

Discrete, Time-Invariant Systems 

In Chapter 6, reachability analysis for discrete time systems was used to estimate the best initial 

state for each storage node. This can be extended to obtain a sequence of control inputs to reach 

this desired state. 

Figure A.6. Example temporal distribution curves for cumulative precipitation. Curves for 24-
hour duration are highlighted. 
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First, define: 

𝜉(𝑘) = 𝑥(𝑘) − 𝑥¥(𝑘) − 𝑥�(𝑘) = 𝑥y(𝑘) 

and let: 

𝜉 (𝑘) =Desired End State 

 

Then, a sequence of control inputs to reach that state is given by: 

𝑢(𝑗) = 𝐁𝐮�  𝐀 [RHR@ �𝐆𝐫RH(𝑘)  𝜉(𝑘) ,  𝑓𝑜𝑟 𝑗  = 0,  1,  2,  … 

 

where 

𝐆𝐫(𝑘) = 𝐀 [RHR@
[RH

@G¥

𝐁𝐮𝐁𝐮� 𝐀 [RHR@ �
 

then 

𝜉 (𝑘) = 𝜉(𝑘) 

 

This sequence is not unique, as all control inputs to reach 𝜉 (𝑘) is given by: 

 

𝑢(𝑗) = 𝐁𝐮�  𝐀 [RHR@ �𝐆𝐫RH(𝑘)  𝜉(𝑘) + 𝑢 (𝑗),  𝑓𝑜𝑟 𝑗  = 0,  1,  2,  … 

 

where 𝑢 is any sequence such that: 

 

0 = 𝐀 [RHR@
[RH

@G¥

𝐁𝐮  𝑢 (𝑗)	  
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Discrete Time-Varying Systems 

Note that this is further complicated for time-varying systems if the system is dependent on the 

current state as well as the current timestep. However, if these depend explicitly on time or are 

known a priori, such as for tracking purposes, a similar analysis can be performed 

 

For a state-space representation of a discrete, time-varying system: 

𝑥(𝑘 + 1) = 𝐀(𝑘) 𝑥(𝑘) + 𝐁𝐮(𝑘) 𝑢(𝑘) + 𝐁𝐝(𝑘) 𝑑(𝑘) 

 

Let 𝜓(𝑘, 𝑗) be the state transition matrix: 

𝜓(𝑘,  𝑗) = 𝐀
[RH

ℓ𝓁G@

(ℓ𝓁) 

Then, 

𝑥(𝑘) = 𝑥¥(𝑘) + 𝑥y(𝑘) + 𝑥�(𝑘) 

𝑥¥(𝑘) = 𝜓(𝑘,  0) 𝑥(0) 

𝑥y(𝑘) = 𝜓
[RH

@G¥

(𝑘,  𝑗)𝐁𝐮(𝑗) 𝑢(𝑗) 

𝑥�(𝑘) = 𝜓
[RH

@G¥

(𝑘,  𝑗)𝐁𝐝(𝑘) 𝑑(𝑗) 

Now the estimated initial state 𝑥 (0) to reach the desired final state 𝑥(𝑁) can be approximated 

by: 

𝑥 (0) = 𝜓(𝑘,  𝑗)RH 𝑥(𝑁) − 𝜓
\RH

@G¥

(𝑘,  𝑗)𝐁𝐝(𝑗) 𝑑(𝑗)  
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And a sequence of control inputs to reach that state is given by: 

𝑢(𝑗) = 𝐁𝐮�  𝜓(𝑘,  𝑗) �𝐆𝐫RH(𝑘)  𝜉(𝑘) + 𝑢 (𝑗),  𝑓𝑜𝑟 𝑗  = 0,  1,  2,  … 

where 

𝐆𝐫(𝑘) = 𝜓
[RH

@G¥

(𝑘,  𝑗) 𝐁𝐮𝐁𝐮� 𝜓(𝑘,  𝑗) � 

and 𝑢 is any sequence such that: 

0 = 𝜓
[RH

@G¥

(𝑘,  𝑗) 𝐁𝐮  𝑢 (𝑗) 
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