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ABSTRACT

Radiation therapy is one of the most common and effective methods of treating cancer.

There are two main types: external and internal. External to the patient, a linear accelerator

aims beams of radiation toward the patient; internal to the patient, radioactive sources

are placed temporarily or permanently at the treatment site to deposit dose locally. Both

methods of treatment can deliver complex dose distributions to a patient. The radiation

damages both tumorous tissue and nearby healthy organs; treatment planning optimization

determines how to deliver a dose distribution that maximizes tumor kill while sparing nearby

healthy organs as much as possible. This thesis studies three treatment planning problems:

the first two are in the context of external radiation therapy and the third is in the context

of internal radiation therapy.

Conventional planning is based on only the physical geometry of the patient anatomy. In

chapter II, we propose two models that incorporate (additional) liver function information for

planning liver cancer treatment to preserve as much post-treatment liver function as possible

and compare this to a conventional approach that ignores liver function information.

Conventional plans assume the patient geometry does not change between the time of

patient imaging and later treatments. Although the patient geometry can be updated at

treatment for plan adaptation, current practice may lead to plans that result in significantly

worse quality than originally intended due to its myopic nature. In chapter III, we propose a

model that produces a plan that caters to each potential patient geometry while considering

both day-of and cumulative impact.

In high-dose rate brachytherapy, the patient undergoes anesthesia due to the need to

implant catheters for radiation source placement before planning. Consideration of multi-

xvi



ple conflicting criteria in treatment planning results in challenging optimization problems.

Current commercial systems require iterative guess-and-checking of optimization input pa-

rameters to make trade-offs among criteria, but a plan must be finalized quickly to minimize

anesthesia administration. In chapter IV, we develop a practical optimization engine that

generates a trade-off surface and feeds into a graphical user interface that provides the clin-

ician more control to make trade-offs without trial-and-error optimizations.
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CHAPTER I

Introduction

1.1 Radiation Therapy

Radiation therapy/radiotherapy (RT) is one of the main methods of treating cancer.

Radiation can be delivered to kill cancer cells from sources external or internal to the patient.

External beam radiation therapy is a non-invasive procedure that typically involves a linear

accelerator directing beams of radiation from a gantry aimed at the tumor site (step 4,

Figure 1.1). In our discussion of external beam radiation therapy we will focus on intensity

modulated radiation therapy (IMRT), which allows modulation of beam intensities to deliver

a complex so-called dose distribution. Internal radiation therapy, also called brachytherapy

(BT) (brachys means “short-distance” in Greek), is an invasive procedure that involves

a radiation oncologist implanting a small radioactive source at the treatment site. We will

focus on a specific version called high-dose rate high dose-rate (HDR) BT, with the oncologist

first implanting a grid of catheters in the patient, and then using an afterloader that sends

radioactive seeds through the catheters throughout the tumor cite so that a radiation dose

is deposited in nearby tissue. Each modality has its own advantages: external beam RT is

non-invasive, while brachytherapy delivers a more localized dose, harming fewer regions of

healthy organs.∗ Radiation dose is often delivered in multiple treatments called fractions

∗It is also possible that radiotherapy is combined with other therapies (e.g., surgery, chemotherapy, other
radiotherapy).
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to maximize biological effect: with time between fractions, healthy tissue typically recovers

more quickly than cancerous tissue. Inevitably, in each fraction, dose is delivered to both

healthy and cancerous tissue. In the next sections, we describe RT process flow and the role

of treatment planning in each form of radiotherapy.

1.1.1 Intensity Modulated Radiation Therapy (IMRT)

Once the oncologist decides that IMRT is an appropriate course of treatment, the patient

first comes in for imaging (e.g., computed tomography (CT) or magnetic resonance (MR)

imaging) to enable construction of a 3D model of the patient geometry in the treatment

planning software (TPS) before the first fraction. In the 3D model of the patient, a physician

then identifies structures by manually contouring them. Structures can be categorized into

two groups: each healthy non-tumorous volume is called a critical structure (CS) or an organ

at risk (OAR), and tumorous volumes. The gross tumor volume (GTV) is the visible tumor

in the image; the clinical target volume (CTV) is the GTV with an added margin to account

for disease spread that cannot be captured in the image; the planning target volume (PTV)

is the CTV with another margin to account for geometric uncertainties in planning and/or

treatment delivery. We will elaborate on these uncertainties later.

Using this patient model, treatment is planned to determine a fluence map (non-uniform

intensity profiles for each beam, gray blocks in green grid in Figure 1.5 (left)) that delivers

a dose distribution in the patient. These intensity profiles then go through a process called

leaf sequencing (e.g., see Langer et al., 2001; Siebers et al., 2002; Xia and Verhey , 1998)

in order to be translated into a set of deliverable apertures (beam shapes molded by the

multileaf collimator, Figure 1.2); the intensity of an aperture is proportional to beam-on

time of the linear accelerator while the aperture is exposed. Figure 1.1 illustrates each step

of this process. A conventional treatment schedule consists of 30 daily fractions (skipping

weekends); stereotactic body radiation therapy (SBRT) delivers dose in up to 5 larger daily

fractions. Chapters II and III will assume leaf sequencing is part of a post-processing step
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Figure 1.1: External beam RT treatment flow.a 1) Patient is imaged via CT scan; 2) Physi-
cian manually contours important structures on 2D slices of the 3D image; 3) Treatment plan
optimization is performed (shown in the picture are 2D slices depicting patient’s anatomy
and dose distribution); 4) Treatment is delivered using a linear accelerator that emits beams
of radiation through a gantry.

aImages from Varian Medical Systems, Palo Alto, CA

and focus only on fluence map optimization.

1.1.2 High-Dose Rate Brachytherapy (HDR-BT)

Once HDR-BT is chosen as the treatment modality, the patient comes in for a fraction

and goes under anesthesia for a radiation oncologist to implant catheters, using ultrasound

guidance, to the treatment site. Once catheters are implanted, imaging is performed to

determine patient geometry and construct a patient model as well as to identify potential

dwell locations for the seeds along the catheters and determine how long a seed dwells at

various locations. Treatment is planned, and an afterloader (Figure 1.4) enters the room

to deliver the radioactive seeds (to avoid extraneous human interaction) into the catheters

(e.g., see Figure 1.3 for prostate treatment setup). Chapter IV will focus on this treatment

modality.
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Figure 1.2: Multileaf collimator composed of
tungsten leaves that mold the beam shape.a

aVarian Medical Systems, Palo Alto, CA

Figure 1.3: BT treatment delivery for
prostate. Imaging, contouring, and plan-
ning are similar to IMRTa

awww.prostate.org.au

Figure 1.4: An afterloader delivers ra-
dioactive seeds into the catheters.a

aelekta.com

1.1.3 Treatment Plan Optimization

Treatment plan optimization uses mathematically-expressed metrics to balance the goals

of eradicating the tumor and sparing the healthy organs. The output (i.e., optimized de-

4



cisions) of these models are machine instructions used to deliver treatment. For a more

detailed overview of treatment planning in IMRT, see Aleman et al. (2013); Bortfeld (2006);

Romeijn and Dempsey (2008). In the models used for the different treatment modalities, the

reader will observe parallels in the relationships between treatment decisions and the dose

delivered. We will introduce notation and models individually in each chapter.

Next, we provide an overview of current challenges in treatment planning.

Figure 1.5: Treatment plan for IMRT (left): blue and other colors inside represent patient
geometry (tumor in pink); green blocks represent beam angles; gray corresponds to beam
intensity profile. Treatment plan for BT (right): The prostate and tumor are depicted in
red; green and blue lines represent catheters and alternating shades represent seed dwell
locations.

1.1.3.1 Challenges

There are many clinical challenges throughout the process of radiotherapy; often, when

trying to account for these challenges in treatment planning, mathematical challenges arise

in the treatment planning model.

Treatment is conventionally planned around the geometry of the patient anatomy, lim-

iting planning to only physical features of the patient. With advances in biomarkers and

imaging, organ function information, in addition to the physical geometry of organs, can be

captured (Ling et al., 2000) and used in treatment planning. Ultimately, the goal in reducing

dose to OARs is to preserve organ function. A biological model that captures changes in
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organ function with respect to dose is called a “dose-response model.” The model is usually

a (mathematical) function that predicts how (organ) function will change if a certain amount

of dose is delivered, which can be used in treatment planning to maximize post-treatment

organ function. Radiosensitivity (sensitivity to radiation) (Fertil and Malaise, 1981; Long ,

2015; Wang et al., 2016) can also impact the efficacy of treatment. Current practice does not

explicitly account for such biological information in treatment planning; incorporating such

information can lead to improved outcomes (measured by the biological model) but result

in challenges for optimization, e.g., using non-convex metrics based on biological models to

measure treatment quality.

Although there are many sources of uncertainty in treatment planning, we list a few

examples: 1) interfraction motion, i.e., changes in patient geometry between fractions; 2) in-

trafraction motion, i.e., motion during a treatment, e.g., from breathing; and 3) set-up errors

at treatment, i.e., the patient’s position relative to the linear accelerator. These uncertainties

cause errors (expected versus delivered) in the dose distribution (e.g., see Stroom and Heij-

men, 2002; Van Herk , 2004 for an overview on how tumor margins are drawn in the structure

delineation process and Langen and Jones , 2001 for general organ motion management to

avoid some of these uncertainties). Two major challenges arise for these uncertainties: 1)

changes in geometry mean the original plan will not treat the patient as expected, poten-

tially affecting treatment outcome negatively; 2) re-imaging and re-planning on the day of

the treatment, as well as performing plan quality assurance (QA), is operationally very chal-

lenging due to increased patient wait time, so alternative quicker strategies for adapting

treatment are needed (keeping in mind both immediate and cumulative consequences).

During treatment planning, there are several competing dosimetric goals set by clinical

protocol (e.g., tumor coverage versus chest sparing for a breast site) where tradeoffs must

be made, especially if not all goals can be met simultaneously. Because many clinically

relevant metrics are difficult to optimize directly, approximations are made in the model, and

treatment planning becomes an iterative process, alternating between choosing optimization
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model parameters and optimizing the resulting instance to obtain a modified plan. However,

changing these parameters does not provide direct control of change in the resulting plans’

metrics. This unpredictability results in a time-consuming trial-and-error process and can

lead to loss in treatment plan quality. Several frameworks based on multicriteria optimization

have been proposed to generate trade-off surfaces consisting of many plans to choose from,

allowing more control over candidate plan generation. For an overview, we refer the reader

to Küfer et al. (2009).

1.1.4 Chapter Summaries

1.1.4.1 Optimizing Global Liver Function in Radiation Therapy Treatment Plan-

ning, Chapter II

Typically, planning is done only based on the dose delivered to various structures and

the geometry of patient anatomy (obtained from the planning CT). In each structure, the

planner treats each voxel with the same level of importance and there is no distinguishing

of voxels. However, with recent advances in imaging and use of biomarkers, additional

information about a critical structure can be obtained. For example, functional imaging

(e.g., via contrast injection and dynamic contract-enhanced MRI) can reflect local organ

function and help prioritize which portions of the structure ought to be spared to preserve

overall (global) organ function. We propose two novel treatment planning models of varying

complexity that incorporate liver function information and liver dose-responses, and compare

the achieved post-treatment global liver function with what is achieved by a conventional

treatment planning (TP) model that ignores liver function information.

1.1.4.2 Adaptive Liver Stereotactic Body Radiotherapy, Chapter III

Treatment planning is typically done once, before any treatment begins, based on pre-

treatment imaging data, and the plan is divided into equal fractions, assuming the patient

comes to the clinic with the same geometry as the one that was imaged. However, inter-
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fraction motion is a source of uncertainty and can drastically affect treatment efficacy if the

geometry on a particular treatment day differs from what was expected: critical structures

may shift or deform and be in the high dose region, receiving much more dose than originally

intended or even exceeding allowable dose limits. In this chapter, we propose a multistage

stochastic program that anticipates potential geometries to adapt treatment plans to the

“geometry of the day” to maximize overall PTV coverage while satisfying dose limits (cumu-

lative and at each fraction) no matter which geometry arises. Geometries can be considered

favorable (typical PTV coverage or better can be achieved) or unfavorable (at best, the

PTV is under-dosed). This RTTP model allows for compensating for PTV under-dosing

in unfavorable geometries when favorable geometries arise. Operationally, this model pro-

duces a plan for each potential geometry at each fraction to give the clinician flexibility in

adapting treatment; this is in contrast to previous works that produce a plan with respect to

geometry-averaged model parameters, i.e., one plan that will be delivered no matter which

geometry is realized.

1.1.4.3 Multicriteria Optimization for Brachytherapy Treatment Planning, Chap-

ter IV

Unlike external beam RTTP, HDR BTTP treatment planning is done when the patient

is present for treatment — recall that the patient is under anesthesia. This is because

imaging is done after the patient arrives and catheters are implanted. Only then can we

identify dwell locations. The operational pressure is to plan treatment by exploring allowable

criteria tradeoffs quickly. Delays can lead to increased anesthesia use, patient discomfort,

and treatment inaccuracy, influencing treatment outcome and toxicity. Current commercial

planning systems require iterative guessing-and-checking of optimization parameters for re-

optimization to make adjustments to the dwell times. This sequential generation of treatment

plans and lack of control in making dosimetric tradeoffs (e.g., fixing a particular metric

to be constant while making a tradeoff among other metrics) is often inefficient and can
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unintentionally exclude candidate plans that would have been more desirable. This chapter

addresses two questions:

1. Given a library of high-quality treatment plans for the current patient, how can we use

this information to estimate a trade-off surface? Moreover, how can a physician navi-

gate this trade-off surface in an intuitive and efficient manner, preferably not needing

to interact with any parts of the process that require optimization?

2. With the patient waiting under anesthesia, how can we efficiently generate such a

library of high-quality plans when the metrics considered are non-convex dose-volume

metrics?

Although these two questions can be considered independently, we present them together

in one chapter, where the overarching goal is developing an “optimization engine” that

generates a library of high quality plans that form a foundation for a guided user interface

(GUI) that the physician can use in the clinic to aid them in selecting a treatment plan for

each patient.
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CHAPTER II

Optimizing Global Liver Function

2.1 Introduction

Stereotactic body radiation therapy (SBRT) has become a popular method of treatment

for liver cancer for its efficacy in local tumor control (Liu et al., 2013). SBRT is generally used

to treat small tumors (approximately 5 cm or less in diameter) due to the risk of normal tissue

toxicity when treating larger volumes to high doses. High dose from treatment, patients’

sensitivity to radiation, and their pre-treatment liver function all affect the likelihood of

radiation-induced liver disease (RILD). The latter two factors are patient attributes that

are not reflected in computed tomography (CT) scans typically used to characterize patient

geometry for treatment planning. In this chapter, we focus on incorporating pre-treatment

liver function into treatment planning decisions, motivated by the following considerations.

The liver is well-known to function in a parallel-like fashion (Jackson et al., 1995), e.g., a

certain portion of the liver may be removed or damaged without losing overall function.

However, local liver function is not uniform, and initial function as well as which functional

portions are damaged influences the post-treatment global liver function. This implies the

need to take into consideration during treatment planning 1) spatial features of a dose

distribution, which would prioritize sparing of high-functioning portions of the liver, and 2)

liver tissue dose response.

There has been ongoing work exploring use of physiological imaging to consider organ
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function and/or tumor aggression information in treatment planning, see, e.g., brain target

radiosensitivity from dynamic susceptibility contrast-enhanced MRI (Chen et al., 2007),

lung target proliferation rate from fluorine-18-fluorodeoxyglucose PET (Das et al., 2004;

Feng et al., 2009), liver function from 99mTc-sulphur colloid (SC) SPECT/CT (Bowen et al.,

2015), and lung function from various imaging modalities (Ireland et al., 2007; Seppenwoolde

et al., 2002). Bowen et al. (2015) segmented high-functioning liver into regions binned by

intervals of SC uptake and redistributed dose by scaling the mean dose of each of these regions

according to SC uptake in the objective function. Ireland et al. (2007) segmented functional

lung using 3He MRI and compared treatment plans from minimizing the volume receiving

at least 20 Gy in the total lung vs. total functional lung. Seppenwoolde et al. (2002) showed

potential of using voxel-based cost functions and classifying patients by perfusion pattern.

Two advantages of using voxel-based information are the ability to view the relevant organ

approximately as a continuous body, as opposed to (manually) segmenting it into disjoint

functional and nonfunctional structures (e.g., as in Bowen et al., 2015; Ireland et al., 2007),

and to use functional imaging information directly, which is operationally better suited for

adaptive planning. In these previous works, all approaches used surrogates for post-treatment

organ function and did not consider organ dose-response behavior in the optimization. Zhang

et al. (2010) examined lung dose response and observed that post-treatment reduction in

perfusion plateaus beyond a particular dose threshold, i.e., damage becomes saturated; the

liver dose-response model from Wang et al. (2016) reflects similar behavior.

In this chapter, we propose two new treatment planning approaches aimed at better pre-

serving liver function without compromising tumor coverage or exceeding acceptable limits

to other critical structures. In particular, we propose replacing the traditional objective

of minimizing linearized equivalent uniform dose (`EUD) to the liver with ones that ac-

count for liver function: 1) perfusion-weighted `EUD (fEUD) that avoids delivering dose

to highly-perfused liver by explicitly incorporating voxel-based pre-treatment liver perfusion

into a treatment planning model, resulting in a problem that is convex and can be efficiently
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solved to global optimality, and 2) post-treatment global liver function (GLF) that explic-

itly captures global liver function using a model of liver dose-response based on pre- and

post-treatment perfusion, resulting in a problem that is nonconvex and can be solved to

local optimality. To measure liver function, our study uses voxel-based pre-treatment liver

perfusion, computed from Dynamic-Contrast Enhanced MRI (DCE-MRI). Cao et al. (2013)

have shown portal venous perfusion to be a good indicator of both local and global liver

function.

The rest of this chapter is organized as follows. In Section 2.2, we formalize the three

optimization models used, and describe our experimental setting for analyzing these models,

including both 2D (sythensized data) and 3D (real patient data) instances that we used to

test these models, in Section 2.3. In Section 2.4, we present and compare resulting dose

distributions obtained from each of the models. In Section 2.5, we show how the fEUD

and GLF models produce alternative dose distributions to the ones obtained by the `EUD

model, and in particular show the potential benefits of each alternative dose distribution.

We conclude the chapter in Section 2.6.

2.2 Mathematical Optimization Models for Liver SBRT Treat-

ment Planning

2.2.1 Notation and Treatment Criteria

We discretize the relevant areas of the patient anatomy into a finite set of voxels V, and

discretize the beams, whose orientation is chosen a priori by a dosimetrist, into a finite set

of beamlets N. Let S be the set of structures, Vs be the set of voxels in structure s ∈ S, with

V = ∪s∈SVs, and D ∈ R|V |×|N | be the dose deposition matrix, where an entry Dji is the dose

deposited in voxel j ∈ V from beamlet i ∈ N at unit intensity. In our treatment planning

model, the decisions include xi, i ∈ N , which is the intensity of beamlet i, and zj, j ∈ V ,
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which is the (physical) dose delivered to voxel j computed as

zj =
∑
i∈N

Djixi, j ∈ V.

Given dose distribution z ∈ R|V |, the generalized equivalent uniform dose (gEUD)

(Niemierko, 1999), a biological criterion, can be used to evaluate a dose distribution to

a structure s ∈ S with voxel set Vs. The gEUD to a structure s ∈ S is defined as

gEUDs(z) =

(
1

|Vs|
∑
j∈Vs

zasj

) 1
as

, (2.1)

where as is a structure-specific parameter (Li et al., 2012). For computational efficiency,

we use a piecewise-linear approximation of the gEUD, namely, the linearized equivalent

uniform dose (`EUD) (Thieke et al., 2002), which is a convex combination of the mean and

maximum dose, or of the mean and minimum dose, for structures where we are concerned

with overdosing or underdosing, respectively:

`EUD+
s (z) = α+

s

1

|Vs|
∑
j∈Vs

zj + (1− α+
s ) max

j∈Vs
zj (`EUD-overdose)

`EUD−s (z) = α−s
1

|Vs|
∑
j∈Vs

zj + (1− α−s ) min
j∈Vs

zj, (`EUD-underdose)

where α±s ∈ [0, 1] is also structure-specific. We note that, in optimization models, typically

`EUD+
s (z) is bounded from above to avoid hot spots (e.g., if s is a critical structure) and

`EUD−s (z) is bounded from below to ensure sufficient coverage and avoid any cold spots (e.g.,

if s is a target). From an optimization perspective, both of these `EUD-bounding constraints

are convex, and therefore tractable.
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2.2.2 Optimization Models

Using the treatment criteria discussed above, our treatment planning optimization model

minimizes an objective function based on dose, subject to dose constraints for various struc-

tures. The model is as follows:

minimize
x,z

<Objective Function of z> (2.2)

subject to `EUD−PTV(z) ≥ `EUDPTV (2.3)

`EUD+
s (z) ≤ `EUDs s ∈ S\{Liver, PTV}, (2.4)

zj =
∑
i∈N

Djixi j ∈ V, (2.5)

0 ≤ xi ≤ U i ∈ N. (2.6)

Here, in (2.3), `EUD to the planning target volume (PTV), denoted `EUD−PTV(z), is bounded

below by the parameter `EUDPTV, which is typically the prescription dose. In our exper-

iments, we only consider cases with one target, but more constraints of this type can be

added to represent multiple targets. In (2.4), the parameters `EUDs denote upper bounds on

`EUD+
s (z) to the remaining critical structures s ∈ S\{Liver, PTV}. Constraints in (2.5) link

dose and beamlet intensity variables. Inequalities in (2.6) provide lower and upper bounds

on beamlet intensities. Solutions to these models are treatment plans consisting of beamlet

intensities x that deliver resulting dose distributions z, which together satisfy constraints

(2.3)–(2.6). The function being optimized in (2.2) reflects an objective related to the liver

dose; the standard approach is to minimize `EUD+
Liver(z) — we will refer to the model with

this objective as the `EUD model. Note that in the `EUD model, the objective function gives

uniform weight to the dose to each voxel in the liver, i.e., it considers every voxel as equally

important to spare. In the following sections, we propose two alternative liver objectives: the

first of these objectives reflects relative importance of liver voxels by considering their relative

perfusion level to discourage dose to highly-perfused liver; the other objective accounts for
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voxel-based dose response that considers “damage-resistant” and “damage-saturated” dose

thresholds (global liver response is then the sum of appropriate terms over voxels).

2.2.3 Perfusion Avoidance Model

As previously mentioned, we can use liver perfusion maps computed from DCE-MRI as

an indicator of local and global liver function (Cao et al., 2013). We denote the perfusion

vector for the liver by f ∈ R
|VLiver|
+ , where the jth component of f is the perfusion level of voxel

j ∈ VLiver. Liver perfusion values range from 0 milliliters
100 gram minute

(
abbreviated as mL

100 g min

)
to over

100 mL
100 g min

. In this chapter, we assume there is no uncertainty in these measurements, e.g.,

due to noise or image registration. Letting g : R
|VLiver|
+ → R

|VLiver|
+ be a vector-valued function

g(f) = (g1(f), . . . , g|VLiver|(f)), we define each component gj(f), j ∈ VLiver, as the relative

importance of voxel j among all liver voxels, given perfusion vector f . In this work, we

consider gj(·) that only depend on fj, and we require each gj(·) to be non-decreasing in fj.

This gives greater importance to highly-perfused voxels, which we most want to preserve.

In our selection of g(·), we reflect the findings of previous studies (Cao et al., 2008; Wang

et al., 2016) that there exists a perfusion threshold below which voxels do not have any

functional value. Although there is not a consensus on the value of this threshold, in the

following we use 30 mL
100 g min

as a compromise between suggested values. Similarly, we assume

that voxels with values measured over 100 mL
100 g min

do not have higher function than those

at 100 mL
100 g min

, as in Cao et al. (2006) and Pandharipande et al. (2005). Thus, values are

rounded accordingly and the effective range of perfusion considered is [30, 100]. These values

are then shifted down to [0, 70] to further distinguish voxels with higher function from ones

with lower function. Based on these considerations, we use

gj(f) = min{100,max{30, fj}} − 30, j ∈ VLiver (2.7)
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in our experiments. To incorporate perfusion information into treatment planning, we use

a so-called “perfusion-weighted `EUD” (denoted fEUD), which is similar to the functional

EUD described, e.g., by Miften et al. (2004) and used by Seppenwoolde et al. (2002) to reduce

dose to high-functioning lung. We define fEUD to the liver by weighting the dose to each

liver voxel by the voxel’s relative importance:

fEUD+
Liver(z; g(f)) = α+

Liver

1

|VLiver|
∑

j∈VLiver

gj(f)zj + (1− α+
Liver) max

j∈VLiver

gj(f)zj (2.8)

(note: fEUD+
Liver(z; 1)=`EUD+

Liver(z)). We refer to the optimization model (2.2)–(2.6) with

fEUD+
Liver(z; g(f)) used as the objective in (2.2) as the perfusion avoidance model, or simply

the fEUD model. The fEUD model is similar to the approach of Bowen et al. (2015) of

differentiating functional liver regions by intervals of 99mTc-sulphur colloid SPECT uptake

and then minimizing a weighted sum of mean doses to each of the differentiated regions.

However, we do not segment the liver by perfusion ranges and instead differentiate function

at the voxel level.

Although we also introduce a liver dose-response model to optimize post-treatment global

liver function in the next section, we include fEUD+
Liver(z,g(f)) in our experiments since it

essentially reflects preference for delivering less dose to higher-perfused voxels, in order to

show the potential benefits of a perfusion-conscious model. Moreover, because of the convex

piece-wise linear structure of this objective function, the resulting optimization model is

linear and can be solved much more efficiently than the more complex global liver function

model.

2.2.4 Global Liver Function Preservation Model

The perfusion avoidance model described in the previous section may not fully capture

characteristics of normal liver dose response. We thus propose an alternative optimization

model, with an objective function designed to reflect post-treatment global liver function.
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The model was developed using liver perfusion dose-response data from an Institutional

Review Board-approved study. The study consisted of 24 patients who were treated with

variable fractionation schemes and imaged using DCE-MRI at the following time points: pre-

treatment, after 60% of planned treatment, and 1 month post-treatment. In the analysis,

physical dose was converted to EQD2 (equivalent dose in 2-Gy fractions) to account for the

variable fractionation.

Our model of perfusion-based post-treatment global liver function has two components.

The first is a perfusion-based model of global liver function. According to Wang et al. (2016),

given perfusion value fj at voxel j, the corresponding so-called probability of function, p, for

this voxel is computed as

p(fj;F0.5, n) =
1

1 + (F0.5

fj
)n
, (2.9)

where F0.5 is the perfusion value at which the voxel functions with a likelihood of 50%,

and n is a steepness parameter. Due to the nature of the logistic function, voxels with

poor/high perfusion have similarly poor/high function probability, implying two perfusion

thresholds: one below which all voxels have no function, and another above which all voxels

are simply considered fully functioning, a behavior consistent with the weights used in the

fEUD objective. Given the probability of function for each liver voxel, global liver function

(assuming a parallel structure) can be computed as follows (see Wang et al., 2016):

P̄ (f ;F0.5, n, γ) =
1

|ṼLiver|

∑
j∈VLiver:
p(fj)>γ

p(fj) =
1

|ṼLiver|

∑
j∈VLiver:
p(fj)>γ

1

1 + (F0.5

fj
)n
, (2.10)

where γ is the probability threshold under which voxels do not contribute to global liver

function and ṼLiver = {j ∈ VLiver : p(fj) > γ}.

The second component of our model captures the impact of dose on liver voxel perfusion.

In the following, we use superscripts “pre” and “post” to denote pre- and post-treatment
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measurements. Previous lung studies indicate a potential dose threshold beyond which

damage is saturated, i.e., no more function is lost (Zhang et al., 2010). To consistently

reflect these thresholds for our liver response model, we assume a logistic form. Let fpost :

R
|VLiver|
+ → R

|VLiver|
+ be a vector-valued function, with fpost

j (·) given by:

fpost
j (zj) =

(
Dk

50

Dk
50 + EQD2(zj)k

)
fpre
j , j ∈ VLiver, (2.11)

where D50 is the EQD2 dose required to reduce initial perfusion by 50%, k determines the

steepness of the curve, and

EQD2(zj) =
zj

((
α
β

)
s

+
zj
T

)
(
α
β

)
s

+ 2
, j ∈ Vs, s ∈ S, (2.12)

where
(
α
β

)
s

is the alpha-beta ratio of structure s, and T is the total number of fractions. The

parameters of this model were found from logistic fitting from the study’s patient population.

Combining (2.10) and (2.11), we can express post-treatment global liver function in terms

of EQD2 and pre-treatment perfusion:

1

|Ṽ post
Liver|

∑
j∈Ṽ post

Liver

(
1 +

(
F0.5

fpre
j

(
Dk

50 + (EQD2(zj))
k

Dk
50

))n)−1

, (2.13)

and, substituting (2.11), we obtain a model for post-treatment global liver function

GLFpost(z; fpre) as a function of physical dose z and pre-treatment perfusion fpre:

GLFpost(z; fpre) = P̄ (fpost(z);F0.5, n, γ))

=
1

|Ṽ post
Liver|

∑
j∈Ṽ post

Liver

1 +

F0.5

fpre
j


Dk

50 +

(
zj

(
(αβ )

Liver
+
zj
T

)
(αβ )

Liver
+2

)k
Dk

50



n
−1

. (2.14)

Each term in the above summation (corresponding to voxel j) represents the post-treatment
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Figure 2.1: Comparison between examples of true local response (blue) and simple logistic
approximation (red) varied by pre-treatment perfusion levels.

probability of function given dose zj and pre-treatment perfusion fpre
j .

We illustrate the shape of several terms in the sum (2.13), which reflect probability of

function, in terms of EQD2, for voxels with various pre-treatment perfusion levels (solid blue

curves), in Figure 2.1. There are two important dose thresholds concerning post-treatment

function: below the dose-damage threshold no significant function is lost, and above the dose-

saturation threshold no additional function is lost. The terms in the sum (2.14), if plotted

with physical dose as the independent variable instead of EQD2, have similar S-shapes

but are steeper due to the different scaling of the independent axis. For implementation

purposes, we approximate each term of (2.14) by a simpler logistic function; details of the

approximation are discussed in the next section. Note that since GLF should be maximized,

to fit into our optimization framework, we (equivalently) minimize its additive inverse.
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2.2.4.1 A Simple Logistic Approximation of GLF

To simplify implementation, we approximate GLFpost(z; fpre) with the following simpler

function ĜLFpost(z; fpre):

ĜLFpost(z; fpre) =
1

|Ṽ pre
Liver|

∑
j∈Ṽ pre

Liver

p̄pre
j (fpre

j )

1 + eσj(f
pre
j )(z−z̄j(fpre

j ))
, (2.15)

where Ṽ pre
Liver = {j ∈ VLiver : p(fpre

j ) > γ}. To derive this simplification, each term in the

summation (2.14) (corresponding to voxel j) is replaced by a simple logistic function

p̄pre
j (fpre

j )

1 + eσj(f
pre
j )(z−z̄j(fpre

j ))
,

where p̄pre
j is the pre-treatment probability of function of voxel j (computed using (2.9)), z̄j

is the dose that results, for this voxel, in reduction of pre-treatment function by 50%, and

σj is the slope of the corresponding term in (2.14) at z̄j (z̄j is also approximately the point

of change in the sign of curvature in the corresponding term in (2.14)). Note that the values

of these parameters are based on pre-treatment perfusion fpre
j , and in particular, that the

steepness parameter σj reflects the sensitivity of the voxel, i.e., the magnitude of its response

to dose. Also, in (2.15) we include all voxels whose pre-treatment probability of function

exceeds γ, with minimal impact on the resulting values. The dotted red curves in Figure 2.1

illustrate the approximation (with the formulae adjusted to the EQD2 dose scale).

We refer to the optimization model (2.2)–(2.6) with −ĜLFpost(z; fpre) used as the objec-

tive in (2.2) as the global liver function preservation model, or simply the GLF model.

2.3 Experiments

In Sections 2.2.2, 2.2.3, and 2.2.4 we proposed an optimization model (2.2)–(2.6) with

three options for objective function (2.2): `EUD+
Liver(z), fEUD+

Liver(z; g(f)) of (2.8), and

−ĜLFpost(z; fpre) of (2.15). To test the effectiveness of considering varying degrees of func-
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tion information during optimization, we compared dose distributions obtained from these

three models (we refer to these dose distributions as the `EUD, fEUD, and GLF plans, re-

spectively) for the same set of treatment parameters (i.e., the bounds `EUDs that appear

on the right-hand sides of (2.3) and (2.4)). Thus, the set of constraints was identical in the

three models and the only difference was the objective function used in (2.2). All treatment

planning performed for the purpose of the current study was retrospective.

2.3.1 Model Parameters and Implementation Details

Both radiation therapy simulation imaging and perfusion data were obtained from pa-

tients enrolled in a prospective study approved by an institutional review board. Plan setup

and dose coefficient (Dji) calculations were done in the University of Michigan’s in-house

treatment planning software packages, UMPlan and UMOpt (Kessler et al., 2005; Kim et al.,

1995).

To evaluate dose to the PTV with gEUD in (2.1), it is common to use aPTV ≈ −10 (Li

et al., 2012). Using the piecewise linear approximation (`EUD-underdose) to evaluate dose to

the PTV, we set α−PTV = 0.84 so that `EUD−PTV(zdelivered)|α=0.84 = gEUDPTV(zdelivered)|a=−10,

where zdelivered is a treatment plan delivered to a typical liver patient in the Department

of Radiation Oncology at the University of Michigan. We simply used the mean dose, i.e.,

α+
Liver = 1, for `EUD+

Liver(z), as liver is widely considered to be a highly parallel organ.

For all other structures, the maximum dose in structure s was used for `EUD+
s (z), i.e.,

α+
s = 0, s ∈ S\{Liver, PTV}. The maximum intensity of any beamlet in (2.6) was bounded

by U = 40 (according to institutional practice) to avoid extremely high beamlet intensities

that would result in high monitor units and inefficient treatment delivery. This constraint

typically does not restrict solution quality as beamlet intensities rarely reach this maximum

value. In (2.11), D50 = 51.7 Gy-EQD2 and k = 4.9, which were determined from model

fitting. In (2.9), F0.5 = 67.4 mL
100 g min

and n = 6.4, both of which were obtained from Wang

et al. (2016). To compute EQD2 dose for liver, we used
(
α
β

)
Liver

= 2.5 Gy and T = 5
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fractions (according to the protocol at the University of Michigan Hospital).

We remark that, in formulating our models, we have assumed that the liver perfusion data

is known and not subject to uncertainty. In practice, uncertainty is undoubtedly present,

in part due to possible measurement and registration imprecision, and can have a clinical

impact. While this chapter focuses on incorporating functional imaging and using true dose-

response models for capturing change in organ function in treatment planning, in our future

work we plan to test the impact of parameter uncertainty on treatment plans obtained with

the models presented here, and extend the models to make them robust. This would involve

developing appropriate analytical models of the uncertainty and incorporating them into the

optimization. As our preliminary work suggests, robust versions of the models considered in

this chapter will be significantly more mathematically complex, and will require development

of corresponding solution methods. We plan to report on the methodology and results of

robust models in future publications.

Our implementation of all three models was done in C++, with Gurobi’s primal simplex

method (Gurobi Optimization, Houston, TX) used to solve the linear optimization problems

resulting from `EUD and fEUD models. The GLF model results in a nonconvex nonlinear

optimization problem, which was solved using IpOpt’s primal-dual interior point method

(Wächter and Biegler , 2006) and linear solver subroutine by HSL (2013). All experiments

were performed on a custom-built machine with 3.5 GHz 8-Core Intel i7-3770K processor

and 31.4 GB memory at 3901 MHz. Although the interior point method is only guaranteed

to find locally optimal solutions, it was warm-started with the fEUD plan to guarantee a

treatment plan that was at least as good (in terms of GLF objective) as the fEUD plan.

2.3.2 Liver Perfusion Patterns

The patient population varies widely in terms of liver perfusion patterns. Since 3D

dose distributions are difficult to visualize, analyzing synthesized 2D cases with specific

patterns allows for a comprehensive illustration of where dose is effectively reduced and how
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↖NORMLIVER

PTV

Figure 2.2: Geometry of 2D liver case (axial view). The small contour represents the
boundary of the PTV voxels and is surrounded by normal liver voxels. The large contour
represents the boundary of the patient and contains normal tissue voxels that are not shown.

this reduction is compensated for to maintain target coverage. We identified oft-observed

3D perfusion patterns from DCE-MRI in real patient cases and, for one typical 2D liver

geometry, replicated these perfusion patterns to generate diverse problem instances. We also

applied our models to real 3D patient cases.

The 2D liver cases had 3 structures: PTV, normal liver, and unspecified normal tissue

(Figure 2.2). Figure 2.3 shows the 5 perfusion patterns investigated within the same geom-

etry. On the left are axial views of liver perfusion maps, color-coded by level of perfusion,

that were observed in clinical cases; on the right are the synthesized cases where the PTV

voxels (crosses) are contoured and the surrounding liver voxels (dots) are color-coded with

respect to their perfusion-based relative importance (g) values, see (2.7). The unspecified

normal tissue is not shown.

Table 2.1 summarizes parameter values used in the models for the 2D cases. We note

that the upper bound for the normal tissue, `EUD2, is given (in physical dose) as 80 Gy in

order to allow the fEUD and GLF models to focus on improving solely the dose distribution

in the normal liver. However, when applying the models to real patient data, all bounds on

`EUD+
s (z) to critical structures are based on clinical practice at the University of Michigan

Hospital.
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(a) Pattern P1: Large clusters of high and poor per-
fusion.

(b) Pattern P2: Small regions of high perfusion.

(c) Pattern P3: High perfusion around tumor. (d) Pattern P4: Poor perfusion around tumor and high
elsewhere.

(e) Pattern P5: High perfusion throughout.

Figure 2.3: Commonly encountered perfusion patterns on DCE-MRI (left); Synthesized 2D
liver cases with PTV in gray and surrounding liver voxels color-coded by relative importance
(i.e., gj(fj)) values (right).

We also considered five typical 3D patient cases. Table 2.2 summarizes parameter values

used for all 3D cases. Lastly, in the 3D cases, 14 non-coplanar beams were used in order

to allow flexibility to produce an appreciable alternative dose distribution (in the 2D cases,

nine beams were used).
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Structure s α±s `EUDs (Gy)
PTV 0 α− = 0.84 60 (Rx dose)
PTV 0 α+ = 0 80

NORMLIVER 1 α+ = 1.0 Objective Function
NORMAL TISSUE 2 α+ = 0 80

Table 2.1: Parameter values used in models for the 2D cases.

Structure (s) α±s `EUDs (Gy)a

NORMLIVER α+ = 1.0 Objective Function
PTV α− = 0.84 60
PTV α+ = 0 80

CORD α+ = 0 25
LTKIDNEY α+ = 0 27.3
RTKIDNEY α+ = 0 27.3
STOMACH α+ = 0 27.5

HEART α+ = 0 32
DUODENUM α+ = 0 30

BOWEL α+ = 0 30
ESOPHAGUS α+ = 0 27.5

Table 2.2: Parameter values used in models for the 3D cases. aApproximated lower and
upper bounds based on clinical practice at University of Michigan Hospital.

2.4 Results

In this section we show the potential benefits and limitations of treatment plans obtained

by the `EUD, fEUD, and GLF models. First, we discuss results for the sythensized 2D cases

to provide intuition on differences in the resulting dose distributions. These examples also

show which perfusion patterns have the most to gain from the models that use functional

imaging information. Then, we discuss results for five representative real 3D patient cases.

In computing liver `EUD, we only concern ourselves with pre-treatment functional liver

and denote it as s = fLiver:

`EUD+
fLiver(z) =

1

|Ṽ pre
Liver|

∑
j∈Ṽ pre

Liver

zj (2.16)
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2.4.1 2D Liver Cases

We compare the `EUD+
fLiver (as in (2.16)) achieved by the fEUD and GLF plans in Table

2.3. We present GLF values of the three plans in Table 2.4 and in Figure 2.4, along with

pre-treatment GLF for each case. We use the “true” expression for GLF defined in (2.14)

to calculate post-treatment global liver function values. Recall that, for each case, the

solution process for the non-convex GLF model is warm-started with the solution of the

fEUD model; after the numerical optimization reaches a pre-specified time limit (we use 30

hours), we report either the algorithm output or its warm-start input, whichever achieves

higher post-treatment GLF, as the GLF plan.

The values reported in Table 2.4 include the pre-treatment (Pre-Tx) GLF, post-treatment

(Post-Tx) GLF from the 3 plans (GLF, fEUD, `EUD) and an upper bound on optimal post-

treatment GLF based on a piecewise linear concave upper bound on each term in (2.14)

(GLF UB).∗ As expected, the GLF plan achieved the best GLF among the three plans.

However, fEUD plans achieved varying improvement in GLF over `EUD plans. Although in

our experiments the fEUD plan typically achieved a better GLF than the `EUD plan did, we

warn the reader that this may not always be the case: the `EUD plan may achieve a better

GLF than an fEUD plan in very select perfusion patterns (e.g., consider a liver perfusion

pattern with alternating radial strips of high and poor perfusion, each rooted at the PTV).

We highlight two patterns, P1 (Figure 2.5a) and P3 (Figure 2.6a), for their noticeable

and limited differences, respectively, in GLF achieved by the fEUD plan over the `EUD plan.

Figures 2.5 and 2.6 provide a visual comparison of the `EUD, fEUD, and GLF plans for each

of these two cases, and their impacts on liver function. The dose difference between the

`EUD and GLF plans to each liver voxel is shown in Figures 2.5b and 2.6b, and the dose

difference between the fEUD and GLF plans to each liver voxel is show in Figures 2.5c and

∗For each term in (2.14), the upper bound is a function that coincides with the corresponding curve at
0, stays constant between 0 and the dose where function begins to fall off, and then decreases at a constant
rate selected so that 0 is reached at the maximum allowable dose, where the voxel has 0 post-treatment
function. To obtain an upper bound on optimal post-treatment GLF, we maximize the sum of these terms
over all liver voxels, subject to constraints (2.3)–(2.6).
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2.6c.

Perfusion Patterns `EUD Plan fEUD Plan GLF Plan
P1: Large clusters of high and poor perfusion 18.9 19.0 21.6
P2: Small regions of high perfusion 8.6 6.9 10.7
P3: High perfusion around tumor 18.7 18.7 20.8
P4: Poor perfusion around tumor 14.5 14.5 17.0
P5: High perfusion throughout 6.5 5.8 10.2

Table 2.3: `EUD+
fLiver (Gy) achieved by fEUD and GLF plans on 2D cases.

Pre-Tx CCV GLF fEUD `EUD
Perfusion Patterns UB Plan Plan Plan
P1: Large clusters of high and poor perfusion 0.729 0.686 0.555 0.509 0.480
P2: Small regions of high perfusion 0.926 0.926 0.922 0.908 0.890
P3: High perfusion around tumor 0.769 0.715 0.558 0.524 0.521
P4: Poor perfusion around tumor 0.608 0.598 0.564 0.545 0.545
P5: High perfusion throughout 0.923 0.869 0.714 0.675 0.675

Table 2.4: Pre- and post-treatment GLF achieved by `EUD, fEUD and GLF plans on 2D
cases. GLF UB is an upper bound on optimal post-treatment GLF obtained by maximizing
a piecewise-linear concave relaxation of GLF dose response function.

2.4.2 Clinical (3D) Liver Cases

In this section we present results of applying the `EUD, fEUD, and GLF models to five

real patient cases. We compare the `EUD+
fLiver (as in (2.16)) achieved by the `EUD, fEUD,

and GLF plans in Table 2.5. GLF values are presented in Table 2.6 and Figure 2.7. Since

these patient cases have perfusion patterns that are analogous to certain 2D patterns, we

discuss in detail only patient case 1 (PC1), which is an example where the perfusion map led

to an appreciable decrease in dose to high-functioning liver using the fEUD model, and an

increase in global liver function using the GLF model. Using Eclipse (Varian Medical, Palo

Alto, CA) to visualize dose distributions, we show in Figures 2.8a, 2.8b, and 2.8c the same

axial view from the `EUD, fEUD, and GLF plans, respectively. In the background is an

axial CT of the patient: the PTV is contoured in pink, and the liver is contoured in orange.

The liver is represented separately in Figure 2.9a by its gray-scale DCE-MRI perfusion
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Figure 2.4: Pre- and post-treatment GLF achieved by `EUD, fEUD and GLF plans on 2D
cases. GLF UB is an upper bound on optimal post-treatment GLF obtained by maximizing
a piecewise-linear concave relaxation of GLF dose response function. (Note: all cases have
some deficit in function at the beginning of treatment.)

map, which is also overlaid on the axial CTs (Figures 2.8a, 2.8b, and 2.8c). Bright/dark

coloring represent high/poor perfusion. To see the change in dose at each voxel, we show

two dose wash differences (fEUD plan minus `EUD plan, and GLF plan minus `EUD plan)

in Figures 2.9b and 2.9c, where lighter color intensities correspond to larger dose differences,

and hot/cold colors correspond to positive/negative dose differences.

Patient Case `EUD Plan fEUD Plan GLF Plan
PC1 20.3 19.4 21.7
PC2 6.3 5.7 8.3
PC3 6.9 7.0 8.0
PC4 5.8 5.4 5.4
PC5 6.5 5.8 10.2

Table 2.5: `EUD+
fLiver (Gy) achieved by `EUD, fEUD, and GLF plans on 3D cases.
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Figure 2.5: Visualization of pre- and post-treatment liver function maps and dose wash
differences for 2D liver perfusion pattern P1: There is noticeable reduction in dose to high-
functioning regions using either fEUD or GLF objective. (2.5a), (2.5d)-(2.5f) are function
maps; (2.5b)-(2.5c) are dose wash differences.

2.5 Discussion

Although it hasn’t been studied which values of GLF are clinically acceptable, the GLF

model does produce treatment plans that retain the most liver function compared to the

fEUD and `EUD models. This is done by delivering dose exceeding the damage saturation

threshold to fewer high-functioning voxels. We first discuss the results of 2D cases. Table

2.3 shows that, for most cases, the fEUD and GLF plans achieve `EUD+
fLiver comparable to

the `EUD plan (albeit dependent on the specific perfusion pattern). Moreover, the plans

are guaranteed to achieve adequate target coverage, which is enforced by constraint (2.3).

In certain cases, although there is a notable increase in `EUD+
fLiver in the GLF plan from

the `EUD plan, there is also notable gain in GLF (see Figure 2.4). From the dose wash
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Figure 2.6: Visualization of pre- and post-treatment liver function maps and dose wash
differences for 2D liver perfusion pattern P3: There is noticeable reduction in dose to high-
functioning regions using GLF objective but limited difference using fEUD objective. (2.6a),
(2.6d)-(2.6f) are function maps; (2.6b)-(2.6c) are dose wash differences.

differences, we observe that applying the fEUD and GLF models may be more effective

in reducing dose to highly-perfused liver for particular perfusion patterns than for others.

Specifically, the fEUD model follows the intuition that patterns P1, P2, and P4 have more

beam paths to the target that are composed of low functioning liver voxels than patterns P3

and P5 do. In Figures 2.5b and 2.5c, we see that voxels with the higher perfusion mostly

receive less dose, but in order to maintain target coverage, this dose is compensated for by

boosting voxels with poor perfusion. However, for pattern P3, observe that although the

fEUD plan achieves almost no improvement in post-treatment GLF over the `EUD plan

(Figures 2.6b and 2.6c look similar due to subtracting similar plans, and consequently so

do Figures 2.6d and 2.6e), the GLF plan is able to better preserve additional parts of high-
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Figure 2.7: Pre- and post-treatment GLF achieved by `EUD, fEUD, and GLF plans on 3D
cases. GLF UB is an upper bound on optimal post-treatment GLF obtained by maximizing
a piecewise-linear concave relaxation of GLF dose response function. (Note: all cases have
some deficit in function at the beginning of treatment.)

functioning liver and therefore achieves higher post-treatment GLF. Figures 2.5c and 2.6c

contrast how the GLF and fEUD objectives prioritize where dose is deposited. The GLF plan

achieves better GLF than the fEUD plan by delivering additional dose (red) to both a small

region of high-functioning voxels, which are damage-saturated already in the fEUD plan, and

large regions of the low-functioning voxels, which contribute little to global function. Thus,

accounting for the two dose thresholds in the liver response allows a reduction in physical

dose of up to 30 Gy (blue) in a large region of the high-functioning liver.

Figure 2.10 shows how the GLF plan is able to achieve better GLF than the fEUD plan

does. The blue line represents a typical dose-response curve of a liver voxel with high pre-

treatment function, i.e., a voxel that has pre-treatment probability of function of at least

0.5, which corresponds to perfusion of at least F0.5 (the parameters for this particular dose-

response curve are derived from using the average pre-treatment function of these voxels).

Liver voxels are then grouped into bins by dose for each plan (bin size of 10 Gy-EQD2, with
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(a) `EUD Plan, Post-Tx GLF 0.448 (b) fEUD Plan, Post-Tx GLF 0.459

(c) GLF Plan, Post-Tx GLF 0.504

Figure 2.8: Dose distributions for `EUD, fEUD, and GLF plans illustrated for Patient Case
1.
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(a) Perfusion map of liver (grayscale: light = high;
dark = low), Pre-Tx GLF 0.689

(b) Dose wash difference (fEUD-`EUD) overlaid
on perfusion map.

(c) Dose wash difference (GLF-`EUD) overlaid
on perfusion map.

Figure 2.9: Dose distributions, and their differences, for `EUD, fEUD, and GLF plans illus-
trated for Patient Case 1. Liver is contoured in light brown and filled with its black-and-white
perfusion map.
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Patient Case Pre-Tx GLF UB GLF Plan fEUD Plan `EUD Plan
PC1 0.689 0.628 0.504 0.459 0.448
PC2 0.585 0.581 0.572 0.567 0.565
PC3 0.712 0.693 0.661 0.647 0.645
PC4 0.383 0.380 0.359 0.359 0.353
PC5 0.285 0.278 0.276 0.268 0.262

Table 2.6: Pre- and post-treatment GLF achieved by `EUD, fEUD, and GLF plans for 3D
cases. GLF UB is an upper bound on optimal post-treatment GLF obtained by maximizing
a piecewise-linear concave relaxation of GLF dose response function.

all voxels beyond the damage-saturation threshold of 50 Gy-EQD2 grouped into a single bin)

and each bin is represented in the figure by circles, where the diameter of each circle reflects

the number of voxels in that bin (red circles correspond to the fEUD plan while green circles

correspond to the GLF plan). The GLF plan delivers dose beyond the damage-saturation

threshold to fewer voxels compared to the fEUD plan, and instead delivers tolerable amounts

of dose (e.g., 15 to 20 Gy-EQD2) to more voxels to achieve comparable target coverage.

Since tolerable amounts of dose insignificantly affect post-treatment function, the resulting

post-treatment GLF is higher.

Although the differences in dose distributions from 3D patient cases are not as conspic-

uous as those from the 2D cases, we observe analogous behavior. Qualitatively, patient case

1 has a 3D perfusion map analogous to the 2D perfusion pattern P1 in Figure 2.3a: large

clusters of various perfusion surrounding the tumor. Figures 2.8, 2.9, and 2.11 show this

analogous benefit of using a GLF objective. In particular, comparing Figures 2.8a, 2.8b,

and 2.8c, we observe that the bright-green 30 Gy iso-dose line (typically, where damage sat-

urates) is pushed further in toward the PTV and covering less functional liver in the GLF

plan, while more highly-perfused liver is covered by the 30 Gy line in the fEUD and `EUD

plans. Moreover, using the `EUD plan as the baseline plan, the dose wash difference in

Figure 2.9c (GLF−`EUD plan) shows a larger reduction in dose to the posterior region of

the liver, which is the highest-functioning portion (as seen in Figure 2.9a), compared to the

dose wash difference in Figure 2.9b (fEUD−`EUD plan).

34



Figure 2.10: Distribution of voxels with high pre-treatment function by dose-bins of 10 Gy-
EQD2 (one bin for dose-saturated voxels) along post-treatment function line-plot; 2D case
P1.

The concave upper bounds (GLF UB) for certain perfusion patterns were not tight (e.g.,

P1, P3, P5, and PC1) due to overestimating the function on voxels receiving high dose,

namely they should have no function at all from being saturated in dose. However, in other

cases, where pre-treatment GLF was close to the achieved GLF values, we achieved post-

treatment GLF that was also close to the concave upper bound, likely due to a sandwiching

effect. Although this upper bound function is easy to optimize, in our future work we intend

to investigate how to close the gap in the aforementioned cases.

Our current model considers voxel-based organ function information. A next step is to

consider function at a higher level by preserving not only individual high-functioning liver

voxels, but also so-called “highly functional subvolumes of liver,” i.e., contiguous groups

of voxels — identifying such subvolumes would supplement existing dose-based evaluation

criteria. Another direction is to make our model robust by accounting for uncertainty in

functional imaging data, e.g., from image registration errors and the perfusion measurements

themselves. Finally, since response parameters are currently population-based, we intend
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Figure 2.11: Distribution of voxels with high pre-treatment function by dose-bins of 10 Gy-
EQD2 (one bin for dose-saturated voxels) along post-treatment function line-plot; Patient
Case 1.

to further individualize planning through an adaptive framework by anticipating, part-way

through treatment, patient-specific radiosensitivity with patient-specific response parameters

(such response models have also been developed in Wang et al., 2016).

2.6 Conclusion

We developed methods to explicitly incorporate voxel-level liver function information

into SBRT treatment planning. The fEUD model can often effectively generate an alter-

native dose distribution that reduces dose to highly-perfused voxels and increases dose to

poorly-perfused voxels (not necessarily by the same amount), while achieving the same tar-

get linearized equivalent uniform dose and satisfying dose limits to other critical structures.

Although this model is computationally inexpensive in comparison to the GLF model, min-

imizing fEUD is only a surrogate for maximizing post-treatment global liver function and is

not a uniformly good surrogate. Though computationally more expensive, the GLF model
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directly optimizes expected post-treatment global liver function, a more clinically-relevant

metric. The results of this work suggest a need to further investigate numerical methods that

more efficiently optimize nonconvex objective functions such as GLF. Although these models

are effective for certain types of perfusion patterns, future work consists of quantitatively

identifying perfusion patterns that may indicate patient benefit from planning treatment

with the fEUD or GLF models.
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CHAPTER III

Adaptive Liver Stereotactic Body Radiotherapy

3.1 Introduction

In abdominal stereotactic body radiation therapy (SBRT), the patient may come in for

treatment with a geometry that is different from the one in the planning CT. A change in

patient geometry between fractions is called interfraction motion (not to be confused with

intrafraction motion, which refers to changes in patient geometry during a fraction). On the

day of a treatment, the patient may have a cone beam CT (CBCT) image to update the

patient geometry. An example of interfraction motion can be seen in Figure 3.1. A treatment

where treatment plans are adapted to such changes is called adaptive radiation therapy

(ART). “Online” ART adapts plans during treatment delivery while “offline” ART adapts

plans between treatments according to updated information from the previous fraction and

adjusts plans for future fractions.

Typically, adapting by re-optimizing on the day of treatment is operationally taxing

due to the amount of time required for both planning and a quality assurance (QA) check,

extending the patient’s visit. The current practice usually employs a simpler approach called

image-guided radiotherapy (IGRT), which adjusts the plan if the image indicates that an

OAR has moved into a region that would be overdosed by the original plan by shifting the

original dose distribution (planned from the nominal geometry captured in the planning

CT) in the direction of the OAR motion to avoid over-dosing it. A physician will guess-and-
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Figure 3.1: Left: with the gall bladder filled, the colon (yellow arrows) is a safe distance from
the high dose region around the PTV; Right: the gall bladder loses volume and the colon
moves closer to the high dose region, potentially resulting in overdosing the colon. Red and
green contours correspond to the 100% and 50% of prescription dose iso-dose lines.

check shifts simply by looking at an updated patient geometry, which can be both inefficient

and result in suboptimal adaptation. A shift in the dose distribution inevitably results in

under-dosing the PTV in order to spare the OAR (see Figure 3.2). In addition to a lack of

consideration of per-fraction dose limits in IGRT, there is no consideration of compensating

for reduced PTV coverage in future fractions. Finally, if there are multiple OARs that

surround the PTV closely, any shift away from one OAR would result in over-dosing another

OAR, i.e., any shift of the dose distribution would result in a plan that is infeasible with

respect to per-fraction dose limits.

Figure 3.2: Example of IGRT. Left: duodenum shifts toward PTV. Middle: shifted duode-
num would be overdosed with more than 6 Gy in the original plan. Right: IGRT shifts the
dose distribution to avoid overdosing the shifted duodenum.
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3.2 Related Literature

ART planning for both interfraction (between fractions, e.g., patient changes in geometry

or setup error) and intrafraction (e.g., breathing) motion has been thoroughly studied (see

Chan and Mǐsić, 2013; McShan et al., 2006; Men et al., 2012; Sir et al., 2012; Unkelbach and

Oelfke, 2005; Wu et al., 2008). There are two main approaches in ART: offline and online.

In online ART, the patient is imaged immediately before treatment and a plan is generated

based on the day-of geometry (DOG), followed by plan delivery. In offline ART, planning is

done before the patient comes in for treatment and is based on images of the patient taken

in previous fractions and/or imaging sessions and the resulting plan is delivered in future

fractions.

McShan et al. (2006) is one of the first works to consider multiple geometries but their

models find one single plan that performs well on average; Sir et al. (2012) adds on an

important feedback component which updates the treatment planning model with doses

delivered as fractions progress, but also only generates one plan for future fractions that

performs well averaged over several geometries. Chan and Mǐsić (2013) develop a framework

for offline ART for breathing motion in lung cancer treatment: a collection of “breathing

states” is defined based on images to reflect intrafraction motion, and for each state, the

corresponding dose deposition matrix is computed. Their robust optimization model assumes

the probability mass function (PMF) of breathing states of the lung belongs to an uncertainty

set (where the probability of being in each state at any point in time is contained in some

range). Unkelbach and Oelfke (2005) model an expected voxel dose value over a distribution

that describes, for each voxel i, the probability that it moves to the position of a static voxel

j, and tries to find a fluence map that minimizes a weighted sum of 3 terms: two-sided

quadratic penalties on expected CTV voxel doses, the variance in dose to CTV voxels, and

one-sided quadratic penalties on expected OAR voxel doses.∗ The resulting fluence map is

delivered across a pre-specified number of equal fractions.

∗This is not to be confused with expected quadratic penalties.
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A more complex version of offline adaptive therapy consists of generating multiple plans,

each of which accounts for a different realization of patient geometry. The “online” compo-

nent is to use day-of imaging to decide which of the plans computed offline to use. Burridge

et al. (2006); Foroudi et al. (2009); Gill et al. (2013); Kuyumcian et al. (2012); Murthy et al.

(2011) take such an approach by considering multiple scenarios of one structure of interest

that may arise the day of treatment (e.g., 3 plan for 3 bladder sizes, 6 plans for 6 PTV sizes,

etc.), which are special cases of considering DOG. This approach of preparing multiple plans

for multiple scenarios is fittingly called “plan of the day” ART. The benefit of this approach

is that is saves online-adaptive computational efforts while still maintaining flexibility in

adapting to a variety of geometries.

Wu et al. (2008) take an online adaptive approach by using CBCT images to collect

updated geometry information just before the treatment and apply image deformation to

the original dose distribution from the planning CT to derive what the deformed geometry

should receive, i.e., how to deliver what was originally intended to each voxel. Linear voxel-

based penalties have goal doses derived from the deformed-dose distribution, and their model

finds a fluence map that delivers as close a dose distribution as possible to the deformed dose

distribution. However, there is no guarantee that the deformed dose distribution is feasible,

potentially resulting in unequal fractions. Note that their approach, similarly to IGRT, is

dependent on the nominal (baseline) geometry seen on the planning CT (pCT).

Online ART considers the most up-to-date patient geometry, but the planning process

leads to lengthened treatment time (i.e., patient waiting on the couch); offline ART ap-

proaches develop plans offline allowing for minimal additional waiting time for the patient,

but do not consider a most up-to-date patient geometry. For prostate treatment planning,

recent investigations take a combination of the two strategies by exploiting the benefits of

each. Lei and Wu (2010) consider accounting for uncertainties in geometry due to defor-

mation and rotation of structures in additional to the conventional translational structure

motion. Offline, they attempt to account for systematic errors (e.g., prostate rotation) and
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adjust margins to account for random errors. Doing so in addition to online adaptation

allowed for moderate margin decrease compared to using online adaptation only. Yang et al.

(2014) consider an approach that performs online ART only when necessary, i.e., when sig-

nificant interfraction motion is detected, and in the meantime delivers the most updated

plan otherwise, which reduces online computational efforts.

The works above all account for adapting treatment with respect to only physical dose

and are likely to result in unequal fractions. Although they consider cumulative physical dose

effects, there is no consideration of biological effects, measured by the so-called biologically

effective dose (BED) (see Barendsen, 1982; Fowler , 1989; Jones et al., 2001), which we define

formally later. Unlike total physical dose to a voxel, i.e., the sum of doses received by the

voxel over the course of a multi-fraction treatment, which is used in stationary geometry

and equal-fraction setting, the BED is derived from the linear-quadratic cell survival model

that captures radiation cell kill for a sequence of potentially unequal fractions (e.g., a non-

stationary treatment schedule for a changing patient geometry).

BED-based planning has also been studied, but for the most part in a deterministic

setting. Kim et al. (2009) take a Markov decision process approach to incorporate temporal

effects via BED and then Kim et al. (2012) incorporate the possibility of adapting the dose

distribution spatially, i.e., allowing fluence to change fraction to fraction. Neither of the

above papers accounts for any sources of uncertainty. Saberian et al. (2015) propose a model

that maximizes the BED of the average tumor dose subject to OAR BED limits in equal

fractions. This objective function implicitly assumes that homogenous PTV coverage is

available (i.e., BED of the average dose would be the same as the average BED). Although

this leads to a formulation with convenient mathematical properties (i.e., they can maximize

a concave objective), it is a simplified measure of PTV coverage. Unkelbach et al. (2012)

consider one OAR vs one PTV tradeoff in BED and derive mathematical properties that

help determine fractionation schedule (i.e., number of fractions). Both works assume no

interfraction motion.
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Chen et al. (2008) is the first work that proposed a treatment planning model that

accounts for BED in an ART framework. They consider one tumor (whose dose distribution

is assumed to be uniform) and one OAR, whose BED for each voxel is determined by the

tumor dose and a ratio known as the “sparing factor” that is determined by the voxel’s

location relative to the tumor. They adapt to the sparing factor changing from fraction to

fraction (to emulate voxel motion) by assuming that the sparing factor comes from a normal

distribution in future fractions and do not consider adapting the fluence map.

At UCLA’s department of radiation oncology, Mutic and Dempsey (2014) introduce

ViewRay’s (Los Angeles, CA) adaptive planning strategy. They adapt to the DOG by re-

planning according to the current fraction and to the accumulated dose of previous fractions.

This is done under the assumption that the current fraction’s geometry is the geometry for

remaining fractions, i.e., uncertainty in future fractions’ geometries in unaccounted for.

3.3 Proposed Framework

Estimating possible geometries at each fraction (e.g., using biomechanical models as a

predictive tool), we can anticipate sequences of geometries throughout treatment (we refer

to each sequence as a scenario). Operationally, we optimize a set of plans — one for each

potential geometry — before the patient arrives, and deploy the plan appropriate to the

DOG. In this chapter, we propose a treatment planning model consistent with this approach.

More specifically, the model anticipates possible deformations in patient geometry and tracks

voxel motion in order to account for not only the dose to a voxel at a each fraction, but also

the dose accumulation throughout all fractions. This so-called “daily-offline” ART generates

plans for each possible geometry in future fractions with consideration of dose accumulative

effects, i.e., (i) the treatment that the patient has received so far, and (ii) the potential

treatments based on the potential geometries that may be realized in future fractions. In

comparison to IGRT, our model enforces a robust constraint on dose limits: no matter the

sequence of geometries realized, treatment dose limits (per fraction and cumulative) are
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satisfied.

3.3.1 Patient Geometry Uncertainty

An important assumption in this framework is that the set of possible geometries used in

the model realistically represents geometries that may be encountered when a patient comes

in for treatment. Realistically, possible patient geometries belong to a continuum, but for

problem tractability, we consider only a discrete set of geometries at each fraction. Further-

more, in this chapter we assume that the realized geometry in each fraction is independent

and identically distributed over fractions,† which results in a symmetric scenario tree; we

leave learning of geometries fraction to fraction and dynamic support (i.e., nonsymmetric

scenario tree) for future work. We note that this framework is similar to Sir et al. (2012)

with the difference being that we account for structures’ BED and we generate multiple

treatment plans, one for each geometry, and deliver the plan corresponding to the realized

geometry (or the one that is most similar). This is in contrast to generating just one plan

that is delivered no matter which geometry is realized and adapting a plan by myopically

re-planning for the day’s geometry without consideration of cumulative dose effects.

3.3.2 Chapter Outline

In the remainder of this chapter, we formalize our approach. We begin by introducing

additional notation and relevant treatment criteria that will be used. Then, we construct the

deterministic and stochastic planning models, and propose methods to solve them. We then

present the patient data that was used in a case study and report on experimental results.

†However, treatments are not independent over fractions since they will depend on which geometries
have been realized in previous and future fractions
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Fractions: t = 1 t = 2 t = 3 · · ·
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· · ·
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· · ·
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· · ·
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ω1
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· · ·
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ω3

· · ·
· · ·
· · ·

ω2

· · ·
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· · ·

ω1

· · ·
· · ·
· · ·

Figure 3.3: Example scenario tree with 3 possible geometries at each fraction. One path
from the first fraction to the last fraction is considered a scenario.
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3.4 Treatment Plan Evaluation Criteria

We largely continue to use notation of Chapter II, but introduce additional notation to

capture the time component of adaptive planning: let t = 1, . . . , T index the fractions for

some fixed time horizon T . Let xt ∈ R|N |+ and zt ∈ R|V |+ be the vectors of beamlet intensities

and doses to voxels, respectively, in fraction t. The dose matrix D is also indexed by t to

capture the fluence-dose relationship at fraction t:

zt = Dtxt, t = 1, . . . , T. (3.1)

Given a treatment consisting of T fractions, we denote by zj = (z1
j , z

2
j , . . . , z

T
j ) the sequence

of doses received by voxel j (note that this notation differs from notation in the previous

chapter, where effects of fractionation were not being considered).

3.4.1 Dose Effect Over Time: Biologically Effective Dose

To evaluate the effect of dose delivered to a voxel over potentially unequal fractions, we

use the BED (Fowler , 1989; Jones et al., 2001), which is defined as:

BEDs(zj) =
T∑
t=1

ztj +
(ztj)

2(
α
β

)
s

 , s ∈ S, (3.2)

where
(
α
β

)
s
≥ 0 is the alpha-beta ratio specific to the structure. This value reflects the

ratio of the linear to quadratic dose effects of a cell survival model. Equivalent dose in 2-Gy

fractions (EQD2) to voxel j for the entire treatment is then computed as:

EQD2s(zj) =
BEDs(zj)

1 + 2

(αβ )
s

. (3.3)

Although SBRT treatments often deliver more than 2 Gy per fraction, this metric is still

commonly considered by physicians evaluating them, because conventional RT treatments
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were delivered in 2 Gy-fractions and are more easily interpretable. Note, however, that this

metric is simply a scaled version of BED. Without impact on our optimization model, we

will plan with respect to BED instead of EQD2.

3.4.2 Structure Criteria

To evaluate a treatment plan’s effects on structures, we use the linearized EUD, whose

argument is a measure with units in Gy, d : R|Vs|+ → R+:

`EUD+
s (d(zj), j ∈ Vs) = λs

(
1

|Vs|
∑
j∈Vs

d(zj)

)
+ (1− λs) max

j∈Vs
{d(zj)} , s ∈ S, (3.4)

`EUD−PTV(dj(zj), j ∈ Vs) = λPTV

(
1

|VPTV|
∑

j∈VPTV

d(zj)

)
+ (1− λPTV) min

j∈VPTV

{d(zj)} , (3.5)

where we use λ ∈ [0, 1] in place of α in equations (`EUD-underdose) and (`EUD-overdose)

to avoid confusion with the alpha-beta ratio. Recall that if d(zj) =
∑T

t=1 z
t
j, then `EUD+

s

is convex in z for s ∈ S, and `EUD−PTV is concave in z, and treatment optimization models

formulated with these metrics typically result in convex problem, as was the case in Chapter

II (where we made the additional assumption of equal fractions, i.e., ztj = zt
′
j ∀t, t′). If

d(zj) = ztj, these functions evaluate structure criteria for a single fraction t.

3.4.2.1 OAR Damage and PTV Hot Spots

To ensure critical structures receive tolerable amounts of dose throughout treatment, we

enforce relevant BED upper bounds for all structures. For each structure s, we measure

cumulative dose effect as:

`EUD+
s (BEDs(zj), j ∈ Vs) = (3.6)

λs

(
1

|Vs|
∑
j∈Vs

BEDs(zj)

)
+ (1− λs) max

j∈Vs
{BEDs(zj)}.
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This metric is typically bounded above, resulting in a convex constraint.

3.4.2.2 PTV Coverage

To measure PTV coverage across potentially unequal fractions, we consider d(zj) =

BEDPTV(zj) (with slight abuse of notation):

`EUD−PTV(BEDPTV(zj), j ∈ VPTV) = (3.7)

λPTV

(
1

|VPTV|
∑

j∈VPTV

BEDPTV(zj)

)
+ (1− λPTV) min

j∈VPTV

{BEDPTV(zj)}.

Note, however, that maximizing (3.7) or bounding it below results in a non-convex problem,

a challenge of BED-based planning (Saberian et al., 2015; Unkelbach and Papp, 2015).

3.5 Deterministic Model

Our deterministic model, where we assume that geometry in all fractions is known a

priori, can be formulated as:

maximize `EUD−PTV (BEDPTV(zj), j ∈ VPTV) (DET-OPT-NCVX)

subject to

`EUD+
s (BEDs(zj), j ∈ Vs) ≤ UBED

s s ∈ S (3.8)

`EUD+
s (zt) ≤ u`EUD

s s ∈ S, t = 1, . . . , T (3.9)

zt = Dtxt t = 1, . . . , T (3.10)

T∑
t=1

xt ≤ b t = 1, . . . , T (3.11)

xt ≥ 0 t = 1, . . . , T. (3.12)
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Here, constraints (3.8) enforce cumulative dose bounds for OARs, whereas (3.9) enforce per-

fraction dose bounds; (3.10) model the fluence-dose relationship; and (3.11) prevent any one

beamlet’s intensity from being too high over the course of the treatment. Solving this problem

with Dt = D, t = 1, . . . , T , where D is the nominal geometry gives the nominal treatment

plan. The above problem is non-convex because of its objective; we can approximate PTV

coverage using physical dose instead of BED as the argument for `EUD:

maximize `EUD−PTV

(
T∑
t=1

ztj, j ∈ Vs

)
, (DET-OPT-CVX)

resulting in a convex formulation.

3.6 Stochastic Models

In the stochastic model, we account for the uncertainty in patient geometry at each

fraction. Let Ω := {ω1, . . . , ωK} be the set of possible patient geometries at each fraction

t. In a treatment with T fractions, a scenario is a sequence of T geometries, denoted by

ω[T ] = (ω1, . . . , ωT ) (it also corresponds to a path in the scenario tree in Figure 3.3); the

probability of ω[T ] occurring is denoted by pω[T ] . Note that the total number of possible

scenarios is |Ω|T . We also let, for 1 ≤ t ≤ T , ω[t] = (ω1, . . . , ωt) ∈ Ωt, and for 1 ≤ t < t′ ≤ T ,

we let ω[t:t′] = (ωt, ωt+1, . . . , ωt
′
) ∈ Ωt′−t+1 denote a sequence of geometries in fractions t

through t′.

In order to track dose accumulation, we assume that structures retain the same number

of voxels fraction to fraction. Then, to capture the relationship between dose in struc-

tures and various geometries, the dose deposition matrix will now explicitly depend on

geometry: D(ω), ω ∈ Ω. Then, the dose matrix at fraction t in scenario ω[T ] is the dose

matrix corresponding to the geometry ωt: Dt(ω[T ]) := D(ωt). Now that we have estab-

lished notation for geometry realization, note that subscripts capture which geometry is

realized and superscripts capture when a geometry is realized. Lastly, the dose distribution
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and fluence at time t now also depend on ω[T ]; let xi(ω
[T ]) = (x1

i (ω
[T ]), . . . , xTi (ω[T ])) and

zj(ω
[T ]) = (z1

j (ω
[T ]), . . . , zTj (ω[T ])). Our stochastic model below maximizes expected tumor

coverage subject to robust constraints on normal tissue sparing, ensuring the treatment is

safe in any realized scenario:

maximize
∑

ω[T ]∈ΩT

(
pω[T ]`EUD−PTV

(
BEDPTV(zj(ω

[T ])), j ∈ VPTV

))
(STO-OPT-NCVX1)

subject to

`EUD+
s (BEDs(zj(ω

[T ])), j ∈ Vs) ≤ UBED
s ω[T ] ∈ ΩT , s ∈ S

`EUD+
s (zt(ω[T ])) ≤ u`EUD

s ω[T ] ∈ ΩT , s ∈ S,

t = 1, . . . , T

zt(ω[T ]) = Dt(ω[T ])xt(ω[T ]) ω[T ] ∈ ΩT , t = 1, . . . , T∑T
t=1 x

t
i(ω

[T ]) ≤ b i ∈ N,ω[T ] ∈ ΩT

xt(ω[T ]) ≥ 0 ω[T ] ∈ ΩT , t = 1, . . . , T

xt(ω[T ]) = xt(ω′[T ]) ω[T ] 6= ω′[T ] :

ω[t] = ω′[t],

t = 1, . . . , T − 1.

The last family of constraints represents non-anticipativity restrictions on treatment de-

cisions. This model consists of |V |TKT + |N |TKT decision variables, KT |S| + TKT |S| +

TKT |V |+|N |KT +T |N |KT +
∑T

t=1(Kt−1) = ((T+1)|S|+|N |+|V |+|N |)KT +
∑T

t=1(Kt−1)

constraints, and KT terms in the objective. Note the significant increase in number of terms

in the objective and how the consideration of scenarios multiplies the number of decision

variables by KT . Moreover, many of the sets of constraints also multiply by a factor of KT

in this formulation in comparison to the formulation in (DET-OPT-NCVX).

We attempted to solve instances of (STO-OPT-NCVX1) for a realistic-size patient case
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with a variety of nonlinear optimization solvers, including the popular non-convex solver

Knitro (Chicago, IL), using a Linux workstation with a 3.50GHz×8 processor and 32 GB of

RAM. However, our attempts were unsuccessful: the machine ran out of memory. Next, we

consider a more concise formulation that does not require non-anticipativity constraints.

3.6.1 A More Concise Formulation

Instead of keeping track of decision variables in each fraction for each scenario, which

results in a large number of variables and non-anticipativity constraints, we use the following

more concise formulation. This modification is based on the following observation: if we

make x- and z-variables in every fraction explicitly dependent on geometry histories up to

and including the current fraction, non-anticipativity constraints are no longer necessary.

Let xω
[t] ∈ R|N | and zω

[t] ∈ R|V |, for ω[t] ∈ Ωt, t = 1, . . . , T , be the fluence map and dose

distribution, respectively, at fraction t with a history of geometries ω[t]. (Here, xi(ω
[T ]) =

(xω
[t]

i , t = 1, . . . , T ) and zj(ω
[T ]) = (zω

[t]

j , t = 1, . . . , T ).) Then problem (STO-OPT-NCVX1)

can be equivalently reformulated as:
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maximize
∑

ω[T ]∈ΩT

(
pω[T ]`EUD−PTV

(
BEDPTV(zj(ω

[T ])), j ∈ VPTV

))
(STO-OPT-NCVX2)

subject to

`EUD+
s (BEDs(zj(ω

[T ])), j ∈ Vs) ≤ UBED
s ω[T ] ∈ ΩT , s ∈ S

`EUD+
s (zω

[t]

) ≤ ulEUD
s ω[t] ∈ Ωt, s ∈ S,

t = 1, . . . , T

zω
[t]

= D(ωt)xω
[t]

ω[t] ∈ Ωt,

t = 1, . . . , T∑T
t=1 x

ω[t]
i ≤ b i ∈ N,ω[T ] ∈ ΩT

xω
[t] ≥ 0 ω[t] ∈ Ωt,

t = 1, . . . , T

x(ω[T ]) = (xω
[t]
, t = 1, . . . , T ) ω[T ] ∈ ΩT

z(ω[T ]) = (zω
[t]
, t = 1, . . . , T ) ω[T ] ∈ ΩT .

This alternate formulation has |V |
∑T

t=1 K
t + |N |

∑T
t=1K

t variables, |S|KT + |S|
∑T

t=1 K
t +

|V |
∑T

t=1 K
t + |N |TKt + |N |

∑T
t=1K

t constraints,‡ and KT terms in the objective.

As we did with (DET-OPT-NCVX), we can approximate (STO-OPT-NCVX2) with a

convex problem by considering only physical dose (instead of the BED) in the objective

function measuring PTV coverage (and the same constraints as above):

maximize
∑

ω[T ]∈ΩT

pω[T ]`EUD−PTV

(
T∑
t=1

zω
[t]

j , j ∈ VPTV

)
. (STO-OPT-CVX2)

An implementation of even this more compact model with realistic-size instances on

our prosumer machine with 64 GB RAM using commercial solvers led to running out of

memory. Therefore, in the following section we propose a heuristic approach towards solving

‡Not counting the last two sets of constraints, which are included only to make explicit the notational
convention.
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(STO-OPT-CVX2).

3.7 Diminishing Horizon Heuristic

In this section, we propose a heuristic approach towards solving (STO-OPT-CVX2). We

will limit our discussion to models that maximize objective functions based on physical dose

to the PTV, and are thus convex. These were the models solved in our computational

experiments, although the treatment plans they produced were evaluated using the more

accurate BED-based coverage metric.

3.7.1 History-Independent Stochastic Model

The challenge presented by the stochastic models of Section 3.6 is the large number

of variables and constraints resulting from considering the time and history in the decision

variables. Existing methods in the literature for solving large multi-stage stochastic programs

such as progressive hedging (Rockafellar and Wets , 1991) require solving instances for each

scenario — for even a small realistic example patient, we have 4 possible geometries over 5

fractions, resulting in 45 = 1024 scenarios, each of which takes approximately 10 minutes

on a commercial solver (assuming we are using a convex approximation of the objective

function), which would take approximately one week to solve if done sequentially.§

As a first step towards a heuristic approach for daily offline ART, we first formulate a

simplified stochastic model. This model is history-independent: in it, each treatment plan

x(ω) ∈ R|N | and corresponding dose z(ω) ∈ R|V | depend only on the geometry ω ∈ Ω realized

in a fraction, but not on the fraction number, or the history of geometries realized prior to

the fraction. In other words, each geometry ω will have a corresponding treatment plan that

will be deployed in every fraction this geometry is realized.

Although our decision space is reduced, we still want to be able to account for the

§We do not dismiss this approach entirely and leave parallelization of (approximately) solving subprob-
lems for each scenario as a possible future investigation.
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potential sequences of geometries in the counterparts to the first set of constraints and the

objective of (STO-OPT-CVX2). The history-independent stochastic model that forms the

basis of our heuristic is as follows:

maximize
∑

ω[T ]∈ΩT

(
pω[T ]`EUD−PTV

(
T∑
t=1

zj(ω
t), j ∈ VPTV

))
(SO-HI-Full)

subject to

`EUD+
s (BEDs(zj(ω

1), . . . , zj(ω
T )), j ∈ Vs) ≤ UBED

s ω[T ] ∈ ΩT , s ∈ S (3.13)

`EUD+
s (z(ω)) ≤ ulEUD

s ω ∈ Ω, s ∈ S (3.14)

z(ω) = D(ω)x(ω) ω ∈ Ω (3.15)

T∑
t=1

x(ωt) ≤ b ω[T ] ∈ ΩT (3.16)

x(ω) ≥ 0 ω ∈ Ω. (3.17)

In this formulation, the superscript t is only present to keep track of realizations of geometries

in various scenarios ω[T ]; recall that decisions depend on the geometry realized in the fraction,

but no longer depend on time. Constraints (3.13) still enforce overall BED limits for any

possible sequence of geometries. The number of constraints in (3.13) and (3.16) is quite

large. We propose a reduced formulation below, with fewer constraints, based on the idea of

“basic scenarios” introduced in Sir et al. (2012).

Given a scenario, i.e., a sequence of geometries ω[T ] = (ω1, . . . , ωT ), let us define a vector

of K natural numbers (Nk(ω
[T ]), k = 1, . . . , K) where Nk(ω

[T ]) is the number of times

geometry ωk appears in ω[T ] (and thus
∑K

k=1Nk(ω
[T ]) = T ). Note that these vectors are

the same for any scenarios that are permutations of one another. According to expression

(3.3), BED of a voxel is affected by magnitudes of doses delivered in various fractions,

but not the specific order in which they were delivered. Using this observation and the

history-independent property of problem (SO-HI-Full) we can therefore specify cumulative
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constraints in the model using distinct vectors (Nk(ω
[T ]), k = 1, . . . , K) instead of specific

scenarios.

We can take this logic one step further and specify these constraints only for K basic

scenarios, which Sir et al. (2012) define as scenarios where a single geometry is repeated T

times (i.e, Nk(ω
[T ]) = T for some k). The resulting formulation is

maximize
∑

ω[T ]∈ΩT

(
pω[T ]`EUD−PTV

(
T∑
t=1

(
zj(ω

t)
)
, j ∈ VPTV

))
(SO-HI)

subject to

`EUD+
s (BEDs(

T times︷ ︸︸ ︷
zj(ωk), . . . , zj(ωk)), j ∈ Vs) ≤ UBED

s k = 1, . . . , K, s ∈ S (3.18)

`EUD+
s (z(ω)) ≤ ulEUD

s ω ∈ Ω, s ∈ S (3.19)

z(ω) = D(ω)x(ω) ω ∈ Ω (3.20)

T · x(ωk) ≤ b k = 1, . . . , K (3.21)

x(ω) ≥ 0 ω ∈ Ω. (3.22)

Proposition III.1. Optimization problems (SO-HI-Full) and (SO-HI) are equivalent.

Proof. The proof follows the same logic as in Proposition 1 of Sir et al. (2012). For simplicity,

we focus on constraint (3.18) for one structure and the corresponding family of constraints

(3.13), and drop the subscripts s; analysis of constraints (3.16) and (3.21) is similar and

simpler.

These optimization problems have the same objective functions; the feasible region of

(SO-HI-Full) is contained in (SO-HI) because the latter has fewer constraints (only ones for

basic scenarios). It remains to establish the converse. Suppose (x(ω) ≥ 0, z(ω) ≥ 0, ω ∈ Ω)

is feasible for (SO-HI). In particular, z(ωk) satisfies constraints (3.18) for k = 1, . . . , K.

Consider an arbitrary scenario ω[T ], which can be characterized by vector (Nk(ω
[T ]), k =

1, . . . , K) as discussed above. We will show that (z(ω1), . . . , z(ωT )) satisfies global BED
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constraint (3.13).

Based on (3.2), the BED of a voxel j in this scenario is:

K∑
k=1

Nk(ω
[T ])

(
zj(ωk) +

zj(ωk)
2

(α/β)

)
,

and thus, for a structure’s global BED constraint (3.13) for this scenario, we have

`EUD+

(
K∑
k=1

Nk(ω
[T ])

(
zj(ωk) +

zj(ωk)
2

(α/β)

)
, j ∈ V

)

=`EUD+

(
K∑
k=1

Nk(ω
[T ])

T
· T
(
zj(ωk) +

zj(ωk)
2

(α/β)

)
j ∈ V

)

≤
K∑
k=1

Nk(ω
[T ])

T
`EUD+

(
T

(
zj(ωk) +

zj(ωk)
2

(α/β)

)
j ∈ V

)

≤
K∑
k=1

Nk(ω
[T ])

T
UBED = UBED,

where the first inequality is due to convexity of `EUD+, and the second results from applying

constraints (3.18) for each k.

The resulting model in (SO-HI) contains |V |K+ |N |K decision variables, |S|K+ |S|K+

|V |K + K + |N |K = (2|S| + |V | + |N | + 1)K constraints, and KT terms in the objective.

Note the significant reduction in numbers of decision variables and constraints from to those

of (STO-OPT-CVX2). A summary of simplifications made to the original stochastic model

(STO-OPT-NCVX2) to arrive at the history-independent model (SO-HI) can be found in

Table 3.1. A brief discussion of how these simplifications can be addressed in future work is

also included.

The following proposition considers the relationship between optimization problems

(SO-HI) and (STO-OPT-CVX2).

Proposition III.2. Optimization model (SO-HI) is a restriction of optimization model

(STO-OPT-CVX2).
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Proof. Let z(ω), x(ω), ω ∈ Ω be feasible to (SO-HI), and thus to (SO-HI-Full). For every

sequence of geometries ω[T ] ∈ ΩT , let zω
[t]

= z(ωt) and xω
[t]

= x(ωt) for t = 1, . . . , T . The

resulting solution is easily seen to be feasible to (STO-OPT-CVX2), and to have the same

objective function value as z(ω), x(ω), ω ∈ Ω has in problem (SO-HI).

3.7.2 Diminishing Horizon Heuristic Based on History-Independent Model

We will use (SO-HI) as the foundation of a diminishing-horizon open-feedback loop con-

trol approach to daily offline ART. This approach is similar in spirit to the one in Sir et al.

(2012). However, since the setting in the latter is one where imaging is done after a fraction

is delivered, only a single plan was computed, to be used in the next fraction regardless of

the realized geometry. Since in our setting we can take advantage of imaging performed

just prior to each fraction, we compute, offline, a separate treatment plan for each possible

geometry.

The diminishing horizon heuristic works as follows. Before the treatment starts, at “time

0,” we solve the problem (SO-HI) to determine plans to be used for every possible geometry

encountered in fraction 1. In fraction 1, the realized geometry ω1 is observed via imaging,

and the corresponding treatment will be delivered; let us denote by (x̄1, z̄1) the beamlet

intensities used and dose distribution delivered in this fraction.

To determine the geometry-dependent plans to be used in the second fraction, we modify

the the model (SO-HI): we focus only on scenarios where the geometry realized in the first

fraction is ω1, and we fix values of x and z associated with the first fraction to x̄1 and

z̄1, respectively, wherever appropriate. We solve the resulting (smaller) problem, and use

its solution to deliver treatment appropriate to the geometry realized in fraction 2. We

repeat this process for each remaining fraction by updating the above model with previously

treated fractions; since in each step we consider scenarios with shorter sequences of future

realizations, the problem instances we consider get smaller.

To formalize the above discussion, suppose in the first τ fractions we observed geometries
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ωt and used beamlet intensities x̄t to deliver dose distributions z̄t, for t = 1, . . . , τ . The

optimization problem solved prior to fraction τ + 1 is:

maximize
∑

ω[τ+1:T ]∈ΩT−τ

(
pω[τ+1:T ]`EUD−PTV

(
τ∑
t=1

z̄j(ω
t) +

T∑
t=τ+1

zj(ω
t), j ∈ VPTV

))
(SO-HI(τ ; ω[τ ]))

subject to

`EUD+
s

(
BEDs(z̄

1
j , . . . , z̄

τ
j ,

T−τ times︷ ︸︸ ︷
zj(ωk), . . . , zj(ωk)), j ∈ Vs

)
≤ UBED

s k = 1, . . . , K, s ∈ S

(3.23)

`EUD+
s (z(ω)) ≤ ulEUD

s ω ∈ Ω, s ∈ S (3.24)

z(ω) = D(ω)x(ω) ω ∈ Ω (3.25)

(T − τ)x(ωt) ≤ b−
τ∑
t=1

x̄t ω[τ+1:T ] ∈ ΩT−τ

(3.26)

x(ω) ≥ 0 ω ∈ Ω (3.27)

It is clear that the heuristic ensures that each plan for each geometry at each fraction

satisfies per-fraction limits. The plans generated by this heuristic also satisfy overall BED

limits because each plan is obtained through an instance of (SO-HI(τ ; ω[τ ])) that accounts for

doses delivered so far in previous fractions, and for all possible geometries in future fractions,

covering all potential remaining scenarios. As time progresses, the objective function of

(SO-HI(τ ; ω[τ ])) requires fewer terms because of the diminishing horizon.

The comparison of the solutions obtained by the diminishing horizon heuristic to the

stochastic models of Section 3.6 is not as clear-cut, since by its very nature, the diminishing

horizon heuristic only generates plans appropriate to a particular realized scenario. However,

one can envision a similar diminishing horizon implementation based on these stochastic

models, in which case the recourse problem solved for each partial scenario ω[τ ] would be a
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relaxation of the corresponding instance of (SO-HI(τ ; ω[τ ])).

3.8 Computational Experiment

3.8.1 Representing Interfraction Motion

In order to apply adaptive planning methodology discussed in this chapter, we need to

identify the dose deposition matrix D(ω) associated with every geometry realization incor-

porated into our model. Janssens et al. (2009) show the promise of computing dose accu-

mulation via deformable image registration to track motion at the voxel level. To generate

matrices D(ω), the pCT is registered to the image of a potential geometry (e.g., via CBCT or

MRI) using MORFEUS (a deformable image registration algorithm based on biomechanical

and finite-element modeling, see Brock et al., 2005; Samavati et al., 2015). The resulting de-

formation fields map the locations of each voxel (this is typically a point in the cube, such as

the center or corner) on the pCT to a new location representing a deformed geometry. Recall

that dose is energy divided by mass. To track dose to each voxel, we assume conservation

of mass of voxels holds, which is consistent with conservation of energy for a fixed amount

of dose. (Zhong and Chetty (2017) discuss how the law of conservation of energy is violated

when there are changes in mass and changes in dose mapping is not properly applied.) A

2D example of voxel assignment is shown in Figure 3.4. This deformation model implies

relationship D(ω) = B(ω)D, where D is the dose depositions matrix from pCT, and B(ω)

is a binary matrix where Bij = 1 if voxel i in the pCT moved to the location of spatial voxel

j in geometry ω.¶

3.8.2 Experimental setup

In this subsection, we describe the characteristics of the patient case, along with some

other model specification, in our computational experiment. Table 3.2 shows constraint

¶B(ω) is not necessarily a permutation matrix.
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Figure 3.4: 2D example of assignment of dose deposition coefficients for deformed geometries.
The 3-by-3 grid represents static voxels corresponding to dose deposition coefficients (Dij).
In this example, the blue voxel moves from the center to the right middle location and is
assigned the coefficients corresponding to the latter location. The red voxels are compressed
and both will have the dose coefficients of the bottom center static voxel.

parameters used for an example liver patient. We considered T = 5 (typical for liver SBRT

treatment) and derived values of UBED
s from physical dose limits from clinical protocol at the

University of Michigan Department of Radiation Oncology.‖ Values of u`EUD
s were chosen to

be 10% higher than typical per-fraction physical dose limits to allow flexibility in boosting

dose. The number of voxels in the patient was 15,615 and the number of beamlets was 989.

We considered |Ω| = 4. For simplicity, we assumed each geometry to be equally likely,

i.e., pω[T ] =

(
1

|Ω|

)T
=

1

1024
.∗∗ Starting with the nominal geometry based on pre-treatment

imaging, we applied 3 synthesized deformations, based on observations of a patient case, to

generate the set Ω.†† In ω2, the liver deforms into what would be a higher dose region in

‖The total physical dose limits were divided into per fraction doses assuming equal fractions, and together
used to obtain BED limits
∗∗Recall that in Diminishing Horizon Heuristic, these probabilities are updated in the objective function

after each fraction, e.g., after fraction 1, the number of remaining scenarios is 1024/4=256 scenarios, etc.
††One of these geometries, ω2, was derived by applying a realistic deformation to this patient liver, but
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Simplification Impact Future Work
Countably many geometries Countably many plans

to check; makes problem
tractable

Patient geometry likely will
not exactly match ones we
considered, but we can also
slightly modify one of the
optimized plans; robust ap-
proach to account for vari-
ation around each extreme
geometry

Equally likely geometries Simplifies objective func-
tion

Base probability of geome-
tries on historical data,
biomechanical models for
abdominal structures

Symmetric scenario tree Set of patient geometries is
static over fractions

Set of patient geometries
and their probabilities may
be updated fraction to
fraction via a statistical
learning model, imply-
ing the uncertainty is
fraction-dependent

Convex objective Reduces problem size (num-
ber of constraints, terms
in objective, and variables);
models efficiently solvable
to global optimality

Develop a global optimiza-
tion method to solve origi-
nal non-convex problem

Table 3.1: Summary of simplifications made in some of our models, their effects, and potential
for future work.
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a treatment designed only for the nominal geometry, in which case it would exceed mean

per-fraction dose bounds; in ω3, we artificially moved the duodenum to compress against the

PTV; in ω4, the duodenum is farther away from the PTV and other OARs are within safe

distances, allowing for potential boosting of dose to the PTV.

Structure s λ+
s for `EUD+

s (α/β)s u`EUD
s UBED

s

Chest Wall 0 2.5 7.7 133
Duodenum 0 2.5 6.6 102

Heart 0 2.5 11.5 273
Kidney-Left 0 2.5 3.3 30

Liver 1 2.5 3.5 135
PTV 0 10 17.6 208

Stomach 0 2.5 6.6 102
Colon 0 2.5 7.0 114

Spinal Cord 0 2.5 5.5 75

Table 3.2: Structures and their parameters for patient liver case. For measuring PTV
coverage, λ−PTV = 0.84.

Structure Metric Fx - Limit ω1-Nominal ω2 ω3 ω4

Chest Wall Max 7.00 7.00 7.00 7.00 7.00
Duodenum Max 6.00 3.73 3.24 16.00 3.44

Heart Max 10.45 0.17 0.31 0.17 0.17
Kidney-Left Max 3.00 0.88 0.65 0.88 0.88

Liver Mean 3.50 3.50 3.88 3.50 3.50
Stomach Max 6.00 3.84 3.84 3.84 3.84

Colon Max 6.40 6.36 6.36 6.36 6.36
Spinal Cord Max 5.00 1.76 1.76 1.76 1.76

Table 3.3: Per-fraction structure criteria resulting from the application of the nominal plan
to each potential geometry (ω1 is nominal). Intolerable levels of dose are in red.

We implemented all models using AMPL (Albuquerque, NM) and solved all instances

with Mosek (Mosek , 2010), a general-purpose convex programming solver.

3.8.3 Results

To illustrate the potential importance of adaptive planning, we first obtained the nomi-

nal plan by solving an instance of (DET-OPT-CVX) using the nominal geometry in every

the deformation was observed on a different patient.
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fraction. We then applied the nominal plan to the other three geometries, and calculated

relevant metrics of the resulting dose distributions. Table 3.3 shows the per-fraction effects

of applying the nominal treatment plan to a different patient geometry.

To analyze performance of the Diminishing Horizon Heuristic (DHH), we applied the

heuristic to every possible scenario. Recall that, due to the robust nature of the constraints

in our models, the treatment is guaranteed to be safe (i.e., meet dose constraints) for all OARs

in all fractions and all scenarios. Therefore, we focus on studying PTV coverage (using the

true measure of coverage from (3.7)) of plans obtained via the DHH in each scenario. As a

benchmark, if the nominal geometry occurred at each fraction and we delivered the nominal

plan, the coverage achieved would be 204.2 Gy. Our findings are summarized in Figure 3.5.

Figure 3.5: Distribution of PTV Coverage achieved by plans generated via DHH. In 90%
of scenarios were able to meet the typical prescription dose of 132 Gy (black dashed line).
Distribution is also categorized by number times the most limiting geometry, ω3, occurred
(bar colors).

Observe that since the maximum PTV dose at each fraction is bounded, we can obtain

an upper bound on achievable PTV coverage. With a per-fraction bound of 17.6 Gy to each
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τ Number of Instances Average Runtime (seconds)
0 1 17,300
1 4 4,900
2 16 3,400
3 64 2,600
4 256 500

Table 3.4: DHH’s average instance runtime by length of history τ . K = 4;T = 5.

PTV voxel, the cumulative BED is:

5

(
17.6 +

17.62

10

)
= 242.9 Gy.

Moreover, our constraints include an upper bound on cumulative maximum PTV BED of

208 Gy (to constrol for hot spots), which is more restrictive than the above upper bound.

Clearly, this bound is likely to be loose as rarely will all voxels accumulate this BED; most

scenarios in Figure 3.5 achieve less coverage than this. On the other hand, for scenarios with

N3 = 0, our heuristic was able to achieve close to this level of coverage.

3.9 Discussion

Daily offline adaptive planning provides a library of plans for each potential geometry

that arises. Our approach takes into consideration all combinations of potential geometries

throughout treatment, resulting in an adaptive strategy that is not dependent on the nominal

geometry and nominal treatment plan. This flexibility in adapting the dose distribution spa-

tially (as opposed to shifting a pre-defined dose distribution) i) guarantees feasibility of both

cumulative and per-fraction structure dose upper bounds, and ii) allows for boosting dose

in fractions with favorable geometry, which can compensate for fractions with unfavorable

geometry, should they occur. The reader may wonder if it is worth updating the model each

fraction and applying updated plans over solving the problem (SO-HI) and simply re-using

those plans. In Figure 3.6, we compare the quality of PTV coverage achieved by using plans
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Figure 3.6: PTV Coverage comparison: applying DHH versus using solution of (SO-HI),
a.k.a. DHH1st Stage.

obtained by applying DHH to the coverage obtained using only the solution of (SO-HI). In

over 90% of scenarios, the former achieves significantly better PTV Coverage.

Recall that IGRT relies solely on the nominal plan for the nominal geometry. Since there

is no boosting of dose, if, based on the initial imaging, ω3 were designated as the nominal

geometry, then the coverage from the resulting plan would be low throughout the treatment

horizon no matter which favorable geometry is realized after planning. Specifically, in this

patient case, the nominal PTV coverage would be 63.3 Gy (in BED), which is an upper

bound on coverage since in all other geometries, no structures are in danger and IGRT

would not adapt. This would result in significant loss of valuable PTV coverage that could

compensate fractions with poor coverage. However, in DHH, as seen in Figure 3.5, if ω3

occurs at most 2 times throughout treatment, we are able to still achieve prescription dose

thanks to boosting.

Although for evaluation purposes we considered all possible scenarios, a practical appli-

cation of DHH would require significantly less computation. In particular, only one instance
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of the model would need to be solved before each of T fractions, K plans per model would

be obtained — one for each geometry. Whichever plan was delivered would then be used

to update the instance used for the following fraction. Therefore, at each fraction, only K

plans would need to go through quality assurance (QA) and leaf-sequencing (LS) before the

patient arrives, resulting in a total of TK plans to be processed throughout the treatment

horizon. This addresses the issue that daily replanning and QA lengthens the patient’s visit.

Suppose daily replanning and QA were efficient procedures. The current replanning

paradigm is myopic and adapts plans by assuming the observed geometry at the current

fraction is the geometry for all remaining fractions. Although this updates information for

the current fraction, our model is still more informative, realistic, and robust than replanning

due to considering geometry uncertainty in future fractions.

Our model assumes treatment at each fraction, but there are also rare occasions when

patients arrive with geometries that are not worth treating (e.g., ω3 could be considered

an example of such geometry). One future direction of this work is to consider the option

of postponing treatment when such geometries arise. This also leads to questions such as,

“what makes it ‘worth’ treating a patient on a particular day?” and “should skipped days be

compensated later on, e.g., by allowing for more aggressive treatment (e.g., adapting per-fx

bounds) in later fractions? if so, by how much?” Furthermore, in SBRT, or even conventional

treatment schedules (30 fractions), the distribution of geometries can be updated and learned

as treatment progresses: if favorable geometries are more likely, then skipping unfavorable

geometries could be a risk worth taking, or if unfavorable geometries are more likely, then

each fraction should be treated since only so much coverage can be achieved anyway.

3.9.1 Unique Number of Scenarios in DHH

Since the order in which geometries in future fractions occur does not affect the corre-

sponding terms of the objective functions of (SO-HI) or (SO-HI(τ ; ω[τ ])), we can simplify

these functions by considering the classic “Stars and Bars” problem (Feller , 1950). For ex-
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ample, the objective function of (SO-HI) can be reduced from KT to
(
T+K−1
K−1

)
terms. When

T = 5 and K = 4, this would mean a reduction from 1,024 to 56 terms. We found that this

model reduction was not necessary in our experiments (recall the instance with no history

took 17,300 seconds), but it may help to speed up computation when solving problems with

a larger K or T (e.g., with conventional fractionation).

3.10 Conclusion

The proposed ART framework considers all potential geometries in all fractions. This

look-ahead approach creates plans for those geometries that will always be feasible and

maximize PTV coverage no matter what sequence of geometries is realized. Although the

true stochastic optimization model presents computational challenges, a few simplifications

leads to a tractable model (summarized in Table 3.1) while still achieving high treatment

plan quality. One such simplification is considering an uncertainty set with a small number

geometries; the true uncertainty set is realistically larger. In practice, the uncertainty set

considered should cover a variety of extreme geometries so that a patient would arrive with

a geometry close to one of them. Unlike IGRT, our framework does not rely on the geometry

that the patient has when initially being imaged for treatment planning (i.e., the nominal

geometry). This added flexibility allows for a set of treatment plans, each catered toward a

potential geometry, to achieve the best PTV coverage possible. Finally, this approach does

not require drastic change of treatment planning workflow (our heuristic can be done offline)

and adds little additional effort in the clinic during the actual time of treatment.
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CHAPTER IV

Multicriteria Optimization for Brachytherapy

Treatment Planning

4.1 Introduction

In brachytherapy (BT) treatment planning, the result of a single application of commer-

cial treatment planning software is often not the final plan that ultimately gets delivered.

Commercial treatment planning systems usually produce plans based on the goal values of

Dose Volume Histogram (DVH) metrics specified in the clinical protocol. If not all goals are

simultaneously achievable (i.e., feasible), the physician must make trade-offs among feasible

plans. Current commercial systems require the physician to guess-and-check input param-

eters (e.g., goal doses or objective weights) to explore trade-offs between candidate plans

— a time-consuming process that is not intuitive. Because treatments need to be made

essentially in real time (i.e., based on images taken after the patient has been put under

anesthesia, planned and delivered while the patient is still under anesthesia), the physician

does not have an opportunity to fully consider all trade-offs and may forgo promising plans.

The goal of this chapter is to provide an intuitive guided user interface for directly

navigating trade-offs of DVH metrics among feasible plans for BT planning. Generating

a dose-volume metrics trade-off surface requires solving several instances of a non-convex

model, each of which is a mixed-integer program (Lee et al., 2003; Romeijn et al., 2003, 2006).
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Due to the size of instances in radiotherapy (both external and interal source) treatment

planning, they cannot be efficiently solved, especially given the limited time available for

treatment planning in BT. Constraints on DVH metrics may also be familiar to the reader

as value-at-risk constraints (Romeijn et al., 2003).

4.1.1 Related Literature

Many aspects of BTTP optimization (deciding catheter locations and/or dwell times)

have been studied. For work on source placement optimization and permanent implants,

i.e., sources with short half-lives, see, e.g., D’Souza et al. (2001); Lee and Zaider (2003);

Lee et al. (1999). We will focus on HDR-BT planning, which uses temporary implants.

Milickovic et al. (2002) propose a multicriteria model that optimizes both dwell times and

catheter selection for prostate cases by enforcing DVH criteria for problem with 3 structures

and no more than 3000 voxels, and stop their MIP solver once they are satisfied with PTV

coverage. Although solution times for these instances range from under one minute to 15

minutes, it is unclear how their method scales with more voxels and structures; although

their model achieves desirable DVH criteria in their example patients, the variability in

solution time also suggests it’s unfit for trade-off surface generation. Hybrid Inverse Planning

Optimization (HIPO) (Karabis et al., 2005, 2009) uses voxel-based penalties, with a logistic

function instead of the step function (1 if upper or lower bound doses are exceeded and 0

otherwise) is applied to smooth the objective. A simulated annealing-based heuristic is used

to solve their model to a local optimum. Giantsoudi et al. (2013) propose a model that

uses gEUDs to mimic DVH metrics, which was competitive or outperformed HIPO, and

recommend gEUD parameters to use in BTTP to achieve higher dose conformity, decreased

OAR dose, but also decreased PTV coverage. Although these approaches show promise in

achieving high quality DVH metrics, there is a lack of discussion of how to control for trade-

offs when DVH goals from clinical protocol are not simultaneously achievable. For other BT

planning approaches, see Dinkla et al. (2015); Lahanas et al. (1999, 2003).
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There has also been extensive research in multicriteria optimization (MCO) for external

beam RT, especially in IMRT (e.g., see Bokrantz and Forsgren, 2013; Breedveld et al., 2009;

Craft et al., 2005, 2012; Long et al., 2012; Romeijn et al., 2004). We highlight a few of

the popular approaches because the multicriteria optimization concepts are analogous to

multicriteria BTTP. Craft et al. (2005) discuss how much time can be saved if a planner uses

an MCO-based planning system. Romeijn et al. (2004) propose a framework for multicriteria

problems based on convex criteria and provide conditions under which non-convex treatment

criteria can be transformed into equivalent convex ones (e.g., tumor control probability,

normal tissue complication probability, gEUD, EUD), and state that criteria such as dose-

volume metrics are “fundamentally nonconvex, i.e., transformations to convex criteria... do

not exist.” Long et al. (2012) rank the criteria in a specific order and consider tradeoffs

between two consecutive criteria at a time (called a stage) based on this ranking. Once

values are chosen for the metrics for the criteria considered in the current stage, those

metrics are bounded by these values for subsequent stages, where other criteria that are

lower in the ordering are considered. Providing a physician with two criteria to trade off at

a time makes the task intuitive and simple. However, once a criterion’s value is bounded,

it is difficult in this process to return to that criterion to explore other potential trade-

offs. Breedveld et al. (2009) show the equivalence between the weighted-sum method and

ε-constraint method with respect to the Pareto-optimal solutions they generate for convex

problems and explain how to find the relevant parameters in one formulation given a solution

from the other. They build on a two-phase ε-constraint method (see Breedveld et al., 2007)

that is an auto-planning method, where prioritization of criteria and specification of goal

doses for those criteria are required inputs. Once a candidate plan is found, it may be that

the planner desires to re-adjust this plan (e.g., to adapt), which can be done by i) finding the

equivalent weighted-sum problem that achieves the candidate plan and adding a constraint

to reflect the minor adjustment to obtain a final plan.

There have also been a few interactive GUIs developed for (mostly) external beam treat-
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ment planning (see, e.g., Craft et al., 2007; Monz et al., 2008; Ripsman et al., 2015; Thieke

et al., 2007) Craft et al. (2007) introduce a GUI involving sliders for trading off multiple

EUD criteria. Ripsman et al. (2015) develop an interface for Gamma Knife (Elekta, Stock-

holm) treatment planning. Monz et al. (2008); Thieke et al. (2007) propose an interface for

IMRT planning, which consists of a “navigation star” that contains an axis for each struc-

ture criterion and an algorithmic foundation for generating the set of plans to be browsed

by the planner on the star. The interface limits the user to certain portions of the star to

limit the ranges of values of each axis (i.e., metric). However, no pairwise metric trade-off

information is portrayed (or even obtainable). Ruotsalainen et al. (2010) consider MCO

problems for HDR-BT, but do not explain their claim of obtaining Pareto-optimal solutions

when non-convex objectives are included.

To approximately convexify DVH, or VaR, constraints in IMRT planning, Romeijn et al.

(2003) is the first to propose using conditional value-at-risk (CVaR) (a distribution’s tail

average, instead of a quantile) constraints in an RTTP model. Clark et al. (2008) incorporate

CVaR metrics in a prioritized optimization framework and propose finding a quantile that

correlates well to rectum V40 (percent volume receiving at least 40% of the prescribed dose)

according to their clinical archive of prostate treatment plans, suggesting that good choices

of CVaR quantiles may not be the same as VaR quantiles, and existence of an “ideal”

quantile parameter (or range of parameters) when using CVaR approximations. Holm et al.

(2013) extended this approach to brachytherapy in conjunction with an objective function to

improve homogeneity of dose in the PTV. Finally, Engberg et al. (2017) have proposed using

CVaR objectives in a multi-objective framework for IMRT and recommend this approach over

conventional voxel-based quadratic penalties. However, their choice of parameters for CVaR

to approximate VaR only provides bounds on, rather than direct control of, VaR metrics,

which may be too conservative and exclude plans that achieve better values, especially if the

framework transitions to HDR-BT.

Our work makes the following additional contributions:
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• Parameter choice. Quantile parameters for CVaR in previous works have been manually

tuned, and there has been no general discussion of what are good choices; we conduct

such an analysis and make recommendations on appropriate choices in the context of

BT for the breast treatment site. We add to our test bed an example case for the

prostate and for cervix treatment sites. All investigations are empirical.

• Improving CVaR approximation. In BT, certain structures (e.g., PTV) may have

long upper tails in their DVHs, causing the mean-tail-dose to be skewed by extremely

high doses. We propose an improvement in convex approximation to VaR by excluding

voxels likely to receive high doses, resulting in a modified CVaR called truncated CVaR

(TCVaR).

• Trade-off surface generation. We provide a process for “sketching” a trade-off surface of

relevant DVH metrics (for the general case of 3 or more metrics), with controlled spac-

ing between plans, and describe an interpolation of dwell-times for further populating

the surface with more plans without re-optimization, while preserving plan quality.

• Displaying and navigating the trade-off surface. Due to the limited number of criteria

considered in HDR BT planning (typically no more than 6), we are able to show more

information for making trade-offs. We introduce a guided user interface that is simple

and intuitive for the physician to easily make trade-offs with controlled step sizes

during real-time planning by providing local information on pairwise metric trade-offs

surrounding the current plan. The plan chosen is deliverable, i.e., it is composed of

feasible dwell times.
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4.2 Methods and Materials

4.2.1 Patient Cases

Our treatment planning approach is retrospectively tested on breast, cervix, and prostate

treatment sites (3 of each, differing in geometry). Tables 4.1–4.3 show typical DVH metric

goals for clinical protocols at the Mayo Clinic (Rochester, MN) for these sites. The expression

“Dq,” where q ∈ (0, 100) is the dose to q% of the structure volume while “Dxcc” is the dose

to x ≥ 0 cubic centimeters of the structure.

DVH Metric Breast (× Tx Dose)
Tx Dose (cGy) [700, 340, 400]

PTV D95 ≥ 100%
PTV D15cc ≤ 200%

Pectoralis Max ≤ 125%
Chest Max ≤ 100%
Skin Max ≤ 100%

Table 4.1: DVH Metric Clinical Protcol (% Tx Dose) for Breast Cases. Tx Dose = Prescribed
dose to 95% of the tumor volume. There are three Tx doses listed, one for each breast case
tested.

DVH Metric Cervix
Tx Dose (cGy) 700

PTV D95 ≥ 100%
Bladder D2cc ≤ 80%
Rectum D2cc ≤ 70%

Small Bowel 2cc ≤ 50%
Large Bowel 2cc ≤ 70%

Ovoid-L and R Max ≤ 200%

Table 4.2: DVH Metric Clinical Protcol (% Tx Dose) for Cervix Cases. Tx Dose = Prescribed
dose to 95% of the tumor volume.

4.2.2 Trade-off Surface

Our ultimate goal is to design an intuitive GUI to help the physician in making trade-offs

among several treatment planning criteria, or metrics. This would require construction of a
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DVH Metric Prostate
Tx Dose (cGy) 1500

PTV D1cc ≤ 400%
PTV D95 ≥ 100%

Bladder D1cc ≤ 75%
Rectum D1cc ≤ 75%
Urethra D10 ≤ 115%
Urethra Max ≤ 125%

Table 4.3: DVH Metrics Clinical Protocol (% Tx Dose) for Prostate Cases. Tx Dose =
Prescribed dose to 95% of the tumor volume.

trade-off surface of treatment plans in the space of dimension equal to the number of metrics

considered. The desired qualities of the trade-off surface and plans that populate it include:

1. The trade-off surface should be non-dominated, i.e., any plan on the surface cannot be

improved in one metric without doing worse in some other metric.

2. To navigate the trade-off surface, the clinician should be able to choose one metric to

improve/worsen as a trade-off with one or more other metrics (to worsen or improve,

respectively).

3. When considering trade-offs resulting from changing a particular metrics, the clinician

should be able to choose a “step size,” i.e., the magnitude of desired change in this

metric, while the consequent changes in the other metrics may vary (since trade-off

rates are not known a priori).

4. Although the clinician should be able to consider trade-offs resulting from very small

changes, the trade-off surface has to be generated within limited time allowed for

computation (e.g., solving optimization problems), and thus has to be represented by

only a finite (and fairly small) number of distinct plans. Other plans on the trade-off

surface should be generated “on-the-fly,” with minimal computational effort.

5. All treatment plans generated in the process of exploring the trade-off surface should

be deliverable, i.e., there should exist a set of dwell times that achieve the metric values
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selected on the trade-off surface. Moreover, and the dwell times for the chosen plan

should be easy to compute.

Figure 4.1: Screen capture of example GUI. Left: trade-off(s) can be made by selecting
which criterion to “heat” (increase dose) vs “cool” (decrease dose) at the expense of another
criterion (other criteria) by the green bar selection; Right: Visualization of DVH, dose
distribution, and dwell times corresponding to the current plan on the trade-off surface.a

aThis GUI was conceptualized by a certified medical physicist.

An example of a possible implementation of such a GUI is depicted in Figure 4.1 for a case

with three metrics of interest concerning PTV, urethra, and rectum. On the right-hand side

are dose washes, the DVH, and dwell times corresponding to the current plan in the trade-off

space. On the left-hand side are 3 rows, each corresponding to a structure-and-metric pair

of interest (called “structure of interest” for brevity). In the leftmost column are values of

the current metric and buttons “Heat” and “Cool,” which are clinical jargon to increase and

decrease the metric, respectively. The metric is changed by trading off with at least one
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other metric, which can be chosen by selecting one or multple green bar(s) in the middle

columns of the corresponding row. Also in the middle columns are graphs: each graph is

a trade-off line plot between the row’s structure of interest and the column’s structure of

interest. Each of these plots relates how two metrics vary on the trade-off surface while all

other metrics are held constant.

4.2.3 Notation

We use notation similar to what is found in Deufel and Furutani (2014). Let S be

the set of potential dwell locations and V — the set of all voxels. Let d ∈ R|V | be the

dose distribution, s ∈ R|S| — the source strengths, and let G ∈ R|V |×|S| denote the dose

deposition matrix, where an entry Gji is the dose deposited in voxel j from source i at unit

source strength. Similarly to IMRT, d and s are related by:

d = Gs. (4.1)

Let ~f = (f0, f1, . . . , fK) : RV
+ → RK+1

+ be a vector-valued function of d, with K + 1

components (K ≥ 1), where each component corresponds to a metric reflecting a criterion

of interest. Let Vk ⊆ V, k = 0, . . . , K the set of voxels relevant to criterion k.

4.3 Representing and Navigating the Trade-off Surface

Because of the need for real-time BT planning, it is not possible to solve an optimization

problem for every plan that will be considered on the trade-off surface. As a compromise,

we propose obtaining, via optimization, a finite subset of the trade-off surface with sufficient

granularity to “span” the surface; the choice of the level of granularity can be made by the

user. This initial set of plans can then be used to navigate the continuous trade-off surface

via interpolation.

Suppose that we have obtained the initial finite set, or library of plans L. For each plan l ∈
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L, sl is the vector of dwell times of this plan, and ~f l ≡ ~f(Gsl) = (f0(Gsl), f1(Gsl), . . . , fK(Gsl))

denotes the values of metrics of interest. We assume that all plans in the library are non-

dominated, and thus corresponding metric vectors belong to the tradeoff surface. In this

section, we will discuss an interpolation methodology that can be used to quickly “fill out”

the surface based on this library of plans without solving additional optimization problems,

and a process a clinician can use to navigate the surface while exploring trade-offs between

the metrics; the process we used to generate the library is the topic of the following section.

4.3.1 “Filling out” the Trade-off Surface via Interpolation

As before, let L be the finite library of plans such that points ~f l, l ∈ L belong to the

trade-off surface. Since this library is likely to be rather small, these points provide a fairly

sparse representation of the surface. To “fill in,” or provide a denser representation of the

surface, we propose the following technique.

Let L = {(f l1, . . . , f lK), l ∈ L} ⊂ RK
+ be the set of values of metrics 1 through K of the

library plans, and compute a triangulation of RK with vertices in L. Although a variety of

triangulation methods exist, we chose the Delaunay triangulation method, which typically

forms triangles that are as close to equilateral as possible, as opposed to “thin” scalene ones.

Let ψTRI(L) : conv(L) → LK+1 × [0, 1]K+1 be an oracle that, given a point q ∈ conv(L),

returns the K + 1 vertices of tetrahedron t(q) ∈ LK+1 that contain q, according to the

triangulation, and bt(q) ∈ [0, 1]K+1 that are the corresponding barycentric coordinates, so

that

q =
K+1∑
i=1

bti(q)ti(q). (4.2)

We implemented this oracle using MATLAB’s delaunayTriangulation class which contains

a method called pointLocation that returns the tetrahedron containing a user-specified

point.

We can now easily easily construct a dense approximation of the trade-off surface (see

Algorithm 1). Let Q ⊆ conv(L) ⊂ RK
+ be a set of points in the space of metrics 1 though
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Figure 4.2: Populating a trade-off surface for the example breast case. Red asterisks are
plans generated from optimization (points in L projected to form L; in this example, PTV
D95 and PTV D115cc are the metrics used in defining L); a triangulation is generated based
on these plans (red lines). Black crosses represent the set of additional plans, Q, used to
increase the density of our representation of the trade-off surface; using the triangulation,
the dwell times of the library plans are interpolated to create plans on the blue trade-off
surface, which is plotted as a mesh.

K. For each q ∈ Q, we can obtain a deliverable treatment plan by interpolating dwell times

based on the triangulation:

sq =
K+1∑
i=1

bti(q)s
ti(q). (4.3)

Moreover, the point (f0(Gsq), q) ∈ RK+1 is an approximation of a new point on the trade-off

surface based on this interpolation.

Generate a triangulation TRI(L).
for q ∈ Q do

Compute bt(q), t(q) using ψTRI(L)

Interpolate dwell times of plans ti(q) according to (4.3)
Add point (f0(Gsq), q) to the approximate trade-off surface

end
Algorithm 1: Trade-off Surface Generation
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Figure 4.3: Populating a trade-off surface for the example breast case. Red asterisks are
plans generated from optimization (points in L projected to form L; in this example, PTV
D95 and Urethra D10 dose are the metrics used in defining L); a triangulation is generated
based on these plans (red lines). Black crosses represent the set of additional plans, Q, used
to increase the density of our representation of the trade-off surface; using the triangulation,
the dwell times of the library plans are interpolated to create plans on the blue trade-off
surface, which is plotted as a mesh.
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4.3.2 Navigating the Trade-off Surface

Here, we describe a process that can be used to explore trade-offs between various metrics

using the representation of the trade-off surface described above. The user begins at an initial

plan l and corresponding point ~f l on the trade-off surface. Suppose the user wants to explore

the possibility of finding a plan with better values of metric fimp (for ease of exposition, we

assume that improvement corresponds to smaller values of the metric, although, depending

on the nature of the criterion represented by this metric, this may correspond to, in the

clinical jargon, “heating” or “cooling” of the underlying structure). For example, for the

current plan in Figure 4.1, the user may want to improve the metric Target D95. Then, the

user would select some of the remaining metric indices W 63 imp to “worsen” (i.e., to trade off

against fimp); in the figure, the selected metric is Rectum D2cc, indicated by the highlighted

green bar. Metrics that are not included in W are meant to remain constant during this

trade-off exploration. It is possible that their values will deviate slightly in practice, but,

as demonstrated in our empirical results, those deviations were within 1% of the specified

values.

The “increment size,” denoted η ∗ 100% (0.1% in Figure 4.1), refers to the magnitude of

increase (i.e., deterioration) in the selected metrics fi, i ∈ W that the user wants to allow in

one step of trade-off exploration. After choosing which metrics to improve, worsen, or hold

constant, and the magnitude of trade-off, we let f0 = fimp and construct the triangulation

and perform the interpolation according to Algorithm (1) to find the dwell times snew and

metric values lnew resulting from the trade-off. Specifically, let p = (fi(s
l), i 6= imp) ∈ Rm

and compute:

snew =
m∑
i=1

bti((1+ηewor)p)s
ti((1+ηewor)p) (4.4)

lnew = f(Gsnew) (4.5)

where ewor
i = 1 if i ∈ W and 0 otherwise. The user can refer to the trade-off graph in Figure
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4.1 to anticipate the trade-offs between the selected metrics, or use the “Heat” or “Cool”

button corresponding to fimp to move to the modified plan, and view the DVH plots and

dose contour figures in the right-most pane of the GUI.

This process then can be repeated for multiple increments, as well as for other metrics

to be improved. It is more important to be able to control how much metrics worsen than

how much one metric improves. In this case the improvement is less predictable, but can be

controlled by adjusting the step size appropriately.∗

4.4 Generating Initial Library of Plans via Convex Optimization

In the previous section, we have discussed methods for generating and navigating a trade-

off surface based on the initial finite library of plans. In this section, we discuss an approach

for generating such a library.

4.4.1 Metrics: Value at Risk and a Convex Approximation

Many metrics used to evaluate treatment plans in BT are so-called DVH metrics, also

known as value-at-risk (VaR). Recall that these are quantiles of the dose vector to the

structure in question, and thus are non-convex functions of d. We introduce a related, but

convex, metric called conditional value-at-risk (CVaR), which was first applied to IMRT

treatment planning by Romeijn et al. (2003). Let index k refer to the criterion in question,

and recall that Vk is the set of voxels relevant for this criterion. Given dose distribution d,

we define for a structure k the ∆ upper value-at-risk (VaR) as:

VaR+ : δ+
k (d; 1−∆) = min

νk

{
νk ∈ R :

|j ∈ Vk : dj ≥ νk|
|Vk|

≤ 1−∆

}
(4.6)

∗Though this is a trial-and-error procedure, as long as the step size is not large, the trade-offs can
be controlled and a new plan is immediately obtained via interpolation, as opposed to waiting for a new
optimization.
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Sorting voxels in order of dose, this is the 100(1 −∆)% hottest dose. The upper CVaR at

∆ is defined as the mean of all doses that exceed the upper ∆-VaR:

CVaR+ : min
νk
{δ+

k (d, νk; 1−∆)} = min
νk

{
νk +

1

(1−∆)|Vk|
∑
j∈Vk

max (0, dj − νk)

}
. (4.7)

Note that CVaR is a piecewise-linear convex function in the arguments d, νk (Pflug , 2000).

Figure 4.4: VaR and CVaR example on a differential DVH (left). D5% is VaR at 5%; UCVaR
at 5%; and TCVaR at 5% with 2% of the hottest voxels (purple volume) excluded. CVaR is
the mean dose of the volume highlighted by the blue and purple.

For example, assuming 2 cubic centimeters (cc) is 5% of the total PTV volume, we can

limit the dose to the 5th percentile: constraint

δ+
PTV(d; 0.05) ≤ U

requires the minimum dose of the hottest 2cc to be no more than U centiGray (cGy). The

CVaR approximation of this non-convex constraint will instead require the average dose to

the hottest 2cc to be no more than U cGy and can be stated as:

δ
+

PTV(d, νk; 0.05) ≤ U. (4.8)

82



Observe that if there exists a feasible (d, νk) that satisfies (4.8), then it guarantees that the

corresponding VaR also satisfies it. Similarly, for the lower CVaR at ∆, we have:

VaR− : δ−k (d; 1−∆) = max
νk
{νk ∈ R :

|j ∈ Vk : dj ≤ νk|
|Vk|

≤ 1−∆} (4.9)

and

CVaR− : max
νk
{δ−k (d, νk; 1−∆)} = max

νk
{νk −

1

(1−∆)|Vk|
∑
j∈Vk

max (0, νk − dj)}. (4.10)

4.4.2 Multicriteria Optimization Treatment Planning Model

Recall that we assumed that we are considering K + 1 criteria for K ≥ 1; suppose

the CVaR (DVH) metrics representing these criteria are such that we would like metrics

0, 1, . . . , K1 to have small values, and metrics K1 + 1, . . . , K + 1 — to have large values. Let

δ : R|V |+ → RK+1
+ be the vector-valued function of criteria. We can state our problem as a

multicriteria optimization problems:

mininimzed,s δ(d) =
{
δ+

0 (d; ∆), . . . δ+
K1

(d; ∆),−δ−K1+1(d; ∆), . . . ,−δ−K(d; ∆)
}

s.t. d = Gs

d ∈ D

s ≥ 0,

(NCVX-MCO-BT)

where D is a convex (typically, polyhedral) set of restrictions on dose that represent “hard

constraints” of the treatment protocol, which dose distributions must always satisfy (e.g.,

bounds on minimum, mean, maximum, and linearized EUD doses). We would like to generate

a set of plans that are efficient, i.e., belong to the Pareto surface of (NCVX-MCO-BT),

making them suitable for the library L of Section 4.3.

Since VaR metrics are non-convex, using common multicriteria optimization methods

(e.g., approaching (NCVX-MCO-BT) via a weighted sum objective or ε-constraint methods)
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requires solution of multiplies instances of a large mixed-integer program that can not be

done efficiently (Deasy , 1997; Lee et al., 2003; Romeijn et al., 2003). Instead, we approximate

VaR-based metrics with CVaR-based ones, so that the resulting problems instances are

convex, and thus efficiently solvable.† However, to achieve an accurate approximation, we

next motivate a modification of CVaR in the context of BTTP! (BTTP!).

4.4.3 Voxel Truncation

It is clear that for any dose distribution and fixed quantile ∆, VaR and CVaR satisfy the

following relationship:‡

δ
+

(d,∆) ≥ δ+(d,∆) . (4.11)

The nature of dose delivery in BT results in long, and often heavy, upper tails in dose

distributions to each structure due to extreme doses to (typically PTV) voxels which are

near the sources. These values “skew” the upper CVaR, which makes (4.11) a poor upper

bound, and makes selecting ∆CVaR = ∆VaR a poor choice for approximation.§ In this section

we address this issue by discussing the concept of a “truncated CVaR” that tries to exclude

(most) of the hottest dose contributions to the mean or entire voxels’ doses. (Incidentally,

if we knew exactly which voxels were the 100(1 − ∆)% hottest (or coldest), then we could

exclude all of those voxels from the structure, and use the (convex) maximum dose metric

to capture VaR exactly!)

†Note that because the criteria are approximated as CVaR, these solutions are not necessarily Pareto
optimal with respect to the true criteria of interest (VaR), which means some solutions may be dominated. In
this work we assume all solutions included in the library are non-dominated (e.g., selected via non-dominated
sorting). We then can use triangulation and interpolation of the trade-off surface with respect to the true
metrics of the non-dominated solutions.

‡The same can be said for the lower tail relationship, but we will focus on the upper tail due to the
nature of our problem.

§One solution to this is to exclude the mean dose of the hottest portion of the tail, resulting in a difference
of convex functions. However, this re-introduces non-convexity into our problem.
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4.4.3.1 Excluding Large (Small) Voxel-Source Coefficients in Computing Upper

(Lower) CVaR

One possible approach to selecting which voxels to remove from the calculation of CVaR

for each structure is based on the following consideration. Since most or all sources are

implanted in or near the PTV, OAR voxels that will receive high dose are likely to be in close

proximity of some sources in the PTV. We could “reshape” the tail of the dose distribution by

excluding extreme contributions to the dose at each voxel. When calculating the dose at each

voxel, we could exclude (for the purposes of CVaR evaluation) the contribution to the dose

from sources that are located within a short distance of this voxel; since dose coefficients are

proportional to the inverse squared distance (TG-43) between voxel and source, this would

exclude excessive dose contributions from the calculation of the metric.

Our experiments showed that excluding such partial contributions to dose in CVaR cal-

culations did not improve, but rather worsened the values of VaR metrics of plans obtained

from CVaR-based optimizations. This is likely because we are still including all voxels in the

tail calculation and only excluding high voxel-source pairs. Although dose is being accounted

for, volume is not. Therefore, entire voxels must be considered and voxel-source proximity

is not sufficient and are only secondarily related to dose.

4.4.3.2 Exclude Voxels by a Starting Solution

Another possible approach is to calculate CVaR for a truncated the dose vector, obtained

by removing entire voxels from the structure in question, if they are believed to receive

extremely high doses that would skew the tail of the distribution. Again, it is not known a

priori which voxels in the structure are the hottest, but they can be selected, for example, as

the hottest voxels in a high-quality baseline plan, obtained, e.g., by solving an unmodified

CVaR-based optimization problem or by using the commercial planner.

Lack of precise knowledge of the right voxels to exclude can still be an issue. In the

extreme case, we truncated all but one voxel incorrectly, resulting in one of the remaining
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voxels receiving an extremely high dose (in fact, the maximum dose to the structure). Then

CVaR of the truncated dose vector will still be a poor approximation of VaR due to the

original issue of fat distribution tail. Instead, we consider an even larger tail size (i.e.,

quantile) and choose to truncate a smaller (but non-zero) portion of this tail, and consider the

mean dose of the remaining voxels. In doing so, we may not truncate all of the correct voxels,

but by truncating some of the hottest voxels we can significantly reduce the contribution

of the remaining hot voxels on the average tail dose, bringing the approximation closer to

the actual VaR. This achieves a balance between the two goals of i) closely approximating

VaR with a convex metric, and ii) making the approximation robust when the high dose

may shift to different voxels among different plans. Since most of the hottest voxels will be

those closest to dwell locations, we make an assumption that the CVaR-optimal solution and

VaR-optimal solution both share similar voxels receiving high doses.

We now make this idea more precise. Let τ denote the percent of structure volume

truncated. We define the corresponding truncated upper CVaR (TCaR) metric to be:

θk(d, νk; d̄,∆, τ) =
(1−∆)

1−∆′
νk +

1

(1−∆′)|Vk|
∑

j∈Vk:d̄j≤D̄τ
(max (0, dj − νk)) , (4.12)

where truncated voxels are chosen based on the baseline plan d̄, D̄τ = δ+(d̄; 1−τ), and ∆
′
=

∆ + τ . (The same idea can be applied for a lower tail with cold voxels.) Our computational

experiments showed that truncation makes little improvement for PTV lower tail and OAR

upper tail metrics (i.e., metrics of structures that are not close to dwell locations) since the

voxels in question are unlikely to receive extreme doses.

Moreover, the initial reference plan d̄ may not be a good indicator of the hottest voxels

in plans across the trade-off surface, leading to poor quality plans since our metric is poorly

approximated. The more voxels we incorrectly truncate, i.e., including them in the TCVaR

approximation, the worse our approximation is.¶ We discuss methods for improving the

¶The dose values of the truncated hot voxels also matter, e.g., if 1 − ∆VaR = 10% and we wanted to
truncated 5%, then we’d prefer the 5% hottest than, e.g., the next hottest 5%.
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truncation, and hence, the approximation, later in this chapter.

4.4.4 Library Generation: ε-Constraint Method

We solve our multicriteria problem (NCVX-MCO-BT) with truncated conditional value-

at-risk (TCVaR) metrics replacing VaR metrics in the objective by using the ε-constraint

method (Haimes et al., 1971). In this method, we consider instances of (single-objective)

optimization problems, with one of the metrics serving as the objective, and the remaining

metrics represented as constraints. As before, we subscript the metric in the objective with 0

and assume smaller values are preferred. For convenience, let the right-hand sides of TCVaR

constraints be ε = (ε, ε) ∈ RK for the upper and lower tail constraints:

minimized,s,νk,k=0,...,K θ
+

0 (d, νk; d̄k,∆, τ) (4.13)

s.t. θ
+

k (d, νk; d̄k,∆, τ) ≤ εk k = 1, . . . , K1 (4.14)

θ
−
k (d, νk; d̄k,∆, τ) ≥ εk k = K1 + 1, . . . , K (4.15)

d = Gs (4.16)

d ∈ D (4.17)

s ≥ 0 (4.18)

This problem is piecewise-linear convex and each instance can be efficiently solved with off-

the-shelf linear programming solvers. If an instance is feasible, let a corresponding optimal

plan be (d∗(ε), s∗(ε)).‖ We consider a set E ∈ RK
+ of values of ε to create and solve multiple

instances of (4.18). The solutions are then evaluated with respect to the true metrics of

interest (VaR) and form the library discussed in Section 4.3, L(E). Finally, note that we

can use different baseline plans to select voxels for truncation in each TCVaR metric.

‖For the library of solutions, we only consider feasible plans and infeasible instances will be ignored.
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4.4.4.1 Iterative Truncation

As discussed before, the impact of truncation based on a baseline solution strongly de-

pends on the quality of this solution.

One way to assess the quality of a particular choice of a subset of voxels to truncate

is to use the resulting TCVaR to find a treatment plan by solving an instance of (4.18),

and identify the hottest voxels in the resulting plan. We can compare this set of voxels

to the ones initially truncated (i.e., those predicted to be the hottest based on a baseline

plan), identifying the rate of “true positives,” which measures the quality of approximation

that was used — the closer it is to 100%, the closer we are to some value between the

100(1 − ∆TCVaR)% and 100(1 − τ)% quantiles. (Recall that, if we could guess the hottest

voxels perfectly, we would use ∆TCVaR = ∆VaR and τ such that (1−∆VaR − τ)|Vk| = 1, i.e.,

exactly the volume considered is one voxel.)

Therefore, we also investigate the following: if the initial solution is a poor indicator of

the hottest voxels, can we improve our true positive rate by using the plan resulting from

TCVaR optimization to update the baseline plan, i.e., update d̄ to be the solution from the

TCVaR optimization in (4.12) and repeat the optimization? Although there is no guarantee

that the true positive rates improve (as we will see), having a solution that is a better baseline

for guessing the hottest voxels can potentially improve the quality of our solutions.

4.5 Experiments

In the following section we will report on the number of empirical experiments we con-

ducted to assess the feasibility of the overall approach we discussed above to perform analysis

of trade-offs between various feasible treatment plans. To streamline that presentation, we

dedicated this section to some preliminaries, describing the experiments we performed and

the values of parameters chosen in those experiments.

Our experiments consisted of retrospective application of our method to several patient
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cases. For the purposes of analysis, we will only focus on testing truncation of one upper

tail metric for each treatment site, since skewed lower tails are rarely observed in BT. Fur-

thermore, we assume truncation and tail size parameters across multiple structure-criteria

are independent. We leave analysis of inter-structure-criteria effects for a future discussion.

We implemented the TCVaR optimization model (4.18) on a machine with 3.50GHz×8

processor and 32GB memory in Python using Gurobi’s primal simplex method (Gurobi Op-

timization, Houston, TX). Trade-off surface population was implemented in Matlab (Math-

Works, Natick, MA).

4.5.1 Choice of 1−∆TCVaR and τ

We approximate a DVH metric with quantile 1 − ∆VaR by TCVaR with quantiles 1 −

∆TCVaR and τ . We parametrize the latter relative to the former by using scalars γ∆, γτ :

(1 − ∆TCVaR) = γ∆(1 − ∆VaR), γ∆ ≥ 1 and τ = γτ (1 − ∆VaR), γτ ≤ 1, respectively.∗∗ We

consider multiple values γ∆ ∈ [1.5, 2.5]†† andγτ ∈ [0.0625, 0.75]. We will discuss how we

evaluate the performance of a choice of γ∆, γτ after describing the rest of the process for plan

generation.

4.5.2 Choice of ε

We choose ranges of values for ε according to ideal values of each metric as the “center,”

denoted as θ0 ∈ RK
+ , of our trade-off surface (i.e., this is a treatment plan around which we

would like to consider trade-offs). Let µ ∈ RK
+ be the increments in of ε, and σ ∈ RK

+ be the

total deviation from the central value for which we would like to explore potential trade-offs

(typically, this will be 15− 20%, which results in approximately a 30− 40% window for each

metric). Then, our choices of ε belong to E = {θ0 ± ndiag(µ)θ0 | n ∈ Z, |nµk| ≤ σk, k =

∗∗γ∆ < 1 guarantees an overestimate and γτ > 1 potentially truncates the entire quantile.
††For initial cases, we considered several values that were similar and for later cases consider fewer for

illustration purposes
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1 . . . , K}.‡‡

4.6 Results

4.6.1 Plan Interpolation By Dwell Time

We begin with justification of plan interpolation. After generating a library of plans, we

validate the quality of linearly interpolated plans (by dwell time) to try and recoup each

plan, other than vertices of the convex hull of L. Specifically, we remove one library plan

and reconstruct the dwell times that achieve (almost) the same DVH values by applying

Algorithm 1 on the remaining plans in the library. Table 4.4 show the maximum absolute

errors between the achieved DVH values of an original plan in the library and the DVH values

of the plan obtained by dwell time interpolation. Most errors are less than 1%, indicating

that, given the density of library plans generated by our choice of set E, interpolation

accurately predicts metric values for additional plans.

γ∆\γτ 0 0.25 0.33 0.50 0.67 0.75
2.50 0.6893 0.4372 0.2884 0.1673 0.1894 0.1441
2.25 0.2771 0.3177 0.2547 0.1078 0.1937 0.1441
2.00 1.3191 0.3695 0.3428 0.1299 0.1579 0.1097
1.75 0.8626 0.3650 0.4273 0.2104 0.1656 0.1197
1.50 0.2047 0.9038 1.6033 0.9363 0.1364 0.1713

Table 4.4: Breast 1. Replicating Library Plans via Interpolation of Dwell Times: Max
Absolute Error (%) of PTV D15cc. Note that most errors are below 1%.

In Tables 4.5 and 4.6, we present mean and maximum errors of interpolation for Breast

2. In contrast to Breast 1, the maximum errors are higher: interpolation of dwell times

leads to up to 2− 5% worse PTV D15cc dose than the original optimized (i.e., library) plan.

Though most errors are close to zero, there are extreme outliers in replicating library plans

‡‡For implementation, criteria chosen include PTV coverage (lower tail) and upper tail structure metrics,
which all compete with PTV coverage. We start with the highest values of εk and iterate through in
decreasing order. Therefore, for a fixed level of PTV coverage CVaR (corresponding metric constrained in
4.15) and values of upper tail bounds, if the problem is infeasible, then all remaining upper bound values
of the upper tail criterion will be skipped since PTV coverage cannot be achieved for any smaller values of
upper tail bounds.
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γ∆\γτ 0 0.0625 0.125 0.25 0.33 0.50 0.67 0.75
2.50 0.3277 0.3409 0.2600 0.2553 0.2528 0.3569 0.3585 0.3592
2.25 0.2855 0.3012 0.2561 0.2478 0.2436 0.3702 0.3479 0.3388
2.00 0.2859 0.3142 0.2103 0.2366 0.2678 0.3370 0.3781 0.3702
1.75 0.2920 0.3147 0.2172 0.2444 0.2643 0.3633 0.3481 0.3587
1.50 0.2947 0.3183 0.2852 0.2532 0.2462 0.3019 0.3496 0.3283

Table 4.5: Breast 2. Replicating Library Plans via Interpolation of Dwell Times: Mean
Error (%) of PTV D15cc. Note that most errors are below 1%.

γ∆\γτ 0 0.0625 0.125 0.25 0.33 0.50 0.67 0.75
2.50 2.4484 3.9284 3.0356 2.9997 3.1130 4.3064 4.5070 3.0097
2.25 2.1067 2.9605 3.0365 2.9500 2.8553 4.1388 4.4182 3.0590
2.00 2.0857 3.9905 1.9340 2.9439 2.9725 3.9399 4.3689 5.1139
1.75 2.2075 3.7677 1.8825 3.1200 3.1029 4.0345 4.2912 5.2296
1.50 2.1925 3.9839 4.2777 3.1827 3.1034 3.7926 4.3379 3.0928

Table 4.6: Breast 2. Replicating Library Plans via Interpolation of Dwell Times: Max Error
(%) of PTV D15cc (No iterative truncation).

via dwell times; this may be due to the poor approximation of dose-volume metrics (i.e., the

truncation is not effective either due to size and/or accuracy of truncation); we will return

to formally define what is meant by “truncation accuracy.” Fewer than 5% of replicated

library plans had more than 1% worse values of this metric.

4.6.2 Quality of a Trade-off Surface Generated with a γ∆, γτ — One Truncation

We begin with how to evaluate the quality of a library generated by a particular choice

of γ∆, γτ (recall that this determines the choice of TCVaR quantile and truncation). We

begin by showing the benefits of using truncation versus not truncating. We will do this

by considering a set of “partial” candidate plans: for each such plan, we have K metrics’

values (recall the trade-off surface is in RK+1) and “look up” in the library (i.e., via plans’

metric interpolation§§) the K + 1st metric. This way, we are evaluating each library with

the exact same partial plans, and compare them by a single metric, namely the K + 1st one.

§§Although we have shown that interpolating by dwell time and by DVH metric achieve similar values
of DVH metrics, we choose to interpolate by DVH metrics so that the 0th metric can be compared among
libraries since the other metrics will be exactly the same also among libraries.
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Because we are interpolating, the partial candidate plans should be within the convex hull

of the library plans projected onto RK
+ corresponding to the appropriate K metrics. In our

experiments, we used 1% spacing for each metric up to ±10% in each direction of the central

values (the libraries were generated with ±15% spacing).

In Figures 4.5–4.7, each box plot corresponds to a TCVaR tail size and the number of

times truncation occurred, represented by γ∆-number of truncations. Then each large plot

corresponds to a truncation size γτ . For each combination of (γ∆, γτ ), a plan library was

generated with the same set of right-hand sides in constraints on TCVaR metrics. A set of

candidate plans Q were constructed by metric interpolation for each library to determine

the value of metric δ0, via metric interpolation. For each candidate plan q, we define the

best achieved metric to be:

δ0∗(q) = min
(γ∆,γτ )

{δ0(q; (γ∆, γτ )}. (4.19)

The value of (γ∆, γτ ) that is the minimizer is the best combination of parameters to use

to construct the dwell times for a candidate plan. Therefore, we use values of δ0∗(q) to

normalize what candidate plans in other libraries achieve, defining the dose difference (%)

of a candidate plan as:

δ0(q, (γ∆, γτ ))− δ0∗(q)

δ0∗(q)
≥ 0, ∀q ∈ Q, ∀(γ∆, γτ ).

Each individual box plot represents the ranges of dose differences achieved by all candidate

plans from a library specified by (γ∆, γτ ).

4.6.3 Quality of a Trade-off Surface Generated with a γ∆, γτ — Iterative Trun-

cation

In this section we analyze the effects of iterative truncation, i.e., we solve the instance

(i.e., (4.13)-(4.18) with the same ε and TCVaR parameters) multiple times, but each time we
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Figure 4.5: Breast 1. Without truncation, the minimum difference from the best is 1% while
others only go up to 0.5%.

Figure 4.6: Breast 2. Without truncation, the minimum difference from the best is 0.5%,
but at worst 3%; although many are within 0.5% of the best, several go up to beyond 1%
depending on the level of truncation.
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Figure 4.7: Breast 3. Without truncation, the minimum difference from the best is 0.5%,
but at worst 3%; although many are within 0.5% of the best, several go up to beyond 1%
depending on the level of truncation.

update what we consider to be the 100τ% hottest voxels based on the solution obtained by

the previous optimization for the metric we’re truncating. We investigated up to 3 iterative

truncations (i.e., 3 solves for each instance).

For a set of partial candidate plans, the K + 1st metric is computed using metric inter-

polation according to each library generated. For a given truncation iteration, Figure 4.11

shows the distribution of dose differences (%) computed by (4.19). A moderate truncation

value (γτ = 0.33) performs the best with many families of libraries being no more than

0.1% of the best values. For a given truncation level and iteration, the affect of γ∆ does not

differ in distribution of dose differences. In Figure 4.9 is a rearrangement of Figure 4.11 by

showing how iterative truncation affects a pair of TCVaR parameters. If the truncation is

small (e.g., γ∆ = 0.0625), iterative truncation overall does not achieve better values, while if

the truncation is large, iterative truncation shrinks the range of dose differences and pushes

the median dose difference toward 0.
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Figure 4.8: Breast 1. Effects of iterative truncation. For a given truncation iteration (e.g.,
all plans obtained by truncating only twice), dose differences are computed using (4.19) and
the distribution of percent differences are plotted as a box plot for each γ∆, γτ combination.

4.6.4 Truncation Accuracy

As a proxy for evaluating the quality of our approximation, we consider the 100τ% of

voxels that were truncated according to a baseline plan and were actually 100τ% hottest

in the optimized plan. We present some example progressions of accuracy by iteration of

truncation in Tables 4.7 and 4.8 and Figure 4.10. Figure 4.10 shows the percent of hottest

voxels correctly predicted based on the previous iterations plan (at 1, we use the clinical

plan) and each set of lines corresponds to a combination of truncation size and instance of the

problem solved (one plot per truncation size). We specifically present Breast 2 to show that

iterative truncation improves the approximation (reflected in the increase in ability to predict

the hottest voxels), but note that there is no guarantee of improvement (as demonstrated

by some plans).
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Figure 4.9: Breast 1. Effects of iterative truncation. For a set of partial candidate plans, the
K+ 1st metric is computed using the library by metric interpolation. For a given truncation
iteration (e.g., all plans obtained by truncating only twice), dose differences are computed
using (4.19) and the distribution of percent differences are plotted as a box plot for each
γ∆, γτ combination (truncation iteration is clarified with the choice of γ∆).

4.6.5 Testing Parameter Choice

Based on Breast 1 and 2, we choose parameter (γ∆, γτ ) = (2, 0.0.33) and allow for 2

iterations of truncation (to save time) to generate a library. Figure 4.12 shows how the

library we choose performs (in dose difference) compared to libraries generated by other

TCVaR parameters. This library was used to normalize, so its corresponding box-plot has

percent dose differences all at 0. Most plans from most other libraries perform up to 1%

better, but many require 3 iterations of truncation (namely for γτ = 0.75).

4.6.6 Comparison of Plan Quality with Commercial System

We compare the quality of plans we achieve with that of the commercial system’s plan

by fixing other metrics and comparing PTV D95, which is tumor coverage. In Figure 4.13,
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Truncation Size (γτ ) Accuracy Increase Iter. 1 to 2 Accuracy Increase in Iter. 2-3
0.0625 100.0% 91.7%
0.33 100.0% 98.2%
0.75 100.0% 100.0%

Table 4.7: Breast 1. Percent of plans that led to improved truncation accuracy over 3 trun-
cation iterations (100% means for all instances of feasible ε, truncation accuracy improved
from one iteration to the next iteration.)

Truncation Size (γτ ) Accuracy Increase Iter. 1 to 2 Accuracy Increase in Iter. 2-3
0.0625 100.0% 97.3%
0.33 100.0% 81.8%
0.75 100.0% 91.2%

Table 4.8: Breast 2. Percent of plans that led to improved truncation accuracy over 3 trun-
cation iterations (100% means for all instances of feasible ε, truncation accuracy improved
from one iteration to the next iteration. See Figure 4.10 for trend in instances that improve
in true positives.

we are competitive against the commercial system. In Figure 4.14, it is clear that with 3

truncations we perform better in PTV D95 than the commercial plans to.

4.7 Discussion

The results on TCVaR approximations of VaR as a function of 1−∆ and τ suggest that for

breast cases, good choices of parameters are independent of geometry. The rule for choosing

γ∆ to be close to 2 and γτ to be close to 0.5 seems to perform well as approximating VaR

metrics. Furthermore, the choice of a warm-start plan to determine which voxels to truncate

can be dynamically updated. It is possible that depending on the region of the trade-off

surface, the set of hottest voxels may vary, and a plan that better captures the hottest

voxels can be used to determine which voxels’ doses to truncate, thereby improving the

TCVaR approximation. A metric such as truncation accuracy (true positives on predicting

hottest voxels) can be a proxy for determining when to update the plan with which we base

truncation. Depending on the user’s threshold for improvement in a metric such as PTV

coverage (e.g., 1% vs 5%) there is a trade-off to consider between treatment plan quality

97



Figure 4.10: Breast 2. Truncation Accuracy by Iteration of Truncation (iteration 1 is
truncating according to clinical plan); up to 3 iterations of truncation considered. γτ =
0.0625, 0.33, 0.75.

Figure 4.11: Breast 2. Effects of iterative truncation. For a given truncation iteration (e.g.,
all plans obtained by truncating only twice), dose differences are computed using (4.19) and
the distribution of percent differences are plotted as a box plot for each γ∆, γτ combination.
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Figure 4.12: Breast 3. Choosing (γ∆, γτ ) = (2, 0.0.33) to generate a library based on Breast
1 and Breast 2.

and number of truncations. Our model produced competitive plans with respect to PTV

coverage as the commercial planning system does, and with iterative truncation were able

to gain up to 3% more coverage.

We include one empirical example each for cervix and prostate sites. In Figure 4.15,

we consider a prostate case, but it seems that the choice of parameters do not perform

well and suggests additional iterations of truncation is needed and/or choice of parameters

are site-dependent. Figure 4.16 suggests that iterative truncation improves the accuracy in

guessing the hottest voxels, but the range of values of PTV D1cc achieved can vary up to 10%

from the best value among all combinations of TCVaRparameters. The cause of this larger

variability (in comparison to the breast cases) is unclear and requires more investigation.

One hypothesis for this is that although with iterative truncation, the accuracy increases,

the small quantile considered makes the inclusion of a few hot voxels still skew the estimate,

which could be remedied with an even larger quantile. This further suggests that the “ideal”

parameters for TCVaRapproximation varies with quantile and/or treatment site.
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Figure 4.13: Breast 1 PTV Coverage Comparison with a Commercial System. A set of
plans generated by an experienced medical physicist using the Eclipse Treatment Planning
System. This set of plans was compared to the different libraries by fixing all other metrics
and comparing PTV D95 achieved. Note these are sorted by TCVaR tail size and grouped
by truncation size and truncation iteration.

We conduct similar analyses for a cervix case with Bladder D2cc truncation in Figures

4.17 and 4.18. It seems that for OARs without dwell locations do not require truncation,

which is consistent with not having long DVH tails that the PTV would have.

This treatment planning approach can deal with any number of convex treatment criteria

and can contain other treatment criteria such as those in Romeijn et al. (2004)). Moreover,

as long as CVaR can capture the behavior of VaR, as we have done in this work with

brachytherapy, this planning approach can be applied to other treatment modalities such as

IMRT, VMAT, etc. With subsampling (≤ 5000 voxels per structure) and using the primal

simplex algorithm, instances to generate a library typically solved in less than 1 minute.

Our work also has limitations. Because the ground truth of optimal DVH values is

unattainable, we have only relatively compared DVH measures achievable in parameteriza-

tions of our convex optimization model and the best among these are clinically acceptable.
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Figure 4.14: Breast 2 PTV Coverage Comparison with a Commercial System. A set of
plans generated by an experienced medical physicist using the Eclipse Treatment Planning
System. This set of plans was compared to the different libraries by fixing all other metrics
and comparing PTV D95 achieved. Note these are sorted by TCVaR tail size and grouped
by truncation size and truncation iteration.

The purpose of this work is to provide a proof-of-concept on how trade-off surfaces based

on DVH metrics can be constructed. We also warn the reader that this work is only an

empirical study. Validation of this method for clinical use will require QA on many more

other patient cases and treatment sites.

4.7.1 Interpolation

4.5 and 4.6 suggest that interpolating by dwell time can be inaccurate, potentially due to

choice of E (i.e., spacing between plans in the library should be smaller) or due to TCVaR

being a poor approximation, which led to our investigation of iterative truncation. We

note that though there are outliers in interpolating by dwell time, most are within 0.5% in

replicating a plan in the library. To avoid significant loss in plan quality from dwell-time
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Figure 4.15: Example Prostate Case. Due to the wide range of values relative to the a
particular library, either more truncations are needed or a better quality plan indicating
hottest voxels is needed.

Figure 4.16: Prostate 1. Truncation Accuracy by Iteration of Truncation (iteration 1 is
truncating according to clinical plan); up to 3 iterations of truncation considered. γτ =
0.0625, 0.33, 0.75.
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Figure 4.17: Example Cervix Case. Due to the wide range of values relative to the a
particular library, either more truncations are needed or a better quality plan indicating
hottest voxels is needed.

Figure 4.18: Cervix 1. Truncation Accuracy by Iteration of Truncation (iteration 1 is
truncating according to clinical plan); up to 3 iterations of truncation considered. γτ =
0.0625, 0.33, 0.75.
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interpolation, once the final dose-volume metric values are decided, a final optimization can

be performed to improve one of the metrics.

4.7.2 Computational Efforts

Library plan generation can be trivially parallelized given enough central processing unit

cores (one instance on each core). Given enough cores, a library could then be generated

within a few minutes. Moreover, using interpolation to increase density of plans in the neigh-

borhood of a solution can also be easily parallelized, which allows for dynamic consideration

of step sizes for trade-offs in the GUI. There are other ways to improve computation effi-

ciency of our process: the library of plans may be dynamically generated by choice of ε and

plan density can be locally increased via interpolation, which ultimately saves time from not

generating plans in regions of the trade-off surface that are not considered.

Runtimes for each instance, depending on treatment site, varied from 3 seconds to 20

seconds. If increments of I are varied for K objectives as constraints and a range of R for each

is considered, this means (R/I)K instances need to be ran to generate a library. If iterative

truncation is considered, i.e., T iterative truncations (for one metric), then this would be

T (R/I)K total instances. Our library generation is embarrassingly parallel and with C cores,

this means up to a time of 20T (R/I)K/C. For K = 5, R = 30%, I = 6%, T = 3, C = 500,

this results in a little over 6 minutes to generate a library.

4.8 Conclusions

Choosing the right set of parameters, truncated conditional value-at-risk in brachytherapy

is a better approximation of value-at-risk than simply using conditional value-at-risk. If a

good starting plan is provided to indicate hottest voxels, for breast, γ∆ ∈ [1.5, 2.5] and

γτ ∈ [0.33, 0.67]) seem to be good choices. If an initial plan is poor in predicting hot voxels,

iterative truncation should be applied. However, the reader should be cautious that the

original library generation (at least) multiplies with the number of truncation iterations.
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Wächter, A., and L. T. Biegler (2006), On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming, Mathematical programming,
106 (1), 25–57.

Wang, H., M. Feng, A. Jackson, R. K. Ten Haken, T. S. Lawrence, and Y. Cao (2016),
Local and global function model of the liver, International Journal of Radiation Oncology*
Biology* Physics, 94 (1), 181–188.

Wu, Q. J., D. Thongphiew, Z. Wang, B. Mathayomchan, V. Chankong, S. Yoo, W. R.
Lee, and F.-F. Yin (2008), On-line re-optimization of prostate IMRT plans for adaptive
radiation therapy, Physics in medicine and biology, 53 (3), 673.

Xia, P., and L. J. Verhey (1998), Multileaf collimator leaf sequencing algorithm for intensity
modulated beams with multiple static segments, Medical Physics, 25 (8), 1424–1434.

Yang, C., et al. (2014), Combined online and offline adaptive radiation therapy: A dosimetric
feasibility study, Practical radiation oncology, 4 (1), e75–e83.

Zhang, J., et al. (2010), Radiation-induced reductions in regional lung perfusion: 0.1–12
year data from a prospective clinical study, International Journal of Radiation Oncology*
Biology* Physics, 76 (2), 425–432.

Zhong, H., and I. J. Chetty (2017), Caution must be exercised when performing deformable
dose accumulation for tumors undergoing mass changes during fractionated radiation ther-
apy, International Journal of Radiation Oncology Biology Physics, 97 (1), 182–183.

113


