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Abstract

Optimization based controls are advantageous in meeting stringent performance require-

ments and accommodating constraints. Although computers are becoming more powerful,

solving optimization problems in real-time remains an obstacle because of associated compu-

tational complexity. Research efforts to address real-time optimization with limited compu-

tational power have intensified over the last decade, and one direction that has shown some

success is model order reduction.

This dissertation contains a collection of results relating to open- and closed-loop reduc-

tion techniques for large scale unconstrained linear descriptor systems, constrained linear

systems, and nonlinear systems.

For unconstrained linear descriptor systems, this dissertation develops novel gramian and

Riccati solution approximation techniques. The gramian approximation is used for an open-

loop reduction technique following that of balanced truncation proposed by (Moore, 1981)

for ordinary linear systems and (Stykel, 2004) for linear descriptor systems. The Riccati

solution is used to generalize the Linear Quadratic Gaussian balanced truncation (LQGBT)

of (Verriest, 1981) and (Jonckheere and Silverman, 1983). These are applied to an electric

machine model to reduce the number of states from >100000 to 8 while improving accuracy

over the state-of-the-art modal truncation of (Zhou, 2015) for the purpose of condition

monitoring. Furthermore, a link between unconstrained model predictive control (MPC)

with a terminal penalty and LQG of a linear system is noted, suggesting an LQGBT reduced

model as a natural model for reduced MPC design. The efficacy of such a reduced controller

is demonstrated by the real-time control of a diesel airpath.

Model reduction generally introduces modeling errors, and controlling a constrained plant

subject to modeling errors falls squarely into robust control. A standard assumption of

xv



robust control is that inputs/states/outputs are constrained by convex sets, and these sets

are “tightened” for robust constraint satisfaction. However, robust control is often overly

conservative, and resulting control strategies cannot take advantage of the true admissible

sets. A new reduction problem is proposed that considers the reduced order model accuracy

and constraint conservativeness. A constant tube methodology for reduced order constrained

MPC is presented, and the proposed reduced order model is found to decrease the constraint

conservativeness of the reduced order MPC law compared to reduced order models obtained

by gramian and LQG reductions.

For nonlinear systems, a reformulation of the empirical gramians of (Lall et al., 1999)

and (Hahn et al., 2003) into simpler, yet more general forms is provided. The modified

definitions are used in the balanced truncation of a nonlinear diesel airpath model, and the

reduced order model is used to design a reduced MPC law for tracking control. Further

exploiting the link between the gramian and Riccati solution for linear systems, the new

empirical gramian formulation is extended to obtain empirical Riccati covariance matrices

used for closed-loop model order reduction of a nonlinear system. Balanced truncation using

the empirical Riccati covariance matrices is demonstrated to result in a closer-to-optimal

nonlinear compensator than the previous balanced truncation techniques discussed in the

dissertation.
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Chapter 1

Introduction

Models of processes open up a variety of avenues for analysis, simulation, and control.

However, given a process with fast responses and limited computational resources, accurate

real-time simulation [1], condition monitoring [2], control, and/or estimation1 [3] present

several challenges.

The first challenge is computational complexity. To do simulation and condition moni-

toring of a process, a model is necessary; however, models of processes tend to be complex

[1, 4] and cannot be used in real-time. Often, the loss of model accuracy is traded for de-

creased computational complexity. This brings about the next challenge: accuracy of the

model. There are a variety of ways to perform this trade-off: reduced order modeling, model

identification, and model order reduction, etc. [5].

Reduced order modeling has several connotations, for the purpose of distinction from

model order reduction, it will be defined as the development of first principles models using

simplifying assumptions that reduce the number of states. Model identification requires

selecting a parametrization of the model, and identifying the parameters that minimize

some objective function [6, 7, 8]. Then there is model order reduction, which starts with a

high dimensional model, and systematically removes states to meet some objective [9, 10,

11, 12].

A general model reduction problem is to approximate a state-space model in descriptor
1Combined control and estimation will be referred to as a compensator.
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form

Σ :

 0 = F (ẋ, x, u),

y = h(x, u),
(1.1)

with u ∈ Rm, x ∈ Rn, and y ∈ Rp, by a lower order model

Σr :

 0 = Fr(ẋr, xr, u),

yr = hr(xr, u),
(1.2)

with xr ∈ Rr, with r < n, that achieves some objective and is obtained via a systematic

procedure.

For many real-time applications (simulation, control, etc.), reduced order/reduced com-

plexity models are the only implementable solution. In this dissertation, three forms of F

will be addressed for the various applications:

1. continuous (discrete) ordinary linear systems: F = ẋ−Ax−Bu (F = xt+1−Axt−But),

h = Cx+Du;

2. continuous linear descriptor systems: F = Eẋ− Ax−Bu, h = Cx+Du; and

3. continuous nonlinear systems: F = ẋ− f(x, u).

While reduction techniques exist for many different types of systems and applications: linear

time invariant [13], linear time varying [14], linear parameter-varying [15], nonlinear [16], only

a brief review of techniques that are often used to reduce the selected forms are provided in

the next section. The chapter is concluded with the contributions of this dissertation.

1.1 Review of Model Reduction and Research Gaps

While there are many possible ways to classify reduction algorithms, one pertinent clas-

sification for reduced compensator design is open- versus closed-loop model order reduction.

Closed-loop techniques consider how the compensator interacts with the system, while open-

loop techniques only consider the input-to-output behavior.
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1.1.1 Model Order Reduction for Open- and Closed-Loop Linear

Systems

The way that many reduction methods work is by obtaining a transformation that places

the state space representation into a canonical form, and then removing states. One type of

representation that appears often in the model reduction literature is the notion of a balanced

representation. Balanced representations are state space representations that satisfy selected

properties, e.g. Lyapunov balanced representation yield equal and diagonal solutions (with

diagonal entries in decreasing order) to the dual algebraic Lyapunov equations [13]. Typical

ways to remove the states are truncation (i.e., the neglecting of dynamics) and residualization

(i.e., using singular perturbations to remove states while ensuring the DC-gain of the full and

reduced models match [17]). Methods such as this are popular because they typically remove

states that do not contribute much to the selected objective while retaining properties such

as stability.

Linear systems have seen a wide variety of reduction techniques and the following are

not an exhaustive list. On the open-loop side, there are: modal/eigenvalue truncation [18],

Lyapunov balanced truncation [13], frequency weighted model reduction [19, 20, 21, 22],

normalized co-prime factorization [23, 24], moment matching [25], optimal Hankel approxi-

mations [26], Karhunen-Loève (proper orthogonal decomposition (POD)) [27], etc.

In the case of Lyapunov balanced truncation, which is used later in the dissertation, the

state space representation is put into the specified balanced form, and the n− r states and

dynamics are simply removed. The removed states correspond to states that do not pass

much “energy” from the input-to-output, and hence result in small output errors for the same

input.

Most open-loop reduction methods can be recast as controller reduction methods, but

errors incurred by such approaches can destabilize the closed-loop model comprised of the

model and reduced controller [9]. Instead, closed-loop model reduction may be employed

to provide compensators that are more robust to the error between the full and reduced

model. Examples of closed-loop reduction techniques include: H∞/linear quadratic Gaus-

sian balanced truncation (LQGBT) [3, 28, 29], closed-loop gramian balanced truncation
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[30], frequency weighted model reduction [31], normalized co-prime factorization [32], etc.

For closed-loop reduction techniques, typically states that do not contribute much to an

associated cost function are removed.

Closed-loop model reduction are available only for limited control methods. Many new

controller methodologies, such as model predictive control (MPC), do not have the corre-

sponding closed-loop model reduction framework. MPC has become well known for its ability

to optimally control multi-input, multi-output (MIMO) systems with constraints. However,

few works have addressed MPC with reduced order models [33] or even reduced compen-

sators with constraints. Some works have provided ways to address model-based control

of constrained systems using reduced order models; however, to the author’s knowledge,

no work has been presented on how to obtain a reduced order model that simultaneously

considers the compensator and constraints [34, 35, 36, 37, 38].

1.1.2 Model Order Reduction of Large Scale and Linear Descriptor

Systems

It is often necessary to simplify models governed by partial differential equations (PDEs)

to a system of differential equations. Using techniques such as finite element analysis, these

systems often are provided in a large scale, but sparse descriptor system form. Given current

commercial computing power and size of random access memory (RAM), large scale systems

are presently defined to be greater than about 10000 states.

Despite the sparseness, model reduction techniques for linear systems often become in-

tractable for models with high dimensional state spaces due to associated computational

and storage complexity. The calculation involved in deriving transformations required by

most of the standard model reduction methods are generally dense [11, 39, 40]. For ex-

ample, to exactly calculate Lyapunov or Riccati solutions, storage complexity of O(n2) and

computational complexity of O(n3) are required [39].

There are a variety of ways to address such complexities: POD, Krylov subspace methods,

modal/eigenvalue truncation, and approximate balanced truncation. Reviews of Krylov

subspace methods and POD for large scale systems may be found in [2, 11, 40]. However,
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POD, Krylov methods, and modal truncation are all dependent upon the designer selected

points/inputs/snapshots/modes, respectively, and can yield poor approximations outside the

selected regime.

Approximate balanced truncation, however, seeks to provide a good reduced order model

that captures all dominant characteristics. For the purpose of input-to-output accuracy,

often used in the simulations of PDEs, a great deal of attention has been paid to approximate

Lyapunov balanced truncation.

Approximate Lyapunov balanced truncation uses gramians and direct truncation. In-

stead of calculating a similarity transformation and its inverse, direct balanced truncation

uses economic matrix factorizations of the gramian to yield left (submersion) and right

(immersion) transformations that immediately yield a reduced order model [41, 42]. The

economic matrix factorization limit the computational and storage complexity, but leave the

challenging problem of calculating a gramian.

Restricting to the case of asymptotically stable systems (systems where x→ 0, if u→ 0),

gramians are generally dense, symmetric, and positive definite. As such, there exist a variety

of low-rank approximations. One common approximation is the low-rank matrix square root

factor calculated by low-rank alternating direction implicit (LR-ADI) methods.

LR-ADI methods are iterative and work like a control problem: scalar shifts are selected

to make the columns of a low-rank matrix square root factor iteration converge to 0, for

excellent overviews, see [43, 44, 45]. Because LR-ADI methods are iterative, the accuracy

of the low-rank matrix square root factors is strongly dependent on how fast the iteration

converges. This opens many avenues for research, such as how to select shifts and/or keep

the low-rank factor sufficiently small in RAM.

1.1.3 Model Order Reduction for Nonlinear Systems

Many nonlinear reduction techniques have been developed that exploit the structure of

the nonlinear systems, the “strength” and type of the nonlinearity, and the objective of the

reduction [15, 16, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55].

Model reduction of affine input nonlinear systems has perhaps the most comprehensive

theory [16, 56]. Define an affine input nonlinear system to be the system in local coordinates,
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f(x, u) = f1(x) + g1(x)u, where f1 ∈ Rn, g1 ∈ Rn×m [57]. Using linear systems theory

as a guide, the affine input nature often enables extensions of linear results to nonlinear

systems [58, 59]. Open and closed-loop reduction techniques include: Lyapunov balancing,

normalized co-prime factors/H∞, and moment matching reduction [16, 25, 60, 61, 62, 63,

64, 65].

Despite such a wealth of mathematical results, two assumptions often restrict the ap-

plicability of these methods to academic examples: sufficiently smooth f1 and g1, and the

existence of a smooth energy function (a solution to a nonlinear PDE), [66, 67]. Instead

empirical/POD based methods often end up being used to define a transformation from

an approximate gramian obtained using response data. Identical to linear systems, snap-

shots are used, a transformation is derived, and truncation is performed for a reduced order

nonlinear model [27].

On one extreme end of the POD based methods is that of empirical gramians/covariance

matrices [68]. POD uses snapshots of “nominal operation” of the model, to contrast this

empirical gramians probe all directions of the state and input space to build up statistical

information about the input-to-output characteristics [46, 69, 70]. The empirical gramians

are used to define a balancing transformation for model order reduction. However, there has

been no development of empirical gramians where the compensator is considered.

1.2 Contributions and Organization of the Dissertation

This dissertation is divided into two parts: model reduction for linear systems (Chapters

2 through 4) and nonlinear systems (Chapters 5 and 6). Then in Chapter 7 the work is

recapped and open problems are presented. The specific contributions and organization are

contained in the remaining sections of the chapter.
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1.2.1 Chapter 2: Lyapunov Balanced Truncation of Large Scale

Linear Descriptor Systems

Chapter 2 presents a suite of tools to aid in the calculation of low-rank matrix square

roots by LR-ADI methods. The contributions of the chapter include the following:

1. Bilinear discretizations of descriptor systems are defined, and their eigenvalues/eigen-

vectors are employed in a novel way for LR-ADI shift selection.

2. An approximate up/downdate algorithm is proposed and a suite of tools are developed

for:

(a) parallelization of gramian approximations of MIMO systems by breaking the prob-

lem up into gramian “elements,”

(b) condensing and restarting the low-rank matrix square root factor of the gramian

elements, and

(c) a posteriori weighting of the gramian elements.

3. Using approximate balanced truncation calculated from the proposed methods, reduc-

ing a combined electric machine model with >100000 states to just 8 states for the

purpose of condition monitoring.

1.2.2 Chapter 3: Riccati Balanced Truncation of Linear Systems

This chapter contains the work of [71] as well as extensions to large scale systems, and

experimental results. The contributions of Chapter 3 are:

1. A generalization of the Linear Quadratic Gaussian (LQG) balanced truncation of [3,

28, 29] to include direct feedthrough, control and output weights (including the cross

terms, e.g. y>Su), and cross term/non-normalized noise for estimation.

2. Using the low-rank matrix square root approximation framework from Chapter 2 with a

Newton-Kleinman iteration, low-rank matrix square root approximations of the Riccati
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solutions are found, and used to perform approximate LQG balanced truncation of the

combined electric machine model.

3. The infinite time linear quadratic regulator is closely related to unconstrained model

predictive control with a linear quadratic cost and properly chosen terminal penalty.

This relationship is exploited to yield a reduced order model suited for model predictive

control design.

4. Efficacy of model order reduction with the generalized LQG balanced truncation method

in different MPC frameworks is demonstrated on 8th order linear and nonlinear diesel

engine airpath models, as well as an experimental diesel engine.

1.2.3 Chapter 4: Model Order Reduction for Constrained Linear

MPC

In Chapter 4, obtaining a reduced order model for control/estimation of a constrained

system is formulated as an optimization problem. The three main contributions of the

chapter are:

1. A tracking result for reduced order output feedback robust model predictive control

with a reduced order model obtained by residualization.

2. The definition of a set conservativeness function, and the formulation of a general

model order reduction problem for constrained systems.

3. Using a selected control methodology and constraint conservativeness function, a model

order reduction problem for constrained systems is formulated, a solution proposed,

and a numerical example demonstrating efficacy of the proposed solution along with

different facets of the problem.
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1.2.4 Chapter 5: Empirical Gramian Balanced Truncation for Non-

linear Systems

Chapter 5 contains the work of [72], and delves into nonlinear model order reduction by

balanced truncation using empirical gramians. The two contributions of this chapter are:

1. A modified definition of empirical gramians/covariance matrices that:

(a) potentially decreases the number of experiments required, and

(b) includes input and output weightings.

2. Using the modified definition, a 9 state diesel airpath model is reduced by balanced

truncation and used to calculate a tracking reduced model predictive control law. Im-

provements over selected linear model reduction methods are demonstrated.

1.2.5 Chapter 6: Empirical Riccati Covariance Balanced Trunca-

tion for Nonlinear Control and Estimation

The work of [73] is presented in Chapter 6. The key contributions of the chapter are:

1. The development of the empirical Riccati covariance matrices.

2. The extension of closed-loop gramian reduction (a further generalization of LQG bal-

anced truncation) to nonlinear systems using empirically obtained quantities.

3. Efficacy of the proposed approach to the MPC/extended Kalman filter compensation

of a spatially discretized catalytic rod model.
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Chapter 2

Model Order Reduction of Large Scale

Descriptor Systems

Control and estimation of a plant governed by linear partial differential equations (PDEs,

or distributed parameter systems) may be handled analytically for simple geometries and

possibly even in real-time using closed-form solutions. However, for more complicated ge-

ometries, closed-form solutions may not exist and approximations of either the system or

the solution must be used [74].

A popular technique to approximate a PDE is to use finite element analysis (FEA). FEA

uses bases (or elements) to “spatially discretize” the PDE into a model comprised of n time

dependent differential equations (a.k.a. a lumped parameter model) [75]. For an accurate

approximation of the dynamics, a large number of differential equations/states (n > 10000)

are often required [11], moreover, linear FEA often results in the linear descriptor systems

representation

Eẋ = Ax+Bu. (2.1)

When E = I, the identity, (2.1) is referred to as an ordinary linear system model [76].

Linear FEA models often lead to sparse matrices E and A. The sparseness of the matrices

in (2.1) may be exploited to reduce computational complexity, and it is often the only way

a system can be feasibly represented in the random access memory (RAM) of a computer

and be quickly manipulated. Consider the case of a non-singular E, where both E and A
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are sparse and fit in the RAM of a computer. Under these conditions, E is invertible, and

E−1A is defined. However, E−1A is in general not sparse [76], and therefore may not be

containable in a computer’s RAM. Therefore, it is often desirable in design and evaluation

to keep the system in the form of (2.1) to leverage numerical advantages.

Despite efficient sparse operations and solvers, one of the key limitations to using these

linear FEA models for real-time simulation, condition monitoring, control, and/or estimation

of a plant, is still the computational complexity. To meet the real-time requirement, a

reduced order model is often pursued.

One of the first approaches for systematic model order reduction in the control liter-

ature is that of [13]. For ordinary linear systems, [13] exploits the notion of Lyapunov

(or gramian) balanced representation, which ranks subspaces by an input-to-output energy,

through Hankel Singular Values (HSVs). The subspaces associated with small HSVs do

not contribute much to input-to-output energy, and may be neglected. Lyapunov balanced

truncation (LBT) is performed by removing the subspaces and dynamics that correspond to

small HSVs. To calculate the HSVs of the system and the similarity transformation to place

the system into the balanced representation, gramians are required.

Gramians, however, are generally dense, require O(n3) operations to find, and cannot be

reasonably computed for large n [39]. Gramians do exhibit exploitable properties, such as if

the system is controllable (observable) the controllability (observability) gramian is positive

semidefinite, meaning that the gramian can be represented by matrix square root factors

[40], which can be used instead to define the balancing transformation [77].

While matrix square root factors are still dense factorizations, linear FEA problems have

been known to exhibit rapid degeneration of the HSVs [78]. This means that for a given

positive semi-definite or definite matrix, P , with a matrix square root factor K̃P , there exists

a KP of rank q � n such that K̃P K̃
>
P ≈ KPK

>
P . KP may be used to define an approximate

balancing transformation for model order reduction [41, 43, 79]. This shifts the problem

of obtaining a gramian to that of calculating an approximate low-rank matrix square root

factor of a gramian.

There are several techniques and challenges to calculating a low-rank matrix square root

factor of a gramian. Practical algorithms for calculating the low-rank matrix square root
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factors use an iteration scheme [80]. Because a low-rank approximation is being found via

an iteration, key problems to address are the accuracy and the rate of convergence. The rate

of convergence dictates the computational and storage complexity as well as the accuracy

[81].

In this chapter, the notion of bilinear discretizations of a descriptor system is developed.

The eigenvalues/eigenvectors of the discretized models are used to develop a novel algorithm

to find low-rank matrix square root factors of gramians for approximate model order reduc-

tion of non-singular E linear descriptor systems, with a note included on how to extend it to

general descriptor systems with singular E. For large scale problems, the low-rank matrix

square root factors may not converge fast enough in the case of limited RAM. Modifications

to the singular value decomposition (SVD) update rule of [81] are proposed: a way to restart

and condense the low-rank matrix square root calculation, up/downdate the low-rank matrix

square root factors as information is added or removed, and a way to do a posteriori weighted

LBT. The techniques are then demonstrated and compared on a variety of example systems,

including a combined electric machine thermal conduction model with more than 100,000

states.

The chapter is organized as: Section 2.1 provides pertinent background on linear descrip-

tor systems, gramians, low-rank matrix square root factors for gramian approximation, and

approximate Lyapunov Balanced Truncation (LBT). Section 2.2 extends the concept of a

bilinear discretization to descriptor systems and contains the novel algorithms to calculate

low-rank matrix square root factors of the gramian. Section 2.3 discusses up/downdating,

restarted low-rank approximations, and the exploitation of gramian linearity to provide a

posteriori weighted low-rank matrix square root factors of gramians. Section 2.4 goes through

the performance of the algorithms and presents an application to approximate model order

reduction of large dense systems, and a sparse system given by the finite element model of

an electric machine. Finally, Section 2.5 concludes the chapter with a recapitulation of the

results.
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2.1 Background

2.1.1 Descriptor Systems

Descriptor systems are a form of differential algebraic equation and for linear systems

they are best characterized by the addition of a “mass” matrix, E, multiplying the derivative

term of a system:

Σ :

 Eẋ = Ax+Bu,

y = Cx+Du,
(2.2)

where E, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and the natural assumption that

p, m� n. The transfer function of Σ is given as

G(s) = C(sE − A)−1B +D. (2.3)

Descriptor systems, however, do require additional technical machinery for solutions when E

is not the identity, and even more technical machinery when E is singular (i.e. det(E) = 0)

[82, 83]. If E is singular, but det(λE − A) 6= 0 for almost all λ ∈ C, then it is said to be

regular . If E is non-singular, λE − A is always regular.

Remark 2.1.1. For the remainder of the work, it will be assumed that E is non-singular

(det(E) 6= 0), and hence regular, to avoid excessive technicalities. When they are known to

exist, generalizations to the case of singular E will be noted.

There are many notions of stability, controllability, stabilizability, observability, and de-

tectability for descriptor systems. The interested reader is recommended to read [45] for a

concise overview.

Of particular interest to this work is stability of the matrix pencil λE−A, r-controllability,

and r-observability. To aid in the definition of stability, the eigenvalues and eigenvectors of

a matrix pencil are necessary:

Definition 2.1.1 (Eigenvalue/Eigenvector of a Matrix Pencil). For a matrix pencil λE−A,

the right and left eigenvalue (λ)/eigenvector (v), (λright, vright) and (λleft, vleft), solve the
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root finding problems

(λrightE − A)vright = 0, (2.4a)

v>left(λleftE − A) = 0, (2.4b)

where vright, vleft ∈ Cn×1 and are assumed to not be zero, and λright, λleft ∈ C.

This is also known as the generalized eigenvalue problem. Unless explicitly noted, only right

eigenvalue/eigenvectors will be used in this dissertation.

For admissible initial conditions, stability dictates whether the homogeneous solutions

(u = 0) of Σ converge to 0, as t→∞. Stability of descriptor systems may be defined using

the eigenvalues of the pencil λE − A:

Definition 2.1.2 (Stability). For a non-singular E, the matrix pencil is said to be stable if

all the eigenvalues of λE − A exist on the open left half plane, C− = {λ ∈ C| Re{λ} < 0}.

Assume E and E> have full rank, then r-controllability and r-observability are defined

as:

Definition 2.1.3 (R-Controllable). A system is said to be r-controllable if

rank([λE − A,B]) = n

for all λ ∈ C [45].

R-observability is defined dual to r-controllability:

Definition 2.1.4 (R-Observable). A system is said to be r-observable if

rank([λE> − A>, C>]) = n

for all λ ∈ C [45].

When a system is stable, regular, r-controllable and r-observable, there exist symmetric

positive definite matrices known as gramians [84], these provide one way to systematically

reduce the order of Σ in the form of (2.2) from n to r states.
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2.1.2 Gramians and Hankel Singular Values

In control theory, gramians have many uses. The so-called controllability and observabil-

ity gramians may be used to determine controllability/observability, the controllable/unob-

servable subspaces, the energy transmitted from input-to-state and state-to-output, respec-

tively, and Hankel singular values [26]. Two common ways to define gramians are through

improper integrals for continuous systems and algebraic equations [42].

In continuous time, the controllability, P , and observability, Π, gramians are the solutions

to generalized continuous algebraic Lyapunov equations (gcALEs)

APE> + EPA> +BB> = 0, (2.5a)

A>ΠE + E>ΠA+ C>C = 0. (2.5b)

The Hankel singular values (HSVs) are given by the following definition.

Definition 2.1.5 (Hankel singular values). Given a system, Σ, and solutions to (2.5a) and

(2.5b), the Hankel singular values, σi, are defined as

σi =
√
λi(PE>ΠE), (2.6)

where λi denotes the i-th eigenvalue.

HSVs are associated with input-to-output properties of a system, and they are invariant

under state space transformations. Further, they characterize the energy a subspace passes

from input-to-output. Subspaces that contribute little to the input-to-output behavior, those

corresponding to small HSVs, can be thought of as unimportant and removing them will have

little or no impact [13, 26]. This gives rise to the concept of Lyapunov Balanced Truncation

(LBT) for model order reduction.
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2.1.3 Lyapunov Balanced Truncation of Descriptor Systems

LBT was popularized in the control literature by [13]. The original idea sought to match

the impulse response of a high order model with that of a reduced order model, this naturally

led to using gramians and Hankel singular values to define a balanced representation, which

was then truncated.

To reveal what subspaces contribute little to the input-to-output behavior, the Lyapunov

balanced representation is used.

Definition 2.1.6 (Balanced Representation). A representation is said to be internally bal-

anced if the controllability and observability gramians are equal, diagonal, and comprised of

the HSVs in descending order along the diagonal [13].

Truncation, projection truncation, or Galerkin truncation is one of the easiest methods

to remove states. Consider a general linear descriptor system (and its partitioning) defined

by

Σ : (E,A,B,C,D) =

E11 E12

E21 E22

 ,
A11 A12

A21 A22

 ,
B1

B2

 , [C1 C2

]
, D

 (2.7)

where n is the order, and E, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. The

truncation of a model is obtained by removing any term with a 2 in its subscript, i.e.,

Σ : (E,A,B,C,D) 7→ Σr : (E11, A11, B1, C1, D),

where r is the reduced order, and E11, A11 ∈ Rr×r, B1 ∈ Rr×m, C1 ∈ Rp×r, and D1 ∈ Rp×m.

Typically, balanced truncation is performed with a single similarity transformation,

T : (E,A,B,C,D)→ (T −1ET ,T −1AT ,T −1B,CT , D);

however, for large scale systems T is generally dense and should not be explicitly formed

or inverted. Instead Algorithm 2.1 provides the method of [42] to directly calculate left and

right transformations for the balanced truncation of a descriptor system.
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Algorithm 2.1 Lyapunov balanced truncation for descriptor systems.

1: procedure LBTDescriptor(Σ : (E,A,B,C,D), r)
Require: λE − A stable.
2: Solve (2.5a) and (2.5b) for the generalized controllability, P , and observability

gramian, Π, respectively.
3: Compute the full rank Cholesky factors K̃P and K̃Π of the gramians, such that
P = K̃P K̃

>
P and Π = K̃ΠK̃

>
Π .

4: Perform the singular value decomposition

K̃>PEK̃Π = [U1, U2]diag(Σ1,Σ2)[V1, V2]>,

where [U1, U2] and [V1, V2] have orthonormal columns, Σ1 = diag(σ1, . . . , σr), Σ2 =
diag(σr+1, . . . σn) > 0.

5: Compute the left and right transformations

TL = K̃ΠU1Σ
−1/2
1 (2.8)

TR = K̃PV1Σ
−1/2
1 . (2.9)

6: Apply TL and TR to obtain the truncation

Σr : (Er, Ar, Br, Cr, Dr) = (T >
L ETR,T

>
L ATR,T

>
L B,CTR, D) (2.10)

return Σr : (Er, Ar, Br, Cr, Dr)
7: end procedure

Remark 2.1.2. Balancing transformations may also be defined for singular systems, the

generalization can be found in [42, 45].

Provided with transfer functions, Gc and Gr,c, of Σ and Σr, respectively, in continuous

time, truncation ensures that Gc(∞) = Gr,c(∞) (where the c subscript denotes continuous).

The equality at infinite frequency ensures that the initial response matches arbitrarily well.

However, for discrete time systems, no such relationship holds generally [12].

The descriptor system LBT of [42] enjoys the same “twice the sum of the tail” error bounds

of [13]. Given the transfer functions of the full order system from (2.3), G(s) = Gc(s), and

the reduced order system

Gr,c(s) = Cr(sEr − Ar)−1Br +Dr, (2.11)
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the H∞ error between the full and reduced order model is

||Gc(s)−Gr,c(s)||∞ = 2
n∑

i=r+1

σi. (2.12)

Algorithm 2.1 is challenging to execute for large scale systems: solving (2.5a) and (2.5b)

are known to have O(n3) complexity using the standard generalized Bartels-Stewart method

[39], and the solutions are generally dense (so storage is O(n2)) [4, 80]. Additionally, the

complexity and storage are multiplied by the number of matrix factorizations and transfor-

mations required to find a balancing transformation.

To get around the storage and computational limitation for large systems, a way to

approximately compute T >
L and TR is employed. These quantities are obtained using ap-

proximations of the gramians, and are found with low-rank alternating direction implicit

(LR-ADI) methods [80].

2.1.4 Low-Rank Cholesky Factors and Approximate Lyapunov Bal-

anced Truncation

To follow the common terminology of the literature, a matrix square root factor will be

called a Cholesky factor, despite not being required to be lower triangular [45]. Further, for

the rest of this chapter, focus will be placed on the solution, P , of the controllability gcALE,

(2.5a). Using duality, the solution to the observability gcALE may be found using the same

framework.

Several facts allowing accurate approximations of the solutions to (2.5a) and (2.5b) are

noted as follows:

1. the eigenvalues of P tend to decay faster as the number of states increases [78];

2. the solutions to (2.5a) and (2.5b) for stable, r-controllable systems are symmetric,

positive definite and unique [84]; and

3. a symmetric positive semidefinite matrix exhibits a non-unique Cholesky factor of the
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form P = K̃P K̃
>
P

1.

The eigenvalue decay of P (and dual Π) leads to rapid HSV decay [78]. This gives

rise to two expected results: a reduced order model of order r � n, recall small HSVs get

truncated and rapid decay ensures an accurate approximation by (2.12); and P may be well

approximated by KPK
>
P , where KP has rank q � n. The other two facts are exploited by

[43] to develop a computationally efficient algorithm for the calculation of low-rank Cholesky

factors.

The low-rank Cholesky factors, generated by LR-ADI or Cholesky factor ADI (CF-ADI)

[80], use a variation on the Smith iterator [85] called the cyclic Smith(l) iterator of [43]. The

Smith iterator uses a sequence of bilinear matrix transformations, defined using a set of l

shifts, {τi}l−1
i=0, and iterations to build a full rank solution (storage O(n2)) to the controlla-

bility gcALE. The cyclic Smith(l) iterator, on the other hand, iterates a vector and appends

it to the low-rank Cholesky factor; after q iterations, this would require storage O(nmq).

One issue identified with these methods is that if the iteration is slow to converge, then

many columns could be necessary for an accurate approximation; however, if the iterations

converge quickly, mq � n and the low-rank Cholesky factor is more practical in terms of

storage.

Algorithm 2.1 is modified to use the economic SVD [40], and the low-rank Cholesky

factors are used in place of the full-rank Cholesky factors to generate WT >
L and TRV

directly. This becomes known as approximate LBT because an approximation of the full

rank Cholesky factor is used.

Algorithm 2.2 provides the real cyclic Smith(l) iterator of [43] using the notation and

generalization to non-singular descriptor systems of [45]. With the algorithm, there come

three questions: what is the complexity, how should the shifts be generated, and is the

resulting approximate balanced reduced order model stable?
1As examples: a real P exhibits a singular value decomposition P = U Σ̃V >, U, V unitary, Σ̃ diagonal,

with V = U , so P = U Σ̃U>, and therefore K̃P = U Σ̃1/2. When K̃P has the lower diagonal form, the
decomposition is the classical Cholesky factorization [40].
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Algorithm 2.2 Real Smith(l) iterator for low-rank Cholesky factors of the controllability
gramian.

1: procedure Smith(l)(E,A,B, {τi}l−1
i=0)

Require: λE − A stable, τi ∈ R−
2: W0 = B, K = [ ], k = 1
3: while (||W>

k−1Wk−1||/||W>
0 W0|| > ε and k < kmax) do

4: i = k mod l
5: Ṽk = (E + τiA)−1Wk−1

6: Wk = Wk−1 − 2τiAṼk
7: K = [K

√
−2τiṼk]

8: k = k + 1
9: end while

return K
10: end procedure

It is seen that the computational complexity of all Smith iterator techniques are depen-

dent upon how (E + τiA)−1 is handled [43]. For large systems, (E + τiA)−1 should never

be explicitly formed, instead matrix factorizations or Gaussian elimination should be used.

Depending on the properties of the pencil E + τiA, the complexity could range from O(n)

to O(n3), potentially making LR-ADI more feasible than exact solutions found with the

generalized Bartels-Stewart method [86].

The shifts, τi, determine the rate of convergence and hence the accuracy of the low-rank

Cholesky factor, and they are calculated using one of two paradigms: static shifts or self

generating shifts. For the optimal set of l static shifts, it is known that the minimax problem

{τ̂1, . . . , τ̂l} = arg min
τ1,...,τl∈R−

max
t∈Sp(E,A)

|1− τ1t| · · · |1− τlt|
|1 + τ1t| · · · |1 + τlt|

must be solved, where Sp(E,A) denotes the spectrum, or eigenvalues, of the matrix pencil

λE−A [87]. However, this optimization requires knowledge of all the eigenvalues, potentially

unattainable for large systems. Instead, it has been noted that replacing Sp(E,A) with a

small set of the largest and smallest in magnitude eigenvalues yields good results in practice

[45], using these shifts and the Smith(l) iterator comprises sub-optimal LR-ADI.

Nevertheless, these eigenvalue approaches do not consider how the input matrix B inter-

acts with the dynamics (E,A). To account for this, the self generating shifts are employed
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by selecting τk on-the-fly instead of from a static set. Many techniques have been proposed,

for an overview of popular shift selection strategies, see [44, Chapter 5].

Then there is the question of stability, unlike Lyapunov balanced truncation, a reduced

order model obtained by approximate truncation is not guaranteed to be stable. However, it

has been noted that in practice the approximate Lyapunov balanced truncation of a stable

model will yield a stable reduced order model [80].

In the following sections, bilinear discretizations of descriptor systems will be built up

and their eigenvalue/vector information will be exploited for a new way to calculate shifts

online. Various algorithms will be developed to aid in the calculation of low-rank Cholesky

factors of gramians; and demonstrations of speed and accuracy, as well as a reduced order

model of an electric machine obtained using these methods will be provided and compared.

2.2 Bilinear Discretization of Descriptor Systems

In complex analysis, one definition of a single parameter bilinear (Möbius) transformation

is [88]:

s = α
z − 1

z + 1
. (2.13)

For the purpose of discretization, the bilinear transformation maps the transfer function

from continuous (s) to the discrete (z) domain by (2.13) with

α =
2

Ts
, (2.14)

where Ts > 0 is the sample time.

There are four classes of bilinear discretizations for linear systems, however, for ordinary

linear systems, ΣO : (Ã, B̃, C̃, D̃), two classes degenerate into one to yield three unique

classes. The three classes of bilinear discretizations are differentiated by how the input and
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output matrices are discretized [89, Lemma 7.2.1]:

Ãd = (αIn×n + Ã)(αIn×n − Ã)−1, (2.15a)

B̃d = η1(αIn×n − Ã)−1B̃, (2.15b)

C̃d = η2C(αIn×n − Ã)−1, (2.15c)

D̃d = C̃(αIn×n − Ã)−1B̃ + D̃, (2.15d)

Ãd = (αIn×n + Ã)(αIn×n − Ã)−1, (2.16a)

B̃d = η1(αIn×n − Ã)−2B̃, (2.16b)

C̃d = η2C, (2.16c)

D̃d = C̃(αIn×n − Ã)−1B̃ + D̃, (2.16d)

Ãd = (αIn×n + Ã)(αIn×n − Ã)−1, (2.17a)

B̃d = η1B̃, (2.17b)

C̃d = η2C(αIn×n − Ã)−2, (2.17c)

D̃d = C̃(αIn×n − Ã)−1B̃ + D̃, (2.17d)

where In×n is the n× n identity matrix, and the product η1η2 = 2α.

When the discretization of (2.15) is selected and η1 = η2 =
√

2α, it is found that the

solutions to the continuous and discrete controllability and observability ALEs are equal.

That is, given ΣO and its discretization, the solutions P̃ and P̃d of the continuous and

discrete controllability ALEs are equal (P̃ = P̃d):

ÃP̃ + P̃ Ã> + B̃B̃> = 0, (2.18a)

ÃdP̃dÃ
>
d − P̃d + B̃dB̃

>
d = 0. (2.18b)
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Likewise, Π̃ and Π̃d are the solutions of

Ã>Π̃ + Π̃Ã+ C̃>C̃ = 0, (2.19a)

Ã>d Π̃dÃd − Π̃d + C̃>d C̃d = 0, (2.19b)

and are equal, i.e., Π̃ = Π̃d [26].

Assuming an asymptotically stable ΣO, there are two ways to obtain the controllability

gramian: solve (2.18a) or calculate the integral of the product of matrix exponentials:

P̃ =

∫ ∞
0

eÃtB̃B̃>eÃ
>tdt. (2.20)

Whereas for the discrete time controllability gramian, (2.18b) gets solved, or an infinite sum

is calculated:

P̃d =
∞∑
i=0

ÃidB̃dB̃
>
d (Ãid)

> =
[
B̃d ÃdB̃d Ã2

dB̃d . . .
] [
B̃d ÃdB̃d Ã2

dB̃d . . .
]>
. (2.21)

Each technique has its advantages and disadvantages, but for the purpose of low-rank

Cholesky factors, it is seen that the discrete case already yields a Cholesky factor using

the Krylov matrix K̃P =
[
B̃d ÃdB̃d Ã2

dB̃d . . .
]
, which can be truncated to be “low-rank.”

For regular descriptor systems, however, it is found that different discretizations are nec-

essary for equality of the continuous and discrete controllability and observability gramians.

In Section 2.2.1 and 2.2.2, the discretizations that yield the equality of the continuous and

discrete controllability and observability gramians are derived, respectively. These two dis-

cretizations are related back to the LR-ADI for calculating low-rank Cholesky factors, and

in Section 2.2.3 eigenvalue/vector information of the discretizations are used to select shifts

in a computationally efficient manner.
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2.2.1 Control Sided Bilinear Discretization

Using the stability and regularity assumption, i.e. αE − A can be inverted, (2.13) is

substituted into (2.3), to yield the transfer function:

G(z) = G

(
α
z − 1

z + 1

)
= C

(
α
z − 1

z + 1
E − A

)−1

B +D,

= (z + 1)C((αE − A)z − (αE + A))−1B +D. (2.22)

Defining
Ad = (αE − A)−1(αE + A),

Bd = (αE − A)−1B,

yields

G(z) = zC(zIn×n − Ad)−1Bd + C(zIn×n − Ad)−1Bd +D. (2.23)

Note that

zC(zIn×n − Ad)−1Bd = C(zIn×n − Ad + Ad)(zIn×n − Ad)−1Bd,

= CAd(zIn×n − Ad)−1Bd + CBd.

Substituting the result for zC(zIn×n − Ad)−1Bd back into (2.23) results in

G(z) = CAd(zIn×n − Ad)−1Bd + C(zIn×n − Ad)−1Bd + (CBd +D),

= C(Ad + In×n)(zIn×n − Ad)−1Bd + (CBd +D).

In this form, it is found that
Cd = C(Ad + In×n).

Dd = CBd +D,

resulting in an ordinary discrete time system.

While the above derivation provides a class of bilinear discretization, the discrete con-

trollability gramian found using (Ad, Bd) is a scalar multiple of the continuous controllability

gramian found using (E,A,B). To make the discrete and continuous controllability gramians

equal, the scalar multiple of 2α arising in Cd is distributed amongst the input and output
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by
√

2α as in (2.24):

Adc = (αE − A)−1(αE + A), (2.24a)

Bdc =
√

2α(αE − A)−1B, (2.24b)

Cdc =
1√
2α
C(Ad + In×n) =

√
2αC(αE − A)−1E, (2.24c)

Ddc = C(αE − A)−1B +D. (2.24d)

Theorem 2.2.1. Given a non-singular, stable, r-controllable Σ, the continuous controllabil-

ity gramian, P (that solves (2.5a) with (E,A,B)), and the discrete controllability gramian,

Pd (that solves (2.18b) with (Adc, Bdc)), are equal, unique, and positive definite.

Proof. See Appendix A.1.1 for the proof.

Theorem 2.2.2. Given a continuous time, regular descriptor system Σ : (E,A,B,C,D)

with eigenvalues λc,i and corresponding right eigenvectors Vc,i of the matrix pencil λE − A,

for i = 1, . . . , n, the bilinear discretization Adc = (αE − A)−1(αE + A) has eigenvalues

λdc,i =
α + λc,i
α− λc,i

, (2.25)

and eigenvectors

Vdc,i = Vc,i, (2.26)

for all α 6= λc,i.

Proof. See Appendix A.1.2 for the proof.

2.2.2 Observer Sided Bilinear Discretization

As noted previously: for ordinary systems, only a single bilinear discretization is necessary

to yield the equality of the continuous gramians and the respective discrete gramians. This

is not the case for descriptor systems. Using the discretization given by (2.24a)-(2.24d), the
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discrete observability ALE is:

A>dcΠdAdc − Πd + C>dcCdc = 0.

Substituting and factoring out (αE+A) and its transpose like in the proof of Theorem 2.2.1,

it is found that

(αE + A)>((αE − A)−>Πd(αE − A)−1 − (αE + A)−>Πd(αE + A)−1

−2α(αE + A)−>E>(αE − A)−>C>C(αE − A)−1E(αE + A)−1)(αE + A) = 0.

Immediately, three problems arise: there are additional E> and E on the C>C term, the

equation cannot be simplified into a known form, and Πd cannot be shown to satisfy (2.5b).

Therefore, a different discretization is required for equality of the observability gramians.

Following a similar derivation to that of the control sided bilinear discretization of a

descriptor system, the observer sided bilinear discretization is found using (αE + A)(αE −

A)−1 in (2.22) and the transfer function of the dual system, Σ∗ : (E>, A>, C>, B>, D>):

Ado = (αE + A)(αE − A)−1, (2.27a)

Bdo =
1√
2α

(Ad + I)B =
√

2αE(αE − A)−1B, (2.27b)

Cdo =
√

2αC(αE − A)−1, (2.27c)

Ddo = C(αE − A)−1B +D. (2.27d)

Remark 2.2.1. When Σ is an ordinary system, i.e. E = In×n, Adc = Ado and the control and

observer sided discretizations are equal, resulting in three classes of bilinear discretization.

However, for descriptor systems, Adc 6= Ado in general, meaning there are four classes of

bilinear discretization. To find the remaining two classes, the same derivation technique is

used with: 1) Adc = (αE − A)−1(αE + A) and the dual system Σ∗ : (E>, A>, C>, B>, D>),

and 2) Ado = (αE + A)(αE − A)−1 and Σ.

Theorem 2.2.3. Given a non-singular, stable, r-observable Σ, the continuous observability
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gramian, Π (that solves (2.5b) with (E,A,C)), and the discrete observability gramian, Πd

(that solves (2.19b) with (Ado, Bdo)), are equal, unique, and positive definite.

Proof. The proof follows that of Theorem 2.2.1, and can be found in Appendix A.1.1.

Theorem 2.2.4. Given a continuous time, regular descriptor system Σ : (E,A,B,C,D)

with eigenvalues λc,i and corresponding right eigenvectors Vc,i of the matrix pencil λE − A,

for i = 1, . . . , n, the bilinear discretization Ado = (αE + A)(αE − A)−1 has eigenvalues

λdo,i =
α + λc,i
α− λc,i

, (2.28)

and eigenvectors

Vdo,i = EVc,i, (2.29)

for all α 6= λc,i.

Proof. See Appendix A.1.4 for the proof.

Corollary 2.2.1. The left eigenvalues/vectors of the control sided bilinear discretization,

Adc, are the right eigenvalues/vectors of the observer sided bilinear discretization, and vice-

versa.

Then there are the important systems properties of stability, controllability, and observ-

ability covered by Theorem 2.2.5.

Theorem 2.2.5. If Σ : (E,A,B,C,D) is stable, then the discrete systems given by (2.24a)-

(2.24d) and (2.27a)-(2.27d) are stable. If Σ : (E,A,B,C,D) is r-controllable (r-observable)

then Σdc : (Adc, Bdc, Cdc, Ddc) (Σdo : (Ado, Bdo, Cdo, Ddo)) with the system matrices specified

in (2.24a)-(2.24d) ( (2.27a)-(2.27d)) is controllable (observable).

Proof. See Appendix A.1.5 for the proof.

Theorem 2 of [79] is used to connect LR-ADI and the calculation of the discrete grami-

ans from a bilinearly discretized system through the column span of a Krylov matrix. While

eigenvalues of the bilinearly discretized Σ have been well known [44], the eigenvectors of the

discretizations open new avenues for determining shift selection and improve the approxima-

tion of P by KPK
>
P using fewer iterations.
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2.2.3 LR-ADI with Eigenvalue Information

There are two main paradigms for using the Smith(l) iterator: static shifts and self

generating shifts. As noted in [44], precomputed sub-optimal LR-ADI shifts do not consider

how B interacts with the dynamics, and may not accurately capture the dominant input-

output behavior, which potentially inhibits convergence and requires more memory to store

the low-rank Cholesky factor. As such, there has been a move towards self generating shifts.

In the context of controls, self generating shifts are a nonlinear control problem to regulate

Wk in Algorithm 2.2 through “input” τk, but such shifts can be expensive to compute on-

the-fly for large problems. For a more in depth review, see [44, Chapter 5].

With the potential for slow convergence of static shifts or a high computational cost for

self generating shifts, a middle ground is proposed: select a shift from a static set of shifts

to meet some objective during an iteration in a computationally efficient manner, akin to

input space discretization in dynamic programming [90] but without completely discretizing

the space. Expanding upon sub-optimal LR-ADI, eigenvalue information will be used, but

now in conjunction with the discrete eigenvectors of Theorem 2.2.2 and 2.2.4.

For large systems, the largest and smallest eigenvalue/vector information of matrix pen-

cils are readily computable using Lanczos, Krylov, or Arnoldi iterations [91, Chapter 10].

This information may be used to guide the calculation of the low-rank Cholesky factor. To

see how, the geometry of lines and sets mapped by the bilinear transform is crucial.

Fig. 2.1 shows how the bilinear transform of (2.13) maps the open left half plane to an

open unit ball (green line separates the left and right half planes). This means that stable

continuous eigenvalues get mapped to stable discrete eigenvalues. Consider Fig. 2.1(a)

and continuous eigenvalues contained within the dashed lines, Fig. 2.1(b)-2.1(c) show the

dependence of the discrete eigenvalue positions on α. Particularly, Fig. 2.1(b) shows how

the real part of the continuous eigenvalues may be zeroed, and Fig. 2.1(c) shows how the

spectal radius of the discrete eigenvalues can be minimized.

This dependence is employed to manipulate (αE − A)−1 (the (E + τkA)−1Wk−1 step of

Algorithm 2.2) and mitigate the largest contributor of Wk−1 to the next iteration.
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(a) Continuous eigenvalues bounded by dashed region.
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(b) Mobius transform of continuous eigen-
value bounds, α = 2. Transforms the
continuous eigenvalue of -1 to the discrete
eigenvalue 0.
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Figure 2.1: Bilinear transform mapping of sectors and lines to demonstrate the mapping of
stable continuous eigenvalues to stable discrete eigenvalues.
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Given any continuous time matrix pencil, λE − A, select Λc to denote the set of all

eigenvalues arranged according to their magnitude from largest to smallest:

Λc = {λc,1, λc,2, . . . , λc,n−1, λc,n}.

Select Λs
c to be the s largest in magnitude, and s smallest in magnitude continuous eigenvalues

from Λc,

Λs
c = { λc,1, . . . , λc,s︸ ︷︷ ︸

Largest Magnitude

, λc,n−s, . . . , λc,n︸ ︷︷ ︸
Smallest Magnitude

}, (2.30)

and let V s
d contain the corresponding normalized discrete eigenvectors

V s
d =

[
Vdc,1 . . . Vdc,s Vdc,n−s Vdc,n

]
. (2.31)

Using the notion that the discrete eigenvalue may be placed to remove the contribution

of the eigenvector to the low-rank Cholesky factor, a new shift selection criteria is proposed.

Let Wk−1 be approximated with the vectors of Vd

Wk−1 ≈ ξ1Vdc,1 + · · ·+ ξsVdc,s + ξn−sVdc,n−s + . . .+ ξnVdc,n = Ṽ . (2.32)

For Algorithm 2.2 to converge rapidly, ||(αE − A)−1(αE + A)Ṽ || must be minimized at

each step. While α > 0 could be used to achieve this goal, for computational simplicity it is

assumed that (αE − A)−1(αE + A)Ṽ is dominated by the eigenvector with the largest ξk∗ .

The bilinear discretization is then used to move λd,k∗ so that it has zero real part, removing

the largest contributor to Wk.

In the event thatWk−1 is not well approximated by colspan(V s
d ), α is selected to minimize

the spectral radius of the unknown (or uncalculated) discrete eigenvalues bounded by |λd,s| ≤

|λd,unknown| ≤ |λd,n−s|. A straightforward calculation reveals that

T ?s =

∣∣∣∣∣
√

4

λc,sλc,n−s

∣∣∣∣∣
minimizes the spectral radius of the unknown discrete eigenvalues by making |λd,s| = |λd,n−s|.
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Algorithm 2.3 captures the proposed approach but returns the shift, τ = − 1
α
, for use in

the Smith(l) iterator given in Algorithm 2.2, the eigenvalue/vector LR-ADI (EVV-LR-ADI)

to calculate the low-rank Cholesky factor of the controllability gramian of Σ is given by

Algorithm 2.4. In Algorithm 2.4, K{γ} denotes the γ-th column of K, and K{γ:δ} denote the

γ to δ columns of the low-rank Cholesky factor, K.

Algorithm 2.3 Eigenvalue placement/residual spectrum minimization shift selection.

1: procedure τ_Selection(W,V s
d ,Λ

s
c)

2: if ||W>V s
d || > ε then

3: k∗ = arg max
k∈{1,...,s,n−s,...,s}

||W>Vd,k||

4: T ?s =
∣∣∣ 2
λc,k∗

∣∣∣
5: else
6: T ?s =

∣∣∣√ 4
λc,sλc,n−s

∣∣∣
7: end if
8: τ = −T ?s

2

return τ
9: end procedure

Algorithm 2.4 EVV-LR-ADI low-rank controllability gramian Cholesky factor.

1: procedure EVVLRADI(E,A,B, V s
d ,Λ

s
c, q)

Require: λE − A stable, B ∈ Rn×1

2: W0 = B, K{0} = [ ], k = 1
3: while (||W>

k−1Wk−1||/||W>
0 W0|| > ε and k < q) do

4: τ = τ_Selection(Wk−1, V
s
d ,Λ

s
c)

5: Ṽk = (E + τA)−1Wk−1

6: Wk = Wk−1 − 2τAṼk
7: K = [K{1:(k−1)}

√
−2τ Ṽk]

8: k = k + 1
9: end while

return K
10: end procedure

Remark 2.2.2. The requirement that B ∈ Rn×1 comes from the linear dependence of the

controllability gramian on BB>, and will be further highlighted in Section 2.3.3.

Finally, Algorithm 2.4 may be extended in a variety of ways:

1. to find the observability gramian, the dual system may be used;
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2. a generalized Cayley transformation and LR-ADI with complex shifts [44] can be used

to increase the rate of convergence (such an approach is valuable when oscillatory

dynamics dominate the state (i.e., the eigenvalues are almost pure imaginary)); and

3. using the work of [42], the EVV-LR-ADI may be extended to singular systems.

2.3 Exploiting Linearity and Numerical Linear Algebra

For large n and a slowly converging LR-ADI iteration, the number of columns in the

low-rank Cholesky factor, K, may grow too large to fit in memory [81]. To keep K̃, the

low-rank Cholesky factor, to at most q columns, both [81, 92] have proposed to recalculate

the low-rank Cholesky factor by updating an SVD and truncating singular values below a

specified threshold, or condensing the low-rank Cholesky factor.

In this section, a similar idea is proposed to address: condensing and restarting a slowly

converging LR-ADI, parallelization, and a posteriori weighting.

2.3.1 Approximate Updating and Downdating

A common problem when dealing with matrix factorizations is modifying the factorization

efficiently when new information is presented or ignored [91, 93, 94, 95]. For low-rank

Cholesky factors, this can manifest in two ways: updating and downdating.

Assume the following are known: symmetric, positive semidefinite matrices X, X1 ∈

Rn×n, low-rank Cholesky factors K0 of X and K1 of X1, with column rank q0 and q1,

respectively. The approximate update problem is to incorporate K0, K1 into a condensed

low-rank Cholesky factor K̃ with smaller column rank q ≤ q0 + q1 such that

Xu = X +X1 = K0K
>
0 +K1K

>
1 ≈ K̃K̃>. (2.33)

Using the SVD, K0K
>
0 + K1K

>
1 may be optimally approximated in the induced matrix

2-norm by K̃K̃>, with column rank q, using the low-rank SVD approximation [40].
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Likewise, the downdate problem seeks to remove the additional information:

Xd = X −X1 = K0K
>
0 −K1K

>
1 ≈ K̃K̃>. (2.34)

For the downdate problem, it must be assumed that Xd ≥ 0 for a real Cholesky factor to

exist. There are many up/downdating techniques available for various factorizations [96],

yet most require full rank of K0 for Cholesky factors [91], or for the existence of a hyperbolic

rotation (for the case of the Hyperbolic SVD, which calculates the LDLT decomposition, or

equivalent SVD, of a positive definite AA> −BB>) [97].

Algorithm 2.5 presents a technique that captures both multiple-rank updating and down-

dating of the low-rank Cholesky factor K0 by K1 to rank q (absent of thresholding). ν is the

sign of the K1K
>
1 term: positive for updating, negative for downdating.
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Algorithm 2.5 Up/Downdated Low-Rank Cholesky Factorization

1: procedure UpDowndatedLRCholesky(K0,K1,q,ν)
Require: ν ∈ {1,−1}
2: Calculate the economic singular value decompositions (SVDs)

[U0,Σ0, V0] = svd(K0), (2.35a)
[U1,Σ1, V1] = svd(K1) (2.35b)

3: Combine U0, U1, Σ2
0, and νΣ2

1 to form portions of X + νX1 = K0K
>
0 + νK1K

>
1 :[

U0Σ0V
>

0 νU1Σ1V
>

1

] [
U0Σ0V

>
0 U1Σ1V

>
1

]>
=

[
U>0
U>1

]> [
Σ0 0
0 νΣ1

] [
V >0 0
0 V >1

] [
V0 0
0 V1

] [
Σ0 0
0 Σ1

] [
U>0
U>1

]
=

[
U0 U1

] [Σ2
0 0

0 νΣ2
1

] [
U>0
U>1

]
4: Calculate the economic QR factorization of

[
U0 U1

]
:

[Q,R] = qr
([
U0 U1

])
. (2.36)

5: Calculate the SVD of R(Σ2
0 ⊕ νΣ2

1)R> to expose the singular values as well as the
economic SVD of X + νX1 = (QU)Σ2(QV )>:

[
U,Σ2, V

]
= svd

(
R

[
Σ2

0 0
0 νΣ2

1

]
R>
)
. (2.37)

6: Form rank q approximations

Z = QU
[
Iq×q 0

]>
, (2.38a)

Σq =
[
Iq×q 0

]
Σ
[
Iq×q 0

]>
. (2.38b)

7: K̃ ← ZΣq

return K̃
8: end procedure

Remark 2.3.1. For repeated applications of Algorithm 2.5, it would be more efficient to

return Z, Σq and accept it in place of K0 at each iteration to avoid redundant calculations

of (2.35a).

Remark 2.3.2. Algorithm 2.5 is non-associative in general. To check computationally, take

three low-rank Cholesky factors of appropriate size: K0, K1, K2, with minimum rank qmin,

select q such that 0 < q < qmin, and let K0 ? K1 = UpDowndatedLRCholesky(K0, K1, q, 1).
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Perform K0 ? (K1 ?K2) and (K0 ?K1) ?K2, and in general K0 ? (K1 ?K2) 6= (K0 ?K1) ?K2.

Remark 2.3.3. In Algorithm 2.5, it is assumed that X + νX1 ≥ 0, which would result in

U = V [40]. However, when downdating is performed (ν = −1) on K0 that does not have full

column rank, the colspan(K1)��⊂colspan(K0), resulting in an indefinite X + νX1 and U 6= V .

Nevertheless, caution only need be exercised in practice when U
[
Ir×r 0

]>
6= V

[
Ir×r 0

]>
(when ZΣq is not a low-rank Cholesky factor), where r � q is the reduced order. There

are at least two ways to handle this seemingly rare case: decrease r (which may result in

decreased reduced order model performance), or increase the rank of K0.

2.3.2 Condensing and Restarted Low-Rank Approximations

Algorithm 2.4 may be iterated by “popping” the last column of K0 off, K{q}, and feed-

ing W0 = K{q} back into Algorithm 2.4, restarting the calculation, to yield a K1 and the

approximation to the controllability gramian

P ≈ K0K
>
0 +K1K

>
1 . (2.39)

The approximation of K0K
>
0 + K1K

>
1 by a single factor is cast as an update problem in

the framework of Algorithm 2.5. Algorithm 2.6 provides how to restart and condense in the

event that an LR-ADI iteration is slow to converge.

Algorithm 2.6 Condense and Restart

1: procedure CondenseAndRestart(E,A,B, q, V s
d ,Λ

s
c)

2: W0 = B
3: K̃ = 0n×q
4: while (||W0||/||B|| > ε and c0 <Max Iteration) do
5: K = EV V LRADI(E,A,W0, q, V

s
d ,Λ

s
c)

6: K̃ = UpDowndatedLRCholesky(K̃,K{1:q−1}, q, 1)
7: W0 = K{q}, c0 = c0 + 1
8: end while

return K̃
9: end procedure

The following theorem provides the error bounds of repeated application of Algorithm

2.6.
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Theorem 2.3.1. Assume updating (ν = 1) of Algorithm 2.5 is repeatedly applied. Let σq+1,s

be the largest truncated singular value at the s-th application of Algorithm 2.5, and let K̃s be

the result of the s− 1-th application of Algorithm 2.6. Then∥∥∥∥∥K̃sK̃
>
s −

s∑
i=0

KiK
>
i

∥∥∥∥∥
2

≤
s∑
i=1

σ2
q+1,i. (2.40)

Proof. The proof may be found in Appendix A.1.6.

2.3.3 Linearity of the Lyapunov Solution, Parallelization, and A

Posteriori Weighting

Assume that B ∈ Rn×m, (E,A,B) is r-controllable, and BB> in (2.18a) is weighted by

a symmetric, positive definite Q, à la BQB>, such that (E,A,BQ1/2) is also r-controllable.

Then the gramians are linear with respect to BjB
>
j and BiB

>
j + BjB

>
i (the outer product

of columns of B). For the generalized cALE (2.5a), the gramian may be separated into Pjj

and Pij that solve:

APjjE
> + EPjjA

> +BjB
>
j = 0, (2.41a)

APijE
> + EPijA

> +BiB
>
j +BjB

>
i = 0. (2.41b)

By appropriately weighting Pjj and Pij with the elements of Q, and adding (2.41a) and

(2.41b), the solution to a weighted generalized cALE (or the weighted controllability gramian)

is found:

APE> + EPA> +BQB> = 0, (2.42)

where P > 0 since λE − A is stable and regular, and BQ1/2 is assumed to be r-controllable

[84].

For the portion of P corresponding to the diagonal terms Pjj that solve (2.41a), the

diagonally weighted part is obtained by repeated application of updating using Algorithm
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2.5:
m∑
j=1

Pjj =
m∑
j=1

KjjK
>
jj.

The cross terms BiB
>
j + BjB

>
i pose a problem for the proposed LR-ADI framework

because

BiB
>
j +BjB

>
i =

[
Bi Bj

]B>j
B>i

 =
[
Bi Bj

]0 1

1 0

[Bi Bj

]>
, (2.43)

has rank 2, is not positive semidefinite, and therefore Pij is not guaranteed to be positive

semidefinite. Nevertheless, this can be side stepped by using a polarization/parallelogram

combination of Bi and Bj:

B̄ij,1 =

√
2

2
(Bi +Bj) (2.44a)

B̄ij,2 =

√
2

2
(Bi −Bj). (2.44b)

Assuming that (E,A, B̄ij,k), k = 1, 2, are r-controllable, then positive definite solutions P̄ij,k

corresponding to B̄ij,kB̄
>
ij,k may be found. The solutions may then be combined as

Pij = P̄ij,1 − P̄ij,2 ≈ K̄ij,1K̄
>
ij,1 − K̄ij,2K̄

>
ij,2, (2.45)

which may be approximated using the downdating of K̄ij,1 and K̄ij,2 by Algorithm 2.5.

In total, the weighted controllability gramian may be separated into the computation of

the m2, single input/output, low-rank Cholesky factors: Kjj, K̄ij,1, and K̄ij,2, resulting in

a massively parallel problem. Further, Kjj, K̄ij,1, and K̄ij,2 may be stored and weighted in

an a posteriori fashion, resulting in the gramians needing to be calculated only once. The

additional weightings open up a new design paradigm for Lyapunov balanced truncation of

non-SISO systems: balanced truncation of constant weighted controllability and observability

gramians which may result in a more accurate reduced order model [19].

Algorithm 2.7 provides a way to combine the individual computed low-rank Cholesky

factors: Kjj, K̄ij,1, and K̄ij,2, given the Q weighting by updating the factors corresponding to

the diagonal weights first, then up/downdating or down/updating the factors corresponding
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to the cross term weights.

Algorithm 2.7 A posteriori weighting and combination of low-rank factors.

1: procedure APosterioriWeighting({Kjj, K̄ij,1, K̄ij,2},q,Q)
2: K̃ = 0n×q
3: for j = 1, . . . ,m do . Q Diagonal Elements
4: K̃ = UpDowndatedLRCholesky(K̃,

√
|Qjj|Kjj, q, sgn(Qjj))

5: end for
6: for j = 1, . . . ,m do . Q Cross Term Elements
7: for i = j + 1, . . . ,m do
8: K̃ = UpDowndatedLRCholesky(K̃,

√
|Qij|K̄ij,1, q, sgn(Qij))

9: K̃ = UpDowndatedLRCholesky(K̃,
√
|Qij|K̄ij,2, q,−sgn(Qij))

10: end for
11: end for

return K̃
12: end procedure

In practice, Algorithm 2.7 performs well, but may not provide the “best” low-rank

Cholesky factor of the gramian. For example, assume Q = Im×m, changing the diagonal loop

of Algorithm 2.7 from j = {1, . . . ,m} to j = {m,m − 1, . . . , 1} may result in a better ap-

proximation and/or smaller error bounds from the fact that Algorithm 2.5 is non-associative

(Remark 2.3.2) and Theorem 2.3.1. There are between m! (m-factorial) and m(m+1)
2

! ways

that K̃ can be calculated (Q diagonal and fully populated, respectively). The ordering of

the up/downdating to obtain K̃ of Algorithm 2.7 to obtain the “best” low-rank Cholesky

factor remains an open problem.

2.4 Examples

For all the following calculations and simulations, an Intel Xeon CPU E7-8860 with 12

GB RAM was used; all implementations were created using MATLAB’s built in functions,

and the (E + τA)−1Wk−1 step is performed with MATLAB’s “backslash” operator.
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2.4.1 Evaluation of Speed and Accuracy Using Randomly Gener-

ated Systems

To capture the general behavior of the different low-rank Cholesky factorizations, ran-

dom, dense, non-symmetric, asymptotically stable single-input, single-output (SISO) sys-

tems of varying size were used to calculate the controllability gramian, (2.18a). Algorithm

2.8 provides the snippet of MATLAB code used to generate the random systems.

For lower rank systems (n < 1250), MATLAB’s lyap is used. lyap is an implementa-

tion of the generalized Bartels-Stewart algorithm [39], and has computational and storage

complexity O(n3) and O(n2), respectively, making its use for high dimensional problems

infeasible [4, 80].

Algorithm 2.8 MATLAB code snippet used to generate random systems.

state_num=[2 5 10 20 25 35 round( logspace ( log10 ( 50 ) , log10 ( 1 2 5 0 ) , 1 0 0 ) ) ] ;
for a1=1:numel ( state_num)

n=state_num( a1 ) ; %Sta t e Dimension
m=1; %Input Dimension

rng ( 5 ) ; %Use the same random seed each time
A=sprandn (n , n , 0 . 2 5 ) ;
A=A/(max( svds (A))+1) ; %Non−symmetric
A=(A−A’)/2−n∗diag (rand (n , 1 ) ) ;%Non−symmetric
E=randn(n , n)+n/2∗eye (n , n ) ;
B=randn(n ,m) ;

end

Two aspects of low-rank Cholesky factor computation are of immediate consequence: the

time it takes to calculate the factor and its accuracy. Through the lenses of complexity, it is

expected that the LR-ADI approaches will be dominated by the (E+τA)−1Wk−1 step, which

results in a storage complexity of O(nq), but whose computational complexity is subject to

the solution method chosen. For example, if the structure of E and A can be exploited (e.g.

banding, sparsity, symmetry), the complexity of the q backsolves could be as little as O(nq)

[98]. Therefore, approximations appear to be the only feasible way to calculate and store

approximate solutions to gramians of large systems.

Fig. 2.2 shows the “wall time,” tw, for lyap, the sub-optimal ADI parameters defined
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using the spectrum of λE−A [45], and the unweighted proposed EVV-LR-ADI for different

sized systems (n), number of shifts or eigenvalues, and column rank of the approximation (q).

The expected trend that the lyap time increases as O(n3) is seen, but that around n = 500

and tw = 2.5 s, the approximations become cheaper to compute. Fig. 2.2 demonstrates that

the approximation computation time increases at about O(n1.7), much less than O(n3) of

the Bartels-Stewart algorithm.
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Figure 2.2: Wall time and log-regressions of the various methods for different number of
shifts (or eigenvalues), columns, and number of states.
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The selected measure of accuracy of the low-rank approximation is the Frobenius norm

of the weighted controllability Lyapunov operator

LQ(P ) = APE> + EPA> +BQB>, (2.46)

because ||LQ(P )||2 ≤ ||LQ(P )||F , by Cauchy-Schwarz, and is less expensive to compute. The

Frobenius norm is defined as

||LQ(P )||F =

√√√√ n∑
i=1

n∑
j=1

|[LQ(P )]ij|2, (2.47)

where [·]ij denotes the element in the i-th row and the j-th column.

Fig. 2.3 shows the accuracy in the Frobenius norm of LI(P ), where I = 1 and P is

the solution given by lyap, the sub-optimal LR-ADI Cholesky factor, or the unweighted

EVV-LR-ADI Cholesky factor.

Starting from 10 shifts and 75 columns of Fig. 2.3(a), and increasing the total number of

columns to 100, Fig. 2.3(b), or increasing the number of shifts, Fig. 2.3(c), an improvement

in accuracy of the approximate Cholesky factors are seen. However, as the number of states

increase, the sub-optimal LR-ADI can grow inaccurate (suggesting that either more columns

or shifts are necessary). Whereas, the proposed EVV-LR-ADI, while not being as accurate

as the sub-optimal LR-ADI approximation for all number of states, overall retains accuracy

better than MATLAB’s lyap as columns or shifts are added and the sub-optimal LR-ADI

as the order of the system increases. As shown in Fig. 2.3(d), for 20 shifts and 100 columns,

EVV-LR-ADI is more accurate than lyap for all tests.
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Figure 2.3: Frobenius error of the unweighted Lyapunov solution using the two methods
for different number of shifts (or eigenvalues), columns, and number of states compared to
MATLAB’s lyap.

43



2.4.2 Weighted Gramian Approximation Accuracy

The accuracy of the a posteriori weighting by low-rank up/downdating of Algorithm

2.7 with EVV-LR-ADI is demonstrated. The code of Algorithm 2.8 is modified slightly by

making m = 2. The selected weighting is

Q =

 10 −1.75

−1.75 2

 , (2.48)

and is chosen to accentuate the first input (providing comparison to Fig. 2.3) and cross

terms. The same error methodology of the previous section is applied, and similar results

are obtained.

Fig. 2.4 provides the Frobenius norm of the weighted controllability Lyapunov operator

for various numbers of states, shifts, and number of columns in the approximation. The same

general trends are seen as in Fig. 2.3, but error is multiplied by the weightings. Nevertheless,

for 20 shifts (eigenvalues), the EVV-LR-ADI a posteriori weighted approximation is generally

still more accurate than lyap.
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Figure 2.4: Frobenius error of the weighted Lyapunov solution of the proposed EVV-LR-ADI
for different number of shifts (or eigenvalues), columns, and number of states compared to
MATLAB’s lyap.
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2.4.3 Reduction of an Electric Machine Thermal Model

In this subsection, the proposed algorithms are applied to a problem of practical interest

and importance.

Electric machines play an integral role in transportation and energy generation. For the

purpose of simulating an integrated design of an electric machine in a vehicle powertrain

or electric grid, fast and accurate simulation of various components, and their scalings [99],

are necessary [2, 100]. However, the dynamics of many of the components are governed by

PDEs which must be approximated by an FEA model in order to simulate. These FEA

approximations are often computationally impractical for simulation due to the number of

states required for accuracy to the true solution.

One important aspect to determining electric machine efficiency, and maintaining a safe

operating condition, is the temperature of the rotor and stator of the electric machine [100].

The temperature model is governed by the parabolic heat equation:

∂T

∂t
− c∇2T = f (2.49)

where T , f are functions of time and the spatial coordinates, ∇2 is the Laplace operator,

and c is the thermal diffusivity [101].

For this work, a thermal conduction model is used with 11 loss inputs and 2 temperature

outputs. The loss inputs are spatially distributed and are detailed in [2], while the outputs

are points (denoted by purple rings in Fig. 2.5(a)). The PDE model is meshed and FEA

coefficients are derived from the mesh (Fig. 2.5(b)), resulting in two linear descriptor system

of the form (2.2), with more than 50,000 states and a sparsity of 0.99972 each (or only 0.027%

of the entries are non-zero). To store a dense matrix of this size in double precision floating

point numbers (8 bytes), e.g. the gramian or balancing transformations, it would require 20

GB of storage per model.
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Figure 2.5: Isometric view and mesh of the electric machine.

Model order reduction is performed to overcome the limitations of the FEA model. For

the usefulness of the model in predicting the temperature, it is required that outputs of

the reduced order model have less than 1◦C of error from the full order model response in

both the stator and rotor when the Urban Assault Drive Cycle [102] is used. Prior work of

[2] used the eigenvalue/eigenvector modal truncation of [103] and found that 11 states (7

stator, 4 rotor) were necessary to meet the accuracy requirements. Modal truncation has the

benefit that it is often much cheaper to compute since only a small number of the smallest

in magnitude eigenvalues/vectors need to be computed, however, this technique is limited

to systems and inputs with responses characterized well by the slow eigenmodes. LBT (and

approximate LBT) considers the dominant input-to-output behavior, and is expected to yield

a more accurate reduced order model in general.

The Algorithms 2.4, 2.6, and 2.7 are used to yield two approximate balancing transforma-

tions: unweighted and weighted for both the stator and rotor models. 50 eigenvalue/vector

pairs are used for the unweighted EVV-LR-ADI, the gramian calculations are split up to

exploit linearity as in Section 2.3.3, and a q = 500 columns are used to approximate the 4

controllability and observability gramians of the rotor and stator model. The input and out-

put weightings used are denoted with subscripts c and o for controllability and observability,
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respectively, and rot and sta for rotor and stator, respectively:

Qc,rot =



1 0 0 0 0

0 1000 0.9 0 0

0 0.9 1 0 0

0 0 0 1 0

0 0 0 0 1


, Qc,sta =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0.875 0 0

0 0 0 0 1 0

0 0 0 0 0 1


,

Qo,rot = 50, and Qo,sta = 100.

Approximate LBT is used to obtain a reduced order models of 8 states (4 stator, 4 rotor).

Sub-optimal LR-ADI using 50 shifts resulted in slow convergence and large errors, and is

not shown.

For proper complexity and performance comparisons, a modally truncated model with 8

states (4 stator, 4 rotor) is used, and the reduction technique of [103] used in [2] is employed

for all reduced order models. The models are simulated using a backward Euler integration

scheme [104] with a discretization of 1 second.

Fig. 2.6(a) shows the corresponding “Full” and reduced responses for a locked rotor test

using the demanded drive cycle current [2]. The “Full” order response is obscured by the

reduced order model response, and the reduced order model obtained by modal truncation

has errors far greater than the 1◦C specification in the stator. The output from the model

obtained by the proposed unweighted EVV-LR-ADI shows a stator response with much

better error performance, shown in Fig. 2.6(b), almost a 10× improvement, but in Fig.

2.6(c), the rotor response error of the unweighted EVV-LR-ADI model is greater than the

modal-based reduction. Regardless, unweighted EVV-LR-ADI satisfies the error criteria. It

is hypothesized that the anomalous result of the reduced order modal rotor modal performing

better than the EVV-LR-ADI model is due to the almost perfect excitation of slow modes.

The weighted EVV-LR-ADI results show the stator performance is marginally better than

unweighted EVV-LR-ADI; moreover, the rotor performance is better than even the modal

model. Table 2.1 provides the maximum, root-mean-squared (RMS), and max relative error
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of the reduced model responses to the full order responses, as well as the wall time to calculate

the output. The table demonstrates the approximate balanced truncation models not only

satisfy the error criteria, but can be made to perform better than the modal truncation

model.
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Figure 2.6: Outputs of the various models, and the errors between the full and 4th order
reduced models for the locked rotor test.
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The “Full” order model takes ≈2000 seconds to simulate a 1300 second drive cycle at

1 second sampling, resulting in a >99.99% reduction in simulation time, and allowing the

model to be used for the purpose of on-line condition monitoring.

Table 2.1: Reduced order model output error comparisons of locked rotor test (ω = 0 RPM).
Stator Max. Rotor Max. Stator Rel. Rotor Rel. Stator RMS Rotor RMS Wall Time [s]

Modal 5.062265 0.088559 0.097305 0.003014 0.560488 0.026249 0.138920
Unweighted Proposed 0.695048 0.105179 0.015733 0.003834 0.114579 0.057626 0.129309
Weighted Proposed 0.643097 0.085055 0.014763 0.003158 0.111175 0.040979 0.137602

Remark 2.4.1. Assuming that the same mesh is used, and components of the electric ma-

chine (e.g., physical dimensions) are scaled as in [99], then Algorithm 2.7 may be used to

generate the gramians and reduction of the scaled electric machine from the original individ-

ual electric machine gramians.

2.5 Conclusions

In this chapter, bilinear discretizations for descriptor systems were developed, eigenval-

ues of a discretization were found, and exploited to find low-rank matrix square root factors

(Cholesky factors) of the controllability and observability gramian using an eigenvalue/vector-

based low-rank alternating direction implicit (EVV-LR-ADI) method. A new singular valued

decomposition-based low-rank updating and downdating algorithm is proposed and used to

restart the low-rank Cholesky factorization algorithm if the factor gets too large, and error

bounds are derived. Using the same updating and downdating algorithm, linearity of the

gramians (relative to the input and output matrices) are exploited to parallelize the low-

rank approximation calculation, and a more accurate reduced order model is obtained by a

posteriori weighting and without recalculating gramian components.

The efficacy of the proposed techniques were then demonstrated on random dense stable

descriptor systems of varying sizes and a combined stator and rotor electric machine thermal

model with over 100,000 states. Using the randomly generated stable descriptor systems,

the Cholesky factors obtained by the EVV-LR-ADI and well researched sub-optimal LR-ADI

algorithm were compared against each other and relative to the generalized Bartels-Stewart

solution in the Frobenius norm. It is found that the proposed EVV-LR-ADI algorithm, using
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only 75 iterations on random systems, is often as accurate as the Bartels-Stewart solution,

while the sub-optimal LR-ADI can be less accurate as the order of the system increases. The

same methodology is applied to show the accuracy of the low-rank up/downdating algorithm

coupled with the EVV-LR-ADI Cholesky factors, and it is found that the solution is again

accurate.

Finally, the techniques are applied to a stator and rotor thermal model of an electric

machine (EM) with 11 inputs and 2 outputs, and a combined order of more than 100000.

Using the Urban Assault Drive Cycle, it is shown the EM model can be reduced to just 8

states, while maintaining less than 1◦C error, and provides a more accurate model than that

derived by the current state-of-the-art modal truncation.
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Chapter 3

Riccati Balanced Truncation

Linear model order reduction (MOR) in its most popular form of “balanced realization

and truncation” was introduced in Moore’s seminal paper [13], and is a form of open-loop

model order reduction. Open-loop model order reduction techniques focus on matching the

open loop responses of the original and reduced order models without considering the effect

of feedback control on the output. Many other model order reduction techniques, some

explicitly accounting for closed-loop behavior, have since been developed by the controls

community [86]. Unlike open-loop model order reduction, which can lead to destabilizing

reduced order compensator even when the open-loop behavior is matched arbitrarily well

[105], the closed-loop model order reduction emphasizes matching the behavior of the closed-

loop system, thereby overcoming the non-robust drawback of the open-loop approaches.

Closed-loop model order reduction for normalized linear quadratic Gaussian (LQG) and

H∞ design has been addressed in [28], [3], and [29]. In these three references, dual Riccati

based balanced realization and truncation was proposed to perform model-order reduction

and achieve closed-loop stability for strictly proper systems. [30] and [106] addresses the

case when the LQ weights are not normalized, but the systems to be treated have strictly

proper transfer functions, or there is no direct throughput in the state space realization.

In this chapter, closed-loop model order reduction following [3] is pursued and applied

to the electric machine problem and the DAP problem by extending the results to the case

of direct feedthrough inclusion, non-normalized weightings, and cross term weighting. The

proposed technique will be referred to as Riccati balanced truncation (RBT).
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The proposed RBT technique is applied to design a compensator for the diesel engine

airpath (DAP) with reduced complexity. The efficacy of a RBT-based compensator is demon-

strated relative to a compensator designed with a reduced order model obtained using the

more popular Lyapunov Balanced Truncation (LBT) of [13]. The two reduced compensators

will be compared on a linearized model, a Toyota proprietary engine model, and on an

experimental 3 liter, 4 cylinder diesel Toyota KD engine.

The chapter is structured as follows: Section 3.1 presents the background of LQG bal-

anced truncation and the generalization to direct feedthrough inclusion, non-normalized

weightings, and cross term weighting. Section 3.2 develops the algorithm for computing low-

rank matrix square root factors of Riccati solutions for large scale descriptor systems and

performance is compared on the electric machine model of Chapter 2. Section 3.3 provides

a link between LQG and conventional MPC/Kalman filters, and the use of robust RBT

reduced models in a rate-based MPC framework. Section 3.4 applies a rate-based MPC

law designed using linear models to a nonlinear diesel airpath problem for the purpose of

real-time control.

For the remainder of this chapter, a controller, estimator, or compensator designed using

a reduced order model will be referred to as a reduced controller, estimator, or compensator,

respectively.

3.1 LQG and Riccati Balanced Truncation

3.1.1 LQG Balanced Truncation

In continuous time, assume the linear model Σ : (A,B,C,D) with process and measure-

ment noises v(t) and w(t), has the following form:

Σ :

 ẋ(t) = Ax(t) +B(u(t) + v(t)),

y(t) = Cx(t) +D(u(t) + v(t)) + w(t),
(3.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and v(t) and w(t) are zero-mean,

Gaussian noises with covariance Γ, and Λ, respectively.
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The LQG compensator is a very well known and understood problem [107], it consists

of optimally controlling a system and estimating its state subject to zero mean additive

Gaussian process and measurement noises, v(t) and w(t). In continuous-time, the LQG

regulator problem is defined as

min
u(·)

E
[

lim
t→∞

1

t

∫ t

0

y(τ)>Qy(τ) + u(τ)>Ru(τ)dτ

]
subject to (3.1)

(3.2)

where E is the expectation. When D = 0, the LQG problem has a guaranteed stabilizing

solution if (A,B) is stabilizable, (Q1/2C,A) is detectable, C>QC is positive semi-definite,

and R is positive definite [108]. It is also well known that the compensator design can be

separated into a linear quadratic regulator (LQR) and linear quadratic estimator (LQE)

problem to obtain a controller and estimator, respectively.

When D = 0, Q = Ip×p, R = Im×m, Λ = Ip×p, Γ = Im×m, (3.2) becomes the “normalized

LQG problem” and the Riccati equations associated with the solution of LQR and LQE are

dual:

A>P0 + P0A+ C>C − P0BB
>P0 = 0, (3.3a)

AΠ0 + Π0A
> +BB> − Π0C

>CΠ0 = 0, (3.3b)

The optimal LQG compensator takes the form

˙̂x(t) = Ax̂(t) +Bu(t) + Π0C
>(y − Cx̂(t)), (3.4a)

u(t) = −B>P0x̂(t). (3.4b)

LQG balanced truncation (LQGBT) can be applied to the normalized problem to derive a

balanced realization and perform truncation, resulting in a reduced order LQG compensator.

The reduced order compensator is then designed and applied to the plant, as in Fig. 3.1.

LQGBT may be interpreted as removing subspaces that are easy to control and easy to

estimate while keeping subspaces that contribute more to the cost functional in designing a

reduced order compensator to optimize (3.2).
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Figure 3.1: Block diagram of the plant with reduced compensator.

The measure of how easy it is to control and estimate a subspace is given by the Riccati

singular values (RSVs) and follows that of [3].

Definition 3.1.1. Given the solutions P0, Π0 to the dual algebraic Riccati equations (3.3a),

(3.3b), respectively, the RSVs are defined as µj =
√
λj(P0Π0). λj(·) denotes the eigenvalues

of the matrix ordered from the largest to the smallest.

RSVs are an invariant under state similarity transformations and a small RSV corresponds

to a subspace that is easy to control and estimate, thereby having little impact on the cost

[109].

Just like in Definition 2.1.6, balanced representations may be defined in terms of the

Riccati solutions:

Definition 3.1.2. (A,B,C,D) is said to be input normal when P0 = In×n, Π0 = M2, output

normal when P0 = M2, Π0 = In×n, and internally balanced when P0 = Π0 = M . I denotes

the identity matrix, M = diag(µ1, . . . , µn) with µ1 ≥ µ2 ≥ . . . ≥ µn, where n is the order of

the system.

After obtaining a balancing transformation T , balanced truncation or residualization

(Algorithms 3.2 and 4.1, respectively) may be applied to obtain a reduced order model, Σr :

(Ar, Br, Cr, Dr). The reduced LQG compensator is designed using Σr and the transformed

LQG problem:

˙̂xr(t) = Arx̂r(t) +Bru(t) +M1C
>
r (y − Crx̂r) (3.5a)

u(t) = −B>r M1x̂r, (3.5b)

56



where M1 = diag(µ1, . . . , µr).

3.1.2 LQG Solution for Systems with Non-zero D

When the weights and noises are not normalized, and D 6= 0, the quadratic cost of

(3.2) will consist of a cross term 2x>C>QDu, when expressed in terms of x and u. This

fundamentally alters the structure of the solution to the optimization problem; nevertheless,

a separation principle is maintained and the problem can again be separated into LQR and

LQE.

The LQR solution is given by

u(t) = − R̃−1(B>P +D>QC)︸ ︷︷ ︸
K

x(t), (3.6)

where P solves the continuous control algebraic Riccati equation (CARE)

Ã>P + PÃ+ Q̃− PBR̃−1B>P = 0 (3.7)

with

R̃ = D>QD +R, (3.8a)

Ã = A−BR̃−1D>QC, (3.8b)

Q̃ = C>QC − C>QDR̃−1D>QC, (3.8c)

where Q̃ ≥ 0. In LQG control, the x(t) of (3.6) is replaced by the estimate x̂(t) that is

obtained by solving the LQE problem.

The optimal LQE solution takes the form:

˙̂x(t) = Ax̂(t) +Bu(t) + L(y(t)− (Cx̂(t) +Du(t))). (3.9)

Because of the direct feedthrough noise, Dv(t), the noise covariances and dynamics must be
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modified as in the LQR case to get

Λ̂ = DΓD> + Λ, (3.10a)

Â = A−BΓD>Λ̂−1C, (3.10b)

Γ̂ = BΓB> −BΓD>Λ̂−1DΓB>, (3.10c)

where Γ̂ ≥ 0. The filter algebraic Riccati equation (FARE) becomes

ÂΠ + ΠÂ> + Γ̂− ΠC>Λ̂−1CΠ = 0, (3.11)

and the optimal gain used in (3.9) is

L = (ΠC> +BΓD>)Λ̂−1. (3.12)

3.1.3 Riccati Balanced Truncation (RBT)

In this section, the LQG balanced truncation is extended to the case of a non-normalized

cost with direct feedthrough, and the extension will be referred to as the Riccati balanced

truncation (RBT).

To perform Riccati balanced truncation, there are two steps: finding a transformation

that balances the solutions to (3.7) and (3.11), and then transforming, partitioning, and

truncating the resulting internally balanced system before designing a reduced order com-

pensator.

Under the stabilizability and detectability assumptions, positive definite solutions to (3.7)

and (3.11) are guaranteed to exist [108], and the procedure outlined in [77] is modified to

calculate the Riccati solution balancing transformation of Algorithm 3.1.
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Algorithm 3.1 Riccati balancing transformation.

1: procedure RiccatiBalTrans(Σ : (A,B,C,D), Q,R,Γ,Λ)
2: Solve (3.7) and (3.11) for positive definite P and Π, respectively.
3: Calculate the Cholesky factors of P = XX>, Π = Y Y >.
4: Calculate the singular value decomposition (SVD) of Y >X = UMV >, where M is a

positive definite diagonal matrix and U and V are orthogonal matrices.
5: Form the balancing transformation

T = M1/2U>Y −1. (3.13)

(T = MU>Y −1 or T = U>Y −1, places the realization in output or input normal form,
respectively.)

6: Define the contragredient transformation for the ARE solutions for the transformed
system:

P̄ = T −>PT −1, (3.14)
and Π̄ = T ΠT >. (3.15)

return T
7: end procedure

Theorem 3.1.1. After applying (3.13) to Σ, the solutions of (3.7) and (3.11) are equal and

balanced (P̄ = Π̄ = M).

Proof. See appendix A.2.1 for the proof.

To obtain the reduced order model Σr, the balancing transformation, T , is found using

Algorithm 3.1 and (3.1) is truncated using Algorithm 3.2 to an order r. Σr is used to design

the reduced control and estimator, respectively.
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Algorithm 3.2 Truncation of an ordinary linear system.

1: procedure Linear_Truncation(T ,Σ : (A,B,C,D), x0, r)
2: Define the submersion and immersion matrices

W =
[
Ir×r 0

]
, (3.16a)

V =

[
Ir×r

0

]
. (3.16b)

3: Apply the similarity transformation T

Σr : (Ar, Br, Cr, Dr) = (WT −1AT V,WT −1B,CT V,D), (3.17a)
xr(0) = WT −1x0. (3.17b)

return Σr : (Ar, Br, Cr, Dr), xr(0)
4: end procedure

Denote Pr and Πr to be the solution of (3.7) and (3.11) subject to Σr and the selected

weights. Using the property that M1 = Pr = Πr, the reduced compensator gains, (Kr, Lr),

are obtained by removing the n − r columns from K and rows from L of the internally

balanced system, and is demonstrated below:

M2 = diag(µr+1, . . . , µn)

K = R̃−1


Br

B2

> M1 0

0 M2

+D>Q
[
Cr C2

] ,

Kr = R̃−1
(
B>r M1 +D>QCr

)
, (3.18a)

L =

M1 0

0 M2

[Cr C2

]>
+

Br

B2

ΓD>

 Λ̂−1,

Lr =
(
M1C

>
r +BrΓD

>) Λ̂−1. (3.18b)

This means that in continuous time, the reduced compensator may be designed directly from

the balanced full or reduced order model, just as in the LQGBT case [3].

For an internally balanced system in continuous-time, M1 = Pr = Πr. However, in

discrete-time, this relation no longer holds. Instead, discrete analogs of Pr and Πr satisfy
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an analogous result for a truncated ARE to the results presented in [110] for a truncated

Lyapunov solution. Additionally, more care is required in the reduced compensator design.

Remark 3.1.1. RBT can be further generalized to handle arbitrary cross terms in the cost

function (3.2), 2y>Su, through a straightforward modification of the feedback gain and (3.8).

After a similar modification of the FARE and observer gain, correlated process/measurement

noise may also be handled.

Remark 3.1.2. If one were to redefine the output to be

ỹ = y −Du, (3.19)

then in the design of the estimator, D is taken to be zero, and different reduced order models

are used for controller and estimator portions of the compensator design. For discrete time,

this is presented in [71].

3.2 LQG of Large Scale Descriptor Systems and Approx-

imate Riccati Balanced Truncation

In this section, and only in this section, the linear system will be assumed to be a non-

singular linear descriptor system of the form (2.2). LQGBT has seen a great number of

applications for the reduced compensation of large scale and infinite dimensional (PDE)

systems [111, 112, 113, 114].

Like gramians, Riccati solutions are generally dense and have a computational and storage

complexity of O(n3) and O(n2) to obtain a solution [115, 116], respectively. This poses a

problem for the calculation of balancing transformations for large scale systems, as well as

descriptor systems. However, Riccati solutions also enjoy rapid decay of singular values [117],

and can be found using a Newton iterated LR-ADI framework, making approximate Riccati

balanced truncation plausible.
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3.2.1 LQG and Riccati Solutions of a Descriptor System

Consider the generalized LQG problem of obtaining a compensator that minimizes (3.2),

but subject to the linear descriptor system (2.2). This can be separated in LQR and LQE

problems, but now using generalized algebraic Riccati solutions and LQ gains.

Let S and N be the cross terms of LQR and LQE cost functions, then the generalized

continuous control and filter algebraic Riccati equations are defined, respectively, as [118]

E>PA+ A>PE + C>QC − (B>PE + S>C)>R−1(B>PE + S>C) = 0, (3.20a)

EΠA> + AΠE> +BΓB> − (CΠE> +NB>)Λ−1(CΠE> +NB>)> = 0. (3.20b)

With the solutions, P and Π, the generalized LQR and LQE gains are, respectively:

K = −R−1(B>PE + S>C), (3.21a)

L = −Λ−1(CΠE> +NB>), (3.21b)

and the LQE compensator may be formed.

Using the above gains, the generalized algebraic Riccati equations can be factored into:

E>P (A+BK) + (A+BK)>PE = −C>QC −K>RK + SK +K>S>, (3.22a)

EΠ(A+ LC)> + (A+ LC)ΠE> = −BΓB> − LΛL> + LN> +NL>, (3.22b)

which are in the form of Lyapunov equations, whose solutions are known as closed-loop

gramians [30].

Focusing on the generalized control algebraic Riccati equation, the discrete time LQR

gain is found by solving the generalized discrete control algebraic Riccati equation

E>d PdEd = C>d QCd + A>d PdAd − (A>d PdBd + C>d Sd)(Rd +B>d PdBd)
−1(A>d PdBd + C>d Sd)

>,

(3.23)

and the gain is

Kd = −(Rd +B>d PdBd)
−1(B>d PdAd + S>d Cd), (3.24)
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where the subscript d denotes a discretization, Sd = QDd + S, and Rd = R + S>Dd +

D>d S +D>d QDd are used. The result of [119] is readily extended to descriptor systems with

the observer sided discretization defined by (2.27) to show that P = Pd with Ed = In×n.

Likewise, the solution to the generalized discrete filter algebraic Riccati equation, Πd = Π,

the solution to (3.22b), when the control sided discretization defined by (2.24) is used with

Ed = In×n.

With this in mind, and the assumption that the continuous K is known, the solution of

the control algebraic Riccati equation may be approximated using the LR-ADI framework

developed in Chapter 2. However, the assumption that K is known is unrealistic and the

LR-ADI framework must be iterated using the Newton-Kleinman iteration. The Newton-

Kleinman iteration is implemented by guessing a solution P0, forming the gain K0 with

(3.21a) using P0 (which is assumed to stabilize the continuous system), obtaining a closed-

loop gramian P , calculating a new stabilizing gain K, and repeating until it converges [118,

Chapter 11].

Given an initial guess, Z−1 of P , the Riccati solution is found using the Newton-Kleinman

iteration implementation in Algorithm 3.3. Eigenvalues of A− BK are not easily obtained

because BK is in general dense, hence Algorithm 3.3 uses a single shift LR-ADI or Smith(1)

iterator. Further, some changes are necessary to make for efficient computations, these

include: factoring the right hand sides of (3.22) for parallelization and then using Algorithm

2.2 and 2.7, and handling of the low-rank factors to not form a dense BK.

Remark 3.2.1. In practice, a good initial guess for Z−1 is the low-rank Cholesky factor of

the observability gramian of (E,A,B,C,D).
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Algorithm 3.3 Smith Iterator - Approximate Generalized Algebraic Control Riccati Solu-
tion (Newton-Kleinman Iteration)

1: procedure RiccatiSmithIterator(E,A,B,C,D, α,Q,R, S, Z−1)
2: Define K = −R−1((B>Z−1)(Z>−1E) + S>C)
Require: λE − (A+BK) stable.
3: Z0 =∞
4: while ||Z0 − Z−1|| > ε do
5: Bd =

√
2αE(αE − A)−1B . (αE − A)−1 should never be formed

6: Cd =
√

2αC(αE − A)−1

7: Dd = C(αE − A)−1B +D
8: Rd = R + S>Dd +D>d S +D>d QDd

9: Sd = QDd + S
10: Kd = (Rd + (B>d Z−1)(B>d Z−1)>)−1((B>d Z−1)(Z−1(αE + A)(αE − A)−1) + S>d Cd)

11: Q̂ =

[
Q −S>d
−Sd Rd

]
= XX>

12: Ĉ =
[
C>d K>d

]
X. Use the columns of Ĉ to exploit linearity of the Gramian for

parallelization
13: W0 = Ĉ, Y0 = [W0], k = 1
14: while (||W>

k−1Wk−1||/||W>
0 W0|| > ε and k < kmax) do

15: W̃k = (αE + A) ((αE − A)−1Wk−1)
16: Vk = Bd(KdWk−1)
17: Wk = W̃k − Vk . Wk = (Ad −BdKd)

kĈ
18: Yk = [Yk−1 Wk]
19: k = k + 1
20: end while
21: Z0 = Z−1

22: Z−1 = Yk−1

23: end while
return Yk−1

24: end procedure

Similarly, the solution to the filter algebraic Riccati equation may be obtained by using

the control sided bilinear discretization of (2.24). With the low-rank Cholesky factors of

the control and filter algebraic Riccati solutions, an approximate Riccati balancing trans-

formation can be computed in a fashion similar to Algorithm 2.1, and the technique can be

extended to singular descriptor systems [45].
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3.2.2 Electric Machine: RBT Reduced Model

Using the electric machine model from Section 2.4.3, and normalized weights, an 8th order

(4 stator,4 rotor) reduced model is obtained using approximate Riccati balanced truncation

outlined above. Fig. 3.2, shows that the RBT model performs slightly better than even

the unweighted EVV-LR-ADI (Chapter 2) based LBT model in the stator, but worse in the

rotor. Table 3.1 provides quantitative errors, and shows that the Riccati model is the worst

performer for rotor error, but best performer for stator error, and similar wall-time.
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Figure 3.2: Outputs of the various models, and the errors between the full and 4th order
reduced models for the locked rotor test.
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Using the same setup as in Section 2.4.3, the simulations are re-run and the errors for

the RBT reduced model are added to Table 2.1. The wall time results of Table 2.1 and 3.1

are different because MATLAB’s built in tic-toc commands were used to obtain wall time,

as such, different runs result in slightly different times.

Table 3.1: Reduced order model output error comparisons of locked rotor test (ω = 0 RPM).
Stator Max. Rotor Max. Stator Rel. Rotor Rel. Stator RMS Rotor RMS Wall Time [s]

Modal 5.062265 0.088559 0.097305 0.003014 0.560488 0.026249 0.183773
Unweighted EVV 0.695048 0.105179 0.015733 0.003834 0.114579 0.057626 0.148078
Weighted EVV 0.643097 0.085055 0.014763 0.003158 0.111175 0.040979 0.141497
Proposed Riccati 0.642324 0.163834 0.015147 0.006038 0.111805 0.090416 0.139837

3.3 Riccati Balanced Truncation for Conventional and

Rate-Based Model Predictive Control (MPC)

Riccati balanced truncation can readily be performed on discrete time systems by obtain-

ing a transformation that balances the solutions to the discrete control and filter algebraic

Riccati equations, and truncating. The weighted discrete LQR problem is equivalent to fi-

nite time, unconstrained, linear quadratic MPC with a properly selected terminal penalty

[120]. The dual problem of discrete LQE is Kalman filter (or unconstrained moving horizon

estimator) with a properly selected terminal penalty.

Therefore unconstrained, discrete MPC/Kalman filter with properly selected terminal

penalties is equivalent to the discrete LQG problem. This suggests that a reduced order

model obtained by discrete Riccati balanced truncation is appropriate for reduced MPC

law/Kalman filter compensator design.

3.3.1 Conventional MPC

The discrete time analog of LQR is concerned with selecting feedback control inputs, ui,

minimizing the cost

Jd =
∞∑
i=t

y>i Qyi + u>i Rui (3.25)
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subject to linear dynamics, Q ≥ 0, and R > 0. With a properly defined terminal state

penalty matrix, P (which is the solution to the discrete algebraic Riccati equation), (3.25)

can be recast as a finite horizon MPC problem when there are no constraints [121]. The

finite horizon MPC problem is to select, ui, to minimize

JMPC = x>t+NpPxt+Np +

t+Np−1∑
i=t

y>i Qyi + u>i Rui, (3.26)

subject to dynamics, where Np is the prediction horizon. Of the resulting sequence of con-

trols, ui, only ut is applied, and then recalculated at each instant.

The connection between LQR and MPC motivates the use of RBT for the design of

a reduced conventional MPC law. It is expected that a reduced MPC law/Kalman filter

compensator designed with RBT reduced model will perform better than a reduced order

model produced by open-loop methods.

Consider the design of full and reduced order compensators (conventional MPC with

Kalman filter) given in Table 3.2 for the model in Table 3.3 (with the specified variable

names) using unconstrained MPC designed with the parameters in Table 3.4. Table 3.3

provides the Riccati singular values for a model/compensator design with the parameters in

Table 3.4, these singular values suggest the design of a 3rd order compensator. Fig. 3.3 shows

the output and control responses of the reduced MPC/Kalman filter compensators designed

with the various models for an initial condition of x>0 = [−0.3431 1.6663 − 0.7668 2.6354 −

0.0169 0.3041 0.6843 0.0558]. As expected, the performance of the RBT-based compensator

is closest to the full order compensator. Moreover, the LBT-based reduced compensator

exhibits poor performance and acts in an almost opposite manner than is expected.

Table 3.2: Compensators to be compared. The compensators are designed using the model
provided in Table 3.3.

Compensator Type
CI Designed with the full order model.
CII Designed with a 3rd order reduced model de-

rived using LBT [13].
CIII Designed with a 3rd order reduced model de-

rived using RBT.
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Table 3.3: Continuous-Time, linearized DAP model at the center of fuel/engine speed oper-
ating range.

A =



−64.9506 61.3561 −0.0002 −0.5182 0 48.9016 0 0
11.1492 −29.9433 0.1853 0 0 0 0 0

0 607.8534 −9.8497 431.0396 0 −3635.7872 0 0
9.6121 0 −0.139 −45.3523 927.5554 2123.8713 38.8517 0
−0.4816 0.5022 0 −0.0042 −4.5677 0.3907 0 0
0.0047 0 −0.0005 −0.0837 8.9587 −8.6892 0 0
0.0095 −0.01 0 0 0 0 −4.5677 0.2942
−0.0024 0 0 −0.0042 −4.6299 0.3961 16.0042 −16.4312



B =



0 1.9438
0 0

−514.5376 0
77.88 −6.3636

0 0.0128
0.3073 −0.0251

0 0.0037
0 0


x =



pin − pin,ss
ppre − ppre,ss

ω − ωss
pex − pex,ss
Fin − Fin,ss
ρex − ρex,ss
ρin − ρin,ss
Fex − Fex,ss


, µj =



2.9119
0.60723
0.12566
0.038753
0.01952

0.0011816
4.3578× 10−6

6.7046× 10−8


C =

[
1 0 0 0 0 0 0 0
0 0.8273 −0.0082 0 0 0 0 0

]
u =

[
VGT, uV GT

EGR Flow, Wex,in

]
D =

[
0 0
0 0.1875

]
y =

[
Intake Pressure, pin
EGR Rate, φEGR

]

Table 3.4: Parameters used in the simulation of the controller performance.
Np 1
Ts 0.016 [s]

Q

[
36 −4.5
−4.5 6

]
R

[
4 0
0 1

]
Λ I2×2

Γ I2×2
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(d) EGR Flow.

Figure 3.3: Linear conventional MPC designed with 3rd order models, applied to the linear
plant and compared to the compensator designed with the full order model.
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While conventional MPC is well known and has a rich theory, it has shortcomings. When

the control objective includes tracking, things such as reference controls and state are re-

quired. Further, without modification, modeling errors can manifest themselves as steady

state errors. The lack of robustness to modeling errors and the extra knowledge required

to mitigate the error makes conventional MPC cumbersome. This leads to using rate-based

(velocity form) model predictive control.

3.3.2 Rate-Based MPC

One MPC methodology that has demonstrated less sensitivity to modeling error and can

achieve zero steady-state tracking error without integral wind-up is rate-based (or velocity

form) MPC [122, 123, 124, 125, 126]. Rate-based MPC uses differences in the state and

control in its formulation, therefore does not require the knowledge of steady states and

corresponding reference controls.

The rate-based formulation is derived by defining the augmented state x̄t, output zt, and

input ∆ut as

x̄t =

xt − xt−1

yt−1

 , (3.27a)

zt = yt−1, (3.27b)

and ∆ut = ut − ut−1. (3.27c)

With (3.27b) and (3.27c) the state-space equation becomes

x̄t+1 =

 Ad 0

Cd Ip×p


︸ ︷︷ ︸

Ad

x̄t +

 Bd

Dd


︸ ︷︷ ︸

Bd

∆ut, (3.28a)

zt =
[
0 Ip×p

]
︸ ︷︷ ︸

Cd

x̄t, (3.28b)

where (Ad, Bd, Cd, Dd) is the discretization of the model, Ip×p is the identity matrix and has

dimension equal to the number of outputs.
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The augmented model (3.28) deviates from the proposed model of [124], which uses zt = yt

and yt in the augmented state, because the addition of direct feedthrough would require

knowing Dd∆ut+1, resulting in a non-causal model. While not pursued in this dissertation,

an alternative formulation to get yt, instead of yt−1, is to change yt−1 in (3.28) to yt =

[Cd I]x̄t +Dd∆ut.

General time varying input and output constraints, ui ∈ Ui and yi ∈ Yi, may be refor-

mulated as

F̄iyi ≤ Ḡi, (3.29a)

V̄i∆ui ≤ W̄i, (3.29b)

where (F̄i, Ḡi) and (V̄i, W̄i), with i ∈ {t, t+ 1, . . . , t+Np − 1}, define the linear constraints

along the prediction window.

The rate-based receding horizon optimal control problem with prediction, control, and

constraint horizon equal to Np subject to a quadratic cost is [124]:

min
{∆ui}

t+Np−1

i=t

x̄t+Np −

0

ȳt

> P
x̄t+Np −

0

ȳt


+

t+Np−1∑
i=t

(zi − ȳt,∞)>Q(zi − ȳt,∞)

+

t+Np−1∑
i=t

∆u>i R∆ui,

subject to (3.28) and (3.29),



(3.30)

where ȳt,∞ is the desired reference at time t. As in other MPC formulations, (3.30) is trans-

formed into a constrained convex quadratic programming problem to solve for {∆ui}t+Np−1
i=t

that can either be solved with explicit MPC [127] or using online MPC. Then as in (3.29),

∆ut is added to ut−1 to obtain ut, the control to be applied at the specified time step. Just

as in conventional MPC, the control delta must be recalculated at each time step.

As with conventional MPC, reduction of the number of states will decrease the com-

putational complexity. To motivate the selection of the reduction procedure, consider the
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transfer function of (3.28):

Gd(z) =
[
0 Ip×p

]zIn+p×n+p −

 Ad 0

Cd Ip×p

−1  Bd

Dd


=

1

z − 1

(
Cd(zIn×n − Ad)−1Bd +Dd

)
.

Because it is desirable to retain the integrators, it is proposed to reduce Cd(zIn×n−Ad)−1Bd+

Dd. The reduced order rate-based compensator is then to be designed by reducing (3.1) to

Σr by either RBT or LBT, augmenting Σr into (Ad,Bd,Cd), and then calculating an MPC

law. At the same time, a reduced order rate-based Kalman filter is designed. The estimator

is obtained by augmenting Σr as above, then solving (3.11) and forming (3.12) using the

estimator model (Ad,Bd,Cd). The rate-based estimator takes the predictor-corrector form

of (3.9) and is:

ˆ̄xt|t−1 = Ad ˆ̄xt−1|t−1 + Bd∆ut−1, (3.31)

ˆ̄xt|t = ˆ̄xt|t−1 + L(zt −Cd ˆ̄xt|t−1), (3.32)

where L is the analogous gain to (3.12), and ˆ̄xt|t−1 denotes the state at time t given infor-

mation at time t− 1.

For a demonstration of the RBT-based reduced order model used in the design of com-

pensator, the LQG compensator of Fig. 3.1 is replaced with a rate-based MPC/Kalman

Filter compensator described above and is subject to the constraints at the operating point:

−60 ≤ yt,1 ≤ 40 kPa, (3.33a)

−6.8558 ≤ yt,2 ≤ 12.37%, (3.33b)

−25 ≤ ut,1 ≤ 15%, (3.33c)

−0.0242 ≤ ut,2 ≤ 0.0235
kg

s
, (3.33d)

with ui = ut−1 +
i∑
j=t

∆uj (3.33e)
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along the prediction window.

Just as for conventional MPC, three different compensators, specified in Table 3.2, are

designed using the linear model given in Table 3.3 and the parameters in Table 3.4. For

the design of a reduced order compensator, the original model of Table 3.3 is reduced using

the specified algorithm to a 3rd order model. The new model is placed in the augmented

framework of (3.28), resulting in a 5th order compensator. For comparison, the full order

model results in a 10th order compensator. Table 3.5 contains the augmented A and B with

the discretized RBT reduced order model of Table 3.3.

Table 3.5: Zero-order hold discretized 3rd order model obtained using RBT at a sample time
of Ts = 0.016 s, and placed in the rate-based framework.

Ad


0.993754 0.08691 0.009934 0 0
−0.055662 0.809634 −0.176618 0 0

0.01614 0.20642 0.460977 0 0
0.503354 −0.643326 −0.474958 1 0
−0.092951 −0.152734 −1.274626 0 1



Bd


0.032506 −0.002053
0.053456 −0.018327
−0.030012 −0.011977

0 0
0 0.1875



Fig. 3.4 provides the linear simulation results. Fig. 3.4(a) and 3.4(b) show the outputs

have zero steady state error, except when constraints are active (between 5 and 6 seconds),

and a small performance improvement by the RBT-based reduced compensator (CIII) in

terms of tracking and disturbance rejection when compared to the LBT-based reduced com-

pensator (CII). The inputs, given in Fig. 3.4(c) and 3.4(d), demonstrate a small decrease

in actuation provided by CIII when compared to CII . While the linear results only show a

small improvement in the inputs and outputs for this example, when applied to the nonlin-

ear model in the following section, the differences between CII and CIII will become more

pronounced.
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Figure 3.4: Linear rate-based MPC designed with 3rd order models, applied to the linear
plant and compared to the compensator designed with the full order model.
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3.4 Real-Time Control of Diesel Engine Airpath

Diesel engines have a great fuel efficiency advantage for automotive applications, com-

pared to their gasoline counterparts [128]. They, however, impose a special set of emission

control challenges, particularly for nitrous oxide (NOx) emissions [129]. One critical task,

which has significant impact on diesel emission as well as drive performance, is the air-

path control [130]. The main objective of the airpath control for diesel engines is to deliver

air to meet drivers’ demands, and at the same time to provide desired EGR (exhaust gas

recirculation) to meet emission control requirements.

The diesel airpath (DAP) control system is illustrated in Fig. 3.5. The system under

consideration has two control inputs: a linear actuator to change the vane angle of the vari-

able geometry turbine (VGT), and the EGR flow to allow the right amount of EGR from the

exhaust to intake manifold. The control objectives are often translated into desired intake

manifold pressure and desired EGR by a high level controller. The airpath control problem

can therefore be treated as a tracking problem. In achieving the desired intake manifold pres-

sure and desired EGR, the airpath controller also has to consider several physical constraints

on the inputs and outputs. This makes the model predictive control (MPC) framework a

natural choice for the airpath control design.
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Figure 3.5: 8 state diesel engine airpath diagram. The symbols inside the parentheses
indicate the state variables associated with the process.

The efficacy of MPC to the DAP problem was shown in [131]. Recently, MPC has

been applied to an 8th order DAP model in [126] and [132]. To reduce computational

complexity, an explicit model predictive controller (eMPC) using open-loop model order

reduction [132] was demonstrated. The follow-up work [126] applied an explicit rate-based

MPC controller [124] using a single reduced order model. However, in [126], [132], and

[133], the open-loop model order reduction of [13] is used, which does not consider the

control formulation in the reduction process. However, open-loop model order reduction

using standard balanced realization and truncation has been shown to be unsuitable for

design of robust stable feedback control [105].

In this section, a combined rate-based MPC and state estimator design is considered

for the problem of airpath control. The 8th order model for the diesel airpath represents

a challenge for both design and real-time implementation, given the limited engine control

unit (ECU) computational/memory resources and fast control update. For the DAP control

system shown in Fig. 3.5, direct feedthrough is present in the state space equation from the
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input (e.g., EGR flow) to the output (EGR rate) [134]. Therefore the transfer function is

not strictly proper and previously developed Riccati balanced truncation is necessary.

3.4.1 8 State Diesel Airpath Model

The derivation of the DAP model for control has been discussed extensively in [135],

[136], and [137]. The dynamical equations for the engine components are derived through

applications of the ideal gas law, conservation of mass, and conservation of energy in an

adiabatic process. The equation for the turbine speed is a result from conservation of energy.

The eight states present in this model are: three pressures, p, in the intake manifold, the

pre-throttle volume, and the exhaust manifold; two densities, ρ, in the intake and exhaust

manifold; two burn gas fractions, F, in the intake and exhaust manifolds; and the VGT

rotational speed, ω.

The burn gas fraction is defined as the ratio, by density, of the exhaust to the air in a

specified volume.

For self-containedness and easy referencing, the equations of the 8th order DAP model

from [136] are summarized here:

ṗin =
γR

Vin
(Wc,inTc,in + Wex,inTex −Win,engTin −Win,exTin −

Q̇in

cp
), (3.34a)

ṗpre =
R

Vpre

Tc + Tic

2
(Wc,in −Wthr,in), (3.34b)

ω̇ =
302cp
π2Itcω

(ηWex,tur(Tex − Ttur)−Wc,in(Tc,in − Tamb)), (3.34c)

ṗex =
γR

Vex
(Weng,exTeng,ex −Wex,turTex −Wex,inTex + Win,exTin −

Q̇ex

cp
), (3.34d)

Ḟin =
Wex,in(Fex − Fin)−Wc,inFin

ρinVin
, (3.34e)

ρ̇ex =
1

Vex
(Weng,ex −Wex,tur −Wex,in + Win,ex), (3.34f)

ρ̇in =
1

Vin
(Wc,in + Win,ex + Win,eng), (3.34g)

Ḟex =
Weng,ex(Feng,ex − Fex)

ρexVex
. (3.34h)

The definitions of the variables and subscripts used in (3.34) can be found in Table 3.6.
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Table 3.6: Variable and subscript definitions.

P
ar

am
et

er
s

cp Specific heat, constant pressure
η Turbo charger mechanical efficiency
γ Heat capacity ratio
Itc Inertia of compressor/turbine
R Gas constant
V Volumes

V
ar

ia
bl

es Q̇ Heat transfer rate
T Temperature

W1,2 Flow
(
kg
sm3

)
from 1 to 2

Su
bs

cr
ip

ts

amb Ambient
c Compressor
eng Engine
ex Exhaust
ic Intercooler
in Intake
pre Prethrottle
thr Throttle
tur Turbine

One control input is the VGT actuator (uV GT ), which controls the vane angle and dictates

the speed of the turbine, and hence of the compressor, to regulate the airflow into the intake

manifold. Another input is the EGR valve position (uEGR), which controls the flow from the

exhaust manifold to the intake manifold for effective NOx treatment.

Despite the conceptually simple actuation of the EGR valve position, EGR flow (Wex,in)

is chosen as the second control input so that DC-gain reversal can be avoided and a single

MPC controller can be used [134]. Wex,in is inverted using Eq. (12)-(14) from [132] to obtain

uEGR. This choice, however, has led to a direct feedthrough in the output equation of the

state-space model.

Table 3.7 provides insight into how the inputs, uV GT and uEGR, enter the DAP model.

In this model, throttle angle, engine speed (N), and fuel flow (Wf ) are treated as known

disturbances. As is often desired for diesel engines, the throttle will be kept open as much

as possible to reduce pumping losses (throttle closes when increased EGR flow capacity is

required) [138].
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Table 3.7: Variables, their dependencies, and source equations [136].
Variable Dependent upon Governing Laws

Tic Tc Temperature Map
Tc Tamb, pin, pex, η Adiabatic T − V relationship
Tc,in pin, ω Compressor Isentropic Efficiency Map
Tin pin = ρinRTin Ideal Gas Law
Tex pex = ρexRTex Ideal Gas Law
Ttur pex, Tex, ω, uV GT Turbine Isentropic Efficiency Map
Wc,in pin, ω Compressor Flow Map
Wthr,in pin, ppre Mass Conservation
Win,eng ρex, N, Tin, pex Engine Volumetric Efficiency Map
Win,ex pin, pex, ρin, uEGR Orifice Equation
Wex,in pin, pex, ρex, uEGR Orifice Equation
Wex,tur pex, ρex, uV GT Turbine Flow Map
Weng,ex Wf + Win,eng Engine Mass Conservation
Teng,ex Tin, Fin, Wf , Win,eng Engine Temperature Rise Map
Feng,ex Fin, Wf , Win,eng Stoichiometric Combustion Balance
Q̇in Q̇in = 0 Neglected
Q̇ex Q̇ex = 0 Neglected

3.4.2 Control Objective

The control objective in the following sections is to optimally track set-points for intake

manifold pressure and EGR rate, subject to constraints, with a model predictive controller

designed with a linear model in real-time. Because of the real-time requirement, the predic-

tive controller will be designed with reduced order linear models.

The outputs of the system are therefore selected as the intake manifold pressure (pin)

and EGR rate (φEGR):

φEGR =
Wex,in

Wex,in + Win,eng

. (3.35)

To apply systematic model order reduction techniques for the system represented by (3.34),

linearization is performed for the DAP model at the center of the nominal fuel/engine speed

operating range [126]. Table 3.3 summarizes the ordering of inputs, outputs, and states. The

inputs are ordered as u = [uV GT uEGR]> and the outputs are ordered as y = [pin φEGR]>.

The tracking objective is combined with the objective to minimize actuator change, and

is captured by rate-based MPC problem of (3.30) with a discretized (3.1).
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Several conservative constraints for the nonlinear DAP control problem need to be en-

forced for initial tests. The set of constraints used in this section are given by (3.36):

max{ȳt,1 − c1, 0} ≤ yt,1 ≤ 300 kPa (3.36a)

max{ȳt,2 − c2, 0} ≤ yt,2 ≤ 50% (3.36b)

40% ≤ uV GT ≤ 80% (3.36c)

0 ≤ Wex,in ≤ fmaxEGR

kg

s
(3.36d)

where c1 and c2 are positive constants. The EGR flow constraint, fmaxEGR, is a predefined

function of operating conditions (i.e., a function of pex, pin, and N) that prevents too much

EGR flow from being demanded.

3.4.3 Diesel Airpath Simulation Results

To demonstrate the efficacy of a rate-based reduced compensator designed using lin-

ear RBT reduced order model, simulations over a “warm start” drive cycle using a Toyota

proprietary DAP model and step responses on an experimental setup are presented. The

simulation results consist of the plant controlled by a single rate-based compensator and by a

gain scheduled rate-based compensator, using engine speed/fuel as the scheduling variables,

designed using linearizations of the 8th order plant model, with linear constraints contained

within (3.36).

The rate-based compensators consist of the control methodology of [133], an explicit

MPC law calculated with the MPT toolbox [139] for output tracking control, and a rate-

based Kalman filter. The observer takes the form of a steady-state Kalman filter of (3.31)

and (3.32). The compensators are designed using either: the full order (CI), LBT reduced

order (CII), or RBT reduced order (CIII) model.

An explicit MPC law takes the form of a linear piecewise affine control (PWA) law:

∆ut = [H]kl ˆ̄xt|t + [k]kl when {N,Wf , ˆ̄xt} ∈ Skl, (3.37)

where Skl denotes a convex polyhedron indexed by l in an engine speed/fuel zone indexed by
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k, and [H]kl and [k]kl are a matrix and a vector of appropriate size, respectively, that define

the PWA.

Single Zone Compensator Simulation Results

A single zone compensator consists of applying one compensator over the entire operating

range (i.e., k = 1 in (3.37)). For the Toyota proprietary Simulink DAP model used in this

study, the restricted operating range considered is engine speed between 750-3000 RPM, and

fueling rate between 0-60 mm3

str
.

The reduced compensators are designed using a linearization of the Simulink model at

the nominal engine speed/fuel operating condition of 1600 RPM/30 mm3

str
. The linearization

is reduced from 8th to 3rd order, then placed into the augmented system (3.28), where a

5th order reduced compensator is derived. Contained in Fig. 3.6 is the operating range

and a portion of the engine speed/fuel trajectory the New European Drive Cycle (NEDC)

traverses. Fig. 3.6 also illustrates the partitioning of the operating space (by horizontal and

vertical lines) and the operating points at which the linearizations were performed (circles)

for the gain scheduled compensator design in the following subsection.
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Figure 3.6: Partitioning of engine speed/fuel operating space. The circles denote a lineariza-
tion point used in the gain scheduled MPC law. ‘+’ indicates points visited by the trajectory
when the engine is tested on the NEDC.

The weightings used for the compensator design are provided in Table 3.4. Resulting

compensator ROM size, and FLOP count and projected timing estimates are provided in

Table 3.8. The timing is predicted on a MPC5644A microcontroller, a moderately specified

ECU [140], which has a clock speed of 150 MHz and permits 2 floating point operations per

cycle. For the explicit MPC/Kalman filter compensator, Table 3.8 shows a roughly linear

reduction in memory and computation.

Results of the output responses and inputs subject to a portion of the NEDC are provided

in Fig. 3.7. The following observations are noteworthy:

• As seen in Fig. 3.7(a), 3.7(c), 3.7(e), and 3.7(g), the Full (CI) and RBT (CIII) based

compensators have similar performance.

• The LBT based compensator (CII) results in regimes where asymptotic tracking is not

achieved. This occurs when the fuel is greater than 45 mm3

str
.
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• Other than a handful of areas where CIII has larger overshoot in the transient, it

generally performs better in rise-time, settling time, and overshoot when compared to

CII .

• Table 3.8 shows that the 5th order reduced compensator (generated from the 3rd order

model) results in over a 40% reduction in computation, which brings it into the realm

of computational feasibility on the ECU with a 16 ms sample time.

Table 3.8: Compensator order, ROM size, and worst case FLOPs and computation time for
a single zone and gain scheduled controller.

Single Zone Gain Scheduled
Order Size [B] FLOPs Time [µs] Size [B] FLOPs Time [µs]
10 6012 3148 19.9 83556 3148 19.9
9 5020 2604 16.5 77192 2874 18.2
8 4648 2360 14.9 71012 2612 16.5
7 4788 2362 14.9 65520 2362 14.9
6 4396 2124 13.4 61076 2124 13.4
5 4012 1898 12.0 56168 1898 12.0
4 3636 1684 10.7 50904 1684 10.7
3 - - - - - -

Table 3.9: N calculated by (3.38) and root mean square (RMS) error between reference and
output subject to the portion of the NEDC between 850-1180 seconds.

Single Zone Gain Scheduled
Model N (105) RMS N (105) RMS
CI 1.3027 1.1070 1.1695 1.1179
CII 2.6138 2.4160 1.5312 1.1582
CIII 1.4956 1.1204 1.3463 1.1256

Table 3.9 provides assessment of performance evaluated by (3.38),

N =
N∑
n=1

(yn − ȳn,∞)>Q(yn − ȳn,∞) + ∆u>nR∆un, (3.38)

where N is the number of time steps used in the simulation, and the root mean square error

between the reference and output. The table shows that the RBT (CIII) results in a smaller
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N, compared to LBT (CII), when applied to the portion of the NEDC between 850-1180

seconds, showing the benefit of using the proposed closed-loop model reduction technique

combined with the rate-based formulation.

Gain Scheduled Compensator Simulation Results

A gain scheduled linear compensator consists of partitioning an operating range into

multiple zones, and designing a linear compensator for each zone. Gain scheduled MPC is

common control technique for applying linear compensators to a nonlinear plant [141].

To control the DAP system, the operating space was partitioned into 15 zones (see Fig.

3.6), and a full or reduced order model was derived using the linearization at the specified

point of the operating space.

Using the linearized model derived at the selected conditions, the design of the compen-

sator in each zone was comprised of a rate-based MPC law and a rate-based Kalman filter.

For the full order this resulted in a 10th order compensator (8 states + 2 ouputs), and for the

reduced order compensators, this resulted in a 5th order compensator (3 states + 2 outputs).

The weightings for the controller in each zone, (Qk, Rk, Λk, Γk), are taken to be the

(Q, R, Λ, Γ) in Table 3.4. The FLOP count estimate calculates the worst case for zone

evaluation ({N,Wf}), polyhedra evaluation, control calculation, and compensator evalua-

tion.

Results for the gain scheduled compensators subject to the NEDC are provided in Fig.

3.7 for comparison. The key things of Fig. 3.7(b), 3.7(d), 3.7(f), and 3.7(h) to note are:

• Overall, gain scheduling the compensators resulted in a better response for all com-

pensators.

• Comparing Fig. 3.7(c) and 3.7(d), the gain scheduled MPC results in a smaller tran-

sient when fuel cuts occur during shift points.

• The gain scheduled RBT-based compensator (CIII) outperforms the LBT-based com-

pensator (CII) for all performance metrics (i.e., rise time, overshoot, and settling time),

however, the benefit of RBT becomes less significant compared to the single zone case.
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• The gain scheduled LBT-based compensator still has stability issues in the higher fuel

regime (> 45mm
3

str
).

Table 3.9 provides the performance measured by (3.38), and continues to show that the

RBT (CIII) results in a smaller N when compared to LBT (CII).
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(h) Gain Scheduled: EGR Flow

Figure 3.7: Simulation results for single zone vs gain scheduled MPC subject to a portion of
the NEDC.
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3.4.4 Experimental Engine Results

Experiments to compare the reduced compensators on an experimental 3 liter, 4 cylinder

diesel Toyota KD engine were carried out on a dynamometer at Toyota Motor Corporation’s

Higashi-Fuji facility. For engine safety, only small reference step changes were allowed. The

reference steps were chosen to keep both intake pressure and EGR rate at the nominal value;

then a 20 second step up followed by a step down command was applied to one reference at

a time, pictured in Fig. 3.8(a) and 3.8(b).

A linear 7th order system, derived using system identification at 1600 RPM engine speed

and 30 mm3/str fueling rate was used for controller design. From this 7th order model,

a 3rd order model was calculated using the method highlighted in Section 3.3.2, and the

compensator was reduced from 9th to 5th order.

To decrease actuator motion and to reduce the effective feedback gain of the control,

the weight on the control was increased relative to the output weight. Compensators were

designed with Q and R weightings:

Q = I2×2, R = diag(100, 10),

which places a higher weighting on intake pressure, but approximately equal emphasis on

both actuator inputs due to scale. Fig. 3.8 provides the results for the two reduced com-

pensators: CII and CIII . It can be seen that CIII results in better performance in terms

of overshoot and disturbance rejection (Fig. 3.8(a) and 3.8(b)), and the amount of control

input (Fig. 3.8(c) and 3.8(d)).
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(d) Weighting I: EGR Flow.

Figure 3.8: Comparison of experimental results using different 3rd order models for controller
design.
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3.5 Conclusions

The chapter provides an extension of the closed-loop model order reduction given by [3] to

account for the direct feedthrough from input to output, and non-normalized LQ weights in

the optimized cost function and is called Riccati balanced truncation (RBT). An algorithm

to compute approximate RBT of large scale descriptor systems is proposed using low-rank

matrix square root factors of Riccati solutions. The link between unconstrained infinite time

LQR and finite time MPC cost function was exploited to adapt closed-loop model order

reduction to MPC through the use of a terminal state penalty.

A rate-based MPC law designed using RBT reduced model is used to control a nonlinear

diesel airpath (DAP) model in real-time, demonstrating the benefit of using an estimator and

MPC designed with the proposed closed-loop Riccati balanced truncation over the open-loop

reduction technique.

The MPC controllers were applied to a linear plant with reference steps, a Toyota pro-

prietary model running the New European Drive Cycle (NEDC), and to an experimental

engine with reference steps. When compared to the popular Lyapunov balanced truncation

applied to the DAP problem [133], the proposed reduction technique in the MPC/Kalman

filter framework is shown to provide a simpler, more accurate and robust controller in terms

of measurement-to-control, dynamic tracking, and disturbance rejection, while requiring less

actuator movement. For the DAP system, this could translate to reduced emissions and

particulate matter, as well as actuator wear and tear.
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Chapter 4

Model Order Reduction for Constrained

Linear Systems

To optimally control a hard constrained system in an effective manner in real-time,

models are often required. An optimal control methodology that uses a model and can

naturally account for constraints is model predictive control (MPC). For hard constrained

linear systems, two techniques to calculate an MPC law are explicit MPC, a MPC law whose

solution is a pre-computed piecewise linear control law [127], and on-line MPC (or implicit

MPC), solving a constrained quadratic program at each step [142]. However, it has been

demonstrated that model complexity often dictates the applicability of MPC to real-time

systems, whether it be for explicit or on-line MPC [33, 38, 142].

Reducing MPC computational complexity often necessitates using model order reduction.

Explicit MPC may have many piecewise terms, and removing a single state may result in

reduction of both storage and computational complexity by several orders of magnitude

(particularly for long prediction horizons and for systems with many states) [143]. Given a

system with a prediction horizon Np, m control inputs, and p outputs, reducing the number

of states from n to r results in the complexity of an on-line MPC law obtained with a

multi-stage interior point method going from O(Np(n+m+ p)3) to O(Np(r+m+ p)3) [38].

Therefore, various forms of MPC stand to lose much complexity by the reduction of the

model.

However, reduced order models result in modeling errors [13]. These modeling errors
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effect the constraint enforcement, stability, and feasibility of MPC [120, 144].

Over the past two decades MPC has matured to deal with model errors and disturbances

using a variety of approaches that fall under the name robust MPC [145, 146, 147, 148, 149].

Some robust controller techniques include: constraint tightening [36, 150], transforming hard

constraints into soft constraints [33, 151], and barrier functions [152].

For the purpose of handling hard constrained systems with controllers designed using

reduced order models, the modeling errors recently have been treated as disturbances (both

unknown and constant) and have been handled in command governor and robust MPC

frameworks [34, 35, 36, 38]. While all techniques highlight the importance and possibility of

reduced models for control, these techniques either incur some conservativeness, by decreas-

ing the size of the admissible outputs and controls, or additional computational complexity.

Focusing on MPC, [36] proposed using tube MPC, and constraint tightening based on the

error between a model and a reduced model obtained by truncation; [38] extends the idea to

robust output feedback MPC and provides conditions of when robustness can be guaranteed

for arbitrary models. However, no work has been reported on how to perform model order

reduction for the control and estimation of constrained systems.

In this chapter, the “truncated states as disturbances” idea of [36] is employed to develop

a reduced order output feedback MPC law with the framework of [146]. The results of

[38] are used to provide robust stability, constraint satisfaction, and feasibility. Under the

assumption that the reduced order model is obtained by residualization [17], the technique

of [153] is used to provide tracking of a step reference. For consistency with Chapters 2 and

3, residualization is developed for continuous and discrete linear descriptor systems.

With knowledge of the controller and estimator (compensator), this chapter also proposes

an optimization problem to yield a reduced order model, obtained from the full order model,

for reduced compensator design that satisfies the hard constraints of the full order system.

Employing robust output feedback MPC with a linear quadratic cost and a constant tube,

and a reduced order model obtained by residualization, a solution methodology is proposed.

A simple example is used to demonstrate that the proposed reduction problem can yield

reduced controllers that are both more accurate and less conservative than those designed

with models obtained using [3] and [13].
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The chapter is structured as follows: Section 4.1 provides background on robust MPC.

Section 4.2 forms the problem of MPC with reduced models, reduced tightened constraint

sets, and some properties. Section 4.3 presents an optimization problem to be solved, pro-

poses abstract and concrete formulations of a coupled reduction/constraint tightening prob-

lem. Section 4.4 demonstrates the efficacy of the proposed reduction to the design of a

reduced MPC law using a simple tube. Finally, Section 4.5 provides conclusions of the

chapter.

4.1 Constant Tube Robust MPC

This presentation of the background material follows that of [146] for constant tube

robust output feedback MPC.

4.1.1 Nomenclature and Definitions

Given two sets F, G ∈ Rq, the Minkowski Sum is defined as F⊕G = {x ∈ Rq|x = a+b, a ∈

F, b ∈ G}; and the Pontryagin difference is F ∼ G = F 	 G = {x ∈ Rq|x + b ∈ F, b ∈ G}.

Given a matrix K ∈ Rm×q, and a set F ∈ Rq, matrix set multiplication is defined as:

KF = {x ∈ Rm|x = Ka, a ∈ F}. Provided with a scalar α ∈ R, αF = αIq×qF, where

Iq×q is the identity matrix of dimension q. The distance between sets F, G is defined as

d(F,G) = inff∈F, g∈G ||f −g||. The spectral radius, the maximum modulus of the eigenvalues,

of a matrix A ∈ Rn×n is given by ρ(A), and A is said to be asymptotically stable if ρ(A) < 1.

Definition 4.1.1 (Positive Invariant Set). A set Ω ⊂ Rn is a positively invariant set for

xt+1 = f(xt) if f(xt) ∈ Ω for all xt ∈ Ω.

Definition 4.1.2 (Robust Positive Invariant Set). A set Ω ⊂ Rn is a robust positively

invariant (RPI) set for xt+1 = f(xt, wt) if f(xt, wt) ∈ Ω for all xt ∈ Ω, wt ∈W.

Let g(xt) denote a feedback control law.

Definition 4.1.3 (Robust Stability). A set Ω is said to be robustly stable if given the xt+1 =

f(xt, ut, wt), with xt ∈ X, ut = g(xt) ∈ U, wt ∈W; then limt→∞ d(xt,Ω) = 0.
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Definition 4.1.4 (Robust Constraint Fulfillment). If the system xt+1 = f(xt, ut, wt), yt =

h(xt, ut, vt), with xt ∈ X, ut = g(xt) ∈ U, wt ∈ W, vt ∈ V, satisfies all hard constraints at

each time instance; then the controller is said to satisfy constraints robustly.

4.1.2 Output Feedback Robust MPC

The goal of robust output feedback MPC is to calculate a control law that robustly

satisfies constraints and robustly stabilizes a system with input and output disturbances.

Using a general MPC formulation, this is often achieved using a nominal model, an estimator,

and robust positively invariant sets.

To build up the problem, assume that the minimal linear system with sufficiently small

input and output disturbances, wt and vt, respectively, is provided

Σ :

 xt+1 = Axt +But + wt,

yt = Cxt +Dut + vt,
(4.1)

where xt ∈ X ⊂ Rn, ut ∈ U ⊂ Rm, y ∈ Y ⊂ Rp, wt ∈ W, vt ∈ V for all t, and X,U,Y, W, V

are all convex and compact sets that contain the origin.

Omitting the disturbances, the nominal system is given by

Σ̄ :

 x̄t+1 = Ax̄t +Būt,

ȳt = Cx̄t +Dūt.
(4.2)

Given an output injection, L ∈ Rn×p, such that ρ(A+ LC) < 1, the estimator is

Σ̂ :

 x̂t+1 = Ax̂t +Bût + L(yt − ŷt),

ŷt = Cx̂t +Dût.
(4.3)

Define the errors between the estimated and nominal state, and actual and estimated

state to be

et = x̂t − x̄t, (4.4)

x̃t = xt − x̂t, (4.5)
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such that

xt = x̄t + et + x̃t.

Assume that there exist a feedback gain and output injection, K ∈ Rm×n and L ∈ Rn×p,

such that ρ(A + BK) < 1 and ρ(A + LC) < 1 (i.e., asymptotically stabilizing the nominal

system). Separate the control ut into feedforward and feedback parts:

ut = ūt +Ket (4.6)

where ūt is calculated from the MPC law. Substituting ût = ut,

et+1 = (A+BK)et + L(Cx̃t + vt), (4.7)

x̃t+1 = (A+ LC)x̃+ wt − Lvt. (4.8)

Robust positively invariant sets S̄ and S̃ are sought to bound the errors et ∈ S̄ and x̃t ∈ S̃,

so that the original input, state, and output constraints may be tightened. Let

δ̃t = wt − Lvt, (4.9a)

δ̄t = LCx̃t + Lvt, (4.9b)

and define

∆̃ = W⊕ (−LV). (4.10)

Then because ρ(A + LC) < 1, and all sets are compact and contain the origin, there exist

an RPI set, S̃, that is compact, non-empty, and contains the origin, such that S̃ satisfies

(A+ LC)S̃⊕ ∆̃ ⊆ S̃. (4.11)

Similarly define

∆̄ = LCS̃⊕ LV, (4.12)

and because ρ(A+BK) < 1, and all sets are compact and contain the origin, there exist an
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RPI sets, S̄, that is compact, non-empty, and contains the origin, such that S̄ satisfies

(A+BK)S̄⊕ ∆̄ ⊆ S̄. (4.13)

Define

S = S̃⊕ S̄, (4.14)

then the following results naturally arise:

1. If x̃0 ∈ S̃, then x̃t ∈ S̃ and xt ∈ x̂t ⊕ S̃ for all t > 0.

2. If e0 ∈ S̄, then et ∈ S̄ and x̂t ∈ x̄t ⊕ S̄ for all t > 0.

3. If e0 ∈ S̄, x̃0 ∈ S̃, ū = {ūt}t=0,1,..., and ut ∈ U is given by (4.6), then xt ∈ x̂t⊕ S̃ ⊆ x̄t⊕S

for t > 0.

While S̃ and S̄ are guaranteed to exist, they are dependent on the choice of K and L.

Further, if S̄ ⊕ S̃��⊂X, KS̄��⊂U, and/or (C + DK)S��⊂Y, then the control will be infeasible.

Linear programming problems exist to check if W and V are sufficiently small and a feasible

tightened sets exist [154, Chapter 3].

With the RPI sets, the tightened input, state, and output constraints are, respectively:

Ū = U	KS̄, (4.15a)

X̄ = X	 S, (4.15b)

Ȳ = Y	 (C +DK)S. (4.15c)

These tightened sets facilitate the output feedback robust MPC problem. Let Np be the

prediction horizon, define x̄(x̂t) = {x̄t, . . . , x̄t+Np} to be the sequence of states generated by

(4.2) subject to ū and x̄t ∈ x̂t ⊕ S̃. Then given the linear quadratic cost

Jf (x̄(x̂t), ū) = x̄>t+NpPx̄t+Np +

t+Np−1∑
i=t

ȳ>i Qȳi + ū>i Rūi, (4.16)
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where Q = Q> ≥ 0, R = R> > 0, P = P> ≥ 0, the MPC law is determined by the solution

to
(x̄∗t , ū

∗) = arg min
{x̄t,ū}

Jf (x̄(x̂t), ū).

s.t (4.2), ūi ∈ Ū, ȳi ∈ Ȳ

x̄t ∈ x̂t ⊕ S̃, x̄j ∈ X̄, j ∈ {t+ 1, . . . , t+Np}

(4.17)

and the control at time t is calculated by (4.6).

As previously mentioned, if n is high order, the MPC problem may not be calculable in

real-time. In order to meet the real-time requirement, an MPC law derived from a reduced

order model may be used. A reduced order model, however, will introduce modeling error,

and modeling error can cause a variety of issues in this form of MPC: suboptimal control

policy, steady state error, and constraint violation. A suboptimal control policy cannot be

overcome, however, constraint violation may be handled in a robust MPC framework.

4.2 Reduced Output Feedback MPC

Reduced order output feedback MPC law (ROOFMPC) is concerned with controlling

the full order model with a output feedback MPC law designed with a reduced order model.

The ROOFMPC law is represented by g(x̂r,t), where x̂r,t is the estimated reduced state.

g(x̂r,t) should satisfy similar requirements presented in [155] for robust MPC, with small

modifications:

R1 Σ controlled by ut = g(x̂r,t), should satisfy constraints U, X, and Y at all time t ≥ 0,

and

R2 limt→∞ g(x̂r,t)−Kf,txt = 0, where Kf,t is the unconstrained MPC gain that minimizes

Jf [141].

Satisfaction of R1 yields a control law that does not destabilize the system, and satisfaction

of R2 provides an MPC law that tends to the desired control and target.

This approach follows that of [36] with the difference that constant tube MPC, the robust

output feedback MPC framework of [146] presented in the previous section, and arbitrary
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convex polytope state constraints are employed. Assume that Σ has been transformed by

T , partitioned, and rearranged into

Σ :


xr,t+1 = Arxr,t +Brut + ((A11 − Ar)xr,t + A12θt + (B1 −Br)ut) ,

θt+1 = A21xr,t + A22θt +B2ut,

yt = Crxr,t +Drut + ((C1 − Cr)xr,t + C2θt + (D −Dr)ut) ,

(4.18)

with the additional assumptions that A22 is stable, and the nominal reduced order system

(4.19) is minimal:

Σ̄r :

 x̄r,t+1 = Arx̄r,t +Brūt,

ȳr,t = Crx̄r,t +Drūt.
(4.19)

Define

wt = (A11 − Ar)xr,t + A12θt + (B1 −Br)ut, (4.20a)

vt = (C1 − Cr)xr,t + C2θt + (D −Dr)ut, (4.20b)

and note that all of the constraints, U, X, and Y may be put into the general form: P =

{(x, u)|[Ex Eu][x
> u>]> ≤ F}, with the proper basis selected for x = [x>r,t, θ

>
t ]>. The

“disturbance” sets are defined by the affine map

W =
[
A11 − Ar A12 B1 −Br

]
P (4.21)

V =
[
C1 − Cr C2 D −Dr

]
P (4.22)

Form error and estimator dynamics of Σ̃ with [K 0], [L>0>]> as in (4.7) and (4.8),

respectively:

Σ̃ :


xr,t+1

θt+1

 =

Ar 0

A21 A22

xr,t
θt

+

Br

B2

ut +

Ir×r
0

wt,
yt = Crxr,t +Drut + vt,

(4.23)

with ut = Kxr,t, and calculate the associated RPI sets S̃, S̄, and S. Following the assumptions

that A22 and Σ̄r are stable, and all the sets are compact and contain the origin, S̃, then S̄,
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and S are guaranteed to exist [156].

Let F = {f ∈ Rn|Eff ≤ F}, define the projection operator, Projr(F) = {fr ∈

Rr|Ef [I>r×r 0>]>fr ≤ F}. Assuming that U and X are not dependent (i.e., the combined

constraints are represented by the Cartesian product X× U), the constant tube constraints

then become:

Ūr = U	KProjr(S̄), (4.24a)

X̄r = Projr(P	 S), (4.24b)

Ȳr = Y	 ((Cr +DrK)Projr(S)). (4.24c)

To define the MPC problem, let ū be a sequence of controls, x̄r(x̂t) = {x̄r,t, . . . , x̄r,t+Np} be

the response of nominal reduced order model, (4.19), subject to ū and x̄r,t ∈ x̂r,t⊕Projr(S̃).

Select the linear quadratic cost for tracking

Jr(x̄r(x̂r,t), ū) = (x̄r,t+Np − x̄r,t,∞)>P (x̄r,t+Np − x̄r,t,∞)

+

t+Np−1∑
i=t

(ȳi − ȳt,∞)>Q(ȳi − ȳt,∞) + (ūi − ūt,∞)>R(ūi − ūt,∞),(4.25)

where ȳt,∞ is the reference, ūt,∞ is the control required to achieve the reference (of the

nominal system), and x̄r,t,∞ is the corresponding steady state of the nominal reduced order

model. The tracking ROOFMPC law is determined by the solution to

(x̄∗r,t, ū
∗) = arg min

{x̄r,t,ū}
Jr(x̄(x̂r,t), ū),

s.t (4.2), ūi ∈ Ūr, ȳi ∈ Ȳr

x̄r,t ∈ x̂r,t ⊕ Projr(S̃), x̄r,j ∈ X̄r, j ∈ {t+ 1, . . . , t+Np}

(4.26)

where the control at time t is calculated by (4.6).

With the robust MPC formulation and the constraint tightening technique proposed for

reduced order models, and the assumptions of [38] for the controller and adapting it to the

above scenario, Theorem 4.2.1 and 4.2.2 state the conditions required for robust constraint
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satisfaction, stability, and feasibility assuming ȳt,∞ = 0 (i.e. a regulating problem). Theorem

4.2.3 provides asymptotic tracking of reference steps subject to standard assumptions.

Theorem 4.2.1 (Robust Constraint Satisfaction). Suppose ȳt,∞ = 0, x0 ∈ X, y0 ∈ Y,

the initial system, observer, and nominal system states are in Projr(P) and the reduced

state satisfies x̃r,0 = xr,0 − x̂r,0 ∈ Projr(S̃) and er,0 = x̂r,0 − x̄r,0 ∈ Projr(S̄). Then xr,0 ∈

x̄r,0⊕Projr(S). If, in addition, initial state x̄r,0 and the control sequence ū = {ū0, . . . , ūNp−1}

of the nominal system satisfy the tighter constraints ȳr,t ∈ Y 	 ((Cr + DrK)Projr(S)) = Ȳr

and ūt ∈ U 	 KProjr(S̄) for all t > 0, then the output yt and control ut from (4.1) of Σ

satisfy the original constraints U, X, and Y, for all t > 0 and admissible truncated states.

Proof. See Appendix A.3.1 for the proof.

Theorem 4.2.2 (Robust Stability). Suppose ȳt,∞ = 0, x0 ∈ X, y0 ∈ Y, x̄r,t+i|t (the predicted

state from x̄r,t) is bounded given the control sequence ū, then the set Projr(S̄) × Projr(S̃)

is robustly exponentially stable for Σ controlled with the ROOFMPC law/estimator with a

region of attraction (Projr(X̄r) ⊕ Projr(S̄)) × Projr(S̃) and any state xr,0 = x̂r,0 + x̃r,0 such

that (x̂r,0, x̃r,0) ∈ Ȳr ⊕ (Cr + DrK)Projr(S̄) is robustly steered to Projr(S) exponentially fast

while satisfying input, state, and output constraints.

Proof. See Appendix A.3.2 for the proof.

Just like [146], if the assumptions continue to hold the ROOFMPC problem of (4.26) is

recursively feasible.

Remark 4.2.1. The condition e0 = x̂0 − x̄0 ∈ Projr(S̄) may be challenging to satisfy at the

beginning, and can prove to be problematic to the stability of the reduced compensator.

4.2.1 Residualization of Linear Descriptor Systems

If ȳt,∞ 6= 0, i.e. a tracking problem, the reduced order model should match the DC-gain

of the full order model, otherwise R2 cannot be satisfied. This means that the residualization

reduced order model must be used.

Residualization uses the notion of singular perturbations of a system [17, 157]. Singular

perturbations is often implemented by transforming and partitioning the system into slow
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and fast states. Assuming the fast states tend rapidly to a steady state, the fast states are

approximated using an algebraic relation and are solved for as functions of the slow states

[58].

For model order reduction, the slow-fast separation is not necessarily a good design

paradigm, and a transformation, T , calculated from quantities such as gramians or Ric-

cati solutions, like in Algorithms 2.1 or 3.1, respectively, is employed. For consistency with

Chapter 2 and 3, Algorithm 4.1 provides residualized reduced order model of a realization

transformed by T for continuous and discrete time linear descriptor systems (under cer-

tain conditions). Appendix B contains constructive derivations of singular perturbations of

continuous and discrete time descriptor systems.
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Algorithm 4.1 Residualization of a linear system with a transformation, T .

1: procedure Linear_Sing_Perturb(T , (Ẽ, Ã, B̃, C̃, D̃), x0, r)
Require: T invertible
2: Apply the similarity transformation T

ΣL : (E,A,B,C,D) = (T −1ẼT ,T −1ÃT ,T −1B̃, C̃T , D̃)

3: Partition ΣL as in (2.7)
4: Define

W =
[
Ir×r 0

]
5: if (E,A,B,C,D) is a continuous time system, then
6: Assume E11 and E21E

−1
11 A12 − A22 are invertible.

7: Residualize

Er = E11, (4.27a)
Ar = A11 + A12(E21E

−1
11 A12 − A22)−1(A21 − E21E

−1
11 A11), (4.27b)

Br = B1 + A12(E21E
−1
11 A12 − A22)−1(B2 − E21E

−1
11 B1), (4.27c)

Cr = C1 + C2(E21E
−1
11 A12 − A22)−1(A21 − E21E

−1
11 A11), (4.27d)

Dr = D + C2(E21E
−1
11 A12 − A22)−1(B2 − E21E

−1
11 B1). (4.27e)

8: else
9: Assume E22 − A22 and E11 + (A12 − E12)(E22 − A22)−1E21 are invertible.
10: Residualize

Er = E11 + (A12 − E12)(E22 − A22)−1E21, (4.28a)
Ar = A11 + (A12 − E12)(E22 − A22)−1A21, (4.28b)
Br = B1 + (A12 − E12)(E22 − A22)−1B2, (4.28c)
Cr = C1 + C2(E22 − A22)−1(A21 − E21E

−1
r Ar), (4.28d)

Dr = D + C2(E22 − A22)−1(B2 − E21E
−1
r Br). (4.28e)

11: end if
12: Define

Σr : (Er, Ar, Br, Cr, Dr), (4.29a)
xr(0) = WT −1x0. (4.29b)

return Σr, xr(0)
13: end procedure

Let Gc(s), Gd(z), Gr,c(s), and Gr,d(z) be the continuous and discrete time transfer func-

tions, and their reductions, respectively. Singular perturbation guarantees Gc(0) = Gr,c(0)
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(Gd(1) = Gr,d(1) in discrete time), or that the steady state of the full and reduced order

models are equal (for both continuous and discrete models), which is crucial for applications

such as step tracking.

Other properties of Algorithm 4.1 are: if Σ is asymptotically stable, so is the reduction,

and the reduction satisfies the same error bound of the transfer function in continuous time

[17, 26]:

||Gc(s)−Gr,c(s)||∞ ≤ 2
n∑

i=r+1

σi, (4.30)

where σi are the Hankel Singular Values. Error bounds can exist for discrete systems, how-

ever, their derivation is often dependent upon a continuous time model and the discretization

method used [17].

Focusing on ordinary (E = In×n) difference equations, the singular perturbation trunca-

tion from Algorithm 4.1 is [17]:

Ar = A11 + A12(I − A22)−1A21, (4.31a)

Br = B1 + A12(I − A22)−1B2, (4.31b)

Cr = C1 + C2(I − A22)−1A21, (4.31c)

Dr = D + C2(I − A22)−1B2. (4.31d)

With a reduced order model that matches the steady state of the full order model, and

the assumptions of [153] (with a relaxation of the terminal output error in the cost), the

following tracking result is obtained.

Theorem 4.2.3 (Asymptotic Tracking). Define Kr,f to be the MPC gain [158], and assume

ρ(Ar + LCr) < 1, ρ(Ar +BrK) < 1, and ρ(Ar +BrKr,f ) < 1. If there exists some t and

1. xt ∈ X, yt ∈ Y;

2. er,t ∈ Projr(S̄) and x̃r,t ∈ Projr(S̃);

3. ūt,∞ ∈ Ūr, x̄r,t,∞ ∈ X̄r, and ȳt,∞ ∈ Ȳr;
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4. ȳt,∞ ∈colspan{Cr(I − (Ar +BrKr,f ))
−1Br +Dr},

then

lim
t→∞

yt = ȳt,∞. (4.32)

Proof. See Appendix A.3.3 for the proof.

Remark 4.2.2. If the step response steady states of Σr and Σ are not equal, e.g. if residu-

alization is not used, then a command governor is required to ensure step response tracking

[35, 153]. Further, a combination of reduced MPC and command governor may be used to

further reduce the conservativeness of the constraint.

4.3 Constraint Conscious Model Order Reduction For-

mulation

4.3.1 General Formulation

The primary focus of model order reduction is to find a reduced order model, Σr, that best

approximates an aspect of a high dimensional model, Σ. The reduction criterion is typically

captured by minimizing some norm or function involving the error between the full and

reduced order models, E (Σ,Σr). Some of the best understood results rely on parameterizing

the reduction by a “balancing transformation,” T , that places the model in some canonical

form before a truncation occurs.

However, it may be the case that the selection of T results in too conservative, or

restrictive, admissible control and/or output constraints, Ur and Yr, to be of any practical

use.

Therefore, it is proposed that a model reduction problem for constrained systems should

consider both model accuracy and constraint conservativeness. Let C denote a measure of

constraint conservativeness, and assume the following are known:

1. a model, Σ, and its constraint sets (U,X,Y);

2. a reduction technique to obtain the reduced order model, Σr;
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3. a robust control/estimation methodology, including a way to modify constraints subject

to known model errors; and

4. a measure of modeling errors between Σ and Σr.

Then the general model reduction problem for constrained systems is formulated as deter-

mining a reduced order model, Σr, and the constraint sets (Ūr, X̄r, Ȳr) that ensure the desired

performance of the robust control/estimation methodology, and solves the following problem:

min
Σr

E (Σ,Σr) + λC(U,X,Y, Ūr, X̄r, Ȳr), (4.33)

where λ is the weighting of the constraint conservativeness.

Such broad optimizations problems are not new to the field of model order reduction,

and have been used to great effect for a wide variety of problems [159, 160, 161].

4.3.2 Constraint Conservativeness Function

To select tube constraints, it is desirable to use as much of the original admissible region,

F, as possible, e.g., given the tightened constraint Fr ⊆ F, Fr = F is ideal. For analysis, this

motivates the construction of a constraint conservativeness function, C ,

Definition 4.3.1 (Constraint Conservativeness Function). Let M be a σ-algebra of measur-

able sets in Rq [162]. Given sets Fr, F ∈M, such that Fr ⊆ F, a constraint conservativeness

function satisfies the following

1. C (F,Fr) ∈ [0, 1].

2. If Fr = F, then C (F,Fr) = 0.

3. C (F,Fr) = 1 if

(a) F is unbounded and Fr is bounded.

(b) F is bounded and Fr has measure zero.

Given two measurable sets, F1 and F2, both in F, if C (F,F1) ≤ C (F,F2); then F2 is said

to be more conservative than a set F1.
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Definition 4.3.2 (Characteristic Conservativeness Function). Let M be a σ-algebra of mea-

surable sets in Rq, and assume that sets F, G ∈M. Define the characteristic conservativeness

function between two sets G and F, with G ⊆ F, to be

µF(G) = lim
δ→∞

1

|F ∩B(f̄ , δ)|

∫
B(f̄ ,r)

|1F(f)− 1G(f)|df, (4.34)

where B(f̄ , δ) is a ball of radius δ centered at a f̄ ∈ F, 1F(f) is the characteristic function

of the set F, and |F| =
∫
Rq 1F(f)df .

For this chapter, it is assumed that all the sets are compact and bounded. This yields a

simpler way to calculate µ.

Theorem 4.3.1. For G ∈M and bounded F ∈M, with G ⊆ F,

µF(G) = 1− |G|
|F|

. (4.35)

Proof. See Appendix A.3.4 for the proof.

For either high dimensional problems where the majority of the volume is contained

near the boundary, or systems where the states have vastly different scales, it may be more

appropriate to replace the characteristic function with a positive measurable function to

serve as a weighting or scaling along a dimension.

4.3.3 Reduction Formulation For Output Feedback MPC

The end goal of this chapter is to use a reduced MPC law, given by (4.26), to track

a step reference. To tailor the reduction problem to the control problem, the following

design variables are present: how to obtain the reduced order model, Σr; C , the constraint

conservativeness function; how to modify the constraints for the reduced problem; λ, the

constraint conservativeness weight; and LQ cost weightings/noise covariances.

With the MPC formulation, the selected truncation technique will be to transform by

a similarity transformation, T , and truncate using singular perturbations of Algorithm 4.1
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for Σr. For the constraint conservativeness, define

Z = (U,Projr(T
−1X),Y), (4.36a)

Zr = (Ūr, X̄r, Ȳr), (4.36b)

and select C = µZ(Zr), the characteristic conservativeness function of (4.34). The MPC

problem uses constant tube tightened MPC, and the sets are obtained as in (4.24). The RPI

sets used to define Zr are calculated using the technique of [156] with closed-loop dynamics

defined with the feedback and output injection matrices, K and L, of the reduced order

model.

The calculation of the RPI sets requires repeated computations and sums of ((Ar +

BrK)i)>wt in a “support function.” Using the notation of [156] for the constraints, fi,

ideally, f>i ((Ar+BrK)s)w = 0, for all fi and w ∈W to restrict the number of computations;

however, this is generally not possible. To limit the number of computations, instead it

is proposed to select stabilizing K and L such that ||Ar + BrK||2 and ||Ar + LCr||2 are

minimized.

Provided with transfer functions G and Gr of Σ and Σr, respectively, the tightened

constraints sets are determined by the model error between Σ and Σr from (4.24), and the

selected model reduction problem is

T ? = arg min
T ∈GLn(R)

||G−Gr||∞ + λµZ(Zr), (4.37)

where GLn(R) is the general linear group (the group of invertible matrices) [163].

Remark 4.3.1. There are a variety of other control/estimator/constraint methodologies

that may be used. E.g., the constraint tightening of Section 4.2 may be extended using the

dynamics of the truncated states, homothetic tubes [164], parametrized tubes [165], state

dependent tubes [154], etc.

In the following section, MPC and estimator weights will be selected, and different con-

servativeness weights and constraints will be used to demonstrate the efficacy of the proposed

approach.
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4.4 Single-Input, Single-Output Example

To demonstrate the efficacy of the model reduction formulation, and the dependence

upon the parameters, for the design of reduced order robust MPC law, an example problem

is presented. The example activates input, state, and output constraints Table 4.1 gives

the model, linear quadratic design parameters, constraints, and output normal constraint

parameter. Table 4.2 provides the 4 models that will be used to design the reduced robust

MPC law to control the model: the full order and three reduced order using the techniques

of [13], RBT (Chapter 3), and the proposed reduction formulation.

Table 4.1: The model, constraints, and parameters.

A =

[
−0.7352 0.2695
−0.3808 −0.1172

]
B =

[
0.1855
1.7664

]
C =

[
−0.8832 0.8832

]
D = 0

Q = 1, R = 1 Γ = 1, Λ = 1
Np = 5 λ = {1, 1000}||G−Gr||∞

−1 ≤ ut ≤ 1 −1 ≤ yt ≤ 1
−0.8832 0.8832
0.8832 −0.8832

0.707107 0.707107
−0.707107 −0.707107

xt ≤


1
1
β
β

 β = {1, 2}

Table 4.2: Models to compare MPC and Kalman filter performance.
Name Model

Full Full order model (using nominal MPC)
LBT LBT reduced order model ([13])
RBT RBT reduced order model (Chapter 3)

Proposed Proposed reduced order model

MATLAB’s fmincon is used to find a T minimizing (4.37), and all polytope set manip-

ulations are performed with the MPT toolbox [139].

λ is chosen to be either λ1 = 1||G(z) − Gr,LBT ||∞, the error between the full and LBT

reduced order model, and λ2 = 1000||G(z) − Gr,LBT ||∞. The dependence of λ on the error

provides appropriate scaling between the model error and the constraint conservativeness.
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Table 4.3 provides the modeling error, and the weighted constraint conservativeness of

the various reduced order models. Notable trends of Table 4.3: when emphasis is placed

on constraint conservativeness, the proposed technique always performs the best; and when

emphasis is placed on model accuracy, the proposed technique is the most accurate.

Table 4.3: Cost components parameterized by selected β and λ.
β = 1 β = 2

Name ||G−Gr||∞ µZ(Zr) ||G−Gr||∞ µZ(Zr)

λ1 = 1||G−Gr,LBT ||∞

LBT 0.9025 0.8863 0.9025 0.8863
RBT 0.7910 0.7231 0.7910 0.7231

Proposed 0.7548 0.6818 0.7941 0.6127

λ2 = 1000||G−Gr,LBT ||∞

LBT 0.9025 0.4738 0.9025 0.4738
RBT 0.7910 0.3817 0.7910 0.3817

Proposed 0.7865 0.3420 0.8153 0.3216

Figs. 4.1 and 4.2 provide the control response, output response, and the tightened nom-

inal constraints (dashed lines) of the full order model of Table 4.1 controlled with the com-

pensator designed from Table 4.2, for different β and λ. Fig. 4.1 shows the case where β = 1,

and a state constraint is reached limiting the input and output performance. Fig. 4.2 shows

the case when β = 2, and no state constraints are activated, but nominal input and output

constraints are.

In all cases, it is seen that:

1. nominal constraints are satisfied,

2. tracking is achieved when the conditions of Theorem 4.2.3 are satisfied, and

3. the proposed reduction technique works the best.

Figs. 4.1 and 4.2 suggest that when model accuracy is valued over conservativeness of

the constraints, the performance and conservativeness of the reduced MPC laws are very

similar. However, Figs. 4.1 and 4.2 suggest that when conservativeness of the constraints is

heavily penalized (meaning larger control/output constraint sets are desired), the proposed

methodology is far superior.
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Between Table 4.3 and Figs. 4.1 and 4.2, it is seen that trade-offs can be made between

model accuracy and the degree of the constraint conservativeness. This supports the notion

that open-loop model accuracy should not necessarily be the most important aspect of model

order reduction for constrained systems, since less accurate open-loop models may result in

better closed-loop performance and less conservative constraints.
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Figure 4.1: Output, estimated reduced state, and control response of the full order MPC to
the LBT, RBT, and proposed reduced MPC law with β = 1.
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Figure 4.2: Output, estimated reduced state, and control response of the full order MPC to
the LBT, RBT, and proposed reduced MPC law with β = 2.
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4.5 Conclusions

In this chapter, the “truncated states as noise” idea of [36] was modified and used in

the robust model predictive control (MPC) framework of [146] to yield a reduced order

output feedback MPC (ROOFMPC) law that was shown to be robustly stable, feasible, and

satisfy constraints. With standard assumptions, it was also shown that the reduced MPC

law can track step references contained within the tightened constraints. A novel reduction

problem was developed that balances the trade-off between model accuracy and constraint

conservativeness. Employing the tightening algorithm specified by the ROOFMPC law,

and residualization truncation, a solution to the novel reduction problem was proposed. A

low order problem was used to demonstrate the efficacy of the technique. The demonstrated

efficacy of the technique, even to a low order problem, shows the potential benefits of a model

order reduction formulation that simultaneously considers modeling error and constraint

conservativeness. Moreover, the results suggest that open-loop model accuracy should not

necessarily be the most important aspect of model order reduction for constrained systems.

While the proposed model reduction formulation was applied to a linear system, using a

constant tube methodology and open-loop error measure, the abstract problem formulation is

readily amenable to nonlinear systems, time varying constraints, closed-loop error measures,

and any combination in between.
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Chapter 5

Open-Loop Nonlinear Model Order

Reduction

The research effort described in this chapter was was initially motivated by the need

to apply model predictive control (MPC) for nonlinear systems. MPC is a popular control

technique, because of its simple and amenable nature to controlling constrained multi-input,

multi-output (MIMO) systems. It works by selecting inputs that optimize future trajectories

subject to a specified cost function with state and input constraints. For a linear system,

most MPC may be cast as a quadratic programming problem and effective solvers are readily

available [158]. However, for nonlinear systems, this is no longer true, and the nonlinear

optimization problem has to be solved numerically at each time step, typically incurring a

high computational cost.

While a variety of solution techniques exist for nonlinear optimization, e.g., sequential

quadratic programming (SQP) and other Newton-type algorithms [166], and more recently,

integrated pertubation analysis and SQP [167], the applicability of nonlinear MPC (NMPC)

on given computing hardware is often limited to systems with low order or slow dynamics

and abundant computational resources.

For systems with fast dynamics and limited computational resources, such as those en-

countered in automotive applications, linear MPC (LMPC) has been used in most of the

published work because real-time nonlinear optimization required for NMPC is most often

intractable for systems with even a moderate number of states (e.g., > 4) [71, 168]. For
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most nonlinear system applications, scheduling must be employed to adjust the model used

in LMPC according to different operating conditions; which drastically increases the design

and calibration complexity [6].

One possible way to make NMPC more applicable to real-time systems is to reduce

computational complexity of the prediction model. One approach to reduce complexity

is to reduce the number of states in the model through model order reduction (MOR).

Unlike MOR for linear systems, which has been well developed, methods for nonlinear MOR

(NMOR) are far less explored. While there are a number of approaches proposed in the

literature that exploit specific nonlinearities (e.g., piecewise affine nonlinear, bilinear, and

systems with a large scale linear system with a small subset of nonlinear states), the most

common approach appears to be balanced truncation with Galerkin projection [48, 169, 170].

Balanced truncation relies on transforming states so that they are in a balanced represen-

tation where the states are ordered by how much energy they transfer from input to output.

In this balanced form, states that contribute little from input to output are truncated. As a

direct extension of MOR of a linear system [13], Galerkin projection uses the controllability

and observability gramians to build a balanced representation and “insignificant” states are

truncated to derive a reduced order nonlinear system. The controllability and observability

gramians, on the other hand, can be constructed by either linearizing the system around

the design point and then calculating the gramians of the linearized model, or using empir-

ical gramians, which use properly generated trajectories/experimental data to numerically

establish the controllability and observability gramians [69, 70].

For nonlinear models, a variety of systematic open-loop nonlinear reduction techniques

exist for different purposes: reduction along a trajectory [50, 171], maintaining structure

or properties of the original model [47, 62], nonlinear frequency matching [49], nonlinear

moment matching [25, 64], global reduction of affine-input nonlinear systems [67, 172], and

balanced truncation at a fixed design point [46, 70, 72], to mention a few. For nonlinear

automotive engine models, reduced order modeling using time scale separation [173, 174]

and balanced model reduction techniques [171] have been applied to achieve different goals.

For diesel engine airpath control addressed in this chapter, the empirical gramian based

balanced truncation for NMOR is pursued because it can capture some information about the
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nonlinearity, and data needed for calculation is easily accessible/implementable. However,

several problems have been encountered in applying the empirical gramian based approach

[70] to the diesel airpath (DAP) model, these include: challenges in generating valid trajec-

tories due to input and state constraints, and difficulty in approximating the input-to-output

relationship when outputs (intake manifold pressure and exhaust gas recirculation (EGR)

rate) have different scales and different performance requirements.

To address these issues, a modified empirical gramian formulation is proposed that uses

different probe directions than those of [69], significantly simplifying the empirical gramian,

and incorporates weighting factors in gramian calculations to accommodate different control

design goals in deriving a reduced order nonlinear model for NMPC of the DAP. The applica-

tion of the proposed empirical gramian formulation to the DAP control system demonstrates

the advantage of the proposed approach.

This chapter is structured as follows: Section 5.1 covers linear system gramians and em-

pirical gramians along with their use in balanced truncation model order reduction. Section

5.2 presents the modified empirical gramian formulation. Section 5.3 applies the proposed

gramian formulation to reduce a 9 state diesel airpath model, and compares the open- and

NMPC closed-loop responses of the reduced order models obtained using the different grami-

ans and the full order model. Section 5.4 concludes with a summary of the results.

5.1 Galerkin Projection Model Order Reduction for Non-

linear Systems

As stated in Chapter 2, an alternate definition of the gramians may be obtained through

improper integrals. Consider the asymptotically stable, ordinary linear system (E = In×n)

represented by ΣL:

ΣL :

 ẋ = Ax+Bu,

y = Cx+Du,
(5.1)
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with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m. The linear controllability gramian, P ,

and observability gramian, Π, are respectively defined as:

P =

∫ ∞
0

eAτBB>eA
>τdτ, (5.2a)

Π =

∫ ∞
0

eA
>τC>CeAτdτ. (5.2b)

If ΣL is completely controllable and observable, then from (5.2), it can be shown that P

and Π satisfy the Lyapunov equations [175] of (2.5).

In [69], alternate gramian definitions to (5.2) were developed using empirically obtained

covariance matrices about a design/equilibrium point (the control and state where ẋ = 0).

Let (xe, ue) be the design/equilibrium point of a nonlinear system

Σ :

 ẋ = f(x, u),

y = h(x, u),
(5.3)

with x ∈ Rn, u ∈ Rm, and y ∈ Rp, under the following assumptions:

A5.1: the nonlinear model, (5.3), is known;

A5.2: the output and state responses of (5.3) are L2[0,∞)-integrable about an asymptoti-

cally stable equilibrium point, (xe,ue); and

A5.3: that an asymptotically stable linear representation of (5.3), (A,B,C,D), exists about

the equilibrium point.

To calculate the empirical controllability gramian using response data, a set of input

probe directions, ciTjek, are used to vary the control, uijk, where ci, Tj, and ek are selected

from the following sets:

TmC = {T1, . . . , Trc |TlT>l = Im×m, l = 1, . . . , rc}, (5.4a)

MC = {c1, . . . , csc|ci ∈ R+, i = 1, . . . , sc}, and (5.4b)

Em
C = {e1, . . . , em|standard basis in Rm}. (5.4c)
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TmC is a set of orthogonal matrices of dimension m, whose columns will define excitation

directions, ci inMC are positive perturbation sizes, and rc and sc are the number of elements

in these two sets, respectively. Each perturbation size is applied to each excitation direction

to build a set of probe directions.

Using assumptions A5.1 and A5.2, the empirical controllability gramian is calculated as

W̄C =
m∑
i=1

rc∑
j=1

sc∑
k=1

1

rcscc2
i

∫ ∞
0

Φ(τ)dτ, (5.5)

where

Φ(τ) = (xijk(τ)− xijkss )(xijk(τ)− xijkss )>. (5.6)

and xijk(t), with the initial condition x(0) = xe, is the impulse response to

uijk(t) = ciTjekδ(t) + ue, (5.7)

where δ(t) is the Dirac delta function, ue is the design point corresponding to xe, and xijkss
corresponds to the steady state with input uijk(t).

Similarly, an empirical observability gramian is defined, but now the initial condition is

perturbed and covariance matrices are built using the output. Using similar set definitions:

T nO = {T1, . . . , Tro |TlT>l = In×n, l = 1, . . . , ro}, (5.8a)

MO = {c1, . . . , cso |ck ∈ R+, k = 1, . . . , so}, and (5.8b)

En
O = {e1, . . . , en|standard basis in Rn}, (5.8c)

the empirical observability gramian is calculated as

W̄O =
ro∑
k=1

so∑
l=1

1

rosoc2
l

∫ ∞
0

TkΨ
kl(τ)T>k dτ, (5.9)

with

[Ψkl]ij(τ) = (yikl(τ)− yiklss )>(yjkl(τ)− yjklss ), (5.10)

where Ψkl ∈ Rn×n, [·]ij denotes the element in the matrix, yikl(t) is the response of the
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system with the initial condition being perturbed to

xikl(0) = ckTlei + xe, (5.11)

the input is fixed as ue, and yss is the steady state output.

Remark 5.1.1. For a linear system, one can set rc = sc = ro = so = 1 to recover P =

W̄C and Π = W̄O. Because superposition and homogeneity are applicable to solutions of

linear systems, so no extra information can be gathered by probing the system in additional

directions. However, superposition and homogeneity no longer hold for nonlinear systems,

therefore adding probe directions could result in more information and different gramians.

In [70], it was noted that nonlinear systems are not amenable to using the Dirac δ(t), and

instead empirical gramians were developed with step responses. The control perturbation

for the controllability gramian then becomes

uijk(t) = ciTjek1(t) + ue. (5.12)

With the modification of the signal used to define the controllability gramian given by

(5.12), [70] proceeds to show that for a linear system AW̄CA
> = P . Assumption A5.3 is

necessary for P to have non-zero singular values. Finally, a caution was stated that the

reader should interpret the results with care when trajectories leave the region of attraction

of an equilibrium point.

With these considerations in mind, the empirically obtained gramians may be used in

conjunction with balanced truncation to reduce the order of the nonlinear system. Instead

of a similarity transformation as used in linear model order reduction, a linear affine trans-

formation in conjunction with balanced truncation is employed [176].

Algorithm 5.1 captures how to calculate the balancing transformation, T . To yield the

truncated reduced nonlinear system, Σr, using the empirically defined balancing transforma-

tion, Algorithm 5.2 is provided with the selected reduced order, transformation, model, and

parameters.
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Algorithm 5.1 Empirical gramian defined balancing transformation.

1: procedure EmpiricalBasedBT(Σ,{TmC ,MC, E
m
C },{T nO ,MO, E

n
O}, (xe, ue), x0, r)

2: Calculate (5.5) and (5.9) for positive definite W̄C and W̄O, respectively.
3: Calculate the Cholesky factors (matrix square root factors) of W̄C = XX>, W̄O =
Y Y >.

4: Calculate the singular value decomposition (SVD) of Y >X = GMH>, where M is a
positive definite diagonal matrix and G and H are orthogonal matrices.

5: Form the balancing transformation

T = XHM−1/2. (5.13)

return T
6: end procedure

Serving as a nonlinear generalization of Algorithm 3.2, Algorithm 5.2 provides the trun-

cated nonlinear reduced order model.

Algorithm 5.2 Nonlinear MOR with a transformation T .

1: procedure Nonlinear_Truncation(T ,Σ, (xe, ue), x0, r)
2: Define submersion and immersion matrices

W =
[
Ir×r 0

]
, (5.14a)

V =

[
Ir×r

0

]
. (5.14b)

3: Define the offset from the equilibrium point xe to be

z = (I −T VWT −1)xe. (5.15)

4: Truncate the nonlinear model for Σr:

Σr :


ẋr = WT −1f(T V xr + z, u),
yr = h(T V xr + z, u),

xr(0) = WT −1x0.
(5.16)

return Σr

5: end procedure

The reduced state of Algorithm 5.2 can be immersed into the higher dimensional state

using the linear affine transformation

x̃ = T V xr + z, (5.17)
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and with a properly selected T , it is expected that x̃ ≈ x in some neighborhood of the

design point xe.

Another common approach to obtain a nonlinear reduced order model is to linearize

(5.3), calculate the linear gramians P and Π of (5.2), replace the empirical gramians with

the linear gramians in Algorithm 5.1 to obtain a T , and use Algorithm 5.2 for the reduced

order model. Both approaches will be used in Section 5.3.

Remark 5.1.2. While Algorithm 5.1 leads to a reduced order model, it may not always result

in a reduced complexity model as the reduced states still are evaluated using the nonlinear

function, f , of the full order model, and a simplified representation may not exist [176].

Techniques such as Discrete Empirical Interpolation exist to decrease the cost of nonlinear

function evaluation [177, 178].

5.2 Modified Empirical Gramian Formulations

The empirical gramians of [70], defined by (5.5) and (5.9), have potential drawbacks:

1. calculating an empirical gramian requires computing all combinations of elements from

the T (excitation directions), M (perturbation sizes), and E (selection) sets;

2. for systems with constraints, the combinations of ciTjek (the probe directions) may

result in constraint violation in some directions; and

3. when outputs have different scales, more weighting could inadvertently be put on the

larger output.

To elaborate on the first two points, consider a simple example with MC = {c1, c2, c3, c4}.

Empirical gramians are generated using probe directions along the surface of spheres (dic-

tated by the choice of orthogonal Tl matrices shown in Fig. 5.1(a)). Consider the probe

directions about ue, where the input is constrained by the solid box. In this case c3T1e1 and

c4T1e1 lie outside the constraint. There are two immediate ways to address this: one is to

constrain the input in the direction T1e1 so that c2T1e1, c3T1e1, and c4T1e1 all result in the

same probing signal. Another is to eliminate the ci’s from the set if any ciTjek violates the
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input constraints. Both cases will result in either additional weights being placed in certain

probe directions or reduced information being gathered.

(a) W̄ , probe directions for the empirical grami-
ans of [69, 70].

(b) W , probe directions of the proposed modi-
fied empirical gramian formulation of (5.22) and
(5.28).

Figure 5.1: Depictions of the probe directions in the empirical gramians experiments.

To address the potential drawbacks, new formulations of the empirical gramians are

proposed that combine the T -, M -, and E- sets to probe with different amplitudes along

directions, as in Fig. 5.1(b), so that input and state constraints can be easily accommodated,

particularly for the case when the associated constraints have different magnitudes.

For the new weighted controllability gramian formulation, sets of orthogonal vectors, vil,

are selected to form a matrix V C
l , using the positive definite weighting R.

V C
l =

[
v1l · · · vml

]
∈ Rm×m, (5.18)

where

ṽ>il ṽjl = ||ṽil||2δij, (5.19a)

R = ElE
>
l , (5.19b)

vil = Elṽil, (5.19c)
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with δij denoting the Kronecker delta, defined as:

δij =

 1 if i = j,

0 otherwise,
(5.20)

and El being the Cholesky factor (or matrix square root factor) of R. The matrices, V C
l ,

form the set

V m
C = {V C

1 , . . . , V
C
rc},

with vi1j1 6= vi2j2 unless i1 = i2 and j1 = j2.

Definition 5.2.1. Let vij be defined as above, define the control probe directions to be

uij(t) = vij1(t) + ue, (5.21)

xij(t) to be the solution of Σ subject to uij as the input, xe as the initial condition, and xijss
be to steady-state of Σ to uij. The modified empirical controllability covariance matrix is

WC =
m∑
i=1

rc∑
j=1

1

rc||ṽij||2

∫ ∞
0

Φij(t)dt, (5.22)

with

Φij(t) = (xij(t)− xijss)(xij(t)− xijss)>. (5.23)

Theorem 5.2.1. For a completely controllable, asymptotically stable linear system, ΣL,

AWCA
> = P̂ , where P̂ is the weighted linear controllability gramian that solves

AP̂ + P̂A> +BRB> = 0. (5.24)

Proof. See Appendix A.4.1 for the proof.

Similarly, the observability gramian requires orthogonal vectors, wil, in Wl,

V O
l =

[
w1l · · · wnl

]
∈ Rn×n (5.25)
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with

w>ilwjl = ||wil||2δij. (5.26)

The set of initial condition probe directions then becomes

V n
O = {V O

1 , . . . , V
O
ro},

and wiij1 6= wi2j2 unless i1 = i2 and j1 = j2.

Definition 5.2.2. Let wij be defined as above, define the initial condition probe direction of

Σ to be

xal(0) = wal + xe, (5.27)

and yalss to be the corresponding steady state output. The empirical observability gramian then

becomes

WO =
ro∑
l=1

1

ro
V O
l

[∫ ∞
0

Λ−1
l Ψl(t)Λ

−1
l dt

]
(V O

l )>, (5.28)

where

Λl = diag(||w1l||22, . . . , ||wnl||22), (5.29)

and

[Ψl(t)]ab = (yal(t)− yalss)>Q(ybl(t)− yblss). (5.30)

Remark 5.2.1. While one most often has seen the gramian with Q = Ip×p, non-identity Q

generalizes the result and allows for different emphasis to be placed on the outputs.

Theorem 5.2.2. For a completely observable, asymptotically stable linear system, WO = Π̂,

where Π̂ is the weighted linear observability gramian satisfying

AΠ̂ + Π̂A> + C>QC = 0. (5.31)

Proof. See Appendix A.4.2 for the proof.

To obtain the reduced order model using the modified empirical gramian formulation,WC

and WO are substituted for W̄C and W̄O in Algorithm 5.1 to calculate a T , and Algorithm

5.2 is used to truncate the nonlinear model.
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Some important points to note:

1. The proposed formulation of the empirical gramians eliminates using the combination

of each excitation direction with each perturbation size. If properly selected, this can

reduce the number of experiments required to form an empirical gramian.

2. Assuming R = Im×m and Q = Ip×p, when V m
C is equal to the combination of all possible

TmC and MC, and V n
O is equal to the combination of all possible T nO and MO of [70],

(5.22) and (5.28) are equivalent to the empirical gramians of (5.5) and (5.9). Therefore,

the gramians of [70] are special cases of the proposed formulations.

3. One still should interpret the results of an empirical gramian with care when trajecto-

ries leave the region of attraction of an equilibrium point.

4. Empirical gramians, and the modified framework, can be generalized to discrete time

systems by using sums instead of integrals, like in [179].

Remark 5.2.2. There also exist an efficient solver for empirical gramians, cross gramians,

and sensitivity gramians [180].

In the following section, the linear, empirical, and modified emperical gramians will be

used to define a balancing transformation for NMOR. Their performance will be evaluated

in open-loop matching, and closed-loop NMPC tracking of intake pressure and EGR rate.

5.3 Nonlinear Model Order Reduction and MPC for a 9

State Diesel Airpath System

In contrast to Chapter 3, a 9 state diesel airpath model is used in this section. The main

objective remains the same, and that is to deliver air to meet drivers’ demands, and at the

same time provide desired EGR rate to meet emission control requirements.

5.3.1 Model

Fig. 5.2 provides an illustration of the 9 state DAP system. The DAP model under

consideration has two control inputs, nine states, and two outputs. The inputs are the
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variable geometry turbine (VGT), uV GT , and the EGR valve, uEGR. uV GT is a linear actuator

that changes the vane angle to dictate the speed of the turbine, and hence of the compressor,

to regulate the airflow into the intake manifold. uEGR changes the valve opening to control

the flow from the exhaust manifold to the intake manifold for effective NOx treatment. In

this model, throttle percent closed (θ), engine speed (N), and fuel flow (Wfuel) are treated

as known disturbances.

Prethrottle
Manifold Intake Manifold

Exhaust Manifold

Variable Geometry
Turbine (VGT)

Throttle EGR Valve

Air

EGR Cooler

Fuel Rail and InjectorsIntercooler

Pressure Sensor

Air Flow
Sensor

Compressor

Post Turbine
   Exhaust

Figure 5.2: 9 state diesel engine airpath diagram. The symbols inside the parentheses
indicate the state variables associated with the process.

The derivation of the DAP model for control has been discussed in [136]. The dynamical

equations for the engine components are derived through applications of the ideal gas law,

conservation of mass, and conservation of energy (Table 3.7 provides a summary). The

equation for the turbine speed is a result from conservation of energy. The DAP model used

in this chapter is different from that used in Chapter 3: the burn gas fractions are removed,

pre-throttle air density is added, and two filter states are added for estimation of post-

turbine exhaust pressure, pex,f , and the EGR flow from exhaust Wex,in,f . The six remaining

states present in this model are: pressures, p, and densities, ρ, in the intake manifold, the
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pre-throttle volume, and the exhaust manifold; and the VGT rotational speed, ω.

The equations of the 9th order DAP model are summarized here for easy reference:

ṗpre = γR
Wc,inTc −Wthr,inTpre

Vpre
(5.32a)

ρ̇pre =
Wc,in −Wthr,in

Vpre
(5.32b)

ṗin =
γR

Vin
(Wc,inTc,in + Wex,inTex −Win,engTin −Win,exTin −

Q̇in

cp
), (5.32c)

ρ̇in =
1

Vin
(Wc,in + Win,ex + Win,eng), (5.32d)

ṗex =
γR

Vex
(Weng,exTeng,ex −Wex,turTex −Wex,inTex + Win,exTin −

Q̇ex

cp
), (5.32e)

ρ̇ex =
1

Vex
(Weng,ex −Wex,tur −Wex,in + Win,ex), (5.32f)

ω̇ =
302cp
π2Itcω

(ηWex,tur(Tex − Ttur)−Wc,in(Tc,in − Tamb)), (5.32g)

ṗex,f = f1pex,f + f2pex, (5.32h)

Ẇex,in,f = f3Wex,in,f + f4Wstat, (5.32i)

where Wstat is the static EGR valve flow. f• are the filter coefficients, and Table 3.6 gives

definitions of the remaining variables and subscripts.

The outputs of the system are selected as intake pressure, pin, and the fractional rate of

EGR, or EGR rate, entering the intake manifold. EGR rate is defined as

φEGR =
Wex,in,f

Wex,in,f + Win,eng

, (5.33)

and the outputs will be ordered as

y = [pin φEGR]>. (5.34)

In the following subsections, nonlinear model order reduction will be attempted to derive

a lower order model to facilitate NMPC design. In the process, the nonlinear model (5.32)

will be used as a virtual engine test bench that generates data for the gramian calculation.
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5.3.2 DAP Nonlinear Model Order Reduction

Nonlinear model order reduction is attempted for the DAP model (5.32), using the pro-

posed empirical gramian formulation. Nonlinear MPC is then designed using the reduced

order model and evaluated with the full order model as the plant.

To compare the results with other model reduction approaches, two other reduced order

nonlinear models are derived as summarized in Table 5.1. Moreover, NMPC using the full

order model for prediction is also included.

Table 5.1: Gramians and the parameters used to calculate a balancing transformation.
Model Description Parameters
LG 4th order nonlinear model derived

from Algorithm 5.1 with the lin-
ear gramians, (5.2a) and weighted
observability gramian.

(xe, ue), Q = diag(1, 100)

EG Trad 4th order nonlinear model derived
with Algorithm 5.1 with the em-
pirical gramians of [70].

(xe, ue), T 2
C = I2×2, T 9

O = I9×9,
MC = {2.5, 7}, MC = {1}.

EG Mod 4th order nonlinear model derived
with Algorithm 5.1 and the mod-
ified empirical gramians (5.22)
and (5.28).

(xe, ue), Q = diag(1, 100), R =
I2×2, vil = 0.1|ui|ei, wjl =
0.1|xj|ej

For the EG Trad model, the parameters chosen result in 4 control and 9 initial condition

probe directions; for the control directions, 10% perturbations were selected, but the initial

condition perturbation size was limited to 1 due to physical definition and limitation of the

variables associated with densities. However, the EG Mod model requires only 2 control and

9 initial condition probe directions but spans 10% perturbations in each input/state.

The operating condition selected for design was N = 167 rad/s, Wfuel = 1.33 g/s,

θ = 6% closed, uV GT = 70% closed, uEGR = 25% open, and represents a nominal operating

condition. The resulting steady state used for the design, xe, is calculated by simulating

the model until the norm of the derivative is less than 1 × 10−8. For the LG and EG Mod

gramians, the output weight, Q = diag(1, 100), was chosen to reflect the desire for greater

EGR rate accuracy.
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5.3.3 Open-Loop Results

The output response of the three 4th order models given in Table 5.1 were tested to

evaluate the model reduction performance and compare with the full order model in open-

loop. The input sequence was designed to excite several operating regimes of the model.

Fig. 5.3 provides the output responses of pin (Fig. 5.3(a)) and φEGR (Fig. 5.3(b)) to the

control inputs of Fig. 5.3(c). Fig. 5.3(a) and 5.3(b) show that over even moderate deviations

of the inputs, the nonlinear reduced order models derived using linearized model gramian

(LG) and empirical gramian of [70] (EG Trad) are unstable. However, “EG Mod,” the model

derived with the modified empirical gramian proposed in this chapter, remains stable and

performs considerably better with a maximum error of 5 kPa in intake pressure, and 9%

EGR rate over the input sequence compared to the full order.

In [70] it is stated that for the empirical gramian, perturbing only once in each direction

leads to insufficient information for the gramians. Given the simulation results of Fig. 5.3,

even with two perturbations along each excitation direction, the EG Trad does not result in

viable reduced order model. However, EG Mod used only a single probe direction in each

input/state to derive a viable reduced order model. This suggests the modified empirical

gramian could have another advantage of requiring fewer tests if experimental data is used

for calculation.

5.3.4 MPC Applied to the DAP

To use the NMPC framework, the reduced order DAP models of Table 5.1 were dis-

cretized with a sampling time of 1 ms using the forward Euler scheme. Due to non-minimum

phase behavior, a longer prediction horizon is necessary [181], in this example the prediction

horizon, Np = 1000, or a 1 second horizon; however, a longer prediction horizon increases

the number of decision variables and hence the complexity of the controller.

To bring the controller into the realm of computational feasibility for a simulation, input-

velocity - input move blocking MPC is employed to reduce the number of decision variables

[182]. Input velocity MPC uses control deltas, ∆ui = ui−ui−1, and error between the output,

yi, and the reference, ȳt,∞. This contrasts conventional and rate-based MPC of Chapter 3.3,
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Figure 5.3: Open-loop response comparison of the full order model and the 4th order models
derived using different gramians subject to inputs that excite different operating conditions.
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because no terminal penalty exists and no state augmentation is necessary. Move blocking

MPC solves for control inputs at different intervals, and is given by the following optimization

problem:

min
{∆ûi}i∈B

t+Np∑
i=t

(yi − ȳt,∞)>Q(yi − ȳt,∞) + ∆u>i R∆ui,

s.t. Eq. (5.3),

ui ∈ U

ui = ui−1 + ∆ui,

∆ui = ∆ûi, if i ∈ B,

∆ui = 0, if i /∈ B,



(5.35)

where U denote the input constraints, B = {t, t+ t1, . . . , t+ tk}, and tj denotes times when

the control is allowed to change. For the examples presented, tj = 32j was selected, bringing

the number of decision variables from 2000 to 64.

For the simulations, the cost function weightings were selected as Q = diag([1 100]) and

R = I2×2, the same as the Q and R used for empirical gramian design, to reflect a design

that places more emphasis on the EGR rate.

Fig. 5.4 presents the results of the NMPC tracking step references using four different

models for design: full order, LG, EG Trad, and EG Mod. The results show

• All the controllers stabilize the system, but performance is vastly different.

• In Fig. 5.4(a) and 5.4(b), the EG Mod reduced order model results in the smallest

errors, when compared to the full order response.

• In Fig. 5.4(c) and 5.4(d), the EG Mod controls are the closest match to the optimal

controls generated using the full order model.

Table 5.2 contains the total time required to calculate the control for the simulation

on an Intel i5-2430M processor with MATLAB’s fmincon solver. While the present NMPC

controller is not real-time feasible, it demonstrates that the model order reduction results in

about a 20% decrease in computation time for the DAP model.
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Figure 5.4: NMPC tracking responses. The modified empirical gramian-based reduced order
model results in similar output and control responses.
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Table 5.2: Total NMPC calculation times over 10 second simulation for different models.
Model Full LG EG Trad EG Mod
Time [s] 2697.4 2098.7 2052.8 2151.7

5.4 Conclusions

In this chapter, modified definitions of the empirical gramians were presented. The

modified empirical gramians allows one to select the probing input signals with different

amplitudes and directions, therefore making it easier to address the case of constraints on the

input and state. Further, output weighted gramians were employed to show the improvement

in open- and closed-loop accuracy to a goal oriented model order reduction. Open-loop and

closed-loop NMPC simulations were provided, demonstrating that the reduced order model

derived using the modified empirical gramian resulted in superior performance to both a

reduced order model derived with a linear gramian and the empirical gramian of [70]. Finally,

the reduced order models demonstrated a decrease in control calculation time.
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Chapter 6

Closed-Loop Nonlinear Model Order

Reduction

The work presented in this chapter considers closed-loop model order reduction for non-

linear systems from the perspective of closed-loop performance matching, assuming that

linear quadratic (LQ) optimal control and estimation (separately designed) are employed.

This design framework captures many well known compensation techniques, e.g., LQG,

MPC/moving horizon estimator (MHE), and finite horizon LQR/Kalman filter.

LQ methods for linear systems depend on the solutions of an algebraic, differential/dif-

ference, or operator Riccati equations [107, 183] (occasionally called closed-loop gramians in

the algebraic case [184]). These Riccati solutions provide information about subspaces that

are easy to control and estimate relative to an LQ cost. For the purpose of reduction, easy

to control and estimate states are unimportant to compensator design and can be truncated

[3]. For nonlinear systems, however, the general Hamilton-Jacobi-Bellman equation must be

solved [175], and the concept of a Riccati solution breaks down for model reduction. Affine

input nonlinear systems have the notion of past and future energy functions and a excellent

theoretical foundation [60, 61, 185], however, the practical use remains a challenge because of

the global existence and non-uniqueness of continuous functions that solve nonlinear partial

differential equations [66, 186]. Therefore, it is proposed to use an empirical approach to

calculate control and filter Riccati covariance matrices using controlled inputs/outputs and

state estimation information.
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Combining the results of Chapter 3 and 5, the notion of linear quadratic balanced trun-

cation, and closed-loop gramian balanced truncation, is extended to nonlinear systems using

empirically obtained Riccati covariance matrices. Balanced truncation using the covariance

matrices is leveraged to provide a control specific reduced order model and the efficacy of

the proposed approach is demonstrated with a spatially discretized catalytic rod example.

The chapter is organized as follows: in Section 6.1 a brief overview of MOR is provided

and the goal of closed-loop model order reduction is discussed. In Section 6.2 the empirical

Riccati covariance matrices are defined and a reduction procedure is provided to derive a

nonlinear reduced order model for LQ compensator design. Section 6.3 provides an example

to demonstrate the utility of the proposed approach, a spatially discretized model of a cat-

alytic rod is controlled with an MPC/extended Kalman filter (EKF) compensator designed

with the proposed reduction technique, and compared against the full order compensator and

compensators derived with other common gramian and Riccati-based reduced order models.

Finally, the chapter is recapped in Section 6.4 and an open problem stated.

6.1 Reduced Control and Estimator Problem

Inspired by the closed-loop model order reduction results for linear systems of Chapter

3, systematic approaches to perform model order reduction for nonlinear systems that focus

on closed-loop performance are sought. To state the model order reduction problem for

nonlinear compensator design, assume a model for the system, Σ, under feedback control

u = c(x), is in the general ordinary differential equation form:

Σ :


ẋ = f(x, u),

y = h(x, u),

u = c(x),

(6.1)

where the state x ∈ X ⊂ Rn, input u ∈ U ⊂ Rm, and output y ∈ Y ⊂ Rp are constrained

with sets (X,U,Y). (6.1) has an equilibrium (xe, ue, ye). Moreover, assume an estimator
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model of the same dimension is known:

Σ̂ :


˙̂x = f̂(x̂, u, y),

ŷ = h(x̂, u),

x̂0 = xe.

(6.2)

Assuming that the controller and estimator are designed independent of one another

using LQ design methodologies, the work presented here pursues a reduced order model for

controller design, with closed-loop performance that matches that of the full order controller

while the computational complexity is substantially reduced.

6.2 Empirical Riccati Covariance Matrices and the Re-

duced Order Model

In [46], the authors use minimum energy control and the output energy of the free response

of a linear system and the relationship to the linear controllability and observability gramians,

respectively, to motivate the definitions of an empirical gramian. The same approach is

taken here to define the Riccati covariance matrices, but instead the LQ regulator (LQR)

and LQ estimation (LQE) problem will be related to the control and filter Riccati solutions,

respectively.

The following assumptions are made to ensure the existence and boundedness of the

covariance matrices presented in the following subsections:

A6.1: u = c(x) is an asymptotically stabilizing controller,

A6.2: u− ue is L2[0,∞)-integrable,

A6.3: the resulting output, y(t)− ye, of a system subject to c(x) is L2[0,∞)-integrable,

A6.4: the estimated state converges asymptotically to x̂ss, and

A6.5: x̂− x̂ss is L2[0,∞)-integrable.
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In general, the separation principle does not hold for nonlinear systems. This makes it

necessary to also assume that the compensator (u = c(x̂)) asymptotically stabilizes both Σ

and Σ̂.

6.2.1 Empirical Control Riccati Covariance Matrix

To motivate the empirical Riccati covariance matrix for nonlinear systems, we start with

the formulation for linear systems. Given a linear system, ΣL, LQ weights Q and R with a

cross term S, and an asymptotically stabilizing controller u = −Kx, the control cost function

is defined as

JL(x0, K) =

∫ ∞
0

y>(t)Qy(t) + 2y>(t)Su(t) + u>(t)Ru(t)dt, (6.3)

= x>0 P̄ x0 <∞,

where P̄ is a symmetric positive definite matrix known as the closed-loop control gramian,

and is dependent upon K. In a special case when K is the LQR gain, P̄ is the solution to

the control Riccati equation.

For a simpler exposition, assume S = 0 and there is no direct feedthrough, D = 0, then

JL can be separated into control and output cost components:

x>0 P̄ux0 =

∫ ∞
0

u>(t)Ru(t)dt, (6.4a)

x>0 P̄yx0 =

∫ ∞
0

x>(t)C>QCx(t)dt, (6.4b)

where P̄u and P̄y satisfy the Lyapunov equations

(A−BK)>P̄u + P̄u(A−BK) = −K>RK, (6.5a)

(A−BK)>P̄y + P̄y(A−BK) = −C>QC, (6.5b)

then P̄ can be calculated from algebraic Lyapunov equations

P̄ = P̄u + P̄y. (6.6)
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P̄u in (6.5a) can be easily established by recognizing

P̄u =

∫ ∞
0

e(A−BK)>tK>RKe(A−BK)tdt,

(A−BK)>P̄u + P̄u(A−BK) =

∫ ∞
0

d

dt

{
e(A−BK)>tK>RKe(A−BK)t

}
dt,

= −K>RK.

Likewise the equation for P̄y in (6.5a) can be established.

Moreover, the quantities P̄u, P̄y, and P̄ can be obtained experimentally by calculating

covariances of the output, y, and input, u, responses to different initial conditions. To

perform the calculation, experiments are built that perturb the initial condition about the

equilibrium, xe, as follows:

Select the probe directions to be orthogonal vectors, wil ∈ Rn, such that

w>ilwjl = ||wil||2δij, (6.7)

wil + xe ∈ X (6.8)

where δij denotes the Kronecker delta, defined as:

δij =

 1 if i = j,

0 otherwise,
(6.9)

with i = 1, . . . , n, l = 1, . . . , ro and ro denotes the number of experimental sets, and wi1j1 6=

wi2j2 unless i1 = i2 and j1 = j2. Define the matrix V O
l as

V O
l =

[
w1l · · · wnl

]
∈ Rn×n. (6.10)

Definition 6.2.1. Let xil(0) = wil + xe, xil, uil, and yil be the corresponding responses of

(6.1); then with assumptions A6.1-A6.3, the empirical control Riccati covariance matrix is

finite and defined as

P =
1

ro

ro∑
l=1

∫ ∞
0

V O
l Ω−1

l Ψl(t)Ω
−1
l (V O

l )>dt (6.11)
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where

[Ψl(t)]ij =

yil − yilss
uil − uilss

>  Q S

S> R

yjl − yjlss
ujl − ujlss

 , (6.12)

Ωl = diag(||w1l||2, . . . , ||wnl||2), (6.13)

and yss and uss are the steady state output and control.

The relation between the empirically defined matrix P of (6.11) and algebraic Riccati

solution is established by the following theorem:

Theorem 6.2.1. With S = 0 and D = 0, if Σ is linear, minimal, and stabilized by a feedback

gain K, then P = P̄ satisfies the closed-loop Lyapunov equation

(A−BK)>P + P (A−BK) = −C>QC −K>RK. (6.14)

If K is selected as the optimal LQ gain, K = R−1B>P , then P satisfies the algebraic

Riccati equation (ARE)

A>P + PA+ C>QC − PBR−1B>P = 0. (6.15)

Proof. See Appendix A.5.1 for the proof.

6.2.2 Empirical Filter Riccati Covariance Matrix

The dual to the control problem is that of estimation. It is common to formulate the

estimation problem with the dual system Σ∗L = (−A>,−C>, B>, D>), with weights Γ and Λ

and a cross term N . If L is a stabilizing estimator of Σ∗L, the estimation cost function is

J∗L(x∗0, L) =

∫ 0

−∞
y∗>(t)Γy∗(t) + 2y∗>(t)Nu∗(t) + u∗>(t)Λu∗(t)dt, (6.16)

= x∗>0 Π−1x∗0,

and with N = 0 and D = 0,

Π = Πu∗ + Πy∗ , (6.17)
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which are defined analogously to (6.4a). Π is a symmetric positive definite matrix known as

the closed-loop observability gramian (in a special case when L is the LQE gain, Π is the

filter Riccati solution). This formulation, however, presents two conceptual problems: how

to measure the dual states and how to go forward in time? To make the problem tractable,

the LQE formulation is used:

min
x̂

E[(x̂− x)>(x̂− x)|y], (6.18)

subject to linear dynamics ΣL, and additive zero mean Gaussian noises on the input (v) and

output (w) with covariances,

E[v(t)v>(t)] = Γ,

E[w(t)w>(t)] = Λ,

E[w(t)v>(t)] = N,

where E denotes the expectation. Using the LQE formulation, an algebraic Riccati equation

arises, and its solution is Π [107, Chapter 7].

Similar to the empirical control Riccati covariance matrix, Π can be calculated through

estimator responses to control and output experiments.

Select the probe directions to be orthogonal vectors ṽil ∈ Rm+p, such that

(ṽil)
>ṽjl = ||ṽil||2δij, (6.19a)

ElE
>
l =

 Γ −N

−N> Λ

 , (6.19b)

vil = Elṽil, (6.19c)uil
yil

 = vil +

ue
ye

 , (6.19d)

with i = 1, . . . ,m + p, l = 1, . . . , rc, where rc denotes the number of experimental sets, and

ṽi1j1 6= ṽi2j2 unless i1 = i2 and j1 = j2.

Definition 6.2.2. Select ṽil such that [Im×m 0m×p]vil+ue ∈ U, [0p×m Ip×p]vil+ye ∈ Y, where

I and 0 are identity and zero matrices of specified dimension. Then with assumptions A6.4
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and A6.5, the empirical filter Riccati covariance matrix is finite and defined to be:

Π̃ =

m+p∑
i=1

rc∑
l=1

1

rc||ṽil||2

∫ ∞
0

Φil(t)dt, (6.20)

where

Φil(t) =
(
x̂il(t)− x̂ilss

) (
x̂il(t)− x̂ilss

)>
, (6.21)

and x̂il(t) (x̂ilss) is the solution (steady state) of (6.2) with the perturbed control and output.

The relation between the empirically defined matrix Π̃ of (6.20) and algebraic Riccati

solution is established by the following theorem:

Theorem 6.2.2. With N = 0 and D = 0, if Σ̂ is linear, minimal, and stabilized with

estimation gain L, let

Π = (A− LC)Π̃(A− LC)>, (6.22)

then Π satisfies the closed-loop Lyapunov equation

(A− LC)Π + Π(A− LC)> = −BΓB> − LΛL>. (6.23)

If L is selected as the optimal LQ gain, L = ΠC>Λ−1, then Π satisfies the algebraic

Riccati equation

AΠ + ΠA> +BΓB> − ΠC>Λ−1CΠ = 0. (6.24)

Proof. See Appendix A.5.2 for the proof.

Remark 6.2.1. Theorem 6.2.1 and 6.2.2 hold true when the cross term in the cost function

(6.3) and/or (6.16) is not zero (S 6= 0, N 6= 0), and/or when direct feedthrough is present

(D 6= 0). This is achieved by adding cross term Lyapunov equations,

(A−BK)>P̄c + P̄c(A−BK) = C>SK +K>S>C,

(A− LC)>Π̄c∗ + Π̄c∗(A− LC) = BNL> + LN>B>
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so that
P̄ = P̄u + P̄y + P̄c,

Π̄ = Π̄u∗ + Π̄y∗ + Π̄c∗ ,

and modifying the LQ problem and optimal gain, respectively.

Just as for the empirical controllability/observability covariance matrices: care must be

taken to assure that the state will stay within the domain of attraction of the controller

c(x) and estimator, and the empirical Riccati covariance matrices are dependent upon the

selection of the probe directions wil and ṽil.

While the equivalence of the empirical Riccati solution is established for linear systems,

the calculation of P and Π̃ in the form of (6.11) and (6.20), respectively, is extended for

nonlinear systems whose Riccati-like quantities cannot be analytically derived, and this forms

the key idea of the proposed reduction method.

Remark 6.2.2. Empirical Riccati covariance matrices can be defined for discrete time sys-

tems by using sums instead of integrals. Because the empirical gramian framework was used,

small modifications can be made to software such as [180] for rapid implementation.

6.2.3 Model Order Reduction Algorithm

The measure of how easy it is to control and estimate a subspace, and hence its contri-

bution to an LQ cost, is given by the empirical Riccati singular values (ERSVs) and follows

that of [3].

Definition 6.2.3 (Empirical Riccati Singular Values). Given the covariance matrices P , Π̃

from (6.11), (6.20), respectively, the ERSVs are defined as µj =
√
λj(P Π̃). λj(·) denotes

the eigenvalues of the matrix ordered from the largest to the smallest.

A small ERSV corresponds to a subspace that is easy to control and estimate, thereby

having little impact on the cost and not important for compensator design. To select the

order r of the reduced order model, one often chooses r such that µr � µr+1.

The notion of an internally balanced representation is employed for model order reduction:
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Definition 6.2.4 (Empirical Riccati Balanced). Σ is said to be internally balanced when

P = Π̃ = M . M = diag(µ1, . . . , µn) with µ1 ≥ µ2 ≥ . . . ≥ µn, where n is the order of the

system.

To derive the reduced order model of order r, the model is transformed to an internally

balanced representation and the n− r last states are truncated. The balancing transforma-

tion, T , is given by Algorithm 6.1. T , the reduced order, the model and parameters are

provided to Algorithm 5.2 to yield a reduced order model for compensator design.

Algorithm 6.1 NMOR using empirical Riccati balanced truncation.

1: procedure Empirical_RBT(P, Π̃, f, h, (xe, ue), x0, r)
2: Calculate (6.11) and (6.20) for positive definite empirical Riccati covariance matrices
P and Π̃, respectively.

3: Calculate the Cholesky factors of P = XX>, Π̃ = Y Y >.
4: Calculate the singular value decomposition (SVD) of Y >X = GMH>, where M is a

positive definite diagonal matrix and G and H are orthogonal matrices.
5: Form the balancing transformation

T = M1/2G>Y −1. (6.25)

return T
6: end procedure

In [70], it is noted that for a linear system, the difference between a controllability gramian

and the controllability covariance matrix, WC , is the contragredient transformation ofWC by

A (for the filter Riccati covariance matrix, this is Π̃ and A− LC). For the purposes of step

tracking, covariance matrix based reduction is expected to yield a better reduction because

it uses a step input, not an impulse input like in the case of the gramian. Likewise, it is

expected that the filter Riccati covariance matrix will yield a better reduced order model for

compensator design when compared to the filter Riccati solution.

Remark 6.2.3. This reduction technique provides a generalization to the work in [30], not

only to the case of cross-term weight, but to nonlinear systems.

Remark 6.2.4. Beside the different balancing transformation, there are two key differences

between the proposed approach and empirical gramians. One is the inclusion of feedback
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control in the empirical observability gramian framework to calculate the empirical control

Riccati covariance matrix. The other is the use of estimator dynamics to calculate the em-

pirical filter Riccati covariance matrix, whereas the original system dynamics are used in

calculating the empirical controllability gramian.

6.3 Empirical Riccati MOR Applied to a Catalytic Rod

6.3.1 Catalytic Rod Model and Discretizations

An exothermic catalytic rod with reaction rate independent of the concentration is a thin

rod in a reactor that transforms a chemical species A to species B inside the rod. The 1-D,

non-dimensional model of the temperature distribution along the catalytic rod with constant

temperature at the endpoints, and is given by

∂x

∂t
=
∂2x

∂z2
− βT e−γ + βT e

− γ
1+x + βU(b(z)u− x) (6.26)

subject to boundary conditions x(0, t) = 0, x(π, t) = 0 and initial condition x(z, 0) = x0(z).

βT is the dimensionless heat of reaction, βU is the dimensionless heat transfer coefficient, γ is

the dimensionless activation energy, x(z, t) is the dimensionless temperature along the rod,

z denotes the position along the rod from the entrance of species A to the exit of species B,

and u is the dimensionless temperature of the surrounding cooling medium. Typical values

for the model are βT = 50, βU = 2, and γ = 4. Greater details of the catalytic rod model

can be found in [187, Section 4.3].

Given these parameters, a non-zero initial condition will evolve into a stable steady state,

denoted xe(z), with an undesirable “hot-spot” in the center of the rod. Using the knowledge

that a hot-spot occurs in the center, a distributed measurement, y(t), along the rod of length

π is taken with emphasis placed at the center,

y(t) =
1

0.1π
√

2π

∫ π

0

e−
(z−π2 )2

0.02π2 x(z, t)dz, (6.27)
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and the cooling medium enters from the endpoints, providing the input distribution:

b(z) =
1

π
(cos(z) + 1). (6.28)

The control objective, therefore, is to optimally regulate the dimensionless temperature

to zero using output feedback subject to constraints on the control and state. The con-

trol objective, nonlinearity, and constraints, naturally lead to the use of model predictive

control (MPC) with an extended Kalman filter (EKF) for state estimation. While MPC

is intuitive for constrained optimal control problems, it is computationally expensive. To

reduce complexity, and thereby the computational cost, the model will be spatially dis-

cretized into a system of ordinary differential equations (ODEs) using the method of lines

with a uniform gridding of z into N + 2 states (zj = j∆z, j ∈ 0, 1, . . . , N + 1), resulting

in dx(zj ,t)
dt

= fj(x(zj, t), u(t)) and y(t) =
∑

j Cjx(zj, t). The ODEs will be reduced using

four different techniques, the reduced models will be temporally (time) discretized with a

forward Euler scheme to xt+1(zj) = xt(z
j) + ∆tfj(xt(z

j), ut) and yt = C xt, and the resulting

discrete time reduced order models will be used for compensator design. The discrete time

compensator is then applied to the continuous time, spatially discretized model.

6.3.2 MPC/Extended Kalman Filter Compensator Formulation

The optimal control problem to regulate the dimensionless temperature x to zero using

output feedback is captured with the LQ cost:

J = x>t+NpPdxt+Np +

t+Np−1∑
i=t

(C xi)
>QdC xi +Rdu

2
i , (6.29)

where xt = x̂t, the vector of states estimated by the EKF, xi, i ∈ {t + 1, t + Np} are

predicted using xt+1(zj), Np is the prediction horizon, Pd is the solution to the linear discrete

control algebraic Riccati equation associated with the discretized Qd and Rd weights, C ,

[B]j = ∆tβUb(z
j), and the linearization [Ad]ji = ∂xt+1(zj)

∂xit
|(xe(z),u=0):

Pd = A>d PdAd + C >QdC − (AdPdB)>(Rd + B>PdB)−1(AdPdB). (6.30)
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This cost is selected because in a small neighborhood of the equilibrium, where no con-

straints are active, this approximately becomes a linear, infinite horizon LQR problem.

The MPC problem is formulated to minimize J subject to the spatially discretized dy-

namics, input, and constraints on the state:

min
{ui}

t+Np−1

i=t

J,

s.t. xi+1 = xi + ∆tf(xi, ui), (6.31)

xt = x̂t, ui ≤ 1, −0.9 ≤ xi.

Per the standard MPC formulation, (6.31) is solved at each time step, t, and ut is applied to

the continuous time/spatially discretized model for ∆t in a sample and hold fashion. In the

case of a reduced order model Σr, being used to design the MPC law, x̂t is replaced with the

immersed estimated reduced state T V ˆ̃xr,t, and redundant state constraints are identified

and eliminated.

6.3.3 Simulation Results

To demonstrate the efficacy of the proposed control specific reduction procedure, the

performances of compensators designed with the models from Table 6.1 are compared.

Table 6.1: Models used for compensator design.
M1: the full order, spatially discretized, continuous time model
M2: reduced, 2nd order model based on Riccati balanced truncation using a

linearization of dx(t,zj)
dt
|(xe(z),u=0) [71]

M3: reduced, 2nd order model based on empirical control/filter Riccati covari-
ance matrix designed at (xe(z), u = 0) (proposed)

M4: reduced, 2nd order model based on gramian balanced truncation using a
linearization of dx(t,zj)

dt
|(xe(z),u=0) [13]

M5: reduced, 2nd order model based on empirical controllability/observability
covariance matrix designed at (xe(z), u = 0) [72]

The probe directions for the empirical controllability/observability and control/filter Ric-

cati covariances matrices were taken to be wkl(0) = 0.25ek, vkl = 0.25ek, where ek is the kth

unit vector of the respective search space.
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To obtain the simulation results, the rod length is discretized into 51 segments (N = 50),

Np = 1, ∆t = 0.005, Q = 50, R = 1, S = 0, and the input and output covariances for the

EKF are selected to be Γ = 1, Λ = 0.05, and N = 0, respectively. Sequential quadratic

programming [166] is used to calculate the MPC law, and sparse data types are used where

appropriate.

Fig. 6.1 displays various responses: the open-loop output of the specified model, closed-

loop output with a compensator designed with specified model, the specified model’s esti-

mated output and generated control. Table 6.2 provides measures of computational time

obtained with MATLAB’s tic-toc and weighted `2 performance.

Fig. 6.1 and Table 6.2 show that the closed-loop reduction methods have worse open-

loop performance, but significantly better closed-loop performance. The reduced order model

computation is approximately equal for all methods and result in ≈ 88% improvement over

the full order model.
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Figure 6.1: A comparison of control, open-loop, closed-loop, and estimated output for com-
pensators generated with the full and reduced order models.
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Table 6.2: Table of performance metrics comparing computation time and weighted `2 error.
M1 M2 M3 M4 M5

Control Computation Time (s) 100.99 11.95 12.04 11.91 12.02
Estimation Computation Time (s) 12.98 1.02 1.02 1.02 1.02
Total Time (s) 113.97 12.97 13.06 12.93 13.04
Error:

∑1
t=0 Q(yt−yr,t)2 +R(ut−ur,t)2 - 0.7597 0.4004 7.8950 2.2566

6.4 Conclusions

In this chapter, an empirical approach following that used to obtain empirical Gramians

is proposed to calculate control and filter Riccati covariance matrices from selected weights,

controller, and estimator. A new model order reduction approach based on empirical Riccati

covariance matrices is developed and demonstrated on a catalytic rod model. A spatially

discretized model with 50 states was then reduced to the second order using 4 different

techniques, and the reduced compensator performances were compared to that of the com-

pensator designed with the full 50 state model. It was found that the proposed reduction

resulted in a compensator whose performance was closer to that of the full order compensator.

In terms of computational complexity, the reduced order model lead to an 88% reduction in

control computation time with negligible loss of performance.
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Chapter 7

Conclusions

The aim of this dissertation is the development of frameworks and numerical tools to de-

crease computational complexity of simulation, condition monitoring, and control of linear

and nonlinear systems using systematic model order reduction techniques. Two challenges

to obtaining reduced order models are selecting the reduction methodology, and then ob-

taining quantities/transformations to perform the state removal. In this dissertation, new

algorithms to obtain approximations of large scale gramian and Riccati solutions of linear

descriptor systems are developed, the LQG balanced truncation methodology is generalized

and re-purposed for model predictive control/Kalman filtering, a new reduction problem

and solution methodology are proposed for the design of a reduced order compensator of a

constrained system, and a new formulation of empirical gramians are proposed and modified

to yield Riccati covariance matrices.

For the selected purposes of the reductions, the efficacy of the techniques were demon-

strated on a variety of toy, challenging, and real world problems.

7.1 Contributions

The major contributions of this dissertation are:

1. Novel techniques to efficiently calculate, and aid in calculating low-rank matrix square

root factors to approximate a gramian and Riccati solution, for the purpose of model

order reduction of large scale linear systems.
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First, bilinear discretizations of descriptor systems were developed, and their eigenval-

ues/vectors found. The eigenvalues/vector information was used to guide a low-rank

alternating direction implicit method to obtain an accurate low-rank matrix square

root factor for a gramian or Riccati solution approximation.

Then, it was noted that convergence could be slow, creating a need to increase the rank

of the approximation or to re-calculate the entire gramian. To deal with both prob-

lems, a novel up/downdating technique was proposed. The up/downdating technique

facilitates:

(a) “condensing” a slowly converging low-rank matrix square root factor to decrease

the memory footprint,

(b) exploitation of the linearity of a gramian to the constant term, allowing compo-

nent/parallelized calculation of gramians of multi-input, multi-output (MIMO)

systems, and

(c) a posteriori weighting of gramians.

It was found that these components only need to be calculated a single time, and could

be combined to yield (in the most general form) a weighted gramian approximation for

the purpose of approximate balanced truncation. This enables faster calculation/design

of an approximate reduced order model when compared to prior methods that require

the direct computation of the weighted gramian approximation.

The methods were applied to random systems to demonstrate computational feasibility

and accuracy, and an electric machine model for the purpose of condition monitoring.

For large, random systems, the proposed technique resulted in faster and more accurate

calculation of the gramian than the the generalized Bartels-Stewart algorithm. For the

electric machine problem, the combined model was reduced from over 100,000 states

to 8 while performing better than the state-of-the-art modal truncation.

2. Extending Linear Quadratic Gaussian (LQG) balanced truncation and using it in con-

junction with model predictive control.
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LQG balanced truncation typically used the normalized LQG formulation with no

direct feedthrough or cross-term. Chapter 3 developed the generalization to the non-

normalized LQG, with cross-term, of a system with direct feedthrough, denoted Riccati

balanced truncation (RBT).

A way of calculating low-rank matrix square root factors of the Riccati solutions for

large scale systems was developed using the Newton-Kleinman iteration and the novel

techniques to calculate low-rank matrix square root factors of the gramians for large

scale systems. It was noted how to perform approximate RBT. An approximate RBT

reduced electric machine model was obtained and compared in open-loop, and it too

performed better than state-of-the-art modal truncation while still being acceptable

for condition monitoring.

In discrete time, the LQG problem was linked to a compensator comprised of an MPC

law, with an appropriately selected terminal penalty, and a Kalman filter estimator. It

was then shown that LQG balanced truncation presented a more robust reduced order

model for compensator design than the popular Lyapunov balanced truncation on a

variety of MPC formulations for a linear diesel airpath (DAP) model.

The full and reduced linear DAP model was then placed into rate-based and gain

scheduled rate-based compensators and applied to control a nonlinear DAP model and

experimental engine. In all cases, the proposed technique resulted in a compensator

that was more robust than the Lyapunov balanced truncation compensator, and a

compensator whose performance was closer to the optimal full order compensator.

3. A novel methodology for obtaining a reduced order model for design of control and

estimation of constrained systems.

In Chapter 4, model order reduction for constrained systems is formulated as an opti-

mization problem. Using a robust MPC framework, by treating the incurred modeling

error as a disturbance, the conservativeness of a constant constraint tube is defined.

The optimization problem is selected to minimize the sum of model error between a full

and reduced order model in some norm, and the measure of constraint conservativeness.

Constraint satisfaction, feasibility, and stability of the reduced order model fall out of
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the robust MPC theory, while asymptotic tracking of step responses is shown using

the work of [35, 153] coupled with the choice of a reduced order model obtained using

balanced residualization.

A low-dimensional example is used to demonstrate that not only can more accurate

reduced order models be found, but there exists reduced order models that decrease the

conservativeness of the tightened reduced constraints. This decreased conservativeness

enables larger admissible control, state, and output constraint sets.

4. Generalizing and simplifying the empirical gramian calculation and extending it to

empirical Riccati covariance matrices, both for nonlinear model order reduction.

Prior to this work, empirical gramians required state and output responses subject

to every possible combination of selected orthogonal direction and scale of input and

state perturbations. Chapter 5 presented a simplified form that not only requires less

computation, but is easily generalized to the weighted gramian case. The simplified

empirical gramian, calculated using fewer “experiments,” yields a more accurate re-

duced order DAP model than the conventional empirical gramian. The reduced DAP

models are then shown to result in decreased MPC computation time, and the reduced

DAP model obtained using the proposed simplified empirical gramian demonstrates

greater accuracy in the closed-loop.

Using the modified empirical gramian formulation, and the notion of a closed-loop

gramian, Chapter 6 develops empirical Riccati covariance matrices for the purpose of

obtaining a reduced order model for nonlinear controller/estimator design. It is found

that for linear systems, this approach yields closed-loop gramian balanced truncation,

which encapsulated LQG balanced truncation, for closed-loop model order reduction.

The empirical Riccati covariance matrices are applied to generate a reduced order com-

pensator of a catalytic rod goverened by a spatially and temporally discretized partial

differential equation. Of the reduction methods tested, the reduced compensator ob-

tained using the proposed empirical Riccati covariance matrices was the closest to the

optimal full order compensator.
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7.2 Future Work

There are many challenges in the field of model, control-oriented, and control order

reduction of linear, nonlinear, and constrained systems. The immediate extensions of the

research presented in this dissertation are:

1. MOR for large scale linear systems (Chapters 2 and 3):

(a) Error bounds of approximate downdating.

Can error bounds akin to Theorem 2.3.1 be calculated when approximate down-

dating, and mixtures of up/downdating are applied?

(b) Error bounds between the full order model, a ROM obtained by balanced trunca-

tion with exact gramians, and the reduced order model obtained by approximate

Lyapunov balanced truncation.

For some approximate balanced truncation techniques, error bounds between the

various full and reduced order models can be computed [80]. Can error bounds be

computed using the up/downdating methodology proposed in this dissertation?

(c) Order selection to perform approximate up/downdating.

How, or in what order, should the up/downdating be performed to result in the

“best” reduced order model?

2. MOR for constrained systems (Chapter 4):

(a) Computationally efficient polytopic set manipulations and approximations to de-

crease constraint conservativeness.

The largest challenge, from the author’s point of view, of applying the method-

ology to high order systems is set manipulation. For high dimensional polytope

sets, n ≥ 6, manipulation becomes intractable both in terms of computation

and storage because of combinatoric growth of vertices [188]. Having a way to

either decrease the complexity of set manipulation, or approximating invariant

sets, could lead to decreased constraint conservativeness.
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(b) Selection, and efficient calculation, of K and L gains for the reduced MPC frame-

work.

In Chapter 4, K and L were selected to minimize ||Ar +BrK||2 and ||Ar +LCr||2,

respectively, because it provided a guaranteed performance bound if || · ||2 < 1.

However, this methodology does not consider the invariant sets S̃, S̄, and S

because of added computational costs and limitations of set manipulation. The

question becomes how to select K and L to yield invariant sets to satisfy some

objective, e.g. minimum volume S?

(c) Implementing tube and state-dependent constraint methodologies in the reduced

MPC framework, and accounting for input and output disturbances.

While a constant tube robust control approach was used, there are a plethora

of other techniques that could provide a less conservative controller/estimator,

as well as be better suited for MPC. Specific examples include: homothetic or

parametrized constraint tubes [164, 165] and state-dependent “disturbances” and

constraints [154, 189, 190].

Additionally, if input and output disturbances are characterized, it can be readily

included in the robust framework and used on a physical system.

(d) Application of the model reduction problem to constrained nonlinear systems.

The proposed reduction problem of this chapter is general: it requires model

error between a full and reduced order system, and a measure of constraint con-

servativeness. Given a reduction technique and the appropriate invariant sets for

a nonlinear system, a methodology could be readily developed and applied to

nonlinear systems.

3. Empirical gramians and Riccati Covariance Matrices (Chapters 5 and 6):

(a) Approximate balanced truncation for large-scale systems.

For large linear systems, it is known that the Hankel singular values tend to decay

rapidly. Does the same hold true for nonlinear systems and empirical gramian-

s/Riccati covariance matrices?
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If it does hold true, can the approximate balanced truncation methodology using

low-rank matrix square roots factors of covariance matrices be applied to nonlinear

systems?

(b) Stability, robustness, and error measures of reduced order nonlinear models by

balanced truncation.

For linear systems there are ways to analyze stability, robustness, and modeling

error. What techniques can be applied to nonlinear reduced order models, and

what results can be obtained?

(c) Balanced residualization of nonlinear systems.

All the nonlinear reduced order models in this dissertation were obtained by bal-

anced truncation. How does the performance vary when singular perturbation

truncation is applied to a balanced nonlinear model [191]?

(d) Reducing the nonlinear reduced order model evaluation complexity with Discrete

Empirical Interpolation (DEI) model order reduction [177, 178].

Truncation and residualization of nonlinear models does not necessarily decrease

computational complexity. However, there exist methods to approximate the non-

linear model with a “reduced basis of functions” to decrease the complexity of the

nonlinear model evaluation. How can this be coupled with empirical covariance

matrix-based balanced truncation?

(e) Optimal selection of probe directions.

For systems with strong nonlinearities, the empirical covariance matrices are heav-

ily dependent upon the probe directions. How should probe directions be chosen

to yield a reduced order model for the desired purpose?
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APPENDIX A

Proofs

A.1 Chapter 2

A.1.1 Proof of Theorem 2.2.1

Proof. The discrete controllability ALE is given by (2.18b). Substituting (2.24a)-(2.24d)

into (2.18b) yields

(αE − A)−1
(
(αE − A)Pd(αE − A)> − (αE + A)Pd(αE + A)− 2αBB>

)
(αE − A)−> = 0.

Expanding terms with Pd and simplifying, this becomes

−2α(αE − A)−1(APdE
> + EPdA

> +BB>)(αE − A)−> = 0,

and since αE − A is regular, Pd must solve the continuous controllability ALE:

APdE
> + EPdA

> +BB> = 0.

Because it was assumed Σ is r-controllable, the solution Pd is unique and Pd = P [84].
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A.1.2 Proof of Theorem 2.2.2

Proof. Since λE−A is assumed to be regular, (E,A) may be placed intoWeierstrass canonical

form [192]. In the Weierstrass canonical form, it is trivial to see that λdc,i =
α+λc,i
α−λc,i .

To show Vd = Vc, note that λc,i = α
λdc,i−1

λdc,i+1
, then

(λdc,iI − (αE − A)−1(αE + A))Vdc,i = (αE − A)−1(λdc,i(αE − A)− (αE + A))Vdc,i = 0,

resulting in

(αE − A)−1(λc,iE − A)Vdc,i = 0⇒ Vdc,i = Vc,i.

A.1.3 Proof of Theorem 2.2.3

Proof. The discrete observability ALE is given by (2.19b). Substituting (2.27a)-(2.27d) into

(2.19b) yields

(αE −A)−>
(
(αE − A)>Πd(αE − A)− (αE + A)>Πd(αE + A)− 2αC>C

)
(αE −A)−1 = 0.

Expanding terms with Πd and simplifying, this becomes

−2α(αE − A)−>(A>ΠdE + E>ΠdA+ C>C)(αE − A)−1 = 0,

and since αE − A is regular, Πd must solve the continuous observability ALE:

A>ΠdE + E>ΠdA+ C>C = 0.

Because it was assumed Σ is r-observable, the solution Πd is unique and Πd = Π [84].
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A.1.4 Proof of Theorem 2.2.4

Proof. Since λE−A is assumed to be regular, (E,A) may be placed intoWeierstrass canonical

form [192]. In the Weierstrass canonical form, it is trivial to see that λd,i =
α+λc,i
α−λc,i .

For the eigenvectors of the discretized system, note that λc,i = α
λd,i−1

λd,i+1
, then

(λd,iI − (αE + A)(αE − A)−1)Vd,i = (λd,i(αE − A)− (αE + A))(αE − A)−1Vd,i = 0,

resulting in

(λc,iE − A)(αE − A)−1Vd,i = 0.

Since (λc,iE−A)(αE−A)−1Vd,i = 0, (αE−A)−1Vd,i must be an eigenvector of the continuous

pencil, or

(αE − A)−1Vd,i = Vc,i ⇒ Vd,i = (αE − A)Vc,i,

and massaging αE − A into (α− λc,i)E + (λc,iE − A) yields

Vd,i = (α− λc,i)EVc,i.

However, α > 0, Re{λc,i} < 0, therefore (α−λc,i) 6= 0, and because an eigenvector scaled by

a non-zero constant is still an eigenvector,

Vd,i = EVc,i.

A.1.5 Proof of Theorem 2.2.5

Proof. Stability Σ stable means that the eigenvalues of the pencil λE − A exist on the

open left half plane. The open left half plane gets mapped by the bilinear transform

to the open disc [88] and there can be no α > 0 such that |λd,i| ≥ 1, therefore the

discretizations are stable [193].

Controllability (Observability) If Σ is stable and r-controllable (r-observable), then the
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generalized controllability (observability) gramian has full rank [84].

Since the controllability (observability) gramian of Σ and its discretization are equal

and have full rank, the discretizations are controllable (observable) [194, Theorem 6.1].

A.1.6 Proof of Theorem 2.3.1

Proof. The induced 2-norm error between a matrix, F and its j-rank SVD approximation

(where µi is the i-th singular value) [40]

Fj =

j∑
i=1

µiuiv
>
i , (A.1)

is

||F − Fj||2 = µj+1. (A.2)

The rest of the proof proceeds by induction. Recall K has singular values σi, therefore

KK> has singular values σ2
i . The case of s = 1 is readily covered by (A.2),

∥∥∥K̃1K̃
>
1 −K0K

>
0 −K1K

>
1

∥∥∥
2
≤ σ2

q+1,1.

The case of s = 2,∥∥∥∥∥K̃2K̃
>
2 −

2∑
i=0

KiK
>
i

∥∥∥∥∥
2

=

∥∥∥∥∥K̃2K̃
>
2 − K̃1K̃

>
1 + K̃1K̃

>
1 −

2∑
i=0

KiK
>
i

∥∥∥∥∥
2

,

=
∥∥∥K̃2K̃

>
2 − K̃1K̃

>
1 + K̃1K̃

>
1 −K0K

>
0 −K1K

>
1 −K2K

>
2

∥∥∥
2
,

≤
∥∥∥K̃1K̃

>
1 − (K0K

>
0 +K1K

>
1 )
∥∥∥

2

+
∥∥∥K̃2K̃

>
2 − (K̃1K̃

>
1 +K2K

>
2 )
∥∥∥

2
,

= σ2
q+1,1 + σ2

q+1,2.

It is assumed that the inequality (2.40) holds for s = l − 1, then the s = l case must be
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shown. ∥∥∥∥∥K̃lK̃
>
l −

l∑
i=0

KiK
>
i

∥∥∥∥∥
2

=

∥∥∥∥∥K̃lK̃
>
l −

l−1∑
i=1

K̃iK̃
>
i +

l−1∑
i=1

K̃iK̃
>
i −

l∑
i=0

KiK
>
i

∥∥∥∥∥
2

,

=
∥∥∥K̃lK̃

>
l − K̃l−1K̃

>
l−1 −KlK

>
l + · · ·

+K̃1K̃
>
1 −K0K

>
0 −K1K

>
1

∥∥∥
2
,

≤
∥∥∥K̃1K̃

>
1 − (K0K

>
0 +K1K

>
1 )
∥∥∥

2
+

· · ·+
∥∥∥K̃lK̃

>
l − (K̃l−1K̃

>
l−1 +KlK

>
l )
∥∥∥

2
,

=
l∑

i=1

σ2
q+1,i,

since ||K̃lK̃
>
l − (K̃l−1K̃

>
l−1 +KlK

>
l )|| = σ2

q+1,l and ||K̃l−1K̃
>
l−1 −

∑l−1
i=0 KiK

>
i || ≤

∑l−1
i=1 σ

2
q+1,i

from the induction assumption.

A.2 Chapter 3

A.2.1 Proof of Theorem 3.1.1

Proof. Substituting (3.13) into (3.15) and recalling Π = Y Y >,

Π̄ = M1/2U>Y −1Y Y >Y −>UM1/2 = M.

Similarly, for P̄ , recall Y >X = UMV >,

P̄ = M−1/2U>Y >XX>Y UM−1/2

= M−1/2U>UMV >VMU>UM−1/2 = M.
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A.3 Chapter 4

A.3.1 Proof of Theorem 4.2.1

Proof. This is a straightforward application of the definitions of the various RPI sets and

the fact that Projr(P) ⊆ P.

A.3.2 Proof of Theorem 4.2.2

Proof. Since there exists a T such that xT ∈ X, yT ∈ Y, x̃r,t ∈ Projr(S̃), x̃t ∈ Projr(S̃) for

all t > T because Projr(S̃) is an RPI set of the reduced estimator dynamics. It follows from

[145], that (4.26) with the estimated state the problem is robustly exponentially stable.

Since the constraints are always satisfied along the prediction horizon, the problem re-

mains feasible for any admissible truncated state x̄r,t, or that the problem is recursively

feasible.

A.3.3 Proof of Theorem 4.2.3

Proof. From the construction of Ūr, X̄r, and Ȳr,

lim
t→∞

yt − ȳt,∞ ∈ (Cr +DrK)S, (A.3)

from robust stability. limt→∞Kr,f x̄r,t−Kfxt = 0, x̄r,t,∞ ∈ X̄r combined with ρ(Ar+LCr) < 1

implies the estimated states converge [153]:

lim
t→∞

x̄r,t − x̂r,t = 0.

Finally, if ȳt,∞ ∈colspan{Cr(I−(Ar+BrKr,f ))
−1Br+Dr}, then by the final value theorem,

yt = y∞. This condition is particularly important for underactuated systems.
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A.3.4 Proof of Theorem 4.3.1

Proof. Since G ⊆ F, 1G(f) ≤ 1F(f) for all f ∈ Rq, the integral is always positive, and the

absolute value can be dropped. Because G and F are measurable, |G| and |F| are defined.

With F being bounded,

µF(G) =
1

|F|

∫
F

1F(f)− 1G(f)df =
1

|F|

(∫
F

1df −
∫
G

1df

)
=
|F| − |G|
|F|

= 1− |G|
|F|

.

A.4 Chapter 5

A.4.1 Proof of Theorem 5.2.1

Proof. Provided with the fact

Im×m =
m∑
i=1

ṽij ṽ
>
ij

ṽ>ij ṽij
, (A.4)

the proof follows that of Section 2.1.2 of [70] with a slight modification for R,

P̂ =

∫ ∞
0

eAτBRB>eA
>τdτ, (A.5)

which becomes the weighted linear controllability gramian, (5.24) [175].

A.4.2 Proof of Theorem 5.2.2

Proof. The proof follows that of Section 2.2 of [70] with a slight modification for Q,

Π̂ =

∫ ∞
0

eA
>τC>QCeAτdτ, (A.6)

which becomes the weighted linear observability gramian, (5.31) [175].
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A.5 Chapter 6

A.5.1 Proof of Theorem 6.2.1

Proof. (6.14) occurs by construction of (6.11) from (6.4a), and (6.15) follows by the substi-

tution of K = R−1B>P into (6.14).

A.5.2 Proof of Theorem 6.2.2

Proof. Consider the following fact:

m+p∑
a=1

ṽalṽ
>
al

ṽ>alṽal
= I(m+p)×(m+p),

(6.23) can be established by construction of the dual to (6.20) from (6.4a), and (6.24) follows

by the substitution of L = ΠC>Λ−1 into (6.23).
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APPENDIX B

Singular Perturbations of Descriptor

Systems

The author has only seen singular perturbations of descriptor systems when it is explic-

itly assumed that E22 is nilpotent or imposes an algebraic constraint [195]. What follows

are theorems/derivations for continuous and discrete time systems where E22 may not be

singular.

B.1 Continuous Time

Theorem B.1.1. Given a continuous descriptor system, (E,A,B,C,D), that is conformably

partitioned into states to keep (x1) and states to truncate (x2), assume E11 and E21E
−1
11 A12−

A22 are invertible.

Define

Ã22 = E21E
−1
11 A12 − A22 (B.1a)

Ã21 = A21 − E21E
−1
11 A11 (B.1b)

B̃2 = B2 − E21E
−1
11 B1, (B.1c)
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then the singularly perturbed reduced order model is

Er = E11, (B.2a)

Ar = A11 + A12Ã
−1
22 Ã21, (B.2b)

Br = B1 + A12Ã
−1
22 B̃2, (B.2c)

Cr = C1 + C2Ã
−1
22 Ã21, (B.2d)

Dr = D + C2Ã
−1
22 B̃2. (B.2e)

Proof. Conformably partition (E,A,B,C,D) into

E11 E12

E21 E22

ẋ1

ẋ2

 =

A11 A12

A21 A22

x1

x2

+

B1

B2

u,
y =

[
C1 C2

]x1

x2

+Du.

(B.3)

For the continuous system, ẋ2 = 0 is taken to be the singular “condition,” which implies

E21ẋ1 = A21x1 + A22x2 +B2u. (B.4)

Now ẋ1,

ẋ1 = E−1
11 (A11x1 + A12x2 +B1u), (B.5)

is substituted into (B.4) to yield

E21E
−1
11 (A11x1 + A12x2 +B1u) = A21x1 + A22x2 +B2u,

which gives

x2 = (E21E11A12 − A22)−1
(
(A21 − E21E

−1
11 A11)x1 + (B2 − E21E

−1
11 B1)u

)
. (B.6)
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To shorten the longhand computation, chunk

Ã22 = E21E
−1
11 A12 − A22 (B.7a)

Ã21 = A21 − E21E
−1
11 A11 (B.7b)

B̃2 = B2 − E21E
−1
11 B1, (B.7c)

At this point, all the assumptions required for singular perturbations becomes clear: E11 and

E22E
−1
11 A12 − A22 must be invertible, which in the ordinary case reduces to A22 invertible.

Substituting everything into (B.4), the reduced order model becomes

Er = E11, (B.8a)

Ar = A11 + A12Ã
−1
22 Ã21, (B.8b)

Br = B1 + A12Ã
−1
22 B̃2, (B.8c)

Cr = C1 + C2Ã
−1
22 Ã21, (B.8d)

Dr = D + C2Ã
−1
22 B̃2. (B.8e)

B.2 Discrete Time

Theorem B.2.1. Given a discrete descriptor system, (E,A,B,C,D), that is conformably

partitioned into states to keep (x1
t ) and states to truncate (x2

t ), assume E22 −A22 and E11 +

(A12 − E12)(E22 − A22)−1E21 are invertible.
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Then the singularly perturbed reduced order model is

Er = E11 + (A12 − E12)(E22 − A22)−1E21, (B.9a)

Ar = A11 + (A12 − E12)(E22 − A22)−1A21, (B.9b)

Br = B1 + (A12 − E12)(E22 − A22)−1B2, (B.9c)

Cr = C1 + C2(E22 − A22)−1(A21 − E21E
−1
r Ar), (B.9d)

Dr = D + C2(E22 − A22)−1(B2 − E21E
−1
r Br). (B.9e)

Proof. Conformably partition (E,A,B,C,D) to get

E11 E12

E21 E22

x1
t+1

x2
t+1

 =

A11 A12

A21 A22

x1
t

x2
t

+

B1

B2

u,
y =

[
C1 C2

]x1
t

x2
t

+Du.

(B.10)

The singular condition for discrete systems is

x2
t+1 = x2

t , (B.11)

Substituting into E21x
1
t+1 + E22x

2
t+1 yields

x2
t = (E22 − A22)−1(A21x

1
t +B2u− E21x

1
t+1), (B.12)

making x2
t appear non-causal. At this point it becomes apparent that E22 − A22 has to be

assumed to be invertible.

Define

F = (A12 − E12)(E22 − A22)−1, (B.13)

then substituting (B.12) into E11x
1
t+1 + E12x

2
t and manipulating, provides the causal

(E11 + FE21)x1
t+1 = (A11 + FA21)x1

t + (B1 + FB2)u. (B.14)
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This yields that (Er, Ar, Br) of the reduced order model may be defined

Er = E11 + (A12 − E12)(E22 − A22)−1E21, (B.15a)

Ar = A11 + (A12 − E12)(E22 − A22)−1A21, (B.15b)

Br = B1 + (A12 − E12)(E22 − A22)−1B2. (B.15c)

The output, however, appears non-causal with the substition of x2
t ,

yt = C1x
1
t + C2(E22 − A22)−1(A21x

1
t +B2u− E21x

1
t+1) +Du,

but can be taken care of by assuming Er is invertible to get

x1
t+1 = E−1

r (Arx
1
t +Bru),

which when substituted into yt yields

Cr = C1 + C2(E22 − A22)−1(A21 − E21E
−1
r Ar), (B.16a)

Dr = D + C2(E22 − A22)−1(B2 − E21E
−1
r Br). (B.16b)
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