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ABSTRACT

Aphasia is a common neurological disorder that can severely impact a person’s commu-

nication abilities. Speech-based technology has the potential to reinforce traditional ap-

hasia therapy through the development of automatic speech-language assessment systems.

Such systems can provide clinicians with supplementary information to assist with pro-

gress monitoring and treatment planning, and can provide support for on-demand auxiliary

treatment. However, current technology cannot support this type of application due to two

major limitations. First, the majority of speech-language assessment techniques assume

the availability of manually labeled transcripts, which are time consuming to obtain and

typically not available in real-world clinical applications. Second, automatic speech recog-

nition (ASR) traditionally has poor performance on aphasic speech, resulting in inaccurate

transcripts that prevent the automation of these techniques.

The focus of this dissertation is on the development of computational methods that can

accurately assess aphasic speech across a range of clinically-relevant dimensions without

the need for manual transcripts. The dissertation is organized into three parts:

• Part I: The first part focuses on novel techniques for assessing qualitative aspects

of intelligibility in constrained aphasic speech. In this problem setup, speech pro-

duction occurs in controlled environments, lexical content is restricted, and the target

prompt for each utterance is known. While the speech-language impairments asso-

ciated with aphasia often prevent exact verbalization of the prompts, this constraint

greatly simplifies ASR and allows for more accurate transcript generation. We show

that transcripts for constrained aphasic speech can be generated automatically with

xi



modified forced alignment in place of traditional ASR. These transcripts, combined

with novel features that capture a speaker’s pronunciation, rhythm, and intonation

patterns, yield prediction results that are comparable to those of human evaluators.

• Part II: The methods presented previously rely on the prior availability of target

prompts. This assumption limits the applicability of these methods to unconstrained

speech, in which target prompts are not available. The majority of speech produced

in normal everyday interaction is unconstrained, thus necessitating the development

of robust assessment techniques for this type of speech. Automatic assessment of

unconstrained speech is often reliant on ASR output; at the same time, ASR perfor-

mance on aphasic speech is traditionally poor. Based on this need, the second part

of this dissertation improves speech recognition accuracy for speakers with apha-

sia to lay the foundation for automated assessment of unconstrained aphasic speech.

The proposed acoustic modeling techniques, which focus on adapting pre-trained

acoustic models to small datasets and leveraging auxiliary input features to mitigate

speaker variability, lead to significant improvement in aphasic speech recognition.

• Part III: The final part of the dissertation investigates the efficacy of ASR-based

analysis across a range of clinically-relevant tasks, including automatic paraphasia

(naming error) detection, extraction of clinically-motivated quantitative measures,

and estimation of Aphasia Quotient, a standard measure of aphasia severity, from

unconstrained aphasic speech. We propose a calibration method that enables in-

formation density, dysfluency, and lexical features, many of which have important

clinical implications, to be reliably extracted from ASR output. We demonstrate that

these ASR-based features can be used to accurately predict Aphasia Quotient.

The unification of the methods and results presented in this work helps enable robust

automated technologies for accurately recognizing and assessing aphasic speech without

human intervention. We conclude the dissertation with future directions that target the

xii



development of specialized ASR models for aphasia and the deployment of our proposed

techniques in real-world clinical applications.
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CHAPTER 1

Introduction

Aphasia is an acquired chronic language disorder resulting in a loss of language skills that

generally arises from focal brain damage to the left cerebral hemisphere [13]. In the US,

there are approximately two million people with aphasia and more than 180,000 acquire it

every year due to brain injury, most commonly from a stroke [5]. The type and severity of

language deficits depends on the size and location of the brain lesion. Individuals typically

exhibit expressive and/or receptive language deficits. Those with expressive (non-fluent)

aphasia typically have difficulties producing language, with minimal word production (re-

ferred to as telegraphic speech), while generally retaining the ability to comprehend most

spoken language. They may exhibit difficulties with comprehension of more complex lan-

guage. Others with receptive (fluent) aphasia typically speak fluently, but often with little

content or meaning, while demonstrating difficulties with spoken language comprehension.

Common verbal expression deficits in both types of aphasia include phonemic errors and

speech dysfluencies [19,160]. All persons with aphasia (PWAs) have problems with word-

finding (anomia) to some degree, and most also have reading and writing impairments.

Further, many individuals with aphasia experience motor speech production deficits, such

as apraxia and/or dysarthria, which complicate recovery [6]. A PWA’s verbal output may

appear impaired due to language problems such as word retrieval and sentence formulation

difficulties, or speech production issues caused by apraxia, dysarthria, or both. The speech-

language deficits associated with aphasia impact one’s ability to communicate effectively,
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making social interaction difficult and frustrating. This results in feelings of social isola-

tion, loss of autonomy, and loneliness, among others [23, 150].

The most effective forms of aphasia treatment are long-term intensive targeted thera-

pies with Speech-Language Pathologists (SLPs) [12, 13, 103]. Previous research suggests

that high-intensity treatments are more beneficial than low-intensity ones [12, 62, 113]. In

addition, treatments must meet a minimum level of frequency and intensity to yield positive

effects [131]. Significant improvements from aphasia are typically observed in the acute

post-onset period; however, recovery can continue indefinitely with appropriate treatment

and/or dynamic interactions with one’s environment [62]. Unfortunately, many do not have

consistent access to individualized speech-language therapy services due to the high cost

burden, lack of available long-term options, and/or lack of local treatment options [120].

As a result, many PWAs only participate in short-term and/or low-intensity therapeutic

care, often administered in hospital environments, and they do not receive sufficient treat-

ment for long-term progress [104]. These factors highlight a need for auxiliary sources of

treatment and increased efficiency in assessment procedures for SLPs.

Speech-based technology has the potential to fill these gaps by administering clinically-

relevant speech-language feedback to PWAs automatically, as well as providing SLPs with

diagnostic and progress monitoring tools to help guide the treatment process. The market

has recognized this need. In the last several years, the number of commercially available

aphasia programs and applications has increased. These software tools allow individuals to

practice their speech-language skills, but often do not provide the feedback necessary for

self-assessment and error correction [62]. Practice without feedback may reinforce errors

rather than facilitating improvement. Some of these applications allow PWAs to send their

speech recordings to SLPs for further analysis. However, SLPs in many settings have high

productivity expectations and limited time outside of direct patient contact to manually

examine and analyze a large amount of speech data.

The long-term vision of this dissertation is to develop systems that can accurately assess
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aphasic speech across a range of clinically-relevant dimensions and deliver meaningful

feedback that will help maintain and track the recovery progress of PWAs over time. Such

systems will help facilitate more efficient assessment pipelines for SLPs through the ability

to quickly process large amounts of speech samples that would otherwise be prohibitively

time consuming to perform manually. These systems have the potential to improve the

well-being of PWAs by complementing and extending traditional aphasia therapy.

1.1 Problem Statement and Methods

We argue that a successful speech-language assessment system for aphasia requires two

primary abilities: (1) to transcribe speech content without human intervention and (2) to

accurately estimate clinically-relevant measures from aphasic speech. This dissertation

focuses on the development of novel computational methods to automate these abilities,

with an encompassing goal of enabling reliable fully automated speech-based technology

to support aphasia rehabilitation.

1.1.1 Aphasic Speech Transcription

Automatic transcription refers to the process of estimating the lexical content of a given

speech sample, as well as identifying the precise timing of acoustic units (i.e., words, syl-

lables, and phones). An essential component of a speech-language assessment system is

the ability to accurately extract clinically-relevant measures (i.e., features) from a PWA’s

speech to support diagnosis and progress monitoring. Transcripts enable the extraction of

a set of lexical and linguistic features that play an important role in the study of aphasia,

such as vowel duration, filler frequency, part-of-speech usage patterns, lexical diversity,

and vocabulary range.

Traditional techniques in ASR relied on a combination of Hidden Markov Model (HMM)

and Gaussian Mixture Model (GMM). The field has experienced major breakthroughs in
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recent years, primarily due to massive datasets and advances in deep learning [30, 31, 54,

64, 110, 135, 136, 139]. However, disordered speech recognition is still mostly constrained

to the traditional HMM-GMM model. This is due to a variety of factors including data

scarcity, atypical speech input, and high speaker variability. These factors severely impact

ASR performance on disordered speech in general and aphasic speech in particular, except

in applications with highly constrained lexical content. In this work, we hypothesize that:

1. Deep learning techniques can achieve significant improvement over traditional HMM-

GMM approaches, even given limited training data for aphasic speech, by adapting

models learned on large external corpora to a smaller targeted dataset.

2. Aphasic speech recognition will benefit from speaker-independent adaptation, met-

hods which help the model generalize better to unseen speakers, due to the high

degree of speaker variability associated with aphasia.

We present experiments that evaluate these hypotheses in Chapter 4. We first investigate

the efficacy of out-of-domain adaptation, in which an acoustic model initially trained on a

large amount of data is adapted to a smaller corpus. We show that with this technique, deep

learning-based models can significantly outperform HMM-GMMs on a small dataset with

only two hours of speech. In addition, we demonstrate that ASR performance on aphasic

speech is greatly improved with utterance-level i-vectors, an auxiliary input feature that

captures speaker and other sources of variations.

1.1.2 Estimation of Clinically-Relevant Measures

The high-level goal of automated speech assessment is to estimate the characteristics of

aphasic speech that are relevant to aphasia rehabilitation. These may include qualitative

assessment of human evaluators regarding a PWA’s speech, such as measures of pronunci-

ation, fluidity, and intonation. Accurate prediction of these properties will provide PWAs
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with feedback and potentially increase the efficacy of unsupervised speech-language exer-

cises. Other targets for assessment include objective quantitative measures that can be used

by SLPs to better understand the recovery progress of PWAs, such as rate of speech, lexical

diversity, and mean length of utterances. These measures, which are often time consuming

to produce manually, will provide SLPs with additional information for treatment planning.

The primary challenges in developing a speech-language assessment system are the hand-

ling of potentially incorrect transcripts, especially those generated automatically, and the

engineering of features that capture the target qualitative measures. We hypothesize that:

1. Given human-labeled transcripts and novel feature engineering, it is possible to achieve

human-level performance in a range of assessment tasks on aphasic speech.

2. Automatic transcription can replace manual transcripts in some of these tasks with

minimal impact on system performance.

We evaluate these hypotheses across various assessment tasks and speech types in

Chapter 3, 5, and 6. Chapter 3 investigates novel computational methods for assessing

qualitative aspects of intelligibility in constrained aphasic speech. Chapter 5 tackles the

problem of automatic paraphasia (naming error) detection. Finally, Chapter 6 tests these

hypotheses through the extraction of clinically-relevant quantitative measures and the esti-

mation of aphasia severity from unconstrained aphasic speech.

1.2 Background and Related Work

1.2.1 Methods for Studying and Assessing Aphasia

Early work on the acoustical analysis of aphasic speech was limited to manual inspection

of speech waveforms and spectrograms on a small number of short utterances [160]. Lee et

al. proposed the use of HMM-based forced alignment to speed up the transcription process

and enable the analysis of larger amount of Cantonese aphasic speech [87,88]. They found
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that compared to healthy speech, aphasic speech contains fewer words, longer pauses, and

higher number of continuous chunks, with fewer words per chunk [87]. Further, aphasic

speech exhibits different intonation patterns [88]. The limitation of their works lies in the

requirement for manual transcripts and the mismatched acoustic model.

Several previous works have tackled the problem of processing aphasic speech for ther-

apeutic and diagnostic purposes [1, 2, 41–43, 69, 122, 141]. Abad et al. [1, 2] used keyword

spotting to recognize phrases spoken by PWAs during word naming exercises. Their tar-

geted users are individuals with aphasia who have word-finding problems but no difficul-

ties with auditory comprehension or speech-language production. In contrast, the typical

PWA tend to have difficulties in both. Further, their work targeted a relatively restricted

type of speech (single words) with limited applicability outside of their proposed applica-

tion. Fraser et al. combined transcript and low-level acoustic features to classify between

two subtypes of primary progressive aphasia (PPA) [42, 43]. Their work relied on fine-

grained expertly labeled transcripts, which are expensive and time-consuming to create.

Their follow-up work attempted to generate these transcripts with ASR; however, the poor

recognition performance limited their analysis to simulated ASR output with preset error

levels [41]. Peintner et al. proposed speech and language features to distinguish between

three types of frontotemporal lobar degeneration, including progressive non-fluent apha-

sia [122]. They used an ASR system to automatically transcribe speakers’ spontaneous

responses to the Western Aphasia Battery assessment test [72]. Their ASR system was

trained only on healthy speech with mismatched demographics, which led to high recogni-

tion error. In addition, they did not analyze the effect of ASR errors on feature extraction.

1.2.2 Methods for Studying and Treating Apraxic Speech

Apraxia of Speech (AOS) results from impairments to motor networks, while aphasia is

related to impairments in language networks. AOS frequently co-occurs with aphasia. AOS

is characterized by errors at the phoneme-level, which impact both consonants and vowels
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[19,55]. It is also characterized by sound substitutions, impaired fluency, atypical prosody,

and sound distortions [34, 159]. AOS causes the production of speech described as trial-

and-error groping, resulting in frequent restarts and repetitions of sounds and syllables [56].

AOS also commonly affects the temporal prosody of speech, resulting in slow speech with

prolonged vowels and consonants [118].

There has been limited work exploring quantitative approaches to understanding the

diagnosis and assessment of AOS. Haley and colleagues investigated the validity and relia-

bility of two different quantification strategies to characterize the type and severity of errors

seen in AOS [56]. In particular, the authors were interested in comparing clinician rated

scales that rely more on clinical judgment to produce operationalized-based approaches

that focus on the quantification of specifically defined errors. A subset of the metrics that

they introduced include: segmental substitution (phone-level substitution errors), segmen-

tal distortions (mispronunciations of phones, not substitutions), revision and repetition of

sounds, and unit durations [56]. Results showed more consistent and reliable coding using

the operationally based approach. Given the high co-occurrence rate of aphasia and AOS,

capturing these metrics automatically will be beneficial for the analysis and assessment of

aphasia. However, additional metrics must be developed to better capture the language

impairments associated with aphasia.

1.2.3 Methods for Studying and Treating Dysarthric Speech

Research in automatic modeling of disordered speech has historically focused on dys-

arthric speech, commonly seen in Parkinson’s Disease, Stroke, Cerebral Palsy, and Amyo-

trophic Lateral Sclerosis (ALS) [157]. Some types of aphasia may be accompanied by

dysarthria [62], further emphasizing the importance of this research. Dysarthria is a motor

speech disorder, often caused by neurological injury [25], which affects muscles involved

in speech production, such as the lips, tongue and vocal folds. There have been many

studies investigating how ASR technologies can be adapted for use by individuals with
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dysarthria [27,28,58,60,132]. Christensen et al. introduced techniques to model dysarthric

speech by bootstrapping models with healthy speech, collected from the AMI Meeting cor-

pus and TED Talk dataset [25]. Research has demonstrated that finite state transducers

could be effectively used to correct pronunciation errors in dysarthric speech [111, 145].

There has also been work investigating how ASR technologies can be used to provide

speech feedback and training [76]. Saz et al. demonstrated that ASR-based technologies

could be used for speech and language therapy, focusing on children and young adults

with neuromuscular disorders [141]. Their system obtained comparable performance to

human experts. Hawley and colleagues introduced methods to provide speech training

using ASR technologies [59]. They provided software to five individuals with dysarthria

and found that three of the participants showed improvement over the three-week trial pe-

riod. However, they also found that one of the challenges with ASR-based technologies

is that the technology tended to emphasize longer-duration phonemes (e.g., vowels) as a

source for potential improvement, rather than the production of challenging and rapidly

transitioning consonants, areas in which an individual may actually experience the most

deficits [61]. Research has demonstrated that automatic speech processing tools can be

employed to assess the pronunciation and intelligibility of disordered speech. Yin and col-

leagues demonstrated techniques to identify pronunciation errors given a constrained target

sentence using confidence measures [164], whereas Christensen et al. demonstrated met-

hodologies to automatically learn mispronunciations of dysarthric speech [25]. Ferrier et

al. demonstrated the link between the intelligibility of speech and a subject’s ability to use

conventional speech modeling tools [38]. The primary challenge in adapting these methods

to the targeted application domain is that they primarily focus on speech production issues,

whereas aphasia is first and foremost a language disorder with possible speech production

impairments due to concomitant motor control disorders.
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1.2.4 Methods in Pathological Speech Assessment

In this section, we review prominent methods in pathological speech assessment that are

not tied to specific disorders. Previous works in this area used Word Error Rate (WER)

from an ASR system evaluated against predefined speech prompts to estimate a speaker’s

intelligibility [97, 128]. The primary challenge of applying this method is the requirement

of the target prompts, which are not available for spontaneous speech. Other studies esti-

mated intelligibility by extracting speaker-level phonemic and phonological features from

a phonetically diverse set of utterances [106, 157]. Kim et al. used sentence-level prosody,

voice quality, and pronunciation features for intelligibility classification [74]. Finally, Be-

risha et al. proposed a method to select acoustic features that correlate with SLPs’ ordinal

ratings of dysarthric speech [11]. A common drawback of these works is that they typically

assume the availability of manually labeled transcripts, an unrealistic requirement in most

clinical applications. Some works focus exclusively on acoustic features and therefore do

not require transcripts; however, such approaches prevent the extraction and analysis of

language features, which are crucial for aphasia.

1.2.5 Methods in Computer Aided Language Learning

Methods in Computer Aided Language Learning (CALL) focus on quantifying the diffe-

rences between native and non-native speech, which can be useful for separating healthy

and aphasic speech. Previous work in CALL mostly targeted pronunciation modeling, uti-

lizing variants of Goodness of Pronunciation (GOP) [66, 67, 163], template-based compa-

rison [84, 86, 117], extension of traditional ASR [91, 126], among other methods [162].

The GOP metric, first proposed by Witt and Young, is derived from the log posterior

score of a HMM-GMM acoustic model [163]. Follow-up work investigated GOP ex-

traction using HMM-DNN [66] and optimizing GOP with a discriminative training ob-

jective function [67]. Template-based methods involve comparison of word-level posteri-

orgrams extracted by a HMM-DNN acoustic model [84, 86]. Nicolao et al. extended these
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methods to enable phone-level pronunciation error detection [117]. Qian et al. proposed

to augment canonical recognition networks to detect and diagnose mispronunciation [126].

Li et al. developed a unified framework for detecting and diagnosing mispronunciation

using DNNs [91]. Similar to [126], their proposed system is based on ASR, but is simpler

and more flexible. Other work in this area focused on high-level assessment of a subject’s

overall reading ability instead of token-level assessment [15–18]. Finally, Tepperman et

al. proposed Pairwise Variability Error (PVE), a metric for highlighting the differences in

rhythm between native and non-native speakers [154]. The majority of existing research in

CALL focus on modeling a speaker’s pronunciation, which by itself does not fully charac-

terize the speech-language characteristics associated with aphasia. In addition, methods in

this area typically assume that the speaker always reproduces the target prompts perfectly.

This is often not true for aphasic speech, in which various speech-language impairments

may lead to deviations from the target prompts. As a result, modifications to these methods

are required to account for the prompt mismatches.

1.2.6 ASR Overview

In ASR, the acoustic signal of an utterance is represented by a feature vector (i.e., obser-

vation) o = (o1, . . . , oT ), a sequence of T observations. A potential transcript is denoted

as w = (w1, . . . , wK), a sequence of K words. The goal of ASR is to find the optimal

transcript w∗ that maximizes the probability P (w|o):

w∗ = argmax
w

P (w|o) = argmax
w

p(o|w)P (w) (1.1)

Here, p(o|w) is determined by an acoustic model and P (w) is estimated by a language

model (e.g., n-gram). In practice, the acoustic model is not normalized and the recognition
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problem is typically formulated as:

w∗ = argmax
w

log p(o|w) + α logP (w) + β|w| (1.2)

where α and β are empirically determined constants denoting the language model weight

and word insertion penalty, respectively.

A standard modeling assumption in ASR is that each word w can be represented as a

sequence of basic sounds (i.e., phones) q(w) = (q1, . . . , qn). Let q be a possible phone

sequence for the word sequence, w. We can then rewrite p(o|w) as:

p(o|w) =
∑
q

p(o|q)P (q|w) (1.3)

where P (q|w) is given by a pronunciation model. In monophone modeling, each phone

q is represented by a HMM, typically a linear left-to-right model with 3–5 hidden states1.

Under this model, each observation, oi, is emitted by a HMM state, si, where the emis-

sion probability p(oi|si) is governed by the output observation distribution bsi(oi), and the

transition between states P (si|sj) is determined by the transition probability asisj .

Let s = (s0, s1, . . . , sT , sT+1) be a possible state sequence obtained from the composite

HMM for the phone sequence q and observation sequence o, where s0 and sT+1 are the

non-emitting start and end states, respectively. p(o|q) can now be computed as:

p(o|q) =
∑
s

as0s1

T∏
t=1

bst(ot)astst+1 (1.4)

The performance of an ASR system is determined in a large part by how the emission

probability bst(ot) is calculated. In this section, we review three prominent methods for

modeling emission probabilities.

1In large-vocabulary speech recognition, a phone is commonly represented by a set of HMMs accounting
for different left and right context. This method, typically referred to as triphone modeling, helps capture co-
articulation and usually gives better performance than monophone models. Hidden states in triphone HMMs
are called senones. The basic mathematical formulations of these two methods are largely similar.
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1.2.6.1 Gaussian Mixture Model (GMM)

Emission probabilities are traditionally modeled with GMMs. Under this model, each

HMM hidden state, st, is associated with a mixture of multivariate Gaussian densities:

bst(ot) =
M(st)∑
m=1

c(st)m N (ot;µ
(st)
m ,Σ(st)

m ) (1.5)

where M (st) is the number of mixture components, c(st)m is the weight of the m-th compo-

nent, 1 ≤ m ≤ M (st), and N (·;µ(st)
m ,Σ

(st)
m ) is a multivariate Gaussian with mean µ

(st)
m and

covariance matrix Σ
(st)
m .

GMMs can model probability distributions to an arbitrary level of accuracy given enough

components, and are fairly easy to train using Expectation-Maximization (EM). However,

a major disadvantage of GMMs is that they cannot effectively capture information over

a large number of consecutive feature frames [64]. In addition, GMMs typically assume

diagonal covariance matrices due to computational issues. This necessitates uncorrelated

input features, which prevent GMMs from modeling feature interaction.

1.2.6.2 Deep Neural Network (DNN)

DNNs recently emerged as an alternative to GMMs that are capable of modeling reasonably

large windows of frames as well as feature interaction [30, 31, 64, 110]. The application

of DNN to acoustic modeling is based on the reformulation of the emission probability

p(ot|st) according to Bayes’ rule:

p(ot|st) ∝
P (st|ot)
P (st)

(1.6)

where P (st|ot) is the posterior probability and P (st) is the prior probability of state st.

Instead of estimating the emission probability directly, DNNs estimate the posterior

probability using a conventional multilayer perceptron (MLP) with several hidden layers.
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For a DNN with L+1 layers, where layer 0 is the input layer, layers 1 to L−1 are the hidden

layers, and layer L is the output layer, the output of the first L layers can be computed as:

vl = f(zl) = f(W lvl−1 + bl), for 0 < l < L (1.7)

where vl, zl, W l, and bl are the output vector, excitation vector, weight matrix, and bias

vector at layer l, respectively. f(·) is an element-wise activation function; common choices

for this function are sigmoid, hyperbolic tangent, and rectified linear unit (ReLU).

The last DNN layer consists of S outputs, in which the i-th output corresponds to the

posterior probability of the i-th HMM hidden state given the input observation o:

vLi = P (i|o) = softmaxi(z
L) =

ez
L
i∑S

j=1 e
zLj

(1.8)

where zLi is the i-th element of the excitation vector zL and S is the number of HMM states.

Unlike GMMs, DNNs take as input a context window of multiple consecutive frames,

typically spanning 110ms to 270ms [64,110]. This ability to model large context windows

is the key advantage of DNNs compared to GMMs. However, a limitation of DNNs is that

they can only model data within fixed-size context windows and are not suited for handling

long-term dependencies [137].

1.2.6.3 Recurrent Neural Network (RNN)

More recently, RNN-based acoustic models have achieved state-of-the-art results on vari-

ous ASR benchmarks [54, 135, 136, 139]. Similar to DNNs, RNNs estimate the posterior

probability P (st|ot) instead of the emission probability p(ot|st). The main advantage of

RNNs over DNNs lies in their ability to model long-range temporal dependencies without

relying on fixed-size context windows. A standard RNN layer receives an input vector
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sequence x = (x1, . . . , xT ) and produces a hidden vector sequence h = (h1, . . . , hT ):

(ht, ct) = H(xt, ht−1, ct−1) (1.9)

where ht and ct are the hidden and cell activation vectors at time step t, and H is the

activation function. A popular choice for H is the Long-Short Term Memory (LSTM)

activation function, a special type of unit designed to better find and exploit long-range

context [65]. A RNN layer with LSTM activation function is commonly referred to as a

LSTM-RNN layer.

Bidirectional LSTM-RNN (BLSTM-RNN) is an extension to this architecture, which

adds a parallel LSTM-RNN layer that processes the input sequence backward:

(
−→
h t,
−→c t) =

−→
H(xt,

−→
h t−1,

−→c t−1) (1.10)

(
←−
h t,
←−c t) =

←−
H(xt,

←−
h t+1,

←−c t+1) (1.11)

The output of a BLSTM-RNN layer is the concatenated hidden vector ht = [
−→
h t;
←−
h t].

Multiple BLSTM-RNN layers can be stacked on top of each other to create a deep BLSTM-

RNN architecture. Finally, an output layer can be added:

yt = W−→
h y

−→
h t +W←−

h y

←−
h t + by (1.12)

where W−→
h y

and W←−
h y

are the hidden-output weight matrices and by is the bias vector.

Similar to DNNs, softmax normalization is applied to the output vector yt, resulting in a

distribution over HMM states given an input observation.
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1.2.7 ASR for Disordered Speech

There has been extensive work in the related field of dysarthric speech recognition [3, 25–

28, 146, 147]. ASR for dysarthric and disordered speech in general is faced with abnor-

mal speech patterns [105], high speaker variability [112], and data scarcity [27]. Methods

for alleviating these problems include speaker-dependent GMM adaptation [27, 146, 147],

generation of auxiliary acoustic features used within tandem-based systems [3, 25], lear-

ning systematic speaker-specific pronunciation errors [28], and similarity-based speaker

selection for acoustic modeling [26]. Most of these works focused on single-word recogni-

tion, whereas our work targets disordered continuous speech, which has remained relatively

under-explored in the literature. In addition, the application of deep learning-based acoustic

models to this area has remained fairly limited.

There has been comparatively little work on ASR for aphasic speech. Existing works

are limited to using healthy acoustic models to recognize aphasic speech [2, 89]. Further,

aphasia and dysarthria have several key differences. A PWA’s verbal expression is modula-

ted by language impairment and co-occurring motor control disorders, which often include

AOS and dysarthria itself. AOS can make the speech produced by PWAs inconsistent, thus

increasing intra-speaker variability. Verbal output and language usage patterns of different

PWAs may vary depending on the aphasia type, such as fluent and non-fluent aphasia. It is

unclear if techniques that work for dysarthria will also translate to aphasia.

1.3 Contributions

Our work presents novel computational methods to enable reliable speech-language as-

sessment, with the long-term goal of transforming therapeutic care for PWAs by providing

individualized on-demand therapy and speech-based progress monitoring tools. This neces-

sitates advances in automatic disordered speech recognition and assessment. The research

contributions of this dissertation are as follows:
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• Aphasic Speech Intelligibility Assessment

– Introduced the UMAP dataset and provided baseline intelligibility classification

results using transcript and acoustic features [78].

– Introduced a novel feature set that captures the pronunciation, rhythm, and in-

tonation of PWAs by comparing with healthy speech patterns [83].

– Created a fully automated intelligibility assessment system by removing the

dependence on human-labeled transcripts using variants of forced alignment.

Introduced new clinically-motivated features and demonstrated that the system

can achieve competitive performance with human evaluators [81].

• Aphasic Speech Recognition

– Established the first large-vocabulary continuous speech recognition (LVCSR)

baseline on AphasiaBank, a large corpus traditionally used by clinical resear-

chers to study aphasia. Showed that i-vectors can be used to compensate for

the variability in speech patterns among PWAs. Proposed adaptation methods

to improve recognition performance on a small aphasic speech corpus [82].

– Introduced new training methods that significantly improved recognition accu-

racy on AphasiaBank. The proposed ASR system formed the basis for subse-

quent works targeting ASR-driven analysis of aphasic speech [80].

• Quantitative Analysis of Aphasic Speech

– Established the first evaluation framework and baseline feature set for automa-

tic paraphasia detection. Showed that speaker-level phonemic paraphasia pro-

duction rate can be estimated with reasonable accuracy using ASR output [79].

– Proposed a feature calibration method that allows clinically-relevant quantita-

tive measures to be extracted reliably from ASR-generated transcripts. Showed
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that ASR-based features can be used to accurately predict Aphasia Quotient, a

standard measure of aphasia severity [80].

The unification of these works will enable an automated system capable of capturing

clinically-relevant characteristics of either read or spontaneous aphasic speech without the

need for manually labeled transcripts. The output from this system can be used as direct

feedback for PWAs, as well as complementary information to assist SLPs with progress

monitoring and treatment planning.

1.4 Dissertation Outline

The dissertation is organized as follows. Chapter 2 provides an overview of the datasets

used in this work, including the development, collection, and annotation of the University

of Michigan Aphasia Program (UMAP) dataset. Chapter 3 covers our work on automa-

ted speech intelligibility assessment for utterances with well-defined prompts. Chapter 4

describes methods to improve ASR performance on aphasic speech in order to enable au-

tomated analysis of unconstrained speech. Chapter 5 highlights our work on automatic

paraphasia detection. Chapter 6 focuses on the relationship between feature robustness and

transcription errors, as well as aphasia severity estimation. Finally, Chapter 7 summarizes

the dissertation and discusses potential directions for future work.
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CHAPTER 2

Datasets

2.1 UMAP Dataset

One of the long-term objectives of this dissertation is to develop an intelligent system ca-

pable of providing automatic speech-language feedback to persons with aphasia (PWAs).

One of the major challenges to achieving this objective is the lack of a publicly available

dataset containing speech data collected in the context of a therapeutic application. To this

end, we partnered with the University of Michigan Aphasia Program (UMAP) to develop a

mobile application that includes therapeutic exercises of sentence building and picture des-

cription. We collected approximately five hours of aphasic speech from 17 UMAP clients

while they interacted with the application. Human annotators transcribed and evaluated

each utterance across three aspects of speech intelligibility: Clarity, Fluidity, and Prosody.

In addition, we collected 10.5 hours of speech from non-aphasic controls to allow for a

comparison between the speech-language patterns of these two populations. This dataset

forms the basis of our work on automatic speech intelligibility assessment (Chapter 3).

2.1.1 Speech Intelligibility Ratings

An important problem in this work involves constructing ground-truth labels for speech in-

telligibility from human evaluators. This task is traditionally performed by expert listeners,

such as Speech-Language Pathologists (SLPs). However, previous work has shown that
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Figure 2.1: Screenshot of an exercise with predefined options.

with appropriate elicitation techniques, untrained listeners can estimate speech intelligibi-

lity with close to expert-level judgment [101]. Further, it has been suggested that SLPs may

be overly familiar with disordered speech and may assign higher scores than non-expert lis-

teners, a phenomenon commonly referred to as the “familiarity effect” [77, 107, 170].

One popular metric for measuring speech intelligibility is Ease of Listening (EOL). In

EOL, a 5-point Likert scale is employed to elicit perceptual measures of dysarthric speech

intelligibility from naı̈ve listeners [77, 108]. Alternative approaches include using conti-

nuous [29] or similarity [11] labels. We adopt the Likert scale in this work because it is

more in line with SLP scoring practices and is still the most common choice for human

perceptual studies.

2.1.2 Aphasic Speech Corpus

2.1.2.1 Mobile Application

We developed a mobile application designed to run on Android tablet devices for the pur-

pose of data collection and speech-language therapy. The application was designed using
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an iterative process in which feedback from PWAs and SLPs at UMAP shaped the interface

and functioning of the system. In the application, users are presented with a picture stimu-

lus, along with optional predefined word options, and asked to verbally produce a sentence

to describe the picture. The sentence must contain a subject, verb, and object. Sentences

of this form can be thought of as Main Concepts of the picture being presented [115]. The

application features exercises primarily targeting sentence formulation while also allowing

users to work on word-finding, use of verb tenses, and repetition and articulation of target

words and phrases, to ultimately facilitate expressive communication. It is intended to be

used by PWAs for home practice, as well as by SLPs and PWAs together in therapy ses-

sions as stimuli for speech-language activities using functional, evidence-based treatment

techniques such as Verb Network Strengthening Treatment (VNeST) [35].

All speech output is recorded using the tablet’s built-in microphone, sampled at 44.1

kHz. Figure 2.1 shows a sample exercise with predefined word options. The applica-

tion operates at the sentence level, which was suggested to be more beneficial than word-

level exercises for recovering communication skills in highly routine conversational tasks

[24, 99]. The difficulty level can be adjusted through the application interface. We also

utilize text-to-speech with configurable speech rate to provide auditory feedback in addi-

tion to visual and textual information as the users may have difficulties with reading and/or

auditory comprehension. The information gathered from this application is beneficial for

both the PWAs in self-monitoring and the SLPs in determining the appropriate course of

treatment. It is also a valuable data source for aphasic speech modeling since the collected

dataset contains not only speech samples but also their recording context.

2.1.2.2 Collection Methodology

We recruited 17 individuals attending UMAP who have aphasia and do not have cognitive

impairment for this study. UMAP offers an intensive therapy program which, for full-time

clients, typically involves 24 hours of speech-language therapy a week for four weeks. Each
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study subject was screened and recommended by the assigned primary SLP in UMAP. A

team of research staff interacted with each individual for an average of 30 minutes a day,

three days a week for up to three weeks. During these sessions, the research staff provided

support, as needed, while the participants completed the exercises on our mobile applica-

tion. The research team consisted of undergraduate and graduate students who received

training from UMAP staff regarding how to assist individuals with aphasia.

Our goal was to collect speech recordings that best resemble the type of data the ap-

plication would have received from natural interaction with the PWAs. Recordings were

made in one of the three classrooms at UMAP, depending on what was available at the time.

We adjusted the difficulty based on recommendations from the SLPs and used the tablet’s

built-in microphone for all recordings. We collected two types of recordings based on the

PWAs’ severity and personal preference. The first is read speech, in which PWAs assemble

a sentence using predefined word options (Figure 2.1), and then read the sentence out loud.

The second is free-form speech, in which PWAs describe the picture in their own words.

It should be noted that for the reading task, PWAs often do not reproduce the target

sentence exactly. This may be caused by difficulties initiating speech, word finding pro-

blems, repetition, and various types of paraphasias. Our work on intelligibility assessment

(Chapter 3) focuses on read speech because we can systematically make use of the target

prompts, which constrain the recognition problem and make automatic transcription more

feasible. Recognizing and assessing free-form speech will be left for future work.

2.1.2.3 Detailed Analysis

Table 2.1 lists the age, sex, diagnosis, amount of recorded data, and Aphasia Quotient

(AQ) before and after treatment at UMAP for each subject in the dataset. AQ is a summary

score which measures the severity of aphasia [73]. AQ is obtained using the Western Ap-

hasia Battery-Revised (WAB-R) assessment test, which comprises of individual subtests

targeting a PWA’s functional communication, repetition, word finding, and auditory com-
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ID Age Sex Diagnosis # of Recordings Aphasia Quotient
Type MCD Read Free-form Before After

RM 65 F FLU DYS 122 – 94.6 95.6
JF 50 F NFL – 30 92 91.6 –
CC 33 M NFL – 131 – 78.3 87.2
JR 70 M FLU – 105 270 75.7 87.8
RK 60 M NFL AOS 170 – 75.4 78.6
CH 79 M FLU AOS 133 – 69.1 80.3
AN 86 M FLU AOS 69 104 68.6 76.2
TP 48 M FLU AOS 89 – 67.9 77.0
MH 35 F FLU – 84 – 62.5 66.5
JE 70 F NFL AOS 121 68 61.2 71.2
KH 50 M NFL – 72 – 59.5 71.9
DD 49 M NFL – 58 88 58.9 72.1
BW 66 F NFL AOS 49 – 53.1 62.3
PT 55 F FLU AOS 112 – 51.0 82.7
DB 68 M NFL – 81 – 43.9 94.2
JT 49 M FLU AOS 112 – 40.4 59.4
TL 50 M NFL AOS 147 64 34.6 50.6

AQ Class: 0-25 (very severe), 26-50 (severe), 51-75 (moderate), 76-100 (mild) [72]
Aphasia Type: fluent (FLU), non-fluent (NFL)

Motor Control Disorder: dysarthria (DYS), apraxia of speech (AOS)

Table 2.1: Subject breakdown of the aphasic speech corpus.

prehension ability [72]. According to the WAB-R’s AQ classification, most PWAs in the

dataset have moderate to mild aphasia. The AQs and diagnoses are shown to demonstrate

the heterogeneity of the dataset.

The corpus contains 1,685 read and 686 free-form utterances, totaling approximately

5 hours of data from 11 male and 6 female PWAs with an average age of 58 ± 14. AOS

was manifested in 9 out of 17 speakers, while only one had dysarthria. The speech patterns

produced by the speakers differ greatly. Some subjects have relatively intact pronuncia-

tion but exhibit disrupted rhythm and prosody. Others display highly fluent speech but

impaired articulation. Many participants have trouble pronouncing uncommon and phone-

tically complex words, and/or producing verb tenses other than present continuous. Each

utterance contains on average 0.238 fillers (e.g. “um”, “eh”) and 0.085 false starts (e.g. “d-
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dog”, “yes-yesterday”). To summarize, the dataset contains a diverse collection of speakers

who have different impairments and exhibit a wide range of speech-language patterns.

2.1.3 Healthy Speech Corpus

We hypothesize that comparing and contrasting how aphasic and healthy speech differ

will lend insights into and enhance the process of modeling speech intelligibility. For this

purpose, we collected speech recordings from 14 native speakers (7 males and 7 females)

of American English who have no speech-language impairment. The age range of this

population is 20 to 32, which is significantly lower than the subjects in the aphasic dataset.

In future work, we will collect healthy speech data that better match the demographics of

the aphasic corpus.

The data were recorded with the same device type and recording algorithm used in

data collection. We did not control the recording environment of this corpus to simulate

the condition under which speech data would be obtained in actual application usage. All

speakers were asked to take the tablet and find a relatively quiet space to perform the

recordings in their own time. Consequently, the recording environment may be varied

both across and within speakers. Healthy speakers were presented with the same speech

prompts given to PWAs, but the accompanied picture and word options were not shown.

These prompts have significant repetitions of common words such as “he”, “she”, and

“the”, making the dataset phonetically unbalanced. The corpus contains 10.5 hours of

speech, 17,559 utterances, and 86,596 instances of 527 unique words.

2.1.4 Data Annotation

In this section, we describe how utterances in the aphasic corpus are annotated. The an-

notation process consists of two tasks: transcription and scoring. The first task provides

word-level labels for automatic speech recognition (ASR) training. The second task pro-

duces qualitative sentence-level scores for modeling speech intelligibility.
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2.1.4.1 Transcriptions

Each utterance (both read and free-form) is transcribed by a member of the research staff.

Transcription of each utterance progresses in two passes. In the first pass, transcribers an-

notate each utterance at the word level based only on audio data. Transcribers are asked

to mark sub-regions of the utterance as vague when the speech content is not clear enough

to reliably decode and provide a guess for their content if possible. In the second pass,

transcribers go through each utterance again, but this time using context information to

help refine their guesses for sub-regions previously marked as vague. The provided context

information includes the speech prompts and word options shown to PWAs at recording

time. Previous research has suggested that constraining the transcription process, as was

done in the second-pass transcripts, can help resolve subtle differences in pronunciation

among less intelligible speakers, whereas the first-pass transcripts better approximate regu-

lar everyday interaction [107].

The first-pass transcripts are used to extract training data for acoustic modeling in ASR.

Our preliminary experiments indicate that excluding noisy data, i.e. speech regions that

humans cannot reliably decode, helps improve the recognition accuracy of the acoustic

model. Because transcribers do not have access to context information during this stage,

they must rely more on acoustic data as opposed to word priming to make a distinction

between vague and clear segments.

The second-pass transcripts are the targets for the ASR system. These transcripts have

the ability to capture what the PWAs tried to say over speech regions with poor intelligi-

bility. This type of information provides the potential to model intelligibility at a greater

depth. For example, if we know that the PWA attempted to say “is playing” in a given seg-

ment, we can compare its pronunciation, rhythm, and prosody to those of the same segment

spoken by a healthy control.
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Figure 2.2: Distribution of speech intelligibility scores.

2.1.4.2 Qualitative Scores

The goal of this annotation step is to obtain ground-truth labels for speech intelligibility.

With guidance from the SLPs, we created three criteria for evaluating an utterance’s intelli-

gibility: Clarity, Fluidity, and Prosody. These criteria capture the quality of pronunciation,

the degree of fluidity, and the monotonicity of speech, respectively. Each utterance in the

aphasic speech corpus is scored by at least three members of the research staff, all of whom

are native speakers of American English without any auditory comprehension deficit. The

annotators only have access to the audio data of an utterance; they do not see the identity of

the speaker to account for biases in judgment. Each category is scored on a Likert scale of

1 to 4, where a higher score denotes better quality. Annotators may assign a special label,

“Not enough data” if they deem that the utterance does not have enough data for analysis.

169 out of 1,672 utterances were marked as such by at least half of the annotators and are

removed from the dataset. During this process, annotators are provided with utterances in

random order and asked to rate one of the three scoring criteria. They also have access to

prototypical examples for each intelligibility score, defined as utterances that have perfect
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score agreement drawn from the smaller dataset used in our earlier work [78, 83]. Similar

techniques have been used in other work to help annotators calibrate their ratings and yield

higher inter-rater agreement level [107, 161]. There is also evidence in the literature that a

group of non-expert listeners can deliver close to expert-level assessments regarding speech

intelligibility [77, 101, 107, 170].

Following [18, 97], we construct a “de-noised” set of ground-truth labels by averaging

the scores across all evaluators and rounding to the closest integer. These ground-truth

scores represent the collective opinions and are used to train the automatic classifiers. Post-

hoc investigation of the ground-truths reveals that the score “1” constitutes only 2.80%,

2.13%, and 3.13% of Clarity, Fluidity, and Prosody labels, respectively. As a result, we

merge “1” and “2” together to make a new label category. Figure 2.2 shows the distribution

of scores in the aphasic speech corpus after merging.

We evaluate system performance using unweighted average recall (UAR), i.e. the mean

per-class accuracy, to account for class imbalance. We can establish a target performance

and estimate the degree of human agreement by treating each evaluator as a classifier and

computing its UAR with respect to the ground-truths. Our ultimate goal is to achieve

human-level UAR with automatic classification.

We observe that the label “3” consistently has lower human agreement across all sco-

ring categories as it is often confused with the other two labels, more so with “1+2”. We

therefore investigate an additional labeling scheme by merging “1+2” and “3” into a new

category, in order to investigate the trade-off between label granularity and classification

accuracy. This also results in a more balanced dataset and higher inter-rater agreement

than merging “3” and “4”. The resulting 2-class problem is simpler in nature (separating

low- and high-quality utterances) and has more reliable ground-truths. A similar merging

approach was done in [74] to reduce a label from five to two classes. Table 2.2 summarizes

the degree of agreement between human annotators in terms of UAR and Cohen’s kappa.

As can be seen, Clarity has the highest agreement level, followed by Fluidity and Prosody.
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Clarity Fluidity Prosody

UAR 3-class 75.4 ± 4.5 70.9 ± 3.4 68.3 ± 5.5
2-class 82.3 ± 4.9 80.6 ± 3.6 78.2 ± 4.6

Kappa 3-class 0.66 ± 0.09 0.56 ± 0.07 0.50 ± 0.07
2-class 0.64 ± 0.10 0.62 ± 0.10 0.51 ± 0.10

Table 2.2: Degree of human agreement in speech scoring w.r.t. the ground-truths, measured
by average and standard deviation of Unweighted Average Recall (%) and linearly weighted
Cohen’s kappa.

2.1.4.3 Annotator Instructions

The instructions for the scoring process were given orally to individual annotators. They

followed a predefined format without a fixed script. We informally described each sco-

ring category and stepped through all possible answer choices, along with their associated

prototypical examples. Below is a summary of the three scoring categories.

Clarity is defined as the degree to which a sentence can be understood. It is intended

to capture the overall pronunciation quality of a sentence. The elicitation question for this

category is: How clear is the pronunciation? The possible answer choices, from low to

high quality, are: Very Unclear, Mostly Unclear, Mostly Clear, and Very Clear.

Fluidity is defined as the degree to which a sentence can be uttered at an appropriate

speed and without pauses or hesitation. The elicitation question for this category is: How

fluid is the speech? The possible answer choices, from low to high quality, are: Very

Broken, Mostly Broken, Mostly Fluid, and Very Fluid.

Prosody is arguably the most difficult category to define. We define it broadly as the

correctness of intonation. Utterances that are overly monotonous or have widely varying

pitch are both considered incorrect. We found that this definition of Prosody resulted in

higher human agreement compared to directly quantifying the degree of monotonicity. The

elicitation question for this category is: Is the intonation correct? The possible answer

choices, from low to high quality, are: Very Incorrect, Mostly Incorrect, Mostly Correct,

and Very Correct.
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All scoring categories have one additional answer choice, Not Enough Data, which is

reserved for utterances that the annotators deem to have insufficient data for analysis.

2.2 AphasiaBank Dataset

AphasiaBank is a large-scale audiovisual dataset containing interactions in several langua-

ges between PWAs and research investigators [39, 96]. It is primarily used by clinical

researchers to study aphasia and has recently been introduced to the engineering commu-

nity [82,89]. AphasiaBank data are organized according to their elicitation protocols. Data

associated with a specific protocol contain a number of sub-datasets collected by different

research groups under various recording conditions. In this dissertation, we consider data

of native English speakers collected with the AphasiaBank and Scripts protocols.

2.2.1 AphasiaBank Protocol

This is the core protocol of AphasiaBank, which involves open-ended questions designed to

elicit verbal discourse samples. Example questions include: “How do you think your speech

is these days?,” “Tell me as much of the story of Cinderella as you can,” and “Describe

for me what you see in this picture.” The type of speech collected under this protocol is

spontaneous. Utterances can be further divided into two categories based on their applied

Aphasia Control

Demographics Gender 238 M, 163 F 85 M, 102 F
Age 62 ± 12 63 ± 17

Speech Data
Duration 89.2 hours 41.7 hours

Utterances 64,748 38,186
Words 458,138 371,975

Utterance Type Free Speech 28,157 16,465
Semi-Spontaneous 36,591 21,721

Table 2.3: Summary of the core AphasiaBank dataset. The speakers are split into two
groups, those who have aphasia (Aphasia) and healthy controls (Control).
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And I &uh bit [: get] [* s:ur] out pea [: the] [* p:w]
pin@k@u [: peanut] [* p:n] b2D@@u [: butter] [* p:n].

[: get] [* s:ur]: unrelated semantic error with known target get
[: the] [* p:w]: real-word phonological error with known target the

[: peanut] [* p:n]: non-word phonological error with known target peanut
[: butter] [* p:n]: non-word phonological error with known target butter

Table 2.4: Example AphasiaBank transcript with semantic and phonological word errors.

elicitation methods, namely free speech (e.g., open interview, conversational speech) and

semi-spontaneous speech (e.g., storytelling, picture description) [125].

We identify sub-datasets under this protocol that contain at least four speakers. This re-

sults in 19 sub-datasets with 401 PWAs and 187 healthy controls (323 males, 265 females,

age 63± 14)1. The distribution in aphasia severity of the 401 PWAs, defined by the revised

Western Aphasia Battery Aphasia Quotient [72], is 43.4% mild, 32.7% moderate, 9.5%

severe, 3.0% very severe, and 11.4% unknown. We discard less than 1% of the utterances

whose transcripts include unintelligible or overlapping speech, which makes them incom-

patible with automatic speech processing. The final dataset contains approximately 130.9

hours of speech (89.2 hours of aphasic speech, 41.7 hours of healthy speech), 102,934 ut-

terances, and 830,193 words. Table 2.3 summarizes the speaker demographics, amount of

speech data, and number of utterances for each spontaneous speech category in the dataset.

Utterances in AphasiaBank are transcribed using the CHAT format [95]. The transcrip-

tions contain a variety of special codes to aid with language sample analysis, such as

word-level and utterance-level errors [4], sound fragments, repetitions, non-verbal acti-

ons, among others. An example is shown in Table 2.4 where the transcript contains one

semantic, one real-word phonological, and two non-word phonological errors. The actual

pronunciations for the non-word phonological errors are transcribed in the International

Phonetic Alphabet (IPA) format, denoted by the @u trailing symbol. Word-level errors

occur relatively infrequently in this dataset, accounting for 2.53% and 0.03% of all words

1Based on available data at the time this was written. New data are continually added to AphasiaBank.
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Fridriksson Adler
Gender 8 M, 4 F 5 M, 1 F

Duration 3.1 hours 1.1 hours
Utterances 990 349

Words 9,310 3,886
Word Errors 22.6% 5.1%

Table 2.5: Summary of speech data and speaker demographics under the Scripts protocol.

in the Aphasia and Control partitions, respectively.

This collection of data, which we will refer to as the core AphasiaBank dataset, is

used in our work on large-vocabulary aphasic speech recognition (Chapter 4) and automatic

quantitative analysis of spontaneous aphasic speech (Chapter 6).

2.2.2 Scripts Protocol

In contrast to the AphasiaBank protocol which elicits spontaneous speech, the Scripts pro-

tocol is intended to collect read speech samples from predefined scripts. Two sub-datasets

fall under this elicitation protocol, Fridriksson and Adler.

The Fridriksson sub-dataset employs four identical scripts for every participant. These

include advocacy (addressing communication challenges due to aphasia), eggs (how to

make scrambled eggs), vast (use of video assisted speech therapy), and weather (describing

the weather in southern United States). The sub-dataset comprises 3.1 hours of speech from

12 PWAs (8 males, 4 females), totaling 990 utterances and 9,310 words1.

Instead of using fixed scripts, the Adler sub-dataset utilizes 1–3 personalized scripts

for each speaker. Topics of these scripts include aphasia recovery, family members, and

memorable personal events, among others. The sub-dataset contains 1.1 hours of speech

from 6 PWAs (5 males, 1 female), totaling 349 utterances and 3,886 words1.

Table 2.5 summarizes the data under the Scripts protocol. Word-level errors occur much

more frequently in this dataset compared to the core AphasiaBank data, especially for the

Fridriksson sub-dataset. Due to the high occurrence rate of word errors, Fridriksson data
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will be the target of our work on automatic paraphasia detection (Chapter 5).

2.3 Work Published

The work presented in this chapter was published in the following articles:

1. Duc Le, Keli Licata, Elizabeth Mercado, Carol Persad, and Emily Mower Provost.

“Automatic Analysis of Speech Quality for Aphasia Treatment,” IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). Florence, Italy.

May, 2014.

2. Duc Le, Keli Licata, Carol Persad, and Emily Mower Provost, “Automatic Asses-

sment of Speech Intelligibility for Individuals With Aphasia,” IEEE Transactions on

Audio, Speech, and Language Processing (TASLP), 24:11(2187-2199). November,

2016.
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CHAPTER 3

Automatic Assessment of Aphasic Speech

Intelligibility

3.1 Introduction

In this chapter, the term aphasic speech denotes a PWA’s verbal output, which can be modu-

lated by motor control disorders, for example, apraxia and dysarthria. Speech intelligibility

refers to the perceptual quality of aphasic speech, which can be affected by both language

and speech impairments. We aim to apply speech assessment and machine learning techni-

ques on the University of Michigan Aphasia Program (UMAP) dataset (Section 2.1) to

automatically quantify multiple aspects of aphasic speech intelligibility. These objective

measures will let persons with aphasia (PWAs) self-monitor their verbal output as well as

help Speech-Language Pathologists (SLPs) decide on appropriate therapy choices. The

system has the potential to enable effective auxiliary in-home practice and assist with tra-

ditional therapy as needed.

Figure 3.1 shows an overview of the system for speech intelligibility assessment. Utte-

rances from PWAs are first processed by a forced alignment component using either human-

labeled transcripts or predefined speech prompts. The former represents an oracle approach

and helps set the performance ceiling for the system, while the latter completely automates

the forced alignment pipeline. The output of this system serves as a preprocessing step

for feature extraction. Our novel feature set consists of clinically-motivated features that

32



Figure 3.1: System diagram for estimating speech intelligibility.

capture various aspects of speech intelligibility, including pronunciation, rhythm, and into-

nation. We demonstrate that the system can perform close to the level of human evaluators

in estimating intelligibility scores.

The contributions of this work are four-fold. Firstly, the system’s novel application to

aphasia has the potential to greatly benefit the well-being of PWAs by enabling self-directed

practice with automatic feedback. Secondly, we introduce forced-alignment-based techni-

ques for automatic transcript generation that perform well on aphasic speech in spite of

limited data and atypical speech input. Thirdly, we describe a novel feature set specifically

engineered to capture speech intelligibility. Lastly, the detailed analysis of classification

performance and feature relevance uncovers the research problems that need to be solved

in order to bridge the gap between human and automatic intelligibility assessment, along

with possible approaches to tackle them.

3.2 Oracle Forced Alignment

The goal of this step is to use forced alignment to obtain a detailed transcript of what was

spoken by the PWA in a given utterance, including precise alignments of words, syllables,

and phones. This transcript is an important prerequisite for extracting features relevant

to speech intelligibility classification (Section 3.4). Forced alignment requires as input

a preliminary word-level transcript without timing. We initially make use of the oracle

33



transcripts labeled manually by human annotators. Section 3.3 will discuss methods to

completely automate forced alignment.

3.2.1 Speech Preprocessing

For each utterance in the healthy and aphasic speech datasets, we downsample the audio to

16 kHz and extract 13-dimensional Mel-frequency Cepstral Coefficients (MFCCs) using a

25ms Hamming window with 10ms frame step. Each MFCC frame is augmented with the

first and second temporal derivatives, resulting in a 39-dimensional feature vector. Finally,

the features are z-normalized at the speaker level.

3.2.2 Acoustic Modeling

In this work, there is much more healthy speech compared to aphasic speech for acoustic

modeling. Counting only speech frames from clearly understood segments, healthy speech

amounts to 9.1 hours whereas aphasic speech comprises only 1.7 hours. Furthermore,

we are interested in a speaker-independent acoustic model to better understand how the

system will perform on an unknown speaker. Data from the aphasic corpus will be further

reduced as a result of leave-one-speaker-out cross-validation. We adopt the out-of-domain

adaptation approach, in which a model initially trained on the more abundant out-of-domain

(healthy) speech is adapted using a smaller amount of in-domain (aphasic) data. Out-of-

domain adaptation on disordered speech has been employed successfully in [25], where

the adapted models outperform those trained only on the in-domain data. Intuitively, this

method helps alleviate the data sparsity issue when training on aphasic speech alone.

State-of-the-art acoustic models typically involve a number of Hidden Markov Models

(HMMs), one for each phone, where the emission probabilities are estimated using a Deep

Neural Network (DNN). Training data for the DNN is usually obtained by using an initial

acoustic model based on Gaussian Mixture Model (GMM) to perform forced alignment.

In large-vocabulary continuous speech recognition (LVCSR) systems, the HMMs model
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context-dependent tied-state triphones instead of individual monophones. However, when

there is limited speech data and the vocabulary is relatively constrained such as the case

for our data, using monophone acoustic models may be more appropriate. Our preliminary

experiments indicate that there is little improvement in performance when using triphone

models, while the system complexity and training time dramatically increase. As a result,

we only train monophone acoustic models in this work.

We follow the recipe in [110] to train a DNN acoustic model on healthy speech, boot-

strapped from a standard HMM-GMM model trained with Maximum Likelihood, 3-state

left-to-right HMMs representing the 40 phones defined in the CMU lexicon1, and 64 diago-

nal covariance Gaussians per state. We augment each MFCC frame with 13 neighbors from

both sides, padding out-of-boundary elements with the nearest frame. We first generatively

pretrain a Restricted Boltzmann Machine (RBM) with two layers, 1024 units per layer, and

sigmoid activation. Similar to [110], we use a batch size of 128, L2 regularization weight

of 0.0002, and learning rates of 0.002 for the first Gaussian-binary layer and 0.02 for the

second binary-binary layer. For each RBM layer, pretraining terminates when the relative

change in reconstruction cost is less than 0.1%. RBM has been shown to be effective for

ASR when the dataset and/or the network is relatively small [166].

We subsequently add a softmax output layer with 120 units, corresponding to the HMM

states of the 40 phones, to the RBM. The network is finetuned using stochastic gradient

descent to predict the HMM state label for each acoustic frame. We use a batch size of

256, 0.5 momentum, and a small L2 regularization weight of 0.00002. An early stopping

approach is employed for finetuning. 10% of acoustic frames from each training speaker

are randomly withheld to form a validation set. The initial learning rate starts at 0.1. Once

the change in validation error falls below 0.05% absolute, the learning rate decays by half

after every epoch. Finetuning will terminate when the change in validation error once

again falls below 0.05%. The context window size (13), number of hidden layers (2), and

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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Method 1-best 2-best 3-best
GMM (Healthy) 63.30 51.68 45.67
GMM (MAP) 55.62 43.01 36.60
DNN (Healthy) 48.48 35.78 29.89
DNN (Aphasic) 37.86 26.51 21.61
DNN (Adapted) 37.11 25.75 20.61

Table 3.1: Single word recognition Word Error Rate (%) on the aphasic speech dataset
using a uniform word language model over all 592 unique words in the vocabulary. The
total number of words in the dataset is 8,564.

L2 regularization weight (0.00002) were selected with cross-validation. Specifically, this

combination of hyperparameters minimizes the average leave-one-speaker-out Phone Error

Rate (PER) on healthy speech.

Finally, we adapt the healthy DNN acoustic model by retraining the network on aphasic

speech using a similar finetuning recipe with more conservative parameters. This can be

viewed as a form of discriminative pretraining [166]. We adapt the model for each speaker

in the aphasic corpus using data from all other speakers, in concordance with the leave-

one-speaker-out validation scheme. We use a batch size of 256, no momentum, and a L2

regularization weight of 0.0001. A similar early stopping approach is adopted. 15% of data

from each speaker is withheld to form a validation set. The initial learning rate is smaller,

starting at 0.05. The initial learning rate (0.05), momentum (0), and L2 regularization

weight (0.0001) were again selected with cross-validation to minimize the average leave-

one-speaker-out PER on aphasic speech.

We perform isolated word recognition (IWR) on 8,564 word-level segments extracted

from the human-labeled transcripts to evaluate the acoustic models. A unigram language

model with identical probability over all 592 words present in the transcripts is used for

decoding. The 1-best, 2-best, and 3-best WER for the unadapted and adapted acoustic

models are summarized in Table 3.1. For reference, we also include the performance of

the original GMM model trained on healthy speech, the GMM model adapted to aphasic

speech using Maximum a Posteriori (MAP) adaptation, and the DNN model trained only on
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aphasic speech. The adapted DNN model clearly outperforms both GMM models and the

unadapted (healthy) DNN. While the adapted DNN is not statistically significantly better

than the aphasic DNN for 1-best (paired t-test with per-speaker WERs, p = 0.068), it is

significantly better for 2-best (p = 0.014) and 3-best (p = 0.008). A more prominent gain

may be achieved with a larger out-of-domain dataset that better matches the demographics

of our aphasic corpus.

3.3 Automatic Forced Alignment

We need a method to automatically generate coarse word-level transcripts to remove the

dependence on human annotators. Unconstrained ASR may not yield sufficient recogni-

tion accuracy due to the small size of the dataset and atypical speech input. However, all

utterances considered in this work are constrained by the provided speech prompts. Each

prompt consists of three distinct parts: subject, verb, and object. A verb may be in one of

three tenses: present continuous (“he is driving a car”), simple past (“he drove a car”), or

simple future (“he will drive a car”). Due to the language impairments associated with ap-

hasia, PWAs may not reproduce the target prompts perfectly. Speech-language errors may

include phonemic errors (e.g., sound distortion, substitution, omission), lexical errors (e.g.,

word repetition, substitution, omission), insertion of fillers, and false starts. Nevertheless,

the prompts help greatly constrain the search space of potential utterances.

We convert the speech prompt of each utterance into a simple recognition network by

connecting all words in the prompt linearly, with optional silence in between. This net-

work enables forced alignment on the speech input, which provides precise timing infor-

mation for words, syllables, and phones. This method is not suitable for all utterances

because PWAs often do not reproduce the prompts accurately. Our analysis of the col-

lected transcripts show that there are three prominent types of errors made by PWAs during

speech production. First, 48.1% of sentences in simple past and future tenses include the
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Figure 3.2: Example extended recognition network generated for the prompt “he drove a
car.” Optional silence can be inserted in between words. All outgoing edges have identical
weights. The dashed edge is optional and can be traversed at most once.

Figure 3.3: Per-speaker Word Error Rate (WER) using simple and extended forced align-
ment. Speakers are sorted by increasing isolated word recognition WER.

adverb “yesterday” and “tomorrow,” respectively. These adverbs serve as indicators for

making the intended tenses clear and are not part of the prompt. However, many PWAs

prefer to include them in their speech as the adverbs help them select the correct verb tense

more easily. This can be captured by extending the network to allow for optional inser-

tion of the adverb depending on the target verb tense. Second, many PWAs consistently

produce simple present and continuous tenses in place of the requested simple past and/or

future tenses. We can capture this type of error, which accounts for 13.4% of all utterances,

by ensuring that the former tenses are always included in the recognition network. Finally,

5.1% of utterances contain repetitions of two or more parts, which can be accounted for

by allowing the utterance to be repeated at most once. We encode these three observati-

ons in the extended recognition network. Figure 3.2 shows an example extended network

38



generated for the prompt “he drove a car.”

Our preliminary experiments indicate that this forced-alignment-based approach, though

restricted, performs better than n-gram language models due to the lack of aphasic acoustic

data and atypical speech events, such as fillers, false starts, and audible background noise.

N-gram models will be used in later chapters when working with unconstrained speech.

Figure 3.3 shows the per-speaker WER using simple and extended forced alignment (SFA

and EFA, respectively). Compared to SFA, EFA typically leads to WER reduction for more

intelligible speakers, but can produce significantly worse results for less intelligible PWAs.

This suggests that it might be possible to systematically select the type of forced alignment

to use for each PWA based on diagnosis or a simple word pronunciation test conducted be-

forehand. Future work will explore the related problem of language model personalization

based on speaker diagnoses.

This method is also reasonably suitable for handling atypical speech events, which are

difficult to recognize directly due to lack of data. Using EFA, 76.1% of these events get

absorbed by the silence model. This is possible because the number of non-silence tokens

in the recognition network is finite, and the likelihood obtained from matching these tokens

to the correct words is higher than matching them to atypical speech sounds.

3.4 Feature Extraction

Given the detailed transcripts generated from Oracle, Simple, or Extended forced align-

ment, we now discuss feature extraction methods to capture speech intelligibility. The

features considered in this work are grouped into four sets: Transcript, Pronunciation,

Rhythm, and Intonation. These sets extract high-level information related to different as-

pects of speech intelligibility. All four sets rely on an utterance’s associated transcript,

which means that the accuracy of the transcript directly affects the quality of the extracted

features. Low-level acoustic features such as intensity, jitter, shimmer, and zero-crossing
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rate, which were investigated in our earlier work [78, 83], as well as the widely used Ge-

MAPS feature set [36], did not work well on this dataset, possibly due to the uncontrolled

recording conditions. For example, the distance between a speaker and the tablet microp-

hone may vary between utterances, which directly affects intensity and pitch tracking.

3.4.1 Transcript Features

We hypothesize that the transcripts (both human-labeled and automatic) encode informa-

tion about the aspects of speech intelligibility targeted in this work. The transcripts include

detailed timing information of each token (word, syllable, or phone). Transcript tokens can

be broadly divided into three groups. Clear speech denotes speech regions that can be

clearly understood. Non-speech corresponds to non-verbal regions in the utterance, such

as silence and background noise. Finally, vague speech includes fillers and pronunciations

that are determined to be unclear by human annotators. Because automatic (Simple and

Extended) forced alignment does not detect fillers and unclear speech, this token category

is only available in Oracle forced alignment.

For each utterance, we first extract duration-based measures from its transcript to cha-

racterize the distribution of different token categories. Specifically, we compute the dura-

tion of non-speech, vague speech, and clear speech, total duration, and voiced duration,

defined as the total duration of both clear and vague speech. To normalize for utterance

length, we extract the fraction of clear speech over total duration and voiced duration. The

next set of transcript features roughly capture dysfluency in a PWA’s speech. We measure

the start time of first speech activity, which may denote utterance initiation difficulty. We

also extract long pause (> 0.4s) and short pause (> 0.15s, ≤ 0.4s) count [119], as well as

the mean [130], median, minimum, maximum, and standard deviation of pause durations.

It should be noted that features involving vague speech are only relevant when using Ora-

cle transcripts. For automatic (Simple and Extended) transcripts, these features are set to

zero and will always be eliminated by feature selection (Section 3.5). In total, 16 transcript
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features are extracted for each utterance.

The next set of features is inspired by diagnostic measures collected by UMAP SLPs

to analyze a PWA’s speech. Specifically, we extract the number of words and syllables

produced overall and per minute. In addition, we extract a similar set of features for content

words only to account for the possibility that non-content words (heuristically defined to

include “is”, “was”, “are”, “were”, “the”, “a”, “will”) have lower impact on the perception

of speech intelligibility, given that they carry relatively less meaning. Post-hoc analysis

indicates that features for content words are complementary and help improve classification

performance. 8 new features are added in total.

3.4.2 Pronunciation Features

Our first set of pronunciation features are based on Goodness of Pronunciation (GOP), a

commonly used metric first introduced by Witt and Young [163]. The idea behind GOP is

to calculate the difference between the average acoustic log-likelihood of a force-aligned

phoneme and that of an unconstrained phone loop. If this number is close to 0, the pro-

nunciation of this phone is more likely to be correct and vice versa. Originally defined to

compute the pronunciation score of a single phoneme, GOP can be modified to accommo-

date an arbitrary phone sequence:

GOP (p) =
1

N
log

P (O|p)
P (O|PL)

(3.1)

where p is the sequence of phones, O is the acoustic observation, N is the number of

frames, and PL is the unconstrained phone loop. To obtain GOP for a word, we force align

its speech over all possible pronunciations to find the best phone sequence p. P (O|p)

and P (O|PL) can be rewritten as a product of HMM transition probabilities and acoustic

likelihoods, where the latter are obtained by dividing the DNN posteriors by state priors.

We extract GOP scores for all words in an utterance by force aligning the speech to its
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associated transcript using the DNN acoustic model trained on healthy speech. Preliminary

experiments indicated that the healthy acoustic model is better suited for GOP computation

than the adapted model, as evidenced by improved classification performance and informa-

tion gain with respect to the Clarity ground-truth labels. We then weight the GOP scores

by word durations, given the early observations that duration-weighted features perform

better in classification, possibly because longer words have more impact on the perception

of the entire sentence. Finally, we extract the mean, standard deviation, median, minimum,

and maximum word-level GOP scores to use as features for the utterance. We repeat this

process once more for content words only, based on the idea that non-content words contri-

bute less to the overall perception of speech intelligibility. Another similar set of features

is extracted at the phone level, which was previously shown to provide complementary

information [83]. In total, 15 GOP features are extracted for each utterance.

In addition to GOP, we extract additional metrics based on how well the speaker’s

speech sample fits into the acoustic model, motivated by similar features used in [97, 128]

to assess speaker-level intelligibility. We first extract isolated word segments for each utte-

rance based on the timing information encoded in its associated transcript. We then report

the 1-, 2-, and 3-best WER when performing IWR on these segments using the adapted

DNN acoustic model (Section 3.2.2). We additionally compute the error rates weighted

by word duration, which may provide complementary information if longer words have

more impact on human perception. Post-hoc feature analysis confirms this hypothesis. We

expect that the error rates will negatively correlate with Clarity scores. 6 new features are

added, increasing the size of the pronunciation feature set to 21.

3.4.3 Reference Alignment

A prerequisite for computing rhythm and intonation scores in this work is the ability to, gi-

ven the transcript of an aphasic speech utterance, extract corresponding alignment profiles

from a reference database of non-aphasic speech [83]. For example, suppose the PWA says
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“The people clapped”, the goal is to find the same sentence spoken by a healthy control

and analyze how the two utterances’ durations and pitch/intensity contours differ. This will

allow us to compute rhythm and intonation scores, respectively. However, extracting an

identical sentence is impractical for two reasons. Firstly, it is not possible to anticipate all

the sentences and words that PWAs will produce. When interacting with the mobile appli-

cation, the PWAs’ speech-language deficits often caused them to verbalize the sentences

differently from what was asked. Secondly, as the application grows and new sentences are

added, it is impractical to maintain a matching reference database.

We hypothesize that the characteristics of an acoustic unit (word, syllable, or phone)

are influenced by its immediate neighbors, motivated by [106] and the ability of triphones

to capture coarticulation. Based on this idea, we developed an algorithm to search for a

reference alignment of any target utterance by gradually increasing the level of granularity

until a match is found. The utterance is first broken into triwords, defined as the words

with their left and right neighbors. The algorithm finds occurrences of each triword in

the reference database which match, in decreasing preference, both left and right contexts,

only left or right context, or no context. If the word cannot be found, the triword is broken

into syllables according to a pronunciation dictionary and the search continues for each

trisyllable. Similarly, if the syllable is not found, it is broken into phones and the search

continues for each triphone. The process is guaranteed to succeed if the reference database

contains instances of all phones. Table 3.2 shows a sample alignment for the target sentence

Target Level Reference Context Instances
the WORD the L 6,436

people SYL. p iy L 65
- PHONE p L + R 12
- PHONE ah L + R 22
- PHONE l L + R 139

clapped WORD clapped R 20

Table 3.2: Reference alignment for the target sentence “The people clapped.” The search
must descend into the syllable and phone level for the out-of-vocabulary word “people.”
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“The people clapped”. Since “people” is out-of-vocabulary, the search breaks it down to

two syllables “p iy” and “p ah l”. The second syllable is also missing, so the search breaks it

down further into individual phones. The algorithm currently assumes that a match without

context at a higher level (word, syllable) is better than a match with context at a lower level

(syllable, phone), which will be investigated further in future work.

Each unit in the reference alignment is augmented with its duration and pitch/intensity

contour to facilitate the computation of rhythm and intonation scores. Details on how to

adapt existing measures of rhythm and intonation to aphasic speech through this alignment

process are covered in the next two sections.

3.4.4 Rhythm Features

Earlier work on rhythmic analysis for language classification proposed features computed

from the target speech such as %V (average proportion of vocalic intervals), ∆C and ∆V

(average standard deviations of consonantal and vocalic intervals) [127], and normalized

Pairwise Variability Index (PVI) [52]. The efficacy of these metrics has been demonstrated,

but they are less suitable for this work because of two reasons. First, these features are typi-

cally computed at the speaker level and may not be stable enough for short utterances that

contain considerably less data. Second, speech patterns across different PWAs are highly

variable, thus computing statistics on their speech alone might not be conducive to gene-

ralization. More recently, Tepperman et al. introduced Pairwise Variability Error (PVE),

a metric that directly compares two speakers’ rhythms [154]. Given duration profiles of a

target and reference utterance, denoted as {t1, t2, ..., tN} and {r1, r2, ..., rN} respectively,

where each element is the duration of an acoustic unit (word, syllable, or phone), PVE

computes the difference of these two profiles:

PV E =

∑N
i=2

∑min(M,i−1)
m=1 |(ti − ti−m)− (ri − ri−m)|∑N

i=2

∑min(M,i−1)
m=1 |ti − ti−m|+ |ri − ri−m|

(3.2)
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where M is a hyperparameter specifying the maximum distance between a pair of units

considered for comparison.

The target duration profile is first obtained by force-aligning the speech to its transcript

using the adapted DNN acoustic model (Section 3.2.2). The reference duration profile

can then be constructed by querying the non-aphasic speech corpus using the Reference

Alignment algorithm. We do not perform linear scaling on the reference durations as in

[154] to retain information about speaking rates and to avoid durational distortion caused

by long pauses in aphasic speech. For each utterance, we compute four PVE scores with

M ranging from 1 to 4 (same as [154]), constituting the utterance’s rhythm features.

3.4.5 Intonation Features

Previous studies suggested that pitch contours in PWAs may exhibit anomalies in sentence-

length utterances [32, 45]. Methods for labeling speech prosody involve the inspection of

pitch contours of phrases and syllables [21, 149]. We compare the contours of aphasic

speech to those of healthy speech using Dynamic Time Warping (DTW), a method previ-

ously used to measure the similarity of pitch contours with differing lengths [129]. Similar

to above, we first obtain a reference and target alignment for each utterance using the Re-

ference Alignment algorithm. We compute the average DTW distance between each target

word produced by the PWAs and the same reference words spoken by the healthy controls.

Prior to computation, the reference contours are shifted to have the same mean as the target;

this accounts for pitch differences across speakers. We also compensate for different spea-

king styles by only using reference words of the healthy speaker that yields the minimum

average DTW distance. We then weight the DTW distance of each unit by its duration,

under the hypothesis that longer units have more impact on human perception. The final

step is to extract the mean, standard deviation, median, minimum, and maximum unit-level

distances to use as utterance-level intonation features.

We extract a similar set of features for intensity contours, based on the idea that they
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also influence the perception of speech intelligibility by modulating emphasis patterns. The

final intonation feature set contains 10 features in total, 5 for pitch and 5 for intensity.

3.5 Classification Methods

We partition the dataset using leave-one-subject-out cross-validation, motivated by the de-

sign goal that the application must generalize beyond individual speakers. Features are

globally z-normalized using statistics from the training set. To avoid overfitting, feature

selection is performed on the training set of each fold using the minimum-redundancy-

maximum-relevance (mRMR) method, which outputs the subset of features that correlate

well with the class label but not with each other [123]. mRMR was used in Fraser et al. [42],

yielding good results in classifying subtypes of primary progressive aphasia. We evaluate

each fold using several commonly-used classifiers, including C4.5 Decision Tree, Logistic

Regression, Naı̈ve Bayes, Random Forest, and Support Vector Machine. Since our dataset

is relatively small (1,503 data points), we did not do model selection and instead used the

default settings specified in the Weka toolkit [57]. We will explore model selection and

speaker-dependent adaptation to improve classification for larger datasets.

3.6 Results and Discussion

3.6.1 GeMAPS Baseline

The Geneva Minimalistic Acoustic Parameter Set (GeMAPS) is a collection of acoustic fe-

atures commonly used for speech emotion recognition (SER) [36]. GeMAPS may contain

useful features for our classification tasks since they share certain similarities with SER.

Table 3.3 shows the UARs achieved on this feature set using the proposed classification

pipeline. All results are statistically significantly worse than those achieved using the pro-

posed features (paired t-test, p < 0.001). Further, we found that adding GeMAPS features
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Clarity Fluidity Prosody
3-class 32.8 (S) 50.1 (L) 44.6 (N)
2-class 58.0 (L) 64.2 (L) 55.8 (L)

S: Support Vector Machine | N: Naı̈ve Bayes | L: Logistic Regression

Table 3.3: Classification Unweighted Average Recall (%) using the Geneva Minimalistic
Acoustic Parameter Set (GeMAPS) features.

to the existing feature set does not improve performance; they actually worsened the results

in certain cases. This may be caused by the non-ideal recording conditions of the dataset.

Further, the proposed high-level acoustic features may already capture relevant informa-

tion encoded by GeMAPS features, thus making them redundant. These observations help

emphasize the importance of feature engineering in this work.

3.6.2 Classification Performance

Table 3.4 summarizes the classification results and the best performing classifier for met-

hods using human-labeled (Oracle) and automatic (Simple, Extended) transcripts. We also

explore a fourth method, Merged, which involves combining features of Simple and Ex-

tended transcripts. These two transcript types may offer complementary information, as

suggested by the WER results in Figure 3.3.

Across the three scoring categories, Clarity has the highest degree of agreement in

humans, followed by Fluidity and Prosody, respectively. However, the trend is different for

automatic classification, where Fluidity is the easiest to classify, followed by Clarity and

Prosody. Similar to our previous works, Prosody remains the most challenging task for

both humans and automatic classifiers [78, 83].

A classification UAR is considered comparable to human performance if it is better or

within one standard deviation from the average human UAR. We can see that Fluidity can

be estimated very reliably, with results comparable to human across all labeling schemes

and transcript types. The results for Clarity suggest that the proposed feature set can capture
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Oracle Simple Extended Merged

3-class
Clarity 67.3∗(N) 59.3∗(N) 61.9∗(N) 64.3∗(N)
Fluidity 76.1∗(N) 73.3∗(N) 73.1∗(N) 74.1∗(N)
Prosody 66.9∗(N) 65.3∗(N) 63.5∗(N) 65.0∗(N)

2-class
Clarity 79.1∗(L) 75.6∗(L) 77.9∗(L) 78.8∗(L)
Fluidity 86.5∗(L) 81.9∗(L) 83.4∗(L) 83.2∗(S)
Prosody 72.5∗(N) 72.6∗(N) 70.4∗(N) 72.3∗(N)

N: Naı̈ve Bayes | L: Logistic Regression | S: Support Vector Machine
∗ = higher than or within one std. deviation from avg. human UAR

Table 3.4: Classification Unweighted Average Recall (%) of our speech intelligibility asses-
sment systems. Oracle denotes results using human-labeled transcripts. Simple, Extended,
and Merged indicate results using automated transcripts.

this category more effectively at the coarser 2-class level, producing results comparable to

human, but is not sensitive enough for the 3-class case. The opposite is true for Prosody,

where 3-class results are closer to human performance. These observations suggest that

labeling schemes should be adjusted accordingly depending on the target scoring category.

We compare the classification performance of the four transcript types using repeated

measures Analysis of Variance (ANOVA) followed by paired t-test, both with a significance

level of 0.05. We use speaker-level accuracies as observations and repeat the test for each

combination of labeling scheme and scoring category. These tests show that 3-class Clarity

using Oracle transcripts is statistically significantly better (s.s.b.) than using Simple (p =

0.035) and Extended (p = 0.008) transcripts, but not Merged (p = 0.079). Similarly, 2-class

Clarity with Oracle transcripts is s.s.b. than with Simple (p = 0.021), but not Extended

(p = 0.109) and Merged (p = 0.329). 2-class Fluidity is significantly better for Oracle

compared to all other methods, Simple (p = 0.012), Extended (p = 0.001), and Merged (p

= 0.017). Of the three automatic methods, Merged performs the best and is the closest to

Oracle, confirming the intuition that the two transcript types, Simple and Extended, offer

complementary information. Clarity performance with Merged is s.s.b. than with Extended

for 3-class (p = 0.006) and Simple for 2-class (p = 0.038). Merged generally performs better

than or comparable to both Simple and Extended for the other categories, but the differences
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are not statistically significant.

In all 3-class classification tasks, Naı̈ve Bayes yields the highest UAR. On the other

hand, Logistic Regression and SVM outperform Naı̈ve Bayes in the 2-class version of

Clarity and Fluidity. One possible explanation is the lack of per-class training data in the

3-class labeling scheme. Naı̈ve Bayes is known to perform well when training data are

scarce [114]. More complicated algorithms, specifically Logistic Regression and SVM

in this case, begin to outperform Naı̈ve Bayes as the amount of per-class data increases

when switching to 2-class. The same line of reasoning can also explain why Prosody is

an exception to this phenomenon. The label “4” only constitutes 25.7% of the ground-

truths and will suffer from training data scarcity in both labeling schemes. We use all

classifiers with default hyperparameters in this work. In future work, we will look into

model selection, which can be beneficial for methods with many hyperparameters.

Finally, we analyze the correlation between speaker-level classification accuracies and

various speaker characteristics available in the dataset. We limit the analysis to Oracle

transcripts to eliminate variations caused by automatic transcription errors. A statistically

significant correlation is found between age and 3-class Fluidity (r = 0.60, p = 0.011), as

well as AOS and 2-class Clarity (r = 0.61, p = 0.009). This implies that 3-class Fluidity

can be predicted more reliably for more elderly speakers, and 2-class Clarity is easier to

estimate for those with AOS. These results may help us personalize the model using readily

available speaker properties.

3.6.3 Feature Analysis

The goal of this section is to identify the most relevant features for each scoring category, as

well as how their relevance changes when moving from human-labeled (Oracle) to automa-

tic (Merged) transcripts. We first perform mRMR on the entire dataset to partly eliminate

features with high correlation. These features are grouped into six sets:

• ROS: rate of speech features, e.g., number of syllables and words spoken per minute,
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Clarity Fluidity Prosody
Oracle Merged Oracle Merged Oracle Merged

ROS 0.17 (2) 0.12 (3) 0.37 (4) 0.31 (6) 0.14 (2) 0.13 (2)
DUR 0.08 (2) 0.17 (1) 0.32 (3) 0.32 (3) 0.10 (5) 0.14 (4)
GOP 0.21 (8) 0.17 (15) 0.11 (2) 0.13 (4) 0.06 (3) 0.06 (3)
IWR 0.17 (3) 0.18 (5) N/A (0) N/A (0) 0.02 (1) 0.05 (1)
PVE 0.21 (2) 0.15 (3) 0.40 (4) 0.25 (4) 0.16 (3) 0.12 (2)
DTW 0.08 (1) 0.03 (1) 0.10 (4) 0.07 (4) 0.04 (4) 0.04 (3)

Table 3.5: Mean Information Gain for different feature sets across scoring categories (2-
class) and transcript types. Numbers inside the parentheses denote the number of features
from each set selected by minimum-redundancy-maximum-relevance (mRMR).

phonation rate (Section 3.4.1)

• DUR: duration features, e.g., duration of pauses and filler (Section 3.4.1)

• GOP: word and phone GOP scores (Section 3.4.2)

• IWR: isolated word recognition features (Section 3.4.2)

• PVE: PVE features (Section 3.4.4)

• DTW: pitch and intensity DTW features (3.4.5)

We then compute the mean Information Gain (IG) for each feature set with respect to the

2-class ground-truth labels (Table 3.5). 3-class labels are omitted from the analysis given

that they produce very similar results.

Pronunciation (GOP, IWR) features are the most prominent indicators of Clarity in

terms of the number of features selected and IG. On the other hand, Fluidity and Prosody

are mostly dominated by transcript (ROS, DUR) and rhythm (PVE) features. Intonation

(DTW) features are selected more frequently in Fluidity and Prosody; however, they con-

tribute relatively little in terms of IG for all cases. The overall IGs for different scoring ca-

tegories roughly mirror the automatic classification performance, where Fluidity has both

the highest information gain and UAR, followed by Clarity and Prosody, respectively. This

suggests that there is room for improvement in feature engineering for Clarity and Prosody.
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Comparing the selected features of Oracle and Merged highlights the impact of auto-

matic transcript generation on the effectiveness of particular features. The general structure

of the two lists remains the same, where GOP and IWR figure prominently in Clarity, while

ROS, DUR, and PVE dominate Fluidity and Prosody. There are several differences bet-

ween the two transcript types, however. GOP features have higher IG in the Oracle version

of Clarity than Merged, suggesting that GOP is affected by less accurate transcripts to a

certain extent. At the same time, IWR can partly compensate for the degradation in GOP

when using automatic transcripts, as evidenced by its relatively stable IG. For Fluidity,

PVE experiences a decrease in IG when moving from Oracle to Merged and gets displaced

by ROS and DUR as the most important features. This suggests that PVE, much like GOP,

is more dependent on the transcript quality. Of the two transcript features, ROS is more

affected by the associated transcripts, where as DUR is relatively stable.

There are two potential solutions to address the feature differences between Oracle

and Merged. One, the engineering of new features that are more robust toward inaccurate

transcripts. Two, improvements in accuracy of automatic transcript generation. We will

explore these directions in future work.

3.7 Conclusion

In this chapter, we presented one of the first comprehensive solutions for estimating as-

pects of aphasic speech intelligibility in a completely automatic manner. We described

techniques for automatic transcript generation, including DNN acoustic modeling, out-of-

domain adaptation, and forced-alignment-based language modeling. We presented novel

features to capture speech intelligibility, some of which are adapted from clinical practice,

such as the rate of word and syllable production. The results demonstrated the potential of

automatic approaches for classifying speech intelligibility. Most notably, Fluidity can be

estimated at human-level accuracy using automatically generated transcripts. However, the
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estimation of Clarity and Prosody has not yet achieved human-level performance.

Moving forward, there are two separate problems we need to tackle in order to bridge

the gap between human and automatic performance in classifying qualitative measures of

aphasic speech. We need to make oracle methods approach human-level accuracy by ma-

king advances in feature engineering, feature selection, and classification algorithms. Lex-

ical and linguistic features [42,43,53,68,122] may provide further improvement given that

aphasia is primarily a language disorder. We investigate these feature types in Chapter 6

for estimating aphasia severity from spontaneous speech. While mRMR generally works

well in practice, other feature selection methods that are directly tied to classification per-

formance may result in additional gain. Lastly, we will look into hyperparameter tuning

and model selection to better accommodate the test speaker.

The second problem that needs to be solved is to make fully automatic methods ap-

proach oracle-level performance by making advances in ASR, specifically acoustic and

language modeling. Aphasic speech contains many abnormalities, including fillers, false

starts, mispronunciations, word repetition, insertion, substitution, and deletion with respect

to the target prompt. We need specialized acoustic and language models to recognize these

atypical patterns effectively. Personalized acoustic and language models are promising,

given that the corpus contains a heterogeneous set of speakers and a general model may

not be the most appropriate [26–28, 146, 147]. Auxiliary input features that capture rele-

vant speaker characteristics can potentially mitigate the high degree of speaker variability

in disordered speech [3, 25]. We will investigate methods for improving ASR performance

on aphasic speech in the next chapter.

Classifying speech intelligibility is only one among many other problems that need to

be solved in order to enable effective in-home exercise for aphasia rehabilitation. PWAs

require meaningful feedback during the course of an exercise. Additional research is nee-

ded to leverage classification results to produce concrete feedback that the PWAs can use

to improve their speech. Provided that PWAs may have limited motor control and audio-
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visual perception impairment, more work in user interface design is required to develop an

application that is both easy to use and sufficiently engaging.

3.8 Work Published

The work presented in this chapter was published in the following articles:

1. Duc Le, Keli Licata, Elizabeth Mercado, Carol Persad, and Emily Mower Provost.

“Automatic Analysis of Speech Quality for Aphasia Treatment,” IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). Florence, Italy.

May, 2014.

2. Duc Le and Emily Mower Provost. “Modeling Pronunciation, Rhythm, and Intona-

tion for Automatic Assessment of Speech Quality in Aphasia Rehabilitation.” 15th

Annual Conference of the International Speech Communication Association (INTER-

SPEECH). Singapore. September, 2014.

3. Duc Le, Keli Licata, Carol Persad, and Emily Mower Provost, “Automatic Asses-

sment of Speech Intelligibility for Individuals With Aphasia,” IEEE Transactions on

Audio, Speech, and Language Processing (TASLP), 24:11(2187-2199). November,

2016.
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CHAPTER 4

Improving Aphasic Speech Recognition

4.1 Introduction

In Chapter 3, we proposed an automated intelligibility assessment system for constrained

aphasic speech. Our system used modified forced alignment in place of traditional au-

tomatic speech recognition (ASR) for transcript generation. This technique was possible

because the target prompts were known and did not deviate significantly from the produ-

ced utterances, due to the controlled recording environment and restricted lexical content.

However, this is an unrealistic assumption for unconstrained speech, which plays an im-

portant role in everyday interaction of persons with aphasia (PWAs). Conventional ASR is

therefore required to enable automatic speech-language assessment for this type of speech.

ASR for aphasic speech is considerably challenging for a number of reasons. First, a

PWA’s pronunciation can be distorted due to co-occurring motor control disorders such as

apraxia of speech (AOS) or dysarthria. Second, language impairments may result in halting

speech that contains jargon and various types of paraphasias, all of which can potentially

induce recognition errors. Third, the size of most aphasic speech datasets is relatively small,

partly due to the difficulties involved in collecting this type of data at a large scale. Fourth,

the high variability among PWAs makes it difficult for models to generalize to unseen

speakers, especially when training data are limited. As a result, the majority of previous

works in aphasic speech assessment had to use mismatched acoustic models trained on
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external datasets, and ASR performance on aphasic speech is not well understood.

In this chapter, we present a two-part study that aims to improve aphasic speech recog-

nition by leveraging data from AphasiaBank [96] (Section 2.2). The initial study establishes

the first large-vocabulary continuous speech recognition (LVCSR) baseline on English Ap-

hasiaBank using Deep Neural Network (DNN) acoustic models trained on Mel-frequency

cepstral coefficient (MFCC) features augmented with utterance-level i-vectors. The results

show that appending i-vectors to frame-level acoustic features leads to a 3.1% to 15.1%

relative reduction in per-speaker Phone Error Rate (PER), with more severe speakers recei-

ving larger improvement. We also investigate out-of-domain adaptation methods to adapt

AphasiaBank models to the University of Michigan Aphasia Program (UMAP) dataset

(Section 2.1). The proposed discriminative pretraining method results in a mean relative

PER reduction of 18.8% per speaker, with a standard deviation of 9.1%.

Our follow-up study extends the previous ASR training methods in four ways to further

improve aphasic speech recognition performance. First, we replace word-level phonolo-

gical and neologistic errors with their known targets to make AphasiaBank transcripts,

originally transcribed in CHAT format [95], more compatible with traditional ASR sys-

tems. Second, we use log Mel filterbank coefficient (MFB) features in place of MFCCs;

the former have recently become the standard input for the large majority of state-of-the-

art neural network-based acoustic models. Third, we augment the original training set with

41.7 hours of AphasiaBank data collected from healthy controls. Finally, we replace DNN

with a multi-task deep Bidirectional Long-Short Term Memory Recurrent Neural Network

(BLSTM-RNN) acoustic model that predicts the senone (i.e., hidden state within triphone

HMM) and monophone labels simultaneously. Together, these changes result in an overall

Word Error Rate (WER) of 37.37%, a relative improvement of 30.8% compared to the

best DNN system from the first study.

This work helps further the understanding of aphasic speech recognition, provides in-

sights into the types of speakers who would benefit from different adaptation techniques,
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demonstrates the potential of AphasiaBank in ASR, and suggests that automatic speech-

language assessment of unconstrained aphasic speech, which relies heavily on ASR, may

be feasible in certain contexts. The ASR systems described in this work will be an impor-

tant component in the remaining chapters of this dissertation.

4.2 Related Work

4.2.1 Under-Resourced ASR

Disordered speech recognition also shares important similarities with low-resource ASR

due to the issue of data scarcity. Common techniques for handling this problem include

deep bottleneck [47,167] or posterior-based [8] features used within tandem-based systems

[63], and discriminatively pretrained DNN acoustic model using out-of-domain data [156].

A shared theme of these methods is the use of external speech (e.g., multilingual data) for

enhancing the performance of in-domain models. In the context of ASR for disordered

speech, out-of-domain data usually consist of healthy speech [3, 25]. However, there is

an inherent mismatch between healthy and disordered speech [27], suggesting that healthy

speech data may not be the most appropriate choice for out-of-domain adaptation. We

leverage aphasic speech directly as out-of-domain data in this work.

4.2.2 ASR with i-Vectors

i-Vector front-end analysis [33, 50] has emerged as the state-of-the-art in speaker verifi-

cation [133] and a variety of other speech processing tasks [7, 48, 134, 165], for example:

language detection [48,165], accent detection [7], age estimation [134], and compensation

for gender in speaker recognition [144]. The i-vector technique assumes that there is a diffe-

rence between a general model, called a universal background model (UBM), and a model

associated with a subset of speech data and that this difference lies in a low-dimensional
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space [133]. This space is called the total variability space because it captures all sources of

variability in speech such as speaker identity, language, channel information, age, gender

and emotion. A speaker’s acoustic profile is formulated as: M = m + Tw, where m is a

speaker-independent and session-independent supervector, T is a low rank matrix, and w

is a random vector (normally distributed N(0, I)). T is trained using an Expectation Max-

imization (EM) algorithm [71]. The components of w form the i-vector, which contains

information describing how the speaker is different from a general subject population.

Recent studies have shown that appending i-vectors to frame-level acoustic features

leads to significant improvement for DNN-based acoustic models [46, 140, 143, 153]. Sys-

tems having i-vectors as auxiliary features can be thought of as performing bias adaptation

based on the input data, leading to better generalization. The i-vector approach is promi-

sing for handling the high speaker variability present in disordered speech; however, its

application to this type of data has been limited.

4.3 Data

4.3.1 ApahasiaBank

In this work, we consider utterances in the core AphasiaBank dataset (Section 2.2.1) spo-

ken by PWAs. We resample all audio files to 16kHz and use Kaldi [124] to extract two sets

of frame-level acoustic features: (1) 12-dimensional MFCCs plus energy, along with the

first and second order derivatives, and (2) 40-dimensional MFBs. We use a 25ms window

and 10ms frame shift for both feature types. The features are z-normalized at the speaker

level. Finally, we perform speaker-independent 4-fold partitioning to evaluate ASR perfor-

mance on unseen speakers. 25% of speakers are withheld from each sub-dataset to form

the test set. We further withhold 15% of training speakers from each sub-dataset to form

a development set. The test sets across these four folds form a complete partition of the

dataset. The amount of per-fold training data ranges from 55.1 to 58.7 hours.
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The core AphasiaBank dataset also contains 41.7 hours of healthy speech data. In the

second study, we consider augmenting each fold-specific training set with this collection

of healthy speech, under the hypothesis that having additional training data will improve

recognition performance.

4.3.2 UMAP

The UMAP dataset was used in Chapter 3 for studying automatic speech intelligibility as-

sessment. A major bottleneck in this work was the reliance on predefined speech prompts.

Achieving good ASR performance on UMAP will move us closer to deploying the system

for real-world usage with spontaneous speech as input. We split each UMAP utterance into

continuous segments of intelligible speech, each of which contains on average 2 to 4 words.

We will perform ASR evaluation on these segments. The segment-level data contains in

total 2.1 hours and 12,661 instances of 1,073 unique words.

We apply an identical feature extraction pipeline used in AphasiaBank. ASR evalua-

tion will be done through leave-one-speaker-out cross-validation, which results in 17 folds

where data from one speaker are withheld for testing and the rest are used for training. We

further withhold 15% of utterances from each training speaker to form a development set.

The size of the per-fold training set ranges from 1.7 to 2 hours.

4.4 Initial Work

4.4.1 AphasiaBank Transcript Preparation

Utterances in AphasiaBank were transcribed using the CHAT format [95]. The transcrip-

tions contain a variety of special codes to aid with language sample analysis, such as

word-level and utterance-level errors [4], sound fragments, repetitions, non-verbal acti-

ons, among others. The first row of Table 4.1 shows an example raw transcript containing
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Raw And I &uh bit [: get] [* s:ur] out pea [: the] [* p:w]
pin@k@u [: peanut] [* p:n] b2D@@u [: butter] [* p:n].

Cleaned And I <FLR> bit out pea <U1> <U2>.

Table 4.1: Example AphasiaBank transcript and its cleaned version.

a sound fragment &uh, a semantic error bit with known target get, a real-word phonolo-

gical error pea with known target the, and two non-word phonological errors with known

targets, peanut and butter. The actual pronunciations of these non-word phonological er-

rors are transcribed in the International Phonetic Alphabet (IPA) format, marked with the

@u trailing symbol. CHAT transcripts contain a rich source of information about a PWA’s

speech-language patterns that enable various forms of manual analyses. However, they are

not suitable targets for standard ASR and thus need to be simplified.

We propose a method to process CHAT transcripts to be compatible with traditional

ASR systems while preserving as much of the original pronunciations as possible. We

replace all sound fragments and interjections, in addition to um and uh, with a generic fil-

ler token, denoted by <FLR>. Other special tokens include <SPN> (spoken noise, e.g.,

onomatopoeia, babbling), <LAU> (laughter), and <BRTH> (breathing sounds). IPA

strings are converted to special hashed tokens such that the same IPA pronunciations map

to the same hash. The second row of Table 4.1 shows an example cleaned transcript, in

which &uh is mapped to <FLR>, and the two non-word phonological errors pin@k@u

and b2D@@u are replaced with hashed tokens <U1> and <U2>. All ASR-related experi-

ments involving AphasiaBank in this section are conducted on cleaned transcripts.

4.4.2 Lexicon Preparation

The lexicon used in this work is based on the CMU dictionary1, containing 39 regular pho-

nes, plus five special phones: silence, <FLR>, <LAU>, <SPN>, and <BRTH>. Each

IPA pronunciation is heuristically mapped to a sequence of CMU phones. For example,

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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AphasiaBank UMAP

GMM
CD tied-state triphones trained with Maximum Likelihood.

Parameters:
25,000 Gaussians; 3,000 senones. 8,000 Gaussians; 700-800 senones.

DNN

5 hidden layers, 1024 units per layer, sigmoid activation, SGD training.
27-frame context windows, HMM-GMM alignments, CE objective.
W/o i-vectors: exponential-decay (0.4 initial rate, 0.05% threshold).

No regularization. 2× 10−5 L2 regularization weight.
W/ i-vectors: step-decay (0.4 initial rate, 0.01 minimum rate).

10−5 L2 regularization weight. 2× 10−5 L2 regularization weight.

i-vectors

UBM: 1024 Gaussians trained on 9-frame spliced MFCCs +
40-dim LDA on senones. Only voiced frames are used.

Type of i-vector:
32-dim utterance-level. 32-dim session-level.

Decoding Continuous phone loop with trigram phone-level language model.

Table 4.2: Training and decoding methods for intra-dataset automatic speech recognition
experiments. See text for description of learning schedule and i-vector type.

pin@k@u and b2D@@u are converted to p iy n ah k and b ah dh er, respectively. Finally,

we estimate the pronunciations of the remaining OOV words using the LOGIOS lexicon

tool2, which makes use of normalization, inflection, and letter-to-sound rules.

4.4.3 Intra-Dataset Speech Recognition

In this section, we outline our experiments for intra-dataset speech recognition, which will

result in a speaker-independent cross-validated PER for each dataset. We consider two clas-

ses of methods, one based on the traditional context-dependent tied-state triphone HMM-

GMM model, and one based on the more modern hybrid HMM-DNN system [64, 110].

Two versions of HMM-DNN are trained, one with and one without i-vectors in the input

features. Details about this experiment are summarized in Table 4.2. We use Kaldi [124]

for HMM-GMM modeling and i-vector extraction, and Theano [155] for DNN training.

Additional data for replicating this work, such as fold selection, transcription, and audio

2http://www.speech.cs.cmu.edu/tools/lextool.html
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segmentation, are available online3. For the remainder of this section, we will elaborate on

the hyperparameter choice, learning schedule, and i-vector extraction.

4.4.3.1 Hyperparameter Selection

HMM-GMM and HMM-DNN both require a number of hand-picked hyperparameters,

such as the number of Gaussians and tied-states for the former, and the DNN architecture

and training recipe for the latter. Hyperparameters for AphasiaBank were selected based

on the average PER achieved on the development set across all four cross-validation folds.

On the other hand, hyperparameters for UMAP were selected using an oracle method that

optimizes for test PER. Doing so helps us obtain the strongest UMAP baseline to compare

against out-of-domain adaptation techniques described in later sections.

4.4.3.2 Learning Schedule

Learning schedule refers to the adjustment of learning rate after each DNN stochastic gra-

dient descent epoch. We find that different learning schedules must be used for models

with and without i-vectors to achieve optimal results.

Exponential-decay: This schedule first trains the network at a fixed initial learning

rate (e.g., 0.4). Once the change in frame-level error on the development set drops below a

threshold (e.g., 0.05% absolute), we halve the learning rate after every epoch. The training

process terminates once the change in development error once again drops below the thres-

hold. We find that this schedule is appropriate for models without using i-vectors, possibly

because it finishes faster and avoids overfitting the network to the training set, which is

easier to do without having additional features to model.

Step-decay: This schedule is similar to the one used in [110]. Instead of halving the

learning rate after every epoch, it halves the learning rate and restores previous network

weights whenever the development error does not improve. The training process terminates

3http://www.umich.edu/ ducle/IS16appendix
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once the learning rate drops below a minimum value (e.g., 0.01). We find that this schedule

is appropriate for less stable learning process, such as when i-vectors are used.

4.4.3.3 i-Vector Extraction

i-Vectors are typically extracted at the speaker level over a relatively large amount of data.

However, this approach requires all data from a speaker to be available before decoding,

which is often not possible in ASR. The alternative is to extract utterance-level i-vectors,

which have been shown to improve ASR performance [143]. In this work, AphasiaBank

i-vectors are extracted on a per-utterance basis. On the other hand, this type of i-vector

does not work well on UMAP, possibly because the utterances in UMAP are excessively

short and do not contain sufficient distinguishing information. We instead use session i-

vectors, which are extracted from speech data produced by the PWA in one single recording

session4. There are 125 sessions, each containing 1 minute of speech on average.

The input features are transformed before UBM training and i-vector extraction to better

reflect variability in the phoneme space, following [140]. We first perform energy-based

Voice Activity Detection (VAD) to discard silent frames. Next, nine consecutive MFCC

frames are spliced and projected down to 40 dimensions using Linear Discriminant Analy-

sis (LDA), with triphone states as the target class labels. The i-vector dimension is set to

32 for both datasets, based on preliminary experiments and the system described in [46].

4.4.3.4 Results

Table 4.3 summarizes the mean and standard deviation of speaker-level PERs on Aphasia-

Bank, where the speakers are grouped by the level of severity defined by WAB-R AQ.

We first turn attention to the relatively high PERs achieved on this dataset. This may

be caused by the abnormal speech patterns associated with aphasia that are difficult to

capture with conventional ASR techniques. Speech data in AphasiaBank were recorded

4Session-level i-vectors are not the same as speaker-level i-vectors since a speaker typically has multiple
recording sessions.
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Severity No i-vectors With i-vectors
mild 48.95 ± 11.55 47.41 ± 10.46

moderate 57.04 ± 13.22 52.79 ± 10.37
severe 65.44 ± 18.65 61.00 ± 13.20

v. severe 89.27 ± 29.14 75.81 ± 18.65
unknown 60.36 ± 29.75 54.35 ± 18.64

Table 4.3: AphasiaBank per-speaker Phone Error Rate (PER), grouped by severity.

using video cameras situated far away from the speaker. This far-field recording condi-

tion is known to significantly reduce recognition performance. Two observations can be

made from these results. One, if we want to apply ASR technology to help improve the

well-being of PWAs, it is crucial to constrain the recognition problem in some way, such

as restricting the vocabulary or task grammar. Aphasic speech may be too challenging for

unconstrained LVCSR to achieve an acceptable recognition accuracy. Two, it is important

to realize that ASR is only a precursor and not an end goal for speech-based technology

aimed toward PWAs. It will be interesting to investigate tasks that can be performed reaso-

nably well given imperfect ASR output. This will help us better understand what kind of

ASR-dependent technology is feasible for aphasic speech.

These results also show that both the mean and standard deviation of per-speaker PERs

tend to increase as a PWA’s aphasia becomes more severe on the WAB-R AQ scale. This is

a useful observation as it shows that AQ, despite being a measure of general language skills

and not of speech itself, can be a reasonable estimate for the effectiveness of ASR. Being

able to predict how well an ASR system will work for a speaker using readily available

information such as AQ may help the system adapt to that speaker more quickly and ef-

fectively. A natural extension of this observation is to use a speaker’s severity level directly

as input to the DNN, such as encoding it as a one-hot vector. However, our preliminary

experiments indicate that this approach does not yield additional improvement on top of

i-vectors. We will explore different methods to augment acoustic modeling with PWAs’

diagnoses in future work.
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Finally, we note the effectiveness of i-vectors for aphasic speech recognition. Models

that use i-vectors in the input features experience a reduction in both the mean and stan-

dard deviation of per-speaker PER. While the relative improvement for speakers with mild

aphasia is relatively small (3.1%), the improvement is more noticeable for those with mo-

derate to severe (6.8% – 7.5%), and especially very severe aphasia (15.1%). Christensen et

al. noted that although their out-of-domain adaptation technique is quite effective, speakers

with more severe dysarthria tend to benefit less from adaptation [25]. Our results suggest a

complementary method for improving the recognition rate of the more severe population.

4.4.4 Adapting AphasiaBank to UMAP

We consider two methods to use AphasiaBank to improve recognition results on UMAP.

merged: In this method, we merge the full AphasiaBank corpus’ training and deve-

lopment set with the UMAP counterparts, and train a new DNN using the same recipe

and architecture described in Table 4.2. This method allows the network to directly model

UMAP data while also modeling the large amount of speech present in AphasiaBank. A

potential disadvantage of this method is that it might not model UMAP data extensively

since UMAP contributes only a relatively small fraction of the training data.

dpAB: We investigate discriminative pretraining with AphasiaBank data inspired by

the work of Thomas et al. for low-resource ASR [156]. The authors in [156] proposed

retraining only the softmax layer while keeping the lower layers fixed. However, we find

that retraining the entire AphasiaBank DNN on the UMAP training set, using the step-

decay learning schedule and no regularization, yields better results. This suggests that

the high-level representation learned by AphasiaBank DNN does not transfer directly to

UMAP data. This indicates a large mismatch between the two datasets, and further suggests

that methods which aim to constrain the shift in parameters from the original model by

inserting additional layers on top of a fixed network [90] or regularizing the change in

output distribution [168] may have limited efficacy. Speaker adaptation on the same dataset,
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Figure 4.1: UMAP per-speaker Phone Error Rate (PER) using Hidden Markov Model and
Gaussian Mixture Model (HMM-GMM) trained on UMAP data. x-axis denotes each sub-
ject’s severity level according to the revised Western Aphasia Battery Aphasia Quotient.

Model No i-vectors With i-vectors
AB-DNN 4.8 ± 15.1 3.4 ± 15.5

UMAP-DNN -1.0 ± 7.6 2.9 ± 9.0
merged -14.7 ± 9.3 -16.6 ± 8.9
dpAB -18.8 ± 9.1 -15.9 ± 7.6

Table 4.4: Relative change (%) in UMAP per-speaker Phone Error Rate (PER) compared
to the Hidden Markov Model and Gaussian Mixture Model (HMM-GMM) baseline. A
negative value means reduced PER. AB-DNN and UMAP-DNN are Deep Neural Networks
(DNNs) trained only on AphasiaBank and UMAP data, respectively.

which does not suffer from such data mismatch, may benefit more from these approaches.

We also considered using deep bottleneck features (DBNFs) generated by AphasiaBank

DNN in a tandem-based system. However, our preliminary experiments were not able to

outperform the HMM-GMM baseline. Again, this may be due to the high level of mismatch

between AphasiaBank and UMAP. As a result, we do not consider DBNFs here.

4.4.4.1 Results

Figure 4.1 shows the PERs for different speakers in the UMAP dataset using the HMM-

GMM baseline model. The PERs range from 20.8% to 71.2% (mean 39.7%, std. deviation

11.1%). We will estimate the effectiveness of different adaptation methods based on the

resulting change in PER for each speaker. These are summarized in Table 4.4.
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The first two rows, AB-DNN and UMAP-DNN, refer to DNN acoustic models trained

only on AphasiaBank and UMAP data, respectively. Compared to the baseline, the re-

sulting PERs for both models improve for some speakers and worsen for others, and there

is no clear advantage to using either model. The fact that UMAP-DNN was not able to out-

perform the HMM-GMM baseline reinforces the data scarcity problem in aphasic speech

recognition. Looking at individual speakers, AB-DNN tends to work better for those who

are similar to the typical speakers in AphasiaBank, namely those with mild and fluent ap-

hasia. On the other hand, there is no obvious pattern as to which type of speaker benefits

from the UMAP-DNN model.

Of the two adaptation methods, the best result (18.8% ± 9.1% relative improvement)

is achieved with dpAB, which uses UMAP data to finetune a DNN that was discriminatively

pretrained on AphasiaBank. Speakers with mild severity receive the largest improvement

(22.5%± 7.5%), while those with fluent and non-fluent aphasia experience a similar degree

of PER reduction (19.2% ± 9.3% vs. 18.3% ± 9.0%). On the other hand, the merged

adaptation method provides more benefit to those with fluent aphasia, resulting in 18.7%

± 6.1% relative improvement compared to 14.7% ± 10.5% for non-fluent.

Finally, we analyze the effect of i-vectors on adaptation. Using i-vectors resulted in

better performance for AB-DNN and merged, but worse performance for UMAP-DNN and

dpAB. The common theme among the two methods that were not able to take advantage of

i-vectors is that only UMAP i-vectors were used for DNN training. On the other hand, using

UMAP i-vectors directly in testing (AB-DNN) or training them jointly with AphasiaBank i-

vectors (merged) proved beneficial. The 125 UMAP session i-vectors are possibly too few

in number and too dissimilar for the network to take advantage of in a speaker-independent

setup. Additional work is needed to leverage i-vectors in limited-data situations.
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Raw And I &uh bit [: get] [* s:ur] out pea [: the] [* p:w]
pin@k@u [: peanut] [* p:n] b2D@@u [: butter] [* p:n].

Cleaned And I <FLR> bit out pea <U1> <U2>.
Target And I <FLR> bit out the peanut butter.

Table 4.5: Example AphasiaBank transcript and its two processed forms. Cleaned
transcripts preserve the original pronunciation of each word. Target transcripts replace
all word-level errors, excluding semantic errors, with their known targets (if available).

4.5 Follow-Up Study

Having established an initial LVCSR baseline on AphasiaBank using DNN acoustic mo-

dels trained on MFCCs augmented with utterance-level i-vectors, we now aim to further

improve recognition accuracy on AphasiaBank. This is achieved with four major changes

to the existing ASR training methods, which we describe in detail in the following sections.

4.5.1 Target AphasiaBank Transcripts

We previously proposed a way to clean raw AphasiaBank transcripts to make them more

compatible with standard ASR systems. While the resulting cleaned transcripts preserve

the original pronunciations and are therefore suitable targets for acoustic modeling, the

retained word-level errors are difficult to recognize for two reasons. First, they are not well

captured by the language model given the irregular language patterns associated with word

errors. Second, many word-level errors, especially neologistic and non-word phonological

errors, are not present in the training lexicon and will therefore be unrecognizable. We

mitigate this problem by producing a second set of target transcripts in which all word-level

errors, excluding semantic, are replaced with their known targets. An example is shown in

Table 4.5, where pea <U1> <U2> is replaced with the peanut butter. Semantic errors

are retained because they may have completely different pronunciations than their targets,

thus replacing them will cause significant difficulties for ASR. These target transcripts

better reflect a PWA’s language usage patterns and will be used for language modeling as
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well as ASR evaluation. Acoustic model training will still make use of cleaned transcripts.

4.5.2 Frontend

The acoustic models employed in this section will make use of MFB features instead of

MFCCs. The former have recently become the standard input in the majority of state-of-

the-art neural network-based ASR systems because modern deep learning acoustic models

can better exploit the inter-correlation of MFBs compared to the decorrelated MFCCs. Our

i-vector extraction system uses GMMs with diagonal covariance matrices and will still

make use of LDA-transformed MFCC features.

4.5.3 Control Data

We augment the original training data with AphasiaBank healthy control speech, which

amounts to 41.7 hours across 187 speakers. These additional data are used in both acoustic

and language model training. We hypothesize that including this set of healthy speech

will improve the generalizability and accuracy of our models. AphasiaBank healthy data

are collected with similar elicitation protocols as those used for aphasic speech. As a

result, their lexical content will resemble that of the test data to a certain extent and help

improve language modeling. In addition, speech production difficulties in aphasia may

lead to inaccurate frame-level target labels in the original training set and negatively affect

acoustic modeling. Adding healthy speech, which is likely to have accurate frame-level

target labels with similar distribution as those in the test set (due to the similar lexical

content), will help mitigate this problem.

4.5.4 Multi-Task BLSTM-RNN Acoustic Model

We replace DNN with BLSTM-RNN for acoustic modeling, motivated by the fact that the

latter has recently achieved state-of-the-art results on various ASR benchmarks [54, 136,
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Figure 4.2: Deep multi-task Bidirectional Long-Short Term Memory Recurrent Neural
Network (BLSTM-RNN) acoustic model.

138]. Further, we train the model to simultaneously predict both the correct senone and

monophone labels, a well-known technique that can improve classification performance

due to its regularization effect [9, 10, 142]. In addition to regularizing the network, this

multi-task model has two additional advantages when applied to aphasic speech. First,

the more robust but less fine-grained monophone labels can act as a correcting signal for

senone labels, which may be inaccurate due to the speech production difficulties associated

with aphasia. Second, the monophone output induces a multi-dimensional time series that

can be used to compactly represent words and phones. These time series, also referred to

as posteriorgrams, help extract features for paraphasia detection (Chapter 5) and aphasia

severity estimation (Chapter 6).

Following [79], we augment each MFB frame with five left and five right neighbors

in addition to the corresponding utterance-level i-vector, resulting in 472 dimensions per

frame5. These features are modeled with a stacked BLSTM-RNN comprising four hidden

layers, each with 1,200 units (600 for forward, 600 for backward). The model has two

parallel softmax output layers corresponding to the senone and monophone labels (Figure

4.2). The number of senones varies across folds, ranging from 4,472 to 4,563.

5Input features to RNN acoustic models are traditionally single acoustic frames. In our work, we found
that using single and multiple frames (context windows) as input features gives very similar recognition rates
(less than 0.4% relative difference).
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The model is trained using the Adam optimizer [75] and total Cross Entropy (CE) loss

weighted equally across the two tasks. We utilize full Backpropagation Through Time

(BPTT), limited to utterances that are shorter than 25 seconds. Only less than 0.5% of trai-

ning utterances are longer than 25 seconds, many of which have badly aligned transcripts

that may negatively affect model training. Therefore, we hypothesize that excluding these

utterances will have minimal impact on acoustic model performance.

We use 0.4 dropout and an initial learning rate of 0.001, along with early stopping based

on the development senone Frame Error Rate (FER) and step-decay learning schedule [82].

After each training epoch, we halve the current learning rate and restore the previous mo-

del parameters if the senone FER on the development set increases. The training process

finishes once the learning rate drops below 0.00005.

Single-Task Baseline: To analyze the effect of multi-task learning, we use an identical

method to train BLSTM-RNN acoustic models with only a single senone output layer.

DNN Baseline: To better evaluate the effectiveness of BLSTM-RNN, we employ DNN

acoustic models trained using the same recipe described in Section 4.4.3. The models

consist of four hidden layers with 2048 units each and one senone output layer.

4.5.5 Results

For each evaluation fold, we use SRILM [152] to train a trigram language model (LM)

with backoff on the training target transcripts. We tune the decoder’s language model

Features DNN BLSTM-RNN
5×1024 4×2048 ST MT

MFCC 55.07∗ 48.61 - -
MFCC + i-vectors 54.01∗ 47.14 - -

MFB - 46.26 39.37 38.95
MFB + i-vectors - 45.26 37.69 37.37

∗: previous baseline | N×L: N hidden layers with L units each | ST: single-task | MT: multi-task

Table 4.6: AphasiaBank Word Error Rate (WER) under different input feature and acoustic
model configurations.
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Utterance Type Aphasia Severity (WAB-R AQ)
Free Speech Semi-Spontaneous Mild Moderate Severe V. Severe

38.79 36.24 33.68 41.11 49.21 63.17

Table 4.7: AphasiaBank Word Error Rate (WER) by utterance type and aphasia severity
according to the revised Western Aphasia Battery Aphasia Quotient (WAB-R AQ).

weight {9, 10, . . . , 20} and word insertion penalty {0.0, 0.5, 1.0} based on the WER of the

development set. The decoded test output is aggregated across all four folds and evaluated

against the reference target transcripts. The results are summarized in Table 4.6. The

best performance, 37.37% WER, is obtained with the proposed multi-task BLSTM-RNN

acoustic model trained on MFBs and utterance-level i-vectors. This is a 30.8% relative

improvement compared to our previous DNN baseline trained on MFCCs and i-vectors.

Comparing DNN performance on MFCC and MFB features, it is clear that the lat-

ter give better results. The relative improvements in terms of WER are 4.8% (without

i-vectors) and 4.0% (with i-vectors). This justifies our decision to use MFB in place of

MFCC for acoustic model training.

Adding i-vectors to the input reduces WER by 2.2% (DNN), 4.3% (single-task BLSTM-

RNN), and 4.1% (multi-task BLSTM-RNN) relative to their counterparts without i-vectors.

This confirms our previous finding and demonstrates the efficacy of i-vectors in speaker-

independent acoustic modeling for aphasic speech.

Single-task BLSTM-RNN greatly outperforms DNN, resulting in a relative WER re-

duction of 14.9% (without i-vectors) and 16.7% (with i-vectors). While the improvement in

recognition rate attributed to multi-task learning is small (around 1% relative), this method

enables the production of posteriorgrams, which will be used later for automatic paraphasia

detection (Chapter 5) and aphasia severity estimation (Chapter 6).

Table 4.7 breaks down the WER based on utterance type (free vs. semi-spontaneous

speech, described in Section 2.2.1). As can be seen, semi-spontaneous speech is generally

easier to recognize compared to free speech. A possible explanation is that the former
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High Errors Low Errors
Word Count Error Word Count Error
hm 210 1.0 happy 274 0.12

mhm 656 0.99 window 593 0.11
I’d 168 0.96 house 457 0.11
yep 101 0.86 stepmother 133 0.11
let 128 0.84 speech 317 0.10

we’re 124 0.81 castle 108 0.09
<SPN> 1,321 0.81 hospital 416 0.09

I’ve 249 0.79 people 544 0.08
<BRTH> 1,345 0.73 beautiful 262 0.08

am 153 0.73 weeks 131 0.08

Table 4.8: Words with the highest and lowest error rates.

is more constrained in terms of vocabulary range and syntactic structure, and is therefore

more compatible with the language model. This suggests that applications requiring highly

accurate ASR should focus on semi-spontaneous speech.

WER also varies based on the severity of aphasia defined by the revised Western Ap-

hasia Battery Aphasia Quotient [72] (Table 4.7). Speech of more severe PWAs tend to

be more difficult to recognize and vice versa, possibly due to the speech-language impair-

ments present in this population, which result in irregular language patterns, high amount

of dysfluency, and word-level pronunciation errors. However, the speaker-level WERs have

only a moderate Pearson’s correlation of −.545 with WAB-R AQ. This suggests that AQ

scores can be used to loosely estimate ASR performance for a given PWA. Further, these

results indicate that those with severe aphasia will likely have significant difficulties with

applications that are reliant on ASR.

We investigate the error rates of individual words, defined as the sum of insertion,

deletion, and substitution errors made on a word divided by the total number of occurrences

of that word. We limit the analysis to words that occur at least 100 times in the transcripts.

Table 4.8 lists the words with the highest and lowest errors. It can be observed that words

with high error rates are generally short and conversational in nature, while those with

low errors tend to be longer content words. Combined with the previous observation that
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semi-spontaneous speech has lower WER, this suggests that ASR is more suitable for non-

conversational aphasic speech.

Given these analyses, it is possible that WER can be further reduced by personalizing

the acoustic and language models for individual utterance types and/or severity groups.

Moreover, speakers who have similar error patterns can potentially be grouped together for

more fine-grained acoustic and language model training.

4.6 Conclusion

In this study, we established the first LVCSR baseline on English AphasiaBank, and sho-

wed that AphasiaBank data can be leveraged to improve the recognition rate on a smaller

aphasic speech corpus by a large margin through discriminative pretraining. The analysis

suggests that discriminative pretraining provides more benefit to PWAs with lower severity,

while i-vector-based adaptation benefits those with higher severity. However, more work is

needed to combine the benefit of both approaches.

Our follow-up work expanded upon this initial study to further improve recognition

accuracy on AphasiaBank using a multi-task BLSTM-RNN acoustic model trained on

MFBs and utterance-level i-vectors. The proposed system achieves an overall WER of

37.37%, a 30.8% relative improvement compared to the previous baseline. Subsequent

analysis shows that semi-spontaneous speech is easier to recognize than free speech, and

that there is a moderate correlation between WAB-R AQ and speaker-level WER. Finally,

word-level errors suggest that ASR is more suitable for non-conversational aphasic speech.

We plan to extend this work in two major directions. First, we are interested in the ex-

tent to which an improved ASR model can replace human-labeled transcripts in analyzing

aphasic speech. We investigate this problem in Chapter 5 and 6. Second, we will explore

more fine-grained adaptation methods based on diagnoses and other speaker properties. Gi-

ven the high speaker variability present in aphasic speech, more highly personalized models
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may result in further gain [26–28, 146, 147].

4.7 Work Published

The work presented in this chapter was published in the following articles:

1. Duc Le and Emily Mower Provost. “Improving Automatic Recognition of Apha-

sic Speech with Aphasia Bank.” 17th Annual Conference of the International Speech

Communication Association (INTERSPEECH). San Francisco, USA. September, 2016.

2. Duc Le, Keli Licata, and Emily Mower Provost. “Automatic Quantitative Analysis

of Spontaneous Aphasic Speech.” Speech Communication. (in submission)
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CHAPTER 5

Automatic Paraphasia Detection

5.1 Introduction

Anomia (word retrieval deficit) is the core symptom of aphasia and is present in virtually

all persons with aphasia (PWAs) [62]. Those who have anomia often produce various types

of paraphasias (naming errors), the most common of which are semantic, phonemic, and

neologistic. In these three categories, respectively, the PWA may substitute the target word

(e.g., harmonica) with a semantically related word (e.g., flute), a phonemically related

word (e.g., karmonica), or a non-word (e.g., parokada). The type and frequency of the

produced paraphasias play an important role in estimating the severity of anomia as well as

determining an appropriate treatment approach [44,116]. For example, PWAs who produce

mainly semantic paraphasias may benefit from treatment approaches focusing on word

meaning, while treatment approaches targeting the phonological structure of target words

may be more appropriate for PWAs who produce mainly phonemic paraphasias [98, 116].

Being able to detect paraphasias automatically from a PWA’s speech (e.g., through a

computer-based word-finding exercise) would provide SLPs with a useful tool for both

diagnostic and progress-monitoring purposes and, as such, would help guide the treatment

process. Additionally, it could lead to computer-based activities for in-home practice for

PWAs, thereby increasing the intensity of practice and facilitating carry-over of progress

from therapy to other environments. It could also serve to increase a PWA’s awareness
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of errors and enhance self-monitoring skills and, thus, promote independence in overall

communication. However, the automatic detection of paraphasias has not previously been

studied in the literature.

In this chapter, we present a pilot study that investigates the feasibility of detecting

phonemic and neologistic paraphasias automatically from aphasic speech. We demonstrate

that when the target transcript is known, phonemic and neologistic paraphasias can be

successfully distinguished from correctly pronounced words. We also investigate a variant

of the problem in which the target transcript needs to be generated automatically. In this

setup, the system is able to outperform the naı̈ve baseline in detecting the presence of

paraphasias in utterances, and achieve good correlation in estimating the rate of phonemic

paraphasia production for each speaker. The results and analyses provided in this work

help lay the initial foundation for future work targeting automatic paraphasia detection.

5.2 Related Work

To the best of our knowledge, no existing work has looked at paraphasia detection in ap-

hasic speech from a technical perspective. Previous works primarily tackled utterance-

level and speaker-level classification problems for therapeutic and diagnostic purposes

[42, 78, 81, 83, 122]. Peintner et al. [122] proposed speech and language features to distin-

guish between three types of frontotemporal lobar degeneration, including progressive non-

fluent aphasia. Fraser et al. [42] combined text and low-level acoustic features to classify

primary progressive aphasia (PPA). Our previous work tackled the problem of predicting

utterance-level pronunciation, fluidity, and prosody scores given read speech samples of

PWAs [78, 81, 83]. The most closely related works are those of Abad et al. [1, 2], which

used keyword spotting to recognize phrases spoken by PWAs in word naming exercises.

However, they did not consider fine-grained word-level labels such as paraphasias.

In an oracle setting where there is access to a PWA’s target transcript, automatic para-
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phasia detection shares certain similarities with mispronunciation detection, an extensively

studied problem in the literature. The task in both cases is to classify each word in the

transcript as either correct or containing errors. We adopt techniques proposed by Lee et

al. [84–86], which compared a non-native speaker’s word- and phone-level pronunciations

against those of a native speaker, using Dynamic Time Warping (DTW) features extracted

on phoneme posteriorgrams. However, PWAs often do not produce the correct target due

to their speech-language impairments. Consequently, target transcriptions may not be avai-

lable, and reference utterances do not always exist, making it difficult to apply techniques

from mispronunciation detection. In this work, we investigate the oracle use case where tar-

get transcripts are available, as well as a more realistic scenario in which automatic speech

recognition (ASR) is used to generate the transcripts automatically.

5.3 Data

In this work, we focus on the Fridriksson sub-dataset of the Scripts portion of English

AphasiaBank (Chapter 2), which contains recordings of 12 PWAs reading from four pre-

defined scripts (advocacy, eggs, vast, and weather). The other Scripts sub-dataset, Adler,

consists of six high-functioning PWAs and very few instances of paraphasias. We therefore

exclude the Adler sub-dataset from this study.

Each utterance in the dataset was transcribed verbatim with word-level error codings in

concordance with the CHAT transcription format [4, 95]. Word-level error codes include

semantic, phonemic, and neologistic paraphasias, each of which is accompanied by a target

Target I have aphasia
P1 I have the aphasia
P2 have æfezi@@u [: aphasia] [* n:k]
P3 I have v@fe3@@u [: aphasia] [* p:n]

[* n:k]: neologistic paraphasia | [* p:n]: phonemic paraphasia

Table 5.1: Example AphasiaBank Scripts transcripts.
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Speaker Utts Words Phonemic Neologistic
P1 85 787 90 72
P2 108 879 108 66
P3 109 1060 113 46
P4 88 767 108 75
P5 67 652 101 36
P6 37 262 28 61
P7 103 1118 67 18
P8 104 1076 117 24
P9 93 901 146 53
P10 6 47 2 4
P11 67 607 136 112
P12 123 1154 101 32

Total 990 9310 1117 599

Table 5.2: AphasiaBank Scripts dataset summary.

word. Table 5.1 shows example transcripts of three PWAs reading the prompt “I have

aphasia.” P1 produced the target without any paraphasia, but added an extra “the.” P2

and P3 produced neologistic and phonemic paraphasias, respectively, for the target word

“aphasia.” The actual pronunciation was transcribed in IPA format (ending with @u).

We target phonemic and neologistic paraphasias in this work. Detecting semantic pa-

raphasias requires a different approach and will be addressed in future work. Table 5.2

summarizes the 12 speakers in the dataset, along with the utterance and word count, as

well as the number of phonemic and neologistic paraphasias. In total, phonemic and neo-

logistic paraphasias account for 12.0% and 6.4% of the words, respectively.

All experiments will be performed with leave-one-speaker-out cross-validation in or-

der to assess the system’s performance on unseen speakers. We further withhold 10% of

utterances from each training speaker to form a development set.
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5.4 Paraphasia Detection

5.4.1 With Known Target Transcripts

We first want to determine if it is possible to separate phonemic and neologistic paraphasias

from correct words. The target transcript of an utterance is defined as the original transcript

in which all phonemic and neologistic paraphasias are replaced with their corresponding

targets. Thus, the target transcripts in Table 5.1 will be: “I have the aphasia” (P1), “have

aphasia” (P2), and “I have aphasia” (P3). Assuming that the target transcripts are available,

the goal is then to label each word according to the following binary classification schemes:

• C–pn: correct (C) vs. phonemic or neologistic (pn).

• C–p: correct (C) vs. phonemic (p).

• C–n: correct (C) vs. neologistic (n).

where correct words are defined as those without any error code. We exclude words that

do not fall under any labeling category (e.g., semantic paraphasias), as well as audible

background noise, breathing sounds, fillers, and laughters.

Metric: although the focus of this work is to detect phonemic and/or neologistic para-

phasias, detecting correctly produced words is arguably equally important. We therefore

utilize the average F1 score across classes for evaluation.

Baseline: no baseline currently exists as this is the first work to tackle paraphasia de-

tection. We adopt a simple approach that labels every word as correct (the majority class).

5.4.2 Without Known Target Transcripts

The target transcripts will not be available in advance for many real-world applications. We

propose to transcribe test utterances automatically with ASR to overcome this limitation.
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Given the hypothesized transcripts, it is possible to utilize the same classification models

in Section 5.4.1 to obtain predicted word labels.

We consider three types of evaluation metrics that measure the system’s performance

at the word, utterance, and speaker level. These metrics will help determine the system’s

applicability under different levels of analyses.

Word-Level Metric: the ideal paraphasia detection system should simultaneously ge-

nerate the correct target transcripts and label each word accurately. We encode this idea

by augmenting the hypothesized and reference target transcripts with corresponding word

labels. Under the C–pn classification scheme, the augmented reference transcripts in Table

4.1 will be: “I/C have/C the/C aphasia/C” (P1), “have/C aphasia/pn” (P2), and “I/C have/C

aphasia/pn” (P3). Given an augmented hypothesized transcript, its Word Error Rate (WER)

compared to the reference captures both transcription and word labeling errors. This metric

will henceforth be referred to as augmented WER (AWER).

Utterance-Level Metric: aphasic speech is known to be difficult to recognize [82],

thus achieving good AWER may be challenging. Instead of providing detailed word-level

predictions, the system can simply output whether or not an utterance contains paraphasias,

i.e., a binary prediction problem. We again adopt average F1 as the evaluation metric.

Speaker-Level Metric: using the same reasoning, the system can be modified to es-

timate the rate of paraphasia production for a given speaker, which helps indicate anomia

severity. This task is evaluated using the Pearson correlation coefficient (r) between the

predicted and actual paraphasia occurrence rate per minute for all speakers in the dataset.

5.5 Methods

5.5.1 Acoustic Modeling

Given the small size of the dataset, we adopt an out-of-domain training approach, motivated

by previous work in disordered speech recognition [25, 82]. We first train an acoustic
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model on the core AphasiaBank dataset, which contains approximately 130.9 hours of

spontaneous speech elicited through the AphasiaBank protocol. We then adapt (retrain) the

model on each training fold in our Scripts dataset. These two models are referred to as the

out-of-domain (OOD) and in-domain (ID) models, respectively.

This work employs a multi-task deep Bidirectional Long-Short Term Memory Recur-

rent Neural Network (BLSTM-RNN) acoustic model that jointly predicts the correct senone

as well as monophone labels, similar to the architecture described in Section 4.5.4. The mo-

nophone output of the network represents a distribution over phonemes, also referred to as

phoneme posteriorgrams. They can be viewed as a low-dimensional representation of each

speech frame. Combined with alignment information, each word can then be represented

as a sequence of posteriorgrams, i.e., a multi-dimensional time series.

Input Features: 40-dimensional log Mel filterbank coefficients (MFBs) are extracted

with Kaldi [124], using a 25ms window and 10ms frame shift. We perform per-speaker z-

normalization and augment each feature frame with five left and right neighbors, resulting

in 440 dimensions per frame.

Model Architecture: our multi-task BLSTM-RNN consists of four hidden BLSTM

layers, each with 1200 units (600 for forward, 600 for backward). The senone and monop-

hone output layers contain 4550 and 46 units, respectively.

OOD Training: We train the network using the Adam optimizer [75], full Backpropa-

gation Through Time (BPTT), Cross Entropy (CE) loss, 0.4 dropout, and an initial learning

rate of 0.001. Early stopping is applied based on the development frame error rate (FER)

and an exponential-decay learning schedule [82].

ID Adaptation: We adapt the OOD network to the smaller training set using the same

strategies as in OOD training, with two modifications. First, we modify the loss function

to also minimize the Kullback-Leibler divergence (KLD) between the ID and OOD model

outputs, which has been shown to be an effective regularization technique [169]. Second,

we employ the step-decay schedule [82] with a 0.00005 minimum learning rate. The KLD
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(a) Correctly Produced (b) Neologistic Paraphasia

Figure 5.1: Example posteriorgrams of a correctly produced word (a) and a neologistic
paraphasia (b). The target word in both cases is aphasia (ah f ey zh ah).

weight {0.25, 0.5} and dropout rate {0.4, 0.6} are chosen based on the development FER.

5.5.2 Feature Extraction

The ID acoustic model obtained from the previous step can be used to detect word and

phone boundaries via forced alignment with the target transcripts. Given this information,

our objective is to extract features for each word that can help separate phonemic/neologistic

paraphasias from correctly produced words.

The phoneme posteriorgrams produced by the multi-task BLSTM-RNN model provide

a compact representation of word and phone segments. Figure 5.1 shows example posteri-

orgrams of two words with the same target (aphasia), one correctly produced and one with

neologistic paraphasia. The plots are limited to phones that make up the pronunciation of

aphasia (ah, f, ey, zh). As can be seen, there are visible differences between the two pos-

teriorgrams. Our proposed feature set will thus focus on quantifying this difference. The

features can be divided into the following groups.

Goodness of Pronunciation (GOP): GOP is a widely used metric for assessing pro-

nunciation, first proposed by Witt and Young [163]. It has also been used successfully in
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our previous work to estimate aphasic speech quality [78, 81]. GOP involves calculating

the difference between the average acoustic log-likelihood of a force-aligned word-level

segment and that of an unconstrained phone loop. The closer this number is to 0, the more

likely that the pronunciation of this word is correct. We extract the GOP as well as the raw

forced alignment score for each word. All calculations are performed on our DBLSTM-

RNN’s phoneme posteriorgram output.

Phone Edit Distance (DIST): both phonemic and neologistic paraphasias involve de-

viations between the spoken and correct phone sequences. The spoken phone sequence can

be estimated from an unconstrained phone loop over the phoneme posteriorgram associated

with the word segment, and the correct phone sequence can be obtained from forced align-

ment results on the target transcript. For each pair of spoken and correct phone sequences,

we extract the raw edit distance, edit distance normalized by alignment length, as well as

the number of insertions, deletions, and substitutions normalized by alignment length.

Dynamic Time Warping (DTW): the underlying assumption behind these features is

that the phoneme posteriorgrams of phonemic and neologistic paraphasias are different

from those of correct words. Given a candidate word, we can find references of this word

in the ID training set that are marked as correctly produced, along with their phoneme

posteriorgrams. Following Lee et al. [84–86], we compare posteriorgram pairs using DTW,

where the distance between two frames ci and rj is defined as their inner product distance:

D(ci, rj) = − log(ci · rj) (5.1)

We extract the following features for each candidate-reference posteriorgram pair: raw

DTW distance, DTW distance normalized by aligned path length, and length of the lon-

gest horizontal/vertical aligned segment normalized by aligned path length. We extract the

mean, median, lower and upper quartile, and standard deviation of each feature group to

produce word-level features. We extract a similar set of features for all candidate-reference
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phone pairs within the word, given that they might provide complementary information. If

a candidate word has fewer than three references, we use the average features of all correct

words in the training set. This accounts for 6–7% of all candidate words.

Duration Measures (DUR): these features are also inspired by Lee et al. [84–86] and

extracted similarly to DTW. However, we compare the differences in durations instead of

posteriorgrams. For each candidate-reference word/phone pair, we extract the ratio bet-

ween their durations, the difference in duration normalized by candidate duration, and the

difference in duration normalized by reference duration.

As a final post-processing step, we z-normalize all features using statistics computed

from correctly produced words in the training set.

5.5.3 Automatic Transcription

Automatic transcription of test utterances can be performed by combining our BLSTM-

RNN acoustic model with a language model (LM) for decoding. We experiment with two

LM types in this work. Firstly, we use a trigram model estimated on the ID training and

development set. We refer to this model as the global LM. Secondly, we take advantage

of the fact that utterances in the dataset are limited to four predefined scripts with different

vocabulary and sentence structures. Therefore, it may be beneficial to use a trigram model

estimated on the portion of the training and development set corresponding to the same

script as the current test utterance. We refer to this as the task-specific LM. In both cases,

the LM weight and word insertion penalty are chosen based on the development WER.

Table 5.3 lists the test WERs for different acoustic and language model combinations.

As expected, the best performance is obtained with an in-domain acoustic model and task-

Global LM Task LM
OOD AM 65.82 60.97

ID AM 47.68 45.11

Table 5.3: Word Error Rate (WER) with different language and acoustic model types.
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C–pn C–p C–n
Baseline .442 .461 .484

GOP .615 (SVM) .560 (LR) .590 (SVM)
DIST .619 (DT) .556 (DT) .662 (DT)
DTW .699 (SVM) .611 (LR) .746 (LR)
DUR .628 (LR) .556 (DT) .652 (LR)

All Feats. .704 (LR) .632 (LR) .761 (LR)
SVM: Support Vector Machine | DT: Decision Tree | LR: Logistic Regression

Table 5.4: Paraphasia detection results with known target transcripts, measured in average
F1. The best performing classifiers are indicated in parentheses.

specific language model. We will use this system for all experiments involving ASR.

5.6 Results and Discussion

5.6.1 Paraphasia Detection With Known Transcripts

Paraphasia classification results from known transcripts using different feature sets and

labeling schemes, measured in average F1 scores, are summarized in Table 5.4. We show

results from the classifier that yields the best overall test performance.

All of our systems are able to outperform the naı̈ve baseline, demonstrating that it

is feasible to automatically separate correctly produced words and phonemic/neologistic

paraphasias. In particular, neologistic paraphasias (C–n) are easier to detect than phonemic

paraphasias (C–p). This is consistent with the clinical definitions of these two paraphasia

types. Because neologistic paraphasias, by definition, involve more deviations from the

sounds in the target word, they are better characterized by our proposed features.

In all three labeling schemes (C–pn, C–p, and C–n), the best performance is obtained by

using all features, with DTW generating the best individual results. This demonstrates the

utility of the phoneme posteriorgram representation produced by our multi-task BLSTM-

RNN acoustic model. A potential method to further exploit phoneme posteriorgrams is to

use them as features in whole-word acoustic modeling, which may lead to better discrimi-
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nation than template matching techniques. GOP features traditionally perform favorably

compared to DTW for mispronunciation detection [86], but not so in our work. A pos-

sible way to improve GOP performance in this task is to extract phone-level GOP scores

alongside word-level features. Likewise, duration-based features (DUR) may benefit from

established measures in rhythm analysis, such as Pairwise Variability Error [154]. We will

explore these ideas in future work.

Finally, we observe that different feature sets benefit from different classification algo-

rithms. Logistic regression and SVM work well with primarily continuous features such

as GOP, DTW, and DUR. By contrast, decision tree yields better performance on DIST,

whose features are largely discrete.

5.6.2 Paraphasia Detection Without Known Transcripts

We are interested in how the best (bolded) models in Table 5.4 perform when target transcripts

for test utterances are generated automatically with ASR. Table 5.5 lists the results at the

word, utterance, and speaker level, as described in Section 5.4.2.

For word-level, the goal of the system is to simultaneously recognize and label each

word. However, our system is unable to outperform the naı̈ve baseline in terms of AWER.

As previously discussed, this is challenging because aphasic speech poses significant pro-

blems for ASR, and it is difficult to obtain reliable word-level predictions without accurate

C–pn C–p C–n
Word

[AWER]
53.46

(53.39)
54.18

(51.48)
47.84

(47.18)
Utterance
[Avg. F1]

.594
(.412)

.611
(.373)

.604
(.404)

Speaker
[r]

.479
(N/A)

.749∗

(N/A)
.057

(N/A)
∗statistically significant (p ≈ 0.005, 2-tailed test)

Table 5.5: Paraphasia detection results without known target transcripts. Naı̈ve baseline
performance is in parentheses.
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target transcripts. This suggests that aphasic speech ASR performance must be improved

before paraphasias can be detected reliably at the word level without known transcripts.

Meanwhile, utterance-level results, which involve detecting the presence of paraphasias

in an utterance, appear more promising. Our system outperforms the naı̈ve baseline in all

three classification schemes, suggesting that although word-level predictions may be unre-

liable, clinically-relevant information can still be extracted at a coarser level of analysis.

We also observe positive results for estimating the paraphasia production frequency

of a particular speaker, which can be tied to anomia severity. Specifically, we obtain a

statistically significant Pearson correlation coefficient of 0.749 (p ≈ 0.005, 2-tailed test)

for estimating the rate of phonemic paraphasia production. However, there is virtually no

correlation for neologistic paraphasias. We hypothesize that while neologistic paraphasias

are easy to classify from known transcripts, they are difficult to detect in a free-form setting

because our ASR system fails to recognize them. This again calls for further improvement

in aphasic speech recognition.

5.7 Conclusion

In this chapter, we presented the first study on detecting phonemic and neologistic parapha-

sias automatically from aphasic speech, utilizing techniques from ASR and mispronuncia-

tion detection. We demonstrated the feasibility of detecting paraphasias from known target

transcripts. We showed the utility of utterance- and speaker-level analysis when target

transcripts are generated automatically with ASR.

For future work, we will investigate additional feature extraction methods to better

characterize paraphasias, such as those based on whole-word acoustic models and phono-

logical features [106]. We will experiment with ways to further improve ASR technology

to better accommodate aphasic speech with high amounts of paraphasias, such as utilizing

personalized and data-driven pronunciation models [28, 92–94, 102, 158]. Finally, we will
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explore computational approaches for tackling semantic paraphasia detection.

5.8 Work Published

The work presented in this chapter was published in the following article:

1. Duc Le, Keli Licata, and Emily Mower Provost. “Automatic Paraphasia Detection

from Aphasic Speech: A Preliminary Study.” 18th Annual Conference of the Interna-

tional Speech Communication Association (INTERSPEECH). Stockholm, Sweden.

August, 2017.
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CHAPTER 6

Automatic Quantitative Analysis of Spontaneous

Aphasic Speech

6.1 Introduction

Spontaneous speech (e.g., answering an open-ended interview question, retelling a story,

describing a picture) plays a prominent role in everyday interaction of a person with ap-

hasia (PWA) and is widely regarded in the clinical literature as one of the most important

modalities to analyze [40, 68, 100, 125]. Example applications of spontaneous speech ana-

lysis include aphasia classification [51], treatment planning [125], recovery tracking [53],

and diagnosis of residual aphasia post onset [68].

Analysis of spontaneous aphasic speech is typically carried out in clinical settings by

Speech-Language Pathologists (SLPs) and often confined to a relatively small amount of

speech samples with manually coded transcripts, which can be very time consuming to

complete [125]. Furthermore, the analysis itself often requires a SLP’s expert knowledge

of aphasia and linguistics. As a result, only the small percentage of PWAs who have fre-

quent interaction with SLPs can access and benefit from spontaneous speech analysis, the

results of which carry important implications for a PWA’s everyday interaction and future

treatment plans. At the same time, SLPs in many settings have high productivity expectati-

ons and limited time outside of direct patient contact, thus restricting them from conducting

such analysis regularly.
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Figure 6.1: High-level overview of our proposed system. The red boxes denote components
that will be the focus of our analysis.

Techniques in automatic speech processing can potentially help SLPs perform this type

of analysis more efficiently, thereby making its results and findings more commonly avai-

lable to PWAs. However, previous works in the area of aphasic speech processing have

two major limitations that prevent the development of fully automated systems capable

of analyzing spontaneous aphasic speech. First, they often assume the availability of ex-

pertly produced speech transcripts, which are very time consuming to complete manu-

ally [42,43,87,88] and difficult to generate automatically [41,122]. Second, they typically

target speech with known prompts [1, 2, 78, 81, 83]. This removes the need for unconstrai-

ned automatic speech recognition (ASR) and simplifies transcript generation, which can be

achieved by modified forced alignment [78,81,83] or keyword spotting [1,2]. However, the

reliance on known prompts makes this type of system inapplicable to spontaneous speech.

It is evident that ASR is a major bottleneck for spontaneous aphasic speech analysis.

ASR performance must be sufficiently accurate such that the results and findings are not

significantly affected by transcription mismatches. In addition, the features derived from

ASR output must be relatively robust to recognition errors. However, the robustness of

ASR-based features against transcription errors has been under-explored in the literature.

Our work helps bridge this gap by performing one of the first large-scale studies on ASR-

based spontaneous aphasic speech analysis.

We present this work in two sequential components. First, we discuss various clinically
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relevant quantitative measures that can be extracted from transcripts generated by an ASR

system. We show that with our feature calibration method, the majority of these measures

are highly robust to ASR errors and can reliably be used for clinical diagnosis. Second, we

demonstrate that these measures can be leveraged to accurately predict the revised Western

Aphasia Battery (WAB-R) Aphasia Quotient (AQ), one of the most widely used metrics for

aphasia assessment [72]. Our system achieves 9.18 Mean Absolute Error (MAE) and .799

correlation in predicting WAB-R AQs without the need for manual transcripts. A high-level

overview of the system is shown in Figure 6.1.

The technical novelty of this work lies in our proposed calibration method for cor-

recting ASR-based quantitative measures and our modeling approach which combines free

speech and semi-spontaneous speech features. The techniques and results presented in this

work will help advance the state-of-the-art in aphasic speech processing, as well as make

automated spontaneous aphasic speech analysis more feasible in clinical applications.

6.2 Related Work

6.2.1 Linguistic Analysis of Spontaneous Aphasic Speech

Linguistic analysis of aphasic speech can be divided into two types, qualitative and quan-

titative [125]. The former assesses PWAs’ speech based on a qualitative rating scale, such

as the Boston Diagnostic Aphasia Examination [51] or Aachen Aphasia Test [109], both

of which have a significant portion dedicated to spontaneous speech. The advantage of

qualitative analysis is that it is relatively simple and efficient to perform [70]. However,

qualitative rating scales often have difficulties in measuring a PWA’s improvement [125]

and may lack sensitivity [53]. By contrast, quantitative analysis typically involves the in-

vestigation of objective and quantifiable measures that can directly indicate changes in

aphasia. However, these quantitative measures are often time consuming to obtain and can

require significantly deeper consideration of various linguistic features as well as speciali-
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zed training in aphasiology to complete and interpret [125].

Quantitative analysis of spontaneous aphasic speech has a wide range of applications

and is extensively studied in the clinical literature. For example, Grande et al. proposed a

set of five basic parameters to measure changes in spontaneous aphasic speech [53]. This

parameter set, which captures lexical and semantic content, syntactic completeness, lin-

guistic complexity, and mean utterance length, were shown to be more sensitive to change

compared to qualitative rating scales. Fergadiotis and Wright showed that lexical diversity

measures extracted from spontaneous speech can differentiate between PWAs and healthy

controls [37]. Finally, Jaecks et al. were able to diagnose residual aphasia using a set of

variables spanning information density, syntactic variability, linguistic errors, and cohe-

sion [68]. These proposed measures form the basis of our feature set (Section 6.5).

6.2.2 Automated Speech-Based Methods for Aphasia Assessment

Automatic analysis of aphasic speech has also been studied in the engineering commu-

nity. Lee et al. proposed the use of forced alignment in conjunction with manually labeled

transcripts to analyze large amount of Cantonese aphasic speech [87, 88]. They found that

compared to healthy speech, aphasic speech contains fewer words, longer pauses, and hig-

her numbers of continuous chunks, with fewer words per chunk [87]. Further, aphasic

speech exhibits different intonation patterns [88]. Fraser et al. tackled automatic classifica-

tion of different subtypes of primary progressive aphasia (PPA) based on narrative speech,

utilizing a combination of text and acoustic features [42, 43]. While they achieved good

prediction accuracy on these tasks, their proposed feature set relied on intricate transcripts

produced manually by trained research assistants. Their follow-up work attempted to evalu-

ate the proposed approach on transcripts generated with an off-the-shelf ASR system [41].

However, the ASR performance was relatively poor, attaining word error rate (WER) be-

tween 67.7% and 73.1%. As a result, their analysis was limited to simulated ASR output

with preset WER levels, and the robustness of their feature set remained unclear.
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Our previous work proposed a system to automatically estimate qualitative aspects

of read aphasic speech through transcript, pronunciation, rhythm, and intonation featu-

res [78,81,83]. We showed that by using modified forced alignment for automatic transcrip-

tion, our system could achieve results comparable to those using manual transcripts. Our

approach took advantage of the fact that the speech prompt was known ahead of time, thus

significantly constraining the space of possible utterances. However, this is an unrealistic

assumption for spontaneous speech. Peintner et al. proposed a set of speech and language

features extracted from ASR output to distinguish between three types of frontotemporal

lobar degeneration, including progressive non-fluent aphasia [122]. While their work sho-

wed promising results, it was performed on a relatively small dataset and there was no

analysis regarding the reliability of ASR-based features. By contrast, the work presented

here is conducted on a large-scale aphasic speech corpus with detailed discussion regarding

the robustness of ASR-derived quantitative measures.

6.3 Data

6.3.1 Speech Data

All experiments in this work are carried out on AphasiaBank [39, 96]. We select English

sub-datasets that have at least four speakers and are collected with the core AphasiaBank

Aphasia Control

Demographics Gender 238 M, 163 F 85 M, 102 F
Age 62 ± 12 63 ± 17

Speech Data
Duration 89.2 hours 41.7 hours

Utterances 64,748 38,186
Words 458,138 371,975

Utterance Type Free 28,157 16,465
Semi 36,591 21,721

Table 6.1: Summary of AphasiaBank data used in this work. The speakers are split into
two groups, those who have aphasia (Aphasia) and healthy controls (Control).
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Figure 6.2: Histogram of WAB-R AQ scores.

protocol, a series of open-ended questions designed to gather verbal discourse samples.

These inclusion criteria result in 401 PWAs and 187 control speakers without aphasia,

spanning 19 sub-datasets and 130.9 hours of speech. Utterances in AphasiaBank can be

categorized based on their applied elicitation method, which is either free speech (e.g.,

open interview, conversational speech) or semi-spontaneous (e.g., storytelling, picture des-

cription) [125]. The speech-language patterns of the same PWA may be different across

these two categories [68, 125], thus it may be beneficial to analyze them separately. Table

6.1 describes the dataset in more detail.

6.3.2 Speaker-Level Ratings and Assessment

AphasiaBank contains a number of speaker-level test results, including WAB-R AQ, Ap-

hasiaBank Repetition Test, Boston Naming Test–Short Form, Northwestern Verb Naming

Test, Complex Ideational Material–Short Form, and Philadelphia Sentence Comprehension

Test. Among these tests, WAB-R AQ is the most commonly administered, with test data

available for 355 PWAs (out of 401). The other tests are conducted on fewer PWAs and/or
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not as widely used outside the scope of AphasiaBank. Since an increase in AQ can signify

improvement in a PWA’s language capabilities, reliable automatic AQ estimation may play

an important role in monitoring a PWA’s recovery progress over time. We are interested in

seeing how well AQ can be estimated for each PWA in our dataset.

WAB-R AQ is an aggregated score ranging from 0 to 100 that measures a PWA’s over-

all language capabilities [72]. It consists of four separate subtests, Spontaneous Speech,

Auditory Comprehension, Repetition, and Naming/Word Finding. The severity of aphasia

can be roughly categorized according to this score: mild (76-100), moderate (51-75), se-

vere (26-50), and very severe (0-25). The PWAs have a mean AQ of 71.1 and a standard

deviation of 19.5, with the majority classified as mild (174), followed by moderate (131),

severe (38), and very severe (12). Figure 6.2 plots the histogram of the available AQ scores.

6.3.3 Experimental Setup

An automated system for aphasic speech analysis must be able to handle previously unseen

speakers. We adopt a speaker-independent 4-fold cross-validation scheme, similar to that

described in Chapter 4. For each fold, we withhold 25% of speakers from each sub-dataset

in the Aphasia set to form a test set. The remaining data and all Control speakers are used

for training. Test results from all folds will be pooled together for analysis. The amount of

per-fold training data, including Control speakers, ranges from 106.8 to 110.5 hours.

6.4 Automatic Transcription

The first step of spontaneous aphasic speech analysis is to obtain a detailed transcript for

each utterance, including precise alignments of words and phones. These transcripts are

time consuming to create manually; an alternative is to utilize ASR to generate them auto-

matically. In this work, we employ the ASR system described in Chapter 4, which consists

of a multi-task deep Bidirectional Long-Short Term Memory Recurrent Neural Network
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quartiles 1-3
3 inter-quartile ranges
1% percentile (≈ min), 99% percentile (≈ max)
percentile range 1%−99%
mean, standard deviation
skewness, kurtosis

Table 6.2: 13 applied statistics.

(BLSTM-RNN) acoustic model and trigram word-level language model. Our decoder out-

puts the hypothesized transcripts as well as the word- and phone-level alignments.

6.5 Quantitative Analysis

In the context of this work, the goal of quantitative analysis is to produce a set of quan-

tifiable measures (i.e., features) for each speaker that are characteristic of aphasic speech,

compatible with ASR output, and robust to recognition errors. We consider adopting and

extending existing measures that have been proposed in the engineering literature for disor-

dered speech assessment. In addition, we aim to operationalize quantitative measures that

have traditionally been used only in clinical studies. We focus specifically on measures

that can separate different severity levels of aphasia and/or distinguish between PWAs and

healthy controls. The extracted features (Table 6.3) are organized into six groups, each of

which captures a specific speech-language aspect of a PWA. The extraction of these fea-

tures relies on speech transcripts, which may be either time aligned manual transcripts or

ASR-generated output (Figure 3.1).

Table 6.3: Extracted quantitative measures for each speaker. {} denotes a collection of
numbers summarized into speaker-level measures using the statistics listed in Table 6.2.

Information Density (DEN)
1 Words/min Words / Total duration (minutes)
2 Phones/min Phones / Total duration (minutes)
3 W Words / (Words + Interjections)
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4 OCW Open class words / Open + closed class words
5 {Words/utt} Words spoken per utterance
6 {Phones/utt} Phones spoken per utterance
7 Nouns Nouns / Words
8 Verbs Verbs / Words
9 Nouns/verb Nouns / Verbs
10 Noun ratio Nouns / (Nouns + Verbs)
11 Light verbs Light verbs / Verbs
12 Determiners Determiners / Words
13 Demonstratives Demonstratives / Words
14 Prepositions Prepositions / Words
15 Adjectives Adjectives / Words
16 Adverbs Adverbs / Words
17 Pronoun ratio Pronouns / (Nouns + Pronouns)
18 Function words Function words / Words
Dysfluency (DYS)
19 Fillers/min Fillers / Total duration (minutes)
20 Fillers/word Fillers / Words
21 Fillers/phone Fillers / Phones
22 Pauses/min Pauses / Total duration (minutes)
23 Long pauses/min Long pauses / Total duration (minutes)
24 Short pauses/min Short pauses / Total duration (minutes)
25 Pauses/word Pauses / Words
26 Long pauses/word Long pauses / Words
27 Short pauses/word Short pauses / Words
28 {Seconds/pause} Duration of pauses in seconds
Lexical Diversity and Complexity (LEX)
29 Type–token ratio Unique words / Words (open class)
30 {Freq/word} Word frequency score
31 {Img/word} Word imageability score
32 {AoA/word} Word age of acquisition score
33 {Fam/word} Word familiarity score
34 {Phones/word} Number of phones per word
Part-of-Speech Language Model (POS-LM)
35 {Bigram CE/utt} POS bigram Cross Entropy per utterance
36 {Trigram CE/utt} POS trigram Cross Entropy per utterance
Pairwise Variability Error (PVE)
37 {PVE1/utt} Utterance PVE score (M = 1)
38 {PVE2/utt} Utterance PVE score (M = 2)
39 {PVE3/utt} Utterance PVE score (M = 3)
40 {PVE4/utt} Utterance PVE score (M = 4)
Posteriorgram-Based Dynamic Time Warping (DTW)
41 {Raw dist/word} Raw DTW distance per word
42 {Norm dist/word} Normalized DTW distance per word
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43 {Segment/word} Longest horizontal/vertical aligned segment per word

6.5.1 Information Density (DEN)

This group of features captures the amount of information conveyed in a PWA’s speech,

under the hypothesis that those with milder aphasia produce relatively denser information

content. Features 1–2 capture a PWA’s speech rate, which has been shown in previous work

to be useful for assessing the quality of aphasic speech [78,81,83] as well as distinguishing

between subjects with PPA and healthy controls [42, 43].

Features 3–4 are adopted from a set of basic parameters proposed by Grande et al. to

objectively measure changes in spontaneous aphasic speech [53]. Following their work,

we define interjections to be fillers (<FLR>) and the particles yes, yeah, and no. Open

class words are nouns, verbs, adjectives, and derivative adverbs (heuristically determined

as those ending with -ly). Closed class words comprise determiners, pronouns, conjuncti-

ons, and genuine (i.e., non-derivative) adverbs. We generate Part of Speech (POS) tags for

all words in our transcripts using NLTK [14] and the universal tag set. Percentage words

(W) is expected to capture word-finding difficulties since it decreases with more frequent

use of interjections. Meanwhile, percentage open-class words (OCW) characterizes agram-

matism, in which PWAs produce mainly content words and few function words [53].

Features 5–6 are based on mean length of utterances in words, a widely used measure in

spontaneous aphasic speech analysis [53, 68, 125]. We extend this measure by computing

a more comprehensive set of statistics over the collection of utterance lengths, using the

13 statistics listed in Table 6.2. We also consider utterance length measured in the number

of phones instead of words as they may capture a PWA’s speech production ability more

accurately. We expect more severe PWAs to produce shorter utterances on average while

having less varied utterance lengths.

Features 7–18 characterize a PWA’s POS usage patterns, which have been shown to

be important for residual aphasia [68] and PPA [42, 43] diagnosis. Following [20, 43], we
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classify verbs as light or heavy depending on their semantic complexity. A verb is consi-

dered light if its lemmatized form is be, have, come, go, give, take, make, do, get, move, or

put; otherwise, the verb is categorized as heavy. Function words include determiners, pro-

nouns, prepositions, conjunctions, particles, and modals; they are expected to occur more

frequently in milder PWAs [53].

6.5.2 Dysfluency (DYS)

Dysfluency is an important aspect of aphasic speech which has been used in qualitative

analysis [78, 81, 83] and PPA diagnosis [42]. Features 19–28 capture the amount of dys-

fluency (i.e., fillers and pauses) in each PWA’s speech. Following [119], we define pauses

as regions of silence between words that are longer than 150ms; these are further categori-

zed as short (≤ 400ms) or long (> 400ms). We extract the occurrence frequency of fillers

and pauses normalized by speech duration, total words, and total phones (features 19–27).

Finally, we extract the statistics over all pause durations (feature 28). We expect milder

PWAs to exhibit less dysfluency and vice versa.

6.5.3 Lexical Diversity and Complexity (LEX)

Lexical diversity, defined as the range of vocabulary employed by a speaker, has been

shown to be significantly different between PWAs and healthy controls [37]. A standard

measure that captures lexical diversity is the ratio between the number of unique words

(types) and total words (tokens), commonly referred to as type–token ratio (TTR). Follo-

wing [37], we extract TTR (feature 29) using only lemmatized open class words to remove

the influence of grammars on lexical diversity. PWAs with mild aphasia tend to have less

word-retrieval difficulties; as a result, we expect them to have relatively higher TTR com-

pared to more severe PWAs.

The complexity of a speaker’s vocabulary is also an important measure of aphasic

speech. We hypothesize that PWAs with mild aphasia tend to use words that are longer
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and less frequently used compared to those with severe aphasia. Brysbaert and New intro-

duced the SUBTL norms, a mapping from words to their frequencies in American English

based on an analysis of film and television subtitles [22]. In addition, the combined work

of Stadthagen-Gonzalez and Davis [151] and Gilhooly and Logie [49] produced a database

of word-level imageability, age of acquisition, and familiarity scores, which can be used

to estimate a word’s complexity. In this work, we extract statistics over all word-level fre-

quency, imageability, age of acquisition, and familiarity scores for each speaker, resulting

in features 30–33. Similar measures were used by Fraser et al. for PPA diagnosis [42, 43].

However, they only extracted the mean scores, whereas we consider a more comprehensive

set of statistics (Table 6.2). Finally, feature 34 approximates the pronunciation complexity

of a PWA’s vocabulary based on the number of phones present in a word.

6.5.4 Part of Speech Language Model (POS-LM)

The degree of a PWA’s syntactic deviation from that of healthy controls may help separate

subjects with different severity levels. We model the syntactic structure present in healthy

speech by training bigram and trigram LMs with backoff on the POS transcripts of Control

speakers. Given a POS LM M, the Cross Entropy (CE) of a POS sequence p1p2 . . . pN

denotes how closely it adheres to the model:

H(p1p2 . . . pN |M) =
logP (p1p2 . . . pN |M)

N
(6.1)

PWAs with milder language impairment are expected to produce more standard POS

sequences, thus resulting in higher CE on average. Features 35–36 capture this idea through

the statistics of utterance-level bigram and trigram CE scores. A similar approach was used

by Roark et al. to detect mild cognitive impairment [130].
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6.5.5 Pairwise Variability Error (PVE)

Speech rhythm was shown in our previous work to be helpful for estimating qualitative

aspects of aphasic speech [81, 83]. In the context of this work, we expect the rhythmic

patterns of less severe PWAs to be more similar to Control speakers and vice versa. We

quantify rhythmic deviations using Pairwise Variability Error (PVE), a metric first proposed

by Tepperman et al. [154] to compare the rhythms of a candidate (Aphasia) and reference

(Control) speaker. Given duration profiles of a candidate and reference utterance, denoted

as {c1, c2, ..., cN} and {r1, r2, ..., rN}, respectively, where each element is the duration of an

acoustic unit (word, syllable, or phone), PVE computes the difference of these two profiles:

PV EM =

∑N
i=2

∑min(M,i−1)
m=1 |(ci − ci−m)− (ri − ri−m)|∑N

i=2

∑min(M,i−1)
m=1 |ci − ci−m|+ |ri − ri−m|

(6.2)

where M is a hyperparameter specifying the maximum distance between a pair of units

considered for comparison. PVE scores range from 0 to 1, where values closer to 0 denote

higher similarity between the candidate and reference rhythms.

The candidate and reference duration profiles for an utterance are generated using the

Reference Alignment algorithm proposed in our previous work [83]. This algorithm aligns

a candidate utterance to a prototypical reference utterance, accounting for OOV words by

breaking them down into finer granularity levels. Features 37–40 comprise statistics of

utterance-level PVE scores with context parameter M varying from 1 to 4, the same range

used in [81, 83, 154].

6.5.6 Posteriorgram-Based Dynamic Time Warping (DTW)

Our final feature group is based on the observation that PWAs with more severe aphasia

tend to have worse pronunciations. The monophone output of our multi-task BLSTM-RNN

acoustic model can be viewed as a compact representation of each speech frame. Combined

with the aligned transcripts, we can represent each word as a multi-dimensional time series
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(i.e., posteriorgram), where each point in the series is a probability distribution over 44

phones. Intuitively, words that are pronounced correctly will have posteriorgrams that are

similar to those associated with Control speakers. We showed in our previous work that

Dynamic Time Warping (DTW) can be used to detect paraphasias through posteriorgram

comparison [79]. The DTW-based features, inspired by Lee et al. [84–86], were shown to

outperform Goodness of Pronunciation (GOP) [163] and phone edit distance features. We

will therefore adopt DTW-based features in this work.

As a first step to feature extraction, we represent the correct pronunciation of each word

as a collection of posteriorgrams extracted from Control speakers, which we will refer to

as the reference set. For efficiency reasons, we limit the maximum number of reference

posteriorgrams per word to 100, randomly subsampled if necessary. We can then compare

a pair of candidate and reference posteriorgrams using DTW, where the distance between

two frames ci and rj is defined as their inner product distance:

D(ci, rj) = − log(ci · rj) (6.3)

We extract the following features for each word in our dataset by comparing its poste-

riorgram with the reference set: mean raw DTW distance, mean DTW distance normalized

by aligned path length, and mean length of the longest horizontal/vertical aligned segment

normalized by aligned path length. Special tokens and words with fewer than five refe-

rence posteriorgrams are skipped. Finally, we calculate the statistics over these word-level

measures, producing features 41–43.

6.5.7 Feature Calibration

A desirable property of automatic quantitative analysis is that features extracted with ASR-

generated transcripts should accurately reflect a PWA’s true measures, i.e., features ex-

tracted with manual (oracle) transcripts. We observe that there often exists a systematic
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Figure 6.3: Example calibration of words/min feature. A linear transformation model is
trained on development speakers (y = 1.07x + .33) and applied to test speakers. Feature
values are z-normalized using statistics extracted from healthy controls.

deviation between these two sets. For example, ASR-based words/min features are typi-

cally smaller than their oracle counterparts due to deletion errors; however, they still have

very high correlation with one another (Figure 6.3). This relationship can be exploited to

calibrate ASR-based features to become more similar to oracle features, i.e., closer to a

PWA’s true measures.

We consider performing calibration for every individual feature by training a linear

transformation model on development speakers and applying it to test speakers (e.g., Figure

6.3). To ensure that feature calibration is effective, we apply the transformation only if

the oracle and ASR-based development features are: (1) statistically significantly different

before calibration (two-tailed paired t-test of equal means, p = .05), and (2) not statistically

significantly different after calibration. If condition (1) is not met, it implies that the feature
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is already well calibrated and no further action is required. If condition (2) is not met,

calibration will likely be ineffective, hence we do not apply the transformation. We will

analyze the impact of feature calibration in Section 6.7.1.

6.6 WAB-R AQ Prediction

The system’s goal is to automatically predict WAB-R AQ, an assessment score closely tied

to aphasia severity [72]. This provides an output that has clinical utility, one that does

not require thorough knowledge of linguistics and aphasiology to understand, and one that

can be quickly interpreted given the significant time constraints present in clinical settings.

The automatic estimation of AQ from spontaneous speech has many potential benefits. For

example, it will enable progress monitoring without necessitating frequent repeats of the

WAB-R assessment procedures, thus saving time for more important treatment activities.

In addition, because the WAB-R cannot be administered repeatedly in a short time period

due to the practice effect, reliable automatic AQ estimation independent of the WAB-R can

help provide a more complete and robust picture of a PWA’s recovery trajectory.

6.6.1 Experimental Setup

We frame WAB-R AQ prediction as a regression problem, with the proposed quantitative

measures as features and AQ scores as the target labels. For this set of experiments, we

select PWAs who have recorded AQ scores as well as speech samples in both the free

speech and semi-spontaneous categories. 348 out of 401 PWAs meet these requirements.

We maintain the same speaker-independent four-fold cross-validation split described in

Section 6.3.3, where 25% of speakers are held out from each fold as test data.

We z-normalize all features using statistics computed on Control speakers. This aids

in model training and enables easy interpretation of the resulting features. For example,

a negative words/min feature means that the subject speaks more slowly than the typical
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healthy control, whereas a positive OCW feature indicates a relatively less frequent use of

function words. Finally, this ensures that test features across different folds are comparable

and can be analyzed together, since the z-normalization statistics remain the same.

Our preliminary results indicate that Support Vector Regression (SVR) performs favo-

rably in this task compared to Linear Regression, k-Nearest Neighbor, and Multi-Layer

Perceptron. We use scikit-learn [121] to train SVR on training features extracted from time

aligned manual transcripts. We first perform hyperparameter selection using 10-fold cross-

validation with MAE as the metric. Our hyperparameter ranges are as follows: penalty

term C {1.0, 10−1, 10−2, 10−3, 10−4, 10−5}, slack parameter ϵ {1.0, 10−1, 10−2, 10−3}, ker-

nel type {RBF, linear}, and shrinking heuristic {true, false}. We train the final model

on the full training set using the cross-validated hyperparameters.

We perform prediction using three sets of test features:

• Oracle: features extracted with manual transcripts.

• Auto: features extracted with ASR-generated transcripts.

• Calibrated: Auto features after calibration.

These three sets of results represent our system’s performance given perfect and imperfect

ASR. Our objective is to achieve good prediction results while minimizing the impact of

ASR errors. We post-process the model outputs, clipping them within [0, 100], the known

range of WAB-R AQ.

It is worth noting that our regression model is trained on oracle features, and the same

model is used with both oracle and ASR-based test features for prediction. Alternatively,

we can use ASR-based features for both training and testing, which Fraser et al. found to be

beneficial for PPA classification [41]. We do not adopt this approach in our work because

it will mask the effect of ASR errors on prediction performance, which we plan to analyze

in Section 6.7.2. Investigation of this modeling approach will be left for future work.
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6.6.2 Feature Extraction Protocols

Research in aphasiology suggested that the speech-language patterns of a PWA may be

different across free speech and semi-spontaneous speech [68, 125]. As a result, featu-

res extracted on these two categories may exhibit different and possibly complementary

characteristics. We investigate four variations of our feature set based on this observation:

• All: features extracted on all available utterances.

• Free: features extracted on free speech utterances.

• Semi: features extracted on semi-spontaneous utterances.

• Combined: concatenation of Free and Semi features

Analyzing the relative performance of these feature protocols will help indicate the type of

aphasic speech most suitable for automatic AQ prediction. In addition, Combined features

may improve performance if free speech and semi-spontaneous speech do indeed provide

complementary information.

6.7 Results and Discussion

6.7.1 Feature Robustness to ASR Errors

One of the most important requirements of ASR-driven quantitative analysis is that the

extracted measures must be sufficiently robust to recognition errors. We say a feature is

robust if its values derived from ASR-generated output are not statistically significantly

different from those based on manual transcripts. For regular features, we employ a two-

tailed paired t-test of equal means, p = .05. For features involving the 13 statistics in Table

6.2, we use a two-way repeated measures Analysis of Variance (ANOVA) with Greenhouse-

Geisser correction, p = .05, to study the effect of statistic (1st quartile, 2nd quartile, . . . ,
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skewness, kurtosis) and transcript type (manual, ASR-based). The feature is considered

robust if the effect of transcript type is not statistically significant.

Table 6.4: Comparison of oracle and speech recognition-based quantitative measures, using
two-tailed paired t-test of equal means for regular features and two-way repeated measures
Analysis of Variance (ANOVA) for statistics features, both with p = .05 (N: not signifi-
cantly different before calibration; H: not significantly different after calibration).

Group ID Feature All Free Semi

DEN

1 Words/min H H H
2 Phones/min H H H
3 W H
4 OCW H NH
5 {Words/utt} H H H
6 {Phones/utt} H H H
7 Nouns NH
8 Verbs NH
9 Nouns/verb
10 Noun ratio NH
11 Light verbs
12 Determiners H H H
13 Demonstratives NH H NH
14 Prepositions NH
15 Adjectives H NH
16 Adverbs NH NH NH
17 Pronoun ratio NH NH NH
18 Function words H

DYS

19 Fillers/min H H H
20 Fillers/word H
21 Fillers/phone H H H
22 Pauses/min NH H H
23 Long pauses/min H H
24 Short pauses/min NH H
25 Pauses/word
26 Long pauses/word
27 Short pauses/word H NH
28 {Seconds/pause} NH

LEX

29 Type–token ratio H H
30 {Freq/word} N NH NH
31 {Img/word} NH NH NH
32 {AoA/word} NH H NH
33 {Fam/word} NH NH NH
34 {Phones/word}
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POS-LM 35 {Bigram CE/utt} NH NH NH
36 {Trigram CE/utt} NH H NH

PVE

37 {PVE1/utt} NH H NH
38 {PVE2/utt} NH H NH
39 {PVE3/utt} NH NH
40 {PVE4/utt} NH H NH

DTW
41 {Raw dist/word} NH H NH
42 {Norm dist/word} H
43 {Segment/word} NH

It can be seen from Table 6.4 that our proposed calibration method has a positive im-

pact on improving feature robustness. Many features that are not originally robust, such

as words/min, determiners, and fillers/min, become robust after calibration. Meanwhile,

the vast majority of features that are already robust before calibration, such as adverbs,

pronoun ratio, and {bigram CE/utt}, remain so after calibration. This suggests that even

though ASR errors may lead to feature extraction mismatch, this mismatch is often syste-

matically biased and can be corrected with linear transformation. The remaining analysis

will therefore focus on calibrated features.

Several quantitative measures are consistently robust across all three feature extraction

protocols (All, Free, and Semi). These include words/min, phones/min, {words/utt}, {phones/utt},

determiners, demonstratives, adverbs, pronoun ratio (DEN), fillers/min, fillers/phone, pau-

ses/min (DYS), {img/word}, {AoA/word}, {fam/word} (LEX), {bigram CE/utt}, {trigram

CE/utt} (POS-LM), {PVE1,2,4/word} (PVE), and {raw dist/word} (DTW). These measu-

res, especially those in the DEN and LEX feature groups, have been demonstrated to be

clinically useful for the analysis of aphasia [37,53,68]. The fact that such quantitative me-

asures can be reliably extracted based on ASR output is promising. SLPs can use them to

assist with clinical diagnosis and treatment planning without having to extract them manu-

ally, which is often prohibitively time consuming. This technology will help SLPs form a

more complete picture of a PWA’s speech-language profile, which can potentially result in

more suitable treatment approaches.
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Protocol MAE (Pearson’s correlation)
Oracle Auto Calibrated

All 9.54 (.787) 9.90 (.776) 9.82 (.769)
Free 10.95 (.675) 11.89 (.625) 12.06 (.602)
Semi 9.00 (.799) 9.26 (.792) 9.21 (.788)

Combined 8.86 (.801) 9.18 (.799) 9.24 (.786)

Table 6.5: Revised Western Aphasia Battery Aphasia Quotient (WAB-R AQ) prediction
results measured in Mean Absolute Error (MAE) and Pearson’s correlation, broken down
by transcript type (Oracle, Auto, Calibrated) and feature extraction protocol (All, Free,
Semi, Combined). These two factors specify how the features are extracted (Section 6.6).

The robustness of other features may vary depending on the type of speech from which

they are extracted. For example, nouns, prepositions, and function words can be extracted

reliably from free speech but not semi-spontaneous speech; the opposite is true for verbs.

We have not found a simple explanation as to why some features are robust in one speech

type but not the other. This is likely due to the combination and complex interaction of

several factors, including ASR error patterns and differences in language use.

6.7.2 WAB-R AQ Prediction

The WAB-R AQ prediction results, measured in MAE and Pearson’s correlation, are sum-

marized in Table 6.5. The results are partitioned based on two factors. First, transcript

type (Oracle, Auto, Calibrated) specifies the source from which features are computed

(Section 6.6.1). Second, feature extraction protocol (All, Free, Semi, Combined) indi-

cates the type of speech used for feature extraction (Section 6.6.2). As expected, Oracle

features (i.e., those extracted from manual transcripts) result in more accurate predictions

than Auto and Calibrated (i.e., ASR-based features). The best performance is obtained

with the Combined and Semi protocols, suggesting that quantitative measures should be

extracted for free and semi-spontaneous speech separately.

We perform two-way repeated measures ANOVA with Greenhouse-Geisser correction

(p = .05) to further analyze the effect of transcript type and feature extraction protocol,
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Group MAE (Pearson’s correlation)
Oracle Auto Calibrated

DEN 11.06 (.676) 11.46 (.623) 11.47 (.626)
DYS 14.16 (.429) 14.45 (.422) 14.31 (.429)
LEX 10.11 (.744) 10.44 (.733) 10.57 (.722)

POS-LM 11.71 (.629) 11.72 (.645) 11.75 (.645)
PVE 11.73 (.615) 11.94 (.591) 11.96 (.587)
DTW 12.43 (.583) 12.45 (.547) 12.17 (.569)

Table 6.6: Performance breakdown of individual feature groups (Section 6.5) under the
Combined protocol, measured in Mean Absolute Error (MAE) and Pearson’s correlation.

using speaker-level prediction errors as the response variable. There is no statistically

significant interaction between these two factors, F (3.119, 1082.428) = 2.312, p = .072.

The effect of transcript type is significant, F (1.300, 451.168) = 5.016, p = .017. Using

post-hoc multiple paired t-tests with Bonferroni correction (p = .05), we find that Oracle

results in significantly lower errors than Auto, t(347) = −3.208, p = .004, as well as

Calibrated, t(347) = −3.362, p = .002. This suggests that further improvement in aphasic

speech recognition is needed to fully bridge the performance gap caused by ASR errors.

Feature calibration helps bring ASR-derived measures closer to their oracle counterpart;

however, it does not have significant impact on automatic prediction. Results obtained

with Calibrated are not significantly different from Auto, t(347) = .375, p = 1.0. A

possible explanation for this observation is that the change in feature magnitude resulting

from calibration is relatively small, thus the final predictions remain largely unaffected. The

effect of feature extraction protocol is also significant, F (1.694, 587.911) = 25.770, p <

.001. Follow-up comparisons reveal that Combined and Semi results are not significantly

different, t(347) = −.455, p = 1.0; meanwhile, these two significantly outperform All and

Free (p < .001). Finally, we find that using only free speech for feature extraction performs

significantly worse than all other protocols (p < .001), possibly due to the unstructured

nature and relatively high WER associated with free speech.

Table 6.6 lists the prediction results of individual feature groups (DEN, DYS, LEX,
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Figure 6.4: Aphasia Quotient (AQ) prediction plot. Darker color means higher density.

POS-LM, PVE, DTW) under the Combined protocol. The best and worst features for AQ

prediction are LEX and DYS, respectively. Similar to above, we use a two-way repeated

measures ANOVA with Greenhouse-Geisser correction (p = .05) to analyze the effect of

feature group and transcript type. There is no statistically significant interaction between

these two factors, F (5.550, 1925.784) = .687, p = .648. While the effect of feature group

is significant, F (4.431, 1537.617) = 16.718, p < .001, it is not so for transcript type,

F (1.206, 418.377) = 2.099, p = .144. Post-hoc multiple paired t-tests with Bonferroni

correction (p = .05) further show that LEX significantly outperforms all other features

(p < .05), while DYS is significantly worse than the remaining groups (p < .001). Finally,

we observe that the combination of all proposed measures is significantly better than any

individual feature group (p < .001), suggesting that it is crucial to consider multiple aspects

of a PWA’s speech-language patterns to reliably predict WAB-R AQ.
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Figure 6.5: Histogram of Aphasia Quotient (AQ) prediction errors. The partition line divi-
des subjects into two groups, Low Errors (left) and High Errors (right). The Mean Absolute
Error (MAE) of the first group is approximately 5.316, the test-retest reliability of the AQ.

The remaining analyses focus on the results of our best automated system (Auto transcript

type and Combined protocol). Specifically, we are interested in speaker-level properties

that can separate PWAs with low and high AQ prediction errors. Figure 6.4 plots the

ground-truth AQs against corresponding predicted labels. Intuitively, we expect the sy-

stem to perform better on PWAs who have more accurate transcripts (i.e., lower WER) and

less severe aphasia (i.e., higher AQ). However, we found limited evidence to support these

hypotheses. Speaker-level prediction errors have a relatively weak Pearson’s correlation of

.162 with WERs and −.180 with AQs. Another hypothesis is that AQ values that are more

representative of the training set are easier to predict. We measure the representativeness

of an arbitrary AQ score based on its distance to the mean AQ of all training speakers (i.e.,

label distance). Lower label distance denotes higher representativeness and vice versa. The

correlation between label distances and prediction errors is .302, which is higher compared

to WER and AQ, but still does not indicate a clear relationship.

Individual characteristics are not correlated with system performance. However, we
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Property Low Errors High Errors Welch’s t-test
t p

Word Error Rate
38.78 44.06 −2.824 .005

(14.09) (17.09)

Aphasia Quotient
72.85 67.50

2.160 .032
(17.03) (23.27)

Label Distance
20.16 24.64 −4.542 < .001
(7.21) (9.10)

Table 6.7: Comparison of subjects with low and high Aphasia Quotient (AQ) prediction er-
rors. Values shown are mean (standard deviation). Label Distance is the absolute difference
between a subject’s AQ and the average training AQ.

can partition PWAs into groups based on AQ prediction error (defined by MAE) to under-

stand the general characteristics associated with accurate system performance. We divide

the speakers into two groups, one with low MAE and one with high MAE, based on a pre-

defined threshold. We then identify properties that are statistically significantly different

across these two groups (Welch’s t-test of equal means, p = .05). These properties could

be used in the future as a preliminary screen to identify PWAs who will benefit from this

type of system. We define our threshold based on AQ test-retest reliability. Researchers

demonstrated that the average deviation in AQ when rescoring PWAs who were stable at

the time of initial testing is 5.316 [148]. In other words, automatic AQ prediction can be

considered satisfactory if the MAE does not exceed this value. As shown in Figure 6.5,

this threshold results in 237 PWAs in the Low Errors group with a MAE of 5.30 ± 3.11,

and 111 PWAs in the High Errors group with a MAE of 17.46 ± 6.86. Further analysis

reveals that PWAs in the Low Errors group have significantly lower WER, higher AQ, and

smaller label distance (Table 6.7). This suggests that we can roughly estimate the range of

prediction errors given a PWA’s WER level and/or current AQ score.
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6.8 Conclusion

In this work, we perform one of the first large-scale studies on automatic quantitative analy-

sis of spontaneous aphasic speech. Our acoustic modeling method based on deep BLSTM-

RNN and utterance-level i-vectors sets a new benchmark for aphasic speech recognition

on AphasiaBank. We show that with the help of feature calibration, our proposed quan-

titative measures are robust against ASR errors and can potentially be used to assist with

clinical diagnosis and/or progress monitoring. Finally, we demonstrate the efficacy of these

measures by using them to predict WAB-R AQ with promising accuracy. The results and

techniques presented in our work will help make automated spontaneous speech analysis

for aphasia more feasible, enabling SLPs to quickly and reliably analyze a large amount of

speech data that would otherwise be too time consuming to inspect manually.

For future work, we plan to investigate acoustic and language model personalization

methods to further improve ASR performance on aphasic speech [26–28, 146, 147]. This

will help increase the reliability of ASR-based quantitative measures as well as reduce the

gap between oracle and automatic performance in WAB-R AQ estimation. We also plan

to test and further refine our system in realistic clinical applications to determine the full

extent of automated aphasic speech assessment.

6.9 Work Published

The work presented in this chapter was published in the following article:

1. Duc Le, Keli Licata, and Emily Mower Provost. “Automatic Quantitative Analysis

of Spontaneous Aphasic Speech.” Speech Communication. (in submission)
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CHAPTER 7

Conclusions and Future Directions

In this dissertation, we have presented our work on how to computationally analyze and as-

sess aphasic speech, with a long term goal of enabling automatic speech-based technology

that can support aphasia rehabilitation. This chapter provides a high-level summary of our

work and discusses potential avenues of research for future investigation.

7.1 Main Results and Contributions

The first part of the dissertation targeted the automatic intelligibility assessment of con-

strained speech data (i.e., speech with known target prompts), specifically the estimation

of speech clarity, fluidity, and prosody (Chapter 3). We proposed a novel set of features

that capture the pronunciation, rhythm, and intonation of PWAs by comparing with healthy

speech patterns. We demonstrated that the system was able to reach human-level perfor-

mance in estimating speech intelligibility, assuming that manually labeled transcripts are

available. We subsequently lifted the dependence on manual transcripts by proposing a

modified forced alignment method for transcript generation. Our fully automated system

achieved competitive results compared to human evaluators.

A restriction of the above system is that it assumes the availability of known target

prompts, an unrealistic assumption for unconstrained speech, the most common type of

verbal communication in everyday interaction. Accurate automatic speech recognition

(ASR) is required to reliably assess unconstrained speech. We addressed this need by
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performing one of the first large-scale studies on aphasic speech recognition (Chapter 4).

We demonstrated the efficacy of utterance-level i-vectors and multi-task deep Bidirectional

Long-Short Term Memory Recurrent Neural Network (BLSTM-RNN) for acoustic mo-

deling. We showed that out-of-domain adaptation is a promising method for developing

ASR systems on small datasets. Finally, our analysis indicated that there exists a moderate

correlation between recognition errors and aphasia severity, and that ASR technology is

more suited for non-conversational aphasic speech.

We applied the ASR techniques described in Chapter 4 to the problem of automatic

paraphasia (naming error) detection (Chapter 5). We showed that for speech with restricted

lexical content, task-specific language models can help improve recognition accuracy. We

established the first framework for evaluating paraphasia detection at the word, utterance,

and speaker level. Our results demonstrated that paraphasia detection at the word-level is

feasible when target transcripts are available, whereas speaker-level analysis of phonemic

paraphasia production rate can be estimated reasonably accurately based on ASR output.

Our final work targeted the automatic quantitative analysis of spontaneous aphasic

speech (Chapter 6). The key questions we wanted answered in this work are, for fea-

tures extracted from ASR-generated transcripts, are they (1) reflective of a PWA’s true

measures and (2) usable for estimating aphasia severity? We showed that the majority of

the proposed features, many of which have important clinical implications, are highly ro-

bust against ASR errors after applying our calibration method. These ASR-based features

yielded good performance in predicting the revised Western Aphasia Battery (WAB-R) Ap-

hasia Quotient (AQ), a standard measure of aphasia severity, especially when free speech

and semi-spontaneous speech are handled separately. However, results obtained from ASR-

based features were not yet comparable to those achieved with oracle features. This calls

for further advances in aphasic speech recognition and feature engineering.
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7.2 Future Work

7.2.1 Specialized ASR Models for Aphasia

Despite the advances made in Chapter 4, ASR remains challenging for aphasic speech due

to irregular speech-language patterns and high speaker variability. Acoustic and language

model personalization is a promising method for improving ASR performance. High level

of speaker variability hints at the potential of model personalization; however, it also makes

identifying similar speakers for training difficult. Our preliminary experiments indicated

that grouping PWAs by aphasia category (fluent vs. non-fluent), gender, or severity for

acoustic/language model training has insignificant impact on ASR performance. To tackle

this problem effectively, methods that explicitly take into account the prototypical error

patterns associated with aphasia will likely yield better results.

Moreover, it was necessary to simplify CHAT transcripts to make them compatible

with standard ASR systems. This reduces the informativeness of the transcripts, which

originally contain important information for the analysis of aphasia, such as word-level

errors, partial words, and different categories of sound fragments. While these special

tokens can be recognized through post-hoc analysis of the simplified transcripts, such as

what was done for paraphasia detection, a promising research direction is to model these

tokens jointly as part of acoustic and language model training. This can potentially improve

the transcript quality and widen the range of recognizable tokens.

7.2.2 Clinical Applications and Longitudinal Data Collection

The results and findings demonstrated in our work were obtained from post-hoc analysis

of existing data. It is not yet clear what the advantages and disadvantages of our met-

hods are when applied to real-world clinical applications. Since the long-term goal of this

dissertation is to provide speech-based technology to support aphasia rehabilitation, it is

important to perform human-centered studies to assess and quantify the practicality of our
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system. One possible way to perform such studies is to extend the mobile application

described in Section 2.1.2.1 to incorporate the proposed automated speech-language asses-

sment techniques and evaluate their effectiveness on realistic speech data collected as part

of a therapeutic application.

The studies presented in this dissertation are cross-sectional by nature, which is neces-

sitated by the way the data were collected. It is worthwhile to also carry out longitudinal

studies to evaluate our system’s ability to track clinically-relevant measures for the same

subject over an extended period of time. Having access to longitudinal data will allow us

to investigate adaptation methods to develop personalized prediction models, as opposed to

the speaker-independent models targeted in this work. Collecting longitudinal data in tra-

ditional research settings is difficult given the time and resource requirements. Our mobile

application, if deployed publicly, can make this task more feasible.
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