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ABSTRACT

The primary goal of phase I clinical trials in oncology is to determine a safe and

possibly effective dose of a treatment, and to recommend this dose for further testing

in larger trials. With chemotherapeutic treatments, the risk of severe dose-limiting

toxicity (DLT) is the primary concern, assuming that the probability of efficacy will

necessarily increase with dose. A phase I trial then seeks the highest dose with

acceptable risk of DLT, called the maximum tolerated dose (MTD). Increasing the

dose beyond the MTD would lead to unacceptable risk, while decreasing the dose

would decrease the probability of benefit. In contrast, many newer therapies are

molecularly targeted, where the probabilities of DLT and efficacy may plateau or

even rise and then fall after some threshold. In this setting, a phase I trial must

account for both toxicity and efficacy in identifying an optimal dose.

In this dissertation, we present three new approaches to modeling data in phase

I trials of a single agent. Our methods improve on current practice by making more

use of commonly available data. First, for chemotherapies, we investigate the utility

of counting multiple DLTs per patient, in addition to counting lower-level toxicities

(LLT). Typically, methods for phase I trials model only binary DLT responses, and

ignore LLTs. We find that using event counts and including LLTs increases the prob-

ability of correctly identifying the MTD, particularly when the MTD is not among

the highest dose levels being considered.

Second, we consider chemotherapies that are administered over multiple cycles,

where dosage may vary across cycles. Multi-cycle treatments are often analyzed

using only DLTs observed in the first cycle, ignoring DLTs from later cycles and
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thus potentially underestimating the DLT rates. We develop a latent process model,

representing a continuous level of toxicity over time, which rises and falls after each

administration, but which is only observed discretely in each cycle as either no toxicity,

LLT, or DLT. The process is inspired by the pharmacokinetics of drug absorption and

clearance. We use our model to re-estimate the MTD at the end of adaptive trials that

originally used only first-cycle data, and we find that our model typically increases

the probability of correctly identifying the MTD. Our method can also recommend

how to adjust a patient’s dose mid-treatment, to attain a target DLT rate.

Third, we develop a method for molecularly targeted therapies, incorporating both

DLTs and efficacy responses and allowing the rates of both responses to vary flexibly

with dose. In particular, we adopt the conditional autoregressive model, which allows

us to share information between dose levels without imposing any functional form on

the dose-response curves. We find that our method can adapt to a variety of dose-

toxicity and dose-efficacy patterns, and often performs at least as well as competing

methods.
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CHAPTER 1

Introduction

In this dissertation, we present new statistical methods for phase I clinical trials of

a single agent. These small trials, which provide the first opportunity to test a new

treatment in humans, traditionally seek to identify a maximum tolerated dose (MTD)

from a pre-specified set of dose levels. The MTD is the highest dose with acceptable

risk of dose-limiting toxicity (DLT), which is an adverse event severe enough to pre-

vent a patient from continuing treatment. A key feature of phase I trials is that,

historically, they measure only toxicity and ignore efficacy. This omission can be jus-

tified for certain classes of drugs, in particular cytotoxic agents [1], by assuming that

as dose increases, so do the probabilities of both DLT and therapeutic effect. There-

fore, the MTD, based solely on toxicity data, is optimal in the sense that increasing

the dose beyond it would lead to unacceptable risk of toxicity, while decreasing the

dose would decrease the efficacy. When a phase I trial finishes, the estimated MTD

can then be further tested in a larger-scale phase II trial, in which both safety and

efficacy data are collected.

Phase I trials are conducted in an iterative manner, with the following steps: (1)

a small cohort (typically one to three patients) is enrolled together and assigned the

same dose; (2) the cohort is followed for some time to collect toxicity data; and (3)

a new cohort is enrolled at a dose level that is believed to be closer to the MTD,

based on data from previous patients. The steps are repeated until either we believe
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the procedure has converged to the MTD, or until a desired number of patients have

been observed. When the trial is complete, we obtain a final estimate of the MTD. In

essence, a phase I method consists of a decision rule, telling us which dose to assign

to the next cohort and when to stop the trial, and optionally, a statistical model, that

estimates DLT probabilities for each dose and provides these estimates as inputs for

the decision rule. The set of dose levels to be tested is typically fixed before the trial

starts.

A classic, widely employed method which uses only a rule and no statistical model,

is the 3+3 method. It was first described in the context of phase I trials by Storer [2]

in 1989, although its use in other contexts goes back to at least the 1940s [3]. In

the 3+3 method, we enroll three patients at the lowest dose level, which is presumed

safe based on extrapolation from animal models [1], and we follow each patient for

the occurrence of a DLT. If no patients had a DLT, we enroll another three patients

at the next higher dose level. If exactly one patient had a DLT, we enroll the next

cohort of three at the current dose level. Once two or more DLTs are observed at a

dose level given to three or six patients, the trial stops, and the dose just below this

overly toxic one is declared the MTD.

An advantage of this method, and one reason for its longevity, is that it is simple to

implement. A clinician conducting a trial can carry out the method without assistance

from a statistician and without need of statistical software. Additionally, by slowly

escalating the dose, the 3+3 method should result in fewer overdoses than a method

that preallocates a small, fixed number of patients at each dose level. A limitation

of the 3+3 method is that it does not target a particular, desired DLT probability.

Instead, it chooses the dose level one below the dose which has an observed DLT

proportion ≥ 1/3, based on data from three or six patients. This point demonstrates

that, without a probability model, the 3+3 method does not acknowledge that a

low dose level with, say, a DLT probability of 0.1 could produce two or three DLTs
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by chance, thereby invoking the stopping criterion and leading to the selection of a

dose that may be subtherapeutic. Similarly, a high, unsafe dose level may by chance

produce no DLTs in a small cohort, leading us to escalate to an even more unsafe

dose.

To address these limitations, O’Quigley, Pepe, and Fisher [4] developed an al-

ternative framework, using statistical modeling of DLT probabilities. This method,

known as the continual reassessment method (CRM), has been extensively refined and

expanded since initial publication [5–8], although the core idea remains unchanged.

To begin, the CRM requires an initial guess of the DLT probability for each dose be-

ing considered. These guesses are often referred to as a “probability skeleton,” which

we denote by π0j, for j = 1, . . . , J , where J is the number of dose levels. A model

is then specified where the DLT probabilities πj at all doses are linked via a single

parameter α. That is, πj = f(α, π0j) for some function f , with a common choice for f

being the power model, f(α, π0j) = π
exp(α)
0j . These probabilities feed into a Bernoulli

likelihood, and estimation of α is typically carried out with Bayesian methods, pro-

viding posterior estimates of the πj, denoted π̂j. The π̂j are recalculated whenever a

new patient outcome is collected. A Bayesian analysis is useful for the CRM in part

because it allows estimation of DLT probabilities early in the trial, before any DLTs

are observed. A maximum likelihood approach would not be able to estimate α in

this context, although it is possible to switch to maximum likelihood once DLTs are

observed [8].

Once we have the π̂j, we can use them in a decision rule to guide dose selection.

For example, if we want to target a 0.3 probability of DLT, then the next patient

could be assigned to the dose j where π̂j is closest to 0.3. Other decision rules are

possible with the CRM, but the key feature is to use model-based estimates of πj

to make decisions regarding the location of the MTD. This stands in contrast with

the 3+3 method, where the target is, in a sense, the range from 0.17 to 0.26 [9], as
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opposed to a single specifiable number. We also note that, although the CRM uses

only a single parameter to characterize the dose-toxicity curve, such a parsimonious

approach is sufficient for the goal of estimating the MTD [4,10]. That is, we only need

to estimate the value of the dose-toxicity curve at the MTD, and a single parameter

will allow this.

In this dissertation, each of the new methods we introduce builds on the CRM

in an attempt to address a particular shortcoming in current phase I methodology,

and to improve on current practice by making more use of commonly available data.

In Chapter 2, we present methods that model the number of toxicities a patient

experiences across different body systems, as opposed to the simple binary response

used in the 3+3 design and CRM. Other researchers have developed methods to

incorporate more complex toxicity data [11–14], but our new methods do so in a way

that is both unique and appealingly simple, with one method in particular providing

a closed form estimator of DLT probabilities. In Chapter 3, building on the work of

Legedza and Ibrahim [15], Doussau et al. [16], Zhang and Braun [17], and Fernandes

et al. [18], we construct a model for treatments that are administered over multiple

cycles, where dosage may vary across cycles. Currently, multi-cycle treatments are

often analyzed by ignoring the longitudinal nature of the toxicity data and using

only DLTs observed in the first cycle, even though DLTs occurring later are clinically

important. Finally, in Chapter 4 we develop a method to jointly optimize DLT and

efficacy rates, when the assumption of strictly increasing rates of either DLT or efficacy

may not hold. Other methods have been introduced to address this setting [19–25],

but we believe our method is unique in that it shares information across adjacent

dose levels, but does not impose any restrictions on the shape or direction of the

dose-toxicity and dose-efficacy curves.

To elaborate further, in Chapter 2 we introduce three closely related models, each

one building off the previous one. The setting is traditional, evaluating a patient’s

4



response to a single administration, and assuming an increasing dose-toxicity curve.

For the first model, we count the number of DLTs a patient has and model the count

with a Poisson distribution whose mean increases with dose. Our goal is to estimate

the probability of having any DLT (whether a patient has one DLT or five, they will by

definition still have to stop their treatment), but by using counts rather than binary

data we hope to provide more efficient estimation of the MTD. For models two and

three, we incorporate the number of low-level toxicities (LLTs) a patient has, where

we define an LLT as an event that is medically significant but not dose-limiting. Our

goal is not to predict LLT counts, although technically this is possible, but rather

to improve the efficiency in estimating the MTD and its corresponding DLT rate.

(Note that throughout this dissertation, we use the terms “DLT rate” and “DLT

probability” interchangeably). We compare the performance of our models with that

of the CRM in a simulation study.

In Chapter 3, we consider a treatment that requires multiple administrations,

where dosage may change in response to the previous administration. In contrast to

the single endpoint used in most phase I statistical methods, here we have longitudinal

toxicity data, measured in each cycle of administration. Additionally, even though we

are still interested ultimately in whether a DLT will occur or not, using toxicity data

with more levels (i.e., LLT or DLT) can provide helpful information. For example, if a

patient has an LLT in cycle 1, they may be more likely to have a DLT in cycle 2 than

if they had no toxicity at all in cycle 1. In current practice, typically only DLTs in the

first cycle are modeled, allowing faster accrual of patients, but potentially causing the

DLT rates to be underestimated. A retrospective analysis of multiple phase I trials

found that many patients do not have a DLT until after the first cycle [26].

We propose using a latent stochastic process model for these longitudinal toxicity

data where, after each administration, the process tends to increase over time (mean-

ing higher toxicity), reach a peak, and then fall back to a baseline (perhaps as the

5



drug is cleared from the body). As the process rises and falls, it may cross thresholds

corresponding to the observed levels of toxicity. If we use a trinary outcome (0 = no

toxicity, 1 = LLT, 2 = DLT) for a treatment given in m cycles, then the observed data

for each patient is (1) their sequence of outcomes (e.g., 0102 or 00010) which either

has length m or terminates early with a 2, and (2) their sequence of dose assignments,

which might vary due to toxicity or efficacy.

The observed outcome in each cycle is assumed to correspond to the maximum of

the continuous latent toxicity process (LTP) within that cycle. That is, if the LTP

spends any time above the highest threshold in a given cycle, then we will observe

that cycle as a 2 (DLT). If the process always stays below the lowest threshold, we

will observe a 0 (no toxicity). Otherwise, we observe a 1 (LLT).

Beyond estimating the MTD, our LTP model can answer the question of what

dose to assign to a patient in their next cycle, given their data observed in earlier

cycles. However, given the number of parameters in our model, the DLT rates cannot

be estimated with enough precision early in the trial, when few patients have enrolled,

to satisfactorily guide dose selection for the next cohort. Thus, we consider using our

method after the trial has completed and sufficient data are available. The trial may

have been originally run with the 3+3 method or the CRM, ignoring all but the first

cycle. Our method can then re-estimate the MTD using data from all cycles.

In Chapter 4, we present a method inspired by recent developments of molecularly-

targeted anti-cancer agents. The mechanism of these drugs may be such that in-

creasing the dose beyond a threshold no longer increases the probabilities of DLT or

efficacy, and perhaps after a threshold these probabilities even begin to fall [27, 28].

Thus, collecting toxicity data alone will be insufficient for selecting the optimal dose.

For example, if efficacy has plateaued, we may be able to reduce the dose – and po-

tentially the DLT rate – without sacrificing efficacy. We develop a method for this

setting that incorporates DLT and efficacy response data, and that does not force a
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particular shape or direction on the dose-response curves. However, crucially for our

small-data context, our method still borrows data across dose levels.

In particular, we use the conditional autoregressive (CAR) model, typically used

in the geospatial analysis of lattice data [29–31], and adapt it for binomial data.

We apply this model twice, once for DLT rates and once for efficacy rates, where

the estimation is completely separate for the two responses. As the models for DLT

and efficacy rates are identical, we describe the model for DLT rates, noting that

the same description holds for efficacy. In our model, the patients’ binary DLT data,

aggregated over patients, are binomial. The set of binomial probabilities, representing

DLT rates, are transformed to be unbounded, and are given a multivariate-normal

prior with a covariance structure taken from the CAR model. This model treats

our set of candidate dose levels as forming a path graph, with connections between

nearest dose levels in each direction, so a dose has one or two first-order “neighbors,”

depending on if it is at the edge or in the interior of the set of dose levels. Thus, we

smooth the DLT rates across doses by borrowing information foremost from first-order

neighbors, and to a lesser extent from higher-order neighbors. To select the optimal

dose according to both estimated DLT and efficacy rates, we adopt the “desirability”

metric of Thall and Cook [22], but modify it to promote exploration among the

doses. We evaluate our method with a simulation study, in settings where the true

dose-response curves either plateau, peak, or simply increase as usual.

Finally, we conclude in Chapter 5 by summarizing the contributions of our meth-

ods, and noting how they compare with existing methods.
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CHAPTER 2

Modeling Adverse Event Counts in Phase

I Clinical Trials of a Cytotoxic Agent

2.1 Introduction

Phase I clinical trials are small studies whose aim is to identify the maximum tol-

erated dose (MTD) of a treatment, i.e., the highest dose with an acceptable proba-

bility of severe dose-limiting toxicity (DLT). The selected dose is then recommended

for additional, larger scale testing in a phase II trial. For cytotoxic agents such as

chemotherapy, a key feature of phase I trials is that they measure only toxicity and

ignore efficacy [1]. The omission of efficacy data can be justified by assuming that as

dose increases, so do the probabilities of both DLT and therapeutic effect. Therefore,

the MTD, based solely on toxicity data, is optimal in the sense that increasing the

dose beyond it would lead to unacceptable risk of toxicity, while decreasing the dose

would decrease the efficacy.

Phase I trials typically enroll patients sequentially in small cohorts, adaptively

changing what dose to assign to the next cohort. At the end of the trial, one of the pre-

specified doses will be selected as the MTD. Two competing methods for implementing

this framework are the 3+3 design [2], which uses a rule-based algorithm for escalating

the dose towards the MTD, and the continual reassessment method (CRM) [4, 6–8],

which adaptively updates a statistical model of DLT rates for each dose and uses

8



model-based estimates of those rates to select the next dose. Both the 3+3 design

and the CRM use a binary indicator of whether a patient had a DLT.

While most phase I trials have used variants of the 3+3 design or CRM with

binary data [32, 33], richer data are routinely collected. We refer to the “full data”

as a vector of event grades for each patient, capturing all events a patient has across

multiple event types, e.g., infections, gastrointestinal disorders, or hematologic events.

Each grade is an integer from 0 to 5, with higher grades indicating greater severity,

according to the Common Terminology Criteria for Adverse Events [34]. A DLT is

commonly taken to be an event of grade 3 or higher, although this may vary by

protocol.

A number of authors have explored using this richer toxicity data in different ways.

Bekele and Thall [11] developed a method to incorporate the full data, adapting a

multivariate ordinal probit model. The model estimates, for each dose level, the

probabilities of observing each grade for every event type. Rather than base their

adaptive dose-finding algorithm on DLT rates, Bekele and Thall defined a new metric,

the “total toxicity burden (TTB),” as a sum of weighted event grade probabilities,

with weights elicited from physicians and probabilities estimated by the model. The

algorithm then seeks a pre-specified target TTB to define the MTD. The appeal of

this approach is that it never dichotomizes the toxicity information, either before

modeling or after in selecting the MTD, and it provides a different target than the

DLT rate. A drawback, however, is that it is not straightforward to think in the TTB

scale, and thus choosing and explaining the target TTB is challenging.

Yuan et al. [12] developed a quasi-continuous toxicity score to reflect the highest-

grade event a patient experiences. A quasi-Bernoulli likelihood is used to carry out

estimation and inform dose escalation decisions. This method worked well in sim-

ulation studies, but similar to the CRM it only uses one event per patient. Thus,

Chen et al. [13] extended Yuan et al. to the case where patients may have multiple
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toxicities with varying grades. They used isotonic regression to estimate the average

toxicity score at each dose level. Alternative quasi-continuous toxicity scores have

been proposed by Ezzalfani et al. [35] and Wang and Ivanova [36]. Lee et al. [37]

proposed using multiple constraints on the percentiles of a toxicity score, as opposed

to the typical single constraint of the score being less than a threshold. Their multi-

constraint framework can work with any of the aforementioned scores. As with Bekele

et al., using these methods with novel scores requires redefining the MTD.

Van Meter et al. [14] proposed using the original ordinal adverse event grades

(0 to 5) in a proportional odds model, finding similar performance to the CRM in

how often the correct MTD was selected. As with Yuan et al., the response for each

patient was a single grade, which could be taken as the maximum grade across all

the patient’s events.

We propose three new models that make use of phase I data in a way that we

have not previously seen in the literature. Specifically, one model requires all of a

patient’s events to be categorized as DLTs or not, and models the total count of

DLTs per patient. Our two other models require that events be categorized as DLTs

or low-level toxicities (LLTs), which we define as events of medical significance but

which should not prevent a patient from continuing treatment, and we model the total

number of DLTs and LLTs per patient. As a motivation for our model, we note that in

a review of 54 single-agent phase I trials, Postel-Viney et al. [38] found a total of 2,084

patients experienced 24,918 adverse events, including 189 patients who experienced

300 DLTs. These numbers imply that, on average, patients experienced 12 events,

and that 9% of patients had an average of 1.6 DLTs. Thus, data with multiple events

and in particular multiple DLTs per patient are available. Our method uses the same

adaptive dose-finding framework as the CRM, but incorporates these richer data in

an attempt to better estimate the DLT rates.
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2.2 Data and Notation

Let Ni be the DLT count, and Mi the total event count (DLTs and LLTs) for patient

i, so the patient experiences a DLT if Ni > 0. These counts are obtained from the full

data, with a clinician categorizing each adverse event as a DLT or LLT. A patient may

experience multiple adverse events, both across and within event types, so in principle

Ni and Mi are unbounded above. With data from n patients, let N+ =
∑n

i=1Ni and

M+ =
∑n

i=1Mi. Let Xi ∈ {1, . . . , J} be the dose level assigned to patient i among

J pre-specified levels. We define r+ =
∑n

i=1 rXi as the total scaled dose given to

patients. The scaled dose values r1, . . . , rJ , will be defined in the next section.

A common feature in phase I designs is the need for investigators to specify, a

priori, a so-called probability skeleton. This represents the best prior guess for the

DLT rate for each candidate dose, which we denote π0j, j = 1, . . . , J . To ensure that

the probability of DLT increases monotonically with dose, we require π01 < · · · < π0J .

2.3 Models and Methods

In this section we specify our three models, in increasing order of complexity, and we

show how each model is used to estimate DLT rates.

2.3.1 Model 1: Using DLT Counts

Our first model uses only DLT counts, not LLT counts. We model the DLT count as

an increasing function of dose, Ni|β,Xi=j ∼ Poisson(βrj), where rj is an increasing

function of j that rescales the doses to agree with the skeleton. We will show later

how to calculate rj. As with the CRM, our model has only one parameter, β, which

we give a Bayesian prior, β ∼ Gamma(σ−2
β , σ−2

β ), such that, a priori, E(β) = 1 and

sd(β) = σβ.
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According to Model 1, the probability of a patient having any DLTs at dose j is

πj(β) = Pr(Ni > 0|β, j) = 1− Pr(Ni = 0|β, j) = 1− e−βrj .

Thus, we equate the prior mean of πj(β) with the skeleton, π0j = E[πj(β)] = 1 −(
1 + rjσ

2
β

)−σ−2
β . Solving this equation for rj gives rj = σ−2

β

[
(1− π0j)

−σ2
β − 1

]
. The

hyperparameter σβ controls the amount of prior uncertainty around the skeleton.

2.3.2 Model 1: Likelihood and Estimation

The likelihood for data from n patients is Lβ =
∏n

i=1 e
−βrXi (βrXi)

Ni/Ni! ∝ e−βr+βN+ .

Using a gamma prior p(β) ∝ e−σ
−2
β ββσ

−2
β −1, the posterior distribution of β is β|Data ∼

Gamma(ãβ, b̃β), where ãβ = σ−2
β +N+ and b̃β = σ−2

β + r+. We estimate the DLT rate,

specifically the probability of having any DLTs at dose j, denoted π̂j, as the posterior

mean of πj(β): π̂j = E[πj(β)|Data] = 1− (1+rj/b̃β)−ãβ . Thus, we have a closed-form

Bayesian estimator for DLT rates, and no numerical integration or Markov chain

Monte Carlo is necessary.

2.3.3 Model 2: Using DLT and LLT Counts

Our second model incorporates more information than Model 1. First, we use a

Poisson distribution to model a patient’s total event count Mi, such that Mi|θ,Xi=

j ∼ Poisson(θrj), θ > 0, where again rj rescales the dose to agree with the skeleton.

Note that we reuse the symbol rj to emphasize the similarity with Model 1, but the

calculation of rj is separate for the two models.

Next, conditional on Mi, the number of DLTs Ni is given a binomial distribution,

Ni|q,Mi, Xi ∼ Binomial(Mi, q). The parameter q is the probability that a given event

is a DLT rather than a LLT. Note that, although we condition on dose Xi, we do not

include them on the right-hand side. Thus we are assuming that the proportion of

DLTs is constant across doses; we will relax this assumption in Model 3. We assume
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that θ and q are a priori independent with marginal priors θ ∼ Gamma(σ−2
θ , σ−2

θ )

and q ∼ Beta(aq, bq).

The modeled probability of a patient having any DLTs at dose j is

πj(θ, q) = Pr(Ni > 0|θ, q, j)

= 1−
∞∑
m=0

Pr(Ni = 0|q,m, j) Pr(Mi = m|θ, j)

= 1−
∞∑
m=0

(1− q)me−θrj(θrj)m/m!

= 1− e−θqrj .

Thus, we calculate rj by solving the equation

π0j = E[πj(θ, q)] = 1− E[e−θqrj ]

= 1−
∫ 1

0

[∫ ∞
0

e−θqrjp(θ) dθ

]
p(q) dq

= 1−
∫ 1

0

(
1 + qrjσ

2
θ

)−σ−2
θ p(q) dq

= 1− 2F1

(
bq, σ

−2
θ ; aq + bq; rj/[rj + σ−2

θ ]
)

(1 + rjσ2
θ)
σ−2
θ

where 2F1 is the Gaussian hypergeometric function [39], and p(·) denotes a density.

This equation can be solved numerically for rj, for any choice of skeleton π0j and

hyperparameters σθ, aq, and bq.

2.3.4 Model 2: Likelihood and Estimation

With data for n patients, the full likelihood is

Lθ,q =
n∏
i=1

Pr(Mi, Ni|θ, q,Xi) =
n∏
i=1

Pr(Mi|θ,Xi)
n∏
i=1

Pr(Ni|q,Mi, Xi) = LθLq

where Lθ =
∏n

i=1 e
−θrXi (θrXi)

Mi/Mi! ∝ e−θr+θM+ and Lq ∝
∏n

i=1 q
Ni(1 − q)Mi−Ni =

qN+(1−q)M+−N+ . Due to the separability of the likelihood and the prior independence

of the parameters, we can estimate θ separately from q. Using a gamma prior for
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θ, we have θ|Data ∼ Gamma(ãθ, b̃θ), where ãθ = σ−2
θ + M+ and b̃θ = σ−2

θ + r+.

For q, using a beta prior gives us q|Data ∼ Beta(ãq, b̃q), where ãq = aq + N+ and

b̃q = bq +M+ −N+.

Finally, we estimate the posterior DLT rate at dose j as π̂j = E[πj(θ, q)|Data] =

1− 2F1(b̃q, ãθ; ãq + b̃q; rj/[rj + b̃θ])/(1 + rj/b̃θ)
ãθ . In the R programming language, [40]

the function 2F1 is available in the gsl package [41] under the name hyperg_2F1.

2.3.5 Model 3: Using DLT and LLT Counts, Version Two

Our third model is very similar to Model 2. The key difference is that q, the prob-

ability of an event being a DLT rather than an LLT, is assumed to vary with dose.

Specifically, we model q = qj(α) = expit(−3 + eαrj). The requirement that the coeffi-

cient of rj is positive ensures that the log-odds of an event being a DLT increases with

increasing dose level j. We now place a prior on α instead of q: α ∼ Normal(α0, σ
2
α).

According to Model 3, the probability of a patient having any DLTs at dose j

is πj(θ, α) = 1 − e−θqj(α)rj . The rescaled doses rj are found by numerically solving

π0j = E[πj(θ, α)] = 1 − E[e−θqj(α)rj ] = 1 − E[(1 + qj(α)rjσ
2
θ)
−σ−2

θ ], where the last

expectation is with respect to the distribution of α only.

2.3.6 Model 3: Likelihood and Estimation

The likelihood factors into separate functions of the two parameters, Lθ,α = LθLα.

The function Lθ is the same as in Model 2; the function Lα is

Lα =
n∏
i=1

Pr(Ni|q,Mi, Xi)

∝
n∏
i=1

(
e−3+eαrXi

1 + e−3+eαrXi

)Ni( 1

1 + e−3+eαrXi

)Mi−Ni

∝ exp

(
eα

n∑
i=1

rXiNi

)
n∏
i=1

(
1 + e−3+eαrXi

)−Mi .
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Due to the separability of the likelihood and the prior independence of the pa-

rameters, we can estimate θ separately from α. The posterior for θ is the same as in

Model 2: θ|Data ∼ Gamma(ãθ, b̃θ), where ãθ = σ−2
θ + M+ and b̃θ = σ−2

θ + r+. For

α, however, a closed-form posterior is not available. To obtain the posterior, we use

a simple discrete grid-based approximation, which is computationally efficient for a

single parameter [42].

Finally, we estimate the posterior DLT rate at dose j as π̂j = E[πj(θ, α)|Data] =

1− E[e−θqj(α)rj |Data] = 1− E[(1 + qj(α)rj/b̃θ)
−ãθ |Data], where the final expectation

is with respect to the posterior distribution of α.

2.3.7 Dose-Finding Algorithm

As a trial is run, patients are enrolled sequentially, and with data from each new

patient we update our estimates of the DLT rates. Although different dose-finding

algorithms are possible using our models, we describe a simple one, which we will

evaluate in the simulation study. First, we choose a set of J dose levels, and we

set a target DLT rate τ , denoting the maximum acceptable probability of a patient

having any DLTs. We enroll the first patient at the lowest dose, level 1, and follow

the patient for a desired time. Using the patient’s data and one of our three models,

we estimate the DLT rates π̂1, . . . , π̂J . Our updated estimate of the MTD, denoted

M̂TD, is the dose j that minimizes |π̂j − τ |. The next patient is then assigned either

to M̂TD or to the lowest dose not yet assigned, whichever is smaller. This rule simply

prevents the sequence of dose assignments from skipping over untested dose levels. We

continue to enroll new patients and update M̂TD using all the patients’ data. Once

we have observed a desired number of patients, the trial concludes and we obtain a

final estimate of the MTD.

15



2.4 Simulation Study and Comparison with CRM

We simulate adaptive trials using each of our proposed models, and we record how

often the true MTD is selected. To set a reference point for the performance of our

models, we include a comparison with a CRM model, described in the next section.

2.4.1 CRM model for comparison

For comparison, we will use a CRM model that is related to all of our proposed

models. Specifically, let Yi = I(Ni > 0) be a binary indicator of whether patient i

had a DLT. Recall that, according to our three models, the probability of DLT is,

respectively, πj(β) = 1 − e−βrj , πj(θ, q) = 1 − e−θqrj , and πj(θ, α) = 1 − e−θqj(α)rj .

For the CRM, with a single parameter φ, we have to specify a model for Pr(Yi =

1|φ, j) = Pr(Ni > 0|φ, j) directly. We use Pr(Yi = 1|φ, j) = 1 − e−φrj , φ > 0, due

to its functional similarity to our models, which will facilitate jointly calibrating the

hyperparameters of each model. Our prior on φ is φ ∼ Gamma(σ−2
φ , σ−2

φ ), and the

rescaled dose is rj = σ−2
φ

[
(1− π0j)

−σ2
φ − 1

]
. The posterior of φ is obtained with a

discrete grid-based approximation, which is then used to calculate the posterior DLT

rates π̂j = 1− E[e−φrj |Data].

2.4.2 Simulating a Patient’s Toxicity Data

In our simulation study, for the data-generating mechanism we assume that there are

K = 15 distinct event types, each of which can experience either no event, an LLT,

or a DLT, and there is a patient-specific frailty influencing the probabilities of those

outcomes. The observed data for a patient are the total number of DLTs and LLTs

across the K event types. We chose to use K = 15 as a middle ground among the

number of event types we have seen in published trials [11, 38, 43], however we will

also conduct a small sensitivity analysis with K = 7.
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Letting Yik ∈ {0 = no toxicity, 1 = LLT, 2 = DLT} be the response for patient i

in event type k = 1, . . . , K, we use a cumulative logit model, logit Pr(Yik ≥ y|Xi) =

ηiy = αy +γi+rXi for y = 1, 2, where γi ∼ Normal(0, γ2
sd) is a random patient-specific

frailty; Xi is the dose; and rXi rescales the dose to obtain a desired probability of

DLT. The multinomial probabilities piy = Pr(Yik = y|Xi) implied by this model are

pi0 = 1− expit(ηi1), pi1 = expit(ηi1)− expit(ηi2), and pi2 = expit(ηi2). Note that the

linear predictor ηiy does not depend on the event type k, that is, for simplicity we

make all event types have the same multinomial probabilities.

The number of DLTs for patient i is Ni =
∑K

k=1 I(Yik = 2) ∼ Binomial(K, pi2)

and the total event count is Mi =
∑K

k=1 I(Yik ∈ {1, 2}) ∼ Binomial(K, pi1 +pi2). If we

want dose j to have a population average DLT rate of πj, then we select rj such that

πj = E[Pr(Ni > 0)] = E[1− (1− expit(ηi2))K ], where the expectation is with respect

to γi. Since we rescale the doses, shifting the intercepts α1 and α2 by some constant

δ has no effect on the probabilities. Thus, without loss of generality, we fix α2 = 0,

and we require α1 > 0 to ensure the probabilities are positive. Once calibrated, we

draw Yik ∼ Multinomial(1; pi0, pi1, pi2) for k = 1, . . . , K. Then Ni =
∑K

k=1 I(Yik = 2)

and Mi =
∑K

k=1 I(Yik ∈ {1, 2}).

2.4.3 Simulation Scenarios

Using our data-generating simulation model and dose-finding algorithm, we can simu-

late full trials. In each simulated trial, there are J = 5 candidate dose levels, we enroll

n patients one at a time, and the target DLT rate is τ = 0.3. To setup our models,

we use a skeleton of (0.1, 0.2, 0.3, 0.4, 0.5). We must also specify some model-specific

tuning parameters: For Model 1, we use σβ = 1. For Model 2, σθ = 0.8, aq = 2, and

bq = 8. For Model 3, σθ = 0.8, α0 = 0.8, and σα = 0.7. For the CRM model, σφ = 1.

These hyperparameter values were chosen so that the prior DLT rate distributions at

each dose are close across the four models, as shown in Figure 2.1.
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Figure 2.1. Prior distributions of DLT rates at each dose, for all four models. The
boxplots show the 10th, 25th, 50th, 75th, and 90th percentiles, and the × marks the
mean. By design, the prior means equal the skeleton.

We consider a variety of scenarios by varying three factors: (1) the sample size

n, with either 30 or 60 patients; (2) the true DLT rates for all J doses, thereby

determining which dose is the true MTD; and (3) the parameters for our simulation

model, α1 and γsd. All scenarios use K = 15 event types. For the scenarios we call

s-A, s = 1, . . . , J , we set α1 = 2 and γsd = 0.5. For scenarios s-B, we set α1 = 2.5

and γsd = 0.75. The relevance of these parameters is that, in the A scenarios, the

simulated event counts Mi are typically small, while in the B scenarios Mi is more

likely to reach its upper bound of 15 (i.e., there is an event in all 15 event types).

Thus the B scenarios present more of a challenge for our Models 1, 2, and 3, which

have no concept of an upper bound for the event count. For example, in scenario 3-A,

with true DLT rates (0.1, 0.2, 0.3, 0.4, 0.5), the probability of a patient having at least

10 events at the different doses are (0, 0.00004, 0.0006, 0.0033, 0.012). In contrast, for
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scenario 3-B, with the same DLT rates, the probabilities of having at least 10 events

are (0.0002, 0.0038, 0.018, 0.049, 0.11). Table 2.1 shows the true DLT rates for each

scenario. Note that in scenarios s-A and s-B, the true MTD is dose s.

2.4.4 Simulation Results

For each simulation scenario and statistical model, we simulated 10,000 adaptive tri-

als. The results are reported in Tables 2.2 and 2.3, for 30 and 60 patients, respectively,

with the following summary statistics: the percentage of trials in which each dose is

selected as the MTD; the average number of patients (out of 30 or 60) assigned to

each dose during a trial; and a score that measures how far the true DLT rate of

the selected MTD is from the target τ . We actually consider two scores, defined as

scorek =
∑J

j=1 ŝj lossk(πj, τ), where ŝj is the percentage of trials in which dose j is

selected as the MTD, πj is the true DLT rate at dose j, loss1(π, τ) = |π − τ |, and

loss2(π, τ) = |π − τ |I(π ≤ τ) + 2|π − τ |I(π > τ). Note that loss1 is symmetric in π

around τ , while loss2 penalizes π > τ more than π ≤ τ , i.e., there is a higher penalty

for picking dose levels above the target rather than below. For both scores, smaller

values are better, and a score of 0 is ideal.

In Table 2.2, we see that, in the A scenarios, our models consistently do at least

as well and often better than the CRM, picking the correct MTD more often and

treating more patients at the correct MTD. In the B scenarios, the results are more

Table 2.1. True DLT rates for each simulation scenario.

Dose level
Scenarios 1 2 3 4 5

1-A and 1-B 0.30 0.40 0.50 0.60 0.70
2-A and 2-B 0.20 0.30 0.40 0.50 0.60
3-A and 3-B 0.10 0.20 0.30 0.40 0.50
4-A and 4-B 0.07 0.14 0.21 0.30 0.40
5-A and 5-B 0.06 0.12 0.18 0.24 0.30
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Table 2.2. Simulation results with 30 patients. Each line summarizes 10,000 sim-
ulated adaptive trials of 30 patients with 5 dose levels. The target DLT rate is 0.3.
The italicized rows show the true DLT rates. The bold entries highlight the results
at the true MTD.

Dose Selection Percentage (Number of Patients Treated)
Scenario Model 1 2 3 4 5 Score1 Score2

0.3 0.4 0.5 0.6 0.7

1 57.3 (13.4) 40.0 (13.0) 2.7 (2.9) 0.0 (0.6) 0.0 (0.2) 4.5 9.1
1-A 2 73.1 (18.9) 25.8 (9.3) 1.1 (1.6) 0.0 (0.2) 0.0 (0.0) 2.8 5.6

3 63.2 (15.6) 35.6 (12.6) 1.2 (1.7) 0.0 (0.1) 0.0 (0.0) 3.8 7.6
CRM 51.5 (11.9) 43.4 (13.8) 4.9 (3.5) 0.2 (0.7) 0.0 (0.2) 5.4 10.8

1 67.2 (15.6) 31.2 (11.3) 1.6 (2.4) 0.1 (0.5) 0.0 (0.2) 3.5 6.9
1-B 2 83.8 (22.2) 15.5 (6.7) 0.6 (1.0) 0.0 (0.1) 0.0 (0.0) 1.7 3.3

3 83.7 (21.2) 16.2 (8.3) 0.1 (0.6) 0.0 (0.0) 0.0 (0.0) 1.6 3.3
CRM 50.9 (11.7) 44.2 (13.9) 4.8 (3.5) 0.2 (0.7) 0.0 (0.2) 5.4 10.9

0.2 0.3 0.4 0.5 0.6

1 14.4 (5.1) 61.0 (15.2) 22.7 (7.3) 1.9 (1.8) 0.1 (0.6) 4.1 6.8
2-A 2 22.7 (7.7) 58.6 (15.1) 17.6 (5.9) 1.1 (1.1) 0.0 (0.2) 4.3 6.2

3 14.5 (5.5) 63.9 (16.3) 20.6 (7.3) 1.0 (0.8) 0.0 (0.0) 3.7 6.0
CRM 14.3 (4.9) 57.1 (14.6) 25.0 (7.7) 3.6 (2.1) 0.1 (0.7) 4.7 7.9

1 20.7 (6.5) 61.6 (15.3) 16.6 (6.2) 1.0 (1.5) 0.0 (0.5) 4.0 5.8
2-B 2 37.6 (11.9) 51.5 (13.4) 10.3 (3.9) 0.6 (0.7) 0.0 (0.1) 4.9 6.1

3 29.1 (9.1) 63.2 (17.2) 7.5 (3.6) 0.2 (0.2) 0.0 (0.0) 3.7 4.5
CRM 13.8 (4.8) 57.6 (14.8) 25.3 (7.7) 3.2 (2.1) 0.2 (0.7) 4.6 7.8

0.1 0.2 0.3 0.4 0.5

1 0.5 (1.5) 26.4 (9.1) 53.5 (12.2) 17.5 (5.3) 2.1 (1.9) 4.9 7.1
3-A 2 0.8 (1.7) 29.3 (9.8) 53.2 (12.4) 15.3 (4.9) 1.5 (1.2) 4.9 6.8

3 0.4 (1.5) 22.4 (8.2) 59.6 (14.5) 17.0 (5.4) 0.6 (0.5) 4.1 6.0
CRM 0.8 (1.6) 26.3 (9.1) 49.7 (11.6) 20.1 (5.5) 3.2 (2.2) 5.4 8.1

1 1.1 (1.8) 33.6 (10.3) 50.5 (11.5) 13.6 (4.6) 1.3 (1.7) 5.2 6.8
3-B 2 2.3 (2.9) 40.2 (12.3) 46.2 (10.7) 10.4 (3.4) 0.9 (0.8) 5.7 6.9

3 0.9 (1.9) 39.0 (12.4) 53.6 (13.3) 6.4 (2.3) 0.0 (0.1) 4.7 5.4
CRM 0.8 (1.6) 27.2 (9.2) 48.6 (11.3) 20.0 (5.6) 3.3 (2.2) 5.6 8.2

0.07 0.14 0.21 0.3 0.4

1 0.0 (1.1) 3.7 (3.8) 33.2 (9.4) 44.8 (9.5) 18.2 (6.2) 5.4 7.2
4-A 2 0.0 (1.1) 3.3 (3.4) 33.4 (9.7) 47.0 (10.4) 16.2 (5.4) 5.2 6.8

3 0.0 (1.1) 2.7 (3.1) 29.3 (9.5) 53.1 (12.1) 14.9 (4.2) 4.6 6.0
CRM 0.0 (1.2) 4.9 (4.2) 30.1 (9.0) 44.1 (9.1) 20.8 (6.5) 5.6 7.7

1 0.1 (1.2) 5.9 (4.5) 37.7 (9.9) 41.8 (9.0) 14.5 (5.4) 5.8 7.2
4-B 2 0.1 (1.4) 8.3 (5.5) 41.2 (10.9) 39.4 (8.5) 11.0 (3.7) 6.2 7.3

3 0.0 (1.2) 5.3 (4.5) 44.7 (12.9) 45.3 (10.0) 4.8 (1.4) 5.3 5.8
CRM 0.0 (1.2) 5.1 (4.4) 31.6 (9.0) 42.1 (8.9) 21.3 (6.5) 5.8 7.9

0.06 0.12 0.18 0.24 0.3

1 0.0 (1.1) 1.5 (2.8) 14.1 (6.1) 33.1 (8.1) 51.2 (11.9) 4.0 4.0
5-A 2 0.0 (1.1) 0.9 (2.3) 12.0 (5.7) 35.4 (8.9) 51.7 (12.1) 3.7 3.7

3 0.0 (1.1) 0.9 (2.2) 11.6 (6.0) 38.8 (10.4) 48.7 (10.3) 3.9 3.9
CRM 0.0 (1.1) 2.1 (3.2) 15.6 (6.5) 31.8 (7.6) 50.4 (11.5) 4.2 4.2

1 0.0 (1.1) 2.4 (3.0) 16.9 (6.6) 35.4 (8.2) 45.3 (11.1) 4.6 4.6
5-B 2 0.0 (1.2) 2.7 (3.5) 20.5 (7.7) 37.8 (8.8) 38.8 (8.8) 5.2 5.2

3 0.0 (1.1) 1.6 (3.0) 21.9 (9.0) 48.5 (11.4) 27.9 (5.5) 5.8 5.8
CRM 0.0 (1.1) 2.0 (3.2) 15.4 (6.4) 32.1 (7.7) 50.5 (11.6) 4.1 4.1
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Table 2.3. Simulation results with 60 patients. Each line summarizes 10,000 sim-
ulated adaptive trials of 60 patients with 5 dose levels. The target DLT rate is 0.3.
The italicized rows show the true DLT rates. The bold entries highlight the results
at the true MTD.

Dose Selection Percentage (Number of Patients Treated)
Scenario Model 1 2 3 4 5 Score1 Score2

0.3 0.4 0.5 0.6 0.7

1 68.3 (32.3) 31.5 (23.8) 0.2 (3.2) 0.0 (0.6) 0.0 (0.2) 3.2 6.4
1-A 2 80.3 (41.9) 19.5 (16.0) 0.2 (1.9) 0.0 (0.2) 0.0 (0.0) 2.0 4.0

3 72.7 (36.0) 27.1 (22.0) 0.1 (1.9) 0.0 (0.1) 0.0 (0.0) 2.7 5.5
CRM 61.4 (28.9) 37.7 (26.0) 0.9 (4.2) 0.0 (0.7) 0.0 (0.2) 4.0 7.9

1 79.4 (37.6) 20.5 (19.2) 0.1 (2.5) 0.0 (0.5) 0.0 (0.2) 2.1 4.2
1-B 2 90.1 (48.2) 9.8 (10.6) 0.0 (1.1) 0.0 (0.1) 0.0 (0.0) 1.0 2.0

3 91.1 (47.5) 8.9 (11.9) 0.0 (0.6) 0.0 (0.0) 0.0 (0.0) 0.9 1.8
CRM 61.0 (28.7) 37.9 (26.2) 1.1 (4.3) 0.0 (0.7) 0.0 (0.2) 4.0 8.0

0.2 0.3 0.4 0.5 0.6

1 12.6 (9.3) 72.4 (35.6) 14.9 (12.7) 0.1 (1.9) 0.0 (0.5) 2.8 4.3
2-A 2 19.1 (13.8) 68.8 (34.6) 12.0 (10.2) 0.2 (1.3) 0.0 (0.2) 3.1 4.4

3 12.4 (9.2) 73.4 (37.2) 14.1 (12.6) 0.1 (0.9) 0.0 (0.0) 2.7 4.1
CRM 11.8 (8.7) 67.1 (33.6) 20.5 (14.5) 0.6 (2.5) 0.0 (0.7) 3.4 5.5

1 19.5 (12.7) 72.0 (35.4) 8.5 (9.9) 0.0 (1.6) 0.0 (0.5) 2.8 3.7
2-B 2 32.7 (22.3) 61.6 (30.4) 5.6 (6.4) 0.1 (0.8) 0.0 (0.1) 3.9 4.4

3 27.1 (17.9) 68.7 (36.5) 4.2 (5.5) 0.0 (0.2) 0.0 (0.0) 3.1 3.6
CRM 11.8 (8.8) 67.4 (33.6) 20.2 (14.4) 0.6 (2.5) 0.0 (0.7) 3.3 5.5

0.1 0.2 0.3 0.4 0.5

1 0.0 (1.6) 20.8 (16.1) 66.6 (30.1) 12.3 (10.0) 0.2 (2.2) 3.4 4.6
3-A 2 0.0 (1.7) 22.2 (17.3) 66.8 (30.6) 10.8 (9.0) 0.1 (1.4) 3.3 4.4

3 0.1 (1.5) 18.1 (14.3) 70.3 (33.9) 11.4 (9.7) 0.1 (0.6) 3.0 4.2
CRM 0.2 (1.7) 20.1 (15.9) 62.4 (28.4) 16.8 (11.3) 0.6 (2.7) 3.8 5.6

1 0.2 (2.0) 29.6 (19.6) 62.9 (28.8) 7.3 (7.7) 0.0 (1.9) 3.7 4.5
3-B 2 0.4 (3.2) 36.2 (23.9) 57.0 (26.1) 6.3 (5.9) 0.1 (0.9) 4.3 5.0

3 0.1 (2.0) 31.7 (22.8) 64.1 (31.4) 4.1 (3.8) 0.0 (0.1) 3.6 4.0
CRM 0.1 (1.7) 19.8 (15.8) 63.2 (28.9) 16.3 (11.0) 0.6 (2.7) 3.8 5.5

0.07 0.14 0.21 0.3 0.4

1 0.0 (1.1) 0.8 (4.5) 28.1 (18.6) 59.9 (25.4) 11.2 (10.4) 3.8 4.9
4-A 2 0.0 (1.1) 0.8 (4.0) 26.9 (18.3) 61.6 (27.0) 10.7 (9.6) 3.6 4.7

3 0.0 (1.1) 0.7 (3.5) 24.7 (17.9) 64.6 (29.8) 10.0 (7.8) 3.3 4.3
CRM 0.0 (1.2) 1.3 (5.1) 25.6 (17.5) 57.4 (24.2) 15.8 (12.0) 4.1 5.7

1 0.0 (1.2) 2.0 (5.7) 37.5 (21.3) 53.8 (23.3) 6.8 (8.4) 4.4 5.1
4-B 2 0.0 (1.4) 2.2 (6.8) 39.2 (23.0) 52.3 (22.6) 6.3 (6.2) 4.5 5.1

3 0.0 (1.2) 1.4 (5.4) 40.9 (26.0) 54.3 (24.7) 3.4 (2.7) 4.2 4.6
CRM 0.0 (1.2) 1.2 (5.1) 26.4 (17.8) 56.3 (23.9) 16.1 (12.0) 4.2 5.8

0.06 0.12 0.18 0.24 0.3

1 0.0 (1.1) 0.2 (3.0) 7.1 (9.6) 36.6 (18.6) 56.2 (27.8) 3.1 3.1
5-A 2 0.0 (1.1) 0.1 (2.3) 5.9 (8.5) 37.2 (19.7) 56.8 (28.5) 3.0 3.0

3 0.0 (1.1) 0.1 (2.3) 5.7 (8.5) 39.1 (21.9) 55.1 (26.2) 3.0 3.0
CRM 0.0 (1.1) 0.3 (3.5) 7.7 (9.7) 34.5 (17.9) 57.5 (27.8) 3.0 3.0

1 0.0 (1.1) 0.2 (3.4) 10.6 (11.1) 42.1 (19.9) 47.0 (24.5) 3.8 3.8
5-B 2 0.0 (1.2) 0.4 (4.1) 12.5 (12.6) 44.4 (21.0) 42.8 (21.1) 4.2 4.2

3 0.0 (1.1) 0.3 (3.3) 11.7 (13.9) 52.6 (26.9) 35.4 (14.8) 4.6 4.6
CRM 0.0 (1.1) 0.2 (3.4) 7.3 (9.7) 34.1 (17.7) 58.4 (28.1) 3.0 3.0
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mixed. For scenarios 2-B through 4-B, our models typically do around as well as the

CRM in selecting the correct MTD. However, when not picking the correct MTD our

models have a clear tendency to select doses lower than the MTD, while the CRM

appears more likely to pick higher doses. This is reflected in the score2 column, where

our models consistently have lower scores. This trend is more pronounced in scenarios

1-B and 5-B, where the true MTD is the lowest or highest dose, respectively. In 1-B,

our models do much better than the CRM, but this is likely because our models prefer

lower doses. Similarly, in 5-B the CRM does considerably better, but this is likely

because the CRM prefers higher doses.

It is difficult to identify a clear winner among the models across all scenarios. If we

ignore scenario 5-B, then Model 3, which incorporates LLTs and allows the probability

of DLT versus LLT to vary with dose, is the preferred model. This validates the idea

that counting events and using LLTs can improve estimation of the MTD. However,

Model 3 is clearly not preferred in scenario 5-B, in which the highest dose is the MTD

and patients commonly experience many events, sometimes reaching the maximum of

15 events. We consider this scenario somewhat unlikely, however, as a well-designed

trial will typically have the true MTD among the middle dose levels.

2.4.5 Example Trial

We illustrate the behavior of Model 3 by presenting a full simulated trial. We sim-

ulated the trial data using scenario 4-A described previously, where the true DLT

rates are (0.07, 0.14, 0.21, 0.3, 0.4). The target DLT rate is 0.3, so that dose 4 is the

true MTD. Our skeleton is (0.1, 0.2, 0.3, 0.4, 0.5), implying that a priori the MTD is

believed to be dose 3. The results from simulating 30 patients are shown in Table 2.4.

First we note that, looking at the last row of the table, the trial correctly concludes

that dose 4 is the MTD. Indeed, although there is still some movement, the trial has

mostly fixed on dose 4 by patient 12. Based on the results in Table 2.2, Model 3 will
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pick the correct dose in scenario 4-A 53.1% of the time, so this example trial is in

line with expectations. We also note that only one patient has multiple DLTs in this

trial, although 18 patients have more than one total event, so our model does have

data to work with. At the end of the trial, beyond selecting the correct MTD, we

have also estimated the DLT rates well: (0.07, 0.12, 0.18, 0.27, 0.38).

2.4.6 Sensitivity Analysis

We conduct a small sensitivity analysis, shown in Table 2.5, investigating how model

performance varies with changing model parameters and with the number of event

types K. In particular, starting from the 2-A scenario, we consider the following

three variations: “Larger variance,” in which we increase the prior variances of model

parameters (σβ = 1.4 for Model 1, σθ = 1.15, aq = 1, and bq = 4 for Model 2, σθ = 1.3,

α0 = 2, and σα = 1.1 for Model 3, and σφ = 1.4 for the CRM); “Smaller variance,”

in which we decrease the prior variances of model parameters (σβ = 0.7 for Model

1, σθ = 0.56, aq = 4, and bq = 16 for Model 2, σθ = 0.65, α0 = 3, and σα = 0.8 for

Model 3, and σφ = 0.7 for the CRM); and “K = 7 event types,” in which we simply

reduce the number of events types from 15 to 7. We simulated 10,000 adaptive trials

of 30 patients with each model, and for each described variation. We observe that

all models are sensitive to the prior variances of model parameters, with the “smaller

variance” models outperforming the “larger variance” models by about 10% in terms

of selecting the correct MTD. In contrast, reducing the number of event types made

minimal difference compared to the 2-A results in Table 2.2. These results suggest

that the models, including the CRM, should be carefully calibrated given a variety

of plausible DLT rates, while the precise number of event types is less important.
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Table 2.4. Example of a single simulated trial of 30 patients and 5 dose levels, using
Model 3 and scenario 4-A. The true DLT rates are (0.07, 0.14, 0.21, 0.3, 0.4) and the
target is 0.3, so dose 4 is the true MTD. Our initial guesses for the DLT rates are
(0.1, 0.2, 0.3, 0.4, 0.5), implying that initially we suspect dose 3 is the MTD. However,
our trials always start the first patient on dose 1.

Dose Total Estimated DLT Rates

Patient Given Events DLTs Dose 1 2 3 4 5 M̂TD

1 1 1 0 0.10 0.21 0.32 0.44 0.55 2
2 2 0 0 0.07 0.16 0.25 0.36 0.47 3
3 3 4 0 0.08 0.16 0.25 0.37 0.51 3
4 3 3 0 0.08 0.16 0.25 0.37 0.50 3
5 3 5 1 0.11 0.20 0.31 0.45 0.59 3
6 3 1 0 0.09 0.18 0.28 0.41 0.55 3
7 3 0 0 0.08 0.16 0.25 0.37 0.51 3
8 3 0 0 0.07 0.14 0.23 0.34 0.47 4
9 4 6 1 0.09 0.16 0.26 0.37 0.52 3

10 3 2 0 0.08 0.16 0.25 0.36 0.50 3
11 3 1 0 0.08 0.15 0.23 0.34 0.48 4
12 4 3 0 0.08 0.14 0.22 0.32 0.45 4
13 4 1 0 0.07 0.13 0.21 0.30 0.42 4
14 4 0 0 0.07 0.12 0.19 0.28 0.40 4
15 4 2 1 0.07 0.13 0.21 0.30 0.43 4
16 4 2 0 0.07 0.13 0.20 0.29 0.41 4
17 4 1 0 0.07 0.12 0.19 0.28 0.39 4
18 4 5 1 0.07 0.13 0.20 0.30 0.43 4
19 4 1 0 0.07 0.12 0.19 0.29 0.41 4
20 4 0 0 0.06 0.12 0.19 0.27 0.39 4
21 4 4 0 0.07 0.12 0.18 0.27 0.38 4
22 4 2 0 0.06 0.11 0.18 0.26 0.37 4
23 4 6 0 0.07 0.12 0.18 0.26 0.36 4
24 4 2 0 0.07 0.11 0.17 0.25 0.35 4
25 4 2 1 0.07 0.12 0.18 0.26 0.37 4
26 4 0 0 0.06 0.11 0.17 0.25 0.36 4
27 4 2 0 0.06 0.11 0.17 0.25 0.35 5
28 5 6 2 0.07 0.13 0.19 0.28 0.40 4
29 4 2 0 0.07 0.12 0.19 0.28 0.39 4
30 4 2 0 0.07 0.12 0.18 0.27 0.38 4
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Table 2.5. Sensitivity of models to tuning parameters and number of event types.
Each line summarizes 10,000 simulated adaptive trials of 30 patients with 5 dose
levels. The target DLT rate is 0.3 and the true DLT rates are (0.2, 0.3, 0.4, 0.5, 0.6),
so dose 2 is the true MTD. Results should be compared with the scenario 2-A results
in Table 2.2.

Dose Selection Percentage (Number of Patients Treated)
Scenario Model 1 2 3 4 5 Score1 Score2

0.2 0.3 0.4 0.5 0.6

1 18.8 (7.0) 56.2 (13.8) 22.7 (6.8) 2.2 (1.8) 0.0 (0.6) 4.6 7.3
Larger 2 24.6 (8.9) 53.7 (13.1) 19.7 (6.0) 1.9 (1.5) 0.0 (0.4) 4.8 7.2
Variance 3 22.9 (8.1) 59.9 (16.0) 16.7 (5.5) 0.6 (0.4) 0.0 (0.0) 4.1 5.9

CRM 20.3 (7.5) 51.9 (12.9) 24.2 (6.8) 3.5 (2.1) 0.2 (0.7) 5.2 8.4

1 7.3 (2.6) 67.3 (16.8) 23.8 (8.5) 1.6 (1.8) 0.0 (0.3) 3.4 6.1
Smaller 2 17.9 (5.5) 66.1 (17.9) 15.3 (5.9) 0.6 (0.6) 0.0 (0.0) 3.5 5.1
Variance 3 2.6 (1.7) 67.7 (16.7) 29.2 (11.1) 0.4 (0.5) 0.0 (0.0) 3.3 6.3

CRM 5.9 (2.2) 62.7 (15.9) 28.6 (9.5) 2.7 (2.1) 0.1 (0.3) 4.0 7.4

1 12.8 (4.7) 61.0 (15.3) 23.7 (7.6) 2.4 (1.8) 0.1 (0.5) 4.2 7.0
K = 7 2 17.8 (6.4) 59.2 (15.0) 21.2 (6.9) 1.7 (1.5) 0.1 (0.3) 4.3 6.7
Event Types 3 12.4 (4.9) 60.1 (15.2) 25.7 (8.5) 1.8 (1.4) 0.0 (0.1) 4.2 7.1

CRM 14.4 (4.9) 57.5 (14.8) 24.9 (7.6) 3.0 (2.0) 0.1 (0.6) 4.6 7.7

2.4.7 Model Properties

To better understand the performance of our models, we investigate the bias in esti-

mating DLT rates with each model. For simplicity, we simulate non-adaptive trials of

10 or 20 patients all receiving the same dose level, and we consider all combinations of

true DLT rate and prior guess from 0 to 0.7 in increments of 0.025. Patient responses

are simulated using the A and B scenarios described previously.

Figure 2.2 shows the bias for both the CRM model and our Models 1, 2, and 3.

In each plot, along the diagonal from bottom left to top right, the true DLT rate

and prior guess agree, so we would expect minimal bias near this region. Above the

diagonal, the prior guess exceeds the truth, so we would expect positive bias, and

vice versa below the diagonal. In Table 2.2, we note that our models tend to choose

doses below the true MTD more often than the CRM. As a plausible explanation, we
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see in Figure 2.2 that our models tend to be more positively biased than the CRM

(particularly Models 2 and 3). That is, our models overestimate the DLT rates more

than the CRM, and thus the dose selection algorithm picks lower doses. However,

large differences between the truth and the skeleton tend to lead to greater bias for

the CRM than for our models.

We also note that our Models 2 and 3 tend to select the true MTD less often in

the B scenarios than in the A scenarios. This is likely due to a difference between the

data-generating model and Models 2 and 3. Specifically, the data-generating model

creates LLT and DLT event counts for a patient, and the sum of these two counts

cannot exceed 15, thereby making the two counts negatively correlated. However,

Models 2 and 3 implicitly force this correlation to be zero. In the A scenarios, both

counts are usually low, so they do not influence each other much, and there is minimal

conflict with our models. The B scenarios, in contrast, generate higher event counts

for a patient, leading to stronger correlations and greater conflict with our models.

If we increase the number of event types to K = 60 in our generative model, so that

the upper bound is almost never realized in scenarios A and B, then the differences

in dose selection percentages between scenarios A and B decreases, although using 60

event types would not be realistic.

Additionally, we note that the DLT count Ni either explicitly, as in Model 1,

or implicitly, as in Models 2 and 3 after marginalizing over Mi, follows a Poisson

distribution in our proposed models, while in the data-generating model Ni is bino-

mial. This discrepancy impacts the performance of our models, yet it has no effect

on the CRM, which does not attempt to model event counts. For this reason, the

CRM should perform exactly the same in scenarios A and B, within Monte Carlo

simulation error.
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Figure 2.2. Bias in estimating DLT rates for CRM model and Models 1, 2, and 3.
Each pixel in each plot is based on 10,000 simulated trials under scenarios A and B
of either 10 or 20 patients. In a trial, all patients receive the same dose level, i.e., the
trial is not adaptive, and the true DLT rate is the same. The purpose of this figure is
to show, for every combination of true DLT rate and prior guess (i.e. skeleton), how
well the models do in estimating the DLT rate.
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2.5 Discussion

Models 1, 2, and 3 all make use of phase I trial data that are routinely collected

but rarely analyzed or incorporated into the dose selection algorithm. Model 1 makes

fewer assumptions than Models 2 and 3, placing a Poisson distribution on the number

of DLTs, but disregarding the number of LLTs. Models 2 and 3 jointly model a

patient’s DLT and LLT counts.

All three models perform comparably to, and sometimes better than, the CRM

across a variety of scenarios in our simulation study. Nonetheless, the simulations did

suggest that including total number of toxicities and DLTs might lead to conservative

dose decisions when the true MTD is at the highest dose. However, we do observe

better operating characteristics for some of our models when the MTD is one of the

lower doses.

The data-generating model in our simulations was designed both to be biologically

plausible and to disagree with our three proposed models, thereby creating fair test

scenarios. Although we believe our models generally compare favorably with the

CRM, in scenario 5-B, Models 2 and 3 perform poorly relative to both the CRM and

to Model 1. The import of this differential depends on how plausible one believes

scenario 5-B to be. If the true MTD is rarely the highest dose under consideration,

then Model 3 clearly bests both the CRM and our Models 1 and 2. This suggests that

we are indeed gaining useful information and efficiency by modeling events counts and

incorporating LLTs.

In a real trial, patients may drop out early, or it may be desirable to enroll a

new patient before the previous patients have finished follow-up. Our models can be

extended to handle partial follow-up by scaling the expected number of toxicities in

accordance with follow-up, in a manner similar to the time-to-event CRM [5]. Further

research is needed to recommend appropriate scaling weights.
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CHAPTER 3

Phase I Clinical Trial Method for a

Multi-Cycle Cytotoxic Agent

3.1 Introduction

In most phase I clinical trial methods, each patient provides a toxicity outcome at

a single timepoint. The outcome could be binary, as in the continual reassessment

method (CRM), or more complex, reflecting various degrees of severity. There is only

a small literature, however, on methods for longitudinal outcomes, obtained from

treatments administered multiple times. In each cycle of administration, a patient

may experience toxicity, and furthermore the dose may change between cycles. If a

patient has a dose-limiting toxicity (DLT), the treatment schedule will likely stop and

no further cycles will be administered. However, if the patient has a low-level toxicity

(LLT), the treatment schedule might continue, although perhaps at a lower dose.

In current practice, toxicities recorded after the first cycle are often ignored, with

estimates of DLT rates based only on the first cycle. The primary reason for this

practice is expediency: patients can be evaluated more quickly, and thus additional

patients can be enrolled sooner, leading to a shorter trial. However, a patient may not

experience a DLT until after the first cycle, and if ignored, DLT rates will likely be

underestimated. In a retrospective study of phase I trials of multi-cycles treatments,

Postel-Vinay et al. [26] found that among 445 patients, 57% of severe toxicities oc-
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curred after the first cycle, and 50% of patients had their worst toxicity after the first

cycle.

One simple way to use toxicity outcomes from all cycles is to record whether a

patient had a DLT in any cycle, and then use the CRM. However, if the patient’s

dose changed over the cycles, it is unclear if the DLT should be associated with the

original dose assignment or with the dose level given just before the DLT occurred.

To use the CRM, we must choose between these two possibilities. However, if we

believe the DLT is attributable to the cumulative effect of all preceding treatment

cycles, as Simon et al. argued [44], then the CRM can no longer be used, and newer

methods are needed.

To address this setting, Legedza and Ibrahim [15] proposed using logistic regression

to model the probability of DLT, accounting for cumulative dose in later cycles. The

mechanism of accounting for cumulative dose was inspired by the pharmacokinetics

of drug absorption and clearance. Their model has the form logit{Pr(DLTic)} =

ε + β log(dic + e−λDic), where DLTic is the observed binary indicator of DLT for

patient i in cycle c, dic is the dose for that patient and cycle, Dic is the patient’s

cumulative dose prior to cycle c, ε is an intercept, β is a dose-response parameter,

and λ is the drug clearance rate. Only ε and β need to be estimated; λ is assumed

known. The authors also considered removing ε from the model, in which case only

β must be estimated. We note, however, that although the authors refer to ε as a

random effect, it is not subject-specific, and thus even when included the model does

not account for within-subject correlation between repeated outcomes. However, the

model does allow a patient’s dose to vary across cycles.

Doussau et al. [16] in 2013 proposed using a proportional odds mixed-effects model,

with three outcome levels in each cycle: no toxicity, LLT, or DLT. Their model has

the form logit{Pr(Yic ≤ k)} = αk − β1di − β2τc − ui for k = 0, 1, where Yic is an

ordinal, three-level response variable, with 0 meaning no toxicity, 1 meaning LLT,
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and 2 meaning DLT for patient i in cycle c; di is the dose for patient i, assumed

constant throughout the trial; τc is the start time of cycle c; α0 and α1 are response

level-specific intercepts; β1 is a dose-response parameter; β2 is a time-effect parameter;

and ui ∼ N (0, σ2
0) is a random subject-specific intercept, to account for the correlation

of a patient’s repeated measurements. For parsimony, the authors proposed forcing

β2 = 0 during the adaptive dose-finding phase of the trial, and then estimating it

at trial’s end, once all patients have been evaluated. While this model captures

within-subject correlation, it does not allow dose to change between cycles, and it

only indirectly accounts for a cumulative dose effect via the time effect.

Zhang and Braun [17] in 2013 developed a cure rate model, which estimates

the time to DLT from multiple administrations, assuming a fraction of patients are

“cured,” i.e., will never experience DLT. The hazard of DLT at time t is given by

g(t) =
∑m

c=1 θicf(t−τc), where m is the number of cycles, θic is the cure parameter for

a patient given dose dic, and f is the Weibull density. The hazard g(t) from multiple

administrations is thus formulated as the sum of hazards from individual dosings.

Note that the toxic effect of a dose given at time τc eventually wears off according to

the shape of f(t − τc). The probability of DLT by the time of the final patient visit

τm+1 is thus 1 − exp{−
∫ τm+1

0
g(t) dt}. The authors proposed using their model to

simultaneously optimize the dose and the schedule of doses. This model allows dose

to vary across cycles, and it accounts for cumulative dose by summing individual

hazards. However, it does not account for within-subject correlation across cycles,

and furthermore it does not leverage the potentially informative LLTs: the hazard of

DLT may be higher for a patient with previous LLTs than for one without.

In 2016, Fernandes et al. [18] developed a two-state Markov model, with states

DLT or no DLT in each cycle, the latter denoted DLT. The model specifies the con-

ditional probability of DLT in cycle c, given that a patient had no previous DLTs,

with the form Pr(DLTic|DLTi,c−1, . . . ,DLTi,1) = 1− exp{−α(dic− ρd‡ic)+− βDicdic},
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where dic and Dic are the current and prior cumulative dose for patient i in cycle c;

d‡ic = max{di,1, . . . , di,c−1} is the highest dose patient i received prior to cycle c; the

function (x)+ equals x if x > 0, and is 0 otherwise; and the dose-response parame-

ters to be estimated are α, ρ, and β. Since DLT is considered an absorbing state,

there is no need to model the probability of transitioning from DLT to DLT. This

model accounts for within-subject correlation by explicitly modeling state transition

probabilities across cycles; it allows dose to vary across cycles; and it accounts for

cumulative dose. However, the model does not make use of LLTs, although a sequel

explores including LLTs in a three-state model [45].

Most recently, Yin et al. [46] proposed using the quasi-continuous total toxicity

profile (TTP) of Ezzalfani et al. [35] as a longitudinal outcome. TTP is a weighted

sum of the grades for all of a patient’s toxicities, with weights elicited from experts,

and higher values indicating increased toxicity. TTP is normalized to lie between 0

and 1, producing nTTP, which is used in the linear mixed effect model nTTPic = β0 +

β1di+β2τc+ui+εic. As in Doussau et al. [16], this model accounts for within-subject

correlation via the random effect ui, and it incorporates LLTs into the calculation of

TTP, yet it does not allow dose to change between cycles. Additionally, the model

cannot estimate DLT rates, and instead requires the MTD to be redefined in terms

of a target nTTP value.

To address the limitations of the preceding models, we develop a model that ac-

counts for within-patient correlation, allows dose to change, incorporates cumulative

dose, and includes LLTs to improve the estimation of DLT rates. We have two goals

in mind for our model: (1) the model should accurately estimate the maximum toler-

ated dose (MTD) at the end of a trial, and (2) it should help us decide, for a patient

in the middle of their treatment plan, what dose to recommend for their next cycle,

given their previously observed outcomes.
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3.2 Latent Toxicity Process

We propose using a latent stochastic process to model toxicity over time. Our thinking

is that the observed toxicity outcome in each cycle, recorded as either “no toxicity,”

LLT, or DLT, reflects an underlying unobserved continuous process. Conceptually,

the continuous process may represent the amount of drug in a patient’s body, or the

amount of damage done to the body, with the amount rising after a new administra-

tion, and falling as the dose is cleared from the body. As the process rises and falls,

it may pass thresholds corresponding to the observed, discrete measures of toxicity.

We define the model as follows. Let Z(t) = µ(t) + X(t) be the stochastic latent

toxicity process (LTP) at time t, which is the sum of a deterministic function, µ(t),

and another stochastic process, X(t). The deterministic part changes over time in

response to dose.

Withm planned administrations, let τc for c = 1, 2, . . . ,m be the patient treatment

times after enrollment, with τ1 = 0. The dose given at time τc is dc; we explain how

to choose the numeric value of dc in Section 3.5. The final patient visit occurs at time

τm+1, at which no dose is given, so there is no corresponding dm+1. Then we define

µ(t) =
∑
c:τc≤t

dch(t− τc) where h(t) =

(
t

α

)λ
exp

{
−λ
(
t

α
− 1

)}
I(t > 0). (3.1)

The sum above is over all dose cycles given up to time t. The function h(t) controls

the shape of the dose-toxicity response from a single administration. It starts at 0

when t = 0, reaches its peak when t = α, and then falls back to 0 as t→∞, assuming

λ > 0. The parameter λ controls how concentrated the dose effect is around the peak

time α; higher values of λ imply a shorter timeframe in which toxicities are likely

to occur. The motivation for our definition of µ(t) comes from pharmacokinetics, in

which a drug is absorbed into the body, reaches a maximum concentration in the

blood, and is eventually cleared out by the kidneys. Summing over all previously
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Figure 3.1. Deterministic dose-toxicity curves: h(t) shows the response to a single
administration, and µ(t) the response to multiple administrations.

administered doses allows us to account for their cumulative effect, similar to the

summing of hazards in Zhang and Braun [17]. A depiction of h(t) and µ(t), with

λ = 2 and λ = 0.1, is in Figure 3.1. Note that with smaller λ, the process has a

slower return to zero, leading to a greater cumulative dose effect.

For the stochastic process X(t), which does not depend on dose, we use a mean-

zero Ornstein-Uhlenbeck (OU) process, defined by the stochastic differential equation

dX(t) = −βX(t)dt+σdW (t), with boundary condition X(0) = 0 and where W (t) is a

Weiner process [47]. This process behaves similarly to Brownian motion, except that it

has a tendency to return to zero. Thus, adding µ(t) and X(t) produces a process Z(t)

that broadly follows the trajectory implied by µ(t), but has the flexibility to deviate

from and return to µ(t). For any two times s < t, the OU differential equation implies

X(t)|X(s) ∼ N
(
X(s)e−β(t−s),

σ2

2β

(
1− e−2β(t−s))),

and combining this with Equation (3.1) gives

Z(t)|Z(s) ∼ N
(
µ(t) + [Z(s)− µ(s)]e−β(t−s),

σ2

2β

(
1− e−2β(t−s))). (3.2)
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Using Equation (3.2), and noting that Z(0) = µ(0) +X(0) = 0, we can simulate the

full process Z(t) for a given set of dose levels and parameter values λ, α, β, σ.

In a real trial, we do not observe this latent toxicity process. Instead, at the end

of each dose cycle (i.e., τ2, . . . , τm+1), we observe a discretized measure which reflects

how high the latent process reached in the preceding cycle. That is, within each cycle

c ∈ {1, 2, . . . ,m} the latent process has a maximum, Z∨c = max{Z(t) : t ∈ (τc, τc+1]},

and we relate this to the observed discrete variable Yc by

Yc =


0 if Z∨c < γ1

1 if Z∨c ∈ [γ1, γ2)

2 if Z∨c ≥ γ2

(3.3)

where 0, 1, and 2 refer to no toxicity, LLT, and DLT, respectively, and γ1 and γ2 are

threshold parameters.

The original toxicity data are typically graded by clinicians on a discrete scale

from 0 to 5 in order of increasing toxicity [34]. For our model, we require these six

values to be mapped into the three used in Equation (3.3); we leave the particular

mapping up to clinicians. Typically, Yc = 2 if toxicities are graded 3, 4, or 5. If a

patient has multiple toxicities within a cycle, Yc is coded based on the highest grade.

Ultimately, we are interested in whether a DLT ever occurs across the cycles, but

using intermediate toxicity levels (e.g., LLTs) provides more information to pinpoint

a patient’s latent process over time. In principle our model could keep the six original

levels separate, providing more precise information on the location of the process, but

each additional level requires an additional threshold parameter in the definition of

Yc. As a compromise, we use three levels, with two threshold parameters.

The parameters in this model are λ, α, β, σ, γ1, γ2, all of which must be positive,

and with the requirement that γ2 > γ1. In Figure 3.2, we depict two simulated

processes Z(t) with the same deterministic component µ(t). Note that one patient

has DLTs in cycles 2 and 3, while the other patient has LLTs but not DLTs. In
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γ1

γ2

Z(t)

Time t

Figure 3.2. Two simulated stochastic latent toxicity processes for a patient receiving
four dose administrations at times τ1, τ2, τ3, and τ4. The processes share a common
deterministic component µ(t), shown as the smooth gray curve.

reality, a patient experiencing DLT would likely receive no further treatment, and we

would not observe Yc for cycles after the DLT. To clarify the model, in Figure 3.3

we present a causal diagram of all model parameters, latent processes, and observed

data, showing how they relate to each other.

3.3 Specifying the Likelihood

In the preceding formulation, for the sake of simplicity we omitted a subscript i

needed to indicate a specific patient. However, to specify the likelihood of all model

parameters, we formulate the model in greater generality. Each patient may not

receive the full number of cycles m, typically due to experiencing a DLT, and the
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Figure 3.3. Causal diagram of latent toxicity process model. Arrows indicate the
direction of causality. Parameters are surrounded by curved, dashed lines. The latent
processes are surrounded by curved, solid lines. And the observed data are surrounded
by rectangular, solid lines. The parameters are shared among patients, while the data
and latent processes are unique to each patient.

sequence of dose assignments will likely vary between patients. Thus, let mi ≤ m be

the number of cycles and di1, di2, . . . , di,mi the doses for patient i, with i = 1, . . . , n.

For simplicity, we assume that the timing of dose administrations is the same across

patients, with dose cycle c starting at time τc after enrollment.

Ideally, we would derive the distribution of Z∨ic, the maximum of our latent process

for patient i in cycle c, to determine the likelihood, which bypasses the underlying

continuous process Zi(t). However, because the distribution of Z∨ic is analytically

intractable, we take the following approach. Noting that τm+1 is the maximum time

any patient is observed, we divide the interval [0, τm+1] into a fine grid of K times, 0 =

t1, t2, . . . , tK = τm+1, all equally spaced with constant difference ∆K = τm+1/(K− 1).

Let Ki ≤ K be the number of time points tk, k = 1, . . . , K, that are no greater than

τmi+1, i.e., the time points that are in the observation period of patient i. We define

Zik = Zi(tk), and letting Cc = (τc, τc+1] denote the window for treatment cycle c, we

have Z∨ic ≈ max{Zik : tk ∈ Cc}. As K → ∞, this discrete approximation becomes

37



exact. In the cases we consider in Section 3.8, we find that K = 70 is sufficient for

m = 3 cycles, and K = 140 is sufficient for m = 6 cycles.

The observed outcome Yic is defined as in Equation (3.3), but with the i subscript

where appropriate. The mean function µ(t) in Equation (3.1) is similarly extended

to µik = µi(tk). For convenience, let Y and Z be the vectors of all Yic and Zik,

respectively, and let θ = (α, λ, β, σ) and γ = (γ1, γd), where γd = γ2 − γ1. Then,

given θ and γ, the joint density of (Y ,Z) is

[Y ,Z|θ,γ] = [Y |Z,θ,γ][Z|θ,γ]

= [Y |Z,γ][Z|θ]

=
n∏
i=1

(
mi∏
c=1

[Yic|Z∨ic,γ]×
Ki∏
k=2

[Zik|Zi,k−1,θ]

)
.

(3.4)

Note that the last product starts at k = 2 rather than k = 1 because Zi1 is fixed

at Zi(0) = 0. The notation [·|·] used above and in the rest of this chapter denotes a

probability density or mass function p(·|·).

We can think of Equation (3.4) as the full data likelihood. The densities [Yic|Z∨ic,γ]

and [Zik|Zi,k−1,θ] can be readily specified given our model formulation:

[Yic|Z∨ic,γ] =


1(Z∨ic < γ1) if Yic = 0

1
(
γ1 ≤ Z∨ij < γ1 + γd

)
if Yic = 1

1(Z∨ic ≥ γ1 + γd) if Yic = 2

and

[Zik|Zi,k−1,θ] =
1

s
φ

(
Zik − µik − (Zi,k−1 − µi,k−1)e−β∆K

s

)
(3.5)

where s2 = σ2

2β

(
1− e−2β∆K

)
and φ(·) is the standard normal density. Note that

[Yic|Z∨ic,γ] is a degenerate density, always equal to either 1 or 0 because Yic is com-

pletely determined by Z∨ic and γ, according to Equation (3.3).
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3.4 Parameter Estimation

We take a Bayesian approach to parameter estimation, and use the Metropolis-

Hastings (MH) algorithm [42,48] to obtain samples from the posterior density

[Z,θ,γ|Y ] ∝ [Y ,Z,θ,γ] = [Y ,Z|θ,γ][θ,γ] = [Y |Z,γ][Z|θ][θ,γ].

Here [θ,γ] is the joint prior distribution for our parameters, and we assume that all

parameters are a priori independent. Our desire for prior independence provides our

rationale for using (γ1, γd) instead of (γ1, γ2), as the latter could not reasonably be

assumed independent, since γ2 > γ1. We use the following priors:

α ∼ Log-N
(
µα, σ

2
α

)
,

λ ∼ Log-N
(
µλ, σ

2
λ

)
,

β ∼ Log-N
(
µβ, σ

2
β

)
,

σ2 ∼ InverseGamma(aσ, bσ),

γ1 ∼ N
(
µγ1 , σ

2
γ1

)
I(0,∞),

γd ∼ N
(
µγd , σ

2
γd

)
I(0,∞),

(3.6)

where Log-N (·, ·) is the lognormal distribution, and N (·, ·)I(a, b) is the truncated

normal distribution, restricted to the interval (a, b). The prior means are thus E[α] =

exp(µα + σ2
α/2), E[λ] = exp(µλ + σ2

λ/2), E[β] = exp(µβ + σ2
β/2), E[σ2] = bσ/(aσ − 1)

for aσ > 1, E[γ1] = µγ1 +σγ1φ(µγ1/σγ1)/Φ(µγ1/σγ1) where Φ(·) is the standard normal

cumulative density, and E[γd] = µγd + σγdφ(µγd/σγd)/Φ(µγd/σγd).

For σ, γ1, and γ2, the chosen priors are semi-conjugate, i.e., the full conditional

distributions belong to the same family as the priors, so we can use Gibbs sampling

steps for these parameters within the MH algorithm. For α, λ, and β, closed-form full

conditionals are not available, so we use regular MH sampling with truncated normal

proposals. First we derive the full conditionals for γ1, γd, and σ:

[γ1|Y ,Z,θ, γd] ∝ [Y ,Z,θ,γ] = [Y ,Z|θ,γ][θ,γ] ∝

(
n∏
i=1

mi∏
c=1

[Yic|Z∨ic,γ]

)
[γ1]

= [γ1]
∏

i,c:Yic=0

1(Z∨ic < γ1)
∏

i,c:Yic=1

1(γ1 ≤ Z∨ic < γ1+γd)
∏

i,c:Yic=2

1(Z∨ic > γ1+γd)

= [γ1] 1
(
γ1 > Z∨(0)

)
1
(
Z∨(1) − γd ≤ γ1 < Z∧(1)

)
1
(
γ1 < Z∧(2) − γd

)
= [γ1] 1

(
max{Z∨(0), Z∨(1) − γd} ≤ γ1 < min{Z∧(1), Z∧(2) − γd}

)
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where Z∨(`) = maxi,c:Yic=`{Z∨ic} and Z∧(`) = mini,c:Yic=`{Z∨ic}. Similarly,

[γd|Y ,Z,θ, γ1] ∝

(
n∏
i=1

mi∏
c=1

[Yic|Z∨ic,γ]

)
[γd]

= [γd]
∏

i,c:Yic=1

1(γ1 ≤ Z∨ic < γ1 + γd)
∏

i,c:Yic=2

1(Z∨ic > γ1 + γd)

= [γd] 1
(
Z∨(1) − γ1 ≤ γd < Z∧(2) − γ1

)
.

Thus

γ1|Y ,Z,θ, γd ∼ N
(
µγ1 , σ

2
γ1

)
I(max{Z∨(0), Z∨(1) − γd},min{Z∧(1), Z∧(2) − γd}),

γd|Y ,Z,θ, γ1 ∼ N
(
µγd , σ

2
γd

)
I(Z∨(1) − γ1, Z

∧(2) − γ1).

Once we have sampled γ1 and γd, then we have γ2 = γ1 + γd. For σ2 we have

[σ2|Y ,Z, α, λ, β,γ] ∝ [Z|σ2, α, λ, β][σ2]

=

(
n∏
i=1

Ki∏
k=2

[Zik|Zi,k−1, σ
2, α, λ, β]

)
[σ2].

Combining this expression with Equation (3.5) and the prior for σ2, some algebra

shows that σ2|Y ,Z, α, λ, β,γ ∼ InverseGamma(ãσ, b̃σ), where

ãσ = aσ +
1

2

n∑
i=1

Ki −
n

2
and

b̃σ = bσ +
β

1− e−2β∆K

n∑
i=1

Ki∑
k=2

[
Zik − µik − (Zi,k−1 − µi,k−1)e−β∆K

]2
.

Although we might not think of the Zik, i = 1, . . . , n and k = 2, . . . , Ki, as pa-

rameters, they are unobserved and thus we need to sample them just like parameters.

For all Zik such that tk ∈ Cc,

[Zik|Y ,Z \ Zik,θ,γ] ∝ [Y |Z,γ][Z|θ]

∝ [Yic|Z∨ic,γ]×

[Zik|Zi,k−1,θ][Zi,k+1|Zik,θ] if k < Ki

[Zik|Zi,k−1,θ] if k = Ki.
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Thus Zik|Y ,Z \ Zik,θ,γ ∼ N (Mik, Vik)I(Lik, Uik), where

Mik =

µik + [(Zi,k−1 − µi,k−1) + (Zi,k+1 − µi,k+1)] e−β∆K

1+e−2β∆K
if k < Ki

µik + [Zi,k−1 − µi,k−1]e−β∆K if k = Ki,

Vik =

s2/(1 + e−2β∆K ) if k < Ki

s2 if k = Ki,

Lik =


γ1 if Yic = 1 and max{Zik′ : tk′ ∈ Cc \ tk} < γ1

γ2 if Yic = 2 and max{Zik′ : tk′ ∈ Cc \ tk} < γ2

−∞ otherwise,

Uik =


γ1 if Yic = 0

γ2 if Yic = 1 and max{Zik′ : tk′ ∈ Cc \ tk} < γ2

∞ otherwise.

That is, the full conditional distribution for Zik is a truncated normal, so Gibbs

sampling will work for Zik as well.

Next we describe how to use MH to obtain posterior samples of α, λ, and β. For

α, with a proposed value α∗ from proposal distribution Jα, the acceptance ratio is

rα =
[Z, α∗, λ, β, σ,γ|Y ]

[Z, α, λ, β, σ,γ|Y ]

Jα(α|α∗)
Jα(α∗|α)

=
[Z|α∗, λ, β, σ]

[Z|α, λ, β, σ]

[α∗]

[α]

Jα(α|α∗)
Jα(α∗|α)

=

(
n∏
i=1

Ki∏
k=2

[Zik|Zi,k−1, α
∗, λ, β, σ]

[Zik|Zi,k−1, α, λ, β, σ]

)
[α∗]

[α]

Jα(α|α∗)
Jα(α∗|α)

.

In the last expression, the first term can be calculated with Equation (3.5), the second

term comes from the prior distribution of α, and the third term is the proposal

distribution, which we have chosen. With rα computed, we use it as follows. Draw

u ∼ Uniform(0, 1). If u < rα, we accept the proposed value α∗, using it as the next

value in our Markov chain. Otherwise, we reject α∗ and reuse the previous value of

α in the chain.

41



The acceptance ratios for λ and β, which are derived and used analogously to that

for α, are

rλ =

(
n∏
i=1

Ki∏
k=2

[Zik|Zi,k−1, α, λ
∗, β, σ]

[Zik|Zi,k−1, α, λ, β, σ]

)
[λ∗]

[λ]

Jλ(λ|λ∗)
Jλ(λ∗|λ)

,

rβ =

(
n∏
i=1

Ki∏
k=2

[Zik|Zi,k−1, α, λ, β
∗, σ]

[Zik|Zi,k−1, α, λ, β, σ]

)
[β∗]

[β]

Jβ(β|β∗)
Jβ(β∗|β)

.

We use truncated normal proposal distributions for α, λ, and β.

After the Markov chain has converged and we have obtained a large sample from

the joint posterior of all parameters, we estimate the parameters by their posterior

means, denoted α̂, λ̂, β̂, σ̂, γ̂1, and γ̂2.

3.5 Model Calibration

Typically in phase I trials, the dose values used in statistical models are not literally

the dosage, e.g., milligrams, of a drug, but rather come from a probability skeleton.

The skeleton is the a priori best guess of the probability of DLT at each dose, and it

is used to calibrate the model. We take the same approach here, with “probability of

DLT” meaning the probability of a DLT ever occurring across the multiple cycles of

administration, assuming the same dose level is given in every cycle.

Let J be the number of dose levels under investigation, and π0j, j = 1, . . . , J be

the skeleton, where π01 < · · · < π0J . We take the following approach to calibrate our

model to agree with the skeleton for dose level j. Recall that the latent Z(t) is the

sum of µ(t) and X(t), where only µ(t) depends on dose. With the same dose d∗j > 0

across cycles, Equation (3.1) simplifies to µ(t) = d∗j
∑

c:τc≤t h(t− τc). Our task is then

to find the value d∗j such that π0j = Pr(Z(t) ≥ γ2 for any t ∈ [0, τm+1]|θ,γ), where

m is the number of planned cycles. We can solve this equation numerically for each

j as follows:
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1. For a given value of d∗j , simulate Z(t) over a fine time grid in [0, τm+1] using

Equation (3.2), setting α, λ, β, and σ to their prior means.

2. Check if Z(t) exceeds γ2 for any t, i.e., if there was a DLT, where γ2 is set to

its prior mean E[γ2] = E[γ1] + E[γd].

3. Repeat steps 1 and 2 many (e.g. 10,000) times, and count the proportion in

which a DLT is observed.

4. If the observed proportion of DLTs is close enough to π0j, we are done; otherwise,

adjust d∗j and return to step 1.

With these values calculated, if patient i received dose level j in cycle c, then we

set dic = d∗j .

3.6 Estimating DLT Probabilities

Once we have estimated the parameters of our model, we can estimate the DLT

probability at each dose. As in the preceding section, by “DLT probability” at dose

j, which we denote πj, we mean the probability that a patient receiving dose j in every

cycle will ever have a DLT. That is, πj = Pr(Z(t) ≥ γ2 for any t ∈ [0, τm+1]|θ,γ).

We can estimate this probability numerically, for dose level j as follows:

1. Simulate Z(t) over a fine time grid in [0, τm+1], assuming constant dose level j,

and using α̂, λ̂, β̂, σ̂ as the model parameters.

2. Check if Z(t) exceeds γ̂2 for any t, i.e., if there was a DLT.

3. Repeat steps 1 and 2 many (e.g. 10,000) times, and count the proportion in

which a DLT is observed. This is π̂j.
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3.7 Adjusting a Patient’s Dose

With a multi-cycle treatment, it is natural to consider adjusting a patient’s dose level

across cycles. For example, if a patient has gone through the first few cycles with no

toxicity, but has not obviously benefitted from the treatment (e.g., as measured by

tumor shrinkage), we might consider increasing the dose for later cycles. Our model

can show how the probability of DLT will be altered.

Assume a patient received dose j for the first m1 cycles, with outcomes Y1, . . . , Ym1 .

Then the following algorithm will estimate the probability of DLT in later cycles

m1 + 1, . . . ,m, under any dose scheme for those cycles.

1. Simulate Z(t) over a fine time grid in [0, τm+1], using α̂, λ̂, β̂, σ̂ as the model

parameters. For cycles 1, . . . ,m1, the dose level is j. For cycles m1 + 1, . . . ,m,

the dose is whatever we want to consider changing to.

2. If the simulated Z(t) does not agree with the observed Y1, . . . , Ym1 , then discard

it and repeat step 1.

3. Check if Z(t) > γ̂2 for any t > τm1+1, i.e., if there was a DLT in a later cycle.

4. Repeat steps 1-3 many (e.g. 10,000) times, and count the proportion in which

a DLT is observed, ignoring the processes discarded in step 2. This proportion

is our estimate of the DLT probability.

The above algorithm can be carried out for multiple proposed dose schemes, to

compare the probability of DLT in each scheme.

3.8 Simulation Study

We conduct a simulation study, to investigate the LTP model’s ability to select the

correct MTD using data from a trial run with the CRM. The CRM will only use

patient data from cycle 1, using the power model Pr(Yi1 = 2|dose j) = ν
exp(ψ)
0j with
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ψ ∼ N (0, σ2
ψ = 1.34). The prior variance σ2

ψ = 1.34 is the default in the R package

dfcrm [40, 49]. The skeleton ν0j, j = 1, . . . , J , is our prior guess for the probability

of DLT in cycle 1 with dose j. To set ν0j, we first choose π0j, the skeleton over all m

planned cycles, and we assume that DLTs are independent and identically distributed

(iid) across cycles. Thus π0j = 1− (1− ν0j)
m, so we use ν0j = 1− (1− π0j)

1/m. After

calculating ψ̂ as the posterior mean of ψ, the estimated probability of DLT in cycle

1 is ν
exp(ψ̂)
0j , and the estimated probability of DLT extrapolated to all m cycles is

π̂CRM
j = 1 − [1 − νexp(ψ̂)

0j ]m. Although we do not truly believe the iid assumption, it

allows us to use the CRM to estimate full-cycle DLT rates using only cycle 1 DLTs.

A simple alternative would be to set ν0j = π0j and take π̂CRM
j = ν

exp(ψ̂)
0j , but this leads

to much worse performance for the CRM than our approach.

We simulate trials with n = 30 and n = 60 patients, for treatments with m = 3

and m = 6 cycles, with evenly spaced dose administrations at times 0, 1, . . . ,m − 1

and with final follow-up at time m. Data are simulated with the LTP model, using

“true” parameter values α = 0.3, λ = 2, β = 2, σ = 0.7, γ1 = 0.75, and γ2 = 1 for

m = 3; and α = 0.2, λ = 1.5, β = 1.5, σ = 0.6, γ1 = 0.75, and γ2 = 1 for m = 6.

These values were chosen to generate outcome data consistent with the findings in

Postel-Vinay et al. [26]. In particular, for patients who have a DLT, the model-based

probability of DLT occurring after cycle 1 falls between 0.55 and 0.75, as depicted

in Figure 3.4 for m = 3, while the published number is 0.57. To calibrate the model

to achieve a desired DLT rate πj for dose j, we calculate a value d∗j as described in

Section 3.5, except we use the true parameter values instead of prior means, and we

want the probability of DLT to equal πj rather than the skeleton π0j.

The simulated trials will consider J = 5 dose levels, and we examine 5 scenarios

for the true DLT rates, one for each dose level to be the MTD. We define the “DLT

rate” for a given dose level as the probability of ever having a DLT across the m

cycles, if the same dose level is administered in every cycle. The true DLT rates for
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Figure 3.4. Probabilities of toxicity by cycle and overall, for a three-cycle treatment.
The probabilities are calculated with the latent toxicity process model, assuming a
constant dose across cycles. The patient visit times are 0, 1, 2, and 3, with dose
administrations at the first three visits. The model parameters were set to α = 0.3,
λ = 2, β = 2, σ = 0.7, γ1 = 0.75, γ2 = 1. Note that if a patient has a DLT, their
treatment is stopped and we do not observe any subsequent toxicities. Thus, we can
only observe an LLT if it is not preceded by a DLT, and a DLT can only be observed
after cycle 1 if there was no DLT in cycle 1.
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the dose levels in each scenario are given in Table 3.1. The target DLT rate is always

τ = 0.3.

To simulate one trial, we start the first patient at dose level 1 and simulate their

multi-cycle outcomes with the LTP model. After calculating π̂CRM
j , j = 1, . . . , J , as

described above, we estimate the MTD, denoted M̂TD, as the dose j that minimizes

|π̂CRM
j − τ |. The next patient will then be assigned to either the M̂TD, or to one

dose higher than the current patient, whichever is smaller. This process is repeated

for n patients, after which we obtain a final M̂TD from the CRM. With the complete

trial data, including LLTs and data from all cycles, we then fit the LTP model, which

produces its own estimates π̂j, j = 1, . . . , J , and a corresponding estimate of the

MTD. Note that, if a patient had a DLT in cycle c, then their later outcomes are

considered unobserved. Additionally, if a patient had LLTs in two consecutive cycles,

then we lowered this patient’s dose by one level for the next cycle. However, this

dose de-escalation does not factor into the adaptive dose-finding algorithm with the

CRM. For each scenario, we simulate 5,000 adaptive trials with the CRM. We then

subsample 500 completed trials in each scenario and re-estimate the MTD with the

LTP model.

To set up the CRM and LTP models, we use the same skeleton of (π01, . . . , π0J) =

(0.1, 0.2, 0.3, 0.4, 0.5) for all scenarios. Note that the skeleton matches the truth for

Table 3.1. True probability of DLT over all cycles, for each simulation scenario and
dose level. Since the target DLT rate is 0.30, the true MTD in scenario j is dose level
j, for j = 1, . . . , 5.

Dose level
Scenario 1 2 3 4 5

1 0.30 0.40 0.50 0.60 0.70
2 0.20 0.30 0.40 0.50 0.60
3 0.10 0.20 0.30 0.40 0.50
4 0.07 0.14 0.21 0.30 0.40
5 0.06 0.12 0.18 0.24 0.30
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scenario 3. As mentioned above, we use σ2
ψ = 1.34 for the prior variance of the

CRM parameter. For the LTP model, we assume that some of the parameters are

known. In particular, we propose eliciting α and λ from experts, as these parameters

have natural interpretations related to the timing to toxicity described in Section 3.2.

Legedza and Ibrahim [15] used a similar simplifying assumption for their longitudinal

model. We initially tried to estimate α and λ, but found that the Markov chain

would not converge in a reasonable time. Additionally, it is likely that the data are

only weakly informative for these parameters, as we do not observe when within a

cycle a toxicity occurred. Thus, for estimation we set α and λ to their true values,

respectively 0.3 and 2 for m = 3, and 0.2 and 1.5 for m = 6.

To continue setting up the LTP model, for β, γ1, and γd we specify the hyper-

parameters in Equation (3.6), using (µβ, σβ) = (−0.2, 0.63), (µγ1 , σγ1) = (0.92, 0.6),

and (µγd , σγd) = (0.057, 0.6). The prior means of these parameters are thus E[β] = 1,

E[γ1] = 1, and E[γd] = 0.5. For σ, rather than estimate it as proposed, we fix it at the

value in Ω = {0.2, 0.4, 0.6, 0.8} that minimizes the “score” across all scenarios with

n = 60, where score =
∑J

j=1 ŝj|πj − τ | and ŝj is the percentage of trials in which the

model selects dose j as the MTD in a given scenario. The score thus measures the

average distance between the target and the true DLT rate of the estimated MTD;

smaller scores are better and zero is perfect. We average the score across all scenarios

and choose σ ∈ Ω to minimize it. Note that, for m = 3, Ω does not exactly contain

the true value of 0.7. This process yields σ = 0.6 for both m = 3 and m = 6, which

we use for both n = 30 and n = 60. As with α and λ, we found that estimating σ

with Metropolis-Hastings led to unacceptably slow convergence. Thus, the only pa-

rameters to be estimated with MH in the LTP model are β, γ1, and γd. For each trial,

we generated 100,000 samples of these parameters, and calculated posterior means

using the last 50,000. Each sample was based on simulating the latent process at

K = 70 time points for m = 3, and at K = 140 time points for m = 6. In small
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test runs, we found that MH samples of this size and using these K were sufficient

to achieve convergence and to precisely estimate the posterior means. Generating

100,000 samples took approximately 30 seconds on our computer with n = 30, and

60 seconds with n = 60 for m = 3; computational time roughly doubled for m = 6.

3.8.1 Simulation Results

Simulation results are presented in Table 3.2 for m = 3 and in Table 3.3 for m = 6.

For the CRM and LTP model, we report how often each dose level is selected as the

MTD, and the corresponding score. For the CRM, we additionally report how many

patients, out of n, are on average treated at each dose. This tells us, on average,

how many patients at each dose the LTP model has access to when re-estimating the

MTD at the end of a trial.

The CRM does poorly in scenarios 2–4 because it has few events to work with in

cycle 1. In scenario 4 with 60 patients and 3 cycles, the CRM selects the correct MTD

in only 16.3% of trials (although it selects an MTD within one level of the truth 96.5%

of the time). The true DLT rates in this scenario are (0.07, 0.14, 0.21, 0.30, 0.40),

however, the true probabilities of DLT in cycle 1, as depicted in Figure 3.4, are

(0.017, 0.036, 0.06, 0.09, 0.13). The proximity of these first-cycle probabilities with

each other makes it difficult to distinguish between them, particularly with a small

sample size. In scenario 5 with 3 cycles, the cycle 1 probabilities are compressed

even more, and the CRM tends to substantially underestimate the overall DLT rates.

Indeed, for dose level 5, the CRM on average estimates the DLT rate to be 0.16 for

n = 60, lower than the true rate of 0.3. However, because dose level 5 is the highest

level under consideration, the CRM cannot escalate further and ends up selecting dose

level 5, the correct MTD, 92.5% of the time with 60 patients. The LTP model tends

to more accurately estimate DLT rates than the CRM, but paradoxically this leads

the LTP model to select the correct MTD less often in scenario 5. The explanation
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Table 3.2. Simulation results for m = 3 cycles with n = 30 and n = 60 patients.
For each scenario and patient count n, we simulated 5,000 adaptive trials with the
CRM. We then subsampled 500 of these completed trials and re-estimated the MTD
with the latent toxicity process (LTP) model. In all scenarios, the target DLT rate
is 0.3. The italicized rows show the true DLT rates, i.e., the probability of DLT over
all cycles. The bold entries highlight the results at the true MTD.

Number of Dose Selection Percentage (Number of Patients Treated)
Scenario Patients Model 1 2 3 4 5 Score

0.3 0.4 0.5 0.6 0.7

n = 30
CRM 63.4 (16.5) 16.4 (4.5) 11.0 (3.3) 5.7 (2.4) 3.5 (3.3) 6.9

1 LTP 77.6 21.0 1.4 0.0 0.0 2.4

n = 60
CRM 71.8 (37.1) 17.8 (9.5) 7.3 (6.1) 2.4 (3.6) 0.7 (3.7) 4.3
LTP 85.4 14.6 0.0 0.0 0.0 1.5

0.2 0.3 0.4 0.5 0.6

n = 30
CRM 32.5 (10.3) 19.5 (4.8) 17.5 (4.1) 12.7 (3.6) 17.8 (7.1) 12.9

2 LTP 34.4 48.6 15.0 2.0 0.0 5.3

n = 60
CRM 30.2 (19.8) 26.0 (11.7) 22.0 (10.1) 13.9 (7.8) 7.8 (10.6) 10.4
LTP 33.4 57.2 9.4 0.0 0.0 4.3

0.1 0.2 0.3 0.4 0.5

n = 30
CRM 11.6 (6.0) 15.8 (4.3) 17.4 (4.2) 16.5 (4.1) 38.7 (11.3) 13.3

3 LTP 4.4 43.4 42.2 8.6 1.4 6.4

n = 60
CRM 5.7 (8.6) 14.5 (8.8) 22.6 (10.4) 24.7 (10.6) 32.4 (21.6) 11.6
LTP 1.4 43.6 52.4 2.6 0.0 4.9

0.07 0.14 0.21 0.3 0.4

n = 30
CRM 3.6 (3.6) 6.6 (2.9) 9.3 (3.2) 13.0 (3.6) 67.5 (16.7) 9.5

4 LTP 0.2 12.0 42.2 35.2 10.4 6.8

n = 60
CRM 0.9 (4.2) 2.6 (4.2) 7.1 (5.9) 16.3 (8.2) 73.1 (37.5) 8.6
LTP 0.2 6.0 44.2 46.2 3.4 5.3

0.06 0.12 0.18 0.24 0.3

n = 30
CRM 1.6 (2.6) 2.6 (2.1) 4.1 (2.2) 5.7 (2.6) 85.9 (20.4) 1.7

5 LTP 0.4 4.2 14.6 36.8 44.0 4.8

n = 60
CRM 0.4 (2.9) 1.0 (2.6) 2.1 (3.2) 4.0 (4.2) 92.5 (47.1) 0.8
LTP 0.0 1.2 6.6 24.2 68.0 2.5
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Table 3.3. Simulation results for m = 6 cycles with n = 30 and n = 60 patients.
For each scenario and patient count n, we simulated 5,000 adaptive trials with the
CRM. We then subsampled 500 of these completed trials and re-estimated the MTD
with the latent toxicity process (LTP) model. In all scenarios, the target DLT rate
is 0.3. The italicized rows show the true DLT rates, i.e., the probability of DLT over
all cycles. The bold entries highlight the results at the true MTD.

Number of Dose Selection Percentage (Number of Patients Treated)
Scenario Patients Model 1 2 3 4 5 Score

0.3 0.4 0.5 0.6 0.7

n = 30
CRM 66.1 (17.8) 15.4 (4.2) 9.8 (2.8) 5.3 (2.1) 3.4 (3.1) 6.4

1 LTP 83.2 16.1 0.7 0.0 0.0 1.7

n = 60
CRM 75.3 (39.7) 14.8 (8.8) 7.1 (5.2) 2.1 (3) 0.6 (3.4) 3.8
LTP 88.6 11.4 0.0 0.0 0.0 1.1

0.2 0.3 0.4 0.5 0.6

n = 30
CRM 31.5 (10.6) 18.9 (4.4) 17.6 (3.9) 13.4 (3.4) 18.6 (7.6) 13.2

2 LTP 31.8 51.7 14.5 2.0 0.0 5.0

n = 60
CRM 27.8 (18.7) 26.9 (12.1) 22.9 (10.8) 14.3 (8.4) 7.9 (10.0) 10.3
LTP 28.4 63.1 8.5 0.0 0.0 3.7

0.1 0.2 0.3 0.4 0.5

n = 30
CRM 9.4 (5.8) 17.1 (4.4) 17.1 (3.9) 16.9 (4.2) 39.5 (11.6) 13.2

3 LTP 4.4 39.1 47.3 8.1 1.1 5.8

n = 60
CRM 5.7 (9.1) 15.6 (9.9) 24.5 (10.9) 24.5 (10.8) 29.6 (19.3) 11.1
LTP 1.1 39.6 56.7 2.6 0.0 4.4

0.07 0.14 0.21 0.3 0.4

n = 30
CRM 3.4 (3.1) 6.1 (2.8) 10.1 (2.9) 16.3 (5.2) 64.1 (16.0) 9.1

4 LTP 0.1 11.9 38.3 40.1 9.7 6.3

n = 60
CRM 0.7 (3.2) 2.1 (4.1) 7.5 (6.6) 20.4 (10.3) 69.3 (35.8) 8.1
LTP 0.4 5.9 38.5 52.3 2.9 4.8

0.06 0.12 0.18 0.24 0.3

n = 30
CRM 2.3 (2.9) 2.8 (1.7) 4.3 (2.0) 8.6 (3.2) 81.9 (20.1) 2.1

5 LTP 0.2 3.9 11.3 32.9 51.7 4.1

n = 60
CRM 0.9 (3.9) 1.4 (3.1) 3.1 (3.8) 5.1 (5.1) 89.4 (44.1) 1.2
LTP 0.0 0.8 6.2 15.9 77.1 1.8
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is that for dose levels 4 and 5, with true DLT rates of 0.24 and 0.3, respectively, the

LTP-based DLT rate estimates hover around the target rate of 0.3, and sometimes

dose 4 is closer, sometimes dose 5 is closer. In contrast, since the CRM substantially

underestimates the DLT rate of dose 5, it is nearly always closest to the target. A

similar explanation applies for scenario 1, in which the CRM tends to overestimate

the DLT rates and thus often selects the lowest dose, which is the correct MTD. This

dynamic holds for both the 3 and 6 cycle treatments.

In scenarios 2–4, the CRM selects the true MTD between 13% and 26.9% of the

time. Correspondingly, it treats only around 4 patients for n = 30 and 10 patients for

n = 60 at the true MTD. The LTP model thus has few patients treated at the MTD

to use when estimating DLT rates, however it still manages to more than double

the selection percentages of the true MTD, compared to the CRM. Additionally, we

note that increasing the sample size from 30 to 60 patients increases the true MTD

selection percentages by about 10% for the LTP model in scenarios 1–4, and by about

25% in scenario 5. Lastly, with 6 cycles instead of 3, the LTP model selects the true

MTD an additional 3–9% of the time. That is, with more cycles, patients provide

more data for the LTP model, leading to better DLT rate estimates.

3.9 Discussion

We have developed a model for longitudinal toxicity responses in phase I trials, that

accounts for within-subject correlation and cumulative dose effect by positing a con-

tinuous latent toxicity process. The process is designed to mimic the pharmacokinetics

of drug absorption and clearance, tending to increase after a new dose is administered

and the drug is absorbed, before falling off as the drug is cleared. Our model was

inspired by earlier work from Legedza and Ibrahim [15] and Zhang and Braun [17],

particularly in our definition of the mean dose function µ(t). However, while these
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earlier works assumed that a patient’s responses across cycles were mutually inde-

pendent, we naturally account for the correlation through the Ornstein-Uhlenbeck

stochastic process. Additionally, borrowing from Doussau et al. [16], we incorporate

LLTs in our model, allowing us to more precisely determine the location of a patient’s

latent process over time, and thus improving the estimation of DLT rates. However,

our use of a trinary ordinal response (i.e., no toxicity, LLT, and DLT), while conve-

nient, is somewhat arbitrary. The original ordinal responses in phase I trials typically

have six levels, and our model can be extended to handle more levels by adding more

threshold parameters. The utility of adding more levels should be explored.

In our simulations, we found considerable bias in the CRM when using responses

only from cycle 1, even though we tried to improve the method by modeling cycle 1

DLT rates and then extrapolating to m cycles. In practice, phase I trials run with

the CRM may simply equate the cycle 1 DLT rate with the full m-cycle rate, leading

potentially to even greater bias because many DLTs do not occur until later cycles [26].

Even so, our model, using data collected through the CRM, can significantly improve

on the CRM in estimating the MTD.

We suspect that our model would achieve further gains if the CRM had been

run with a randomization step in the dose-finding algorithm. That is, instead of

always moving towards the current estimate of the MTD, the algorithm would allow

a possibility of staying at the current dose or moving in the “wrong” direction, thereby

promoting more exploration among the doses. Given that the CRM is biased in our

context but still often selects an MTD near the truth, randomization may increase

the number of patients treated near the true MTD and thus provide our model with

better data when re-estimating the MTD.

Initially, we intended to use our model during the adaptive enrollment phase of

a trial, guiding dose selection for new patients just as the CRM does. However,

we found that the LTP model has too many parameters, even assuming α and λ
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are known, to precisely estimate DLT rates during the trial, when limited data are

available. Thus, we have proposed using our model to retrospectively analyze data

from completed trials, and in this context we found our model to work well.

In our analysis, we sought to identify the MTD, a single dose level administered

over multiple cycles. However, our model can also estimate the DLT rate for any dose

algorithm, which specifies how a patient’s dose level should change over the cycles in

response to the patient’s outcomes. For example, the algorithm might specify starting

at a high dose, and then tapering down if a patient has an LLT. Our LTP model could

help identify which dose level to start at and by how many levels to jump down after

an LLT. Because of this flexibility, our model could theoretically be used adaptively

during a trial to determine if dose changes for enrolled patients could be made to

focus their risk of toxicity as close to the target DLT rate as possible. However, the

reality of such an approach would likely be limited by the actual amount of data

available as patients are accrued.

Finally, we note that carrying out the estimation for our model required overcom-

ing significant programming challenges. We first sought to use the JAGS software [50]

to implement Metropolis-Hastings, but it did not allow us to model the observed

trinary outcomes Yic as the trichotomized maximum of a Gaussian process. Although

workarounds may have been possible, we ultimately programmed the MH sampler

ourselves in R and C++ with the Rcpp package [51], taking pains to efficiently cal-

culate the quantities derived in Section 3.4. Using R alone, which we tried, proved

unworkably slow, but with a C++ back-end we find that the code is efficient enough

for practical use.
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CHAPTER 4

Phase I Clinical Trial Method for Flexible

Toxicity and Efficacy Curves

4.1 Introduction

Classic phase I methodology, such as the 3+3 design [2] and continual reassessment

method (CRM) [4], assume that the probabilities of toxicity (T ) and efficacy (E)

increase strictly with dose. These assumptions are generally accepted for cytotoxic

agents and imply that, among doses with acceptable T , the highest dose has the

highest probability of E. Thus the trials may select the optimal dose based solely

on T . However, for the newer class of molecularly-targeted agents (MTA), the T

and E curves may plateau (increase and then level off) or peak (increase and then

decrease) [27, 28], as depicted in Figure 4.1. As a result, a phase I method for an

MTA should (1) incorporate both T and E, since the maximum tolerated dose is not

necessarily the most likely to be efficacious; and (2) allow the curves to vary flexibly

with dose.

Previous authors have developed methods to model both T and E for a single

agent, including Thall and Russell [19], Gooley et al. [20], Braun [21], Thall and

Cook [22], Wages and Tait [23], Thall and Nguyen [24], and Li et al. [25]. All these

methods are novel and have appealing properties, but we restrict our attention to two

methods that are representative of the literature: Thall and Cook, and Li et al.
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Figure 4.1. Three possible dose-response curves, for either toxicity or efficacy.

The “EffTox” method of Thall and Cook uses a parametric model in which the

log-odds of T varies linearly with dose, while the log-odds of E varies quadratically.

The quadratic form can capture both plateaus and peaks. An additional parameter

captures the association between T and E. To rank the doses, EffTox uses a utility

metric which reduces the T and E rates to a single-dimensional number, essentially

measuring the distance from a point (πE, πT ), where πE and πT are probabilities of

E and T , to the optimal point (1, 0) where there is always E and never T .

The “TEPI” (toxicity and efficacy probability interval) method of Li et al. is an

interval-based method, in which the [0, 1]× [0, 1] grid, with πE on the abscissa and πT

on the ordinate, is partitioned into rectangular subregions. Before the trial starts, a

clinician assigns a rule to each region: either de-escalate, stay, or escalate the dose for

the next cohort. A simple statistical model, in which the probabilities of E and T are

all independent across doses, is used to estimate the rates for the current dose. These

estimates will place the current dose in a subregion of the grid, thus determining the

next dose to select. At the end of the trial, a utility metric is used to select the

optimal dose.

Both the EffTox and TEPI methods are appealing and effective, but they have

some drawbacks. In particular, the parametric forms of EffTox may be too restrictive,

correlating response rates too strongly across doses, while the completely independent

rates in TEPI may not be restrictive enough. To address these issues, we propose
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a method in which we borrow information across doses without imposing a strict

parametric form. Separately for the two outcomes T and E, each dose level has

its own parameter for the probability of the outcome, and these probabilities for

all doses are linked via a covariance matrix that borrows information across doses.

In particular, we transform the probabilities to be unbounded, and then link them

with a conditional autoregressive (CAR) model, which has been used in geospatial

analysis of lattice data [29–31]. In essence, our model treats a set of candidate dose

levels as forming a path graph, with connections between neighboring dose levels.

This CAR model is applied separately for both T and E data. To select an optimal

dose, we adapt the utility-based algorithm of EffTox, but we introduce an element of

randomness to encourage exploration among the doses.

Below, we introduce our method, consisting of statistical model and dose-finding

algorithm, then we evaluate its characteristics in a simulation study, and we conclude

with a discussion.

4.2 Model and Methods

4.2.1 Defining the Model

Consider J candidate dose levels, ordered by increasing dose from 1 to J . With nj

patients given dose j, we collect E and T counts yEj , y
T
j ∈ {0, 1, . . . , nj}, where, e.g.,

yTj is the number of patients with a dose-limiting toxicity at dose j. We write the

model below, where the * superscript can be replaced by either E for efficacy or T

for toxicity. The model has the same form for each outcome:

y∗j |π∗j ∼ Bin
(
nj, π

∗
j

)
, j = 1, . . . , J

g(π∗) ∼ N
(
g(π∗0),Σ∗ = σ∗2(IJ − λ∗W)−1T

)
π∗ = [π∗1 . . . π

∗
J ], π∗0 = [π∗01 . . . π

∗
0J ] = skeleton.

(4.1)
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Specifically, y∗j is binomial with probability parameter π∗j . The transformed prob-

abilities g(π∗) = [g(π∗1) . . . g(π∗J)] are given a CAR covariance structure, where

g : (0, 1) → R is a known link function, e.g., the logit function. The function g

should be monotonic increasing, in which case the prior median of the event proba-

bilities equal the skeleton, i.e. median(π∗j ) = π∗0j. The J × J matrix W is a weighted

adjacency matrix for our dose levels. To define W, we first define the regular J × J

adjacency matrix W† with ijth element w†ij:

w†ij =


1 if |i− j| = 1

0 if i = j

0 otherwise.

Thus W† has ones just off the main diagonal, and zeros everywhere else, repre-

senting the adjacency structure of a path graph, as illustrated in Figure 4.2. The

matrix W is defined as the row-normalized (that is, each row sums to one) version

of W†. In notation, the ijth element of W is wij = w†ij/w
†
i+. The diagonal matrix

T = diag(1/w†1+, . . . , 1/w
†
J+) scales the variance of each g(π∗j ) according to how many

neighbors dose j has (either 1 or 2), and furthermore T is needed to ensure that the

covariance matrix Σ∗ = cov(g(π∗)) is positive definite. The matrix Σ∗ is a function

of two tuning parameters: σ∗ controls the prior standard deviation of each g(π∗j ) and

thus of each π∗j ; and λ∗ controls the amount of information borrowed across neigh-

boring doses. The ijth element of Σ∗, which may be useful for model calibration,

is

Σ∗ij =(σ∗)2(λ∗)|i−j|

×
[
(1 + x)min(i,j)−1 + (1− x)min(i,j)−1

][
(1 + x)J−max(i,j) + (1− x)J−max(i,j)

]
2x[(1 + x)J−1 − (1− x)J−1]

(4.2)

where x =
√

1− (λ∗)2. See the Appendix for a derivation of this formula.
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● ● ● ● ●

1 2 3 J − 1 J

Dose levels

Figure 4.2. Path graph structure for J dose levels. The dose levels are ordered by
increasing dosage. Dots represent doses. Lines connect adjacent/neighboring doses.

There is an additional requirement to ensure that Σ∗ is positive definite: we need

λ∗ to satisfy both λ∗wmin < 1 and λ∗wmax < 1, where wmin and wmax are the minimum

and maximum eigenvalues of W [31]. Given our construction of W (alternatives are

possible for a CAR model; for example we did not have to normalize the row sums),

we have wmin = −1 and wmax = 1 for any J ≥ 2 (see the Appendix for a proof of

this claim). Thus we require λ∗ ∈ (−1, 1). However, noting from Equation (4.2)

that negative values of λ∗ correspond to negative correlations among all first-order

neighbors g(π∗j ) and g(π∗j+1), and positive values correspond to positive correlations,

we further restrict the parameter space to λ∗ ∈ (0, 1).

Our model treats E and T as independent outcomes, and no data are shared

between them. While we could introduce a new association parameter between the

outcomes, we refrain based on the recommendation of Cunanan and Koopmeiners [52].

They investigated various copula models to link E and T and compared with an

independent model, finding that the correlation parameters are difficult to estimate

in copula models given the small sample sizes in phase I trials, and further that the

independent model performs just as well.

As a final comment about the construction of our model, we note that it is called a

CAR model because the multivariate expression g(π∗) ∼ N (g(π∗0), σ∗2(IJ − λ∗W)−1T)

can be equivalently written [31] as the conditional univariate expression

g(π∗j )|g(π∗(j)) ∼ N

(
g(π∗0j) + λ∗

J∑
k=1

wjk[g(π∗k)− g(π∗0k)], σ
∗2/w†j+

)
(4.3)

for j = 1, . . . , J , where π∗(j) = [π∗1 . . . π
∗
j−1 π∗j+1 . . . π

∗
J ]. In this form, we see that
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each g(π∗j ), given its first-order neighbors, is conditionally independent of the other

g(π∗k). This is because wjk = 0 in (4.3) whenever dose k is not a first-order neighbor

of dose j, so the sum on the right-hand side has only one or two non-zero terms.

This conditional form of the model also more clearly shows the roles λ∗ and σ∗ play,

and in particular we see precisely how λ∗ controls borrowing from neighboring doses.

Lastly, we see the consequence of choosing to use a row-normalized W: it turns the

sum in (4.3) into an average, since if dose j has m first-order neighbors, then wjk will

be 1/m for those neighbors and zero for all other doses.

4.2.2 Estimation of Model Parameters

In this section, for convenience we drop the superscript ∗ denoting either toxicity or

efficacy. The estimation procedure we describe will be carried out twice, once for each

outcome. To estimate the parameters π = [π1 . . . πJ ], we use the Metropolis-Hastings

(MH) algorithm to generate a sample from the posterior distribution p(g(π)|y), and

then transform it via g−1 into a sample from p(π|y). First, let ηj = g(πj) and

η = [η1 . . . ηJ ]. Then

p(ηj|y,η(j)) ∝ p(y, ηj,η(j))

∝ p(y|ηj,η(j))p(ηj|η(j))

∝ p(yj|ηj)p(ηj|η(j)).

(4.4)

Thus to generate a sample from p(η|y) with the MH algorithm, we must calculate

p(yj|ηj)p(ηj|η(j)), j = 1, . . . , J . This is straightforward, since p(yj|ηj) is binomial from

(4.1) and p(ηj|η(j)) is univariate normal from (4.3). We implement the MH algorithm

using the JAGS software [50]. With JAGS, the user must specify three sample sizes:

one for adaptation (during which JAGS adjusts proposal distributions to achieve op-

timal mixing), one for burn-in, and finally one from the posterior distribution. In our

experience, it is more than sufficient to specify these sample sizes as 1,000, 5,000, and

20,000, respectively, and generating this chain takes less than two seconds.
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4.2.3 Estimation of DLT Rates

The MH algorithm provides us with a sample of size S from p(η∗|y), where η∗ =

g(π∗). We denote this sample as η∗(1), . . . ,η∗(S). Our posterior estimates of the event

rates are then π̂∗ = Ê[π∗|y] = Ê[g−1(η∗)|y] =
∑S

i=1 g
−1(η∗(i))/S. This estimator

can be interpreted as the posterior probability of the event (toxicity or efficacy) for a

new patient assigned to dose j. That is, Pr(ynew
j = 1|y) = E[Pr(ynew

j = 1|π∗j ,y)|y] =

E[Pr(ynew
j = 1|π∗j )|y] = E[π∗j |y], where ynew

j is the binary outcome for the new patient.

With our sample, we can also easily calculate posterior credible intervals for the π∗j

and other posterior quantities of interest.

4.2.4 Dose-Finding Algorithm

Running a phase I trial requires an algorithm for selecting which dose to assign to

the next patient. The algorithm will proceed by iteratively moving toward the “best”

dose and updating our estimates of πE and πT . Since we have two outcomes, we need

a metric that combines efficacy and toxicity rates into a one-dimensional number for

each dose, allowing us to rank the pairs π̂j = (π̂Ej , π̂
T
j ). We adopt the metric developed

by Thall and Cook [22], called desirability and denoted δ(π) for π ∈ [0, 1]2.

To calculate desirability, first pick three points, π†1,π
†
2,π

†
3 ∈ [0, 1]2 that are equally

desirable. Fit a parametric curve of the form πT = f(πE) = a + b/πE + c/(πE)2

through these three points and call this contour C. For any point π ∈ [0, 1]2, we

can draw a line that connects it to the point (1, 0) and that intersects C; denote this

point of intersection q. Note that the point (1, 0) has optimal desirability, since the

probabilities of efficacy and toxicity are 1 and 0, respectively. The desirability of the

point π is then

δ(π) =
||q− (1, 0)||
||π − (1, 0)||

− 1 (4.5)

where || · || denotes Euclidean distance, so that higher values of δ are better. The
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process of calculating δ(π) is depicted in Figure 4.3.

With this desirability metric, we propose the following algorithm, adapted from

Thall and Cook with a slight modification. First, we define a set of acceptable doses.

Given data D, a dose j is acceptable if both

Pr(πEj > πE|D) > pE and

Pr(πTj < π̄T |D) > pT

where πE and π̄T are lower and upper bounds, respectively, for efficacy and toxicity,
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Figure 4.3. Efficacy-toxicity trade-off contours. All points on a contour have the
same desirability. The reference contour C is formed by connecting the clinician-
chosen points π†1,π

†
2,π

†
3. The desirability of a point π is inversely proportional to its

distance from the point (1, 0), according to Equation (4.5). This figure is based on a
similar one in Thall and Cook [22].
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and pE and pT are probability cutoffs. These four quantities are fixed at the beginning

of the trial. If no dose meets these acceptability criteria, then the trial is stopped

early. Otherwise, calculate δ(π̂j) for the current dose j and its first-order neighbors.

We then randomly select the next dose as one of these two or three dose levels, where

the probability of picking dose k is proportional to exp(δ(π̂k)). The selected dose is

assigned to a new cohort of m patients, where m is typically 1 or 3. When the trial

has finished following the desired number of patients N , the optimal dose is the one

with the highest estimated desirability.

4.2.5 Calibrating the Method

In addition to choosing the J doses, the number of patients N , and the cohort size

m, our method requires setting the following parameters: the probability skeletons

πE0j and πT0j, j = 1, . . . , J ; the prior standard deviations σE and σT and the prior

correlations λE and λT ; the minimum acceptable E rate πE and the maximum ac-

ceptable T rate π̄T ; the probability cutoffs pE and pT ; and the equal-desirability

points π†1,π
†
2,π

†
3. The skeletons, minimum/maximum acceptable rates, and equal-

desirability points may be chosen by a clinician. The parameters σE, σT , λE, λT , pE,

and pT should then be set by computer simulation. To reduce the dimension of the

search space, we recommend fixing σE = σT , λE = λT , and pE = pT .

4.3 Simulation Study

We conduct a simulation study, simulating adaptive trials and evaluating the per-

formance of our CAR method. We also compare our method with three others: the

CRM using only toxicity data, the EffTox method of Thall and Cook, and the TEPI

method of Li et al. The true model that we use for simulating data is very simple.

For each dose level there is a true T and E rate πT,true
j and πE,true

j , and we simulate
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an individual patient’s outcomes from Bern(πT,true
j ) and Bern(πE,true

j ). Note that,

according to our simulation scheme, a patient’s E and T outcomes are not correlated.

4.3.1 Simulation Scenarios

We adopt the simulation scenarios from Thall and Cook (referred to as TC) and Li

et al. (referred to as Li).

In TC, there are J = 5 doses, N = 72 patients enrolled in cohorts of size m, and

the true E and T rates always increase with dose across six scenarios. Our method is

not optimized for strictly increasing E and T rates, but we are nonetheless interested

in how our method performs in this context. As we are borrowing the scenarios from

TC, we do not need to implement their EffTox method, and we simply re-report

their results with m = 3. Additionally, since our dose-finding algorithm is adopted

from EffTox, we can also use their tuning parameter values: πE = 0.5, π̄T = 0.1,

pE = pT = 0.1, π†1 = (0.45, 0), π†2 = (0.55, 0.1), π†3 = (0.84, 0.16). We use cohorts of

both m = 3 and m = 1 for the CAR method. For the skeletons, we set π∗0j to the

average of π∗,true
j across the six TC scenarios, giving πE = [0.26, 0.40, 0.52, 0.62, 0.71]

and πT = [0.05, 0.08, 0.11, 0.15, 0.21]. We calibrated the prior standard deviation and

correlation parameters via simulation to be σE = σT = 0.7 and λE = λT = 0.5.

In Li, J = 4, N = 27, m = 3, and the T rate always increases while the E rate

may increase, plateau, or peak in six scenarios. In scenario 3, we note that the E rate

has a dramatic peak, increasing from 0.1 to 0.7, then falling to 0.2 across the first

three dose levels. The Li paper compares its TEPI method with both EffTox and the

CRM, so we re-report these results and add in those from our CAR method. Since Li

also implemented EffTox, we use their tuning parameter values: πE = 0.4, π̄T = 0.4,

pE = 0.3, pT = 0.05, π†1 = (0.2, 0), π†2 = (1, 0.6), π†3 = (0.5, 0.5). We set the skeletons

to πE = [0.4, 0.4, 0.4, 0.4] and πT = [0.1, 0.2, 0.3, 0.4]. We calibrated the remaining

parameters to be σE = σT = 0.7 and λE = λT = 0.5.
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In each scenario, we simulate 1,000 adaptive trials with our CAR method. When

looking at the TC scenarios, in addition to evaluating our method with both m =

3 and m = 1, we also vary the dose-finding algorithm. That is, in one version

we randomize the next dose selection based on estimated desirability as described

previously, while in another version we remove the randomization, always picking

the dose with highest estimated desirability, subject to a constraint preventing the

algorithm from moving by more than one dose. However, we only calibrate the model

parameters once, with m = 3 and using randomization.

4.3.2 Simulation Results

The comparison of CAR with EffTox in the TC scenarios is in Table 4.1. The com-

parison with TEPI, CRM, and EffTox from Li is in Table 4.2. Focusing first on the

TC scenarios, we note a general trend that the CAR method tends to prefer lower

doses than EffTox. In scenarios 1 and 4, where the highest dose is optimal, EffTox

selects the right dose more often than CAR. In scenarios 2 and 3, where the optimal

dose is not the highest, CAR with randomization selects the optimal dose more of-

ten than EffTox, and further EffTox too often selects doses above the optimal which

leads to excessive risk of toxicity. We also observe, comparing the different versions

of CAR, that adding randomness to the dose-finding algorithm can lead to big gains

in selecting the true optimal dose, while reducing the cohort size from 3 to 1 leads

to modest gains. We call attention in particular to scenario 1, where the gains from

randomization are quite large. Finally, in scenarios 5 and 6, all the doses are unde-

sirable, either too toxic or not sufficiently efficacious, and both EffTox and CAR do

similarly well at stopping the trial early and not recommending any dose for further

testing.

In the Li scenarios in Table 4.2, CAR typically performs around as well, and

sometimes better than TEPI; and mostly better than both EffTox and CRM. The

65



Table 4.1. Simulation results comparing CAR method with EffTox, and using Thall
and Cook’s scenarios. In these scenarios, the true rates of E and T always increase
with dose. The CAR method uses either 24 cohorts of 3, or 72 cohorts of 1. The
dose-finding algorithm is either deterministic or random with selection probabilities
proportional to exp(estimated desirability). In the 4 CAR columns, the label in
parentheses indicates the cohort size (1 or 3) and the type of dose-finding algorithm
(D for deterministic or R for random). For EffTox, there are 24 cohorts of 3 patients,
and the dose-finding algorithm is not randomized. In each scenario, the highlighted
row shows the desired outcome, which is either the optimal dose or stopping early.

Dose True Probability Selection Percentage (Number of Patients Treated)
Scenario Level Tox Eff Desir. EffTox CAR (3D) CAR (3R) CAR (1D) CAR (1R)
1 1 0.01 0.05 -0.43 0.0 (3.0) 0.0 (3.0) 0.0 (5.5) 0.0 (1.0) 0.0 (2.2)

2 0.02 0.20 -0.32 0.0 (4.0) 0.4 (3.3) 0.0 (7.2) 0.0 (1.6) 0.0 (5.0)
3 0.03 0.35 -0.18 0.7 (5.1) 2.0 (12.3) 1.2 (16.1) 3.6 (9.8) 0.4 (15.6)
4 0.04 0.60 0.27 5.8 (7.1) 94.8 (52.4) 30.0 (25.1) 92.8 (57.9) 22.0 (27.5)
5 0.05 0.80 1.17 92.8 (52.2) 1.6 (0.7) 68.0 (17.8) 2.4 (1.0) 77.6 (21.7)
Early Stop 0.7 1.2 0.8 1.2 0

2 1 0.01 0.57 0.26 0.1 (5.4) 22.0 (17.4) 31.2 (19.0) 2.8 (2.9) 22.0 (12.4)
2 0.03 0.58 0.24 20.5 (21.6) 32.4 (23.7) 32.8 (23.4) 21.6 (15.4) 28.0 (21.8)
3 0.06 0.60 0.22 61.9 (29.5) 44.0 (28.3) 33.6 (18.2) 71.6 (48.4) 45.6 (22.7)
4 0.20 0.62 -0.24 16.1 (11.6) 1.2 (2.4) 2.4 (8.9) 2.8 (4.4) 2.8 (11.5)
5 0.32 0.64 -0.50 0.9 (3.6) 0.0 (0.0) 0.0 (2.4) 0.0 (0.0) 0.4 (3.2)
Early Stop 0.5 0.4 0 1.2 1.2

3 1 0.02 0.20 -0.32 0.0 (3.4) 0.0 (3.1) 0.0 (7.2) 0.0 (1.0) 0.0 (3.5)
2 0.03 0.40 -0.12 1.6 (8.8) 2.0 (6.4) 2.0 (14.2) 0.4 (3.2) 0.8 (12.6)
3 0.04 0.60 0.27 32.2 (20.8) 64.4 (43.4) 39.2 (22.4) 60.0 (42.3) 38.0 (25.0)
4 0.06 0.68 0.46 49.4 (22.3) 33.6 (18.8) 54.8 (20.5) 38.8 (25.1) 53.2 (22.9)
5 0.20 0.74 -0.20 15.7 (16.0) 0.0 (0.2) 4.0 (7.7) 0.0 (0.0) 7.6 (7.9)
Early Stop 1 0 0 0.8 0.4

4 1 0.01 0.52 0.12 0.0 (3.5) 12.4 (12.4) 3.2 (14.1) 0.4 (1.3) 2.0 (7.9)
2 0.015 0.62 0.41 0.1 (4.3) 31.6 (23.8) 12.0 (19.6) 11.2 (8.9) 7.6 (15.4)
3 0.02 0.71 0.80 1.1 (5.3) 51.6 (33.2) 36.8 (18.7) 76.4 (53.9) 23.6 (19.8)
4 0.025 0.79 1.39 4.6 (6.6) 4.4 (2.6) 30.8 (13.2) 12.0 (8.0) 41.6 (18.9)
5 0.03 0.86 2.24 94.0 (52.2) 0.0 (0.0) 17.2 (6.4) 0.0 (0.0) 25.2 (10.0)
Early Stop 0.1 0 0 0 0

5 1 0.18 0.05 -0.51 0.1 (3.4) 0.0 (3.1) 0.0 (5.1) 0.0 (1.1) 0.0 (2.1)
2 0.22 0.20 -0.47 0.9 (8.3) 0.0 (5.3) 0.0 (7.2) 0.4 (4.4) 0.0 (4.7)
3 0.26 0.35 -0.46 1.6 (3.6) 0.4 (12.6) 1.6 (12.9) 0.4 (10.6) 0.8 (11.0)
4 0.30 0.47 -0.49 1.4 (0.8) 0.8 (7.6) 0.8 (9.1) 0.0 (6.2) 0.8 (8.1)
5 0.33 0.58 -0.52 0.2 (0.3) 0.4 (2.9) 0.8 (3.2) 0.0 (2.0) 0.8 (3.2)
Early Stop 97.3 98.4 96.8 99.2 97.6

6 1 0.08 0.15 -0.40 0.4 (5.3) 0.0 (3.6) 0.8 (6.6) 0.0 (1.6) 0.0 (3.2)
2 0.18 0.38 -0.33 11.4 (20.1) 4.0 (14.5) 12.0 (15.6) 5.2 (11.9) 5.6 (13.1)
3 0.25 0.52 -0.39 1.3 (4.5) 4.0 (16.7) 7.2 (18.2) 2.0 (16.1) 6.0 (15.9)
4 0.30 0.59 -0.47 0.0 (1.1) 2.8 (8.4) 3.6 (9.5) 2.0 (6.6) 2.0 (8.0)
5 0.33 0.62 -0.54 0.0 (0.4) 2.0 (2.0) 1.6 (3.1) 0.4 (1.6) 0.8 (2.6)
Early Stop 86.9 87.2 74.8 90.4 85.6
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Table 4.2. Simulation results comparing CAR method with TEPI, CRM, and
EffTox, and using Li et al.’s scenarios. In these scenarios, the T rate always in-
creases with dose while the E rate may increase, plateau, or peak. There are 4 dose
levels, and we enroll up to 27 patients. In each scenario, the highlighted row shows
the desired outcome, which is either the optimal dose or stopping early.

Dose True Probability Selection Percentage (Number of Patients Treated)
Scenario Level Tox Eff Desir. TEPI CRM EffTox CAR
1 1 0.16 0.05 -0.19 22.1 (6.0) 7.9 (7.9) 0 (3.1) 0.8 (6.2)

2 0.2 0.1 -0.16 17.9 (5.7) 23.6 (7.5) 0 (3.1) 0.0 (6.6)
3 0.25 0.15 -0.13 17.2 (5.1) 31.9 (6.3) 0 (3.8) 7.2 (4.3)
4 0.3 0.18 -0.12 7.5 (4.3) 36.6 (5.2) 8 (5.3) 12.4 (4.2)
Early Stop 35.3 0 92 79.6

2 1 0.15 0.8 1.96 83.9 (9.1) 6.3 (7.5) 66 (17.8) 82.4 (13.6)
2 0.2 0.8 1.50 13.6 (8.5) 23.6 (7.6) 30 (8.4) 13.6 (8.3)
3 0.25 0.8 1.12 2.1 (5.6) 32.7 (6.5) 3 (0.7) 3.1 (3.7)
4 0.3 0.8 0.82 0.3 (3.8) 37.4 (5.3) 1 (0.1) 0.9 (1.5)
Early Stop 0.1 0 0 0

3 1 0.1 0.1 -0.13 7.2 (4.4) 2.1 (5.5) 3 (3.7) 0.4 (7.0)
2 0.2 0.7 1.08 88 (12.3) 32.1 (8.9) 42 (11.8) 88.0 (10.7)
3 0.3 0.2 -0.10 0.3 (7.1) 60.6 (10) 3 (4.3) 0.8 (6.5)
4 0.7 0.1 -0.35 0.1 (2.3) 5.2 (2.6) 2 (2.0) 0.4 (1.8)
Early Stop 4.4 0 50 10.4

4 1 0.15 0.43 0.32 53.9 (6.1) 7.7 (7.7) 19 (7.3) 41.6 (10.4)
2 0.2 0.52 0.48 41.3 (9.6) 43.8 (9.7) 49 (12.4) 44.4 (9.1)
3 0.4 0.5 0.15 3.6 (9.0) 41.7 (7.6) 22 (5.3) 10.9 (5.4)
4 0.5 0.6 0.06 1.2 (2.1) 6.8 (2.0) 5 (1.1) 2.7 (2.1)
Early Stop 1.2 0 6 0.4

5 1 0.1 0.2 -0.03 16.4 (4.7) 3.1 (5.4) 1 (3.6) 2.4 (8.1)
2 0.2 0.6 0.71 65.4 (8.6) 25.0 (8.2) 48 (12.4) 68.8 (10.0)
3 0.3 0.6 0.48 13.8 (7.2) 45.4 (8.6) 38 (8.5) 22.3 (6.2)
4 0.4 0.6 0.25 1.0 (4.9) 26.5 (4.8) 10 (2.0) 6.5 (2.7)
Early Stop 3.4 0 3 0

6 1 0.5 0.4 -0.07 33.9 (14.9) 99.3 (25.8) 16 (7.9) 19.2 (9.8)
2 0.6 0.5 -0.12 0.3 (1.8) 0.7 (1.1) 13 (6.6) 9.1 (6.0)
3 0.7 0.6 -0.20 0.0 (0.1) 0.0 (0.1) 2 (1.2) 1.6 (0.8)
4 0.8 0.8 -0.27 0.0 (0.0) 0.0 (0.0) 0 (0.2) 0.0 (0.6)
Early Stop 65.8 0 69 70.1
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CRM in particular does quite poorly across scenarios, as it does not make use of

efficacy data. In scenarios 2-4, the true optimal dose is one of the two lowest, and

we suspect that this contributes to CAR beating EffTox, as again, EffTox appears to

want to select higher doses. In scenario 1, CAR beats TEPI in stopping early more

often. In scenario 5, TEPI and CAR select the true optimal dose around as often,

but TEPI more often selects the lowest, non-efficacious dose, while CAR more often

escalates to more toxic doses even though efficacy has plateaued.

4.4 Discussion

We have proposed a method for phase I clinical trials in which we share informa-

tion across doses without restricting the shapes of the dose-toxicity and dose-efficacy

curves. Our method is applicable to settings in which the true curves cannot be as-

sumed strictly increasing. Thus, while we do not recommend our CAR method for

evaluation of cytotoxic chemotherapies, it may be appropriate for MTAs. The mech-

anism of action of MTAs is such that, beyond a threshold, further dose escalation

may not increase toxicity or efficacy rates, and in some cases may lead to decreasing

rates [27, 28].

In evaluating our method, we tried varying both cohort size and whether the

dose-finding algorithm uses randomization in selecting a dose for the next cohort,

as opposed to always picking the dose with highest estimated desirability. In our

experience, clinicians often prefer cohorts of three, perhaps due to familiarity with

the 3+3 method. Simulation results suggest, however, that the CAR method benefits

from cohorts of one, leading to modest increases in selecting the true optimal dose.

Randomization produces even larger increases, and additionally encourages greater

exploration of the doses, leading to more information on toxicity and efficacy across

the range of doses. However, our use of exp(estimated desirability) for the randomiza-
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tion probabilities (after sum-to-one standardization) was based on convenience, and

alternatives should be investigated.

As with many phase I methods, our method has a number of tuning parameters

to specify before starting the trial. In addition to the skeletons and equal-desirability

points, there are parameters which may be considered less intuitively meaningful and

thus harder to tune. For this latter set of parameters, we find it convenient to equate

corresponding parameters between the efficacy and toxicity models, thereby reducing

the number of free parameters. While this likely prevents us from optimally tuning

the method, it makes the tuning far more feasible, and our simulation study suggests

the results are still satisfactory.

Finally, we note that the CAR method may be readily extended to study combi-

nation therapies. A first-order neighbor of a combination dose may be defined as any

other combination dose reachable by changing exactly one component dose by one

level, either up or down. After defining this neighborhood structure, many details

will carry through from our single-therapy CAR method.

4.5 Appendix

4.5.1 Eigenvalues of the Row-Normalized Adjacency Matrix

Claim. The minimum and maximum eigenvalues of the row-normalized J × J adja-

cency matrix W are −1 and 1, respectively.

Proof. First we show that all eigenvalues of W must belong to the closed interval

[−1, 1]. By the Gershgorin circle theorem [53, 54], all eigenvalues of W must lie in

at least one closed interval of the form [wjj −wj+, wjj +wj+], for j = 1, . . . , J where

wjj is the jth diagonal element of W and wj+ is the jth row sum of W. In our case,

wjj = 0 and wj+ = 1 for all j, so the J intervals are all the same: [−1, 1]. Thus all

eigenvalues lie in [−1, 1].
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Next we show that both −1 and 1 are indeed eigenvalues of W, and are therefore,

by Gershgorin, the minimum and maximum eigenvalues. Since the row-sums of W

are 1, we have W1J = 1J , where 1J is a vector of ones. Thus 1 is an eigenvalue of

W. Our argument for −1 being an eigenvalue is more involved. Recall that we are

treating the J dose levels as forming a path in the graph theoretic sense. A path is

a bipartite graph [54], meaning the nodes (doses) can be partitioned into two sets

such that the connections are always between sets, and never within sets. Figure 4.4

illustrates this for the case J = 6.

Given this graph structure, the nodes can be re-ordered (as numbered in Figure

4.4) so that W is a block matrix with 0-matrices on the diagonal,

W =

[
0n×n W1

W2 0m×m

]
,

where n = dJ/2e and m = bJ/2c, and the two non-zero submatrices W1 (n×m) and

W2 (m × n) both have have row-sums equal to 1. Note that the labeling of nodes,

and thus their order in W is arbitrary, and in particular changing the order does not
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Figure 4.4. Bipartite graph structure and associated row-normalized adjacency
matrix, with six dose levels. The doses have been relabeled corresponding to the
bipartite structure.
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change the eigenvalues. Now consider the column vector v = [1n,−1m]T . We have

Wv =

[
0n×n W1

W2 0m×m

][
1n

−1m

]
=

[
−W11m

W21n

]
=

[
−1n

1m

]
= −v.

Thus −1 is an eigenvalue of W, and this completes the proof. �

4.5.2 Derivation of the CAR Covariance Matrix

We derive a closed-form expression for the ijth element of the covariance matrix

Σ∗ = (σ∗)2(IJ − λ∗W)−1T. For convenience, we drop the superscript ∗ notation.

First we note that A = σ2Σ−1 = T−1(IJ − λW) = T−1 − λW†, where T−1 =

diag(w†1+, . . . , w
†
J+). Thus the matrix A is tridiagonal, with the form

A =



1 −λ
−λ 2 −λ 0

−λ 2
. . .

. . . . . . . . .
. . . 2 −λ

0 −λ 2 −λ
−λ 1


.

Using the formula of Usmani [55], the ijth element of the inverse of A is

(A−1)ij =

(−1)i+j(−λ)j−iθi−1φj+1/θJ if i ≤ j

(−1)i+j(−λ)i−jθj−1φi+1/θJ if i > j

= λ|i−j|θmin(i,j)−1φmax(i,j)+1/θJ

where θi and φi satisfy the recurrence relations

θi = (T−1)iiθi−1 − λ2θi−2 for i = 2, 3, . . . , J ;

φi = (T−1)iiφi+1 − λ2φi+2 for i = J − 1, . . . , 1;
(4.6)

with initial conditions θ0 = 1, θ1 = (T−1)11 = 1, φJ+1 = 1, and φJ = (T−1)JJ = 1.

For our matrix A, which is symmetric and persymmetric, we see that the sequence

θi is just the sequence φi in reverse, that is, φi = θJ−i+1. Thus our expression for
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(A−1)ij simplifies to

(A−1)ij = λ|i−j|θmin(i,j)−1θJ−max(i,j)/θJ . (4.7)

Our task now is to find an explicit formula for θi given the recurrence relation in

Equation (4.6). This relation can be broken up into two parts, noting that (T−1)ii = 2

for i = 2, . . . , J − 1 and (T−1)JJ = 1:

θi = 2θi−1 − λ2θi−2 for i = 2, 3, . . . , J − 1, and (4.8a)

θJ = θJ−1 − λ2θJ−2. (4.8b)

Equation (4.8a) can be solved with a generating function [56], giving θi = 1
2
[(1 +

x)i + (1 − x)i] for i = 2, . . . , J − 1, where x =
√

1− λ2. Plugging this expression

for θi into Equation (4.8b) gives θJ = 1
2
x[(1 + x)J−1 − (1 − x)J−1]. We now have a

closed-form expression for θi for i = 0, . . . , J , which we plug into Equation (4.7) for

our final result:

Σij = σ2(A−1)ij

= σ2λ|i−j|
[
(1 + x)min(i,j)−1 + (1− x)min(i,j)−1

][
(1 + x)J−max(i,j) + (1− x)J−max(i,j)

]
2x[(1 + x)J−1 − (1− x)J−1]

.
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CHAPTER 5

Conclusion

In this dissertation, we identified three settings in which commonly available phase

I data could be better leveraged to estimate an optimal dose for a single agent. In

Chapter 2, for a cytotoxic agent for which one dose administration is sufficient for

determining the DLT rate, we proposed counting multiple DLTs and LLTs per patient,

and we found that our method often improved the estimation of the probability of

having at least one DLT, relative to the CRM. Other methods accounting for multiple

events have been developed [11–14], but ours does so in a way which does not require

the redefinition of the maximum tolerated dose to work with a new endpoint. Our

method could be extended to handle partial patient follow-up in a manner similar to

the time-to-event CRM [5], allowing a new patient to be enrolled before the previous

patient has reached the end of the observation period. This could speed up a trial and

reduce operational costs, but care must be taken to not lose the benefits of sequential

adaptation. Future research may explore acceptable wait-times between patients, and

how to down-weight patients with partial follow-up.

In Chapter 3, for a cytotoxic agent administered multiple times, and for which

toxicities may be delayed and cumulative dose is important, we developed a model

inspired by pharmacokinetics to estimate the probability of DLT over all cycles of

administration. Our model builds on previous work [15–18] by incorporating four

elements we consider important: allowing for a cumulative dose effect, allowing the
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dose to change between cycles, accounting for within-patient correlation of responses

across cycles, and allowing the occurrence of LLT in one cycle to alter the probability

of DLT in a subsequent cycle. We encountered challenges developing a model that

includes all of these desired features and remains estimable from datasets of limited

size. We determined that some parameters needed to be fixed, rather than estimated,

by eliciting values from experts. As a final concession, we presented our model for use

in retrospectively analyzing data from a completed trial, rather than prospectively

guiding a trial through its adaptive dose-finding phase. As a retrospective method,

however, we found promising results: if a trial is run with the CRM using only cycle

1 responses, but data from all cycles are collected, then our model can reanalyze the

data at the end of the trial and better estimate the MTD.

In Chapter 4, for a molecularly targeted agent, for which both toxicity and efficacy

responses must be accounted for in selecting an optimal dose, we adopted the condi-

tional autoregressive model to estimate response rates. Previously developed methods

have incorporated toxicity and efficacy [19–25], but the contribution of our method

is to borrow response information across dose levels without imposing any functional

form on the dose-response curves. Simulations showed that our method could adapt

to a variety of dose-toxicity and dose-efficacy patterns, and often performed at least

as well as competing methods. As we described above for the methods of Chapter 2,

our CAR method could similarly be extended to handle partial follow-up. Such an

extension may be particularly compelling when modeling both toxicity and efficacy,

as the timescale for observing the two responses may greatly differ, with efficacy often

taking longer to determine. If efficacy, for example, takes half a year to assess, then

requiring full follow-up for 30 patients would take 15 years, which is likely unaccept-

able, particularly if toxicity can be assessed within only one month. Allowing partial

follow-up could make such a trial feasible.

We also note that our CAR method can be naturally extended to study com-
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bination therapies. With k agents, the neighborhood graph for the CAR method

would be a k-dimensional lattice, and two combination dose levels would be first-order

neighbors if exactly one of the k agents differ by one level. With this neighborhood

structure, the associated adjacency matrix can be easily defined and many details of

our single-agent method carry through. Further research may explore the utility of

this method in both phase I and phase II trials.

In all of the work presented in this dissertation, we found untapped information

in data that are already routinely collected, and we developed methods to exploit this

information to improve the conduct of phase I trials. Although many phase I trials

still use the 3+3 design or a variant for both cytotoxic agents and MTAs [1, 32], it

is incumbent upon statisticians to continue developing and arguing for feasible, more

efficient alternatives. The safety and well-being of patients depends on it.
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