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ABSTRACT 

Structural health monitoring (SHM) has been extensively explored for 

various aerospace, civil, and mechanical systems due to its significant importance 

in enhancing life-safety and economic benefits. Among various SHM approaches, 

the piezoelectric impedance-based method has shown excellent potential in 

identifying small-sized structural defects, while maintaining simplicity in 

implementation. This method utilizes high-frequency interrogation to detect small 

damages based on the electromechanical coupling effect of piezoelectric 

transducers. This coupling effect enables self-sensing, i.e., the transducer serves 

as sensor and actuator simultaneously, which facilitates simple implementation 

with reduced number of transducers and associated electrical wirings while 

consuming relatively low electric power. Furthermore, the damage characteristics 

such as the location and severity can be identified by employing baseline models.  

Despite the promising potentials, important limitations exist to achieve 

reliable SHM implementations. For example, the number of available independent 

impedance data set is generally far smaller than the number of required system 

parameters. As a result, the inverse problems for damage identification are often 

underdetermined, which severely undermines the reliability of damage prediction 

since the inverse solutions become extremely sensitive to even small 



xiii 

measurement errors, especially in practical implementations where the response 

anomaly induced by small-sized damages may be easily suppressed by damping 

and buried in signal noise.  

To address the limitations and advance the state of the art, this thesis 

presents a novel methodology that fundamentally improves the underdetermined 

inverse problem and accurately measures the damage-induced impedance 

variations to reliably identify small damages under noise influences. This is 

achieved by strategically integrating bistable and adaptive piezoelectric circuitry 

with the monitored structure. First, adaptive piezoelectric circuitry with tunable 

inductor is integrated with the monitored structure, which introduces additional 

degrees of freedom into the system. By systematically tuning the inductance 

values, the dynamic characteristics of the electromechanically coupled system can 

be altered; thereby significantly increased number of different independent 

impedance variations can be obtained with respect to same damage profile. The 

enriched data set is then utilized to fundamentally improve the underdetermined 

inverse problem for damage identification. Next, new bifurcation-based sensing 

approaches are developed, capitalizing on the strongly nonlinear bifurcation in 

bistable electrical circuits that exhibit dramatic changes in the response due to 

small input variations. By utilizing the voltage measured from the piezoelectric 

transducer as an input to the bistable circuit, the enriched damage-induced 

piezoelectric impedance changes can be assessed by tracking the circuitry 

bifurcation points. Considering the stochastic and non-stationary influences on the 

bifurcation points that are theoretically explored in this thesis, a novel bifurcation-



xiv 

based sensing methodology is developed to provide accurate and robust 

measurements of the damage-induced impedance changes against unavoidable 

noise influences. Lastly, the impedance enrichment technique utilizing adaptive 

piezoelectric circuitry and the advanced bifurcation-based sensing approaches 

employing bistable circuits are integrated to significantly enhance the reliability 

of piezoelectric impedance-based damage identification.  

The important scholarly contributions of this thesis include: (a) newly 

developed impedance-based SHM method that fundamentally improves the 

underdetermined inverse problem, (b) novel integration of the monitored structure 

with bistable circuits for bifurcation-based sensing, and (c) fundamental 

understanding of the stochastic and non-stationary influences on the saddle-node 

bifurcation in non-smooth dynamical systems. The bifurcation-based sensing and 

identification approaches not only enhances the impedance-based SHM, but has 

the potential of providing high impact to a broad range of sensing and 

identification systems that are exposed to noise problem. 
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CHAPTER 1  

Introduction and Background 

1.1. Structural Health Monitoring Overview 

Structural health monitoring (SHM) is a process of identifying and evaluating 

damages in civil, aerospace, and mechanical engineering structures, which includes 

measurements of the system, extraction of characteristics closely related to the damage 

from these measurements, and analysis to assess the current status of the system [1]. 

SHM techniques offer great potential in improving life safety by preventing unpredicted 

catastrophic system failures, such as Aloha Airlines fuselage separation in 1988 and the 

collapse of I-35W Mississippi River Bridge in 2007, due to unsatisfactory maintenance 

and ill-conditioned manufacturing process. In addition, we can economically benefit from 

introducing SHM in the health management of system. The service life of the system can 

be extended by timely corrective maintenance based on the acquired knowledge on the 

structural integrity of the system. SHM allows shifting the organization of structural 

health management from periodically scheduled, time-based maintenance to condition-

based maintenance that reduces the cost of labor and the service downtime [1,2]. In 

recent years, this imperative for monitoring health of structures has led to extensive 

research in various damage identification approaches suitable across a wide range of 
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engineering applications. The various SHM techniques can be roughly classified into four 

levels based on the acquired structural damage information in the order of completeness 

[3]: (a) determination of the presence of damage in structure; (b) detection of damage 

location; (c) identification of damage location and severity; and (d) prognosis on the 

remaining service life of the structural system. Damage prognosis involves analysis on 

various coupled information, such as structural design, damages evaluated by SHM, and 

the current and future environmental and operational conditions [1]. Since damages 

generally deteriorate with time to adversely affect the future performance of the system, 

determination of the early-stage damage is critical in damage prognosis and determining 

the future management of the structural system. Thus, reliable identification of small-

sized damage is one of the common objectives in this research area. 

Among various approaches to accomplish this goal, there are two extensively 

studied classes utilizing structural dynamic responses for damage identification: the 

vibration-based methods and wave propagation-based methods. The vibration based-

methods [4–6] determine damage by measuring the damage-induced changes in modal 

properties such as natural frequencies [7–9] and mode shapes [8,10,11], mode shape 

curvatures [12–14]. As these methods utilize measurements of global structural response, 

they generally benefit from large sensing area and ease in their implementation with 

small number of transducers since they do not require direct accessibility to damaged site. 

The location and severity of the damage can be identified by incorporating reliable 

numerical model into these methods. However, only the lower order modes with large 

wavelength can be realistically excited and measured; thus, these methods may not be 

sensitive to early-stage small damages. On the other hand, there have been various Lamb 
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wave propagation-based methods proposed to enhance the interpretation of the transient 

wave pattern changes for detecting and locating structural damages. Raghaven and 

Cesnik [15] presented an extensive review on these methods which are usually based on 

changes in wave attenuations using wavelets [16,17], time-frequency analysis [18], wave 

reflections [19], and time of flight information [20,21]. These methods have been widely 

studied and have shown great success in especially detecting small defects though high 

frequency damage interrogation. On the other hand, these methods generally require 

physical accessibility to the vicinity of damage location known a priori for measurement 

due to their localized nature. Since the transient wave responses are very sensitive to 

local structural profile, it may be challenging to use such responses to accurately identify 

the damage severity in structures with complex geometries and boundaries [22].  

1.2. Literature Review of the Piezoelectric Impedance-Based 

Structural Health Monitoring Methods 

The piezoelectric impedance-based structural health monitoring methods have 

received great attention in recent years due to their potential in identifying small damages 

in tandem with maintaining the simplicity in implementation. Park et al. [23] present a 

comprehensive literature review on the early works developed in the field up to 2001. 

More recent advancements in the impedance-based techniques are summarized in [24,25]. 

These methods are pioneered by the piezoelectric impedance model presented by Liang et 

al. [26] which showed that the electrical impedance of the piezoelectric transducer 

attached to host structure is a direct combination of the mechanical impedance of the 

piezoelectric transducer Z and that of the host structure 𝑍𝑚 
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 𝑌(𝜔) =
𝐼

𝑉
= 𝑖𝜔𝑀𝑎 (𝜀33

𝑇 −
𝑍(𝜔)

𝑍(𝜔)+𝑍𝑚(𝜔)
𝑑3𝑥

2 𝑌𝑥𝑥
𝐸 ) (1.1) 

where Y, V, I, and 𝜔 are the electrical admittance (inverse of impedance), input voltage, 

output current, and harmonic excitation frequency of the piezoelectric transducer, 

respectively. 𝑀𝑎, 𝑑3𝑥, 𝑌𝑥𝑥
𝐸 , and 𝜀33

𝑇  are the geometry constant, the piezoelectric coupling 

constant, Young’s modulus, and the complex dielectric constant of the piezoelectric 

transducer at constant stress, respectively. The piezoelectric impedance-based SHM 

methods are implemented based on the two-way electro-mechanical coupling effect of 

the piezoelectric transducer to indirectly monitor the damage-induced variations in the 

structural mechanical impedance by measuring the piezoelectric impedance. As a result, 

the change of piezoelectric impedance signature with respect to that of the undamaged 

baseline state is used as damage indicator in these methods. Here, the piezoelectric 

impedance refers to the electrical impedance of the piezoelectric transducer. Since the 

piezoelectric impedance can be measured at relatively high frequency [23], these SHM 

methods are considered to be sensitive to small-sized damages in the structure. As the 

piezoelectric impedance can be extracted from harmonic responses, harmonic stationary 

responses enable the identification of both damage location and severity in a systematic 

and rigorous manner by incorporating reliable numerical model into these methods. 

Furthermore, due to the electro-mechanical coupling of the piezoelectric transducers, 

both the actuation and sensing can be done with a single transducer, which provides great 

merit in implementation by simplifying the electrical wiring and associated hardware 

with relatively low electric power consumption. Generally, very low voltage, typically 

lower than 1V, is required for the piezoelectric transducers to generate high frequency 

excitation in the host structure. Along with these advantageous properties, the 
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development of low-cost impedance measurement circuit [27], and wireless sensor 

instrumentation [28] have opened the door to practical implementation of the 

piezoelectric impedance-based SHM methods. 

State of the art piezoelectric impedance-based SHM approaches are summarized in 

the following sections. These methods can be broadly classified into either data-based or 

physical model-based approaches. The data-based methods can be further categorized 

based on different types of data assessment techniques to extract damage signatures from 

the piezoelectric impedance measurements, such as frequency spectra analysis methods, 

time-series analysis methods, and feature-based pattern recognition methods.  

1.2.1. Data-Based Damage Identification 

1.2.1.1.  Frequency Spectra Analysis Methods 

It is well-acknowledged that frequency response functions (FRF) represent dynamic 

characteristics of a structure. Damages generally cause changes in the structural stiffness, 

mass, or damping properties of a system and alter the dynamic characteristics, which 

results in changes in the FRF of the system. While the piezoelectric response curve 

provides a qualitative measure for damage occurrence, generally an overall-statistical 

metric is adopted to quantitatively assess the damage characteristics. Since the root-

mean-square-deviation (RMSD), which is based on comparison of the FRF before and 

after damage is occurred in the structure, was proposed as a scalar damage metric in one 

of the earlier works [29], the majority of the impedance-based SHM approaches have 
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been studied based on the frequency domain analysis. Some representative studies 

performed at the early stage are briefly reviewed in the following. 

Park et al. [30] extended and experimentally implemented the piezoelectric 

impedance-based SHM method pioneered by Sun et al. [29]. The experimental 

investigations of impedance-based SHM technique were conducted on various 

components of typical civil infrastructures. The experimental results on a composite 

reinforced-concrete wall provided promising possibility of implementing the impedance-

based SHM technique to detect small-sized imminent damages in real-time by showing 

significant variations in the frequency response curve well in advance of actual failure. 

Experimental investigations were additionally conducted to detect loosened joints on a 

quarter-scale bridge section and a civil pipe. Furthermore, adverse environmental 

conditions such as temperature variations are considered in the experimental 

investigations, and the results confirmed the capability and robustness of the impedance 

method. 

Yang et al. [31] implemented the impedance-based technique to monitor damage 

propagation, which is also an important objective in SHM since once damage occurs in a 

structure it may propagate along a certain direction and eventually lead to failure of the 

structure. Two identical aluminum plates each with holes drilled in sequence towards 

different directions were tested using piezoelectric transducers bonded the surface. The 

RMSD index was adopted to quantitatively investigate the damage propagation, which 

yielded increasing trend of RMSD values as damage propagates in both plates. However, 

the results showed that the RMSD values significantly depended on the selection of the 
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frequency range for measurements. As a result, it may mislead the evaluation on the 

actual status of the system and subsequent corrective health management process. 

Wang and Tang [32] introduced using an adaptive circuitry idea to enhance the 

piezoelectric impedance-based damage detection system. The main idea was to integrate 

the low-cost impedance measurement circuit [27] with an inductive circuit to induce 

resonant effect in the electro-mechanically coupled system, which dramatically increased 

the amplitude of admittance measurement and damage-induced change by orders-of-

magnitude. The resonant effect is analytically analyzed to provide a guideline for optimal 

inductance choice and was experimentally verified on an aluminum beam with the 

proposed piezoelectric circuitry network. Furthermore, Wang and Tang [33] extended the 

adaptive circuitry idea by adopting negative capacitance element to broaden the 

frequency range of admittance amplification.  Zhou and Zuo [34] modified the adaptive 

circuitry idea and further increased the admittance magnitude and its sensitivity to 

damage the by implementing a higher-order resonant circuit. 

There have been extensive amount of experimental implementations of the 

impedance-based method comparing the frequency responses on a number of structures, 

for instance, civil structures [30,35,36], pipeline systems [37], aerospace structures [38–

41], biomedical applications [42–44], and mechanical components, such as gears [45], 

bolted [46,47], welded [48,49], and bonded [50,51] joints, metallic thin plates [52–54], 

and composite structures [55–57].  Although the experimental investigations successfully 

verified the viability of comparing the piezoelectric impedance frequency responses for 

SHM purpose, most of them only provided detection of the damage occurrence (Level 1) 

and generally were incapable of identifying the location and severity of damage (Levels 2 
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and 3). Moreover, since these data-based approaches simply compared the measured 

frequency response of the damaged structure with that of the healthy baseline structure, 

the performance of the overall-statistical damage metrics generally adopted to assess the 

presence and severity of damages are highly dependent on the structure monitored and 

other measurement conditions, such as frequency range. Zagrai and Giurgiutiu [58] 

investigated several widely adopted overall-statistic damage metrics, such as RMSD, 

mean absolute percentage deviation (MAPD), and correlation coefficient deviation 

(CCD). They found that the third power of the CCD, (1 − 𝑅2)3, was the most successful 

damage metric since it decreased linearly as the distance from the sensor to the crack 

damage increases in their experiment on metallic thin plates. On the other hand, Tseng 

and Naidu [53] also investigated the effectiveness of RMSD, MAPD, CCD, and 

covariance change (COV) and concluded that the RMSD and MAPD were more suitable 

for representing the growth and the location of damage while the CCD and COV were 

unfavorable in their experiments. These overall-statistical metrics are mostly 

phenomenological indices that characterize of the piezoelectric impedance variations, and 

are not explicitly related to the structural properties such as mass, stiffness, and damping 

factor. As a result, exact identification of damage characteristics remains to be a 

challenging issue for this class of approaches. 

1.2.1.2.  Time-Series Analysis Methods 

The time-series predictive models have not been substantially utilized for the 

piezoelectric impedance-based SHM approaches compared to the techniques based on 

frequency domain analysis. However, in contrast to frequency domain analysis which 
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generally requires intensive computational resources to average out measurement noise, 

the time-series analysis exhibits advantage in the improved speed and simplicity, which 

enables a real-time health monitoring and is favorable for both memory and power 

management, especially when implementing on low-power, wireless SHM units. 

da Silva et al. [59] presented the potential of using autoregressive moving average 

with exogenous input (ARMAX) models on the piezoelectric impedance time-series data 

and statistical process control (SPC) charts to detect and locate damages. The proposed 

algorithm was experimentally verified to detect notches with three different depths in an 

aluminum beam. The polynomial orders of the ARMAX model were determined as 

ARMAX (34, 4, 4) using Akaike’s information theoretical criteria. The number of 

outliers exceeding the control limits determined by SPC was employed as damage index, 

and the damage identification results were compared with the RMSD damage metric 

obtained by comparing the frequency responses. The number of outliers showed an 

increasing trend as the damage severity became larger. However, the results provided 

some false-positive values in the damage identification, and the number of data was 

deficient for statistical significance. 

Figueiredo et.al [60] used a time-series autoregressive model with exogenous inputs 

(ARX) model to extract damage-sensitive features from the piezoelectric impedance 

measurements. Since the input is known by the nature of self-sensing with piezoelectric 

transducers, the ARX model could exploit the property and outperform the traditional 

output-only autoregressive time-series model. In contrast to the method introduced by 

Lynch [61] that also adopted the ARX model, the ARX input and output parameters were 

employed as the damage metric in their research. The performance of the proposed 
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algorithms was experimentally investigated in a composite plate with four piezoelectric 

transducers bonded on the surface, where five impact damages were manually imposed. 

ARX coefficient comparisons showed qualitative indication of the damage severities. The 

correlation coefficient was calculated between each coefficient before and after the 

impact and was compared to that of FRF-based analysis to present a quantitative measure. 

Principal component analysis (PCA) provided a clear visualization tool that classifies the 

damage severity in a two-dimensional plane, and Mahalanobis distance analysis was 

adopted to show potential in compensating the environmental variations from the 

extracted features and detect the damage.  

Shin, et al. [62] proposed a time-series ARX model to monitor the integrity of 

bolted joints attached on an unmanned aerial vehicle. Different types of damages are 

simulated into the structure by loosening the bolts. The ARX time-series predictive 

model was used as a damage-sensitive feature extractor because the residual errors 

showed large increase when damage was introduced. The RMSD of the residual errors 

were estimated from all structural state conditions and were compared with the cross-

correlation (CC) coefficient metrics obtained from comparing the impedance FRF data. 

Furthermore, the Mahalanobis squared distance (MSD) was utilized to successfully 

remove the effects of the temperature variations, and enabled to detect the damaged 

conditions under these influences, which was not possible by analyzing the residual 

errors of the ARX model and the CC features obtained from frequency responses. 

However, the MSD-based algorithm was not capable of classifying the severity of 

damages.  



11 

Although the time-series predictive models provided promising ability in SHM, the 

prediction performance significantly depends on the size of the model, which needs to be 

chosen a priori [61]. Additionally, it should be noted that the time-series models are 

determined based on the assumption of linear stationary system, thus they may not be 

favorable for analyzing systems with non-stationary influences [60]. 

1.2.1.3.  Feature-Based Pattern Recognition Methods 

Neural networks (NN) are statistical learning models inspired by the functionality 

of biological nerve systems to estimate generally unknown functions that relate the input 

to the output of systems. Neural networks have recently gained attention as a promising 

technique for monitoring and identifying damages in structural systems due to their 

learning capability of pattern recognition [63]. A neural network consists of a number of 

processing elements that are connected to form layers of neurons. The NN generates a 

map between the inputs and outputs by training the network with a priori known patterns 

of inputs and outputs to determine the optimal synaptic weights and biases. The input 

variables to the NN are [𝑥1, 𝑥2, … , 𝑥𝑁], which are weighted by 𝑤𝑗,𝑖
ℎ  and biased by 𝑏𝑗

ℎ, and 

the output results, [𝑦1, 𝑦2, … , 𝑦𝑀], are passed into the hidden layer. The output of the j-th 

neuron in the hidden layer is a summation of the biased and weighted inputs as 

 𝑦𝑗
ℎ = 𝐹ℎ(𝑏𝑗

ℎ + ∑ 𝑤𝑗,𝑖
ℎ ∙ 𝑥𝑖

𝑵
𝑗=1 )  (1.2) 

where the superscript h indicates the quantities of the hidden layer and 𝐹ℎ is a nonlinear 

function. The output of the NN is similarly weighted and biased by sum of the hidden 

layer outputs: 

 𝑦𝑚 = 𝐹𝒐(𝑏𝑚
𝒐 + ∑ 𝑤𝑗,𝑖

ℎ𝐻
𝑗=1 ∙ 𝑦𝑗

ℎ) (1.3) 
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where the superscript o means the output. H is the number of neurons in the hidden layer 

and 𝐹𝑜 is a linear transfer function. In the training step, the inputs are propagated through 

each hidden layer with a random set of weights and biases until an output is generated. 

The error is then calculated from a priori known outputs for every input set, and 

transmitted backwards from the output layer. The biases and weights are optimized to 

minimize the error. This learning structure is often referred to backpropagation. The NN 

model is finally determined with nodal biases and weights when a preset error level is 

reached. The trained NN model is validated and generalized by testing with sets of input 

data that have not been used in the training step. From the stand point of SHM, the NN is 

trained to recognize the frequency responses or other extracted features of an intact 

structure as well as those of each structure with different damage locations and severities. 

The trained NN will then have a capability of recognizing the location and extent of the 

individual damage when the responses of the corresponding damaged structure are 

entered into the NN. 

Lopes et al. [63] applied the NN technique to the piezoelectric impedance-based 

structural health monitoring method for damage detection, localization, and 

quantification. The proposed damage identification methodology was designed in two 

steps. The impedance-based method was used to detect and locate structural damage 

based on the location of the piezoelectric transducer in the first step. In the second step, 

the backpropagation NN approach was employed to investigate the severity of damage if 

damage was detected. The NN was designed to utilize eight metrics extracted from the 

frequency response of piezoelectric impedance for input patterns: (a) the area between the 

undamaged and the damaged impedance curves, (b) the root means square (RMS) of each 
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curve, (c) the RMS of the difference between the undamaged and damaged curves, and (d) 

the correlation coefficient between the undamaged and damaged curves. These metrics 

were obtained for both real and imaginary parts of the impedance, respectively. 

Experimental investigations were performed on two applications of a quarter scale bridge 

section and a space truss structure. The results verified that the proposed method is able 

to quantify the severity of the damages without prior knowledge of the model of 

structures. 

Giurgiutiu and Zagrai [58] introduced the probabilistic neural network (PNN) 

technique to the piezoelectric impedance-based SHM method for damage detection and 

quantification. PNN is a special form of NN which implements Bayesian classification 

approach. Probabilistic density function is assigned for each input neuron and the output 

is determined as the class having maximum probability. Further detailed information on 

the PNN can be found in [64]. First, experiments were performed on circular thin plates 

with piezoelectric transducers attached at the center and circumferential slits introduced 

as damages at 4 different distances from the center. The damages were quantified by 

employing the PNN technique and the classification results were compared with overall-

statistics damage metrics, such as RMSD, MAPD, and CCD. The PNN utilized the 

resonance frequencies as input data and provided successful classification of the damage 

severity which qualitatively matched with the overall-statistics damage metrics. Further 

experimental investigation on aging aircraft panels validated the PNN-based approach. 

However, it was required to increase the size and choice of the input vectors to correctly 

estimate weak damage levels.  
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Min et al [65] proposed an impedance-based SHM method incorporated with NN 

pattern analysis technique to estimate the damage type and severity. Since the accuracy 

and generalization capacity of the NN highly depend on the choice of input patterns, an 

algorithm to identify damage-sensitive frequency ranges for piezoelectric impedance 

measurement was included simultaneously. The effectiveness of the proposed NN-based 

methodology was experimentally validated through identifications of loose bolts and 

notches on a bolt-jointed aluminum beam and a lab-scale pipe structure. In addition, the 

proposed approach was embedded into a wireless sensing unit to detect simulated 

damages in a full-scale bridge. Although the proposed algorithm successfully identified 

the damage extent and optimal frequency range, it required a large amount of training 

patterns and enormous computing efforts. For example, the backpropagation-based NN 

algorithm was trained with 2250 input metrics (250 metrics extracted each from 9 

different frequency ranges) for damage detection and optimal frequency identification on 

a bolt-jointed aluminum beam.  

Overall, the NN approach is found successful in classification of damage severities 

without prior information on the physics-based model of structures. Thus, this technique 

offers great potential for structures where physics-based model is unknown or not 

available to accurately identify. However, the accuracy of the damage identification 

strongly depends on the choice and amount of input pattern that should be known in 

advance for different damage types. Furthermore, the NN method requires excessive 

number of training data, and thus computationally expensive. As a result, NN-based 

SHM methods are generally suitable to structures where a significant database of damage 

information is available. 
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1.2.2. Piezoelectric Impedance Model-Based Damage Identification 

Piezoelectric impedance model-based methods use mathematical models that 

theoretically predict the piezoelectric impedance by simulating the actual physical 

behaviors that govern the electro-mechanically coupled system. In contrast to data-based 

methods, model-based approaches are capable of predicting system responses to identify 

the location and severity of damages simultaneously, even for new loading/damage 

conditions that are not presented in previous data sets. Moreover, developing an accurate 

model of the piezoelectric transducer and structure interaction enables formulating 

predictive models to estimate the remaining service life of systems [1]. The physics-

based models facilitate sensor self-diagnostics [66], and can be utilized to optimize the 

frequency ranges and sensor locations when designing the impedance-based SHM 

approaches [67]. Since the mathematical model of the piezoelectric impedance was first 

introduced by Liang et al. [26], several analytical models have been developed to 

improve Liang’s model [58,68,69]. Among various advancements, Bhalla and Soh [69], 

for example, accurately predicted the piezoelectric impedance by considering the bonding 

layers effect into the model. Giurgiutiu and Zagrai [58] developed an analytical model for 

two dimensional thin-wall structures, which accounts for the axial and flexural vibrations 

of the structure, and validated with experimental investigation on circular thin plates. 

Finite element methods (FEM) also have been extensively employed to model the 

piezoelectric impedance for damage identification. Fairweather and Craig [70] 

formulated a finite element model to accurately estimate the impedance of the 

piezoelectric transducer bonded onto two dimensional structure, and Littlefield et al. [71] 

experimentally validated the FEM model. Lim and Soh [72] improved the accuracy of the 
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FEM model by carefully identifying the damping and bonding layer parameters. Tseng 

[73] proposed a finite element model-based damage identification method to locate and 

quantify the structural damage. The piezoelectric impedance of the damaged structure is 

measured and compared with the numerically obtained frequency response based on a 

finite element model. The finite element model of the damaged state is then updated to 

match the numerically simulated response to the measured response from the actual 

damaged structure as closely as possible through a nonlinear optimization algorithm. The 

optimized finite element model is finally used to identify the structural damage 

information. A numerical case study on a beam structure was conducted to illustrate the 

performance of the proposed algorithm. In addition, the influence of measurement noise 

on the final damage identification results was investigated. Although the study has 

demonstrated successful results, FEM may not be suitable for impedance-based SHM 

since the impedance method generally utilizes high frequency excitation. It is well known 

that the element size in FEM requires to be significantly smaller than the wavelength 

involved in analysis to accurately reproduce the system dynamics [74]. As a result, when 

high frequency interrogation is required, extremely large number of elements are 

necessary, causing computationally high cost and severely underdetermined 

mathematical equation for damage identification [9,75,76].  

To overcome this shortcoming, spectral element method (SEM) has been 

introduced for piezoelectric impedance model. In contrast to conventional FEM models 

that utilize polynomial as shape function, SEM employs a dynamic stiffness matrix which 

treats the mass distribution in the structural element by using the exact solutions of the 

governing differential equations of each spectral element as shape function [77]. This 
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means that each element can exactly represent the structural dynamics [78,79]. Thus, a 

single spectral element can be enough to model the entire section of a homogeneous 

structure without any discontinuities. As result, SEM can significantly reduce the 

computational cost. Moreover, each local spectral element can be assembled to form a 

global stiffness matrix in the same manner as traditional FEM. Thus, SEM is recognized 

for superior efficiency in computation and accuracy in high frequency dynamic analysis. 

There have been several studies that utilize the SEM in modeling the high frequency 

piezoelectric impedance in different structures, such as bolt jointed metallic beams [80] 

and composite beams [81]. Peairs et al. [82] used the SEM in combination with the low-

cost impedance measurement circuit [27] to model the piezoelectric impedance. The 

model successfully predicted the response up to approximately 20 kHz by employing the 

Timoshenko beam and Love’s rod theories which account for transverse shear, rotational 

inertia, and transverse velocity effect in axial vibration of beams and plates, respectively.  

Ritdumrongkul and Fujino [83] developed a piezoelectric impedance-based damage 

identification method using SEM to identify the location and severity of damages in 

multiple-bolted-joint structure. The damage identification algorithm was based on a 

model-updating technique that minimizes the difference between the measured and the 

simulated impedances. Laboratory experiment was conducted on a two-joint aluminum 

beam to illustrate the effectiveness of the algorithm. The structure was numerically 

modeled by using SEM, and the damage, loosened bolts, was modeled as changes in 

stiffness and damping of the element. The damage was successfully identified by 

determining these parameter changes for each bolt by using genetic algorithm that 

minimizes the discrepancy between the responses. Guo and Sun [84] similarly proposed 
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and numerically validated a damage identification method based on spectral element 

model-updating algorithm. These studies showed great possibility of using the spectral 

element model-updating technique for quantitative damage identification. However, 

although SEM significantly reduces the required computational effort compared to FEM, 

these methods may still be computationally expensive due to the nature of model-

updating techniques. 

Wang and Tang [85] proposed an efficient sensitivity-based inverse problem using 

SEM to identify both the location and severity of damages. First, a spectral element 

model of piezoelectric impedance was formulated assuming damage as bending stiffness 

change in each spectral element. Then, the model for damaged case was derived by using 

first-order Taylor series expansion and approximating the partial derivative of the 

dynamic stiffness matrix to the elemental stiffness matrix of conventional FEM for small 

damages. As a result, a linear relationship was formulated between the damage indices 

and the damage-induced piezoelectric impedance changes. The damage-induced 

variations were used as input to formulate a sensitivity-based inverse problem that 

directly extracts the property change of the structural elements. The effectiveness of the 

proposed method was verified by accurately identifying the location and severity of 

damages throughout numerical and experimental investigations. The inverse problem of 

the current approach could still be seriously ill-conditioned, which may significantly 

reduce the accuracy of identifying the damage location and severity when the response is 

contaminated by noise and modeling errors. However, these studies were performed 

without considering measurement noise and uncertainties in the model, which are 

unavoidable in practical applications. 
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1.3. Problem Statement and Research Goal 

The research efforts reviewed in Section 1.2 illustrate that the piezoelectric 

impedance-based SHM approaches have significant potential in identifying small-sized 

damages, while maintaining simplicity in implementation. Especially, the physical 

model-based approaches have shown successful results in identifying the location and 

severity of structural damages without requiring information about the damage 

characteristics a priori. Yet, the state of the art impedance model-based SHM 

techniques still have limitations and gaps for reliable and robust implementation in 

practical SHM applications. The limitations and gaps are summarized as follows. 

i. The state of the art piezoelectric impedance model-based SHM techniques often 

suffer from underdetermined inverse problems [83–85]. In other words, the 

number of available independent impedance measurement data is generally far 

smaller than the number of system parameters required to identify small 

damages with sufficient resolution. Therefore, the inverse solution indicating 

damage characteristics becomes unstable and thus extremely sensitive to small 

errors that generally stem from environmental noise, measurement accuracy, 

and uncertainty in modeling [86]. 

ii. In addition, it is challenging to accurately measure the piezoelectric impedance 

changes induced by small damages. Since the impedance response anomalies 

associated with small-sized damages need to be measured in high frequency 

ranges, they are suppressed by damping and thus easily buried in noise. 

However, there are no effective means, which are easy to implement and robust 
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to noise contamination and structural damping, for accurate measurement of the 

damage-induced piezoelectric impedance variations. 

In order to address the problems stated above, the goal of this thesis is to overcome 

the limitations and develop a new method that can accurately and completely capture 

the features of small-sized damages from piezoelectric impedance variations. More 

specifically, this thesis advances the state of the art piezoelectric impedance-based SHM 

by achieving the following objectives: 

i. Develop a methodology that fundamentally improves the severely 

underdetermined nature of the inverse problem formulation for accurate damage 

identification. 

ii. Develop a method that accurately determines the damage-induced piezoelectric 

impedance variations, even under environmental noise and system damping. 

1.4. Organization of the Thesis 

The thesis consists of six chapters and they are organized as follows. Chapter 2 

introduces (a) the impedance data enrichment concept utilizing adaptive piezoelectric 

circuitry and (b) damage identification algorithm that fully leverages the enriched data set 

to improve the underdetermined inverse problem. In Chapter 3, the potential of 

employing bifurcation-based sensing technique for enhancing the measurements of 

damage-induced impedance changes is then investigated as preliminary study in 

relatively low frequency range by utilizing bistable circuitry. Chapter 4 presents the 

theoretical framework for predicting the stochastic and non-stationary influences on the 
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activation of saddle-node bifurcation in non-smooth dynamical systems. In Chapter 5, the 

insights developed in the preceding chapters will be combined to significantly enhance 

the impedance-based damage identification under noise influences. Following the 

technical contributions of this thesis, the scholarly contributions and broader impacts are 

summarized in Chapter 6 with recommendations for future directions towards the 

improvement and implementation of the insights developed in this thesis. 
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CHAPTER 2  

Damage Identification Enhancement using 

Adaptive Piezoelectric Circuitry 

2.1. Introduction 

As stated in Chapter 1, the piezoelectric impedance-based damage identification 

incorporated with the spectral element model shows promising results. However, the 

current approach may be inhibited by the fact that the inverse problem could still be 

seriously rank-deficient. This issue would significantly reduce the accuracy of identifying 

the location/severity of the damage, especially with unavoidable measurement noise and 

modeling error. 

In general, the sensitivity based inverse problem for damage identification can be 

formulated as 𝐆 × 𝐝 = 𝐦  where 𝐆  is the sensitivity matrix that is derived from the 

system model, vector 𝐦 is the measurements of impedance changes in this study, and 𝐝 

is a vector that contains the damage information, which will be solved inversely from this 

equation. The detailed derivation of 𝐆, 𝐦, and 𝐝 is presented in Section 2.2. In case the 

inverse problem is ill-posed, or 𝐆 is rank-deficient, a generalized inverse of 𝐆, such as the 

Moore-Penrose pseudoinverse [86], can be employed to solve the least square solution 𝐝̃. 
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This generalized inverse solution can be analyzed by using singular value decomposition 

(SVD). The matrix 𝐆 can be factored into 𝐆 = 𝐔𝐒𝐕T where 𝐔, 𝐕 are orthogonal matrices, 

and 𝐒  is diagonal matrix with diagonal entries si , called singular values, listed in 

descending order. We can express the approximate solution of the inverse problem in 

terms of SVD as following 

 𝐝̃ = 𝐆−𝟏𝐦 = 𝐕𝐒−𝟏𝐔𝐓𝐦 = ∑
𝐮𝐢

𝐓𝐦

𝐬𝐢

n
i=1 𝐯𝐢  (2.1) 

where  𝐆−𝟏  is the generalized inverse of 𝐆, 𝐮i , 𝐯i  are the i-th column vectors of the 

orthogonal matrices 𝐔 , 𝐕 , respectively. When error e is now introduced in the 

measurement, the inverse problem can be modified as 𝐆 × 𝐝∗ = 𝐦 + 𝐞. The generalized 

inverse solution of this equation 𝐝∗ can be computed as below: 

 𝐝∗ = 𝐆−𝟏(𝐦 + 𝐞) = 𝐆−𝟏(𝐆 × 𝐝̃ + 𝐞) = 𝐝̃ + 𝐆−𝟏𝐞 (2.2) 

It is useful to examine the effect of error in the generalized inverse solution by 

rewriting Eq. (2.2) in the form of Eq. (2.1).  

 𝐝∗ = 𝐝̃ + ∑
𝐮𝐢

𝐓𝐞

𝐬𝐢

𝐧
𝐢=𝟏 𝐯𝐢  (2.3) 

When the inverse problem is ill-posed, the singular values of matrix 𝐆 decrease fast 

with respect to singular value index i. As a result, very small singular values in the 

denominator of Eq. (2.3) can significantly amplify the error term, and the desired solution 

without error 𝐝̃ gets buried in this amplified error term. Thus, when the inverse problem 

is ill-posed, the generalized inverse solution becomes extremely sensitive to even small 

amount of error in the data. To advance the state of the art, this chapter aims to address 

this issue and develop an approach that can identify the damage from piezoelectric 

impedance variations with high accuracy. In conjunction with the prior research on the 
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impedance-based damage identification formulated by SEM [85], this chapter focus on 

designing an adaptive piezoelectric circuitry with inductive element to enrich the 

piezoelectric impedance responses and reduce the degree of rank-deficiency of the 

inverse problem, and developing inverse identification algorithms that can effectively 

utilize the enriched data set.  

The following sections discuss the damage identification method based on the SEM, 

and introduce the new approach using adaptive piezoelectric circuitry for impedance data 

enhancement. Numerical and experimental investigations with a series of case studies are 

provided to examine the effectiveness of the proposed concept. 

2.2. Integrated Method for Impedance-Based Damage 

Identification Enhancement 

In this section, the concept of incorporating adaptive piezoelectric circuitry to the 

host structure for piezoelectric impedance measurement is mathematically derived using 

the spectral element method, and the damage identification algorithm that exploits the 

enhanced impedance measurement is introduced. 

2.2.1. Spectral Element Model of the Electro-Mechanically Integrated 

System 

The schematic of an example fixed-fixed beam integrated with electric circuit for 

piezoelectric impedance measurement is shown in Figure 2.1. The piezoelectric 

transducer is assumed to be perfectly bonded onto the P1-th element of the beam structure 
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that is discretized into N  elements. When the piezoelectric transducer is excited by 

voltage 𝑉𝑒, moment 𝑀𝑝 is generated due to the reverse piezoelectric effect [82,85]. 

 𝑀𝑝 = 𝐾1𝑉𝑒 (2.4)  

 𝐾1 =
𝑏𝑝𝐸𝑝𝑑31

2ℎ𝑝(1+𝑖𝜔𝑅𝐶𝑝)
[(

1

2
(ℎ𝑝 + ℎ𝑏))

2

− (
1

2
ℎ𝑏)

2

] (2.4a) 

where 𝑏𝑝, ℎ𝑝, 𝑑31, 𝐸𝑝, and 𝐶𝑝 are the width, thickness, piezoelectric coefficient, elastic 

modulus, and capacitance of the piezoelectric transducer, respectively. ℎ𝑏 is the thickness 

of the beam, 𝜔 is the excitation frequency, and R is the resistor serially connected to the 

piezoelectric transducer. The generalized force vector F can be expressed by using a 

vector 𝚽𝑝 = [(0,0)𝑖=1, (0,0)𝑖=2, ⋯ , (0,1)𝑖=𝑃1
, (0, −1)𝑖=𝑃1+1, ⋯ , (0,0)𝑖=𝑁+1]  that 

indicates the location of the transducer. 

 𝐅 = 𝑀𝑝𝚽𝒑
𝐓 (2.5) 

Timoshenko beam theory is applied to SEM for modeling the beam structure since 

the impedance-based damage interrogation is conducted in high frequency range. The 

displacement magnitude vector 𝐔 in the frequency domain can be calculated as 

 

Figure 2.1. Illustration of an example beam structure with piezoelectric transducer for 

measuring piezoelectric impedance. 
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 𝐔 = 𝐒−𝟏(𝝎)𝐅 (2.6) 

 𝐔 = [𝑣1, 𝜃1, 𝑣2, 𝜃2, ⋯ , 𝑣𝑁+1, 𝜃𝑁+1]𝐓 (2.6a) 

where 𝐒(𝜔) is the dynamic stiffness matrix of the beam structure formulated by SEM, 

and 𝑣, 𝜃 are the transversal displacement and rotation angle at each node, respectively. 

The detailed derivation of 𝐒(𝜔) can be found in [77]. The voltage 𝑉𝑝 generated by the 

piezoelectric transducer due to the displacement field can be expressed as the following 

[87]. 

 𝑉𝑝 = 𝐾2𝚽𝒑𝐔 (2.7) 

 𝐾2 =
𝒉𝒑𝒉𝒃𝑬𝒑𝒅𝟑𝟏

𝟐𝜺𝟑𝟑
𝑻 𝒍𝒑

 (2.7a) 

where 𝜀33
𝑇  and 𝑙𝑝  are the permittivity and length of the piezoelectric transducer. The 

piezoelectric admittance, inverse of the impedance, can be obtained as the following by 

measuring voltage drop 𝑉𝑜 across the resistor [27,82]. 

 𝑌(ω) =
1

𝑅

𝑉𝑜

𝑉𝑒
 (2.8) 

where the output voltage is 

 𝑉𝑜 = 𝐾3(𝑉𝑒 + 𝑉𝑝) (2.8a) 

 𝐾3 =
𝑖𝜔𝑅𝐶𝑝

1+𝑖𝜔𝑅𝐶𝑝
 (2.8b) 

Eventually, the piezoelectric admittance  𝑌(ω)  can be derived by substituting 

equations from (2.4) to (2.7) into Eq. (2.8). 

 𝑌(ω) =
1

𝑅
𝐾3[𝐾1𝐾2𝚽𝒑𝐒−𝟏(𝝎)𝚽𝒑

𝐓 + 1] (2.9) 
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2.2.2. Mathematical Formulation of the Damage Identification Equation 

Without loss of generality, in this research we assume that the structural damage is 

represented by the element bending stiffness reduction. Since these stiffness terms are 

nonlinearly nested in the dynamic stiffness matrix inverse 𝐒̂−1(𝜔)  of the damaged 

structure, Taylor series expansion is employed to explicitly determine the stiffness 

reduction induced by damage [85]. 

 𝐒̂−𝟏(𝜔) = 𝐒−𝟏(𝜔) + ∑
𝝏𝐒̂−𝟏(𝜔)

𝝏𝑑𝑖

𝑁
𝑖=1 |

𝑑𝑖=0
𝑑𝑖 (2.10) 

 
𝝏𝐒̂−𝟏(𝜔)

𝝏𝑑𝑖
|

𝑑𝑖=0
= − 𝐒̂−𝟏(𝜔)

𝝏𝐒̂(𝝎)

𝝏𝒅𝒊
𝐒̂−𝟏(𝜔)|

𝒅𝒊=0
 

 = −𝐒−𝟏(𝜔) [𝐂𝒊
𝐓 𝝏𝐒̂𝒆𝒊 (𝜔)

𝝏𝑑𝑖
𝐂𝒊] 𝐒−𝟏(𝜔) 

 ≈ 𝐒−𝟏(𝜔)[𝐂𝒊
𝐓𝐊𝒆𝒊𝐂𝒊]𝐒−𝟏(𝜔) (2.10a) 

where 𝑑𝑖 is the stiffness reduction of the 𝑖-th element, and 𝐂𝑖 is the connectivity matrix 

for assembling elemental matrices into global stiffness matrix. 𝐊𝑒𝑖 is the 𝑖-th elemental 

stiffness matrix formulated by FEM [88], which is used to approximate the partial 

derivative of the damaged stiffness matrix inverse 𝐒̂−1(𝜔) [79]. Thus, the damage index 

𝑑𝑖  can be extracted from 𝐒̂−1(𝜔) as in Eq. (2.10), and by substituting into (2.9), the 

piezoelectric admittance 𝑌̂(ω) of the damaged beam can be finalized as 

 𝑌̂(ω) =
1

𝑅
𝐾3[𝐾1𝐾2𝚽𝒑[𝐒−𝟏(𝜔) + 𝐒−𝟏(𝜔)[∑ 𝐂𝒊

𝐓𝐊𝒆𝒊𝐂𝒊𝑑𝑖
𝑵
𝒊=𝟏 ]𝐒−𝟏(𝜔)]𝚽𝒑

𝐓 + 1] (2.11) 

The difference of the undamaged and damaged piezoelectric admittance ∆𝒀 can be 

easily obtained from Eqs. (2.9) and (2.11), and after some derivations, the inverse 

equation that directly relates damage indices to the admittance difference can be 

formulated as the following. 
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 ∆𝒀 =
1

𝑅
𝐾1𝐾2𝐾3𝚽𝒑[𝐒−𝟏(𝜔)[∑ 𝐂𝒊

𝐓𝐊𝒆𝒊𝐂𝒊𝑑𝑖
𝑁
𝑖=1 ]𝐒−𝟏(𝜔)]𝚽𝒑

𝐓  

 = 𝐆 × 𝐝 (2.12) 

 ∆𝒀 = [𝑌̂(𝜔1), 𝑌̂(𝜔2), … , 𝑌̂(𝜔𝑚)]
T

− [𝑌(𝜔1), 𝑌(𝜔2), … , 𝑌(𝜔𝑚)]T  (2.12a) 

 G𝑗𝑖 =
1

𝑅
𝐾1𝐾2𝐾3𝚽𝒑[𝐒−𝟏(ω𝑗)𝐂𝒊

𝐓𝐊𝐞𝒊𝐂𝒊𝐒
−𝟏(ω𝑗)]𝚽𝒑

𝐓   

 i=1,2,…,N  and j=1,2,…,m (2.12b) 

 𝐝 = [𝑑1, 𝑑2, … , 𝑑𝑁 ]T (2.12c) 

where m is the number of admittance measurements of the integrated system. The 

location and severity of the damage can be identified by solving the damage index vector 

d in Eq. (2.12). However, this vector d cannot be uniquely obtained and become highly 

susceptible to noise when the sensitivity matrix 𝐆 is rank-deficient. We can improve the 

ill-posedness of the inverse equation either by reducing the number of elements N in the 

model, or by increasing the number of admittance measurements m. The beauty of the 

SEM is that a very small number of elements are required for accurate analysis in high-

frequency regime. An extreme example is that the spectrum dynamics of a homogenous 

beam structure can be accurately analyzed with only one spectral element [77]. However, 

sufficient numbers of elements are still essential to identify the damage’s location with 

satisfactory resolution which is otherwise too coarse to pinpoint a specific location of the 

damage. On the other hand, since the damage effect is most significant around resonance 

peaks [23], we can fully take advantage of this feature by selecting a large number of 

measurement frequencies near the resonance. However, the information attained around 

the same resonance are similar to each other since they are represented by that same 

specific mode. Thus, simply increasing the number of measurements near each resonant 
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frequency may not be a viable approach to enrich the measurement inputs of the Eq. 

(2.12). 

2.2.3. Data Enrichment via Adaptive Piezoelectric Circuitry 

The spectral element model of the piezoelectric impedance has mitigated the 

significantly ill-posed inverse equation when compared to the FEM approach. Yet, Eq. 

(2.12) still remains rank-deficient, which would result in erroneous damage identification 

especially when the system is subject to unavoidable error and noise. To address the 

concern, this section introduces a concept of adaptive piezoelectric circuitry implemented 

for impedance data enrichment. Jiang et al. [9,75,76] proposed the idea of incorporating 

adaptive piezoelectric circuitry into structures to increase the modal frequency 

measurements in the integrated system. By introducing a similar concept to the problem 

at hand, additional degrees of freedom can be introduced by the circuitry elements and 

the modified dynamics of the coupled system can be reflected in the piezoelectric 

impedance responses. An enriched data set of impedance measurements can thus be 

obtained by selectively tuning the inductance values in the circuitry, and this data set can 

be utilized to improve the underdetermined inverse problem to accurately predict the 

damage characteristics. 
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Figure 2.2 presents the additional piezoelectric transducer with tunable inductance 

L implemented at the 𝑃2-th element of the previous configuration shown in Figure 2.1. 

The displacement field 𝐔𝑛𝑒𝑤 of the newly integrated system introduced by harmonic 

excitation voltage 𝑉𝑒 generates voltage 𝑉𝑝2
 at the additional piezoelectric transducer due 

to its direct piezoelectric effect. 

 𝑉𝑝2
= 𝐾2𝚽𝒑𝟐

𝐔𝒏𝒆𝒘 (2.13) 

 𝚽𝒑𝟐
= [(0,0)𝑖=1, (0,0)𝑖=2, ⋯ , (0,1)𝑖=𝑃2

, (0, −1)𝑖=𝑃2+1, ⋯ , (0,0)𝑖=𝑁+1] (2.13a) 

where 𝚽𝑝2
 indicates the location of the additional piezoelectric transducer. The moment 

𝑀𝑝2
 across this transducer can be calculated as  

 𝑀P2
= 𝐾1𝐴𝑉P2

 (2.14) 

 𝐾1𝐴 =
𝑏𝑝𝐸𝑝𝑑31(𝜔2𝐿𝐶𝑝2)

2ℎ𝑝(1−𝜔2𝐿𝐶𝑝2)
[(

1

2
(ℎ𝑝 + ℎ𝑏))

2

− (
1

2
ℎ𝑏)

2

] (2.14a) 

where 𝐶𝑝2
 is the capacitance of the additional piezoelectric transducer. Now, the 

generalized force vector in Eq. (2.5) is added by another term as the following 

 𝐅 = 𝑀𝑝𝚽𝒑
𝐓 + 𝑀𝑝2

𝚽𝒑𝟐
𝐓  (2.15) 

 

Figure 2.2. Illustration of the structure integrated with the adaptive piezoelectric circuitry. 
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We can solve the displacement vector 𝐔𝑛𝑒𝑤 by substituting the Eqs. (2.13) – (2.15) 

into (2.6). After some derivation, the modified stiffness matrix 𝐒𝑛𝑒𝑤  of the integrated 

system can be obtained as 

 𝐒𝒏𝒆𝒘 = 𝐒 − 𝐾1𝐴𝐾2𝚽𝒑𝟐
𝐓 𝚽𝒑𝟐

 (2.16) 

The inverse equation for the integrated system can be formulated by similar 

development in the previous section: 

 ∆𝒀𝒏𝒆𝒘 =
1

𝑅
𝐾1𝐾2𝐾3𝚽𝒑[𝐒𝒏𝒆𝒘

−𝟏 (𝜔)[∑ 𝐂𝒊
T𝐊𝒆𝒊𝐂𝒊𝒅𝒊

𝑵
𝒊=𝟏 ]𝐒𝒏𝒆𝒘

−𝟏 (𝜔)]𝚽𝒑
𝐓  

 = 𝐆𝒏𝒆𝒘 × 𝐝 (2.17) 

 ∆𝒀𝒏𝒆𝒘(ω) = 𝒀̂𝒏𝒆𝒘(ω) − 𝒀𝒏𝒆𝒘(ω)  (2.17a) 

 G𝑛𝑒𝑤𝑗𝑖
=

1

𝑅
𝐾1𝐾2𝐾3𝚽𝒑[𝐒𝑛𝑒𝑤

−1 (ω𝑗)𝐂𝒊
𝐓𝐊𝐞𝒊𝐂𝒊𝐒𝒏𝒆𝒘

−1 (ω𝑗)]𝚽𝒑
𝐓   

 i=1,2,…,N  and j=1,2,…,m (2.17b) 

The dynamic characteristic of the integrated system can be easily altered by tuning 

the inductance value systematically, which enables to obtain different impedance 

responses from the same structural damage. When the inductance is tuned from 𝐿1 to 𝐿𝑃, 

we can derive P different groups of altered inverse equations and augment them in the 

matrix form as following. 

 ∆𝒀𝑠𝑢𝑚 = 𝐆𝑠𝑢𝑚 × 𝐝 (2.18) 

 ∆𝒀𝒔𝒖𝒎 = {

∆𝒀𝑛𝑒𝑤( 𝐿1)

∆𝒀𝑛𝑒𝑤( 𝐿2)
⋮

∆𝒀𝑛𝑒𝑤( 𝐿𝑃)

} , 𝐆𝒔𝒖𝒎 = [

𝐆𝑛𝑒𝑤( 𝐿1)

𝐆𝒏𝒆𝒘( 𝐿2)
⋮

𝐆𝒏𝒆𝒘( 𝐿𝑃)

 ] (2.18a) 

Eq. (2.18) and Figure 2.3 show the merit of applying adaptive piezoelectric 

circuitry. The original sensitivity matrix 𝐆𝑛𝑒𝑤 has a dimension of m by N, where m is the 

number of impedance measurements and N is the number of elements in the SEM model. 
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As P different inductance values are applied to the circuitry, the number of impedance 

measurements and the sensitivity matrix can be greatly enriched up to 𝑃 × 𝑚, thus the 

original ill-posed inverse problem can be highly improved. 

2.3. Numerical Analysis and Case Study 

 In this section, damage identification studies are conducted using a beam structure 

model integrated with adaptive piezoelectric circuitry to demonstrate the viability of the 

proposed approach for impedance data enrichment. The configuration of the illustrative 

system is given in Figure 2.2. A fixed-fixed beam is divided into 31 elements, and the 

piezoelectric transducers are integrated at the 3
rd

 and 21
st
 element. The dynamics of the 

integrated system is altered by tuning the inductance connected to the transducer at the 3
rd

 

element, and the other transducer is serially connected to a resistor for impedance 

measurement. Some relevant system parameters are listed in Table 2.1 In this analysis, 

 

Figure 2.3. Schematic description of the idea of data enrichment to improve the rank-

deficiency of the inverse equation. 
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Tikhonov regularization [86] is employed to solve the inverse problems. The 

regularization parameter α is obtained from the L-curve criterion that selects α to give the 

closest solution to the corner of the L-curve. 

 𝐦𝐢𝐧(‖𝐆 × 𝐝 − 𝚫𝐘‖𝟐 + 𝛂𝟐‖𝐝‖𝟐) (2.19) 

2.3.1. Identification of Single Damage under Noise 

In the first case, the damage is assumed to be 10% stiffness reduction on the 13
th

 

element. Random noise of 62 dB signal-to-noise ratio (SNR) is introduced to the 

piezoelectric impedance response. Since the damage effect in the piezoelectric impedance 

becomes more significant near the resonance peaks, the impedance changes at 9 points 

around each resonance peak are utilized in the damage identification algorithm. Then, the 

inductances are selectively tuned to match the electrical resonance of the adaptive 

piezoelectric circuity to each structural resonance peak to alter the dynamic 

characteristics of the integrated system [9,75,76]. Eight inductance values selected for all 

resonant frequencies in the range of 5 kHz to 11 kHz are provided in Table 2.2. 

Table 2.1. System parameters. 

Beam structure Piezoelectric material 

Length × Thickness × Width, 

mm 

607.8 × 7.62 × 

3.175 

Length × Thickness × Width, 

mm 

17 × 7.62 × 

0.191 

Young’s modulus, GPa 73.4 Young’s modulus, GPa 66 

Density, 𝐤𝐠/𝐦𝟑 2780 Density, 𝐤𝐠/𝐦𝟑 7800 

Loss factor, % 0.15 Permittivity, 𝛆𝟑𝟑
𝑻  , F/m 1.6× 10−8 

Poisson’s ratio 0.33 
Piezoelectric constant, 𝐝𝟑𝟏, 

m/V 
-190× 10−12 
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 An illustrative example of the piezoelectric impedance responses with different 

inductance tunings is shown in Figure 2.4(a). As can be seen from the figure, the 

piezoelectric impedance of the integrated system can be easily modified by tuning the 

inductance to different values. As we utilize these tuned impedance measurements in the 

form of Eq. (2.18), the total number of piezoelectric impedance data set used for damage 

identification can be enriched by 8 times in this case study. A comparison of the damage 

prediction results with and without this impedance data enrichment is provided in Figure 

2.4(b). The horizontal axis is the element number and the damage index, stiffness 

reduction of the element is provided along the vertical axis. The dotted line shows the 

actual damage distribution: 10% stiffness loss at the 13
th

 element. It can be observed that 

the prediction using traditional method without data enrichment cannot accurately 

identify damage characteristics due to its severely ill-posed inverse equation, even when 

a low level of noise (62 dB SNR) is included in the simulation. However, when the 

proposed method of impedance data enrichment is applied, the damage identification 

result indicates approximately 10% stiffness reduction at the 13
th

 element. The root mean 

square deviation (RMSD) between the predicted stiffness loss d and the actual damage 

𝐝0 is employed as a metric to quantify the prediction error and compare the performance 

of damage identification. 

Table 2.2. Inductance values selected for each resonance peak. 

Resonant frequency, kHz 5.39 6.05 6.75 7.49 8.26 9.06 9.91 10.79 

Inductance, mH 134.6 106.4 85.1 68.9 56.4 46.6 38.8 32.6 
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 RMSD = √
∑ (𝒅𝒊−𝒅𝒊

𝟎)
𝟐

 𝑵
𝒊=𝟏

∑ 𝒅𝒊
𝟎𝟐𝑵

𝒊=𝟏

 (2.20) 

where 𝑑𝑖 , 𝑑𝑖
0 are the predicted and actual damage indices of the i-th element, respectively. 

When the piezoelectric impedance data is enhanced by the adaptive circuitry, RMSD is 

reduced from 72 % to 29.2 %.  

 

 

 

 

Figure 2.4. (a) Piezoelectric impedance responses of the integrated system for different 

inductance values (b) Identification of damage on the 13th element of the example beam 

structure with 10% stiffness reduction. 
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2.3.2. Identification of Multiple Damages under Noise 

This section presents an example of damage identification when multiple damages 

are simulated in the beam structure. The structural damages are assumed to be 5% and 8% 

stiffness reductions at the 13
th

 and 18
th

 elements, respectively. In this case, higher level of 

noise (36 dB SNR) is applied in the impedance response. The damage prediction result is 

plotted in Figure 2.5. When the traditional method without data enrichment is applied, the 

damaged elements are virtually indistinguishable, and the largest two damages are falsely 

predicted on the 15
th

 and 18
th

 elements indicating approximately 2% stiffness reductions. 

However, as the impedance data is enriched, both damage indices at the 13
th

 and 18
th

 

elements clearly indicate the simulated damages in the structure. The damage identified 

by using the traditional method has 85.6 % of RMSD error, whereas the prediction error 

obtained from the proposed approach reduced to RMSD of 54.7 %.  

 

 

Figure 2.5. Multiple damage identification on the 13
th

, 18
th

 elements of the beam with 5%, 

8% stiffness reduction, respectively. 
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2.3.3. Investigation of Noise Influence on Damage Identification 

This section investigates the influence of random noise ranging from 62 dB to 36 

dB SNR on the single damage prediction results. Figure 2.6(a) shows the corresponding 

damage identification results, and a comparison of the prediction error (RMSD) is 

followed in Figure 2.6(b). Figure 2.6(a) presents that damage identification results of 

both methods deteriorate when noise level increases. However, although the noise level is 

increased by 26 dB, we can still observe that the proposed approach using inductance 

tuning predicts both location and severity of the damage more accurately than the 

conventional method. We can also clearly observe from Figure 2.6(b) that the damage 

prediction errors decrease for all 3 different noise levels when the proposed method is 

applied.  Moreover, the damage prediction error for the noise case of 36 dB SNR with 

inductance tuning circuitry is much less than the error obtained from the traditional 

method even for the lowest level of noise (62 dB SNR). From these results, it can be 

concluded that the proposed method with adaptive piezoelectric circuitry for data 

enrichment significantly improves the accuracy in damage identification especially when 

noise is included in the impedance responses. 

2.3.4.  Investigation of the Influence of Modeling Errors on Damage 

Identification 

In this section, modelling errors are considered in the inverse problem to evaluate 

their effect on the final damage prediction results. Here, measurement noise is not 

considered to explicitly focus on the modelling error. The inverse equation is given as the 

following  
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 𝐆𝐭𝐫 × 𝐝𝐭𝐫 = 𝚫𝐘𝐭𝐫 (2.21) 

where we assume 𝐆tr is the true model without any modelling error and 𝚫𝐘tr is the true 

measurement when true damage 𝐝tr is occurred. Now we introduce a model 𝐆∗ that has 

errors, and this results in 𝚫𝐘∗ when true damage 𝐝tr is introduced in the model.  

 𝐆∗ × 𝐝𝐭𝐫 = 𝚫𝐘∗ (2.22) 

 

Figure 2.6. (a) Damage identification comparison with varying degrees of noise. (b) Damage 

prediction error (RMSD). 
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There is difference between the true measurement 𝚫𝐘tr and 𝚫𝐘∗ which is denoted 

as 𝚫𝐘err. 

 𝚫𝐘𝐞𝐫𝐫 = 𝚫𝐘𝐭𝐫 − 𝚫𝐘∗ (2.23) 

Now, when we predict the damage 𝐝̂ by solving the inverse equation, what we have 

at hand are the model 𝐆∗ which is designed to approximate the true system and the true 

measurement 𝚫𝐘tr.  

 𝐆∗ × 𝐝̂ = 𝚫𝐘𝐭𝐫 (2.24) 

When we substitute Eq. (2.23) into (2.24), the measurement difference 𝚫𝐘err now 

can be considered as measurement noise with respect to 𝚫𝐘∗ as in Eq. (2.25).  

 𝐆∗ × 𝐝̂ = 𝚫𝐘∗ + 𝚫𝐘𝐞𝐫𝐫  (2.25) 

By substituting Eq. (2.22) into (2.25) and solving the inverse equation, the damage 

prediction 𝐝 ̂ becomes the sum of true damage 𝐝tr and the term induced by modelling 

error. 

 𝐝 ̂ = 𝐆∗−𝟏(𝚫𝐘∗ + 𝚫𝐘𝐞𝐫𝐫)  (2.26) 

    = 𝐝𝐭𝐫 + 𝐆∗−𝟏𝚫𝐘𝐞𝐫𝐫    

The detrimental effect of measurement noise on damage prediction, especially 

when the inverse equation is ill-posed, is explained in the previous Section 2.1, and it is 

shown that the accuracy of damage identification under measurement noise can be greatly 

improved by incorporating well designed adaptive piezoelectric circuitry. Therefore, the 

adverse effect of modelling error, which is analogous to measurement noise, can be 

surmounted similarly by employing the suggested approach for data enhancement.  
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 [

𝐆∗( 𝐿1)

𝐆∗( 𝐿2)
⋮

𝐆∗( 𝐿P)

 ] × 𝐝̂ = {

∆𝐘𝐭𝐫( 𝐿1)

∆𝐘𝐭𝐫( 𝐿2)
⋮

∆𝐘𝐭𝐫( 𝐿P)

} (2.27) 

Figure 2.7 shows the numerical examples of the damage prediction when modelling 

errors are introduced. A case of 10% estimation error in the inductances is given in 

Figure 2.7(a), and Figure 2.7(b) shows the results when beam stiffness (73.4 GPa) is 

incorrectly estimated by 0.1 GPa. The horizontal axis is the element number and the 

vertical axis shows the stiffness reduction of each element. The dotted line indicates the 

actual damage distribution: 10% stiffness loss at the 13
th

 element. It can be observed that 

the prediction using traditional method without data enrichment cannot accurately 

 

Figure 2.7. Comparison of damage prediction results when there exists (a) 10% modelling 

error in inductances, (b) 0.1 GPa modelling error in the beam stiffness. 
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identify damage characteristics in both cases. However, when the proposed method of 

data enrichment is applied, both of the damage predictions are significantly improved. 

The RMSD errors are reduced from 119.5 %, 44.3 % to 9.9 % and 16.8 %, respectively. 

From these results, it can be concluded that the proposed method for data enrichment can 

improve the accuracy in damage identification when the model includes estimation errors. 

2.3.5. On the Number of inductance Tunings 

This section investigates how the number of inductance tunings for data enrichment 

influences the damage identification performance. Singular value decomposition (SVD) 

is performed to evaluate the condition of the augmented sensitivity matrix as the number 

of inductance tunings is increased. The inductance values are first tuned to match the 

electrical resonance of the adaptive piezoelectric circuitry with each structural resonance 

in the interested frequency range of the host structure by following the procedure of Jiang 

et al [75]. The next tuning values are deviated  1% from the previously selected 

inductances for resonances, and then  2%, and so on. A case study is performed at the 

frequency range of 5 kHz to 11 kHz, which contains 8 resonance frequencies, and here 

we increased the number of inductance tunings to 20. The inductance tuning values used 

Table 2.3. Inductance tuning values used for data enrichment. 

Number 1 2 3 4 5 6 7 8 9 10 

Inductance, mH 134.6 106.4 85.1 68.9 56.4 46.6 38.8 32.6 135.9 107.5 

Number 11 12 13 14 15 16 17 18 19 20 

Inductance, mH 86.0 69.6 57.0 47.1 39.2 32.9 133.3 105.3 84.2 68.2 
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in this case study are listed in Table 2.3. 

Figure 2.8(a) shows the logarithm of the singular values of the augmented 

sensitivity matrix 𝐆𝑠𝑢𝑚 in Eq. (2.18). As can be seen from the figure, the singular values 

are notably increased overall as 8 inductance tunings are employed for impedance data 

enrichment, and these values are even more increased when the number of inductance 

tunings is increased to 20. This implies that the ill-posed sensitivity matrix can be 

improved as more inductance tunings are applied for data enrichment. As a result, the 

 

Figure 2.8. (a) Singular values of the augmented sensitivity matrix when different numbers 

of inductance tunings are employed (b) Damage prediction error (RMSD) with respect to 

the number of inductance tunings. 
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damage prediction error (RMSD) decreases when the number of inductance tunings 

increases as displayed in Figure 2.8(b). Here, we can notice from Figure 2.8(b) that the 

damage identification error dramatically decreases for the first several inductance tunings, 

and then decreases gradually afterwards. 

We considered other cases with 4 resonances in the frequency range from 8 kHz to 

11 kHz, and 12 resonances in the range of 4 kHz to 13 kHz to investigate whether the 

damage prediction errors decrease similarly in other frequency ranges. All three case 

studies with different frequency ranges are repeated 5 times, and the average damage 

prediction errors for each case are compared in Figure 2.9. As can be observed from the 

 

Figure 2.9. Damage prediction error (RMSD) comparison for frequency ranges with 

different number of resonances. 
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highlighted boxes in the figure, the RMSD starts to decrease gradually from near the 4
th

, 

8
th

, and 12
th

 inductance tuning augmentation when there are 4, 8, and 12 resonances in 

the interested frequency ranges, respectively. These results show that there appears to be 

a relation between the number of inductance tunings and the number of resonances 

employed for damage identification. This can be explained by looking into how the 

inductance values are selected, and how they affect the inverse equation for damage 

identification from the case study of 8 resonances as an example. 

As described previously, the first 8 inductance values are tuned to each resonance, 

and then the next inductance values are varied from these. When the inductances are 

tuned for each resonant frequency, the piezoelectric impedances of the integrated system 

are altered distinctively from each other as shown in Figure 2.4(a). Formulating these 

responses in the form of Eq. (2.18), we can fully exploit the merit of the proposed data 

enrichment concept by augmenting unique and independent information into the 

sensitivity matrix. Therefore, the rank-deficiency of the inverse equation can be highly 

improved, which results in significant decrease of the damage identification error. On the 

other hand, the next following inductances are variations of the first group of 8 

inductances tuned for resonances, thus the corresponding impedance responses are 

similar to the first group of impedance responses as well. These impedance responses add 

analogous information into the augmented sensitivity matrix, and thus the rank-

deficiency of the matrix can be improved gradually. For this reason, the damage 

identification error decrease gradually near after 8th inductance tunings for data 

enrichment. From these results, it can be concluded that the more inductance tunings are 

applied, the more accurate damage identification can be achieved by improving the rank-
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deficiency of the sensitivity matrix. On the other hand, to exploit the benefit of data 

enrichment efficiently, the damage identification algorithm can be performed with the 

inductances tuned once for each resonance in the interested frequency range. 

2.4. Experimental Validation 

In this section, an experimental study is performed to validate the proposed method 

of data enrichment. A fixed-fixed aluminum beam (Al-2024) is discretized into 61 

elements, and two piezoelectric transducers (PSI-5A4E) are bonded on the top surface of 

the 29
th

 and 41
st
 elements for inductance tuning and impedance measurement purposes, 

respectively. For the damaged case, we introduced damage as a surface notch at the 25
th

 

element of the beam structure. The notch is 0.09 mm deep (2.8% of the beam thickness) 

and 10.4 mm long having same width of the beam, which results in 8.3% reduction of the 

local bending stiffness [78]. 

Table 2.4. Parameters of the tunable inductor, and dimensions of the beam and 

piezoelectric transducers. 

Beam, 

mm 

627.2 × 7.21 × 

3.175 
P1, mm 

16.85 × 7.09 × 

0.191 
P2, mm 16.3 × 7.09 × 0.191 

Circuitry 

element 

C1 ,nF C2, nF R2, Ω R3, Ω R4, Ω R5, Ω R6, Ω R7, Ω 

9.788 9.807 4620 4629 4629 4628 4632 4629 

L, mH 39.45 40.367 41.272 45.32 46.16 63.1 80.12 

R1, Ω 850 870 890 980 1000 1371 1750 
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Figure 2.10 presents the experimental configuration including the location of the 

piezoelectric transducers and damage. The tunable inductor [89] used in this study is 

shown in Figure 2.11(a), which is realized by using op-amps (LM324), resistors, and 

capacitors. As can be seen in Figure 2.11(b), the tunable inductor exhibits frequency 

dependent property; the variation is approximately 20% of the inductance steps for data 

enrichment. This frequency dependent property is considered in the baseline model. 

Seven inductance tunings are employed for data enrichment, and the relevant parameters 

are provided in Table 2.4. In order to minimize the modeling errors stemming from the 

measurement of the beam dimensions and material properties, the baseline model was 

tailored by modifying the length and mechanical loss factor of the beam, and the location 

of the piezoelectric transducers. Figure 2.11(c) compares the impedance responses of the 

baseline model and the experiment. The measurement noise is 42 dB SNR, however 

considering the uncertainty in the baseline model, the total noise level can increase. In 

this analysis, the damage indices were solved by employing least-square algorithms with 

negative constraints. We restricted to have negative coefficients since we assumed 

damage as stiffness reduction and designed damage as surface notch in the experiment. 

 

Figure 2.10. Configuration of the experimental beam structure (measures in millimeters). 
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Figure 2.12 presents the corresponding damage prediction result, and the damage 

identification errors with respect to the number of inductance tunings. When the 

traditional method without data enrichment is employed for damage identification, the 

result indicates false location at the 22
nd

 element with 4.3 % stiffness reduction. Since the 

damaged locations may not be known in advance for real applications, and the structural 

health monitoring system may not be able to distinguish erroneous results, the incorrect 

predictions would mislead the subsequent decisions for remedy. However, as the 

 

Figure 2.11. (a) Schematic illustration of floating synthetic inductor (b) An example 

measurement of frequency dependent inductance of the tunable inductor (c) Comparison of 

the piezoelectric impedance responses of the baseline model and the experiment result 
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inductance tunings are applied, the damage prediction error gradually decreased, and the 

final result correctly identified the damage at the 25
th

 element with predicted stiffness 

loss (6.8%) close to the actual 8.3% value. From these experimental results, it is verified 

that the proposed concept of data enrichment can indeed improve the damage 

identification accuracy effectively. 

 

Figure 2.12. (a) Experimental damage identification on the 25th element of the beam 

structure (b) Damage prediction error (RMSD) with respect to the number of inductance 

tunings. 
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2.5. Summary and Conclusion 

This chapter shows that the piezoelectric impedance model-based SHM method can 

be remarkably enhanced by incorporating well designed adaptive piezoelectric circuitry. 

As the circuitry inductance values are tuned, the dynamics of the integrated system is 

altered, which enables an increased measurement data set of piezoelectric impedance. 

This method improves the condition of the otherwise severely ill-posed inverse problem, 

and can significantly improve the accuracy of the impedance-based structural damage 

identification, especially when the system is subject to unavoidable measurement noise 

and modelling error. The proposed concept is numerically implemented on a beam 

structure showing significantly improved accuracy in damage predictions. The influence 

of data enrichment on the damage identification performance is analyzed, and guideline 

is presented for the selection of tuning inductances. Experimental investigations are also 

performed, which clearly verified the effectiveness of the proposed approach. 
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CHAPTER 3  

Preliminary Study on Damage Identification with 

Integrated Bistable and Adaptive Piezoelectric 

Circuitry 

3.1. Introduction 

While the piezoelectric impedance-model based SHM techniques has shown great 

success in identifying the damage characteristics, the current state of the art has two 

notable limitations for reliable implementation as stated in Chapter 1. The limitation of 

rank-deficiency is addressed in Chapter 2 by impedance data enhancement capitalizing 

on adaptive piezoelectric circuity. However, the other concern in accurate measurement 

of the damage-induced impedance variations under environmental noise and system 

damping still needs to be addressed. When measurement error is combined with the rank-

deficiency of inverse problem, damage prediction error can become adversely amplified 

[90]. To overcome this shortcoming, sensitivity enhancing control techniques have been 

investigated [90–92] in the vibration-based damage detection research to increase the 

damage-induced resonance frequency shifts. The approaches manipulate closed-loop 

eigenvalues and -vectors by integrating active feedback control with the structure such 
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that structural response changes due to damage are enhanced. Although these studies 

have shown promising ability to address the issue, the sensitivity enhancing control 

concepts typically require multiple transducers for implementation in addition to being 

cumbersome due to the active implementation.  

This chapter aims to develop a measurement technique that is robust to noise and 

damping influences but still easy to implement without active feedback controls. To 

exemplify the effectiveness of the proposed measurement technique, this chapter 

conducts damage interrogation in relatively low frequency range by detecting the 

damage-induced resonance frequency shifts [9]. Since the sensitivity of frequency shifts 

due to damage effects becomes low, generally less than 1 Hz, in low frequency range, 

even minute measurement error can be critical to the final damage identification 

performance. In conjunction with the prior adaptive piezoelectric circuitry presented in 

Chapter 2, this chapter investigates a new means for structural damage identification 

which is found to be notably robust when response signals are distorted due to realistic 

noise and damping. Although accurate determination of the damage-induced impedance 

variation is the principal aim of the proposed alternative approach, this chapter provides 

additional focus on the final damage identification as an unambiguous metric of success 

because reducing measurement error may not equally correlate to the improvement of 

damage identification. 
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3.2. Bifurcation-Based (BB) Detection of Frequency Shifts 

3.2.1. Bifurcation-Based Sensing 

Direct peak detection (DPD) is a straightforward means to extract resonant 

frequency shifts due to structural changes. However, the frequency shifts may be difficult 

or impossible to accurately determine by conventional approaches since peaks are 

distorted due to inevitable noise and damping in real applications. As will be shown, even 

mild damping and low level noise can lead to significant error for damage identification 

if employing DPD for determination of frequency shifts. To surmount these concerns, an 

alternative approach for frequency shift detection is developed based upon bifurcation 

phenomena associated with strongly nonlinear dynamic systems. The term bifurcation 

denotes a sudden qualitative change of response in consequence to infinitesimal 

parameter change. In fundamental physics studies, bifurcations have been utilized in the 

Josephson bifurcation amplifier to detect otherwise imperceptible shifts in current level 

[93,94]. In microscale mass sensing, change in resonance frequency of MEMS is tracked 

by activating bifurcations of the sensors in consequence to minute adsorption of the target 

analyte mass [95–98]. Studies in the context of MEMS mass sensing have shown that 

frequency shift-tracking using bifurcations is much less susceptible to deteriorating 

performance due to measurement noise and damping than traditional DPD [95]. This is 

because change in environmental damping may be rectified in a bifurcation-based 

sensing method by adjustment of the excitation amplitude which does not similarly 

alleviate accuracy concerns for DPD, particularly on the microscale [95]. The comparable 

objectives of this work, albeit on much larger scales, encourage the present adoption of 
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bifurcations for SHM applications. However, a notable distinction between micro- and 

macroscale structures makes direct implementation of bifurcations for structural sensing a 

challenge: the existence of strong nonlinearity. 

Nonlinear responses for microscale sensors are common due to geometry and 

material effects, even before higher excitation levels drive the structures to nonlinear 

regimes [99]. In contrast, it is often unfavorable for larger-scale mechanical or civil 

structures that are monitored for damage to undergo strongly nonlinear behaviors. As a 

result, other means must be introduced to harness bifurcations on larger structural scales.  

Recently, Lim and Epureanu [100–102] pioneered the application of bifurcation 

phenomena for sensing in macroscale structures by introducing the strong nonlinearity 

via nonlinear feedback control. By forecasting the bifurcation point, which enables to 

maintain the structural system in the safe pre-bifurcation regime, it has been shown that 

tracking the bifurcation points provides an order of magnitude higher sensitivity of 

detecting mass changes in a cantilever-based sensor compared to the conventional 

resonance frequency shift detection approach. Harne and Wang [103] explored an 

integration of the monitored structure with piezoelectric transducer and bistable circuitry. 

The composite system enabled the detection of structural change (mass addition) due to 

activation of circuitry bifurcations. As compared to the monitored structural system 

exhibiting strongly nonlinear behaviors, the bifurcations used for change detection are 

strictly a matter of the strongly nonlinear bistable circuitry which has negligible back-

coupling to the host structure response. Observing the utility of the structure and bistable 

circuit integration in Ref. [103], this chapter adopts a similar configuration in tandem 

with the adaptive piezoelectric circuitry to track the structural frequency shifts induced 
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due to damage. By utilizing the piezoelectric admittance response measured from the 

piezoelectric transducer with the adaptive circuitry approach as the input voltage for the 

bistable circuit, the host structural spectral change induced by damage can be assessed by 

the activation of circuitry bifurcations. Thus, the proposed sensing framework introduces 

the required strong nonlinearity via the attachment or inclusion of bistable circuitry into 

the damage detection process. Therefore, this chapter investigates the viability of the 

system integration and its robustness and accuracy in the presence of realistic noise and 

damping as compared to traditional peak detection approaches. 

3.2.2. Overview of Bifurcation-Based Frequency Shift Measurement 

Procedure 

This section describes a procedure to monitor frequency shifts when utilizing 

bistable circuitry bifurcations. Figure 3.1 shows the bistable circuit employed in this 

study and the essential components of the structural integration: host structure to be 

 

Figure 3.1. Schematic of excited host structure to be monitored (here, a cantilever beam) 

with piezoelectric transducer and attached bistable circuitry. 
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monitored, piezoelectric transducer, and electrical connection from the transducer to 

measure piezoelectric impedance and serve as input voltage 𝑉𝑏  for the bistable circuit 

having output voltage 𝑉𝑜.  

For low input voltage level, the bistable circuit undergoes small amplitude, 

 

Figure 3.2. (a) Experimental bistable circuit output-to-input voltage frequency response 

function magnitude, as function of excitation frequency and level, as adapted and re-

plotted from [103]. The dashed line on the contour approximately demarcates the 

threshold between intra- or interwell responses. Example experimental voltage time series 

for (b) interwell and (c) intrawell dynamics. 



56 

intrawell oscillations of output level; whereas higher input levels may trigger energetic, 

interwell oscillations. Figure 3.2(a) plots an experimental contour of bistable circuit 

output-to-input voltage FRF magnitude as function of excitation frequency and level, as 

adapted and re-plotted from [103]. For constant harmonic excitation frequency, an 

increasing input voltage level may activate the bifurcation leading to dramatic change in 

output response level, from intra- to interwell response, or vice versa. The quantitative 

and qualitative differences between typical measured intra- to interwell circuit output 

voltage responses are shown in Figure 3.2(b,c). An approximate demarcation boundary 

between the two steady-state response regimes is denoted in Figure 3.2(a) by the light 

dashed curve. By tuning bistable circuit component values, the frequency sensitivity of  

the sudden change in circuit output voltage amplitude can be designed to target a specific 

structural mode. In Figure 3.2(a), the sensitive region is located around excitation 

frequencies 7 to 10 Hz, where small changes in input voltage level around 0.34 V activate 

a saddle-node bifurcation in output voltage level. It is this region of sensitive bistable 

circuit response that is exploited in the proposed sensing scheme. 

Through the strategic integration of the structure and bistable circuitry, the 

structural responses effectively become the input voltage level to the circuit, following a 

coupling provided by the transducer and a gain adjustment provided by a tuning 

resistance 𝑅𝑏. Thus, amplified structural response leads to amplified input voltage level 

for the circuit. This trend is exploited to detect and measure frequency shifts in resonance 

peaks using the overall procedure illustrated in Figure. 4.3. The piezoelectric admittance 

before and after damage, measured via the piezoelectric transducer, are used as discrete 

input to the bistable circuit following adjustment of gain and frequency sensitivity. The 
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tuning resistance 𝑅𝑏  linearly adjusts the amplitude of the piezoelectric admittance 

measurements from the piezoelectric transducer such that an activation threshold is 

aligned with an intermediate amplitude of the resonance, and sets this level to be the 

critical level that may activate the bistable circuit bifurcations. In Figure 3.2(a), this 

critical level is seen to be approximately 0.34 V, and in Figure 3.3(a) the resonance peak 

amplitude has been adjusted by tuning the gain such that a portion of the peak is above 

this critical input voltage level. The frequency sensitivity is adjusted such that the 

favorable threshold bandwidth is shifted to occur around the structural mode being 

monitored (i.e., shifting the comparable bandwidth of 7-10 Hz in Figure 3.2(a) to the 

bandwidth around the resonance of interest). 

Then, the corresponding voltage level for each frequency after the gain adjustment 

is utilized as input signal to the bistable circuit. The structure is harmonically excited at a 

single frequency and the response from the piezoelectric transducer is directly fed to the 

bistable circuit following gain adjustment; such direct integration of the electrical and 

mechanical domains is that depicted in Figure 3.1. The steady-state circuit output voltage 

response is then evaluated for whether it obtained intra- or interwell oscillations, as 

illustrated by comparable intra- and interwell responses of the bistable circuit shown in 

Figure 3.2(b,c). Repeating this process across the spectrum containing the resonance 

frequency yields two bifurcations in response: one up and one down in circuit output 

voltage level. Repeating this process again for the damaged structural responses yields 

two more bifurcations at certain frequencies. Figure 3.3(b) presents example output 

results from this overall procedure indicating that over certain bandwidths the interwell 

responses are activated whereas across other frequencies the intrawell responses were  
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obtained. Thus, from healthy to damaged states, two shifts in frequency are acquired, 

shown in Figure 3.3(b): one corresponding to the jumps up in output voltage level, and 

one corresponding to the drops down in level. In this investigation, all of the following 

results utilize the mean of the two frequency shifts which is considered to be the damage 

induced frequency shift of the resonance. Moreover, repeating this process using different 

gain adjustment or bistable circuit parameters (e.g., resistance or inductance) leads to still 

further frequency shifts, all of which may be taken into consideration when determining a 

mean frequency shift from healthy to damage structural states which can increase the 

 

Figure 3.3. (a) Structural response evaluated by the piezoelectric transducer following gain 

adjustment to serve as bistable circuit input voltage level, highlighting an example 

activation threshold. (b) Representative output voltage level triggering profile across the 

spectrum for healthy and damaged structures. 
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confidence that the final result is the true frequency shift. By these procedures, the 

multiple frequency shifts induced by damage may be quantified and employed in the 

damage identification routine. 

3.3. Verification of Bifurcation-Based Detection of Frequency 

Shifts 

In this section, the viability of the bifurcation-based (BB) approach is assessed as 

compared to DPD method. Since the bistable circuit used in [103] showed good 

agreement between the numerically predicted and experimentally measured responses, 

the following damage identification studies are conducted using the same bistable circuit 

model formulation. The configuration considered of a cantilever beam with integrated 

bistable and adaptive piezoelectric circuit network is shown in Figure 3.4(a), which 

specifically represents the implementation of the bifurcation-based frequency shift 

determination strategy. A cantilevered beam is evenly discretized into ten finite elements 

and the piezoelectric transducer is considered to be perfectly bonded to the top surface of 

the beam from the 2
nd

 to 4
th

 element. The transducer is serially connected to an adaptive 

circuitry. In practice, the tunable inductance may be realized using a floating synthetic 

inductor as employed by Wang and Tang [32]. Without loss of generality, damage is 

represented by 15% structural stiffness reduction on the 2
nd

 element in the finite element 

model of the beam. Relevant parameters used in the damage identification model are 

listed in Table 3.1. 
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The following describes the complete damage identification approach using the 

integrated bistable and adaptive piezoelectric circuitry as employed in this chapter. The 

healthy structure is first evaluated as a baseline. The excitation voltage 𝑉𝑒 is swept over 

the chosen frequency range, and the piezoelectric admittance of the electro-mechanical 

system are measured by voltage drops 𝑉𝑖  across resistor 𝑅 . Around each natural 

frequency of interest, the amplitudes of voltage 𝑉𝑖 are scaled to a suitable level by tuning 

resistor 𝑅𝑏, and this signal is the excitation for the bistable circuit 𝑉𝑏. The activation of 

bistable circuit bifurcations is then evaluated by analyzing the output voltage level 𝑉𝑜 of 

the bistable circuit as described in Section 3.2. Then, the inductance of the adaptive 

circuit is selectively tuned as provided in Chapter 2, and the process is repeated for a 

desired number of inductances to enrich the data set. Once completed, this forms the data 

set of bifurcation frequencies for the healthy, baseline structure. For damage, the process 

is repeated, yielding a second data set of bifurcation frequencies. The difference between  

the data sets of bifurcation frequencies is therefore the collection of frequency shifts to be 

used in the damage identification routine. To comment on practical implementation of the 

BB method, for an ideal op-amp junction in the bistable circuit shown in Figure 3.1 no 

Table 3.1. System parameters 

Beam structure Piezoelectric material 

Length 209.2 mm Length 62.8 mm 

Thickness 3.175 mm Thickness 0.191 mm 

Width 38.1 mm Young’s modulus 66 GPa 

Young’s modulus 71 GPa Density 7800 kg/m3 

Loss factor 0.3% Dielectric constant, 𝛃
𝟑𝟑

 7.1445× 10−7 V.m/C 

Density 2700 kg/m3 
Piezoelectric constant, 

𝐡𝟑𝟏 
1.0707× 109 N/C 
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backwards coupling of electrical response will occur to influence the voltage 𝑉𝑖 across 

resistor 𝑅 [103]. In practice, very small coupling will exist for an on-line implementation 

of the BB method. 

In this initial evaluation, the response signals are free of additive noise. The 

resonance frequency shift data set is enriched by selecting 14 tunable inductances 𝐿, 

seven different values for each of the 1
st
 and 2

nd
 resonance frequency. Without the 

adaptive circuitry network, only two resonance frequencies exist in the frequency 

 

 

Figure 3.4. (a) Configuration of the cantilever beam integrated with bistable and adaptive 

piezoelectric circuitry. (b) Identification of damage on 2nd element of the cantilever beam 

with 15% stiffness reduction. 



62 

bandwidth considered. The addition of the circuitry generates a third resonance, and all 

three are shifted 14 times due to inductance tuning, yielding a total of 42 shifts. The 

resonance frequency shifts are determined by conventional DPD and the proposed BB 

approach. In the following studies, the BB method was implemented with numerical 

simulations of the bistable circuit responses using the governing equations formulated in 

[103] and random initial conditions. The DPD results were likewise generated by direct 

computation. Then, damage is identified and prediction results are compared. 

The first three resonance frequency shifts as determined by BB and DPD 

approaches are given in Table 3.2. The resonance frequency shifts obtained by DPD are 

considered to be accurate because no noise is included in the investigation. Due to the 

selection of inductances, the 1
st
 and 2

nd
 resonance frequencies of the integrated system 

vary significantly when the inductance is tuned around 40.0 H; the 2
nd

 and 3
rd

 resonances 

change when the inductance is tuned around 1.04 H. The multiple frequency shifts 

acquired by tailoring the tunable inductance value indicate that information about damage 

is enriched, which improves the rank-deficiency of the inverse problem for damage 

identification in a similar fashion as presented in Figure 2.3. Table 3.2 shows that the 

frequency shifts detected by BB and DPD methods exhibit little absolute difference. The 

mean and standard deviation of the differences are -0.01 and 0.05 Hz, respectively, while 

the maximum difference is 0.13 Hz. 

Figure 3.4(b) presents the damage location and severity predictions following BB or 

DPD frequency shift detection. It is seen that the results from DPD and BB methods both 

predict close to the actual 15% stiffness loss at the 2
nd

 element. Root-mean-square 
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deviation (RMSD) between the predicted stiffness reduction 𝛿𝒅𝑝𝑟𝑒𝑑𝑖𝑐𝑡  and the actual 

damage 𝛿𝒅𝑎𝑐𝑡𝑢𝑎𝑙 is employed as a metric to quantify prediction error: 

 RMSD = √
∑ (𝜹𝒅𝒊

𝒑𝒓𝒆𝒅𝒊𝒄𝒕
−𝜹𝒅𝒊

𝒂𝒄𝒕𝒖𝒂𝒍)
𝟐

 
𝑵𝒆𝒍
𝒊=𝟏

∑ (𝜹𝒅𝒊
𝒂𝒄𝒕𝒖𝒂𝒍)

𝟐
 

𝑵𝒆𝒍
𝒊=𝟏

 (3.1) 

RMSD by DPD and BB methods both showed relatively small error levels: 10.0 

and 21.0 %, respectively. From these results, it can be concluded that the BB method 

shows comparable performance to the traditional DPD strategy with respect to frequency 

Table 3.2. Damage-induced resonance frequency shifts measured by DPD and BB methods 

under inductance tuning. 

Inductance, 

H 

1st resonance frequency 

shift, Hz 

2nd resonance frequency 

shift, Hz 

3rd resonance frequency 

shift, Hz 

DPD BB Difference DPD BB Difference DPD BB Difference 

0.89 1.32 1.34 -0.02 1.22 1.37 -0.15 0.14 0.10 0.04 

0.94 1.32 1.33 -0.01 1.16 1.25 -0.09 0.19 0.25 -0.06 

0.99 1.32 1.31 0.01 1.01 1.13 -0.12 0.38 0.52 -0.13 

1.04 1.32 1.31 0.01 0.44 0.52 -0.08 0.97 1.02 -0.05 

1.09 1.33 1.32 0.01 0.05 0.13 -0.08 1.28 1.31 -0.03 

1.14 1.30 1.29 0.01 0.03 0.06 -0.03 1.33 1.33 0.00 

1.19 1.31 1.31 0.00 0.02 0.06 -0.04 1.33 1.32 0.01 

32.5 1.20 1.20 0.00 0.12 0.09 0.03 1.31 1.18 0.13 

35.0 1.10 1.10 0.00 0.19 0.21 -0.02 1.31 1.31 0.00 

37.5 1.00 1.00 0.00 0.29 0.30 -0.01 1.32 1.31 0.01 

40.0 0.87 0.87 0.00 0.45 0.43 0.02 1.31 1.30 0.01 

42.5 0.73 0.73 0.00 0.58 0.61 -0.03 1.31 1.28 0.03 

45.0 0.59 0.60 -0.01 0.72 0.71 0.01 1.31 1.22 0.09 

47.5 0.48 0.48 0.00 0.82 0.82 0.00 1.31 1.23 0.08 
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shift determination and final damage identification when the response signals are free of 

noise. 

3.4. Improving Accuracy of BB Frequency Shift Detection 

through Greater Number of Evaluations 

The prior section employed a single run of the BB frequency shift detection 

procedure for use in the damage identification routine. It was found that the identification 

results following noise-free BB frequency shift determination slightly differed from the 

DPD approach. Because dynamics associated with the saddle-node bifurcation used in 

this research are sensitive to initial conditions, and thus activation of the bifurcations may 

be slightly inconsistent from one time series circuit simulation to the next, it may be 

anticipated that increased number of runs using randomly selected initial conditions to 

determine a greater number of frequency shifts may improve confidence in the BB 

damage identification result. With greater number of runs, the final mean value of 

detected frequency shift may then be used in the damage identification routine. 

Therefore, using the model of Section 3.3, the BB frequency shift detection 

procedure was carried out for 40 runs with random initial conditions covering several 

multiples of the stable equilibria of output voltage level (±1 V) to ensure sufficient 

sampling of the initial condition parameter space. The mean and first standard deviation 

of the resulting frequency shifts determined by the BB method are plotted in Figure 3.5(a) 

(circles and error bars) as compared to the actual resonance frequency shifts (squares), 

considered to be the DPD method values. The horizontal axis indicates the inductance 

values used for the data enrichment routine. The individual shift errors determined from 
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all 40 runs for each inductance are plotted as crosses. For conciseness, results from the 

first resonance peak are plotted; results from the remaining two resonances are 

comparable. As shown in Figure 3.5(a), the actual resonance frequency shifts are within 1 

standard deviation of the BB method mean shift, and the BB method accurately tracks the 

shifts as inductance is tuned to enrich the data set for the damage identification routine. 

The means of the 40 frequency shifts for each of the three shifting resonance 

frequencies were then utilized for damage identification; the results are provided in 

Figure 3.5(b). The accuracy of damage predicted by the mean of 40 runs is improved 

 

 

Figure 3.5. (a) Tracking of frequency shifts induced by tuning inductances as determined by 

BB method using 40 runs of the circuit responses each having random initial conditions. (b) 

Damage identification using the mean results from the 40 resonance frequency shifts. 
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from that computed from a single run: the RMSD is reduced from 21.0 % to 14.4 %. The 

results indicate that greater number of runs using the BB method may enhance the 

accuracy of frequency shift determination.  

3.5. Investigation of Noise Influences 

3.5.1. Case Study 1: Structure with Mild Damping 

The prior sections evaluated BB frequency shift determination when the response 

signals from the structure and adaptive piezoelectric circuitry network were free of noise. 

However, measurement noise is oftentimes unavoidable. Therefore, this section 

investigates the addition of random noise, ranging from 44 to 32 dB signal-to-noise ratio 

(SNR), with the response signals of Sections 4.3 and 4.4 to assess how detection of 

frequency shifts by DPD and BB methods are affected and how the final damage 

identification results are influenced. To appreciate the low level of noises employed, 

Figure 3.6 plots a comparison of an example response resonance used in the following 

investigation for the noise-free case and that with 32 dB SNR additive low-pass filtered 

random noise which is the highest level utilized in the following sections. In practice, 

such low-level noise could be caused by conventional sensor sensitivity constraints 

[28,104]. 

The investigation of Section 3.3 was then repeated but now, with each case of 

inductance tuning, white noise is added to the response signals. Thus, for each of the 14 

inductance tuning cases, different frequency shifts for the three resonance peaks may be 

determined following both DPD and BB methods should noise influence the results. For 
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each scenario, a single run of the BB frequency shift detection method and the DPD 

approach are utilized with a structural response spectra distorted by the same randomly 

generated additive noise. Figure 3.7 plots the frequency shift error of the 42 individual 

results (crosses) for each case of noise and detection method, while the mean values are 

shown as circles with first standard deviations indicated by error bars. The numerical 

values of first standard deviation are presented alongside each case. 

As detailed in the prior sections, the frequency shifts determined by the BB 

approach when the responses are noise-free exhibit a small but finite spread of values and 

thus a small range of errors. However, as noise is added to the response signals, the 

deviations of the frequency shifts by the BB method remain small and steady while those 

determined by DPD grow significantly, even for the lowest level of noise. Figure 3.8 

presents the corresponding damage identification results. Figure 3.8(a) shows that 

damage location results by DPD alter dramatically with the addition of the lowest level of 

noise; although the DPD method still correctly predicts approximately 15% stiffness 

 

Figure 3.6. Example of (a) noise-free integrated system resonance and (b) that with 32 dB 

SNR additive noise. 
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reduction at the 2
nd

 element, now a 41% stiffness reduction is estimated at the 10
th

 

element. Since structural health monitoring systems may not distinguish false from 

accurate damage identification, the incorrect DPD predictions may mislead corrective 

measures. Figure 3.8(b) presents the RMSD which indicates the BB method is 

substantially less influenced by the noise addition and its damage identification maintains 

higher degree of confidence for correctness. 

 

 

 

Figure 3.7. Frequency shifts determined by DPD or BB approaches as signal-to-noise ratio 

increases. Numerical values presented are the standard deviations of the approaches for 

given noise level. 
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3.5.2. Case Study 2: Structure with Increased Damping 

The prior investigation considered a lightly damped structure with loss factor 0.3%. 

While some structural systems may have such low damping in an ideal form and 

 

 

Figure 3.8. (a) Damage identification comparison for structure with mild damping and with 

varying degrees of low level additive noise. (b) RMSD of damage identification. 
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configuration, the introduction of boundary conditions, imperfections in mounting, and 

even structural-acoustic factors often contribute to increase damping levels in civil and 

mechanical structures. Thus, this section repeats the additive noise study of Section 3.5.1 

but increases the cantilever beam loss factor from 0.3 to 0.5%. 

Figure 3.9(a) presents the resulting damage identification comparing DPD and BB 

frequency shift detection approaches as noise increases while 4.9(b) provides the 

corresponding RMSD. In tandem with increased structural damping levels, Figure 3.9 

shows that DPD-based damage identification becomes unreliable and justifies common 

suspicions that the approach has clear disadvantages despite its appealing ease of 

implementation. In contrast, the BB method for frequency shift determination provides 

improved robustness to noise and damping and the more accurate damage predictions 

attest to its advantages. While the BB method ultimately yields some measurement error, 

as described in earlier sections, increasing the number of runs, using greater number of 

gain adjustments, or tailoring bistable circuit parameters could provide means to heighten 

confidence in its robust measurement capability and further enhance its performance for 

accurate damage identification. 
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3.6. Summary and Conclusion 

This chapter investigates an integration of bistable and adaptive piezoelectric 

circuitry to enhance the robustness and accuracy of the impedance model-based structural 

damage identification, which are otherwise compromised due to noise and damping. A 

 

 

Figure 3.9. (a) Damage identification comparison for structure with increased damping and 

for varying degrees of low level additive noise. (b) RMSD of damage identification. 
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novel methodology to determine the damage-induced spectral change of the structure is 

explored based on the utilization of strongly nonlinear bifurcation phenomena. The strong 

nonlinearity, which is not common in large-scale structures, is introduced by a bistable 

electric circuit integrated to the host structure through piezoelectric transducer. The 

electrical admittance measured from the piezoelectric transducer is fed into the bistable 

circuitry which exhibits saddle-node bifurcation. By tracking the activation of this 

circuitry bifurcation, the damage-induced resonance frequency shift can be clearly 

determined. Numerical investigation verifies that this bifurcation-based sensing approach 

is significantly less affected by the addition of noise and damping in the response signals, 

and thus provides higher level of confidence in its final damage identification results. 
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CHAPTER 4  

Predicting Non-Stationary and Stochastic 

Activation of Saddle-Node Bifurcation in Non-

Smooth Dynamical Systems 

4.1. Introduction 

As illustrated in Chapter 3, the core principle of the proposed bifurcation-based 

sensing approach is based on tracking the onset of saddle-node bifurcation that induces 

dramatic changes in the response level. On the other hand, it is well known that saddle-

node bifurcation activation is strongly influenced by noise and non-stationary influences 

that are unavoidable and ever-present in practical applications. As a result, it is critical to 

understand whether the bifurcation is activated due to actual damage-related structural 

changes or the noise and nonstationary influences to successfully implement the 

advanced bifurcation-based sensing approach. Otherwise, the reliability of bifurcation-

based sensing will be greatly degraded. Although the results presented in Chapter 3 

bolsters the remarkable potential of the new bifurcation-based sensing approach using 

bistable circuitry, the preliminary analysis only considered stationary inputs to the circuit. 

Therefore, in this chapter the dynamic and stochastic activation of saddle-node 
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bifurcation is theoretically investigated to estimate the onset of bifurcation, so that the 

findings can be incorporated into developing a reliable sensing strategy for practical 

applications. 

Bifurcation is an important consideration in dynamical systems since it may lead to 

qualitative changes in the response topology by even minute variation of system 

parameters across the critical point [105]. Especially, saddle-node bifurcation generally 

induces large and sudden changes in the response amplitude since the system loses local 

stability as two coexisting equilibria collide and annihilate each other [105,106]. In order 

to exploit or avoid the dramatic changes induced by saddle-node bifurcation, it is critical 

to accurately estimate the onset of saddle-node bifurcation, or the conditions that induce 

the associated stability loss.  

The classical saddle-node bifurcation in smooth dynamical systems has been 

extensively studied, motivated by various engineering and scientific applications 

including Josephson-junction circuits [94,107], micro-/nanomechanical oscillators 

[108,109], chemical reactions [110], and ecological [111–113] and climate systems 

[114,115]. It is well known that saddle-node bifurcation is strongly affected by stochastic 

and non-stationary factors. For example, noise may result in premature saddle-node 

bifurcations [116–118] which occur even before the governing parameter reaches the 

critical value that activates deterministic bifurcations. In contrast, non-stationarity of the 

key parameters may delay the activation of bifurcation [119,120]. It has been extensively 

studied to understand how the dual influence of stochastic and non-stationary factors 

affects the activation of smooth saddle-node bifurcations by introducing scaling laws 

[121–123], deriving exact and approximate responses of the stochastic normal form [124], 
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and approximating the distribution of the escape events induced by the bifurcation 

[125,126].  

On the other hand, non-smooth dynamics are observed in many practical systems. 

Examples of these systems range from mechanical devices with physical phenomena 

such as dry friction [127] and impact [128], robotic applications with walking and 

hopping mechanics [129,130], and electrical circuits with diode elements [103,131–133] 

to biological system model of neural networks [134] and economic models [135,136]. An 

extensive set of examples can be found in [137–139]. Although non-smooth dynamical 

systems have received increased attention in recent years, little is known about the 

bifurcations in non-smooth systems compared to those of the classical smooth systems. 

Since the saddle-node bifurcation induces local stability loss of the system, investigation 

on the bifurcation point is directly associated with stability analysis. A number of 

researchers have studied the stability of non-smooth dynamical systems, for example, by 

examining how small perturbations from the initial conditions propagate in periodic 

response [140,141] and evaluating the eigenvalues of the Jacobian matrix of a Poincaré 

map [138,142,143]. On the other hand, these advancements are focused on the steady-

state response of deterministic system not considering the critical influences of noise and 

non-stationarity on the stability. Therefore, in this chapter, the coupled influence of 

stochastic and non-stationary factors is investigated to accurately predict the onset of 

non-smooth saddle-node bifurcation. While a qualitative scaling law of the time delay 

near non-smooth saddle-node bifurcation is introduced in [144], this chapter presents 

quantitative results about the distribution of bifurcation points, which will provide a 
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direct means for enhancing practical applications involving non-smooth saddle-node 

bifurcation.  

In the following sections, a stochastic normal form of non-smooth saddle-node 

bifurcation is introduced to examine the dual influence of noise and non-stationarity on 

the bifurcation activation by using a single parameter. Numerical and experimental 

investigations employing a double-well Duffing analog circuit are carried out to verify 

the distribution of the onset of bifurcations predicted by the theoretical framework. 

Following the investigations, concluding remarks summarize and reflect upon the 

potential of the new approach. 

4.2.  Stochastic Normal Form of Dynamic Saddle-Node 

Bifurcation 

The normal form of classical saddle-node bifurcation of a smooth system  

 𝑥̇ = 𝜇 + 𝑥2   (4.1) 

exhibits two equilibria for bifurcation parameter 𝜇 < 0, where fixed point 𝑥∗ = −√𝜇  is 

stable while 𝑥∗ = √𝜇  is unstable. When the parameter  𝜇 < 0 quasi-statically increases, 

the system becomes unstable as saddle-node bifurcation occurs at 𝜇 = 0 annihilating the 

two equilibria (Figure 4.1(a)), and the response of the system escapes from the dynamics 

local to the bifurcation point and generally jumps to other stable equilibrium of the 

system. Now the counterpart in non-smooth systems can be obtained by replacing the 

term 𝑥2 by |𝑥| 

 𝑥̇ = 𝜇 + |𝑥|,   (4.2) 
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which has two equilibria 𝑥 = ±𝜇 for 𝜇 < 0 as shown in the bifurcation diagram, Figure 

4.1(b). The stochastic normal form of the saddle-node bifurcation is utilized to investigate 

the stochastic and non-stationary influences on the activation of saddle-node bifurcations. 

 𝑥̇ = 𝜇(𝑡) + |𝑥| + 𝐷𝜉, (4.3) 

where D is effective noise strength and 𝜉 is Gaussian white noise with autocorrelation 

〈𝜉(𝑡)𝜉(𝑡̃)〉 = 2𝛿(𝑡 − 𝑡̃). The non-stationary influence on the saddle-node bifurcation is 

assessed by examining the system stability with respect to a time dependent bifurcation 

parameter 𝜇(𝑡). For a common case of broad practical applications, a first order Taylor 

expansion of 𝜇(𝑡) in time is employed in this analysis, such that 

 𝜇(𝑡) = 𝜇0 + 𝑟𝑡. (4.4) 

In this research, it is assumed that the bifurcation parameter is swept from 𝜇0 < 0 at 

a sweep rate of 𝑟 > 0. Since the bifurcation parameter  𝜇(𝑡) varies linearly in time, the 

time can be scaled according to the parameter sweep rate. By introducing new variables  

 

Figure 4.1. Bifurcation diagrams of (a) smooth and (b) non-smooth saddle-node bifurcation.  

Solid (dotted) lines indicate (un)stable fixed points. 
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 𝜏 = 𝜇𝑟−1,  (4.5) 

 𝑧 = 𝑥𝑟−1, (4.6) 

and substituting them into Eq. (4.3), a new scaled normal form can be obtained as,   

 𝑧′ = 𝜏 + |𝑧| + 𝛼𝜉,  (4.7) 

 𝛼 = 𝐷 𝑟⁄ , (4.8) 

where (  )′ indicates differentiation with respect to scaled time 𝜏. As a result, one can 

utilize a single parameter, scaled noise level 𝛼, to investigate the dual influence of noise 

and non-stationarity on the activation of non-smooth saddle-node bifurcation. Since the 

normal form describes the local dynamics near bifurcation point, when bifurcation is 

activated the system trajectories become very steep diverging to infinity. In this work, it 

is assumed that the time 𝑇  at which the system reaches a large value ( 𝑧∞ ≫ 1 ) is 

equivalent to the time taken to infinity. Therefore, our goal is to determine the 

distribution of escape time T at which the response of Eq. (4.7) becomes unbounded, i.e. 

𝑧(𝑇) → ∞. The Fokker-Planck Equation (FPE) [145] can be derived from the scaled 

stochastic normal form (Eq. (4.7)) as 

 
𝜕𝜌(𝑧,𝜏)

𝜕𝜏
= −

∂

∂z
[(𝜏 + |𝑧|)𝜌(𝑧, 𝜏)] + 𝛼2 𝜕2𝜌(𝑧,𝜏)

𝜕𝑧2 ,  (4.9) 

where 𝜌(𝑧, 𝜏) is the probability density function (PDF) for finding the system at 𝑧 at time 

𝜏. By integrating the FPE, the PDF for escape at time 𝑇 can be obtained as 

 𝑃(𝑇) =
𝑑

𝑑𝜏
(1 − ∫ 𝜌(𝑧, 𝜏)𝑑𝑧

𝑧∞

−∞
). (4.10) 

For conditions where bifurcation parameter 𝜇  increases relatively slowly with 

respect to the noise level (𝛼 ≫ 1), one can assume that the bifurcation parameter is 

adiabatically swept through the critical value, and thus the rate of escape events can be 
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approximated by the well-known Kramer’s rate 𝑊(𝜏) in Eq. (4.11) [116]. As a result, the 

approximate PDF of escape 𝑃𝐾(𝑇) can be derived as Eq. (4.12). 

 𝑊(𝜏) =
1

2𝜋
exp (−

(−𝜏)2

𝛼2 ) (4.11) 

 𝑃𝐾(𝑇) = 𝑊(𝑇) exp (− ∫ 𝑊(𝜏)𝑑𝜏
𝑇

𝜏0
) (4.12) 

In summary, the key result is that the stochastic and non-stationary activation of 

non-smooth saddle-node bifurcation can be estimated by using a single parameter, scaled 

noise 𝛼  in Eq. (4.8). The distribution of escape time 𝑇  can be used to assess the 

bifurcation point, or the actual critical parameter value, that triggers the bifurcation by 

straightforward back-calculation from Eq. (4.5). 

4.3.  Numerical and Experimental Investigations 

In this section, the theoretical prediction of the escape statistics utilizing the scaled 

normal form of non-smooth saddle-node bifurcation is validated through numerical and 

experimental investigations. Figure 4.2(a) shows a schematic diagram of a double-well 

Duffing analog circuit employed in this research. This circuit exhibits bistability with 

piecewise-linear characteristics introduced by nonlinear feedback loop among an op-amp 

and a pair of anti-parallel diodes, i.e., diodes with two terminals shortened in opposite 

directions. As a result, non-smooth saddle-node bifurcation occurs when the excitation 

amplitude of the circuit increases while the excitation frequency is fixed below the linear 

resonance frequency. By virtue of the saddle-node bifurcation that activates drastic 

transitions between the intra- and interwell oscillations in the output voltage level, the 

bistable circuit has been successfully utilized for several applications including 
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bifurcation-based sensing for detecting parameter changes and damages in structures 

[103,132].  

The governing equation of the bistable circuit can be derived by assuming ideal op-

amp and diode characteristics as the following [146]. 

 𝐿𝐶 𝑉̈𝑜 + 𝑅𝐶 𝑉̇𝑜 + 𝐹(𝑉𝑜) = 𝑉𝑖 ,  (4.13) 

 𝐹(𝑉𝑜) = {

𝑉𝑜 − 𝑔𝑉𝐷 ,
(1 − 𝑔)𝑉𝑜 ,
𝑉𝑜 + 𝑔𝑉𝐷 ,

  

𝑉𝑜 > 𝑉𝐷

|𝑉𝑜| ≤ 𝑉𝐷

𝑉𝑜 < −𝑉𝐷

,  (4.14) 

where 𝐿 , 𝐶 , 𝑅 , and 𝐹(𝑉𝑜)  represent the inductance, capacitance, resistance, and a 

nonlinear voltage function, respectively; 𝑉𝑖, 𝑉𝑜, and 𝑉𝐷 respectively indicate the input and 

output voltage amplitudes of the bistable circuit, and voltage drop over an open diode; 

and the overdot indicates a time derivative. Following ideal op-amp assumption, the 

feedback gain is 𝑔 = 1 + 𝑅2 𝑅1⁄ . The op-amp employed in this research is LM741CN 

and the diodes are 1N4148. The other relevant circuit parameters are provided in Table 

4.1.  
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Considering the overdamped limit of large damping, the term 𝐿𝐶𝑉̈𝑜  can be 

neglected. Although the circuit exhibits two saddle-node bifurcations as the amplitude of 

harmonic excitation is increased and decreased, for consistency it is focused on the 

 

Figure 4.2. (a) Schematic diagram of the double-well Duffing analog circuit utilized in 

experimental analysis. (b) Experimentally measured nonlinear voltage function of the 

circuit with respect to output voltage amplitude. 

Table 4.1. Experimental system parameters of the double-well Duffing analog circuit. 

L, mH C, uF R, Ω R1, kΩ R2, kΩ R3, kΩ 

10.24 0.96 800 9.07 9.08 10 
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saddle-node bifurcation that occurs for increasing amplitude of the excitation. When 

small perturbations 𝜂 = 𝑉𝑖 − 𝑉𝑖
𝑐𝑟  and 𝑥 = 𝑉𝑜 − 𝑉𝑜

𝑐𝑟  near a critical fixed point 

(𝑉𝑖
𝑐𝑟 , 𝑉𝑜

𝑐𝑟) = ((𝑔 − 1)𝑉𝐷 , −𝑉𝐷)  at which the bifurcation is induced for deterministic 

system are introduced and substituted into Eqs. (4.13) and (4.14), the local dynamics 

around the bifurcation point can be expressed by 

 𝑥̇ =
1

𝑅𝐶
(𝜂 + |𝑥|).  (4.15) 

By assuming the stochastic influence as an additive Gaussian white noise term 𝐷𝜉 

[147] and scaling the variables as 𝜏 = 𝜇(𝑟𝑉𝑅𝐶)−1  and 𝑧 = 𝑥(𝑟𝑉𝑅𝐶)−1  in a similar 

manner to Eqs. (4.5) and (4.6), a scaled normal form of non-smooth saddle-node 

bifurcation is finally derived: 

 𝑧′ = 𝜏 + |𝑧| + 𝛼𝑉𝜉. (4.16) 

𝑟𝑉 is input voltage amplitude sweep rate and scaled noise level 𝛼𝑉 =
𝐷

𝑅𝐶 𝑟𝑉
.  (  )′ indicates 

differentiation with respect to scaled time 𝜏.  

Figure 4.2(b) displays the qualitative piecewise-linear characteristics of the 

nonlinear voltage function 𝐹(𝑉𝑜) of the bistable circuit, which corresponds to the smooth 

restoring force of a conventional double-well Duffing oscillator expressed by a cubic 

polynomial with negative linear and positive cubic terms [106,148]. The voltage function 

is experimentally obtained by measuring the output voltage 𝑉𝑜  while quasi-statically 

varying the DC input voltage within the range that encompasses the two stable equilibria 

of the bistable circuit. Starting from large negative value, when the DC input voltage is 

quasi-statically increased around 0.32 V, indicated as point A in Figure 4.2(b), 

bifurcation is activated and the output voltage 𝑉𝑜  undergoes a sudden transition from 
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approximately -0.42 V to 1.30 V. For decreasing input voltage level, the bistable circuit 

exhibits a symmetric behavior of jump event due to the bifurcation. The critical fixed 

point (𝑉𝑖
𝑐𝑟, 𝑉𝑜

𝑐𝑟) in this analysis can be determined as (0.32, −0.42). On the other hand, 

due to the practical factors ignored in the ideal diode model, such as temperature effect 

and nonlinearity in the diode [149], the slope near the bifurcation point decreases as 

shown in Figure 4.2(b). To account for these effects, the slope was measured (𝑎 ≈ 0.2) 

and considered in the normal form derivation, yielding 𝛼𝑉 =
𝑎𝐷

𝑅𝐶 𝑟𝑉
.  

The double-well Duffing analog circuit is harmonically excited at 35 Hz and the 

input voltage amplitude is increased by sweeping across the bifurcation point starting 

from 0.3 V to 0.4 V. In addition to the ambient noise level, different levels of Gaussian 

white noise are added to the excitation input voltage to examine the stochastic influences 

on the saddle-node bifurcation activation. The root-mean-square (rms) amplitude of the 

ambient noise in the experiment is 0.015 mV. The input voltage amplitude sweep rates 

and the additive noise levels applied in the experiment are given in Table 4.2. Note that 

the sweep conditions and noise levels are in the range that does not induce other 

Table 4.2. Scaled noise level 𝜶 for each sweep rate and additive noise level applied in the 

experimental investigation. 

sweep rate, mV/s 0.5 2 10 10 10 10 

noise level, mV rms 10 50 10 50 100 100 

α 9.2 7.4 184.1 36.8 18.4 7.4 

sweep rate, mV/s 50 50 50 50 50 50 

noise level, mV rms 10 50 100 250 500 1000 

α 920.7 184.1 92.1 36.8 18.4 9.2 
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bifurcation in the bistable circuit, which satisfies the assumption of utilizing the normal 

form for analysis in this work. The input voltage amplitude 𝑉𝑒𝑠𝑐 that triggers non-smooth 

saddle-node bifurcation is recorded and utilized to derive the scaled escape time 𝑇 =

(𝑉𝑒𝑠𝑐 − 𝑉𝑖
𝑐𝑟) (𝑅𝐶 𝑟𝑉)⁄ . Note that the scaled escape time is greater than zero when delayed 

bifurcation occurs, while it gives negative value for premature bifurcations. The mean 〈𝑇〉 

and standard deviation 𝑆𝐷 〈𝑇〉 of the escape time are obtained from 100 runs for each 

condition with various sweep rates and noise levels. In Figure 4.3, the mean and standard 

 

Figure 4.3. The analytically predicted mean and standard deviation of escape time 𝑻 using 

Fokker-Planck equation (solid line) and Kramer’s rate (dashed line) are compared with the 

results obtained by Monte-Carlo simulation (triangle), and experimental measurement 

(square) with respect to the scaled noise level 𝛂. Inset figure shows zoomed view for small 𝜶. 
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deviation of the escape times estimated by the theoretical framework using Fokker-

Planck equation (solid curve) and adiabatic approximation (dashed line) for large 𝛼 are 

plotted with the experimentally obtained results (square) as a function of scaled noise 

level 𝛼. In addition, Monte-Carlo based results (triangle) obtained by numerically solving 

the scaled stochastic normal form in Eq. (4.16) for 1000 times via Euler-Maruyama 

method [150] are included in Figure 4.3 for comparison. It can be observed that the 

escape statistics estimated by the scaled normal form are in good agreement with the 

numerically and experimentally determined results. Both of the delayed (𝑇 > 0) and 

premature (𝑇 < 0) escape events in the bistable circuit are successfully predicted for 

small and large values of scaled noise level, respectively. Overall, the experimental and 

numerical investigation results obtained for a wide range of bifurcation parameter sweep 

rates and noise levels strongly support and validate the prediction obtained by the 

proposed scaled normal form Eq. (4.7). The theoretical analysis derived based on normal 

form herein will provide an effective new means for predicting the onset of critical 

transitions related to saddle-node bifurcation in a variety of non-smooth systems under 

non-stationary and stochastic influences. 

4.4. Summary and Conclusion 

The non-stationary and stochastic influences on the activation of non-smooth 

saddle-node bifurcation are investigated to develop a theoretical foundation for predicting 

critical parameters that activate escape from a stable equilibrium. A new scaled normal 

form of non-smooth saddle-node bifurcation is derived, which enables examining the 

dual influence on the escape event by using a single parameter. The distribution of the 
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onsets of bifurcation is then quantitatively predicted from the Fokker-Planck equation 

corresponding to the scaled normal form. Numerical and experimental investigations 

using a double-well Duffing analog circuit successfully verify the accuracy of the 

predictions obtained by the theoretical framework. Since the predictive strategy 

developed here is based on normal form analysis, it is expected that this theoretical 

framework will provide a straightforward and accurate means for estimating critical 

conditions that lead to sudden large jumps in the response of various practical contexts 

associated with non-smooth saddle-node bifurcation. 
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CHAPTER 5  

Enhancing Impedance-Based SHM using Bistable 

and Adaptive Piezoelectric Circuitry 

5.1. Introduction 

While Chapter 3 has vividly illustrated the potential for integrating the bifurcation-

based (BB) sensing strategy using bistable circuitry with the impedance-based SHM, the 

preliminary study was based on employing stationary structural responses in relatively 

low frequency range as input for the bistable circuit. This chapter investigates a novel BB 

sensing method utilizing a network of bistable circuits that enables high frequency 

interrogation to determine small damage-induced impedance changes, while considering 

the unavoidable noise and non-stationary influences on the bifurcation activations 

revealed in Chapter 4. In conjunction with the data enrichment concept investigated in 

Chapter 2, this chapter develops a new impedance-based SHM approach that can 

accurately identify the location and severity of small structural damages under realistic 

noise influences. 

In the following sections, the damage identification approach utilizing adaptive 

piezoelectric circuitry is first summarized. Then, the new approach for damage-induced 
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impedance change measurement using bifurcations in an array of bistable circuits is 

discussed with design guidelines considering practical implementations. Numerical and 

experimental damage identification efforts are conducted to verify the effectiveness of 

the proposed approach against noise contamination. Following the investigations, 

concluding remarks are provided to summarize and reflect upon the potential of the new 

approach. 

5.2.  Overview of Damage Identification Using Adaptive 

Piezoelectric Circuitry 

This section briefly reviews the damage identification algorithm previously 

introduced in Chapter 2, which is integrated with the bifurcation-based sensing approach 

explored in this chapter. Figure 5.1 shows a schematic of an example structure integrated 

with electric circuit for piezoelectric impedance measurement and adaptive piezoelectric 

circuit with tunable inductor. The piezoelectric admittance 𝑌(ω) , inverse of the 

 

Figure 5.1. Illustration of monitored structure integrated with adaptive piezoelectric 

circuitry. 
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piezoelectric impedance, at frequency ω is obtained by the voltage drop 𝑉𝑅  across the 

resistor 𝑅𝑠 [27],  

 𝑌(ω) =
1

𝑅𝑠

𝑉𝑅

𝑉𝑒
, (5.1) 

where 𝑉𝑒 is the excitation voltage. By employing the spectral element method [82,85], the 

admittance of the integrated system can be derived as  

 𝑌(ω) =
1

𝑅𝑠
𝑘1[𝑘2𝚽𝑝𝐒−1(𝜔)𝚽𝑝

T + 1] (5.2) 

where 𝐒(ω) represents the frequency dependent dynamic stiffness matrix and 𝑘1, 𝑘2 are 

coefficients related to the geometry and material properties of the integrated system. The 

vector 𝚽𝑝 indicates the location of the piezoelectric transducer in the model discretized 

into N elements. For example, when damage is assumed as local stiffness reduction in the 

structure, a vector of damage indices can be defined as 𝐝 = [d1, d2, … , dN ]T, where di 

represents stiffness reduction of the i-th element. Since the stiffness terms are nonlinearly 

formulated in the dynamic stiffness matrix inverse 𝐒−1(ω) of the damaged structure, 

Taylor series expansion of 𝑌(ω) is employed to derive the inverse problem and explicitly 

determine the stiffness reduction induced by damage. 

 ∆𝒀(𝐝) = 𝐆 × 𝐝 (5.3) 

where sensitivity matrix 𝐆 = ∂𝒀(ω) ∂𝐝⁄ |𝐝=0 and ∆𝒀(𝐝) is a vector of damage-induced 

piezoelectric admittance changes. The location and severity of the damage can be 

identified by solving for the damage index vector 𝐝̂  that minimizes the difference 

between the vector of experimentally measured admittance change ∆𝒀𝑚 and the vector of 

admittance changes predicted by the baseline model ∆𝒀(𝐝).  

 𝐝̂ = argmin𝐝‖∆𝒀𝑚 − ∆𝒀(𝐝)‖ (5.4) 
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This inverse problem is often highly underdetermined since the number of 

independent impedance measurement data sets are generally far smaller than the number 

of required system parameters, which leads the damage index vector 𝐝̂ to be unstable and 

severely sensitive to noise in ∆𝒀𝑒. However, this limitation can be addressed by utilizing 

an adaptive piezoelectric circuitry with tunable inductor integrated to the monitored 

structure. For example, when the inductance values are strategically tuned from 𝐿1 to 𝐿𝑛 

[76,151], n different sets of inverse equations can be obtained, i.e., ∆𝒀(𝐿𝑖) = 𝐆(𝐿𝑖) × 𝐝, 

where the sensitivity matrix 𝐆(𝐿𝑖)  and the admittance changes ∆𝒀(𝐿𝑖)  are both 

dependent on the inductance value 𝐿𝑖. By augmenting these equations in a matrix form 

and substituting into Eq. (5.4), one can significantly enhance the underdetermined inverse 

problem by increasing independent information about the damage in the inverse problem 

formulation as the following: 

 𝐝̂ = argmin𝐝‖∆𝒀𝑚
𝐿 − ∆𝒀𝐿(𝐝)‖ (5.5) 

 ∆𝒀𝐿(𝐝) = {

∆𝐘( 𝐿1)

∆𝐘( 𝐿2)
⋮

∆𝐘( 𝐿𝑛)

} = [

𝐆( 𝐿1)

𝐆( 𝐿2)
⋮

𝐆( 𝐿𝑛)

 ] × 𝐝 (5.6) 

where ∆𝒀𝑚
𝐿  is the vector of experimentally measured admittance changes of the 

integrated system with corresponding inductances. 

5.3.  Impedance Change Measurement Using Bifurcations in 

Bistable Circuitry Network 

Section 5.2 shows that the impedance variations induced by damage occurrence are 

utilized as input for the damage identification routine enhanced by the adaptive 
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piezoelectric circuitry. Yet, the impedance changes induced by small damages may not be 

easy to accurately measure. This is because with high frequency interrogation, the 

response can be suppressed by structural damping and thus easily be buried in noise. In 

order to address this concern, this research develops a new method that enables robust 

measurement of the damage-induced impedance variations against noise contamination 

by utilizing the bifurcation phenomena in a network of bistable circuits for structural 

damage identification.  

5.3.1. Overview of Impedance Change Measurement Using a Network 

of Bistable Circuits 

Figure 5.2(a) presents the configuration of a beam structure integrated with the 

proposed bistable and adaptive piezoelectric circuitry. The double-well Duffing analog 

circuit [103,126,146] employed as bistable circuit in this study (Figure 4.2(a)) involves 

saddle-node bifurcation activated when the input voltage amplitude exceeds a critical 

threshold, while the excitation frequency is fixed at a value that is below the linear 

resonance frequency of the circuit. As a result, the circuit undergoes sudden and dramatic 

change in the output voltage level with minute input voltage variation around the critical 

threshold. For example, when the input voltage amplitude is lower than the bifurcation 

threshold, the bistable circuit output voltage undergoes small amplitude, intrawell 

oscillations; whereas for higher input levels, the circuit may exhibit output with large 

amplitude interwell oscillations. We capitalize on this drastic response change that yields 

remarkable sensitivity to the input voltage variation for measuring minute changes in the 

piezoelectric impedance induced by damage occurrence. 
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By strategically integrating the bistable circuitry with the host structure and 

piezoelectric transducer as shown in Figure 5.2(a), the electromechanical impedance that 

reflects the structural response effectively becomes the input to the bistable circuit 

following gain adjustment. As a result, by monitoring the bifurcation in the output 

voltage 𝑉𝑜  that is activated by the impedance changes, one can assess the structural 

change associated with the occurrence of damage. Figure 5.2(b) shows an example of 

structural response around resonance obtained by the piezoelectric transducer. Since 

structural damage is assumed as local stiffness reduction in this study, the occurrence of 

damage reduces the resonance frequency and increases the structural response at 

frequencies below the linear natural frequency. When a bistable circuit is designed such 

that the bifurcation threshold (h0 in Figure 5.2(b)) is located between the structural 

responses of the healthy and damaged structures for harmonic excitation at frequency 𝜔𝑜, 

the healthy structure may generate small amplitude intrawell oscillation in the output 

voltage of the bistable circuit since the input voltage level is lower than the bifurcation 

threshold, while the damaged structure may induce large amplitude interwell oscillation 

as compared in Figure 5.2(c). This drastic change in the output voltage can be utilized to 

assess the impedance change induced by damage. 
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Figure 5.2. (a) Illustration of a structure integrated with bistable and adaptive piezoelectric 

circuitry. (b) Example of normalized input voltage levels of healthy and damaged 

structures. The right inset image shows a representative output voltage level profile with 

respect to the relative bifurcation threshold values determined by the input gain values of 

each bistable circuit for healthy and damaged structures. (c) Example bistable circuit 

output voltage time series for intrawell and interwell dynamics. 
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By capitalizing on the negligible backward coupling due to the characteristics of 

op-amp in the bistable circuit [103], one can apply the structural response at a single 

frequency as input to a network of identical bistable circuits in parallel, as presented in 

Figure 5.2(a). The input voltage amplitudes for each bistable circuit are then adjusted by 

systematically tuning the gain values so that the adjusted input amplitudes are 

sequentially located at relatively different levels within a range that encompasses the 

bifurcation threshold. By evaluating the output voltages of each bistable circuit whether 

they exhibit intra- or interwell oscillations and comparing the results for the healthy and 

damaged structures, the damage-induced impedance change can be accurately determined 

as will be described below. For example, when the healthy structural response is applied 

to a bistable circuit with relatively high gain value, the circuit may exhibit interwell 

oscillation as the input level become larger than the bifurcation threshold. On the other 

hand, the bistable circuit with relatively low gain value may show intrawell oscillation in 

the response. In this way, when the gain values for each bistable circuit are selected to be 

sequentially decreasing, the corresponding circuit responses initially exhibiting interwell 

oscillation will suddenly change to the intrawell since the relative bifurcation threshold 

value increases with respect to the input voltage level. The sudden change occurs at a 

certain bistable circuit where the relative threshold value exceeds the normalized input 

voltage level. As a result, one may obtain a digitized (either intra- or interwell oscillations) 

array of bistable circuit responses that exhibits a notable jump as presented in the inset of 

Figure 5.2(b). Repeating this process for the damaged structure may yield a similar array 

of responses but with a sudden jump at a bistable circuit with a different relative 

threshold value. As illustrated in the inset image of Figure 5.2(b), for relatively low (high) 
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threshold values, the bistable circuit output voltage may exhibit interwell (intrawell) 

oscillations for both healthy and damaged structures; whereas bistable circuits having the 

relative threshold values between the input voltages from the healthy and damaged 

structures will show remarkably different output voltage levels for each structure. 

Therefore, the damaged-induced impedance change at the specific frequency can be 

determined from the notable difference between these digitized arrays for the healthy and 

damaged structures. By repeating this procedure for other frequencies, the piezoelectric 

impedance variations can be accurately quantified to be utilized in the damage 

identification routine presented in Section 5.2. Therefore, by utilizing the dramatic 

changes in the bistable circuit responses, we can measure minute impedance changes 

induced by small structural damages. 

5.3.2.  Gain Selection Strategy Considering Practical Implementation 

The core principle of the proposed bifurcation-based sensing approach is based on 

tracking the onset of saddle-node bifurcation that induces dramatic change in the 

response level. On the other hand, it is well known that saddle-node bifurcation could be 

strongly affected by some influences that are unavoidable and ever-present in practical 

applications. For example, noise may yield a distribution of premature bifurcation points 

[116–118] that activate bifurcation even before the governing parameter reaches the 

deterministic bifurcation threshold, while non-stationarity of the bifurcation parameters 

may delay the onset of bifurcation [119,120]. As a result, it is critical to distinguish 

whether the bifurcation is activated due to actual damage-related structural changes or the 

noise and nonstationary influences to successfully implement the advanced BB sensing 
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approach. Therefore, in this section such statistical characteristics of the bifurcation 

points are theoretically investigated and incorporated to strategically selecting the gain 

values for BB sensing in practical applications.  

In this research, the target structure is harmonically excited at frequency 𝜔𝑜 with 

increasing amplitude up to 𝑉𝑒 at a rate of 𝜇𝑒. The structural response obtained by voltage 

drop 𝑉𝑅  across the resistor 𝑅𝑠  with additive Gaussian white noise is applied as input 

voltage 𝑉𝑖 to the array of bistable circuits following gain adjustments. The stochastic and 

non-stationary influences on the activation of classical smooth saddle-node bifurcations 

can be investigated by utilizing the stochastic normal form of dynamic saddle-node 

bifurcation, which is a simplified form that describes the system dynamics local to the 

bifurcating point [125,126]. Since the bistable circuit exhibits non-smooth dynamical 

behavior due to the nonlinear feedback loop among an op-amp and a pair of diodes, we 

develop a normal form of non-smooth saddle-node bifurcation to examine the local 

dynamics near the bifurcation point: 

 𝑧′ = 𝜏 + |𝑧| + 𝛼𝜉. (5.7) 

where 𝑧 is a scaled output voltage of the bistable circuit, (  )′ indicates differentiation 

with respect to scaled time 𝜏, and α is scaled noise level according to the sweep rate. 𝜉 is 

Gaussian white noise with autocorrelation 〈𝜉(𝑡)𝜉(𝑡̃)〉 = 2𝛿(𝑡 − 𝑡̃). By solving the well-

known Kramer’s rate [116] corresponding to the normal form (5.7) with a straight 

forward back-calculation, we can theoretically estimate the distribution of input voltage 

amplitudes 𝑉𝑒𝑠𝑐 that trigger the non-smooth saddle-node bifurcation for given noise and 

sweep conditions, which will be utilized for determining the gain values. Detailed 

derivation can be found in Chapter 4.   
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Figure 5.3 shows an example of the theoretically estimated cumulative probability 

distribution of bifurcation points in the bistable circuit when the input sweep rate is 4 V/s 

and the standard deviation of the measurement noise is 10 mV. The horizontal axis is the 

input voltage amplitude and the cumulative probability is provided along the vertical axis. 

If the gain value is designed such that the input voltage amplitude 𝑉𝑖 is swept up to VA in 

Figure 5.3, which is approximately two standard deviations 𝑆𝐷〈𝑉𝑒𝑠𝑐〉 below the mean 

value 〈𝑉𝑒𝑠𝑐〉 , the bistable circuit will undergo saddle-node bifurcation from intra- to 

interwell oscillations with 2.5 % probability. In other words, the bistable circuit will have 

97.5 % probability to exhibit intrawell oscillation. On the other hand, gain value selected 

to sweep the input amplitude up to VB point, which is on the opposite side of the mean 

value, may induce interwell oscillation in the response with a probability of 97.5 %. In 

other words, the input amplitude increase from VA to VB may activate saddle-node 

 

Figure 5.3. Cumulative probability distribution of bifurcation points. 
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bifurcation with approximately 95% probability. Therefore, in this research the gain 

values are determined such that the input voltage amplitudes 𝑉𝑖 = 𝐺𝑛𝑉𝑅 for each bistable 

circuit are sequentially separated by 4 standard deviations of the escape voltage 

distribution, which results in 

 𝐺𝑛 =
〈𝑉𝑒𝑠𝑐〉−(4𝑛−2)𝑆𝐷〈𝑉𝑒𝑠𝑐〉

𝑉𝑅
 (5.8) 

where 𝐺𝑛 the gain value for the n-th bistable circuit in the array. As a result, the damage-

induced change of structural response amplitude ∆𝑉𝑅 can be determined by comparing 

whether the bifurcation has occurred in each bistable circuit for the healthy and damaged 

structures. For example, if the bifurcation has occurred at the p-th and q-th circuits of the 

array for the healthy and damaged structures, respectively, yielding significant jump in 

the response amplitude as illustrated in the inset of Figure 5.2(b), the difference in the 

bistable circuit response array can be mapped to the corresponding damage-induced 

structural response change as  

 ∆𝑉𝑅 ≈
4(𝑞−𝑝) 𝑆𝐷〈𝑉𝑒𝑠𝑐〉

𝐺0
 (5.9) 

Finally, the damage-induced admittance (inverse of the impedance) change ∆𝑌 can 

be determined as Eq. (5.10) and be utilized for damage prediction with the identification 

algorithm presented in the Section 5.2. 

 ∆𝑌 =
1

𝑅

∆𝑉𝑅

𝑉𝑒
 (5.10) 

Therefore, by incorporating the theoretically estimated bifurcation statistics into 

developing a bifurcation-based sensing strategy, the impedance variations can be 

accurately determined via monitoring the dramatic changes in the response levels of the 

bistable circuit array. 



99 

5.4.  Numerical Investigations 

5.4.1.  Case Study: Damage Identification under Noise Influences 

In this section, a numerical case study is conducted to verify the proposed damage 

identification approach by using a beam structure model integrated with bistable and 

adaptive piezoelectric circuitry shown in Figure 5.2(a). A fixed-fixed beam structure 

evenly discretized into 31 elements is integrated with piezoelectric transducers at the 3
rd

 

and 21
st
 elements, which are respectively connected to a tunable inductor for data 

enrichment and a bistable circuitry network for impedance change measurement. Damage 

is represented by 1 % and 1.5 % structural stiffness reductions at the 13
th

 and 24
th

 

elements, respectively. Since the damage effect is more significant near the resonance 

peaks, the impedance changes are assessed at 5 frequencies around each resonance 

frequency for damage identification. Then, the inductances are tuned for each resonance 

in the frequency range of 5 kHz to 11 kHz following the procedure introduced in [75,151]. 

The proposed bifurcation-based sensing approach is implemented by numerically solving 

the governing equation in Eqs. (5.11) and (5.12), which is derived assuming ideal op-amp 

characteristics and the Shockley’s diode model [149], 

 𝐿
d𝐼𝐿 

dt
= (𝑘 − 1)𝑉𝐷 − 𝐼𝐿𝑅 − 2𝑅3𝐼𝑠 𝑠𝑖𝑛ℎ (

𝑉𝐷

𝜂𝑉𝑇
) + (1 − 𝑘)𝑉𝑖  (5.11) 

 𝐶
d𝑉𝐷

dt
=

𝐼𝐿−2𝐼𝑠 𝑠𝑖𝑛ℎ(
𝑉𝐷

𝜂𝑉𝑇
)

2𝑅3𝐼𝑠
𝜂𝑉𝑇

𝑐𝑜𝑠ℎ(
𝑉𝐷

𝜂𝑉𝑇
)+1

  (5.12) 

where 𝐿 , 𝐶 , and  𝑅  are the bistable circuit inductance, capacitance, and resistance, 

respectively. 𝑉𝐷, 𝜂, 𝑉𝑇, and 𝐼𝑠 represent voltage drop over an open diode, ideality factor, 

thermal voltage, and reverse bias saturation current of the diode, respectively. 𝑉𝑖 and 𝐼𝐿 
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respectively indicate the input voltage and the current flowing through the inductor. The 

feedback gain is 𝑘 = 1 + 𝑅2 𝑅1⁄ . The output voltage 𝑉𝑜  can be derived as 𝑉𝑜 = 𝑉𝐷 +

2𝑅3𝐼𝑠 sinh(𝑉𝐷 𝜂𝑉𝑇⁄ ) . Since it is well known that the double-well Duffing oscillator 

exhibits non-unique steady-state dynamics, especially near its principle resonance 

frequency [103,152], the bistable circuit parameters are designed such that the harmonic 

excitation frequency is much lower than the principle resonance frequency in order to 

reliably activate the saddle-node bifurcation. Relevant parameters of the integrated 

system are listed in Table 5.1. In this case study, Gaussian white noise with standard 

deviation of 10 mV (approximately 28 dB signal-to-noise ratio) is added to the input 

signal prior to gain adjustments. The gain values are determined based on the procedure 

described in Section 5.3 for the given noise level. Figure 5.4 shows the measurement 

error distribution of damage-induced piezoelectric admittance changes determined by the 

(a) conventional method that compares the spectral amplitudes of the healthy and 

damaged structural responses and (b) proposed approach utilizing the bistable circuit 

network. It is clearly observed that the proposed method provides significantly enhances 

the measurement accuracy by more than 300 % compared to the conventional approach 

by decreasing the standard deviation of measurement error from approximately 4.9 ×

10−6 to 1.6 × 10−6. 
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Figure 5.5 presents the damage location and severity identification results. The 

horizontal axis indicates the element number and the predicted damage severity 

(elemental stiffness reduction) is provided along the vertical axis. The dashed boxes 

indicate the actual location and severity of the damages introduced in this case study. 

When the conventional approach is applied to measure the impedance change without 

utilizing the adaptive piezoelectric circuitry for data enrichment, the damaged elements 

are falsely identified with the largest damage of 5.1 % stiffness reduction at the 23
rd

 

element as shown in Figure 5.5(a). On the other hand, Figure 5.5(b) shows that applying 

 

Figure 5.4. Distributions of admittance change measurement errors obtained by the (a) 

conventional and (b) proposed approaches. Standard deviations are given alongside the 

Gaussian fits to each distribution plotted as dashed lines. 
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the data enrichment approach to the damage-induced impedance changes obtained by the 

conventional method improves the damage prediction. It can be observed that the damage 

at the 24
th

 element with 1.5 % stiffness reduction is approximately predicted, yet damage 

at the 13
th

 element is not identified correctly. Since structural health monitoring systems 

may not distinguish false alarms from accurate damage identification, such incorrect 

prediction may mislead subsequent corrective measures. In contrast, when the proposed 

bistable and adaptive piezoelectric circuitry is employed, damage identification results 

accurately pinpoint the location and severity of damages under noise influences as shown 

in Figure 5.5(c). 

Table 5.1. System parameters. 

Beam structure Piezoelectric transducer 

Length × Thickness 

× Width, mm 

607.8 × 7.62 × 

3.175 

Length × Thickness × 

Width, mm 
17 × 7.62 × 0.191 

Young’s modulus, 

GPa 
73.4 

Young’s modulus, 

GPa 
66 

Density, kg/m3 2780 Density, kg/m3 7800 

Loss factor, % 0.15 Permittivity, F/m 1.6× 10−8 

Poisson’s ratio 0.33 
Piezoelectric constant, 

m/V 
-190× 10−12 

Bistable circuit Inductance values for data enrichment 

L, uH 10 𝑅3, kΩ 2 𝐿1, mH 134.6 𝐿5, mH 56.4 

C, nF 40 𝐼𝑠, nA 4.352 𝐿2, mH 106.4 𝐿6, mH 46.6 

R, Ω 30 𝜂 1.906 𝐿3, mH 85.1 𝐿7, mH 38.8 

𝑹𝟏, 𝑹𝟐, k Ω 1 𝑉𝑇 , mV 26 𝐿4, mH 68.9 𝐿8, mH 32.6 
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5.4.2.  Damage Identification Study for Various Damage Profiles 

The prior section presented damage identification results for a single case with 

damages at two locations of the structure. It was found that utilizing the proposed 

approach significantly improved the damage identification performance under realistic 

noise influences, which otherwise greatly degrades the viability of damage identification. 

In this section, we examine the reliability of the proposed approach by further extending 

the numerical investigation of damage identification for various damage profiles with 

different numbers and severities, while keeping other conditions the same as Section 

5.4.1. The damage is assumed to be located at from one to three different locations of the 

beam structure with four different severities (0.5, 1, 1.5, and 2% local stiffness reduction). 

The damage identification routine is performed for 924 different cases of damage profiles 

including 124 conditions of single damage and 400 conditions for two and three damages, 

respectively, which are randomly selected out of their total possible combinations. The 

 

Figure 5.5. Damage identification results obtained by using (a) conventional method, (b) 

adaptive piezoelectric circuitry only, and (c) integrated bistable and adaptive piezoelectric 

circuitry 
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root mean square deviation (RMSD) between the actual 𝐝𝑎𝑐𝑡𝑢𝑎𝑙 and identified 𝐝̂ damages 

is employed to quantify the damage prediction error and compare the performance of 

damage identification. 

 𝑅𝑀𝑆𝐷 = √
∑ (𝑑̂𝑖−𝑑𝑖

𝑎𝑐𝑡𝑢𝑎𝑙)
𝟐

 𝑁
𝑖=1

∑ 𝑑𝑖
𝑎𝑐𝑡𝑢𝑎𝑙𝟐𝑁

𝑖=1

 (5.13) 

where 𝑑̂𝑖 , 𝑑𝑖
𝑎𝑐𝑡𝑢𝑎𝑙  are the predicted and actual damage indices of the i-th element, 

respectively.  

Figure 5.6 compares the distributions of damage prediction errors obtained by 

utilizing the (a) conventional and (b) proposed methods. The damage prediction error is 

presented along the vertical axis and the horizontal shows its relative frequency. The first 

and third quartiles of the distributions are indicated by dashed lines with numerical values 

 

Figure 5.6. Distributions of damage identification errors obtained by using the (a) 

conventional and (b) proposed methods. Dashed lines included in both plots indicate the 

first (Q1) and third (Q3) quartiles of each distribution, respectively. 
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given alongside. It is seen that the damage prediction result is greatly improved by 

employing the proposed approach, where the modes with maximum relative frequency 

and medians of the error distributions decrease from approximately 92 % and 81 % to 20 % 

and 36 %, respectively. From these results, it can be concluded that the proposed method 

utilizing the bistable and adaptive piezoelectric circuitry significantly enhances the 

reliability of damage identification under noise influences. 

5.5.  Experimental Investigation 

Experimental damage interrogation on an aluminum beam structure (Al-2024) is 

performed to validate the effectiveness of the proposed approach. The experimental 

configuration is shown in Figure 5.7(a). The damage is introduced by a surface notch at 

the 25
th

 element of the beam structure discretized into 61 elements. The notch is 0.09 mm 

deep and 10.4 mm long, which may result in approximately 8.3 % reduction of the local 

bending stiffness [78]. The piezoelectric transducers (PSI-5A4E) attached on the top 

surface of the 29
th

 and 41
st
 elements are connected to a tunable inductor for impedance 

data enrichment and a bistable circuit for impedance measurement, respectively. By 

strategically selecting the inductance values of a synthetic inductor that consists of op-

amps (LM324), resistors, and capacitors (Figure 5.7(b)) [89], the dynamics of the 

electromechanically coupled system are favorably altered to obtain an enriched data set 

of damage-induced impedance change measurements. The dimensions of the beam 

structure and piezoelectric transducers and the circuitry parameter values of the synthetic 

inductor and the bistable circuit are provided in Table 5.2.  
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The proposed bifurcation-based sensing method may be implemented in two ways: 

parallel and iterative methods. Figure 5.2(a) shows an example of the parallel approach 

where the structural response measured by the piezoelectric transducer effectively 

becomes input to a network of bistable circuits in parallel to examine whether each 

bistable circuit exhibited intra- or interwell oscillations. On the other hand, in this study 

we have employed the iterative method with a single bistable circuit to realize the 

proposed sensing algorithm for damage identification as shown in Figure 5.7(a). The 

electromechanically coupled system is harmonically excited with amplitudes swept in a 

 

Figure 5.7. (a) Configuration of the experimental beam structure integrated with bistable 

and adaptive piezoelectric circuitry (distances given in millimeters). (b) Schematic 

illustration of the synthetic inductor. 

Table 5.2. Experimental system parameters. 

Beam, 

mm 
627.2 × 7.21 × 

3.175 
P1, mm 

16.85 × 7.09 × 

0.191 
P2, mm 16.3 × 7.09 × 0.191 

Circuitry 

element 

C1, nF C2, nF R2, Ω R3, Ω R4, Ω R5, Ω R6, Ω R7, Ω 

9.788 9.807 4620 4629 4629 4628 4632 4629 

L, mH 39.45 40.367 41.272 45.32 46.16 63.1 80.12 

R1, Ω 850 870 890 980 1000 1371 1750 
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rate of 4 V/s, and the resulting the structural response measured by voltage drop across 

the resistor is iteratively fed to the bistable circuit following gain adjustments that 

corresponding to the sequentially selected values in the parallel method. In order to 

account for measurement noise in practice, Gaussian white noise with standard deviation 

of 50 mV (approximately 15 dB signal-to-noise ratio) is applied to the input signal prior 

to the gain adjustments. The gain values are selected according to the guideline presented 

in Section 5.2 such that the relative levels of the bifurcation threshold are separated by 

four standard deviations of the estimated escape distribution. For each iteration, the 

bistable circuit response is evaluated for whether it exhibited intra- or interwell 

oscillations. The two methods should provide equal sensing performance when the 

strategies are correctly performed. Since the damage is introduced as a surface notch in 

the experiment, the damage indices are restricted to have positive coefficients in the 

inverse algorithm assuming stiffness reduction. 

The damage prediction results obtained by the conventional method and the new 

approach utilizing bistable circuitry are presented in the left (a, b) and right (c, d) 

columns of Figure 5.8, respectively. The damage identification routines are carried out 

for 10 runs, and the averaged results (local stiffness reductions in each element) are 

plotted in Figure 5.8(a,c) where the vertical axis indicates the element number and the 

number of inductance tunings are provided along the horizontal axis. For both 

measurement methods, the damage prediction results indicate wrong location when the 

data enrichment technique is not applied where the number of inductance tunings is one. 

However, as the number of inductance tunings increases, the damage identification 

results based on the proposed approach converge to the correct location and finally 
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pinpoint damage at the 25
th

 element with 7.3 % stiffness reduction, close to the actual 

value of 8.3%. In contrast, although the damage predictions from the conventional 

method converge around the actual damage location, the final damage is predicted to be 

5 % stiffness reduction at the 25
th

 element. The damage identification errors plotted in 

Fig 8(b,d) further exemplify the effectiveness of the proposed method. The damage 

identification errors (RMSD) of the ten individual results (dashed line) are presented as a 

function of the number of inductance tunings. The mean values are shown in solid line 

with first standard deviations indicated by error bars. For both measurement methods, the 

damage identification errors show decreasing trends as the number of inductance tuning 

increases, which demonstrates the effectiveness of data enrichment strategy utilizing the 

adaptive piezoelectric circuitry. On the other hand, the deviations of the prediction errors 

determined by the proposed method remain small and the final prediction error is 38%, 

while the conventional method yields large deviations in the prediction errors and its final 

prediction error is 73 %, approximately twice of the proposed method. Overall, the 

experimental results support and verify that the proposed approach utilizing the 

integrated bistable and adaptive piezoelectric circuitry enables accurate and robust 

damage identification under noise contamination. 
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5.6.  Summary and Conclusion 

This chapter investigates a novel approach that utilizes an integrated bistable and 

adaptive piezoelectric circuitry to enhance the robustness and accuracy of 

electromechanical impedance-based damage identification. By changing the dynamic 

characteristics of the integrated system using adaptive piezoelectric circuitry, we can 

obtain a significantly increased number of impedance changes with respect to identical 

damage profile, which are accurately measured by monitoring the bifurcation activations 

in the bistable circuit array. As a result, the measurement method and the 

 

Figure 5.8. Experimental damage identification results obtained by the conventional and 

new bifurcation approaches are presented in columns (a, b) and (c, d), respectively. Figure 

(a, c) show the damage identification results and the corresponding damage prediction 

errors (RMSD) are plotted in (b, d) with respect to the number of inductance tunings. 
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underdetermined inverse problem for damage identification are fundamentally improved 

to provide much more robust damage predictions against noise and measurement error. 

Numerical and experimental case studies have successfully verified that the impedance 

change measurements and the resulting damage identification performance are 

significantly enhanced by utilizing the proposed approach. Overall, the results of this 

chapter demonstrate the potential of implementing the advanced bifurcation-based 

sensing approach, not only for the impedance-based SHM to provide a new robust 

pathway in practical implementations, but also for a broad range of sensing and 

identification applications that are exposed to noise problem. 
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CHAPTER 6  

Scholarly Contributions, Broader Impacts, and 

Recommendations 

6.1. Summary of Scholarly Contributions and Broder Impacts 

This research aims to extend the potential of the piezoelectric impedance-based 

damage identification approaches by developing a new methodology that improves the 

severely underdetermined inverse problem for accurate damage identification, and by 

introducing a novel approach that can accurately determine the damage-induced 

piezoelectric impedance variations under environmental noise and damping influences. 

The scholarly contributions and broader impacts of this thesis work are summarized 

below. 

 The data enrichment concept developed in this thesis addresses the critical 

limitation of seriously underdetermined inverse problem for piezoelectric 

impedance-based damage identification. The impedance measurements are 

significantly enriched with respect to same structural defect by integrating 

the adaptive piezoelectric circuitry with monitored structure and selectively 

tuning the inductance values in the circuitry. The enriched data sets are then 
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utilized to improve the rank deficiency of the inverse problem. This idea of 

data enrichment using adaptive piezoelectric circuity not only enhances the 

accuracy and robustness of impedance-based damage identification but also 

shows new insights into strategically employing multi-physics couplings to 

fundamentally address various underdetermined inverse problem 

formulations. 

 This research advances the state of the art by developing a new bifurcation-

based sensing strategy utilizing bistable circuits. The results demonstrate 

excellent potential of this approach that can accurately determine the 

damage-induced piezoelectric impedance variations under environmental 

noise and dissipation. It is found that the integration of bistable and adaptive 

piezoelectric circuitry even further enhances the accuracy and robustness of 

the impedance model-based damage identification which are otherwise 

compromised. The novel sensing strategy utilizing bistable circuit and its 

design criteria are expected to have broader impact since the bistable circuit 

is the key element to extend the applicability of the advanced bifurcation-

based sensing method from microscale to a wide range of meso-/macroscale 

systems that are exposed to noise problem. 

 The theoretical investigation on the dynamic and stochastic activation of 

saddle-node bifurcation is aimed to improve the accuracy in determining the 

onset of saddle-node bifurcation since the core principle of the bifurcation-

based sensing approach is based on tracking the bifurcation activation points. 

The results not only enhance the performance of bifurcation-based sensing 
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scheme, but also derive new insights for estimating the sensing limit of 

bifurcation-based sensing approaches under noise and non-stationary 

influences. Furthermore, the rigorous theoretical framework developed 

based on the stochastic normal form of saddle-node bifurcation in non-

smooth dynamical systems provides important scholarly contributions to the 

fundamental understanding of how various non-smooth and nonlinear 

dynamical systems exhibit saddle-node bifurcations under noise and non-

stationary influences. It is expected that these findings will provide a 

straightforward and accurate means for estimating critical conditions that 

lead to sudden large jumps in the response of various practical contexts 

associated with non-smooth saddle-node bifurcation where noise is ever-

present.  

Overall, this thesis makes an important impact to advance the state of the art 

impedance-based SHM by addressing the two major limitations based on the literature 

review in Chapter 1, and is expected to aid the transition of the impedance-based 

approaches into more reliable implementation in SHM applications.  

6.2. Recommendations for Future Work 

This thesis has developed a novel methodology that fundamentally improves the 

underdetermined inverse problem of the piezoelectric impedance model-based damage 

identification approach by tailoring adaptive piezoelectric circuitry, and a new sensing 

platform that enables unprecedented sensing resolution using nonlinear bifurcation 

phenomena in bistable circuits. The escape statistics of saddle-node bifurcation in non-
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smooth dynamical systems is theoretically estimated to further improve the accuracy in 

determining the onset of bifurcations under stochastic and non-stationary influences. 

These advancements were leveraged to significantly enhance the accuracy and robustness 

of piezoelectric impedance-based structural health monitoring. Nonetheless, the current 

state of the art still has room for improvements to achieve more reliable SHM 

implementations and opportunities to extend the insights gained in this thesis. This 

chapter lays out the author’s recommendations for important areas of future work. 

Despite the advancements, transitioning SHM from laboratory settings to real 

structures yet remains a challenge in comparison to its great importance. In particular, 

major challenges in real world implementation include uncertainties from various sources, 

which significantly compromise the reliability of damage identification. Therefore, it is 

recommended that future research effort focus on further developing sensing and 

modeling approaches to reduce these uncertainties. A comprehensive approach that 

accurately quantifies and effectively utilizes the uncertainties is required to enhance the 

reliability of damage identification. Furthermore, since it is obvious that a certain sensor 

or actuator cannot have unlimited coverage area, the author perceives that it is critical to 

develop a strategy that synthesizes a robust sensor network to fully capitalize on the 

potential of the new sensing platform and damage identification algorithm developed in 

this thesis. Sensor networking strategies that satisfy both requirements of SHM and 

wireless network design with redundant coverage will have great potential in not only 

enhancing the reliability of damage diagnosis but also realizing sensor self-diagnosis and 

robust decision making. 
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This thesis has developed a rigorous theoretical framework that estimates the 

statistical characteristics of saddle-node bifurcation activation under ever-present noise 

and non-stationary influences. This insight is not limited to developing bifurcation-based 

sensing techniques. Sudden drastic transitions in the dynamics of complex nonlinear 

systems are often observed in various fields of, for example, aeroelasticity of aircraft 

[153], power grids [154], ecological [112,155] and climate [112,114] systems, and 

financial markets [156]. Accurately predicting the onset of these transitions in advance is 

crucial for understanding how to utilize or prevent the dramatic and sudden changes that 

these systems undergo. Therefore, it is recommended to extend the insights gained in this 

thesis to explore novel methods to quantitatively forecast the activation of these 

transitions. For example, the theoretical framework developed in this thesis for predicting 

the saddle-node bifurcations will be a foundation for analyzing the cascaded critical 

transitions in the interconnected complex systems.   
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