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ABSTRACT

 
Rapid technological developments in next-generation sequencing (NGS) and inter-

institutional collaborations including The Cancer Genome Atlas (TCGA) have enabled 

comprehensive characterization of the genomic, transcriptomic, and epigenetic landscapes from 

bulk tissue specimens in a wide range of cancers. Emerging work has focused on scaling NGS-

based profiling strategies to guide precision medicine approaches in clinical oncology using 

routine clinical biospecimens such as formalin-fixed, paraffin-embedded (FFPE) tissue or less-

invasive liquid (e.g., blood or urine) samples. Technical challenges associated with limited tumor 

lesion size, low nucleic acid quantities, disease-specificity applications, and disease and 

histological heterogeneity present hurdles to widespread adoption and utility of extant NGS-

based precision oncology approaches. Here, several analytical advances are described supporting 

democratization of precision oncology approaches from clinical tissue and liquid biospecimens, 

while revealing disease insights and important clinical considerations in the context of both 

localized and advanced (including multifocal and/or heterogeneous) disease. First, development 

and validation of a targeted DNA and RNA NGS assay compatible with small quantities of DNA 

and RNA isolated from routine, archived FFPE tissue specimens is described. This assay, 

targeting recurrently mutated oncogenic hotspots, tumor suppressors, copy-number-altered 

genes, and recurrent gene fusions is applied to a cohort of >300 FFPE tissue samples, revealing 

high sensitivity with orthogonal molecular diagnostic assays for BRAF, KRAS, and EGFR 

oncogenic alterations. Second, I describe a rapid, inexpensive, low-pass cell-free DNA (cfDNA) 

whole-genome sequencing (WGS) copy-number profiling approach, including a novel heuristic 



xi 
 

tumor content approximation method, capable of establishing genome-wide copy-number 

profiles from 0.01-0.1x sequencing coverage. Application of our approach in plasma samples 

from patients with advanced cancer with matched comprehensive tissue NGS revealed high 

concordance with tissue-based molecular profiles, while highlighting important areas of potential 

utility from noninvasive profiling of overall disease burden. Third, I describe the systematic 

assessment of expression-based molecular subtypes in histologically heterogenous bladder 

cancers, revealing robust identification of basal/luminal molecular subtypes in a cohort of >100 

bladder cancer cell lines and tumor tissue specimens, and recapitulation of basal/luminal 

subtypes in >400 samples profiled by TCGA using selected marker subsets. Importantly, I 

describe divergent expression profiles in the context of shared genomic alterations for individual 

histologically divergent tumor components from the same tumor, confounding proposed clinical 

utility of expression-based subtypes for disease prediction and prognosis. Fourth, I describe the 

development of a targeted RNAseq panel capable of assessing major transcriptional programs 

and disease biomarkers across the full spectrum of prostate cancer disease, while deriving 

commercially available prognostic scores that show limited robustness to disease multifocality. 

Lastly, I describe extensions of our cfDNA WGS approach to urine cfDNA samples from 

patients with advanced cancer, while exploring the potential utility of pairing described analytic 

tools with existing and emerging molecular profiling strategies to improve our understanding of 

disease biology and maximize clinical utility.  
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CHAPTER I: Introduction 

 
Previously published in The Cancer Journal, co-authored with Tomlins, S.A.  

 

Comprehensive next-generation sequencing (NGS) of primary prostate cancer and 

castration-resistant prostate cancer (CRPC) has provided a foundational understanding of the 

prostate cancer genomic and transcriptomic landscape, elucidating key biological and molecular 

components of progression and potential therapeutic opportunities[1, 2]. NGS-based profiling of 

CRPC has identified the most frequent molecular alterations in advanced, treatment refractory 

disease, as well as demonstrated the unique therapeutic challenges in using molecular 

information to guide treatment[1]. At present, NGS-based profiling can enable relatively fast, 

accurate, and comprehensive assessment of driving genomic and transcriptomic alterations in 

advanced cancer. However, prostate cancer is a dynamic, inherently heterogeneous disease, and 

within this context, considerable challenges remain around how best to leverage NGS-based 

screening, prognostic, and disease monitoring strategies in the context of current standards of 

care [3]. Here we review some of the key NGS-based approaches and findings that are enabling 

the tracking of the evolution of metastatic CRPC, including applications for informing treatment, 

and explore challenges for prospective implementation of NGS-based assays aimed at guiding 

precision medicine approaches for CRPC. 

 

Genomic/Transcriptomic Landscape and NGS Profiling in CRPC 
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Multiple recent large-scale sequencing studies have helped to characterize the diverse 

genomic and transcriptomic landscape of both primary prostate cancer and CRPC, as well as 

small cell/neuroendocrine prostatic carcinoma (NePC)[1, 2, 4-6]. These studies have leveraged 

comprehensive DNA and RNA sequencing of fresh frozen tissue samples, describing a 

heterogeneous set of somatic alterations present in CRPC and/or NePC, including those enriched 

or unique in CRPC or NePC compared to primary disease [1, 2]. Alterations of particular 

relevance include frequent adaptive AR amplifications and mutations often conferring resistance 

to first and second generation anti-androgen therapies, TP53 and RB1 mutations and deletions 

particularly in NePC, and an increased prevalence of germline or somatic alterations in DNA 

repair pathway genes in CRPC[1, 2, 4-6]. Comprehensive RNA sequencing of advanced prostate 

cancers have also been recently reported, building on prior expression profiling studies of 

CRPC[2, 4-9]. Sequencing based approaches for assessing the CRPC transcriptome may have 

particular relevance given that the presence of AR splice variants in both primary and advanced 

prostate cancer may lead to increased resistance to second generation anti-androgens[10].  

Overall, these sequencing initiatives have helped to outline the feasibility and efficacy of 

comprehensive (whole genome, whole exome) sequencing-based profiling of CRPC patients in 

large-scale single- or multi-institutional collaborations[1].  

Technical challenges persist, however, for widespread prospective implementation of 

comprehensive NGS based profiling of patients with advanced prostate cancer. Access to fresh 

frozen tissue biopsy samples is often limited, leaving formalin-fixed, paraffin-embedded (FFPE) 

tissue samples as the primary source analyte for many sequencing-based assays[11-13]. Whole 

genome or transcriptome scale sequencing of routine FFPE clinical core biopsy samples has 

proven challenging[14]. Further, even when fresh frozen tissue is obtainable, it is still generally 
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cost-prohibitive for many clinical centers to deploy comprehensive genomic and transcriptomic 

NGS-based profiling of CRPC samples in a prospective fashion [12, 15]. Additionally, routine 

biopsy sampling of metastases in patients with advanced disease is not always performed given 

the utility of serum PSA as a recurrence/response biomarker, limiting tissue availability for 

widespread understanding of molecular relationships between primary and metastatic lesions and 

hindering development of personalized treatment approaches for individuals with CRPC[16].   

Several groups have shown that targeted DNA and RNA sequencing of FFPE tissue 

samples may be a feasible strategy for profiling clinically relevant somatic alterations in both 

primary and advanced prostate cancer [11-13]. Targeted strategies have shown promise in 

assaying recurrently altered oncogenes and tumor suppressors, genes with frequent copy number 

alterations, and driver gene fusions such as TMPRSS2-ERG in order to identify the salient 

driving molecular alterations present in an advanced prostate cancer. Both targeted and more 

comprehensive approaches have also proven effective at identifying alterations that define well-

established prostate cancer subtypes, including samples with ETS family gene fusions as well as 

those with SPOP mutations, SPINK1 overexpression, CHD1 mutations and deletions, and IDH1 

mutations [1, 2, 6, 17-19]. Given the initial success in tissue-based targeted sequencing of CRPC, 

some have even proposed strategies for monitoring disease via rebiopsy of lesions profiled pre- 

and post-treatment paired with NGS profiling[8]. However, these targeted and comprehensive 

approaches all require repeat invasive procedures for individual patient tracking, presenting 

limited feasibility for widespread clinical implementation, particularly in an era where biopsy of 

metastatic lesions to obtain material for molecular testing is not routinely reimbursed.  

For this reason, recent efforts reporting efficacy of non-invasive NGS-based approaches 

to identify and track clinically relevant somatic alterations over time within patients with CRPC 
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may be particularly relevant in the near term[17, 20-24]. These approaches have shown that by 

targeted and more comprehensive sequencing of cell-free DNA (cfDNA), somatic point 

mutations, insertions/deletions, and copy-number alterations can be detected across a broad 

spectrum of tumor-derived cfDNA fractions. Alterations detected have highlighted or confirmed 

a number of important resistance mechanisms that emerge over the course of anti-androgen 

treatment (including both AR amplifications and point mutations), as well as suggesting that AR 

amplification alone may be a strong predictor of resistance to second generation anti-androgens 

abiraterone and enzalutamide[17, 21-23]. Perhaps most importantly, this work has demonstrated 

dynamic temporal changes in circulating tumor DNA fractions in cfDNA representing different 

tumor subclones over the course of anti-androgen treatment, hinting at myriad molecular changes 

in primary and metastatic lesions occurring in response to substantial therapeutic and fitness-

related selective pressures[21].  

Further work suggesting utility of whole exome and RNA sequencing from circulating 

tumor cells (CTCs) in patients with advanced prostate cancer has also been reported [25, 26], 

however the clinical utility of these approaches have not been fully investigated. Overall, these 

non-invasive approaches represent an important first step in understanding the dynamic nature of 

tumor clone and subclone representation detectable in the blood, as well as identifying technical 

hurdles that must be overcome for widespread clinical use of non-invasive NGS-based 

monitoring of molecular alterations in patients with advanced disease. Substantive work is 

required to enhance the sensitivity of these non-invasive approaches and validate the prognostic 

utility of these tools in personalizing patient care for individuals with advanced prostate cancer. 

Of note, very focused assays (including single gene assays) may be the final clinical assays used 



5 
 

after more discovery based NGS approaches have defined critical alterations, such as RT-PCR 

based assays for ARv7 expression in CTCs[10].   

  

Intertumoral heterogeneity 

Despite the broad characterization of the genomic and transcriptomic landscape of 

castrate-resistant prostate cancer (CRPC) and efforts to non-invasively characterize molecular 

alterations during treatment, a complete understanding of the intra-patient progression from 

localized primary prostate cancer to metastatic castrate-resistant disease remains elusive, limited 

primarily by the long timeline of typical prostate cancer progression that complicates 

longitudinal sample collection. Complicating the long arc of disease progression is the relatively 

recent discovery of substantial intra- and inter-individual heterogeneity for patients with 

metastatic disease, which may complicate development of personalized approaches to CRPC 

treatment, particularly for AR based therapies[3, 5, 27]. Prostate cancer is an inherently 

multifocal disease[28], with recent reports describing multiple clonal expansions even within a 

single morphologic tumor focus[29, 30]. While multiple reports support the monoclonal origin of 

lethal metastatic CRPC[3, 5, 6, 31], recent evidence supports the potential of lethal metastases 

arising from one or several clones or subclones in the primary tumor [5, 27, 31]. Likewise recent 

work in heavily treated patients suggests there may be a more complex series of metastasis-to-

metastasis or metastasis-to-surgical bed seeding events that enable widespread metastatic spread 

as well as elimination and recurrence of individual clones during treatment [3, 21, 32]. While 

truncal mutations are typically shared across most lesions, these reports suggest substantial inter-

tumoral heterogeneity may be present in patients with CRPC, although the degree of “relevant” 



6 
 

heterogeneity is less well established[3, 5]. Nevertheless, this heterogeneity presents significant 

challenges for using NGS to inform clinical decision-making in patients with CRPC, primarily 

owing to the limited molecular resolution available from a single core biopsy sample of a 

particular lesion in an inherently multi-focal, heterogeneous disease. Likewise, use and 

interpretation of non-invasive NGS-based disease monitoring approaches must account for the 

heterogeneous mix of physical locations from which tumor derived cfDNA or CTCs being 

assayed were originally shed.    

 

Prognostic and screening considerations 

While NGS-based profiling has played a critical role in elucidating key components of 

prostate cancer biology and some aspects of disease progression, NGS-based prognostic assays 

are still limited. Existing tissue-based prognostic assays, including Oncotype DX, Prolaris, 

Promark and Decipher, use RT-PCR, protein expression, or genomewide expression arrays to 

determine gene/protein expression for their component markers[33]. Ultimately, orthogonal 

NGS-based validation of these assays, incorporation of DNA based alterations, and their 

robustness to multifocality and intratumoral heterogeneity will likely be necessary to further 

improve prostate cancer prognosis and prediction.  

Meanwhile, prospective sequencing of select genes may be an important consideration 

for germline screening and advanced disease monitoring in patients at risk for primary or 

advanced prostate cancer. Germline alterations in BRCA2 and BRCA1 have been shown to 

increase the lifetime risk for prostate cancer [34-37] and germline BRCA2 carriers show worse 

prognosis than non-BRCA2 carriers [38]. DNA damage repair genes are also an important 
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consideration, particularly in advanced prostate cancer, as approximately 20% of CRPC patients 

have been shown to harbor germline and/or somatic alterations in DNA damage repair genes 

such as BRCA1, BRCA2, or ATM [1, 6, 11, 12]. With only ~3% of primary prostate cancer 

reporting germline or somatic alterations in BRCA1 or BRCA2, there may need to be a particular 

focus in screening for or monitoring BRCA1/BRCA2 alterations in men with previous primary 

prostate cancer diagnosis or at higher baseline risk for primary disease, particularly in light of the 

potential predictive nature of these alterations (see below). Sequencing of additional genes that 

predispose men to higher risk of prostate cancer (e.g., HOXB13) may also be warranted [39]. 

 

Neuroendocrine/small cell prostate cancer 

NGS profiling has also informed on the subset of patients who develop AR-independent 

small cell/neuroendocrine prostate cancer (NePC)[4, 40]. The increasing relevance of NePC 

(whether due to selection by more potent AR signaling therapies or increased survival of patients 

with CRPC beyond AR driven disease) has led to investigation on both the morphologic and 

molecular characterization of this disease subtype[4, 12, 40, 41]. Importantly, both single gene 

and comprehensive NGS approaches support transdifferentiation as the typical mechanism of 

NePC development, where NePC is clonally related to preceding AR driven disease[4, 42, 43]. 

NePC, particularly small cell carcinoma, shows a unique transcriptional profile (typically AR 

signaling low, neuroendocrine gene expression high and proliferation high) as well as 

characteristic genomic alterations including RB1 and TP53 loss and MYCN (or MYCL) 

amplification[40, 44-46]. Of particular relevance, comprehensive NGS interrogation has 

demonstrated that typical adenocarcinoma and small cell carcinoma represent a spectrum, with 
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the opportunity for molecular assessment to complement clinicopathologic assessment in 

determining treatment strategies[4, 12, 41, 46, 47].  

 

Clinical trial design 

NGS-based molecular stratification strategies have emerged as a way to more 

intelligently enroll patients most likely to benefit in targeted therapy clinical oncology trials. 

However, recent reports indicate only 2% of all clinical trials enrolling patients with prostate 

cancer from September 2011 to September 2014 used biomarkers or molecular alterations to 

select patients for trial enrollment [48]. Conversely, the 20% of CRPC tumors showing germline 

or somatic alterations in DNA damage repair genes (most frequently BRCA2, BRCA1, or ATM) 

carry clear implications for ongoing and prospective clinical trial design, given the success of 

poly ADP ribose polymerase (PARP) inhibitors in BRCA-deficient advanced breast and ovarian 

cancers[49]. Of particular note, Mateo et al. recently reported a phase II study of PARP 

inhibition with olaparib in metastatic CRPC, with response rates >80% in cases with germline or 

somatic alterations in DNA damage repair genes (BRCA2, BRCA1, ATM, CHEK2, FANCA, and 

PALB2) compared to 6% in patients without DNA damage repair gene alterations[50], leading to 

breakthrough status. This study underscores the benefit for employing NGS assay guided patient 

selection for clinical trial design, where even rare potentially targetable alterations (e.g. those in 

RAF family members and IDH1) can be assessed enabling umbrella or basket trials, similar to 

the approach taken by the NCI-MATCH trial (NCT02465060), where NGS from metastatic 

FFPE samples guides enrollment on patient-specific molecular alterations. 
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Additional NGS-based Applications in Treatment of CRPC 

Given the reported inter-tumoral heterogeneity and temporal changes in circulating DNA 

from tumor subclones in response to therapeutic pressures, utilizing molecular sequencing to 

improve prostate cancer prognostication and therapeutic prediction may be particularly 

challenging [51]. Challenges including technical limitations, tissue availability, the inherent 

biological variability in prostate cancer and the established utility (and known limitations) of 

serum PSA mean that serial monitoring and disease tracking in patients at risk or with CRPC is 

still a fledgling enterprise. For patients on anti-androgen therapy, PSA monitoring and imaging 

are typically used as a primary metric for response to treatment, but we expect prospective NGS-

based tracking strategies may improve sensitivity in screening for and detecting genomic & 

transcriptomic alterations – including AR mutations, splice variants, and amplifications – 

signaling the start of or susceptibility to treatment resistance at earlier time points than existing 

strategies [52]. It must be stressed however, that the clinical adoption of NGS to detect 

recurrence or resistance based on ultrasensitive detection of molecular alterations will require 

proven benefit of initiating/changing therapy at that time vs. waiting for clinical progression.  

Although comprehensive NGS is critical to characterize the molecular landscape of 

CRPC, we anticipate that small, customized targeted sequencing panels compatible with DNA or 

RNA isolated from tissue, blood, or urine will prove invaluable for the eventual treatment 

guidance and monitoring of disease- or progression-associated alterations in patients with CRPC, 

much like those employed in recent reports [17, 21]. Alternatively, some groups have reported 

utility in using low coverage whole-genome sequencing to screen cfDNA in patients with CRPC 

for clinically informative copy number alterations (including AR amplifications), a strategy 
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which could help complement a more targeted NGS approach given the high prevalence of 

driving copy-number alterations in CRPC [1, 24].  

Recent discoveries have also characterized a series of long non-coding RNAs (lncRNAs) 

associated with aggressive prostate cancer, most notably SChLAP1, which is prognostic in 

localized prostate cancer[7, 9, 53], and the landscape of lncRNAs in CRPC remains poorly 

described. Together with work summarizing the expression of myriad AR splice variants (several 

of which may confer resistance to second-generation anti-androgens) in both primary and 

advanced prostate cancer[10, 54], these reports highlight a potential key role for serial RNA-

based NGS profiling in guiding treatment of patients with CRPC. However, established clinical 

benefit associated with these newly discovered mechanisms and biomarkers is still being 

explored in ongoing trials, and systematic validation of the clinical and prognostic utility is 

warranted prior to widespread implementation. 

Epigenomic analyses in localized and advanced prostate cancer have also reported 

preliminary evidence supporting the role of epigenetic alterations as potential biomarkers for 

both aggressive and castrate-resistant prostate cancer, however limited work has been carried out 

to determine whether these markers can be reliably detected non-invasively[55]. These analyses 

have, however, helped to identify the role that epigenetic AR co-activators such as TIF2, p300, 

CBP, and EZH2 play in CRPC, nominating important candidates for NGS-based gene expression 

profiling over the course of disease [55, 56]. Ultimately, the prognostic ability for proposed 

epigenetic biomarkers will require more systematic evaluation before being considered for use in 

guiding treatment decisions in CRPC. 
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Conclusions 

In the near term future, tissue-based NGS profiling coupled with non-invasive (cfDNA- 

or CTC-based) NGS profiling will likely present a powerful approach for capturing a relatively 

complete assessment of the intra- and inter-tumoral molecular heterogeneity present in patients 

with advanced cancers (including prostate) and identifying the most promising treatment 

hypotheses. Precision oncology (e.g., molecular profiling of disease within an individual to better 

tailor personalized treatment decisions) is primarily employed in this advanced cancer context, 

making valid and robust assessment of clinically informative molecular alterations and 

prognostic biomarkers from relevant clinical biospecimens an extremely important consideration. 

While standard current practice dictates broad disease inferences are typically made from 

comprehensive profiling of bulk tissue specimens, scalable strategies for sequencing-based 

profiling of more routine biospecimens (including formalin-fixed paraffin embedded (FFPE) 

tissue specimens, blood, and urine) are starting to emerge that may offer several advantages to 

bulk tissue specimen-based approaches. While challenges remain around isolation of hiqh-

quality nucleic acid from these tissue samples yielding quantities amenable to sequencing-based 

profiling, leveraging both routine tissue and more readily available liquid biospecimens is 

quickly becoming an attractive approach that may complement comprehensive characterization 

of driving molecular alterations from bulk tissue.  

Accordingly, this dissertation summarizes several advances supporting such scalable 

precision oncology approaches from routine tissue and liquid biopsy specimens. In Chapter II, I 

describe the validation and application of a targeted next-generation assay compatible with 

minute quantities of DNA and RNA isolated from formalin-fixed paraffin-embedded tissue 

samples in a cohort of >300 clinical tissue specimens. This assay has been extended to a number 
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of unique and underprofiled cancers in projects I have led through my graduate work[57, 58], 

and applications of this panel when paired with cell-free DNA whole-genome sequencing 

(Chapter III) and innovative tissue-based targeted RNA sequencing approaches (Chapters IV and 

V) are described herein. 

 In Chapter III, I describe a pan-cancer, rapid, inexpensive low-pass plasma cell-free 

DNA whole genome sequencing approach capable of establishing genome-wide copy-number 

profiles, identifying therapeutically-relevant focal copy-number alterations, and facilitating 

heuristic tumor content estimation to inform next-generation sequencing workflows. Extensions 

of this approach across multiple advanced cancers are described, and utility as a “screening” tool 

for precision oncology workflows is explored. Systematic concordance of plasma cfDNA 

profiles with comprehensive profiles from matched bulk tissue specimens is described, while 

ongoing work applied to individual and serial urine cell-free DNA samples in patients with 

advanced cancer, with novel urine tumor-specific cell-free DNA is discussed in Appendix A.  

Given the purported clinical utility of expression-based molecular subtypes and 

prognostic classifiers for making disease predictions and stratifying therapies across a number of 

cancer types, I also sought to test whether these expression-based tools provide consistent results 

in the context of heterogeneous or multifocal disease. Chapter IV explores derivation of 

expression-based molecular subtypes in bladder cancer (a frequently histologically 

heterogeneous disease) using consensus clustering of expression values assessed via a custom 

targeted RNA sequencing panel, with a particular focus on pairing genomic profiling and 

expression-based basal/luminal subtyping in a series of paired histologically divergent 

components from the same tumor across a series of cases. In Chapter V, I demonstrate derivation 

of commercially-available prognostic expression-based scores used in patients with prostate 
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cancer from a targeted RNA sequencing panel, and explore whether these scores are robust to 

routinely multifocal disease. Chapter VI (and Appendix A) summarize ongoing work, and 

describe ways the analytic tools presented in this dissertation can be paired with existing and 

emerging molecular profiling strategies to improve our understanding of disease biology with 

maximal clinical utility.  
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Figure 1.1: Next Generation Sequencing in Castration Resistant Prostate Cancer Treatment  

 
 

Figure 1.1. Potential clinical utility of next generation sequencing (NGS) during prostate cancer progression. A timeline of serum 
PSA (black line) and disease burden (red line) along with treatments (italics) are shown for a hypothetical patient who progresses 
from localized untreated prostate cancer diagnosed and treated by radical prostatectomy to untreated treatment naïve metastatic 
prostate cancer to castration resistant prostate cancer (CRPC) and eventually neuroendocrine/small cell carcinoma. Opportunities 
for NGS to guide clinical management are shown above the graph according to the biocompartment assessed (color of the box) 
and NGS approach (pattern of the box) as indicated in the legend. At diagnosis (1), germline NGS assessment may be utilized to 
identify predisposing germline variants that may inform on later therapy and identify hereditary predisposition. Likewise, 
targeted DNA and RNA based assessment of FFPE biopsy and/or prostatectomy tissues may be used for prognosis and 
assessment of presumed clonal alterations that can be tracked and/or targeted during progression. NGS of cfDNA and/or CTCs 
isolated from blood may be used for non-invasive assessment of disease recurrence (2a) and assessment of clonal dynamics upon 
treatment. Diagnosis of metastatic disease by biopsy enables targeted DNA and RNA assessment of FFPE tissue (or 
comprehensive assessment if fresh tissue is obtained [most likely in the translational research setting]), and may have utility in 
predicting response to ADT or enrollment on clinical trials in the castration sensitive space (3). In addition to monitoring for 
development of CRPC after ADT (2a), NGS of cfDNA and/or CTCs may have particular utility for predicting response to second 
generation anti-androgens (such as abiraterone [abi] or enzalutamide [enza]) based on assessment of AR amplifications, 
mutations, or splice variant expression. Likewise, targeted or comprehensive NGS of CRPC biopsy tissue may have utility for 
identifying resistance mechanisms, novel targetable alterations, and identification of alterations enabling enrollment on umbrella 
and/or basket studies (3). NGS assessment of cfDNA and/or CTCs may be useful as a non-invasive complement to serum PSA to 
identify the development of AR independent clones (2c) and neuroendocrine/small cell prostate carcinoma when serum PSA may 
not be an accurate measurement of disease burden. Lastly, NGS of neuroendocrine/small cell prostate carcinoma (4) tissue may 
identify potential novel targetable alterations that developed during progression.      
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CHAPTER II: Development and Validation of a Scalable Next-Generation Sequencing 
System for Assessing Relevant Somatic Variants in Solid Tumors

 

Previously published in Neoplasia, co-authored with McDaniel AS, Cani AK, et al. 
http://dx.doi.org/10.1016/j.neo.2015.03.004 

Contributions: Dr. McDaniel procured and reviewed slides, facilitating tissue scraping for DNA 
and RNA isolation. Mr. Cani isolated all DNA and RNA for profiled tissue specimens, and 
prepared all sequencing libraries and carried out necessary sequencing. I collated, annotated, and 
filtered all point mutation and indel calls, copy number alterations, and gene fusion calls, and 
carried out all analyses reported in the main manuscript and supplementary materials. 

 
INTRODUCTION 

Precision medicine approaches, where patients are treated with therapies directed against 

the specific molecular alterations driving their tumors, have revolutionized oncology [1-4]. Such 

approaches require identification of driving molecular alterations (which may occur only in a 

subset of a given histologic cancer type or in cancers arising from diverse organs), development 

of targeted therapies, and diagnostic tests to identify appropriate patient populations for clinical 

trials and eventual implementation [5-7]. The early successes of trastuzumab (a monoclonal 

antibody against ERBB2) in the subset of breast adenocarcinomas with ERBB2 

amplifications[8], and imatinib (an ABL kinase inhibitor) in the subset of leukemia driven by 

BCR-ABL gene fusions (chronic myeloid leukemia)[9], have been replicated in numerous cancers 

[1-4]. For example, multiplexed assessment of driving somatic alterations in lung cancer has 

been shown to aid in physician selection of therapy, and patients with drivers receiving a 

matched therapy lived significantly longer than those not receiving a matched therapy[10].  

http://dx.doi.org/10.1016/j.neo.2015.03.004
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Recent advances in genome sciences, including next generation sequencing (NGS), have 

led to the identification of hundreds of recurrent somatically altered genes through the analysis of 

tens of thousands of cancer samples from individual investigators and large consortia, such as 

The Cancer Genome Atlas (TCGA)[11-15]. These technological advances are also changing 

routine molecular pathology practice from single gene based tests (i.e. Sanger sequencing to 

assess EGFR mutations in lung adenocarcinoma) to multiplexed NGS assays. Several NGS 

approaches have been successfully clinically implemented in oncology, including multiplexed 

PCR based panels assessing tens to hundreds of genes, hybrid capture based panels targeting 

hundreds of genes, as well as comprehensive exome/genome/transcriptome sequencing[16-26]. 

These approaches vary in sample requirements, nucleic acids assessed, cost, throughput, genes 

and alteration types assessed, and performance. For example, most clinically implemented 

multiplexed PCR based approaches fail to assess copy number alterations (CNAs) and/or gene 

fusions [16, 19, 22, 25], which guide current treatment selection for several cancers.  

The primary challenge with comprehensive NGS approaches, however, is the specialty 

infrastructure and expertise needed to interpret the results and convey treatment strategies to 

clinicians. Several centers using comprehensive NGS-based oncology approaches require NGS-

based tumor boards [21] to guide interpretation and inform clinical decision-making.  Large 

companies have also been established with the goal of providing comprehensive NGS-based 

precision oncology services [18], however interpretation of results and prioritizing treatment 

strategies may still be outsourced. Scalability limitations hinder widespread adoption of such 

initiatives in reference laboratories.    

In order to enable precision medicine approaches for all patients with cancer, rapid, 

inexpensive, scalable NGS solutions capable of assessing all classes of current and near term 
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clinically relevant targets (point mutations, short insertions/deletions [indels], CNAs and gene 

fusions) from routine formalin fixed paraffin embedded (FFPE) tissues are required. Such a 

technical solution must be coupled with a dynamic, scalable, analytical approach capable of 

prioritizing treatment options. To begin to address these challenges, we report the development 

and validation of the Oncomine Comprehensive Panel (OCP), a multiplexed PCR-based NGS 

assay and analytical system to identify and prioritize potential treatment strategies from 

predefined somatic solid tumor genome variants. The OCP is compatible with 20ng of FFPE 

isolated DNA and 15ng FFPE isolated RNA and bench top Ion Torrent sequencers. 

Demonstrating the potential for a scalable solution to enable widespread precision medicine 

oncology applications, the OCP will be utilized in the NCI Match Trial to assess 3,000 cancer 

samples for trial selection in a multi-arm umbrella study with sequencing conducted at multiple 

sites. 

 

MATERIALS & METHODS 

Analysis of relevant somatic variants in solid tumors  

 The Oncomine Comprehensive Panel (OCP) was designed to interrogate somatic 

mutations, CNAs and gene fusions involving oncogenes and tumor suppressors recurrently 

altered in solid tumors with the potential for near term clinical relevance.  To define OCP 

content, we used evidence-based analysis of genomic alterations present in Oncomine, a resource 

comprised of mutation, copy number, and gene fusion data from >700,000 cell line, xenograft 

and clinical cancer samples as of December 2013[27-29].  Candidate genes with somatic driver 

mutations were derived from gain-of-function (GoF) and loss-of-function (LoF) analyses 

performed on 686,530 tumor samples with mutation data in Oncomine. Candidate driver CNA 

events were identified by performing a minimal common region (MCR) assessment on a pan-
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cancer subset of 10,249 tumor samples in Oncomine[28]. In addition, single cancer type 

assessments were performed to identify private candidate copy number drivers. Candidate driver 

gene fusions were identified from the Mitelman Database of Chromosome Aberrations and Gene 

Fusions in Cancer (http://cgap.nci.nih.gov/Chromosomes/Mitelman), as well as from analyzing 

6,438 primary tumor sample RNA-seq profiles contained within Oncomine. Complete details on 

somatic variant analysis to define candidates are provided in Appendix B. All candidate driver 

GoF, LoF and CNA genes, as well as gene fusions, were then assessed for evidence of near term 

potential clinical relevance as defined in the Appendix B.  

 

OCP NGS assay design 

 We developed multiplexed PCR (Ion Ampliseq) NGS panels to characterize DNA 

(mutations and CNAs) and RNA (gene fusions) based alterations. For GoF alterations, amplicons 

were designed to assess recurrent hotspots as defined above. For LoF alterations, amplicons were 

designed to tile the gene’s entire coding sequence. For CNAs, sufficient amplicons (n=3 to 38) 

were designed from coding and noncoding regions to facilitate copy number profiling. For the 

RNA based panel, primers were included to detect known gene fusion junctions, assess the 5’ 

and 3’ regions of RET, ROS1, and ALK (to enable testing for fusions involving novel 5’ fusion 

partners through 3’/5’ expression imbalance), and quantify housekeeping/positive expression 

genes (HMBS, ITGB7, LMNA, MYC, and TBP); a small subset of the prostate cancer samples 

(n=12) were sequenced using a version of the RNA panel that did not contain the 3’/5’ 

expression imbalance assays. Ampliseq panels were designed using Ampliseq Designer and 

multiplexed pools were obtained from Ion Torrent. Two versions of both the DNA and RNA 

http://cgap.nci.nih.gov/Chromosomes/Mitelman


22 
 

based panels were assessed herein during iterative optimization, and complete information on the 

panels is provided in Table S1. 

  

Molecular Standards 

 We utilized two commercially available molecular standards to assess performance of the 

DNA component of the OCP. The AcroMetrix Oncology Hotspot Control (AOHC; Life 

Technologies) was designed to assess somatic mutation detection performance by NGS assays. 

The custom version used herein contained 365 applicable single/ multiple nucleotide variants 

(SNVs/MNVs) and 33 indels each at an estimated allele frequency of 0.20 on the GM24385 cell 

line genomic background. AOHC DNA was used directly for library preparation.    

The Quantitative Multiplex Reference Standard (QMRS, Horizon Diagnostics, 

Cambridge, UK) consists of 1-3 FFPE tissue sections from multiplexed FFPE cell lines with a 

known set of 30 engineered and endogenous mutations present at specific variant allele 

frequencies quantified by ddPCR. Of the 30 mutations, 16 (all 11 primary engineered mutations, 

and 5 of 19 secondary endogenous mutations) were targeted by the OCP and were used for 

evaluation. QMRS tissue was processed as for the remaining tissue cohorts for DNA isolation 

and library preparation.  

 

Tissue Cohorts 

 We used three cohorts of routine FFPE tissues for OCP evaluation (molecular [MO], lung 

[LU] and prostate [PR]). All FFPE specimens were obtained from the University of Michigan 

(UM) Department of Pathology Tissue Archive with IRB approval. Diagnostic hematoxlyin and 
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eosin (H&E) stained slides were reviewed by board certified Anatomic Pathologists (A.S.M. and 

S.A.T.).  

 The MO cohort consisted of all cancer specimens (including biopsy, resection and cell 

block specimens) sent during a five month period to the CLIA certified UM Molecular 

Oncology/Genetics Laboratory for 1) EGFR, BRAF or KRAS mutation testing or 2) ALK 

rearrangement testing. Complete details of the MO cohort and clinicopathologic information for 

all cases is provided in Appendix B. The LU and PR cohorts consisted of 104 and 118 

retrospectively identified FFPE tissue specimens, respectively. A subset of the PR samples 

(n=37) have previously been assessed by a combined capture based NGS (Agilent Haloplex 

followed by Ion Torrent NGS) and Taqman low density array q-RT-PCR panel[30]. 

Clinicopathologic information for all included cases in the LU and PR cohorts is provided in 

Appendix B. Targeted next generation sequencing of all tumor tissues was performed with IRB 

approval. 

  

Nucleic acid isolation 

 For each specimen, 3-10 x 10um FFPE sections were cut from a single representative 

block per case, using macrodissection with a scalpel as needed to enrich for tumor content. DNA 

and RNA were isolated using the Qiagen Allprep FFPE DNA/RNA kit (Qiagen, Valencia, CA) 

as described[31]. DNA and RNA were quantified using the Qubit 2.0 fluorometer (Life 

Technologies, Foster City, CA).  

 

DNA/RNA libraries 
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 DNA/RNA libraries were generated essentially as described[31, 32]. DNA libraries were 

generated from 20ng of DNA per sample using the Ion Ampliseq library kit 2.0 (Life 

Technologies, Foster City, CA) and the OCP Ampliseq panel according to manufacturer’s 

instructions with barcode incorporation. RNA libraries were generated from 15ng of RNA per 

sample using the Ion Ampliseq RNA Library kit. OCP Ampliseq Libraries were quantified using 

the Ion Library Quantification Kit according to the manufacturer’s instructions.  

 

Template generation and sequencing 

 Templates for DNA and RNA libraries were prepared using the Ion PGM Template OT2 

200 Kit (Life Technologies, Foster City, CA) on the Ion One Touch 2 according to the 

manufacturer’s instructions. Sequencing of multiplexed templates was performed using the Ion 

Torrent Personal Genome Machine (PGM) on Ion 318 chips using the Ion PGM Sequencing 200 

Kit v2 (Life Technologies, Foster City, CA) according to the manufacturer’s instructions. For the 

LU and PR cohorts, a single DNA template and 4-8 RNA templates were assessed separately on 

a single 318 chip. For the MO cohort, a single DNA template was combined with a single RNA 

template in a 4 to 1 ratio and assessed on a single 318 chip. For experiments with molecular 

standards, single DNA templates were assessed on one 318 chip.  

 

Data analysis 

 Data analysis was performed using Torrent Suite (4.2.0) and the Coverage Analysis (or 

Coverage Analysis RNA) Plug-ins (both v4.0-r73765), along with the Ion Reporter (4.2.0) 

Fusion analysis workflow essentially as described [31, 32].  For DNA sequencing, alignment was 

performed using TMAP with default parameters, and variant calling was performed using the 
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Torrent Variant Caller plugin (version 4.2-8-r87740) using default low-stringency somatic 

variant settings. Somatic variant identification was performed essentially as described [31, 33] 

using read and base level filtering, which we have previously confirmed to identify variants that 

pass Sanger sequencing validation with >95% accuracy. Copy number analysis from total 

amplicon read counts provided by the Coverage Analysis Plug-in was performed essentially as 

described [19, 31, 32]. As an estimate of data quality, we determined the standard deviation of 

the amplicon-level copy number estimates relative to the gene-level estimate for each gene per 

sample (Fig B1). Gene fusion analysis was performed within the Ion Reporter (4.2.0) Fusion 

analysis workflow, with reads from the RNA AmpliSeq panel aligned using TMAP to a gene 

reference of targeted chimeric fusion transcripts as well as reference sequences for expression 

imbalance and expression control gene targets.  Complete description of all data analysis is 

provided in Appendix B.  

 

Alteration prioritization and potential actionability assessment 

Somatic SNVs/indels passing filtering in a GoF gene were considered GoF if occurring at 

the predefined hotspot residue targeted in OCP. Somatic variants in a LoF gene were considered 

LoF if deleterious (nonsense or frame shifting) or occurring at a predefined hotspot residue. 

Somatic CNAs were considered for potential actionability analysis if they were concordant with 

the predicted alteration (amplification or deletion) from Oncomine analysis as described above. 

Somatic gene fusions were considered for actionability analysis if they represented known gene 

fusions from the Mitelman database or Oncomine analysis, or involved known 3’ or 5’ drivers 

with novel partners (i.e. ERC1-BRAF fusion in MO-17, with recurrent fusions involving BRAF 

as a 3’ partner reported previously[34]).  
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These prioritized variants were then associated with potential actionability using the 

Oncomine database. Briefly, for each patient the “most actionable” alteration was identified by 

prioritizing 1) variants referenced in FDA drug labels, 2) variants referenced in NCCN treatment 

guidelines in the patient’s cancer type, 3) variants referenced in an NCCN guideline in another 

cancer type, and 4) variants referenced as inclusion criteria in a clinical trial. Actionable variants 

were identified by manual curation of FDA labels, NCCN guidelines and by keyword searches 

and manual curation of clinical trial records in the TrialTrove database. Alterations associated 

with specific treatments are shown in Appendix B.       

 

qRT-PCR and immunohistochemistry (IHC) validation 

 Details of qRT-PCR validation of ERC1:BRAF and TPR:NTRK1 fusions, as well as 

ERBB2 IHC to confirm copy number gains are provided in the Appendix B. 

 

Statistical tests 

 All statistical tests were performed in R (3.1.0) using two sided tests. P-values < 0.05 

were considered statistically significant. 

 

RESULTS 

Oncomine Comprehensive Panel (OCP) development 

 To define relevant somatic cancer genome variants based on near term potential 

actionability, we first interrogated data from >700,000 tumor samples in the Oncomine database 

(including >8,000 exomes, >7,000 transcriptomes and >30,000 copy number profiles in addition 

to tumors studied by single gene/targeted approaches) to identify pan-cancer, recurrently altered 
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oncogenes (enriched in gain of function [GoF] hotspot mutations), tumor suppressors (enriched 

in loss of function [LoF] deleterious mutations), genes targeted by high level amplifications or 

deletions, and driving gene fusions (Fig 2.1A). Genes with these variants were then filtered 

based on near term potential actionability (see Methods). The distribution of these variants 

across >7,000 TCGA samples from 23 cancer types is shown in Figure 2.1B.    

 To translate the relevant somatic cancer genome to a NGS assay capable of detecting 

mutations, copy number alterations and gene fusions (including multiple splice isoforms) but 

compatible with limited amounts of routine FFPE tissues, we developed custom Ion Torrent 

multiplexed PCR based DNA and RNA sequencing (-seq) panels, together comprising the 

Oncomine Comprehensive Panel (OCP), as shown in Figure 2.1C. In total, the final OCP 

version assessed herein (v0.9b) interrogates 143 unique cancer genes including 73 oncogenes, 49 

CNA genes, 26 tumor suppressor genes and 22 fusion driver genes. The targeted DNA-seq panel 

includes 2,530 amplicons covering 260,717 base pairs in 130 different genes. To minimize panel 

size and focus on predefined relevant alterations, only GoF mutations were targeted in 

oncogenes, while high level CNA genes were targeted by 3 to 38 probes to facilitate copy 

number profiling[19] and the entire coding sequence of tumor suppressors were targeted to 

identify LoF mutations and GoF mutations. The targeted RNA-seq panel included a total of 154 

primer pairs targeting known gene fusion isoforms (n=148) as well as 5’ and 3’ expression 

assays for RET, ROS1, and ALK to enable novel fusion discovery through 3’/5’ expression 

imbalance ratios. To enable appropriate normalization in downstream analyses, the targeted 

RNA-seq panel also includes 5 additional primer pairs targeting a pre-determined set of 

housekeeping/positive expression genes (HMBS, ITGB7, LMNA, MYC, and TBP). Details of the 
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two versions of the OCP panel (v0.9a and v0.9b) validated and applied herein are presented in 

Appendix B.  

  

Molecular standards validation 

To validate OCP performance, we first assessed the DNA component using the 

Acrometrix Oncology Hotspot Control molecular standard, a cell line DNA sample engineered to 

contain 398 OCP targeted variants at 0.20 expected variant allele frequencies. OCP detected 364 

of 365 (99.7%) targeted single/multiple nucleotide variants (SNVs/MNVs), with a median 

variant allele frequency of 0.24 [interquartile range 0.21-0.28] as shown in Fig B2.  Of the 33 

OCP targeted indels, we detected 25 (75.8%) at a median variant allele frequency of 0.22 

(interquartile range 0.18-0.28] (Fig B2). Of the 8 indels that were not detected, 3 were over 10 

bases in length (12, 30, 41 bases) and 5 were single nucleotide insertions or deletions occurring 

within 2 to 7 base homopolymer runs. Accurate indel identification in homopolymer runs is a 

known challenge with current Ion Torrent sequencing technology[16].   

We also profiled DNA isolated from commercially available FFPE sections containing a 

cell line mixture (QMRS cell line) with engineered and endogenous mutations at precise variant 

frequencies. In total, 16 known mutations in the QMRS cell line (11 primary induced and 5 

endogenous mutations; median variant allele frequency 0.10, range 0.01-0.33) are targeted by the 

OCP. To prioritize high-quality somatic variants, we applied our standard filtering approach 

(which includes filters at <5% or <10% depending on alteration type, see Methods) to default 

variant calls. Ten of 16 (63%) OCP-targeted mutations (including 8/11 induced and 2/5 

endogenous) were called by the Torrent Variant Caller (TVC) using our standard approach at 

variant allele frequencies highly correlated with those expected (r2=0.99, Appendix B).  Five of 
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the remaining 6 (83%) OCP-targeted mutations were detectable at close-to-expected 

frequencies—including indels and point mutations at <1-5% variant allele frequencies—via 

automated variant calling (Appendix B). The only variant not detected by OCP was a secondary 

NF1 frameshift deletion at the start of a 6bp homopolymer run (expected frequency of 7.5%); 

hence, in total, 15 of 16 (94%) of OCP-targeted known mutations in the QMRS cell line were 

detected via our automated variant calling procedures (Appendix B). Highly concordant results 

were observed with both OCP versions, as well as separate Ion Torrent PGM template 

preparation and sequencing runs performed at two locations (Ann Arbor, MI and Carlsbad, CA) 

from aliquots of the same DNA library (Appendix B). 

 

OCP performance in FFPE tumor tissue cohorts 

To validate performance and demonstrate applicability, we applied the OCP to three 

cohorts of routine FFPE tissue specimens: a cohort comprised of tumor samples sent for routine 

molecular diagnostics (molecular [MO] cohort, n=105 samples), and retrospective lung cancer 

(LU, n=104 samples) and prostate cancer (PR, n=118 samples) cohorts. For each cohort, 3-10 x 

10um FFPE sections were used for DNA/RNA co-isolation after macrodissection, with an 

overall average of 52% estimated post-dissection tumor content per sample (range 5%-90%), as  

assessed by histology (Appendix B). Across the MO, LU and PR cohorts, we isolated an average 

of 1.3/2.8ug, 2.0/3.3ug and 2.2/6.7ug DNA/RNA per sample, respectively. Overall, 32% of the 

FFPE specimens were at least 3 years old (average 2 years, [range <1 to 10 years]).  

Multiplexed PCR based DNA and RNA libraries were generated from each sample for 

template preparation and NGS on the Ion Torrent PGM using Ion 318 chips. We excluded DNA 

and RNA libraries from 1/105 MO, 3/104 LU and 2/118 PR samples due to low quality libraries, 
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resulting in a total of 321/327 (98%) informative samples. An additional two samples (MO-46 

and LU-141) were excluded from CNA analysis due to excessively noisy copy number profiles 

(Fig B1). Across the three cohorts, using the DNA panel, we achieved an average of 5,142,690 

mapped reads (97% on-target), 1,941x coverage across targeted bases, 93.6% of targeted bases 

covered by at least 20 reads and 202 called variants per informative sample. Using the RNA 

panel, we achieved an average of 306,872 total mapped reads (including 210,712 reads mapped 

to the five housekeeping/positive expression genes) per sample. Complete sequencing statistics 

and DNA variants are provided in Appendix B. All high level OCP prioritized (see Methods) 

copy number alterations and gene fusions across the cohorts are also provided in Appendix B.   

 

OCP validation in a clinical molecular diagnostics cohort 

 To validate the performance of the OCP and identify additional relevant variants beyond 

current routine practice, we assessed a cohort of 105 FFPE cancer samples sent for molecular 

testing for EGFR, BRAF, KRAS and ALK alterations in a Clinical Laboratories Improvement 

Ammendments/College of American Pathologists (CLIA/CAP) certified molecular diagnostics 

laboratory. The 104 informative MO samples from 104 patients were comprised of colorectal 

adenocarcinomas (n=29), lung adenocarcinomas (n=23), melanomas (n=48) and 4 other cancers 

(see Appendix B). After filtering to the predefined Oncomine variants, we identified an average 

of 1.7, 0.8 and 1.7 relevant somatic point mutations, indels and high level CNAs, respectively, 

per sample. Genes most frequently harboring relevant alterations across the MO cohort were 

TP53 (33%), BRAF (31%) and APC (24%). An integrative heatmap of prioritized alterations 

across the MO cohort is shown in Fig 2A, and copy number profiles for all samples are shown in 

Fig B3. 
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 A total of 4 prioritized gene fusions were identified across the cohort: EML4:ALK in two 

lung cancer samples positive for ALK rearrangement by molecular testing (MO-100 and MO-

106), ERC1:BRAF in a melanoma sample (MO-17) and TPR:NTRK1 in a colon cancer sample 

(MO-35) (Fig 2A&B). Importantly, multiple isoforms of the ERC1:BRAF fusion were identified 

in MO-17 due to combinatorial priming/amplification, including fusions of ERC1 and BRAF 

exons 17 to 8 (designated E17B8), 12 to 9 (E12B9) and 12 to 10 (E12B10), respectively. qRT-

PCR confirmed expression of ERC1:BRAF and TPR:NTRK1 fusions in MO-17 and MO-35, 

respectively (Fig 2C).  

The 104 informative MO samples underwent 129 total molecular diagnostic tests for 

EGFR, BRAF, KRAS and ALK alterations. The DNA component of the OCP demonstrated 100% 

sensitivity (44 of 44, 100%) and specificity (61 of 61, 100%) for detecting the clinically 

identified EGFR, BRAF and KRAS mutations (Figure 2.2A & Appendix B). Likewise, as 

described above, the RNA component of the OCP detected gene fusions involving ALK in 2 of 

the 3 (66%) samples with ALK rearrangements by FISH testing in the molecular diagnostics 

laboratory. In MO-66, a lung adenocarcinoma with an ALK rearrangement by molecular testing, 

OCP profiling identified only 9 EML4:ALK fusion reads, which was below our threshold for 

calling a gene fusion present; however, as described below, we observed 3’/5’ ALK expression 

imbalance in this case (see Fig 3B). In total, considering MO-66 as failing to detect the ALK 

rearrangement, the 129 molecular tests performed across the MO cohort involving integrative 

DNA/RNA profiling by OCP showed 99.2% accuracy compared to molecular diagnostic testing. 

Additional findings from the MO cohort, including identification of relevant alterations not 

assessed by molecular testing, are described below. 
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OCP application in a lung cancer cohort 

 We also applied the OCP to a retrospectively identified cohort of 104 primary lung 

tumors given the assessment of somatic variants in lung cancer management[10]. The 101 

informative samples from 96 individuals, which were chosen to represent the  

pathologic/histologic spectrum, consisted of 69 adenocarcinomas, 21 squamous cell carcinomas, 

5 adenosquamous carcinomas, 2 bronchioalveolar carcinomas [1 adenocarcinoma in situ and 1 

well differentiated lepidic predominant adenocarcinoma], 2 pulmonary small cell carcinomas 

(SCCs) and 2 carcinoid tumors (Fig 3A & Appendix B). After filtering to the predefined 

Oncomine variants, we identified an average of 1.2, 0.3, and 1.9 relevant somatic point 

mutations, indels and high level CNAs, respectively, per sample. TP53 (38%), KRAS (28%), and 

EGFR (24%) were the genes most frequently harboring relevant alterations across the LU cohort. 

Alteration frequencies varied between histologic subtypes as expected. For example, high level 

CNAs in NKX2-1, which represent the most significant focal gain in lung adenocarcinoma[35], 

were observed in 15 of 69 (22%) adenocarcinomas in our LU cohort, but were not observed in 

the 21 squamous cell carcinomas (p=.0083, two-sided Fisher’s exact test). Of note, both SCCs 

harbored nonsense RB1 mutations, while both carcinoid tumors lacked prioritized alterations. An 

integrative heatmap of prioritized alterations across the LU cohort is shown in Fig 3A, and copy 

number profiles for all LU samples are shown in Fig B4.  

 Fourteen samples in the LU cohort underwent successful diagnostic molecular testing (as 

in the MO cohort) for EGFR and/or ALK alterations (27 total tests). OCP demonstrated 100% 

sensitivity and specificity for EGFR alterations in these samples; in LU-49, two somatic EGFR 

hotspot gain-of-function mutations that were not assayed for via molecular testing were 

identified by OCP (p.S768I, 37% variant allele frequency; p.G719C, 35% variant allele 
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frequency). All three samples with EML4:ALK fusions by OCP (LU-1, LU-30, and LU-150) 

harbored ALK rearrangements by FISH. In addition, in LU-61, an adenocarcinoma lacking other 

actionable alterations, we identified an EZR:ROS1 fusion (exon 10 of EZR fused to exon 34 of 

ROS1). As shown in Figure 2.3B, all LU samples with detectable ALK and ROS1 fusions by 

targeted RNAseq, as well as MO-100 and MO-106 (EML4:ALK fusion positive as described 

above) showed 3’/5’ expression imbalance in the involved 3’ partner. In total, across the LU and 

MO cohorts, 6 of the 8 (75%) samples with the greatest 3’/5’ ALK expression imbalance by OCP 

harbored ALK rearrangements by FISH (Fig 2.3B), supporting the complementary information 

provided by this approach. Additional assessment of OCP performance in cases with known gene 

fusions is provided in the PR cohort below.  

OCP validation and application in a prostate cancer cohort 

Lastly, we applied the OCP to a cohort of 118 retrospectively identified prostate cancers 

for validation and application. The PR cohort was selected to enrich for samples poorly 

represented in standard frozen tissue cohorts, with the 116 informative samples (from 114 

patients) including 35 diagnostic biopsy samples, 20 samples from individuals ≤55 yrs of age, 

and 50 previously treated samples (Fig 2.4A & Appendix B). After filtering to the predefined 

Oncomine variants, we identified an average of 1.0, 0.2, and 1.2 relevant somatic point 

mutations, indels and high level CNAs, respectively, per sample. Besides T2:ERG gene fusions 

(see below), the genes most frequently harboring relevant alterations in the PR cohort were TP53 

(27%), PTEN (18%), and ATM (11%). An integrative heatmap of prioritized alterations across 

the PR cohort is shown in Fig 2.4A, and copy number profiles for all PR samples are shown in 

Fig B5.   

Approximately 40-60% of prostate cancers harbor recurrent gene fusions, typically 
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involving 5’ androgen regulated genes fused to 3’ ETS transcription factor family members, with 

the most common fusion being TMPRSS2(T2):ERG[36, 37]. The RNA component of the OCP is 

designed to detect recurrent gene fusions in prostate cancer through inclusion of forward primers 

in known 5’ fusion partners (including TMPRSS2, SLC45A3 and C150RF21) and reverse primers 

in known 3’ fusion partners (including ERG, ETV1, ETV4 and BRAF). Across the PR samples, 

OCP detected ETS gene fusions in 58 of 100 (58%) samples, as shown in Figure 2.4B. Of note, 

amongst the 54 T2:ERG fusion positive samples, we identified a median of 3 unique fusion 

isoforms (range 1 to 9) due to combinatorial priming allowed by targeted RNAseq, consistent 

with the known expression of multiple T2:ERG splice variants in fusion positive tumors, 

including those reported to drive aggressive disease[38].  

Thirty seven informative PR samples were previously assessed using an integrative 

DNA/RNA molecular profiling assay (MiPC) based on Haloplex target capture and Ion Torrent 

NGS coupled with qRT-PCR[30], providing an opportunity for additional OCP validation. Using 

automated variant calling and filtering, OCP profiling demonstrated 97% sensitivity (29 of 30) 

for detecting commonly targeted somatic variants (from 37 samples assessed by both 

approaches) with highly concordant observed variant allele frequencies (Table S13). High level 

CNAs in 34 genes targeted by both OCP and MiPC were also strongly correlated (Pearson’s r: 

0.95; p <.001, ref [30]).   

The thirty seven PR samples assessed by the OCP were also assessed by the RNA 

component of MiPC, which used a validated TaqMan qRT-PCR assay for T2:ERG (exon 1 of 

TMPRSS2 fused to exon 4 of ERG, designated T1E4) and 3’ TaqMan expression assays for ERG, 

ETV1, ETV4 and ETV5 expression[30], with outlier expression of these genes indicative of gene 

fusions. We observed 100% concordance for T2:ERG isoform T1E4 expression by OCP and 
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MiPC (Fig 2.4B). Importantly, in the 3 cases identified as ERG expression outliers (without 

T2:ERG isoform T1E4 expression) by MiPC, we identified a SLC45A3:ERG gene fusion in PR-

23 (3 detected fusion isoforms) and expression of non-T1E4 T2:ERG isoforms in PR-30 and PR-

57 (PR-57 had T2:ERG T1E4 fusion reads detectable at <1/10,000th of non-T1E4 reads). 

Additionally, by OCP, we detected a TMPRSS2:ETV1 gene fusion (supported by three fusion 

isoforms) in 1 of the 4 samples with ETV1 outlier expression by MiPC (PR-7-3). No fusions 

were detected involving ETV4 or ETV5 in the PR cohort, although 2 of the 37 samples profiled 

previously by MiPC harbored ETV4 or ETV5 outlier expression, consistent with fusions 

involving 5’ partners not targeted by the OCP. Taken together, with results from the MO and LU 

cohorts described above, these results support the ability of targeted RNAseq to identify isoform 

specific gene fusions through combinatorial priming and suggest that inclusion of 5’/3’ 

expression amplicons (as for lung fusions) may improve detection of fusions involving novel 5’ 

partners. 

The inclusion of a large number of treated samples in the PR cohort enabled comparisons 

related to treatment status and unique histology/immunophenotype post treatment (i.e. prostatic 

neuroendocrine/SCC and samples with no/low canonical AR signaling by immunohistochemistry 

[AR-]). For example, although TP53 was the most frequently altered gene (besides ERG) in the 

PR cohort, TP53 alteration frequency varied significantly across sample types, from 8.4% (6 of 

71) of untreated or single modality treated samples (androgen deprivation [ADT] or radiation 

therapy [XRT]) to 100% of prostatic SCC (Appendix B, p < .001). Likewise, ATM alteration 

frequency varied across treatment subtypes, with 7 of 22 (32%) of samples treated with ADT + 

XRT and/or chemotherapy [ADT+]  harboring ATM alterations compared to 0 of 8 (0%) of SCCs 

(Appendix B, p=.14).  Robust prostate cancer molecular subtypes have been identified, 



36 
 

including those defined by ETS gene fusions, SPOP hotspot mutations and rare alterations (i.e. 

FGFR or RAF family fusions)[36]. Of interest, PR-122 harbored an IDH1 R132 hotspot 

mutation (at 18% variant allele frequency) but lacked ETS gene fusions, SPOP mutations, or 

other prioritized alterations (Fig 2.4A & B6A). Assessment of the current PR cohort combined 

with 353 prostate cancer samples in the cBioPortal database identified IDH1 R132 mutations in 

6/453 (1%) prostate cancers, all of which lacked ETS gene fusions or SPOP mutations (p=.004, 

Fisher’s exact test, Fig B6B & Appendix B), supporting IDH1 mutations as defining a unique 

prostate cancer molecular subtype.  

Lastly, OCP allowed us to assess paired samples that can inform on molecular correlates 

of disease progression, which is particularly challenging in prostate cancer given the long follow-

up typically required to obtain sequential progressive specimens and the lack of routine biopsy 

confirmation of metastatic disease. In the PR cohort, PR-77 represents a primary, untreated 

Gleason score 9, pT3b N0 prostatectomy sample, while PR-88 is a paired urinary bladder tumor 

resected 4 years later after ADT, XRT and docetaxel chemotherapy with AR- phenotype. Both 

samples showed focal prioritized MCL1 and MYC amplifications (and non-prioritized high level 

BRCA1 amplification), consistent with clonality, however a TMPRSS2:ERG fusion (exons T2E2) 

was identified by the OCP RNA-seq panel exclusively in PR-77, consistent with the AR- 

phenotype in PR-88 (Fig B7A). In contrast, PR-88, the AR- metastasis, uniquely harbored 

prioritized AR amplification and CDKN2A deletion, as well as a CTNNB1 (beta catenin) GoF 

mutation (S37C, variant allele frequency 10%). Of note, no read support for CTNNB1 S37C was 

present in PR-77, despite >5,000 covering reads. Likewise, PR-160, a post-therapy 

(ADT+chemotherapy) epidural metastasis resected after rapid progression in a man who 

presented with metastatic disease at the age of 49, harbored a focal, prioritized CTNNB1 
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amplification, which was not present in a pre-treatment, diagnostic prostate biopsy specimen that 

shared other clonal alterations with PR-160 (Fig B7B). These results demonstrate utility of OCP 

for identifying alterations associated with treatment resistance through profiling pre-/post-

treatment limiting FFPE specimens.  

 

Actionability assessment 

An important component of the OCP is a knowledgebase of therapies and clinical trials 

associated with the predefined potential actionable variants targeted by the NGS assay. Potential 

therapeutic strategy prioritization for each OCP assessed sample is based on histologic cancer 

type and level of evidence associated with the potential actionability of each variant (FDA 

approved agent, within cancer type National Comprehensive Cancer Network (NCCN) guideline, 

outside cancer type NCCN guideline and biomarker directed/informed clinical trials; see 

Appendix B). In cases with multiple potential actionable variants, potential treatment strategies 

are prioritized, including consideration of detected variants that preclude treatment strategies 

based on other identified variants (i.e. KRAS mutations and potential EGFR inhibitor based 

treatment in colorectal adenocarcinoma),  

To assess the potential utility of the OCP in identifying treatment options, we identified 

the highest priority alteration for each sample assessed herein, as shown in Figure 2.5A. These 

analyses only include positively associated variants (i.e. KRAS mutations in colorectal cancer 

excluding EGFR inhibitors are not prioritized). In the MO cohort, OCP confirmed the presence 

of BRAF, EGFR and ALK alterations in 29 samples (28%), each associated with FDA approved 

indications. In an additional 15 MO samples (14%), OCP identified an actionable variant that is 

not routinely tested for in that cancer type but which is associated with same- (n=2) or other-



38 
 

cancer type (n=13) approved therapies referenced in NCCN clinical guidelines (e.g. ERBB2, 

BRAF and EGFR alterations). These findings are especially important because emerging 

evidence supports benefit, in some cases substantial, to an available targeted therapy. For 

example, responses to the BRAF inhibitor dabrafenib in lung cancer patients with BRAF 

mutations in a phase II trial led to Breakthrough Therapy designation by the FDA, and 

combination trials with the MEK inhibitor trametinib—which proved superior to single agent 

BRAF therapy in melanoma [39, 40]—are enrolling. An additional 44 samples (42%) harbored 

alterations in a gene that is a positive eligibility criteria for a clinical trial involving a targeted 

therapy (e.g. PIK3CA, NRAS, etc).  

Likewise, in the LU cohort, OCP identified alterations associated with FDA approved 

therapies, NCCN guidelines and clinical trial eligibility in 21 (21%), 15 (15%; n=11 same-

cancer; n=4 other-cancer) and 52 (51%) samples, respectively. Lastly, in the PR cohort, OCP 

identified alterations associated with FDA approved therapies, NCCN guidelines and clinical 

trial eligibility in 0 (0%), 7 (6%; all other cancer) and 42 (36%) samples, respectively, 

demonstrating that “actionable” alterations occur with variable frequency across cancers from 

different organs. As an example of a highly actionable alteration that is not routinely tested for in 

the specific cancer type (lung cancer) nor assessed by targeted NGS approaches that do not 

assess CNAs, OCP prioritized high level gains in ERBB2 in MO-86 and LU-31 (lung 

adenocarcinoma and lung SCC, respectively), with over-expression in both cases confirmed by 

IHC (Fig 2.5B). 

 

DISCUSSION 

Here we report the development, validation and assessment of a highly scalable, FFPE-

compatible, targeted NGS based system to prioritize potential treatment strategies from 
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predefined relevant somatic variants in solid tumors. To identify candidate driving somatic 

alterations for inclusion in the OCP, we queried genomic data from over 700,000 tumor samples 

to define pan-solid tumor, recurrent driving somatic alterations through defining GoF mutations 

in oncogenes, LoF (and GoF) mutations in tumor suppressors, CNAs through minimal common 

region analysis, and recurrent gene fusions. These alterations were combined with a 

comprehensive knowledgebase of currently available oncology therapeutics and clinical trials to 

define variants with immediate or near-term relevance. We then developed a targeted 

multiplexed PCR based NGS panel compatible with limited amounts of routine FFPE tissue 

samples (20ng DNA/15ng RNA) to detect these variants. These nucleic acid requirements are 2-

50 fold less than those for comprehensive capture-based precision oncology approaches [18, 21]. 

To balance OCP panel size and clinical relevance, we excluded genes without near term clinical 

actionability and only currently identified hotspots are targeted. Hence, additional 

genes/amplicons may be included in future OCP versions or supplemental panels to target novel 

relevant alterations, including treatment resistance hotspots poorly represented in most publically 

available profiling studies.  

We validated OCP performance using over 300 FFPE tumor specimens, including a 

prospective cohort of 104 samples undergoing concurrent molecular diagnostics testing for 

BRAF, KRAS or EGFR point mutations and indels, achieving a sensitivity and specificity of 

100%. We and others have previously validated the utility of multiplexed PCR based Ion Torrent 

sequencing for CNA assessment[19, 25, 31-33] and herein confirm high level ERBB2 CNAs 

identified by OCP using IHC. OCP identified mutations and high level CNAs were also highly 

concordant with results from Haloplex capture based NGS in a subset of the PR cohort profiled 

by both technologies. Taken together, these results demonstrate the ability of OCP to identify 
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these relevant classes of alterations. Frameshifting indels in long homopolymer runs are 

challenging to detect with current Ion Torrent approaches (and are excluded using our filtering 

criteria) and multiplexed PCR approaches cannot detect large structural rearrangements, however 

these alterations predominantly result in LoF alterations in tumor suppressors [41], which 

represent a minority of current therapeutic targets. We anticipate that our cohort and additional 

OCP profiled samples will enable the development of panel- and laboratory-specific error 

models to improve performance in homopolymer regions.   

The RNA component of the OCP is designed to identify known recurrent gene fusions 

(through primers spanning known exon junctions) as well as fusions of RET, ROS1 and ALK 

with novel 5’ partners (or novel fusion isoforms) through 3’/5’ expression imbalance. We 

confirmed 100% concordance for T2:ERG gene fusion isoform specific detection between OCP 

and a validated qPCR assay in a subset of our PR cohort profiled by both methods, with multiple 

splice variants detected in the majority of fusion positive cases. Likewise, in 7 lung cancers 

known to harbor ALK rearrangements across our cohorts, OCP profiling identified EML4:ALK 

fusions in 5 (71%), with these 5 samples also showing 3’/5’ expression imbalance by OCP. MO-

66 (the known ALK rearranged sample with fusion read support below our threshold criteria) and 

LU-38 (known ALK rearrangement without fusion read support) also showed 3’/5’ expression 

imbalance. Of note, in our MO cohort, we identified two additional relevant fusions 

(ERC1:BRAF in a melanoma sample negative for BRAF mutation [MO-17] and TPR:NTRK1 in a 

colon cancer [MO-35]), validating both  fusions by qPCR. Of note ERC1:BRAF was not directly 

targeted in the OCP RNA panel design, as ERC1 had previously only been reported as a fusion 

partner with RET[42], highlighting the utility of the combinatorial nature of targeted multiplexed 

PCR based RNAseq.  
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Taken together, our results validate the multiplexed PCR based RNA sequencing 

approach for detecting targeted gene fusions. Characterization of additional cohorts will be 

required to determine performance and optimal 3’/5’ expression imbalance cutoffs for ALK, RET 

and ROS1 fusions in lung cancer (and other cancer types) involving unknown partners. Likewise, 

we anticipate that inclusion of additional 3’/5’ expression imbalance amplicons will improve 

fusion detection involving other genes. Lastly, splice variant detection of non-gene fusion events, 

such as AR splice variants in prostate cancer[43, 44] or alternatively spliced tyrosine kinases (e.g. 

MET) in other cancers[45, 46], may also be assessed in OCP through inclusion of additional 

amplicons. Importantly, although comprehensive capture based NGS approaches assessing only 

DNA can identify gene fusions through sequencing introns of involved genes [18], such 

approaches cannot detect or quantify potentially relevant splice variants. 

As a demonstration of the utility of OCP for translational research, we applied this 

approach to a cohort of 116 prostate cancers, including 50 previously treated samples. We 

recapitulated known molecular subtypes and alterations with specific histology, including the 

high prevalence of TP53 alterations in prostatic SCC[47-52]. We also identified a high burden of 

ATM alterations in heavily treated patients, which can be investigated in future efforts 

characterizing this understudied population. Of note, through integration with previous profiling 

studies, we identify IDH1 R132 mutant prostate cancer as a novel molecular subtype that lacks 

other subtype defining lesions. This finding is especially important as IDH1 inhibitors are now in 

early phase clinical trials. Lastly, two pairs of pre- and post-treatment samples each 

demonstrated AR amplifications (a known adaptive response to ADT [53]) and CTNNB1 GoF 

mutation/amplification exclusively in the post-treatment sample. Although activation of the 

WNT/CTNNB1 pathway has been identified in ADT treated prostate cancer[29, 54, 55], our 
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report is the first to demonstrate that ADT and/or subsequent chemotherapy specifically induces 

(or selects) for CTNNB1 amplification/activating mutation, supporting a functional role in 

treatment resistance..  

 The OCP is compatible with routine Ion Torrent workflows, and the DNA/RNA 

components of the OCP can be combined for template preparation and concurrent PGM 

sequencing on a single Ion Torrent 318 chip in a standard ~4hr PGM run, with the potential for 

higher throughput using the Ion Torrent Proton. Although complete analytic validation will need 

to be performed in individual laboratories, we demonstrate highly concordant results with typical 

specimens sent for molecular diagnostic testing as well as molecular standards (performance 

with down-sampled reads is shown in Fig B8).  Hence, this approach provides a rapid, highly 

scalable approach requiring small amounts of routine tissue specimens with performance 

comparable to previous multiplexed PCR based Ion Torrent panels assessing DNA 

alterations[16, 19, 22], capture based approaches[18, 56] and anchored multiplexed PCR based 

NGS[24]. A critical component of the OCP is a highly automated analysis pipeline that links to a 

knowledgebase of potential treatment options, facilitated by predefining the actionable cancer 

genome prior to panel development. As shown through our actionability assessment, a significant 

number of samples currently harbor relevant alterations that are identifiable using our approach. 

As clinical sequencing efforts and expertise become more prevalent, a key advantage of the OCP 

is the potential for integration into multiple independent institutions (rather than a single 

centralized testing center), enabling valuable direct involvement from molecular biologists, 

pathologists and oncologists. Taken together, the highly scalable assay and framework described 

herein may have utility in future oncology precision medicine approaches, such as the NCI 

Match Trial, where multiple sites will sequence 3,000 cancer samples using the OCP.   
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Figure 2.1. Pan-solid tumor cancer somatic alteration analysis to identify relevant variants  

 
Figure 2.1. A. Using the Oncomine database supplemented with data from COSMIC, over 700,000 tumor samples (including 
>8,000 cancer exomes) were used to assess genes for over-representation of hotspot (gain of function [GoF] and deleterious (loss 
of function [LoF]) mutations to identify oncogenes and tumor suppressors, respectively. Array based copy number profiles from 
>30,000 tumors were assessed by minimal common region analysis to identify targets of focal, high level amplifications or 
deletions. Transcriptomes from >7,000 cancers were similarly assessed for driver gene fusions. Prioritized genes were further 
filtered to include only near term relevant alterations for inclusion into the Oncomine Comprehensive Panel (OCP). B. Frequency 
of somatic alterations (type according to color in the legend) in OCP included genes across publically available The Cancer 
Genome Atlas (TCGA) data. For each gene per cancer type, alteration frequency (<0.01 to >0.20) is indicated by the size of the 
circle according to the legend. Selected genes of interest are highlighted. C. The OCP was designed for compatibility with routine 
formalin fixed paraffin embedded (FFPE) tissues, with co-isolation of DNA/RNA from FFPE tissues used in our validation. The 
OCP consists of multiplexed PCR (Ampliseq) panels compatible with 20ng DNA and 15ng RNA, which can be combined after 
library generation for NGS on Ion Torrent benchtop sequencers. By predefining relevant somatic variants, identified variants can 
be linked to potential treatment strategies.  
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Figure 2.2. Validation of the Oncomine Comprehensive Panel (OCP) using an oncology cohort undergoing molecular 
diagnostics testing.  

 

Figure 2.2 A. We applied the OCP to a prospectively identified cohort of formalin fixed paraffin embedded (FFPE) cancer 
samples undergoing  molecular diagnostics testing for somatic mutations in BRAF, KRAS or EGFR, or ALK rearrangements (MO 
cohort). All OCP defined relevant alterations from the RNA (in header) and DNA components of the OCP for the 104 
informative samples are shown in the heatmap. Specific alteration types are indicated according to the legend (Nonsyn. SNV = 
nonsynonymous SNV; Fs. and Fp. indel = frame-shifting and frame-preserving indels, respectively). Slashed boxes indicate two 
alterations. Samples not sequenced in OCP RNA analysis are indicated as in the legend. Samples excluded from copy number 
analysis due to noisy profiles are named in italics. Clinicopathological information is given in the header according to the legend 
(LUAD= lung adenocarcinoma, COAD = colon adenocarcinoma, MEL= melanoma). 100% concordance with molecular testing 
was observed for mutations (see Table S10). Detailed OCP RNAseq results, including 3’/5’ expression imbalance, for the ALK 
rearrangement positive lung cancers are shown in Fig 3B. B. Integrative OCP results from two cases, MO-17 and MO-25 (names 
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bolded in A) harboring relevant gene fusions. Copy number plots show log2 copy number ratios (compared to a composite normal 
sample) per amplicon, with each individual amplicon represented by a single dot, and individual genes indicated by different 
colors. Gene-level copy number estimates are shown as black bars. By OCP, MO-17 (top), a BRAF wildtype melanoma by 
clinical testing, harbored CDKN2A high level copy number loss, TP53 R158L mutation, and a novel ERC1:BRAF gene fusion. 
OCP profiling of MO-35, a KRAS/BRAF wildtype colon adenocarcinoma by clinical testing, identified an FBXW7 L647fs 
mutation and a TPR:NTRK1 gene fusion. For mutations, variant allele containing reads/total reads and the variant allele 
frequency are shown. C. Validation of OCP identified gene fusions using quantitative (q) RT-PCR for ERC1:BRAF (ERC1 exon 
12 fused to BRAF exon 9 [E12B9, blue] or 10 [E12B10, cyan]) and TPR:NTRK1 (TPR exon 21 fused to NTRK1 exon 10 
[T21N10, orange]). qRT-PCR was performed on MO-17, MO-35 and five control MO samples without OCP detected gene 
fusions. Mean log2 expression (normalized to the arithmetic mean of GAPDH+HMBS calibrated to the mean of the MO control 
samples) + S.D. of triplicate qPCR reactions are plotted. No detectable expression of ERC1:BRAF or TPR:NTRK1 was present in 
any sample other than that identified by OCP. 
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Figure 2.3. OCP identified relevant somatic alterations, including gene fusions, in a lung cancer cohort.  

 

Figure 2.3. A. We applied the OCP to a retrospective cohort of FFPE lung tumors selected to represent diverse pathology (LU 
cohort). All OCP defined relevant alterations from the RNA (in header) and DNA components of the OCP for the 101 
informative samples are shown in the heatmap. Clinicopathological information is given in the header according to the legend 
(Met = metastasis; LUSQ = squamous cell carcinoma, ADSQ = adenosquamous carcinoma, BAC = bronchioloalveolar 
carcinoma (adenocarcinoma in situ or well differentiated lepidic predominant adenocarcinoma), SCC = small cell carcinoma; 
Resect. = resection, Bx = biopsy). All 101 informative lung samples were included in OCP RNA analysis. Samples excluded 
from copy number analysis due to noisy profiles are named in italics.  B. In addition to primers for pan-cancer prioritized 5’ and 
3’ gene fusion partners, OCP includes 5’ and 3’ amplicons for ALK, ROS1 and RET to identify 3’/5’ expression imbalance 
indicative of gene fusions. For all lung tumors (including those from MO cohort), normalized OCP RNAseq expression of gene 
fusions involving ALK (red) and ROS1 (green) are plotted. No fusions involving RET were detected. Corresponding normalized 
3’/5’ expression imbalance for ALK (top panel) and ROS1 (middle panel) for each sample are plotted. ALK rearrangement 
positive (bolded red), negative, (blue) or untested (gray) samples by molecular testing are indicated.  
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Figure 2.4. Application of OCP to a prostate cancer cohort identifies variable alterations across histologic and treatment 
subtypes and confirms isoform specific gene fusion detection.  

 

Figure 2.4 A. We applied the OCP to a retrospective cohort of aggressive FFPE prostate cancers. All OCP defined relevant 
alterations from the RNA (in header) and DNA components of the OCP for the 116 informative samples are shown in the 
heatmap. Clinicopathological information is given in the header according to the legend (Met = metastasis; Pros.= prostate, LN 
met= lymph node metastasis; PRAD= prostatic adenocarcinoma, SCC = small cell carcinoma, SQ= squamous differentiation; 
RRP = radical prostatectomy). For treatment subtype, ADT = prior androgen deprivation therapy, XRT = radiation therapy, 
ADT+ = ADT plus XRT and/or chemotherapy, AR- = no (or reduced) AR signaling as indicated by no/focal PSA staining. 
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Samples excluded from or not sequenced in OCP RNA analysis are indicated as in the legend. B. The RNA component of the 
OCP contains forward primers in known 5’ fusion partners and reverse primers in known 3’ fusion partners for recurrent gene 
fusions in prostate cancer. Normalized log2 read counts for indicated gene fusion isoforms are indicated in each cell according to 
the color scale, with individual fusions indicated by the color blocks (right) and fusion isoforms named by the exon junctions of 
the involved genes (e.g. T2:ERG T1E4 indicates a fusion junction of TMPRSS2 exon 1 and ERG exon 4). qRT-PCR was 
previously performed on a subset of these cases, as indicated in qPCR type. T2:ERG T1E4 status (including low expression), and 
ERG outlier expression without T1E4 isoform detection (ERG+), ETV1 (ETV1+), ETV4 (ETV4+) or ETV5 (ETV5+) are indicated 
in the header. Samples without any of these alterations (Neg) or not tested (N/A) by qPCR are indicated.  

 

  



49 
 

Figure 2.5. Automated treatment prioritization by OCP identifies relevant alterations beyond routine molecular testing.  

 

Figure 2.5A. For each OCP assessed cohort, the breakdown of the highest prioritized alteration per sample is shown, according 
to whether the alteration is associated with: 1) FDA approved therapies (red), 2) therapies within NCCN indications (orange), 3) 
therapies outside that specific cancer type’s NCCN indication (yellow), 4) clinical trial entry requirements (blue). This 
assessment incorporates variants precluding treatment strategies based on other identified variants, but does not prioritize variants 
that only exclude approved agents. Individual prioritized alterations are indicated as slices of each pie, and are shown in the 
histogram. B. Integrative OCP profiling prioritized high-level ERBB2 copy gains in two lung carcinomas. Integrative OCP results 
are shown as in Figure 2B (gene fusions were not identified in either sample). OCP profiling prioritized high level ERBB2 copy 
number gains in MO-65 (top), an EGFR/ALK wildtype lung adenocarcinoma by diagnostic molecular testing, and  LU-31 
(bottom), a lung small cell carcinoma with no previous molecular diagnostic testing. Morphology by hematoxylin and eosin 
(H&E) staining is shown (inset of LU-31 shows typical small cell morphology). Diffuse 3+ ERBB2 protein expression was 
confirmed by immunohistochemistry (IHC). 
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CHAPTER III: Rapid, Ultra Low Coverage Copy Number Profiling of Cell-Free DNA as a 
Precision Oncology Screening Strategy 

 

Previously published in Oncotarget.  

 
INTRODUCTION 

Clinical and commercial next-generation sequencing (NGS) based precision oncology 

strategies have expanded rapidly[1, 2]. Both targeted [3-8] and more comprehensive [9, 10] NGS 

assessment of frozen and archived formalin-fixed paraffin-embedded (FFPE) tissue samples have 

proven effective in identifying certain categories of clinically informative somatic DNA-based 

alterations, but tissue and re-biopsy requirements serve as considerable hurdles for widespread 

clinical implementation for identifying and tracking clinically relevant genomic alterations. 

Myriad noninvasive (‘liquid biopsy’) approaches for identifying and tracking clinically 

relevant genomic alterations from cell-free DNA (cfDNA) have emerged as viable and 

potentially more broadly applicable alternatives to tissue-based assays using technologies 

including quantitative PCR (qPCR), digital droplet PCR (ddPCR), targeted DNA sequencing, 

and whole exome (WES) or whole genome sequencing (WGS)[2, 10-31]. Identifying a tractable, 

scalable precision oncology workflow with utility across patients with various advanced cancers, 

however, is still a substantial challenge given the variability of tumor-derived circulating cfDNA 

content, relevant genomic alterations, and frequent need for ultra-deep (e.g. >10,000x), high-
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sensitivity sequencing in order to ensure detection (or absence) of clinically relevant alterations 

in pan-cancer cohorts[25, 32].  

Genome-wide copy number profiles derived from low-pass cfDNA whole genome 

sequencing (WGS) are routinely used to detect large-scale aneuploidy events in clinical 

applications such as screening for fetal anomalies during pregnancy [33-36]. Multiple 

experiments have leveraged similar principles using low-pass cfDNA WGS to infer somatic 

whole-genome copy-number profiles in patients with advanced cancer, occasionally deploying 

higher depth disease-specific strategies for approximating cfDNA tumor content [22, 37-41]. 

However, these approaches often rely on disease specificity trade-offs that limit widespread 

prospective implementation[39]. Applicability across cancers, routine identification of actionable 

CNAs, correlation with comprehensive tissue based NGS profiling, and use as a precision 

oncology screen strategy have not yet been comprehensively addressed[40, 41]. Initiatives 

comparing comprehensive tissue-based molecular profiles to those obtained from cfDNA have 

also thus far been limited in size, particularly in metastatic castration resistant prostate cancer 

(mCRPC) [30, 31, 40].   

Here, as part of an effort to facilitate precision medicine for all patients with advanced 

cancer, we propose a comprehensive approach deploying rapid, inexpensive, ultra-low pass 

cfDNA WGS as a broadly applicable potential screening strategy through: 1) directly identifying 

actionable CNAs, 2) informing needed sequencing depth for additional comprehensive/targeted 

cfDNA assessment (through cfDNA tumor content approximation) and 3) reserving ultra-deep 

cfDNA sequencing or tissue-based profiling for patients with low cfDNA tumor content. We 

show that with effective whole-genome coverage as low as 0.01x (<100,000 single end reads) 

per sample on a benchtop Ion Torrent sequencer from as little as 10 pg of double-stranded DNA, 
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we can recapitulate known whole-genome copy number profiles in cell lines and advanced 

prostate, colon, lung, and breast cancer patient samples, while retaining the ability to identify 

both focal and broad CNAs with megabase-level resolution. To confirm the utility of this 

screening approach to guide additional precision oncology assessment, we also paired this ultra-

low-pass WGS with targeted multiplexed PCR based NGS of the same cfDNA, validating CNAs 

and identifying clinically relevant somatic mutation profiles at depth tuned by WGS-informed 

cfDNA tumor content approximation. Further, we directly compare cfDNA copy-number and 

mutational profiles with molecular profiles from synchronous or asynchronous tissue samples, 

highlighting high overall concordance and unique considerations for comprehensive precision 

oncology workflows, while exploring associations between putative cfDNA biomarkers and 

therapeutic outcomes in patients with mCRPC.   

 

RESULTS 

Rationale for a pan-cancer, rapid, inexpensive, ultra-low pass NGS cfDNA (PRINCe) 

approach to guide precision oncology 

The major impetus for ultra-deep, high sensitivity cfDNA profiling in precision oncology 

is the need for robust sensitivity and specificity for somatic alterations detection at extremely low 

cfDNA tumor content [42]. While many cfDNA-based detection approaches thus rely heavily on 

targeted, ultra-sensitive methodologies, many patients with elevated tumor burden or metastatic 

treatment refractory cancer—where precision oncology NGS is most commonly employed—

have relatively high cfDNA tumor contents of 5-50% [22, 25, 42] (Figure 3.1A). If tumor-

derived cfDNA characteristics could be rapidly leveraged to approximate tumor content and 
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potentially identify clinically relevant alterations across cancer types, unique and potentially 

more optimized precision medicine strategies may be achievable. Given that somatic copy-

number alterations (CNAs) are pervasive in cancer [43] and somatic copy-number burden may 

be an important marker for aggressive or treatment-resistant disease [44], we first assessed the 

prevalence of extended copy-number burden in a pan-cancer TCGA cohort using 11,576 copy 

number profiles from 32 tumor types (Figure 3.1B). Overall, 56% of tumors had elevated copy-

number burden (defined by having >15% fraction of the genome altered [FGA]), with FGA 

increasing with pathologic tumor stage, tumor grade and clinical stage (Figure C1). Importantly, 

per-sample FGA was also increased in a cohort of advanced/metastatic tumors (n=129) profiled 

as part of the MI-ONCOSEQ project[45] compared to the TCGA cohort, with 81% of Mi-

ONCOSEQ profiled tumors having >15% FGA (Figure 3.1B). As CNAs can be robustly 

detected at substantially lower sequencing coverage (and cost) than typically required for 

somatic mutation calling in genome-wide or targeted pan-cancer workflows, we sought to exploit 

genome-wide CNAs as a biomarker through a pan-cancer, rapid, inexpensive, ultra-low pass 

NGS cfDNA (PRINCe) precision oncology screening approach, which has the potential to 

directly inform precision oncology workflows through genome-wide CNA detection and tumor 

content approximation (Figure 3.1C).  

 

Validation of ThruPLEX cfDNA WGS for Ion Torrent Benchtop Sequencers and cfDNA Tumor 

Content Approximation 

Validation of cfDNA WGS using a three hour ThruPLEX RGP-0003 WGA single tube 

library construction approach (compatible with ≤ 50pg double stranded DNA) for rapid 
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sequencing on Ion Torrent benchtop sequencers was carried out on 10 normal control cfDNA 

samples, all of which displayed high sequencing coverage uniformity (>90%) (Appendix C). In 

vitro dilution experiments of sheared genomic DNA for VCaP (prostate cancer) and UMUC-5 

(bladder cancer) cell lines confirmed our ability to leverage Ion Torrent cfDNA WGS for 

recapitulation of whole-genome copy number profiles and detection of therapeutically relevant 

focal amplifications (including AR and EGFR amplifications), with high observed concordance 

with orthogonal targeted and genome-wide copy-number profiles at tumor contents as low as 5% 

(see Figures C2 and C3, Methods, Appendix C) [46, 47].  

Subsequent in silico dilution and downsampling experiments of cell line (sheared gDNA) 

and patient cfDNA WGS data facilitated development of a heuristic tumor content 

approximation metric (least squares statistic; LSS), while highlighting our ability to recapitulate 

both broad and focal copy-number alterations across tumor contents as low as 5% (see Figures 

C3-5, Appendix C). While detection of focal amplifications by low-pass cfDNA WGS is also 

dependent on absolute copy-number of amplified gene(s) in the tumor, high-level focal 

amplifications (>4 copies) are frequent across TCGA and advanced cancers [48, 49], and 

abundant and detectable in our patient cohort (described below). An illustrative example of a 

genome-wide copy-number profile from cfDNA collected from a patient (TP1337) with mCRPC 

after progression on second generation anti-androgens abiraterone and enzalutamide is shown in 

Figure 3.2A. TP1337 harbored focal AR amplification, chr8q gain, focal 2-copy PTEN loss, and 

one-copy loss on chr13 including RB1, representing the majority of the most common CNAs in 

mCRPC [45]. Figure 3.2B further displays the ability of our approach to detect both broad and 

focal CNAs down to 0.005x (~82,000 reads) in TP1337, with routine robust detection of focal 

amplifications in cell lines and high tumor content mCRPC samples at 0.01x coverage (Figures 
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C6 and 7). While ultra-low-pass (0.005x) is expected to have greatest clinical utility in high-

tumor content cfDNA samples, these results support the fidelity of copy number profiling from 

cfDNA using our low-pass WGS based PRINCe approach and the capacity to leverage this 

workflow to both approximate tumor content and identify high level focal amplifications, a key 

therapeutic class of somatic alterations in cancer.  

 

Application of PRINCe to patient cfDNA sample cohorts and utility in disease monitoring 

To demonstrate feasibility and utility of PRINCe in representative clinical scenarios, we 

next assessed cfDNA from two patient cohorts, one comprised of 31 samples from 24 individual 

patients with metastatic colorectal, breast, or lung cancers, uterine leiomyosarcoma, sarcoma, or 

leukemia, and another comprised of 93 samples from 75 patients with mCRPC (including 

patients with both low and high volume disease) (Appendix C). Across the 124 total patient 

samples, 74 (59%) had LSS values ≥ 0.1, and thus an estimated cfDNA tumor content of >8.75% 

(Figure 3.2C, Appendix C). PRINCe enabled routine detection of actionable focal copy-number 

alterations (including focal EGFR and FGFR1 amplifications) across patient samples in our non-

mCRPC cohort (Figure 3.2D); combining this approach with targeted cfDNA enabled robust 

detection of ddPCR validated informative point mutations or indels (including EGFR exon 19 

deletions) (see Appendix C). PRINCe profiling of serial cfDNA samples from several patients 

highlighted utility in evaluating treatment response, disease monitoring, and identification of 

candidate biomarkers of treatment response in a patient (PD-L1006_1) with stage IV lung 

adenocarcinoma who achieved a complete response to PD-L1 checkpoint inhibition 

immunotherapy (see Appendix C). While there remains clear utility in specific contexts for 
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profiling disease recurrence at extremely low tumor content using high-depth, ultra-sensitive or 

personalized sequencing/ddPCR methodologies [32, 50, 51], our results suggest substantial 

potential clinical utility across cancer types from low-cost identification of pre-treatment genome 

wide CNA profiles and cfDNA tumor content estimates via highly scalable whole-genome and 

targeted cfDNA NGS-based profiling strategies to monitor disease burden and molecular 

evidence of response. 

 

PRINCe applied to metastatic castration resistant prostate cancer (mCRPC) 

 Given the potential impact of CNA detection in cfDNA—particularly AR amplification—

on therapeutic decision-making in prostate cancer[23, 52, 53], we next focused on the 76 patients 

with mCRPC. All patients had progressive disease after androgen deprivation therapy, and the 

clinical characteristics are shown in Appendix C. PRINCe was carried out on 5 normal male and 

93 mCPRC patient samples (including one technical replicate, TP1052B) to average whole-

genome coverage of 0.32x (range: 0.02-1.30x)). Of 93 mCRPC cfDNA samples, 60 (65%) had 

estimated tumor contents greater than 8.75% by LSS analysis (LSS ≥ 0.1), our minimum 

threshold for accurately estimating tumor content, and were considered as high tumor content. 

Low-pass WGS of one cfDNA sample (TP1330) identified a single 19Mb deletion on chr20 

(20q11.21-20q13.2) leading to elevated LSS, while by targeted NGS this sample also carried a 

U2AF1 S34F COSMIC hotspot mutation (variant fraction = 30%, 527 covering reads; Appendix 

C), consistent with contaminating white blood cell cfDNA in the presence of concurrent 

myelodysplastic syndrome[54], and thus this sample was considered as low tumor content for 

subsequent analyses (Figure 3.2B and Figure C8; see Methods). In total, the 63% (59 of 93) of 
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mCRPC samples with estimated tumor content >8.75% represent a similar proportion of mCRPC 

samples to that reported as having sufficient tumor derived cfDNA for array CGH and targeted 

NGS based assessment described by Wyatt et al.[55].  

Unsurprisingly, 68 of 93 mCRPC cfDNA samples (73%) showed evidence of detectable 

chromosome 8p losses and/or 8q gain (known early alterations in prostate carcinoma 

progression[56, 57]), including 58 of 59 (98%) high tumor content samples (Figure C9). In total, 

14 of 93 (15%) mCRPC cfDNA samples also demonstrated detectable segmented 21q22.2 copy-

number deletions consistent with deletion leading to TMPRSS2:ERG gene fusion, another known 

early event in prostate oncogenesis[58, 59] (Figure C10). Focal copy number alterations were 

also frequent, including PTEN deletion (20 of 59 (28.8%) high tumor content cfDNA samples, 

11 (65%) of which are focal deep deletions (Figure C10)), and focal AR amplification (36 of 93 

(39%) cfDNA samples, including 32 of 59 (54%) high tumor content mCRPC samples) (Figure 

C10, Appendix C), both of which are biomarkers of poor prognosis and/or resistance to second-

line anti-androgens (abiraterone and enzalutamide), particularly when observed in cfDNA[23, 

52, 53, 60] (see Appendix C). Focal RB1 deletion, a frequent alteration  in 

neuroendocrine/small-cell prostatic carcinoma[45, 61], was also detectable by our approach, with 

4 samples (4.3%) (4 patients) exhibiting focal deep deletions (Figure C10), including 1 from a 

patient (TP1320) with detectable AR amplification, who (post-ADT and a single course of 

docetaxel) progressed rapidly on abiraterone over the course of 3 months on therapy with PCa-

related death 4 months after cfDNA profiling (see Appendix C).  

Notably, PRINCe assessment of cfDNA sample TP1291 paired with targeted NGS of the 

matched unamplified cfDNA (described below) identified a broad 1-copy copy-number loss 

affecting BRCA2 and RB1 in combination with a Clinvar pathogenic BRCA2 germline R2494X 
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stop-gain SNV at a variant fraction (71%, 1,022 variant-containing reads) consistent with copy-

number deletion of the non-mutated copy of the gene and biallelic inactivation of BRCA2 

(Figure C11). Prior to cfDNA sample collection, the corresponding patient progressed rapidly 

through courses of abiraterone, enzalutamide, docetaxel, and cabazitaxel over the 11 months 

prior to cfDNA sample collection, consistent with known poor prognosis for BRCA-mutant men 

with prostate cancer[62], confirming important utility for cfDNA profiling in guiding PARP 

inhibitor treatment in patients with advanced prostate cancer[30, 31]. Additional PRINCe 

assessments detected a putative complex rearrangement affecting BRCA1 in a patient with 

mCRPC, along with clinically relevant copy-number alterations in advanced treatment-naïve 

patients with heavy tumor burden (Figure C11; Appendix C). Overall, these results highlight 

our capacity to detect therapeutically relevant focal copy-number deletions from low-pass 

cfDNA WGS in patients with mCRPC and support potential clinical utility in informing 

precision oncology workflows for patients with advanced prostate cancer. 

 

PRINCe to guide additional precision oncology testing 

In the absence of immediately actionable copy-number alterations by low-pass WGS, a 

priori tumor content approximation from low-pass cfDNA WGS can enhance subsequent 

precision medicine workflows by directly informing requisite strategies or coverages needed for 

meaningful NGS profiling (Figure 3.1C). For example, we hypothesized that in patients with 

relatively high cfDNA tumor content (e.g. >10%), routine tumor tissue profiling NGS strategies 

would be sufficient to detect relevant alterations, rather than ultra-high depth, high fidelity (e.g. 

single molecule barcoding) sequencing as typically performed for cfDNA NGS. Hence, we 
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subjected separate 1-20ng aliquots of unamplified cfDNA from 61 of our patient samples 

(including 46 mCRPC samples, 11 high tumor content non-mCRPC samples, and 4 male control 

samples with sufficient DNA; see Appendix C), as well as the undiluted artificial VCaP and 

UMUC5 cfDNA samples as positive controls, to targeted multiplexed PCR based NGS using the 

DNA component of the Oncomine Cancer Assay (OCP)[4], the panel being used in the NCI 

sponsored MATCH trial performing NGS on tumor tissue.  

Sequencing of pooled patient samples resulted in a median average coverage of 1,075x 

(range: 42-17,944x), with average uniformity of 96.0% (higher than typically observed for FFPE 

DNA samples[4]). OCP on cfDNA confirmed high level EGFR amplification in UMUC-5, and 

high level AR amplifications in VCaP and 23 of 23 (100%) high tumor content mCRPC samples. 

In TP1337 (see Fig 3.2A), OCP on cfDNA validated all key somatic copy-number alterations 

detected by low-pass cfDNA and detected a 28bp TP53 frameshift deletion (L264del28bp, 

variant frequency 20.8% with 504 covering reads) (Figure 3.2A). Of note, we observed high 

correlation between gene-level copy number alterations (absolute_value[targeted NGS 

log2(CopyNumberRatio)] ≥ 0.5) by targeted sequencing and low-pass WGS calls from PRINCe 

assessment of patient cfDNA samples (Pearson correlation coefficient: 0.92, p < 0.001), and in 

silico down-sampling experiments in patient and cell line cfDNA samples suggest mean 

coverages as low as 50x enable reliable detection of known putative clonal somatic point 

mutations, indels, and copy number variants in samples with high tumor content (Figures C12 

and C13). Taken together, these results underscore the potential for PRINCe followed by 

targeted sequencing (tuned to cfDNA tumor content) as part of a high-throughput, cost-effective 

clinical or translational research NGS workflow.  
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PRINCe concordance with comprehensive tissue-based profiling 

 To assess the potential utility of PRINCe cfDNA assessment in the context of 

comprehensive tissue-based precision oncology workflows, we focused on 26 of the 76 men 

(34%) with mCRPC profiled by cfDNA low-pass WGS (corresponding to 31 of 93 (33%) 

mCRPC cfDNA samples) where synchronous or asynchronous comprehensive whole exome and 

whole transcriptome profiling was attempted on fresh frozen or FFPE biopsy tissue specimens 

(median number days between tissue- and cfDNA specimen collection: 137 (range: 0-682 days)). 

Of 26 men, 4 (15%) had either insufficient tumor content for comprehensive tissue profiling or 

incomplete tissue profiling data for analysis. Notably, all 4 men had cfDNA samples that yielded 

clinically informative results, including 4/4 (100%) with detectable focal AR amplification, while 

4 of 5 patient-matched cfDNA samples were taken pre-biopsy highlighting important 

opportunities for optimized resource allocation in precision medicine workflows (see Appendix 

C). Collectively, this supports complementary clinical utility for plasma cfDNA profiling when 

paired with comprehensive tissue-based NGS workflows as a first-stage “screening” strategy. 

Global copy number concordance across tissue and cfDNA profiling has been poorly 

explored in mCRPC and other cancers. Hence, we next assessed the 22 men with comprehensive 

tissue-based profiling and at least 1 profiled cfDNA sample (range of cfDNA samples per 

individual: 1-3), of which 18 (82%) had a cfDNA sample w/high cfDNA tumor content 

amenable to analysis (Figure 3.3A, Appendix C). Despite variable specimen tumor content and 

sample synchronicity, genome-wide segmented tissue-based copy-number profiles were highly 

correlated (median r = 0.87 [range: 0.54-0.95]; Figure 3.3B) with whole genome cfDNA 

segmented copy-number profiles for the 16 of 18 (89%) individuals with fresh frozen tissue 

specimens, and this concordance was not significantly associated with time between cfDNA and 
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tissue specimen collection (p=0.72, two sample t-test) (Figure C14, Appendix C). For 6 of 18 

men (33%) with high tumor content cfDNA samples and tissue-based profiles, clear 21q22.2 

copy-number deletions (consistent with TMPRSS2:ERG gene fusion) detected by cfDNA WGS 

was also detected in tissue-based DNA profiling, with TMPRSS2:ERG fusion isoform expression 

confirmed by tissue-based RNAseq in 5 of 6 men (Figure C10, Appendix C). Of 18 men with 

tissue profiling data, 12 (67%) harbored focal AR amplifications and 11 of 12 (92%) patient-

matched high tumor content cfDNA samples show concordant detectable AR amplifications 

(example in Figure 3.3C; Appendix C). By targeted NGS of patient-matched cfDNA samples, 

24/28 (86%) somatic point mutations and indels present in tissue specimens at variant fractions 

≥10% targeted by our panel were detected in cfDNA samples, including 20/21 (95%) in matched 

high tumor content cfDNA samples and 15/15 (100%) in high tumor content cfDNA samples 

collected ≤ 200 days from tissue collection (Figure C15, Appendix C). Collectively, these 

results suggest PRINCe assessment of routine cfDNA samples from men in mCRPC may enable 

highly scalable, robust identification of putative clonal somatic alterations consistent with 

comprehensive profiling results from synchronous tissue samples. 

Clinically relevant discrepancies between synchronous cfDNA and tissue profiles, 

however, were also identified. In one patient with a history of both primary prostatic 

adenocarcinoma and a metastatic lesion with small cell carcinoma/neuroendocrine features 

(TP1034/MO_1215), PRINCe assessment of synchronous (same-day) specimens detected a clear 

focal AR amplification in the cfDNA that was absent in the tissue based profiling of a prostatic 

neuroendocrine/small cell carcinoma focus (despite identical prioritized somatic point 

mutations), consistent with circulating evidence of both AR-driven and AR-independent clones 

(Figure 3.4A). Further, while previous reports suggest cfDNA clonal representation of known 
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early copy-number events (including chr8p/8q changes) in men with mCRPC may vary over 

time and therapy[24, 40], analyses in our cohort reveal stable representation of early genomic 

events in tissue and serial patient-matched plasma cfDNA samples (Figure 3.4B, Appendix C). 

Overall, these results suggest noninvasive profiling may yield high concordance with near-

synchronous tissue profiling for clinically relevant molecular alterations, and may provide 

unique complementary advantages and opportunities for expansion into treatment-naïve patient 

cohorts. 

 

Evaluating prognostic utility of cfDNA biomarkers 

cfDNA detectable AR amplification has been reported as a biomarker predicting 

therapeutic resistance to second generation anti-androgens (abiraterone/enzalutamide) in several 

studies[23, 52, 53], while circulating tumor cell (CTC) detectable ligand independent AR splice 

variant (AR-V7) has been reported as predictive of abiraterone/enzalutamide resistance and 

taxane chemotherapy sensitivity[63, 64]. While our mCRPC cohort was not designed specifically 

to assess associations between circulating biomarkers and clinical outcome or therapeutic 

response, our cohort contained a large number of men on—or starting—second generation anti-

androgens, as well taxane based chemotherapies. In exploratory analyses in our full cohort, we 

observed an enrichment of cfDNA detectable AR amplification in samples from patients with 

limited PSA response (Figure 3.5A), with both cfDNA detectable AR amplification (Kaplan-

Meier log-rank test, chi-square=15.3, p<0.0001; Figure 3.5B) and elevated cfDNA tumor 

content (Kaplan-Meier log-rank test, chi-square=8.2, p<0.0042; Figure 3.5C) showing a 

significant association with reduced time on therapy. Further, stratifying by therapy (starting or 
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on taxane vs. abiraterone/enzalutamide), we see that both AR amplification (yes/no) (Kaplan-

Meier log-rank test, chi-square=21.9, p<0.0001; Figure 3.5D) or cfDNA tumor content (Kaplan-

Meier log-rank test, chi-square = 18.9, p=0.0003; Figure 3.5E) again show significant 

differences in time on therapy, suggesting cfDNA detectable AR amplification (and high cfDNA 

tumor content) may be a potentially prognostic marker for resistance to both second generation 

anti-androgen therapy and taxane chemotherapies. These results are consistent with those seen 

when restricting analyses to samples from patients on or starting therapy separately (Figure 

C16), and together confirm previous reports that cfDNA detectable AR amplification predicts 

resistance to abiraterone or enzalutamide[23, 52, 53], while supporting AR amplification (and 

high tumor content) as a more general poor prognostic factor, similar to circulating tumor cell 

(CTC) count[65, 66]. 

 

DISCUSSION 

Many comprehensive precision oncology NGS approaches carry up-front coverage and 

sequencing requirements (aimed at maximizing sensitivity and specificity) that limit clinical 

implementation across cancer types in the current era of limited reimbursement, particularly 

using cfDNA (where estimated tumor content can be <0.01% in early stage disease[27]). Given 

current precision oncology NGS testing is typically performed in patients with multiple-therapy 

refractory advanced cancers usually exhibiting significant disease burden[67], here we describe a 

pan-cancer, rapid, inexpensive, ultra-low pass NGS cfDNA (PRINCe) based precision oncology 

first stage “screening” approach. Our approach can 1) direct therapy in patients with actionable 

CNAs, 2) guide precision oncology workflows based on cfDNA tumor content approximation in 
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the absence of actionable CNAs, and 3) identify genome wide CNA profiles that can be used for 

treatment monitoring. We show this highly scalable approach cfDNA WGS approach can be 

deployed at effective whole-genome coverages down to 0.01x from as little as 10pg of DNA, and 

that it facilitates robust detection of clinically relevant CNAs and tumor content approximation 

in samples with tumor contents >~10%, suggesting substantial utility as a high-throughput, cost-

effective screening tool in research and clinical laboratories (with appropriate validation). 

As CNAs may not be informative in all cancers, and many patients may have insufficient 

tumor content to identify high level CNAs, results from our approach can be used to guide 

additional precision oncology NGS profiling of the same cfDNA sample or fresh frozen or 

archived FFPE tissue-based NGS profiling, with sequencing approach and coverage tuned to 

tumor content. Supporting this tiered approach, we performed targeted multiplexed PCR based 

NGS on residual unamplified cfDNA from 61 cfDNA samples from patients with advanced 

cancer, confirming focal amplifications and identifying potentially informative mutations and 

indels at high concordance with known putative clonal alterations (25/26, 96%) in cfDNA 

samples with high tumor content. Comparisons between cfDNA and comprehensive tissue-based 

profiling in a subset of patients highlight substantial concordance for both somatic mutational 

and copy-number profiles, while elucidating important potentially complementary utility for 

cfDNA-based profiling strategies.  

Limitations of our approach include the need for multiple assays, particularly in tumor 

types with few CNAs or where chromosomal rearrangements must be assessed. Likewise, in 

clinical scenarios where cfDNA tumor content is expected to be very low, up front ultra-deep 

cfDNA sequencing or ddPCR (as currently performed) is more appropriate, though our ability to 

detect known early broad copy-number events (e.g., 8p loss, 8q gain) in prostate carcinoma 



68 
 

progression at low cfDNA tumor content (see Fig C9) suggests potential expanded utility of our 

approach at lower tumor contents than currently implemented (paired with more comprehensive 

approaches when necessary). Further refinement of our tumor content approximation approach 

(see Appendix C) through assessment of informative heterozygous SNPs or incorporation of a 

matched normal genomic DNA would enhance the precision and lower limits of our tumor-

derived cfDNA fraction estimates, though costs and feasibility in a clinical sequencing workflow 

are key considerations. While PRINCe is necessarily limited to megabase resolution for copy 

number alteration detection at ultra-low-pass (~0.01x) whole-genome coverage, smaller (multi-

kilobase) clinically relevant focal alterations (including focal PTEN deletion) can clearly be 

detected at 0.01-0.1x genome-wide coverages with sufficient cfDNA tumor content (Figure 

3.5B). Importantly, our approach can be routinely completed in 2-3 days and when performed at 

50% capacity on an Ion Torrent Proton sequencer (currently limited by Ion Torrent barcodes 

incorporated in ThruPLEX library construction), 96 samples could be sequenced per single Ion 

Torrent Proton P1 chip at list reagent costs of ~$70 per sample for library construction and NGS. 

Taken together, these observations suggest the proposed workflow may be amenable to high 

volume, cost-effective ultra-low-pass WGS screening protocols.  

Applied to a large mCRPC cohort, our approach showed high overall concordance 

between our cfDNA genome-wide CNA profiles with tissue-based profiles derived from whole 

exome sequencing in a precision medicine program[45]. In addition, we demonstrated that 

cfDNA detectable AR amplification not only predicts poor response to second generation anti-

androgens, consistent with other published reports[23, 53], but it also portends poor prognosis 

for patients treated with taxane based chemotherapy. Hence, cfDNA detectable AR amplification 

may be a more general poor prognostic factor, unlike AR-v7, which has been reported to confer 
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resistance to anti-androgens and sensitivity to taxanes[63, 64]. An important limitation of these 

results is that this was not assessed in the context of a clinical trial, and men in our study treated 

with taxanes were more advanced and had been treated with more lines of therapy post-ADT. 

Hence, prospective confirmation of our findings will be required. 

In summary, we have demonstrated the feasibility and potential utility of PRINCe, a 

broadly applicable, rapid, inexpensive cfDNA WGS screening assay for precision oncology that 

can robustly detect clinically informative CNAs from cfDNA at low tumor content using 

effective whole-genome coverage as low as 0.01x. This screen, while most informative in those 

patients with actionable CNAs and tumor content >10%, can nevertheless be used to guide 

additional testing in all patients based on cfDNA tumor content approximation. Our approach 

highlights important potential clinical utility when paired with targeted cfDNA NGS and/or 

tissue-based workflows, and demonstrates unique possibilities for inexpensive disease 

monitoring. More generally, our study supports the potential utility of tiered approaches in 

precision oncology, rather than using costlier front-line approaches defined by performance 

necessary in the extremes.  

 

METHODS 

TCGA Data Analysis 

TCGA pan-cancer copy number analyses were run on somatic segmented Affymetrix 

SNP6 array-based copy-number calls for 11,576 tumor samples across 32 tumor types contained 

in the January 28, 2016 TCGA GDAC Firehose standard data run (stddata__2016_01_28)[68] 

(see Appendix C).  
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Cell-free DNA extraction  

Five milliliters of peripheral blood were collected for 93 samples from 76 patients with 

mCRPC and 10 healthy controls (5 male, 5 female) using K2 EDTA blood collection tubes (Cat: 

366643, BD, NJ), and cfDNA was isolated as described (see Appendix C). For 31 samples from 

24 patients with other advanced cancers, 10 mL peripheral blood was collected using Streck 

Cell-Free DNA BCT tube (Streck; NE) and cfDNA was isolated as detailed (see Appendix C).  

 

VCaP and UMUC-5 In vitro Dilution 

 We carried out in vitro dilution experiments using serially diluted genomic DNA from 1) 

VCaP cells (metastatic prostate cancer cell line) with normal male human cell-free genomic 

DNA at 50%, 25%, 10%, 5%, 1% and 0% dilutions, and 2) UMUC-5 cells (urothelial cancer cell 

line) with normal male human cell-free genomic DNA at 50%, 10%, 5%, 0% dilutions. Cell line 

DNA was fragmented to approximately 180bp by Covaris AFA (Woburn, MA) focused 

ultrasonication. Library preparation and sequencing from undiluted and serial dilution samples 

was performed as for patient samples described below.  

 

ThruPLEX Library preparation 

Whole genome amplified (WGA) libraries were prepared from either cell-free DNA 

(cfDNA) isolated from plasma samples (median of 2.9ng cfDNA, interquartile range [IQR] 1.73-

5.79ng, see Appendix C) or Covaris-sheared and size selected (~ 180bp size) VCaP (1.9ng) or 
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UMUC-5 (2.0ng) genomic DNA (gDNA) using the ThruPLEX RGP-0003 prototype (Takara Bio 

USA; Ann Arbor, MI) according to the manufacturer’s protocol. Libraries were quantified using 

Ion Library Quantification kit by qPCR, and sequenced with 2-16 samples per Proton PI chip on 

an Ion Proton sequencer (Ion Torrent, Carlsbad, CA) according to the manufacturer’s 

instructions. 

 

Low-pass WGS and copy-number detection 

 Sequencing alignment and coverage analyses were performed using Torrent Suite version 

5.0.2 (Ion Torrent, Carlsbad, CA). Genome-wide copy number alterations were first called from 

aligned, non-PCR-duplicate reads using the QDNASeq R package (version 1.6.1) [69]. 

Segmented copy-number events were identified using bin-level corrected, median- and control-

normalized read counts using the circular binary segmentation algorithm implemented by the 

DNACopy (1.44.0) R package, and final segment- and bin-level copy-number values were used 

for subsequent analyses as described (see Appendix C). Focal CNAs were defined as CNAs 1.5-

20Mb long with a log2(CopyNumberRatio) ≥ 0.2. 

 

Targeted sequencing: Oncomine Comprehensive Assay (OCP) 

For 61 patient cfDNA samples (see Appendix C) and both sheared UMUC-5 and VCaP 

gDNA samples, we performed targeted NGS using the DNA component of the OCP, a custom 

multiplexed PCR-based panel of 2,530 amplicons targeting 126 genes[4]. Library preparation, 

data analysis, and variant and copy-number annotation and prioritization was carried out 
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essentially as described for each sample [4, 70-72] using validated in house pipelines (Appendix 

C).  

 

In silico experiments and tumor content approximation 

To establish theoretical segment-level copy-number distributions for tumor content 

approximation and examine efficacy across variable effect whole-genome coverages (0.005-

0.01x), we carried out serial in silico dilution and downsampling experiments on artificial 

cfDNA VCaP and UMUC-5 WGS data and patient cfDNA samples (see Appendix C). Using 

computational experiments on in vitro and in silico VCaP and UMUC-5 cell line dilution data as 

described in Appendix C, a heuristic least squares based distance metric (LSS) was used to 

approximate tumor content from whole-genome copy-number data, and guide tumor content 

approximation for patient samples, with low tumor content samples (LSS < 0.1) specifically 

scanned for focal CNAs as described (see Appendix C). 

 

Cell line cfDNA WGS vs COSMIC array-based CN calls  

To evaluate the capacity of low-pass cfDNA WGS to detect copy-number alterations 

across variable tumor content, segmented cfDNA WGS copy-number calls for VCaP and 

UMUC-5 in vitro dilutions were compared to publically available COSMIC and targeted NGS 

copy-number calls, respectively (see Appendix C).   

 

Concordance with tissue-based whole-exome sequencing copy-number profiles  
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Segmented log2 copy number ratio and point mutation data from whole-exome 

sequencing of fresh frozen tissue specimens[10, 45] was available for 22 of 26 patients also 

profiled by cfDNA low-pass WGS and compared to patient-matched cfDNA WGS profiles (see 

Appendix C).  

 

Clinical information  

 All clinical and outcome information was collected, retrieved, and analyzed from internal 

patient tracking databases and University of Michigan Health System (UMHS) electronic health 

records by IRB-approved personnel.  

 

Statistical analyses 

All statistical analyses described were carried out in R (3.2.3). 
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Figure 3.1: Leveraging tumor-derived cfDNA distribution in advanced cancer to develop a pan-cancer, rapid, 
inexpensive, ultra-low pass whole genome next generation sequencing (NGS) cfDNA precision oncology workflow 
(PRINCe).  

 
Figure 3.1 A. Theoretical cfDNA tumor content distributions and typical next-generation sequencing (NGS) coverage 
requirements for mutation profiling are presented for early detection (left) and precision oncology in advanced disease (right) 
applications. In early detection context, the majority of cfDNA samples are expected to have a low proportion of tumor-derived 
cfDNA fragments (e.g., <<5%), whereas advanced cancers have an elevated proportion of tumor-derived cfDNA. Tumor content 
requiring ultra-deep, extreme-fidelity (e.g. 10,000x coverage) targeted sequencing are shaded red, while those amenable to 
targeted sequencing on larger panels or whole-exome/whole-genome (WES/WGS) are shaded blue and green, respectively.  B. 
Copy number alterations (CNAs) are frequent across human cancers. The fraction of the genome altered (FGA, see Methods) by 
CNAs in 11,576 The Cancer Genome Atlas (TCGA) samples from 32 solid tumor types is shown across multiple thresholds 
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(overall cohort on left, individual tumor types on right). Increased FGA in a cohort of 129 advanced/metastatic cancers (prostate, 
kidney, lung and breast cancers) subjected to exome sequencing in the MI-ONCOSEQ program (plotted on the right panel) is 
seen in comparison to the TCGA cohort, consistent with increasing frequency of CNAs in advanced/metastatic cancers. C. 
Schematic for pan-cancer, rapid, inexpensive, ultra-low pass NGS cfDNA workflow (PRINCe). Segmented copy-number calls 
from ultra-low-pass cfDNA whole-genome sequencing are generated, followed by CNA-clustering based tumor content 
approximation to inform on precision oncology management. In patients with sufficient tumor content by PRINCe (e.g. >5-10%), 
CNA profiles may directly guide treatment (if focal targetable alterations are identified), enable routine panel, WGS, or WES 
based cfDNA NGS tuned to tumor content, as well as establish pre-treatment (tx) CNA profiles for disease (dx) monitoring post-
therapy. More costly ultra-deep, extreme fidelity cfDNA and tissue based profiling can thus be reserved for patients with low 
cfDNA tumor content.  
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Figure 3.2: cfDNA tumor content approximation and disease monitoring applications for targeted and ultra-low-pass 
whole-genome sequencing (WGS) of cell-free DNA from patients with advanced cancer.  

 
Figure 3.2 A. Genome-wide log2(CopyNumberRatio) (Log2CN) calls for TP1337, a high tumor content cfDNA sample from a 
patient with mCRPC, are displayed for low-pass WGS data (0.82x whole-genome coverage) and targeted NGS data. Key copy-
number alterations (CNA) detected are circled, including broad gain of 8q (green), focal amplification of chr11p11.2 (purple) and 
AR (orange), and focal RB1 (1-copy; pink) and PTEN (2-copy; red) deletions. Copy number and mutation data from deep 
coverage targeted NGS data is provided at right from unamplified TP1337 cfDNA (1,102x targeted NGS coverage) using the 
DNA component of the Oncomine Comprehensive Assay (OCP), a pan cancer NGS panel developed for FFPE tissue samples. 
For genes with sufficient amplicons for CNA calling, amplicon (dots) and gene (black bars)-level log base 2 copy number ratio 
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(Log2 [CN Ratio]) estimates (compared to a composite reference sample) are plotted. All CNAs seen by low-pass WGS are 
detected via targeted NGS CNA analysis (chr11p11.2 is not targeted by OCP). A prioritized high confidence somatic 28bp 
frameshift deletion in TP53 (p.L264del28bp; variant fraction (VF) = 20.8% (105/504 total sequencing reads)) detected by OCP is 
shown in the inset box. B. In silico downsampling experiments highlight the ability to detect both focal and broad copy-number 
alterations from TP1337 cfDNA WGS data at whole-genome coverages down to 0.005x. Bin size and number of high-quality 
(MAPQ ≥37) mapped reads used for copy-number analysis are indicated at each coverage, and regions affected by copy-number 
alterations detected in original low-pass WGS are circled. C. Distribution of cfDNA tumor content estimates (right axis) from 
least-squares distance metric (LSS) values (left axis) for 124 patient cfDNA samples (123 from patients with advanced cancer, 
including TP1178 (from a patient with untreated advanced prostate cancer), along with 1 normal control sample (TP1147). All 
patient samples are colored by cancer type (indicated in the legend). D. Low-pass WGS copy-number for pre- and post- EGFR 
inhibitor (erlotonib) treatment plasma cfDNA samples from ULMC-125, a patient with metastatic lung cancer. Multiple whole-
chromosome and arm-level gains/losses as well as focal amplifications are present in the pre-treatment cfDNA sample with high 
tumor content. A zoomed view of chromosomes 7 and 8 show focal EGFR and FGFR1 amplifications in the pre-treatment 
sample (an activating EGFR L858R mutation was previously detected at 62.5% variant fraction by digital droplet PCR [ddPCR]). 
Low-pass WGS sequencing of a cfDNA sample taken 5 months post-treatment initiation (bottom) showed no detectable copy-
number alterations genome-wide, and no detectable L858R mutation by ddPCR analysis (L858R variant fraction: 0.0%). Low-
pass WGS copy-number bin size: 500kbp; segmentation p-value threshold: 0.01. 
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Figure 3.3: Comparison of synchronous and asynchronous tissue and cfDNA biospecimens collected from patients with 
metastatic castration-resistant prostate cancer (mCRPC) yields highly concordant genome-wide copy number profiles.  

 
Figure 3.3 A. Treatment and cfDNA sample collection timeline plotted in relation to tissue specimen collection date for 26 men 
with metastatic castration-resistant prostate cancer (mCRPC) eligible for tissue-based comprehensive whole-exome and whole-
transcriptome NGS profiling. Treatment start and cfDNA sample dates are plotted relative to tissue specimen collection date 
(denoted by solid vertical gray line) for each individual. As indicated in the legend, treatments have been divided into 4 separate 
categories, including: abiraterone (orange triangle), enzalutamide (blue hexagon), taxane-based chemotherapy (green ‘X’) and 
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other (yellow circle), and treatment duration is indicated by solid black horizontal lines extending rightward from treatment start 
dates. Therapies categorized as ‘other’ include: radium, cisplatin, etoposide, ABT-888, carboplatin, paclitaxel, cabozantinib, 
olaparib, and UMCC2011.064. Where appropriate, ‘other’ treatment including etoposide and cisplatin or carboplatin for 
individuals with prostate cancer containing small cell/neuroendocrine features are noted. As indicated in the legend, samples are 
colored by LSS-based tumor content approximation with high (LSS > 0.1, red), low (LSS < 0.1, blue), and not sequenced (‘N.S.’, 
brown). For a subset of men, tissue-based molecular data was not available, as indicated by filled (tissue data available) or 
unfilled (tissue data not available) squares. Displayed sample dates are restricted to +/- 800 days from date of tissue specimen 
collection, and therapies administered >800 days before tissue specimen collection are written at the left-hand side of 
corresponding individual timelines. B. Correlations between genome-wide tissue and cfDNA segmented copy-number profiles 
are plotted for 16 patients with available comprehensive tissue NGS profiling data and PRINCe assessment of ≥1 high tumor 
content cfDNA sample (see Methods). Each point represents the correlation of genome-wide copy number profile for a single 
cfDNA sample as compared to the patient-matched tissue-based copy-number profile. A box-and-whisker plot behind points 
indicates the interquartile range (IQR), with the top and bottom of box representing 25th and 75th percentile, respectively, while 
bold horizontal line within the box represents the median correlation value. Whiskers stretch to 1.5 times the IQR for this sample 
distribution. C. Tissue whole exome sequencing (WES) (top; tissue id: TP_2093) and cfDNA low-pass whole genome 
sequencing (WGS) (bottom; cfDNA id: TP1303) genome-wide copy-number profiles for biospecimens collected on the same day 
from a patient with mCRPC (TP_2093). Genome-wide copy-number concordance is statistically significant (Pearson correlation 
coefficient: 0.94, p < 0.001), and focal 2-copy deletion of PTEN and focal high-level AR amplification are cleared detected in 
both the tissue and cfDNA as indicated. A TP53 splice variant (NM_000546:exon 6:c.559+1G>A) identified via WES tissue 
profiling (91.7% variant fraction (VF), 846 covering reads) is also detected by cfDNA targeted NGS (48.5% VF, 853 covering 
reads).  
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Figure 3.4: Unique precision oncology considerations identified via serial and synchronous tissue and cfDNA NGS-based 
profiling in patients with advanced prostate cancer. 

 
Figure 3.4 A. Genome-wide (tissue and cfDNA) and targeted (cfDNA only) NGS copy number profiles are displayed, along with 
treatment and sample timeline, for synchronous (same-day) tissue and cfDNA specimens from a patient with metastatic 
castration-resistant prostate cancer (mCRPC) with a history of both primary prostatic adenocarcinoma and a metastatic lesion 
with small cell carcinoma/neuroendocrine features. Tissue whole exome sequencing (WES) copy number analysis of a frozen 
perirectal mass tissue biopsy specimen (top left) revealed focal, deep deletions in both PTEN and RB1, and no AR copy-number 
alterations, consistent with histological reports of high-grade poorly differentiated carcinoma with neuroendocrine features. 
Individual dots in tissue WES copy-number profile represent exon-level copy-number estimates displayed in genome order, and 
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dots are colored by corresponding chromosomes. cfDNA low-pass whole genome sequencing (WGS) copy number profiling 
identified focal deep deletions in PTEN and RB1, as well as high level focal AR amplification, highlighting circulating evidence 
of both AR-driven and AR-independent clones. Individual dots in cfDNA low-pass WGS plot represent bin-level copy-number 
estimates displayed in genome order (left to right), with segmented copy-number alterations represented by orange horizontal 
lines. Both tissue (WES) and cfDNA (targeted NGS; copy-number prfile ) mutation profiling identified a TSC1 germline H732Y 
pathogenic variant (tissue: 48% variant fraction (VF), 79 covering reads; cfDNA: 60% VF, 160 covering reads) and somatic 
TP53 frameshift deletion (p.R333fs; tissue: 49% VF, 189 covering reads; cfDNA: 17%, 1865 covering reads), while cfDNA 
targeted NGS identified a BRCA2 frameshift insertion (p.S2186fs; 18% VF, 396 covering reads) not present in the tissue sample, 
further supporting detection of multiple clones via cfDNA PRINCe assessment. The cfDNA targeted NGS copy number profile is 
presented at right, showing confirmation of focal PTEN and RB1 deletions along with high-level focal AR amplification as seen 
by low-pass WGS. Zoomed view of treatment and sample timeline for this patient is presented at bottom, as previously described 
(see Fig 3). B. Genome-wide (left) and chromosome 8 (right) copy number profiles from multiple biospecimens taken over time 
from a single patient with metastatic castration-resistant prosate cancer (mCRPC) (tissue id: MO_1041; cfDNA ids: TP1105 and 
TP1151). WES of a formalin fixed paraffin embedded (FFPE) tissue biopsy specimen (top left) revealed low but detectable tumor 
content, and identified copy-number loss affecting 8p and arm-level gain of 8q (at right). Low-pass WGS of a cfDNA specimen 
collected almost 2 years after tissue biopsy (TP1105, middle left) revealed elevated cfDNA tumor content with frequent copy-
number alterations genome-wide, including copy-number loss affecting chr8p and arm-level gain of chr8q (displayed at right), as 
detected in initial tissue profiling. A subsequent cfDNA sample (TP1151) again showed detection of elevated cfDNA tumor 
content and a highly concordant genome-wide copy number profile, with faithful representation of the 8p loss and 8q gain events 
detected in previous specimens. Overall, these results highlight the consistent representation of early genomic events as inferred 
from circulating tumor DNA profiled in our cohort. 
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Figure 3.5: Exploratory analyses of association between circulating biomarkers and outcome in patients with metastatic 
castration-resistant prostate cancer (mCRPC) supports cfDNA detectable AR amplification as a poor overall prognostic 
factor independent of treatment type 

 

Figure 3.5. A. Waterfall plot summarizing prostate specific antibody (PSA) response for all samples from men with mCRPC 
with complete PSA data (n=90). Height of bars represent the percentage change in PSA response as calculated by subtracting the 
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PSA level at sample date from the best PSA observed after sample date while on the current or initiated treatment, and dividing 
by starting PSA value. Bars are ordered horizontally within treatment category (Abi/Enza, Taxane, or Other) by PSA response. 
Bars are colored by cfDNA detectable AR amplification status (yellow = cfDNA detectable AR amplification; gray = no cfDNA 
detectable AR amplification) and bars corresponding to samples taken from men who have received more than one line of 
therapy post-ADT are outlined in bold. B-E. Kaplan-Meier survival curves are plotted for analyses exploring association between 
cfDNA detectable AR amplification (B, D) or cfDNA tumor content (C, E) and total time on therapy in both unstratified (B-C) 
and stratified (D-E; by treatment type) analyses of our mCRPC cohort. Unstratified analysis of single cfDNA samples from men 
on or starting taxane-based chemotherapy or second-generation anti-androgens abiraterone or enzalutamide (n=57 men) highlight 
significant differences in time on therapy for both (B) cfDNA detectable AR amplification (Kaplan-Meier log-rank test, chi-
square=15.3, p<0.0001) and (C) elevated cfDNA tumor content (Kaplan-Meier log-rank test, chi-square=8.2, p<0.0042). 
Analyses stratified by treatment (starting or on taxane vs. abiraterone/enzalutamide) show (D) cfDNA detectable AR 
amplification (yes/no) (Kaplan-Meier log-rank test, chi-square=21.9, p<0.0001) and (E) cfDNA tumor content (Kaplan-Meier 
log-rank test, chi-square = 18.9, p=0.0003) again demonstrate significant differences in time on therapy. Survival curves are 
colored by corresponding strata, and risk tables at selected timepoints are displayed below each Kaplan-Meier plot. 
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CHAPTER IV: Targeted DNA and RNA Sequencing of Paired Urothelial and Squamous 
Bladder Cancers  

 

INTRODUCTION 

Expression-based molecular subtypes have been widely reported in both muscle-invasive 

(MIBC) and non-muscle-invasive (NMIBC) bladder cancer[1-5]. Similar to those identified in 

breast cancer[6], these subtypes have typically been established through gene expression 

microarray or whole transcriptome next-generation sequencing (NGS) profiling of bulk tissue 

specimens, and are considered intrinsic to the tumor, demonstrating prognostic and predictive 

clinical utility largely based on basal vs. luminal differentiation[2, 7-9].  Importantly, gene 

expression based assessment of intrinsic molecular subtypes compatible with routine formalin 

fixed paraffin embedded (FFPE) tissue specimens has been reported and offered clinically with 

advocates for clinical introduction to guide neoadjuvant therapy decision making.  

Genomic profiling of fresh frozen tissue specimens has highlighted substantial genomic 

heterogeneity in bladder cancer[4, 10, 11], with this molecular diversity shaped over time by 

both disease- and treatment-induced phenomena[12]. Histologically, bladder cancer also shows 

remarkable diversity with conventional urothelial and divergent components (including 15-25% 

with squamous differentiation) often co-existing[13, 14]. Technical challenges associated with 

isolating and profiling individual components of histologically heterogeneous frozen tissue 

specimens have limited comprehensive concurrent DNA and RNA based profiling of NMIBC 

and MIBC to fresh frozen bulk tissue specimens, with limited previous reports summarizing 
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targeted DNA NGS profiling from microdissected tissue specimens in aggressive, high-risk, or 

invasive urothelial carcinoma[15-18]. To our knowledge, no previous reports have systematically 

integrated comprehensive DNA and RNA molecular analysis of individual conventional 

urothelial and divergent components of the same tumor, nor evaluated robustness of expression-

based molecular subtypes in such paired conventional and squamous tumor components.  

Here, we report multiplexed DNA (mxDNAseq) and RNA sequencing (mxRNAseq)-

based analysis of FFPE bladder cancer tissue specimens with diverse histologies, including cases 

with paired urothelial/squamous components, as well as bladder cancer cell lines. Through in 

silico assessment and application of our mxRNAseq panel, we validated robustness of observed 

profiles and the ability to determine basal and luminal gene expression-based subtypes in FFPE 

tissue specimens. Extending our previous work in detecting both mutations and copy number 

alterations (CNAs) from mxDNAseq data[19, 20], we report a novel strategy for detecting sub-

gene copy-number alterations, with several detectable multi-exon sub-gene deep deletions 

confirmed using whole transcriptome RNA sequencing, and application to a retrospective 

compendium of over 1,100 pan-cancer tumor specimens identifying numerous clinically-relevant 

sub-gene copy-number deletions. Importantly, comprehensive DNA and RNA analysis of paired 

urothelial and squamous components enabled correlation of gene expression with genetic 

alterations of interest, and in multiple cases highlighted divergent expression profiles for paired 

components of the same tumor.  

 

METHODS 

Samples 
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 For each tissue specimen, 4-10 x 10um FFPE sections were cut from a single 

representative block per case, using macrodissection with a scalpel as needed to enrich for tumor 

content. DNA was isolated using the Qiagen Allprep FFPE DNA/RNA kit (Qiagen, Valencia, 

CA), according to the manufacturer’s instructions except for adding a 2 minute room temperature 

incubation and extending centrifugation time to 5 minutes during the xylene deparaffinization 

(step 1) and ethanol washing of xylene (step 2). DNA was quantified using the Qubit 2.0 

fluorometer (Life Technologies, Foster City, CA). 

 

Targeted next generation sequencing (NGS) - DNA 

 Genomic DNA was used for library generation using the Ion Ampliseq library kit 2.0 

(Life Technologies, Foster City, CA) according to manufacturer’s instructions with barcode 

incorporation. Templates were prepared using the Ion PGM Template OT2 200 Kit or Ion PI 

Template OT2 200 kit (Life Technologies, Foster City, CA) on the Ion One Touch 2 according to 

the manufacturer’s instructions. Sequencing of multiplexed templates was performed using the 

Ion Torrent Personal Genome Machine (PGM) on Ion 318 chips with the Ion PGM Sequencing 

200 Kit v2 or on the Ion Torrent Proton machine using Ion PI chips using the Ion PI Sequencing 

200 Kit v2 (Life Technologies, Foster City, CA) according to the manufacturer’s instructions. 

 

Targeted next generation sequencing (NGS) - RNA 

Multiplexed PCR-based RNA sequencing was performed on all samples as indicated in 

Table S1. For each sample, 20 ng RNA was reverse transcribed, bar-coded, and subjected to 
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multiplexed PCR to generate libraries using a custom Ampliseq panel and the Ion Ampliseq 

RNA Library kit. The custom Ampliseq panel contained 8 housekeeping genes and 103 target 

genes assessing major transcriptional programs in bladder cancer identified from publically 

available data and the Oncomine database [2, 4, 9]. As described for DNA, template generation 

and sequencing were performed on the Ion Torrent PGM or Proton according to the 

manufacturer’s instructions. Data analysis was performed using Torrent Suite (5.0.2) and the 

Coverage Analysis Plugin (v5.0.2.0). For each amplicon, read counts were log2 transformed 

(read count +1). Then, to determine normalized expression for each target gene, the log2 count 

was normalized to the median of the log2 counts of the 8 housekeeping genes. Samples with 

>10,000 mapped end-to-end reads were retained for analyses. Consensus clustering (with 

number of clusters ‘k’ evaluated from k=2-6) and unsupervised hierarchical clustering using 

median-centered gene expression values were performed with R (v3.2.3) using the 

ConsensusClusterPlus (v1.24.0) and NMF (v0.26.0; aheatmap function) packages. Basal 

signature scores were calculated for each sample as the average of log2 normalized targeted 

RNAseq expression values for select basal markers minus the average across select luminal 

markers.  

 

Whole Transcriptome RNASeq 

All cell lines were profiled by whole transcriptome sequencing on Illumina HiSeq 2500 

sequencers per manufacturers’ instructions. Gene expression analysis was performed on aligned 

RNAseq reads for each sample using the Cufflinks pipeline[21]. Briefly, cDNA fragment size 

distribution means and standard deviations were estimated from unspliced alignment to the 
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genome. Reads were prepared with Tophat (v2.0.4)'s ‘prep_reads’ software tool, using the 

previously estimated fragment size distributions, prior knowledge of Ensembl gene annotations 

(hg19, GRCh37.69), and the following parameters: --min-anchor 8; --splice-mismatches 0; --

min-report-intron 50; --max-report-intron 500000; --min-isoform-fraction 0.15; --max-multihits 

20; --max-seg-multihits 40; --segment-length 25; --segment-mismatches 2; --min-closure-exon 

100; --min-closure-intron 50; --max-closure-intron 5000; --min-coverage-intron 50; --max-

coverage-intron 20000; --min-segment-intron 50; --max-segment-intron 500000; --max-

mismatches 2; --max-insertion-length 3; --max-deletion-length 3; --no-closure-search; --no-

coverage-search; --no-microexon-search; --library-type fr-firststrand. Alignment was then 

performed with Tophat (v2.0.4), using Bowtie2, and again using the previously estimated 

fragment size distributions and Ensembl gene annotations. Expression of each Ensembl gene was 

estimated using Cufflinks (v2.0.2), using the following parameters: --library-type fr-firststrand; 

and --multi-read-correct. 

 

Variant calling  

 Sequencing data was analyzed using Torrent Suite 5.0.2 with alignment by TMAP using 

default parameters, and variants called via the Torrent Variant Caller plugin (version v5.0.2.1) 

using default low-stringency somatic variant settings. Called variants were filtered to remove 

low-quality or panel-specific errors as previously described [22], including flow-corrected 

sequencing depth of <40 reads and variants at variant fractions of <10% in tumor suppressors or 

<5% in oncogenic hotspots. Synonymous and non-coding variants passing these initial filters 
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were also removed, as were all variants present in the ExAC database at >0.1% (except those 

with pathogenic Clinvar annotation; Appendix D).  

 

Copy number analysis 

 Normalized, GC-content corrected read counts per amplicon for each sample were 

divided by those from a pool of normal male genomic DNA samples (FFPE and frozen tissue, 

individual and pooled samples), yielding a copy number ratio for each amplicon. Gene-level 

copy number estimates were determined as described previously[19, 23, 24] by taking the 

coverage-weighted mean of the per-probe ratios, with expected error determined by the probe-to-

probe variance. Genes with a log2 copy number ratio estimate of <-1 or >0.8 were considered to 

have high level loss and gain, respectively.  

 

 

Sub-gene copy number detection 

Amplicon-level copy-number estimates for all tumor suppressor genes with >10 targets 

on their respective targeted panels were considered for sub-gene copy-number detection in 

samples with >85% sequencing uniformity[19]. Circular binary segmentation was carried out on 

outlier-smoothed log2 amplicon-level copy-number ratio estimates using the DNAcopy 

(v1.44.0)[25] package in R (v3.2.3), and a subsequent sliding window function was used to 

identify maximum differences (‘max-diff’) in median amplicon-level log2 copy-number 

estimates for consecutive segments across analyzed genes in samples with segment standard 

deviations of <0.75. While variable max-diff thresholds were considered, a conservative 
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threshold of max-diff values ≥ 0.8 was applied to prioritize candidate sub-gene copy-number 

alterations. 

 

TCGA data 

 Absolute gene-level RNASeq V2 RSEM expression and z-score quantitative values for 

whole transcriptome RNA sequencing data from 405 bladder cancer samples profiled in the 

TCGA project (‘TCGA provisional’) were downloaded from cBioPortal[26, 27]. Sample 

molecular subtype assignment for 234 samples was obtained from Aine et al [28] and the 126 

samples with TCGA cluster membership assignment were confirmed via TCGA cluster 

assignments[4]. Consensus clustering was evaluated for numbers of clusters (‘k’) for k=2-6 using 

the ConsensusClusterPlus (v1.24.0) package in R (v3.2.3). 

 

RESULTS 

Validation of targeted RNAseq panel 

 To establish the validity of our custom RNAseq panel comprised of 103 targets 

(normalized to 8 housekeeping genes) capturing major biologically-relevant transcriptional 

programs in bladder cancer, we first assessed concordance between targeted RNAseq gene 

expression and whole transcriptome RNAseq from high quality frozen RNA from 21 

independent bladder cancer cell lines (Appendix D). We previously demonstrated the 

reproducibility of this approach across both biological and technical replicates[29], and here we 

confirm our custom targeted RNAseq assay yields normalized target gene expression values 
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highly correlated with those from conventional whole transcriptome RNAseq (Figure 4.1A; 

median Pearson correlation coefficient = 0.90). Further, unsupervised hierarchical clustering of 

our urothelial cancer cell lines using a subset of well-characterized basal and luminal markers[1] 

was essentially identical using both targeted and conventional RNAseq data (Figure 4.1B). 

Together these results highlight the validity of our targeted RNAseq approach, supporting the 

ability of this assay to faithfully assess individual components of expression-based molecular 

subtypes with high fidelity.   

 

Targeted RNAseq 

To demonstrate the potential utility of our targeted RNAseq panel, we first analyzed in 

silico gene expression data from 234 bladder cancer samples profiled by whole transcriptome 

RNAseq through The Cancer Genome Atlas (TCGA) project[4, 26, 27] focusing on the 103 

cancer-associated targets on our targeted RNAseq panel. Using TCGA RNAseq data from our 

targeted genes, which includes subsets of genes from multiple previously reported molecular 

subtype classifiers[2, 4, 9, 28], we demonstrate the ability to recapitulate known molecular 

subtypes including basal/luminal expression modules, with high fidelity by unbiased consensus 

clustering (Figures D1 and D2). These results support the ability of the genes in our panel to 

assess essential transcriptional programs informing expression-based molecular subtyping. 

To explore potential clinical utility and applicability of our approach on routine clinical 

FFPE bladder cancer tissue specimens, we integrated targeted RNAseq on our panel from a total 

of 110 samples, the above described 21 bladder cancer lines, 16 previously profiled FFPE tissue 

specimens[29], and 73 unreported FFPE tissue specimens representing a spectrum of bladder 
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cancer histology, including both pure squamous cell carcinoma and paired urothelial and 

squamous cell carcinoma components from the same resection (Appendix D). Targeted RNAseq 

yielded an average 1,664,3369 mapped reads per sample, and enabled robust assessment of sets 

of inter-correlated transcripts from key biologically relevant transcriptional modules (Figure 

D3). Consensus clustering of normalized expression values across all 103 targets for tissue 

samples passing rigorous QC metrics (n=77; see Methods) identified 4 sample clusters across 

our tissue cohort (Figure 4.2A) with luminal+/basal- (Cluster 1), basal+/luminal- (Cluster 2), 

basal-/luminal- (Cluster 3), or basal+/luminal+ (Cluster 4) expression profiles. Clusters 1 and 2 

contain the majority of samples and segregate mostly along histological lines, with conventional 

urothelial lesions (enriched in Cluster 1) generally showing high luminal marker expression 

(consistent with low basal signature scores; see Methods), while squamous lesions (enriched in 

Cluster 2) show elevated basal marker expression (as evidenced by elevated basal signature 

scores) (Figure 4.2A, Appendix D). Cluster 3 contains all samples with non-squamous 

divergent differentiation, while Cluster 4 contains a mix of urothelial and squamous lesions 

(Figure 4.2A, Table S1). Examining expression patterns in key basal/luminal markers alone 

reinforces these observations (Figure 4.2B), and unsupervised hierarchical clustering is 

consistent with consensus clustering results (Figure D4). Consensus clustering incorporating 

profiled cell lines identified 5 clusters that map as expected to Clusters 1-4 derived without cell 

lines, with an additional cell-line-only cluster (UM CL2) comprised entirely of cell line samples 

with no epithelial-to-mesenchymal (EMT) marker expression (Figure D5). Together these 

results suggest our approach is capable of profiling individual components of histologically 

heterogeneous bladder cancer tissue specimens, enabling robust recapitulation of previously 

reported expression-based basal/luminal subtypes.  
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Targeted DNAseq  

To characterize the underlying genomic context of our targeted RNAseq results, high-

quality targeted DNA sequencing data was assessed for 106 of 110 (96%) DNA samples 

(Appendix D). For all high-quality cell line and tissue samples (n=90; see Methods) profiled by 

targeted DNA sequencing and not previously reported, prioritized somatic DNA alterations are 

summarized in Appendix D and Figure 4.3, and copy-number heatmaps are displayed in Figure 

D6.  

Frequent TP53 (56%, 39 of 69 samples) and activating hotspot PIK3CA (30%, 21 of 69) 

somatic mutations were observed in our tissue cohort (Figure 4.3A), with a larger (though non-

significant) proportion of squamous lesions carrying detectable PIK3CA point mutations than 

urothelial components (42% vs. 19%, Fisher’s exact test; p=0.06, 95% CI = (0.9,12.9)). 

Activating point mutations in FGFR3 were seen in 12/69 (17%) samples, with no significant 

difference in FGFR3 mutational frequency between UCC and squamous lesions (15% vs. 14%, 

Fisher’s exact test p=1.0). Copy-number gains of MYC (26%) and CCND1 (13%) were common 

overall in our tissue cohort, as were focal deletions of CDKN2A (31%). A significantly larger 

proportion of squamous samples carried copy-number gains in MYC than those with urothelial 

histological differentiation (Fisher’s exact p=0.002, 95% CI (1.9, 96.5)), while no significant 

differences were observed for frequency of CCND1 gains (Fisher’s exact test, p=0.70) or 

CDKN2A deletions (Fisher’s exact test, p=0.42). Focal, high-level amplifications 

(log2(CopyNumberRatio) > 1.6) of EGFR (6%) and ERBB2 (6%) were also observed in this 

cohort. These results suggest substantial potential utility for characterization of underlying 
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driving somatic genomic alterations by targeted DNA sequencing to refine interpretation of 

expression-based profiles in the context of histologically heterogeneous bladder cancers.  

Targeted DNA sequencing of 21 bladder cancer cell lines identified a series of recurrent 

point mutations, indels, and copy-number alterations across cell lines. Of 21 cell lines, 15 (71%) 

carried somatic point mutations or indels in TP53, with 10/21 (48%) cell lines carrying at least 

one loss-of-function mutation in other tumor suppressors (Figure 4.3B). Activating hotspot 

mutations in PIK3CA (n=5), FGFR3 (n=4), ERBB2/3 (n=4), NFE2L2 (n=3), RAS family 

members (n=2), and AKT1 (n=1) were seen across cell lines (Figure 4.3B). Focal copy-number 

deletions (log2(CopyNumberRatio) < -1.0) of CDKN2A were observed in 11 cell lines (52%), 

while 2 cell lines (UMUC-1 and UMUC-9) showed high-level focal amplifications 

(log2(CopyNumberRatio) > 1.6) of CCND1. Additional high-level focal amplifications of 

PPARG (in UMUC-9; CopyNumberRatio = 44.7) and EGFR (in UMUC-5; 

CopyNumberRatio=16.6) were identified. Together, these results suggest the profiled cell lines 

contain a majority of the recurrent genomic alterations seen in bladder cancer in vivo, and 

include high-level copy-number amplifications with important therapeutic implications for 

bladder cancer patient populations[7, 30]. 

 

Sub-gene copy-number detection 

While targeted DNA sequencing has shown promise in assessing diverse genomic 

alterations for precision oncology initiatives, few reports have explored whether targeted, 

amplicon-based DNA sequencing is capable of detecting sub-gene copy-number alterations, a 

unique but important class of alterations given their expected impact on gene function, 
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particularly for tumor suppressor genes. Thus, to evaluate whether a systematic approach could 

facilitate sub-gene copy-number deletion detection from our targeted DNA sequencing data, we 

developed a novel heuristic strategy for scanning sub-gene (e.g., exon- or multi-exon-level) 

copy-number deletions in the 24 tumor suppressor genes on our panel with >10 target amplicons 

(overall range of target amplicons: 6-138); see Methods). Initial testing in our highly altered 

bladder cancer cell line cohort identified putative sub-gene copy-number deletions in J82 and 

UMUC-14 cell lines in PTEN and RB1 genes, respectively (Figure 4.4, Figure D7). For J82, 

genome-ordered, amplicon-level copy-number ratio profiles and segmented copy-number calls in 

PTEN highlight the structure of these sub-gene copy-number aberrations (Figure 4.4B), with 

similar results seen in RB1 for UMUC-14 (Figure D7B). Importantly, orthogonal whole 

transcriptome RNAseq of both cell lines identified expression of only the first 6 exons of PTEN 

in J82 (Figure 4.4C-D) and first 5 exons of RB1 in UMUC-14 (Figure D7C-D), consistent with 

the observed genomic sub-gene copy-number deletions.  

We subsequently applied our approach to a retrospective cohort of high-quality targeted 

DNA NGS data from 1,105 internally sequenced FFPE tissue samples, and identified 48 

additional samples (4.3%) with candidate sub-gene copy-number alterations in tumor suppressor 

genes with low gene-level standard deviation (Probe Error < 0.2)[19], including APC, ATM, 

MSH2, RB1, PTEN, and TP53. This included three separate prostate cancer tissue samples with 

putative sub-gene deletion in MSH2 (two of which are paired primary prostate adenocarcinoma 

(PRAD) and bladder metastasis/recurrence samples from a single case (PR-115 and PR-161)), 

with the paired bladder metastasis/recurrence (PR-161) clearly hypermutated by mutation 

profiling (Figure D8). Further, in the third unpaired prostate cancer sample (PR-34), NGS pileup 

data from multiple sequencing modalities (both amplicon and hybrid capture) consistently 
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supported the presence of the detected sub-gene MSH2 copy number deletion affecting exons 12-

16 (Figure D8). High-quality sub-gene deletion events in additional prostate cancer tissue 

samples included those in PTEN (Figure D8), RB1 (Figure D8), and TP53. Sub-gene deletions 

were observed across additional cancer types, including an RB1 sub-gene deletion in MO-32 (a 

fine needle aspirate sample from a lung adenocarcinoma lymph node metastasis) affecting exons 

19 through 27, and sub-gene deletions in both PTEN and RB1 in MO-72 (a metastatic uterine 

leiomyosarcoma) (Figure D9). Together these results highlight important potential clinical 

opportunities for leveraging a heuristic sub-gene copy-number deletion detection approach to 

scan for potentially therapeutically relevant set of molecular alterations in targeted DNA 

sequencing data. 

 

Paired urothelial and squamous cases 

Considerable work has gone into characterizing putative intrinsic expression-based 

molecular subtypes in bladder cancer from bulk tissue specimens, but limited work has evaluated 

these molecular subtypes in the context of histologically diverse components of the same tumor, 

which is encountered frequently in transurethral resection and cystectomy specimens[2, 4, 8, 9]. 

To determine whether expression-based subtypes for paired urothelial and squamous components 

of the same tumor appeared “intrinsic” to the tumor, and thus stable between the divergent 

histologic components, we systematically evaluated targeted DNA and RNA sequencing data for 

paired urothelial and squamous components from 11 separate bladder cancer cases in our cohort. 

Overall, most pairs show a high degree of genomic similarity, with paired samples 

showing nearly identical prioritized DNA point mutations, indels, and copy-number alterations 
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(Figure 4.2, Figure D6). However, a number of pairs with identical prioritized genomic 

alterations show discordant gene expression profiling results. In pair 9, DNA sequencing of 

paired squamous (BL-360) and urothelial (BL-361) components highlighted identical TP53 and 

NFE2L2 nonsynonymous SNVs, along with focal ERBB2 amplification, yet targeted RNA 

sequencing results shows differential classification by consensus clustering (Figure 4.2) and 

highly divergent basal/luminal expression profiles, with BL-360 demonstrating markedly higher 

basal marker expression than BL-361 (see Figures 4.5A and B). Notably, samples such as BL-

360/BL-361 in our cohort with focal ERBB2, EGFR, or PPARG amplifications show clear outlier 

expression of the amplified gene product (Figure 4.5C), a phenomenon that may complicate 

proposed use of individual targets as expression subtype proxies for guiding clinical decision-

making, such as EGFR expression to identify basal subtype urothelial carcinoma[7]. Analysis of 

conventional whole transcriptome RNAseq and copy-number data from 405 bladder cancer 

samples profiled in TCGA reinforces these observations for ERBB2, EGFR, and PPARG, with 

highest expression in samples with corresponding gene amplifications, independent of 

basal/luminal expression-based subtype signature (Figure 4.5D).  

We also observed basal/luminal expression discordance for Pair 1, where targeted RNA 

sequencing of paired squamous (BL-340) and urothelial (BL-341) components of the same tumor 

showed substantially elevated basal expression in the squamous lesion, despite identical somatic 

hotspot mutations in CTNNB1 (p.S37F) and PIK3CA (p.E542K) identified by DNA sequencing 

(Figure D10). Together, our results demonstrate that although histologically divergent 

components typically have concordant driving genomic alterations (supporting clonality), they 

may have markedly different expression of canonical basal/luminal genes. Hence, expression-
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based subtyping from bulk tissue specimens may be confounded by divergent sub-component 

expression profiles and challenge the “intrinsic” nature of these subtypes.  

 

DISCUSSION 

Histological divergent differentiation is extremely common in bladder cancer, and few 

studies have explored the extent to which this histological differentiation may confound clinical 

application of recently reported expression-based subtypes. Here we describe validation of a 

multiplexed targeted RNA-seq assay capable of assessing major biologically relevant 

transcriptional programs in bladder cancer from FFPE tissue samples, and demonstrate the 

ability to identify expression profiles from individual components of bladder cancers with 

varying histology. We show that while some paired urothelial and squamous components 

demonstrate concordant expression profiles across key transcriptional modules in the context of 

identical genomic alterations, several sets of paired samples show markedly different expression 

of key basal/luminal markers despite shared genomic alterations, potentially complicating 

proposed clinical utility of expression-based molecular subtyping. Our results support the need 

for clinical validation of expression based subtyping assays, including outcome and prediction of 

benefit from chemotherapy, in the context of histologic and transcriptomic heterogeneity, 

particularly when both squamous and urothelial components are present. For example, if both 

conventional urothelial and squamous cell carcinoma are present in a transurethral resection 

specimen, it is unclear from currently available knowledge if both components should be 

sampled for expression based subtyping given that they may give divergent profiles. Stu 



103 
 

Likewise, although strategies for predicting neoadjuvant chemotherapy response may be 

feasible by expression based basal/luminal subtyping alone, combined DNA and RNA profiling 

of individual tumor components may provide a more reliable portrait of the driving (and 

potentially actionable) molecular alterations. For example, although ERBB2 (luminal) and EGFR 

(basal) expression have been included in several basal vs. luminal subtyping schemas and 

proposed therapeutic strategies (e.g. EGFR based therapy in all basal subtype cancers[7]), results 

from our targeted RNA/DNA sequencing and the TCGA demonstrate a clear difference between 

low level expression of these markers in basal vs. luminal subtypes, with marked over-

expression, regardless of basal vs. luminal subtype, exclusively in cases with high level 

amplification of the respective gene.   

 We further describe a heuristic strategy for sub-gene copy-number deletion detection 

through segmentation of amplicon-level copy-number estimates that enabled detection of multi-

exon deletions in tumor suppressors from targeted DNA sequencing data in bladder cancer cell 

lines which was validated by whole transcriptome RNA-seq analysis. Subsequent application of 

this heuristic approach identified a subset of samples from a large FFPE tissue compendia with 

candidate sub-gene deletions, several of which may be therapeutically relevant. Refinements of 

our sub-gene copy-number detection approach are warranted to expand potential applications, 

including corrections for tumor content and sequencing uniformity, improved parameterization 

of the amplicon-level copy-number estimate smoothing and circular binary segmentation 

process, and applications to updated iterations of the OCP and expanded panels. Overall, 

conservative thresholds were used for this implementation to reduce the likelihood of false 

positives, and a more sophisticated appreciation of error/noise modeling could enable detection 
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of exon-level deletion events in genes such as BRCA1, BRCA2 with more variable amplicon-

level performance. 

Our current targeted RNA sequencing panel has notable limitations in terms of 

applicability beyond basal vs. luminal type expression subtyping. Given the long-standing 

clinical use of Bacillus Calmette-Guerin (BCG) intravesical immunotherapy in high-risk early 

stage bladder cancer[31], recent approval of multiple checkpoint inhibitors for treatment of 

locally advanced and/or metastatic bladder cancer[32-35], and oncogenic role of FGFR3 gene 

fusions in bladder cancer[36], our panel will need to be refined to assess these important 

therapeutic targets to support predictive and prognostic biomarker development and monitoring. 

Likewise, our panel would need to undergo usual analytical and clinical validation before clinical 

introduction.  

Understanding the impact of histological differentiation on expression-based subtyping of 

biopsy or bulk tissue specimens is essential when considering their proposed use in guiding 

clinical decision-making. Thus, comprehensive molecular profiling of expanded sample sets with 

divergent differentiation is warranted. As the prevalence of squamous differentiation (the most 

common type of divergent differentiation) with increasing stage and grade[14], understanding 

the impact of histologic heterogeneity on expression profiles and patient outcome in both the 

presence and absence of neoadjuvant therapy is urgently needed to guide appropriate use of 

expression based subtyping assays.  

In summary, we describe the ability of a targeted RNA-seq platform to assess key 

biologically-relevant transcriptional programs in bladder cancer, including luminal vs. basal 

subtyping. Importantly, through pairing with targeted DNA sequencing, we demonstrate 
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important considerations for proposed clinical use of expression-based subtypes in a 

histologically heterogeneous disease, as our results show paired urothelial and squamous 

components of the same tumor may have identical driving genomic alterations but markedly 

different transcriptional profiles. We anticipate that continued work in profiling individual tumor 

components with divergent differentiation will help refine our understanding and interpretation 

of expression-based subtypes in bladder cancer, and may guide identification of disease 

biomarkers that more precisely stratify patients for optimal treatment prioritization.   
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Figure 4.1 – Validation of custom bladder cancer targeted RNAseq panel and comparison to conventional whole 
transcriptome sequencing in 21 profiled cell lines. 

 

Figure 4.1. A. At left, a table summarizing Pearson correlation values across 21 cell lines between normalized log2-transformed 
gene-level targeted RNAseq expression values and gene-level expression values from conventional whole transcriptome RNAseq 
for the 103 non-housekeeping gene targets on our targeted RNAseq panel. At right, expression values from targeted and 
conventional RNAseq are plotted separately for two different bladder cancer cell lines (5637 and UM-UC-5), showing highlight 
correlated values across targets. B. Unsupervised hierarchical clustering of 16 consensus basal or luminal markers across 21 cell 
lines using targeted RNAseq (left) and conventional RNAseq (right) expression values yields similar clustering of both gene 
targets and samples, supporting the ability of our custom targeted RNAseq assay to robustly assess major basal/luminal 
expression programs previously profiled by whole transcriptome RNA sequencing.  
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Figure 4.2 – Unsupervised clustering of targeted RNAseq expression data for high-quality tissue specimens profiled on 
custom targeted RNAseq panel. 

 

Figure 4.2 A. Unsupervised clustering of normalized log2 expression values from all non-housekeeping gene targets for 77 high-
quality tissue specimens profiled on our custom targeted RNAseq panel. Samples are sorted left to right by consensus cluster, 
then stage, then histological subtype. Sample annotation (header annotation rows at top) is colored corresponding to annotations 
contained the figure legend, while target annotation (at right) is colored according to gene category annotations provided. B. 
Unsupervised clustering of normalized log2 expression values from select basal/luminal genes for 77 high-quality profiled tissue 
specimens enables delineation of individual gene target expression, and highlights substantially elevated expression of ERBB2 
and EGFR in samples with focal copy-number amplifications.  
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Figure 4.3 – Integrative table summarizing prioritized somatic point mutations, insertions, and deletions detected from 
targeted DNA sequencing of high-quality tissue specimens 

 
Figure 4.3. Integrative tables summarizing prioritized somatic point mutations, insertions, and deletions identified from targeted 
DNA sequencing of (A) high-quality tissue specimens and (B) urothelial carcinoma cell lines. Sample annotation is provided at 
top with colors corresponding to annotation legend, and samples are sorted from left to right by presence or absence of alteration 
in the corresponding genes. Genes are sorted from top to bottom by decreasing total number of alterations across the cohort, and 
cells are colored by alteration types provided in the legend.  
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Figure 4.4 – Validation of sub-gene copy-number deletion detection from targeted DNA sequencing by conventional 
whole-transcriptome RNA sequencing. 

 

Figure 4.4 A. Genome-wide copy-number plot from targeted DNA sequencing of urothelial cancer cell line J82. Individual dots 
represent amplicon-level log2 copy-number ratio estimates, with horizontal black lines representing log2 gene-level copy-number 
ratio estimates. Black rectangle highlights portion of the plot (chr10) presented in panel B. B. At left, a zoomed view of 
amplicon- and gene-level copy number ratios on chr10 for J82 demonstrates the absence of amplicon-level copy-number ratios 
for a subset of PTEN target amplicons. The middle panel highlights amplicon-level copy-number ratios sorted in genome order, 
suggesting a sub-gene deletion affecting the last several exons of PTEN. At right, a sliding-window function applied to 
segmented copy number values from amplicon-level data, provides a smoothed, segmented sub-gene copy-number call for 
clinical or research reporting. C. Integrated Genome Viewer (IGV) screenshot of spliced read alignment data across PTEN 
coding regions for conventional whole-transcriptome RNAseq data from J82 shows depleted expression of last several exons. D. 
Zoomed view of conventional RNAseq data for exon 6 and 7 shows limited read mapping and depleted expression of exon 7 
consistent with the observed sub-gene copy-number deletion affecting the 3’ region of PTEN.   



110 
 

Figure 4.5 – Divergent expression profiles of histologically diverse components of the same tumor with shared genetic 
alterations, including focal ERBB2 amplification. 

 

Figure 4.5: A. Haematoxylin and eosin staining images of individual squamous and urothelial components profiled for pair 9 are 
shown. At right, similar genome-wide copy-number profiles derived from targeted DNA sequencing are shown for each sample, 
and focal 2-copy deletion of CDKN2A, focal amplification of ERBB2, and a TP53 S127F somatic point mutation seen in both 
samples are indicated. B. At left, divergent basal signature values for BL-360 and BL-361 are highlighted in red in the context of 
all basal signatures for profiled tissue specimens in our study. At right, individual expression differences between BL-360 and 
BL-361 are plotted for 103 non-housekeeping markers, with select basal or luminal markers colored according to the legend. 
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Similarity in ERBB2 expression values between the two samples as indicated is consistent with concordant high level focal 
amplifications identified in both lesions. C. Box plots of targeted RNAseq expression values for 3 individual genes shows 
elevated expression is enriched for samples with focal copy-number amplifications identified by targeted DNA sequencing of the 
same sample. Points are colored by basal signature score as indicated in legend. D. For the 3 genes displayed in panel C, TCGA 
copy-number and expression data was analyzed in 405 bladder cancer samples, showing similar outlier expression levels for most 
samples with focal copy-number amplifications.  
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CHAPTER V: Comprehensive Molecular Profiling of Multifocal Prostate Cancer 

 

INTRODUCTION 

Considerable academic and commercial efforts across cancers endure to both identify and 

robustly assess prognostic and predictive biomarkers from routine clinical biospecimens 

including urine, blood, and tissue [1-3]. In prostate cancer, progress to characterize disease 

biomarkers and (given the widely acknowledged limitations of PSA screening[4, 5]) enhance 

opportunities for treatment and disease prognosis and risk stratification have been made across 

multiple biospecimens in both localized and metastatic/advanced disease [6]. Notably, tissue 

biopsy-based gene expression assays capable of predicting risk of high-grade disease, as well as 

disease metastasis or recurrence risk, have emerged as tools with substantial clinical utility[7-9]. 

As an inherently multifocal disease, prostate cancer presents challenges for disease 

prognostication from single tissue biopsies, yet tissue-based expression assays are used 

frequently in clinical practice and some claim robustness to disease multifocality[10]. To date, 

technical challenges have limited systematic exploration of expression-based profiles using these 

assays to evaluate concordance of expression-based prognostic scores from individual foci in the 

context of true multifocal disease.  

Accordingly, we have designed a custom multiplexed, PCR-based targeted RNA 

sequencing panel compatible with minute formalin fixed paraffin embedded tissue (FFPE) tissue 

samples comprised of 306 targets to assess major transcriptional modules and disease biomarkers 
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relevant for both localized and metastatic prostate cancer. This panel includes transcripts 

enabling derivation of commercial expression-based Oncotype DX™, Prolaris™ and Decipher™ 

scores, key prostate cancer specific long noncoding RNA (lncRNA) and fusion (e.g., TMPRSS2-

ERG) isoforms, expressed somatic mutations (e.g., BRAF, SPOP, IDH1), expressed hereditary 

risk variants (HOXB13), and potentially predictive/prognostic biomarkers (AR-V7, SCHLAP1). 

In addition, this panel enables robust assessment of AR-driven transcriptional modules for 

disease subtyping and potential prognostic application. By pairing this assay with targeted DNA 

sequencing, we comprehensively profiled 195 FFPE tissue specimens from benign prostatic 

tissue, localized tumors across a wide range of grades, and metastases and castration-resistant 

prostate cancer (CRPC), validating the performance of our custom RNAseq assay and 

highlighting our ability to comprehensively assess the diverse set of intended transcriptional 

modules and biomarkers. We specifically assessed >80 individual disease foci from 14 separate 

multifocal prostate cancer cases, deriving commercially available prognostic scores for 

individual foci elucidating challenges of interpreting single biopsy prognostic assays in the 

context of multifocal disease. Lastly, we profiled a cohort of >30 disease foci from 10 cases in 

which a subset of lesions was not visible through traditional magnetic resonance imaging (MRI) 

to assess whether genomic and transcriptomic characteristics varied between visible and invisible 

groups.  

 

METHODS 

Patients 
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Following institutional review board approval, we assembled consecutive patients who 

underwent radical prostatectomy at three different centers (Michigan Medicine, Ann Arbor, 

USA; Medical University Vienna, Vienna, Austria; and Rennes University Hospital, Rennes, 

France). Inclusion criteria for this study included the presence of multifocal areas of cancer 

detected in the fresh-frozen paraffin-embedded (FFPE) specimens. Additionally, patients with 

preoperative mpMRI and/or synchronous matched lymph node metastasis were included. 

Exclusion criteria included any previous form of prostate ablative treatment or androgen 

deprivation therapy. We abstracted relevant demographic, clinical and pathologic data from each 

patient’s medical chart and recorded in a secure electronic HIPAA-compliant database. 

 

Tissue Procurement and Nucleic Acid Isolation 

Whole mount FFPE prostate and lymph node tissue (where available) were retrieved for 

each study participant. An anatomic pathologist with genitourinary interest (S.A.T.) reviewed all 

slides to confirm cancer foci, Gleason score and volume of cancer in the prostate and lymph 

nodes. Areas for NGS were outlined for each patient as shown in Figure 5.5. We obtained punch 

biopsies (5 punches using a 1-mm biopsy punch) of each outlined focus. In cases with small foci 

of cancer deemed insufficient for punching, 8 10µm unstained slide sections were obtained for 

microdissection. We co-isolated DNA and RNA from each primary tumor, corresponding 

matched lymph node metastatic foci and normal tissue (where available) using the Qiagen 

Allprep FFPE DNA/RNA kit (Qiagen, Valencia, CA) as described.4 DNA and RNA were 

quantified using the Qubit 2.0 fluorometer (Life Technologies, Foster City, CA).  

 

Targeted DNA/RNA sequencing 
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DNA libraries were generated from 1- 20ng of DNA per sample using the Ion Ampliseq 

library kit 2.0 (Life Technologies, Foster City, CA) and the OCP Ampliseq panel with barcode 

incorporation. RNA libraries were generated from 1 - 15ng of RNA per sample using the Ion 

Ampliseq RNA Library kit. OCP Ampliseq Libraries were quantified using the Ion Library 

Quantification Kit. We prepared templates for DNA and RNA libraries using the Ion PI 

Template OT2 200 Kit v3 on the Ion One Touch 2 and sequenced on Ion Proton P1 chips using 

the Ion PI Sequencing 200 Kit v3 (200 base pair reads) as described.5 

 

Variant Calling (DNA) 

Raw reads were aligned to the reference genome (hg19) using TMAP on Torrent Suite v. 

5.0.4 (Thermo Fisher Scientific, Waltham MA). Somatic variants for DNA samples were called 

using Torrent Variant Caller v. 5.0.4, and annotated and filtered using previously described 

internal pipelines.5-10 For cases with >1 profiled disease foci, detected alterations were evaluated 

across control (benign) tissue, samples from disease foci and, if applicable, lymph node 

metastases.  

 

 

Copy Number Analysis (DNA) 

Normalized, GC-content corrected read counts per amplicon for each sample were 

divided by those from a pool of normal male genomic DNA samples (FFPE and frozen tissue, 

individual and pooled samples), yielding a copy number ratio for each amplicon. Gene-level 

copy number estimates were determined as described previously[11-13] by taking the coverage-

weighted mean of the per-probe ratios, with expected error determined by the probe-to-probe 
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variance. Genes with a log2 copy number ratio estimate of <-1 or >0.8 were considered to have 

high level loss and gain, respectively. 

  

RNAseq Analysis 

To characterize key transcriptional programs in prostate cancer and facilitate detection of 

alterations associated with known molecular subtypes, we developed a custom target Ion 

AmpliSeq RNA-sequencing panel to measure 306 amplicons measuring many markers of 

prostate cancer, including proliferation, stromal activity, androgen signaling, and immuno-

oncology. This custom panel assays amplicons from 202 genes, multiple isoforms of 25 unique 

gene fusions, and 27 long non-coding RNAs. This panel assays all genes included in Myriad's 

Prolaris Cell Cycle Progression (CCP) score, Oncotype DX’s Genome Prostate Score (GPS), and 

GenomeDX’s Decipher Prostate Cancer Test to compare their robustness to tumor multifocality 

and heterogeneity. This panel also enables detection of expressed genomic variants through 

targeted RNAseq amplicons located at positions of interest in NRAS, HOXB13, SPOP, IDH1, 

and HSD3B1.  

End to end read counts for RNA expression runs were calculated using Torrent Suite’s 

Coverage Analysis plugin v5.0.4.  All further analyses were conducted using The R Project for 

Statistical Computing v3.2.3. Housekeeping genes from Oncotype DX panel (n=5) were 

considered for normalization, and 4 of 5 (ATP53, AFR1, CLTC1, and PGK1) were used for 

normalization prior to downstream analyses. Non-fusion amplicons were filtered to ensure that 

all amplicons retained for analysis had >= 200 reads in at least two samples, or >1000 reads in 

least one sample. Raw read counts were subsequently log2-transformed, (i.e., log2(read_count 

+1)) and normalized to the geometric mean of expression values for the 4 retained housekeeping 
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genes. For heatmap visualization only, the median amplicon-level expression was calculated 

across all samples, and subtracted from each target amplicon’s expression value prior to plotting. 

Sample-level inclusion criteria for RNA data included at least 500,000 total mapped 

sequencing reads, with at least 60% of all sequenced reads mapping end-to-end. Housekeeping 

gene read mapping and expression variability were also assessed to filter out low quality 

samples. For each sample, the proportion of mapped reads mapping end-to-end to each 

housekeeping gene (‘hk_prop_filt’) was evaluated in a cohort of 255 samples (including a set of 

66 blinded tissue specimens from GenomeDx), and the following hard gene-level hk_prop_filt 

thresholds were applied (based on percentile expression across the full cohort) to exclude low-

quality samples: (ATP < 0.000133, ARF < .001266, CLTC < 0.001894, PGK < 0.000352). 

Samples with < 0.8% of all reads mapping to housekeeping genes or standard deviation of log2-

normalized expression values across housekeeping genes < 0.0015 were also excluded from our 

analyses. 

 

Derivation of Prognostic Scores 

For each sample, we derived CCP and GPS scores[7, 9] based on previously published 

methods integrating expression data from component genes robustly assessed by our assay. Our 

custom RNAseq assay targeted all 30 transcript components used for CCP score calculation and 

16 of 17 transcripts comprising GPS assay, and 12 were retained respectively after amplicon-

level filters were applied.  

Log2-normalized expression values for the 29 high quality CCP transcripts were floored 

at -5 prior to score derivation to ensure technical artifacts of RNAseq normalization did not 

impact score derivation. For derivation of CCP score, the previously published formula for non-
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replicate experiments was used, taking the mean of each retained CCP gene’s median-centered 

expression value to the power of 2, then log2 transforming the mean[9]. 

For GPS, scores were derived by adding or multiplying log2 normalized gene expression 

values for components of each core module as previously published[7]. The lower bound of log2 

normalized expression values for TPX2 and SRDA5 were capped at 5 and 5.5 respectively, as 

described by the original authors[7]. However, we omitted multiplying individual expression 

values by coefficients in previous publication, as these were tuned for a qPCR methodology. As 

such, each module score was derived as follows:  

 

Cellular Organization Module = FLNC + GSN + TPM2 + GSTM2 

Stromal Module = BGN + COL1A1 + SFRP4  

Androgen Module = FAM13C + KLK1 + SRDA5 + AZGP1  

Proliferation Module = TPX2  

 

To derive the full unscaled score, the previously published methodology was used, including the 

coefficients for adding component modules[7]:  

 

GPSu = .735*Stromal -.368*Cellular Organization -.352*Androgen + 0.95*Proliferation 

 

After score derivation, CCP and GPS scores were converted to percentile distributions, 

respectively, for ease in downstream interpretation. A one-way ANOVA was computed for each 

score type to determine whether there was any difference in mean score among grade groups. 
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Tukey’s Honest Significant Difference test was used to evaluate which groups’ means differed 

for each score type. P-values < 0.05 were deemed statistically significant. 

 

Fusion isoform- and partner-level analyses 

For initial validation analyses, fusion isoform-specific amplicons were filtered to those 

with >1000 reads on at least one sample. Isoform-level (e.g., TMPRSS2:ERG.E1E4) log2 

normalized read counts were calculated as described above. For fusion partner-level (e.g., 

TMPRSS2:ERG) status, read counts for all retained isoforms were then totaled for each sample, 

and a normalized fusion partner value was calculated by taking the log2 of the sum of the all 

reads over the sum of housekeeping reads for each sample. A sample was determined as 

TMPRSS2:ERG fusion positive if it had more than 500 total reads across isoforms, and it’s 

fusion value was greater than log2(.01). Investigation of novel fusion isoforms was carried out 

by mapping all targeted RNAseq reads to the hg19 reference genome with STAR (v2.3.0) using 

Gencode v19 splice junction annotation. 

 

RESULTS 

Validation of targeted RNAseq assay 

To validate the performance of our custom multiplexed PCR-based Ampliseq targeted 

RNAseq panel in representative clinical biospecimens, we profiled RNA isolated from 195 

formalin fixed paraffin embedded (FFPE) tissue tumor and (where available) matched normal 

samples from primarily untreated, primary localized or metastatic prostate cancer. A total of 167 

high-quality samples were retained after sample-level quality control filters were applied. Figure 

5.1 highlights unsupervised hierarchical clustering of all high-quality non-fusion targets across 
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this cohort (n=167), and demonstrates our ability to broadly assess a number of relevant 

transcriptional modules with our assay, including proliferation, stromal, prostate cancer-specific, 

and immune-oncology transcriptional programs. Across ascending grades, we see proliferation 

marker module expression increase, consistent with increasingly more aggressive disease at 

higher grades, while observing expected expression patterns for markers associated with prostate 

adenocarcinoma vs. benign tissue (e.g., PCA3, DLX1). Importantly, Grade Group 1 samples 

taken from tumors with only Gleason Grade 3+3=6 lesions appear identical to Grade Group 1 

samples taken from tumors with both high- and low-grade foci, reinforcing our ability to robustly 

assess expression differences across individual prostate cancer disease foci in most major 

clinically relevant contexts. Together these results suggest this panel is capable of assessing 

major transcriptional programs relevant in prostate cancer, and may offer potential as a tool for 

evaluating important prostate cancer biomarkers from FFPE tissue specimens. 

An additional advantage of our panel is the ability to assess the major expression and 

mutation-based molecular subtypes in prostate cancer, including ETS family gene fusions 

(present in approximately 40% of prostate cancers), as well as expressed SPOP and IDH1 

mutations, and SPINK1 overexpression. Figure 5.2 summarizes fusion expression, SPINK1 gene 

expression, and SPOP mutational status supporting subtype characterization in our cohort. 

Fusion partner and isoform level expression data highlights our ability to capture diverse fusion 

isoforms across our cohort, including both canonical TMPRSS2:ERG isoforms as well as ETS 

gene family fusions involving alternate 5’ (SLC45A3) or 3’ (ETV1) fusion partners. In 6 samples 

with elevated ERG or ETV1 expression, but no detected fusion isoform expression across 

predefined isoform targets, unbiased realignment of targeted RNAseq reads to the whole 

transcriptome identified robust expression of ETS family fusion isoforms not directly targeted on 
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our panel, likely due to combinatorial priming. We further show that amplicons targeting the 

activating F133* hotspot in SPOP enabled detection of somatic hotspot point mutations by 

targeted RNAseq in a subset of samples, with expressed variant fractions consistent with those 

observed by DNA sequencing. A number of samples with activating SPOP mutations also show 

over-expression of SPINK1, observations consistent with an overlap between SPINK1 over-

expression and SPOP mutation in some prostate cancers previously reported (Figure 5.2). 

Together these results confirm our ability to assess the major molecular subtypes of prostate 

cancer using a single targeted RNAseq assay, suggesting important potential clinical utility for 

prospective diagnostic and disease subtyping applications.  

 

Score derivation and validation 

 Commercially available expression-based assays are currently used to predict risk of 

high-grade disease upon radical prostatectomy (RP), risk of disease recurrence post-RP, and 

predictions of prostate cancer specific survival. To confirm our CCP and GPS score derivations 

demonstrate trends across grade concordant with previous reports, we evaluated CCP and GPS 

component score distributions across ISUP grades (including benign and lymph node metastatic 

lesions). Figure 5.2 highlights expression of all CCP transcripts, with higher-grade and lymph 

node metastases showing elevated CCP scores compared to benign and lower-grade samples 

(Figure 5.2B). Scores for individual GPS component modules trend in expected directions 

across increasing grade, and GPS scores overall increase with grade (data not shown). Together 

these results underscore our ability to derive several clinically-relevant prognostic scores from a 



124 
 

single custom targeted RNAseq assay, suggesting unique opportunities for use in both research 

and clinical contexts. 

 

Multifocal cohort 

Current gene expression-based assays claim utility in predicting risk of high grade 

disease, disease recurrence and prostate cancer-associated survival from single tissue prostate 

tissue biopsies, even in the context of multifocal disease, observed in >80% of prostate cancers. 

Thus, we first sought to evaluate our derived prognostic signatures and other candidate 

prognostic biomarkers (e.g. SChLAP-1) to multifocality using an extreme case design. We paired 

DNA and RNA sequencing for 84 samples (including 67 primary and 17 lymph node metastatic 

loci) from spatially independent disease foci in 14 separate cases of multifocal prostate cancer, 

including several multifocal cases with extremes of tumor foci aggressiveness. For example, case 

MF1 (Figure 5.4A) harbored a large Gleason score 9 [Grade Group 5] index tumor focus and a 

positive lymph node (pT3B N1). In addition, a small focus of Gleason score 3+3=6 cancer with 

PIN-like morphology (separate from the high grade focus on all levels) was present at the 

extreme periphery of the prostate. DNA and RNA were co-isolated from multiple regions of the 

large index tumor, the involved lymph node, the low grade focus, and the uninvolved prostate 

stroma. We first assessed the clonality of these foci using targeted mxDNAseq for 409 cancer 

related genes, where somatic copy number profiles demonstrated the presence of chromosome 9p 

somatic copy-number loss in all samples from the high grade tumor focus and the lymph node 

metastases, but not in the low grade Gleason score 6 focus (Figure 5.4B). Further, a shared TP53 

(chr17:7577568, C>T) somatic mutation was present in all samples from the high grade tumor 
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focus and the lymph node metastasis, but again not detected in the Gleason score 6 focus (Figure 

5.4C). Taken together, these results demonstrate that the low and high grade tumor foci in this 

case represent true multifocality at the extremes of aggressiveness by both molecular and usual 

histopathologic criteria, making it ideal to assess the robustness of transcriptomic biomarkers to 

multifocality.  

Co-isolated RNA from all samples from the high and low grade foci, benign stroma and 

lymph node metastasis in this case were subjected to mxRNAseq with our assay, with 6 samples 

being informative. All tumor samples had detectable T2:ERG expression and over-expression of 

genes most discriminative of prostate cancer vs. benign prostate tissue (e.g. AMACR, DLX1 and 

PCA3), consistent with the morphologic impression of carcinoma. Likewise, both derived 

mxGPS and mxCCP scores (Figure 5.4D) were similarly higher in the high grade tumor foci 

compared to the low grade tumor focus. These results suggest that prognostic scores derived 

from gene expression profiling of single tissue biopsy samples may not truly be robust to 

multifocality in the context of multifocal disease with clonally independent disease exhibiting 

extremely different histopathological grades (e.g., ISUP Grade Group 5 vs Grade Group 1). 

Results from a second case with extremes of tumor foci aggressiveness by histopathology 

show similar results. In MF9, we co-isolated DNA and RNA from 6 areas of a large, high grade 

pT3a tumor (overall Gleason score 4+5=9, Grade Group 5), including 4 areas of Gleason score 

4+5, one area of Gleason score 4+3 in an area of extraprostatic extension in the apex, and one 

area of Gleason score 3+4. Multiple, histologically separate Gleason score 3+3=6 tumors were 

present in the base, with two samples taken from the largest Gleason score 3+3=6 focus. Lastly, 

we also sampled benign prostate tissue (mixed epithelium and stroma) in close proximity to the 

sampled 3+3=6 focus. By mxDNAseq of 7 high-quality specimens, a somatic MED12 
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(chrX:70349252, G>C) point mutation was detected in a single low-grade tumor foci (PR-

406_RNA), Gleason 3+3=6; Grade Group 1), but not present in any of the high grade foci, with a 

focal 2-copy deletion of PTEN seen in all high grade loci, but not observed in low-grade foci, 

suggesting independent clonal origins for low-grade and high-grade foci. By mxRNAseq, 

T2:ERG fusions were detected in all high grade tumor focus samples, but not in the low grade 

tumor focus samples, provide further support for true disease multifocality. Importantly, 

markedly different mxCCP and mxGPS scores are observed across foci, with high grade foci 

showing substantially higher CCP scores than the low-grade focus (PR-406_RNA). Together, 

these results clearly demonstrate multiclonality of these tumor foci, and show that in some 

multifocal cases with extremes of tumor aggressiveness, potentially prognostic biomarkers and 

derived signatures appear closely aligned with histologic grade. 

  To determine the frequency in which an under- or unsampled high grade disease focus 

may lead to extreme upgrading at radical prostatectomy (and thus was missed by the initial 

biopsy), we used the Radical Prostatectomy database at the University of Michigan from all 

cases with complete biopsy and prostatectomy pathology information from 2005-2013. We 

identified a total of 1,418 men with biopsy Gleason score 6 (710 men) or 3+4 (708 men) who 

underwent prostatectomy. Of these men, 283 (20.0%) had OncotypeDX defined adverse 

pathology at radical prostatectomy (>pT2, primary pattern 4 or any pattern 5; 69/710 [9.7%] and 

214/708 [30.2%] with Gleason score 6 and 3+4=7, respectively). Though it cannot be determined 

whether the biopsy undersampled the higher grade focus or simply did not sample the higher 

grade focus, 21 of the 1,418 men (1.5%; 5/710 [0.07%] and 16/708 [2.3%] of men with biopsy 

Gleason score 6 and 3+4=7, respectively) showed extreme upgrading on prostatectomy (to only 

Gleason scores >=4+4=8 [Grade groups 4 and 5]), where the biopsy almost certainly missed the 
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RP defined index tumor focus. Hence, our results suggest that ~1% of prognostic tests performed 

on men with Gleason score 6 or 3+4=7 prognostic tests should report expression signatures 

consistent with extremely aggressive prostate cancer if they are truly robust to multifocality. 

 

DISCUSSION 

Herein, we describe the validation of a multiplexed, PCR-based targeted RNAseq assay 

compatible with routine clinical FFPE tissue specimens that can robustly assess major 

transcriptional modules and molecular alterations relevant to prostate cancer biology from, 

enabling characterization of major prostate cancer molecular subtypes, including samples with 

ETS (including ERG and ETV1) family gene fusions, expressed SPOP point mutations, and over-

expression of SPINK1. We see expected trends in individually prognostic biomarkers (e.g., 

SChLAP-1) and expression modules (e.g., proliferation) across grades, and demonstrate the 

ability to robustly derive expression-based prognostic scores routinely used for optimal case 

management and treatment stratification. Importantly, we show that in the context of true disease 

multifocality and extremely divergent histopathological grade, prognostic scores from individual 

disease foci may not yield consistent results, and thus may yield false negative results in the 

presence of un- or undersampled high grade components or individual foci at diagnostic biopsy. 

This study leveraged paired DNA and RNA sequencing on a large cohort of routine 

clinical tissue specimens to comprehensively characterize molecular profiles at both the genomic 

and transcriptional level. Importantly, these profiles enabled systematic comparison of genomic 

and transcriptional alterations across individual foci from the same tumor, supporting evaluation 

of derived prognostic scores in the context of multifocal disease with very high and low grade 
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disease. We characterize the diverse set of ETS family fusion isoforms present across samples 

sequenced on our panel, and show our panel has the capacity to identify novel fusion isoforms 

through combinatorial priming of 5’ and 3’ fusion partners targeted on the panel. 

Continued iterations to expand the utility of this panel will focus on more robust 

assessment of potentially predictive biomarkers such as androgen receptor splice variants (e.g., 

ARv7). By removing genes such as MALAT1 and NEAT1 (which, in many samples, collectively 

account for >60% of all mapped reads), we anticipate being better able to characterize the 

dynamic range of individual target and fusion isoform expression, as well as add expanded 

immune-oncology and long noncoding RNA targets for exploration of prognostic biomarker 

potential. Further, while this panel targets genes included in GenomeDx’s Decipher test, 

appropriate gene- and/or sub-component-specific weights used for this proprietary classifier are 

unknown, preventing recapitulation of Decipher test scores in this cohort. Additional 

computational work will explore the best way to leverage Decipher markers, in conjunction with 

targets used in CCP and OncotypeDx assays, for improved clinical prognostication. 

Overall, this work summarizes a powerful NGS-based approach compatible with FFPE 

tissue specimens for characterizing molecular profiles of individual tumor foci, demonstrating 

robust assessment of biologically relevant genomic and transcriptional alterations in a 

representative cohort (from benign prostatic tissue through high-grade (or neuroendocrine) and 

castration-resistant disease) covering the full spectrum of prostate cancer. By systematically 

assessing prognostic scores in the context of true multifocal prostate cancer using our custom 

targeted RNAseq assay, we show divergent score predictions in multiple cases with clonally-

independent high- and low-grade disease foci. We also note the frequency of extreme disease-

upgrading at prostatectomy in a clinical prostate cancer cohort, suggesting high grade 
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components of the same tumor or independent high-grade disease foci were undersampled or 

simply missed at biopsy. Together, these results highlight important clinical scenarios in which 

current prognostic classifiers may have limited utility, and elucidate important opportunities for 

continued prognostic biomarker classification and development work. 
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Figure 5.1 – Unsupervised hierarchical clustering of mxRNAseq data enables assessment of major biologically-relevant 
transcriptional modules in prostate cancer 

 
Figure 5.1 Unsupervised hierarchical clustering of log2 normalized expression values for 235 non-fusion gene targets across 215 
high-quality tissue samples profiled via mxRNAseq. Samples are ordered from left to right by increasing ISUP grade group, 
including (in order): benign, PCA1 (from tumors with only gleason 3+3=6 lesions), PCA1, PCA2, PCA3, PCA4, PCA5, 
metastatic lesions, and lesions from individuals with castration resistant prostate cancer (CRPC). ISUP grade group, 
TMPRSS2:ERG (T2:ERG) fusion status, and derived CCP score annotation (header rows) are colored according to the legend at 
bottom. 66 blinded (lesion grade unknown) samples from industry collaborator GenomeDx are displayed at right. On far right, 
gene annotations are provided vertically, with colors assigned according to legened at bottom. Expression values have been 
capped at +5 and -5 for clarity in display.  
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Figure 5.2 – Robust assessment of major prostate cancer molecular subtypes via mxRNAseq 

 
Figure 5.2 Fusion isoform heatmap for 149 high-quality tissue specimens profiled by mxRNAseq. Samples are sorted from left 
to right by: decreasing total log2 ERG fusion isoform expression values, decreasing total log2 ETV1 fusion isoform expression, 
decreasing SPINK1 expression for samples with expressed SPOP point mutation, outlier ERG expression (no targeted fusion 
isoform expression), outlier ETV1 expression (no targeted fusion isoform expression), then decreasing SPINK1 expression. ISUP 
grade group is identified on top header row, with ERG, ETV1, SPINK1 individual gene expression in subsequent 3 header rows, 
each of which is colored according to expression value scales in legend at bottom. Fusion isoforms are listed at far right in main 
heatmap, and sorted from top to bottom by decreasing total expression across samples within fusions involving ERG, then 
fusions involving ETV1. The bottom two rows depict expressed variant fraction for SPOP hotspot mutation in RNA, and variant 
fraction detected by paired targeted DNA sequencing of the same sample.   
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Figure 5.3 – Derived CCP scores increase with grade, demonstrating robust expression across individual gene targets 
contained by mxRNAseq 

 

 

Figure 5.3 A. Unsupervised hierarchical clustering of high-quality CCP gene targets across 149 high-quality tissue samples 
profiled on mxRNAseq panel. Samples are sorted from left to right by ascending derived CCP score percentile, with grade, case, 
and CCP score info colored according to legend at bottom. Individual CCP gene targets are labeled at right. Expression values 
were capped at +5 and -5 to control for individual sample/target outliers. B. Box plots of derived CCP score percentile are plotted 
across grade (including benign lesions), demonstrating increasing CCP score with increasing ISUP grade.   
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Figure 5.4 - Divergent prognostic scores in the context of true disease multiclonality 

 
Figure 5.4 A. Image of whole mount prostatectomy specimen with multifocal prostate cancer (Case 1). Each of 8 individual foci 
profiled by mxDNAseq and mxRNAseq are labeled, including: one primary Gleason 3+3=6 focus [PR-355], 4 primary Gleason 9 
(4+5 or 5+4) foci [PR-351, PR-352, PR-353, PR-354], 2 lymph node 4+4 metastases [PR-356, PR-357], and 1 non-tumor 
(control) prostate tissue specimen [PR-358].  B. Genome-wide traces (top) and unsupervised hierarchical clustering of genome-
wide copy-number profiles for 7 tumor specimens profiled by mxDNAseq using the 409 gene Oncomine Comprehensive Cancer 
Panel. For these plots, the control (normal) prostate tissue specimen (PR-358) was used a reference for computing copy-number 
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ratio estimates. In top panel, lines represent genome-wide trace of log2 gene-level copy-number ratios for each profiled sample, 
and are colored according the legend between the trace graphic and clustered heatmap. In clustered heatmap, primary Gleason 
Grade 9 foci PR-351 and PR-352 cluster with lymph node mets PR-356 and PR-357, showing concordant chr8p loss / chr8q gain, 
as well as highly altered chr9, while Gleason Grade 6 primary foci PR-355 shows limited genome wide copy-number alterations 
(with Gleason Grade 9 primary foci PR-353 and PR-354 clustering separately). C. Variant fractions for prioritized somatic 
variants detected across lesions profiled for case 1. Somatic TPR and TP53 nonsynonymous SNVs are detected in all foci with 
Gleason Grade >8, but not the Gleason 3+3=6 (PR-355) or control (PR-358) lesion, and when considered with copy-number data 
support true multiclonal disease. The two primary foci with Gleason 9 disease also show a PLAG1 nonsynonymous SNV not 
seen in any other specimen supporting alterations acquired independent of other lesions. D. Derived CCP scores for all primary 
foci are displayed for case 1 in the context of derived values for all benign and primary (PCA1-5) tumor specimens, highlighting 
discordant results for the low- vs. high-grade disease. 
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CHAPTER VI: Conclusion 

 

In this work, I have devised and validated multiple next-generation sequencing (NGS) 

based analytic approaches capable of supporting clinically-feasible molecular profiling from 

routine clinical biospecimens including blood, urine, and formalin-fixed paraffin embedded 

tissue samples. These approaches offer unique opportunities for leveraging rapid, scalable and 

statistically robust analytic workflows to inform on molecular profiles characterizing clinically-

relevant somatic alterations.   

As outlined in Chapter I, NGS-based profiling work has played an important role in the 

elucidation of both canonical molecular alterations common in prostate cancer, as well as the 

evolution of molecular profiles in the context of progressive disease and in response to treatment 

over time. Chapter II describes the analytic validation of a targeted DNA and RNA sequencing 

system compatible with formalin-fixed paraffin embedded tissue specimens (and extended 

successfully to other plasma cell-free DNA profiling), paving the way for scalable sequencing 

efforts in high-throughput translational research contexts, including initiatives I have led in rare 

cancer cohorts or unique clinical contexts[1, 2]. Further, this assay was utilized in the initial 

phase of the NCI-MATCH trial[3], demonstrating clear opportunities for prospective clinical 

trial and/or CLIA-validated clinical workflows.  

As flexible approaches to profiling repeat non-invasive biospecimens become more 

feasible, diverse NGS-based approaches (including targeted and genome-wide) will likely hold 
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utility for extracting clinically meaningful intra-individual or cohort-specific trends from rich, 

high-dimensional NGS-based datasets. Analytic workflows deploying blood and urine cell-free 

DNA WGS sequencing such as those described in Chapter III and Appendix A) can be refined 

and paired with orthogonal profiling techniques (RNA- or protein-based) to both generate and 

digest diverse clinical and translational datasets. Applications of our work to single-cell 

sequencing from circulating tumor cells, for instance, or individually isolated cells from 

heterogeneous solid tumor cell populations will be extremely informative, albeit with uncertain 

potential clinical utility. Ongoing work as a member of the Blood Profiling Atlas Consortium[4] 

stimulated by 2016’s Precision Medicine Initiative launch will provide me with continued 

opportunities to engage with other experts in the field to pursue innovative strategies for 

maximizing the potential of liquid biopsy applications in concert with relevant tissue-based 

profiling workflows.  

Extensions of this work to explore the effects of histological divergent differentiation on 

expression-based subtyping across cancers will be extremely important, particularly in 

understanding the role DNA alterations play in informing things such as expression-based 

subtype membership. As pathology workflows become digitized, automated analyses capable of 

leveraging inferred tissue histological heterogeneity to inform NGS-based molecular profiling 

results will likely become more plausible, making integrative assessment of driving somatic 

DNA and RNA alterations from individual tumor components increasingly relevant. 

Additionally, recently formed initiatives such as the Pre-Cancer Genome Atlas[5] will take wide 

aim at better understanding what molecular alterations in precursor lesions may confer selective 

advantages for dysregulated cellular proliferation and tumor formation, making the precise and 
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robust assessment of DNA and RNA based molecular profiles from minute individual tumor 

components as described in Chapters IV and V extremely important.  

Further, as relevant datasets abound, applications of principles from this work can 

potentially be expanded to infer and identify potentially predictive and prognostic biomarkers in 

a wide set of clinical contexts. Chapters IV and V highlight important opportunities for 

expanding biomarker identification and assessment, characterizing robust derivation of 

commercially available prognostic scores or biologically-relevant molecular subtypes, 

suggesting important advantages for leveraging validated customized targeted sequencing assays 

in translational research or clinical settings. As clinical oncology evolves in response to 

biological and technological advances, assays and analytic approaches capable of assessing 

relevant predictive and prognostic biomarkers may become essential for guiding clinical 

decision-makers. For instance, the emergence and power of immunotherapeutic approaches for 

inducing dramatic clinical responses in subsets of patients with certain types of cancer will 

inevitably require continued identification and monitoring of biomarkers of resistance or 

response, especially in the context of widely-acknowledged heterogeneity in response profiles 

across cancers. Flexible disease- or system-specific NGS-based approaches for identifying 

predictive and prognostic biomarker discovery will require innovative and statistically robust 

analytic platforms that may benefit from principles of the work reported herein. 

Continued work enhancing the precision of blood- or urine-based copy-number profiling 

and tumor content approximation will help to more precisely estimate the relative contribution of 

tumor-derived circulating DNA in samples from patients with advanced cancer, supporting cost-

effective disease monitoring and treatment response evaluations from routine fluid biospecimens. 

Leveraging both tissue- and liquid biospecimen profiling described herein to complement 
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existing comprehensive tissue-based molecular profiling strategies in the context of longitudinal 

translational research or clinical trials may help refine and expand an understanding of relevant 

disease biology and clinically-useful biomarkers over time. Further, such work should shed light 

on optimal clinical utility for proposed cfDNA and tissue-based targeted RNAseq profiling 

strategies. As the goal of any precision oncology efforts are ostensibly to decrease patient 

mortality and improve quality of life and clinical outcomes for patients with cancer, this 

dissertation describes a collection of scalable analytic approaches to increase NGS-guided 

precision oncology opportunities from routine clinical biospecimens, offering important potential 

for impactful translational research and clinical work.  
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APPENDIX A: Urine CfDNA Copy-Number Profiling 

 

INTRODUCTION 

While we and others have demonstrated potential clinical utility for identifying 

therapeutically informative alterations and improving precision oncology patient stratification 

with a plasma-based sequencing workflow, the emerging role of urine-based cellular or cell-free 

DNA assessment in precision oncology is still an active area of investigation [1]. Given the 

relative ease and absolute noninvasive nature of urine sample collection (compared to tissue and 

even blood) and the ability to serially collect reasonably high volumes ostensibly each day, 

urine-based biomarker assessment and monitoring presents as an attractive potential strategy for 

informing precision oncology workflows[2]. Despite several reports of point mutation profiling 

from urine cfDNA across various cancers[3, 4], technical limitations to scalable, genome-wide 

urine cfDNA profiling for non-urothelial cancers[5] persist, including questions around optimal 

DNA isolation and purification strategies, fidelity of isolated DNA, variability in non-tumor 

urine cfDNA sources, fragment lengths of tumor-derived cfDNA, and uncertainty around 

whether trans-renal tumor DNA can be reliably assessed for prospective treatment monitoring 

and response. 

Here, we leverage single-strand DNA library preparation protocols to establish genome-

wide copy-number profiles from whole-genome sequencing of urine cell-free DNA samples in a 
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set of patients with acute myeloid leukemia (n=14) or solid tumors (n=9), highlighting high 

concordance with profiles from clinical karyotype and/or synchronous plasma cfDNA WGS. We 

demonstrate the ability of our approach to identify therapeutically relevant copy-number 

alterations (including both focal amplifications and broad copy-number gains or losses) from 

urine cfDNA samples, suggesting important potential clinical utility for monitoring disease 

burden and treatment response. Importantly, we establish comprehensive fragment length 

distribution profiles across patient sampels, and identify an enrichment of ultra-short (20-40bp) 

cell-free tumor DNA in both patients with AML and those with solid tumors.  We confirm ultra-

short fragments are also present in synchronous plasma samples and demonstrate genome-wide 

copy-number profiles using only reads from ultra-short cfDNA fragments profiles mirror those 

generated from unrestricted mapped sequencing read analysis. These results are consistent with 

trans-renal passage of ultra-short cfDNA fragments from the blood to the urine, and suggest a 

number of interesting potential biological and translational opportunities. 

 

METHODS 

Preparation of sequencing libraries 

Plasma cfDNA and fragmented blood genomic DNA sequencing libraries were prepared 

with the ThruPLEX Plasma-seq kit (Beckman Coulter) at 1-10 ng of DNA input, individually 

barcoded, and pooled for purification using AMpure beads, according to the manufacturer’s 

instructions. Urine DNA sequencing libraries were prepared at 5-10 ng of cfDNA input using a 

protocol adapted from the single-stranded DNA library preparation method (3) with the 
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following modifications: (i) uracil excision and DNA cleavage step was omitted. (ii) single 

stranded ligations were performed with the addition of 1 µL instead of 4 µL of Circligase II 

(Epicentre) (4), and incubated overnight instead of 1 hr, which reduced reagent cost while 

maintained the ligation efficiency. (iii) double stranded ligations were performed for 2 hr at room 

temperature instead of 1 hr (5). (iv) for hybrid select target capture, double stranded Adapter 2 

with16 randomized bases (hand mixed) was used for double stranded ligations and modified 

indexing primers were used for library amplification. For whole genome sequencing, dual 

indexed urine DNA libraries were amplified at optimal cycles determined by SYBR qPCR (3), 

and followed by size selection using 10% TBE gel (Bio-Rad). For hybrid select target capture, 

libraries were amplified into saturation and purified using AMpure beads according to the 

manufacturer's instructions. Purified pooled plasma DNA libraries and individual urine DNA 

libraries were quantified using ddPCRTM Library Quantification Kit for Illumina TruSeq (Bio-

Rad), in which the annealing temperature for urine libraries was modified from 60 ℃ to 55 ℃, 

due to the truncated P5 adapter.  

 

DNA Sequencing and primary data processing  

All libraries were sequenced on MiSeq or HiSeq 2500 instruments (Illumina) otherwise 

stated, with details of sequencing are provided in Table S2. The raw fastq files were run through 

FastQC v0.10.1 to check quality before trimming. Adapters were removed using cutadapt with 

the settings ‘-q 20,15 -m 5 -overlap=4’. After adapter trimming, FastQC v0.10.1 was run again to 

confirm that the trimming was successful and the quality of the reads was suitable for analysis. 

The reads were aligned to the hg19 Human reference sequence using BWA v.0.7.15-r1140 with 



145 
 
 

options ‘mem -t 4 -k 8’. The resulting SAM files were sorted, indexed and compressed to a BAM 

file using Picard Tools v2.5.0 ‘SortSam’. Various metrics were calculated using the Picard Tools 

‘CollectAlignmentSummaryMetrics’, ‘CollectInsertSizeMetrics’ and ‘QualityScoreDistribution’ 

functions in addition to the Samtools (v0.1.19) ‘idxstats’ function.  

 

Copy-number variant detection: WGS 

 Non-PCR-duplicate reads (samtools v1.3) were used to identify candidate copy-number 

alterations using the QDNASeq R package (version 1.6.1) [6]. Briefly, the genome was divided 

up into variable bin sizes (15, 25, 50, 100, 500, and 1,000 kilobase-pair bins), and bin-level 

counts of high-quality mapped reads (MAPQ ≥ 37) were calculated separately for each sample. 

Raw bin-level counts were simultaneously corrected for GC content and mappability by fitting a 

LOESS surface through median read counts for bins with the same combination of GC content 

and mappability and dividing raw bin-level counts by the corresponding LOESS fitted value. 

GC- and mappability-corrected bin-level counts were then normalized by median bin-level 

corrected counts within each sample. Bins previously shown using either ENCODE or 1000G 

data to yield anomalous copy-number results due to germline copy number variants (CNVs), low 

mappability, or large stretches of uncharacterized nucleotides were excluded [6]. For each bin in 

each tumor sample, high-quality, corrected, median-normalized read counts were divided by 

average corrected, median-normalized read counts from our 5 normal male samples. Segmented 

copy-number events were called from bin-level corrected, median- and control-normalized read 

counts using the circular binary segmentation algorithm implemented by the DNACopy (1.44.0) 

R package, and final segment- and bin-level copy-number values were used for subsequent 
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analyses as described. Focal CNAs were defined as CNAs 1.5-20Mb  long with a log2(CNRatio) 

≥ 0.2, thresholds similar to those described elsewhere [7]. 

 

RESULTS 

 To confirm our ability to detect genome-wide copy-number profiles from whole genome 

sequencing of urine cfDNA, we first profiled urine cfDNA samples and matched blood genomic 

DNA samples from 14 patients with AML using single-strand DNA library preparation 

protocols. Initially, using all high-quality (>Q30) sequencing reads from single-strand urine 

cfDNA sequencing libraries and a pool of normal genomic DNA samples as a reference, only 3 

of 14 (21%) AML samples showed urine cfDNA copy-number profiles concordant with those 

reported in clinical karyotyping and verified via plasma cfDNA and blood genomic DNA WGS 

sequencing. However, by stratifying fragment length distributions based on whether fragments 

mapped with high-quality to genomic regions known to be gained, lost, or unaltered by clinical 

karyotype, we observed a significant enrichment of ultra-short (20-40bp) fragments mapping to 

regions affected copy-number gain, suggesting a tumor-specific enrichment of ultra-short cfDNA 

fragments in urine cfDNA samples (data not shown). By restricting our analysis to sequenced 

fragments <40bp in length in all urine cfDNA samples from patients with AML, we show that 

14/14 (100%) samples show detectable copy-number profiles consistent with clinical karyotype 

and plasma cfDNA profiles (Figure A1A). Together these results confirm that tumor-derived 

DNA detectable in urine can be leveraged to establish genome-wide copy-number profiles 

consistent with clinical karyotype assays and profiles derived from patient-matched plasma 

cfDNA samples. They further support that despite low overall tumor content in most samples, 
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tumor-specific cfDNA fragments in the urine appear to be enriched at ultra-short lengths, 

carrying important implications for prospective urine cfDNA assay development and 

implementation. 

 We next sought to evaluate whether WGS of urine cfDNA samples from patients with 

solid tumors could yield detectable genome-wide copy-number profiles. Here again, unrestricted 

analysis of all high-quality sequenced fragments generally indicated low overall tumor content 

estimates, limiting the ability to detect variable-sized copy number alterations originally 

identified via plasma cfDNA. However, stratified fragment length distribution analyses based on 

fragments mapped to regions identified as copy-number altered in plasma cfDNA sequencing 

again highlighted an enrichment of ultra-short (20-40bp) in regions of copy-number gain, with 

enhanced signal for reads mapped to regions focally amplified. These observations were 

reinforced by genome-wide copy-number profiles from urine cfDNA WGS data stratified by 

fragment length (Figure A1B). These results reinforce tumor-specific urine cfDNA fragment 

length observations from patients with AML, and suggest that detectable trans-renal tumor DNA 

in urine can facilitate genome-wide copy-number profiles for patients with solid tumor samples. 

 One hypothesis may be that cfDNA fragments detected in urine samples are originally 

present in blood, and are detectable in urine after passage through the glomerulus filter (which 

may filter out longer, higher molecular weight cfDNA). To evaluate whether ultra-short tumor-

specific cfDNA fragments exist in the blood, we first analyzed a single cfDNA sample from a 

patient with squamous cell carcinoma of the lung sequenced at high-depth (>25x) genome wide 

in an orthogonal plasma cfDNA profiling cohort [8]. Though default analysis parameters in the 

original study prevented mappability of cfDNA fragments less than ~35bp, we were still able to 
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see clear tumor-specific copy-number profile signals at similar tumor contents when comparing 

profiles derived from ultra-short (35-50bp) and known peak plasma circulating tumor DNA 

fragment length ranges (Figure A1C). Analyses on plasma cfDNA samples from patients with 

AML or solid tumors profiled in our cohort (with libraries prepared using either single-stranded 

DNA protocols) show similar signal, supporting the possibility that tumor-derived ultra-short 

cfDNA fragments detected in the urine may, to some extent, be derived from populations of 

cfDNA molecules circulating in the blood. Together with our fragment length restriction and 

urine cfDNA whole-genome copy-number analyses, these results identify important utility and 

analytic considerations for prospective urine-based cfDNA NGS profiling, particularly for the 

development and application of urine-based cfDNA molecular profiling assays. 

 

DISCUSSION 

High-dimensional sampling from patients with both localized and metastatic cancer in the 

context of disease progression and response to treatment may provide a more complete picture of 

driving molecular alterations over time, guiding clinical decision-making and enhancing 

potential for true precision oncology in clinical practice. To this end, we have extended whole-

genome sequencing genome-wide copy-number profiling to urine cell-free DNA in patients with 

both circulating and solid tumor disease, and showed a robust ability to establish genome-wide 

copy-number profiles, while characterizing the size distribution of urine circulating tumor DNA 

(ctDNA) with precision across a diverse sample and cancer compendium. Here, we have 

leveraged single-strand DNA library protocols to sequence the full spectrum of urine cell-free 

DNA fragments, showing that ultra-short (20-40bp) cfDNA fragments are over-represented in 
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reads mapping to regions with elevated tumor contributions (e.g., regions gained or amplified), 

supporting peak urine ctDNA lengths of <40bp. Further we show that while the bulk of plasma 

cfDNA peak fragments are sized in the 150-200bp range, ultra-short (<40bp) fragments exist and 

contain similar tumor contents as plasma fragments in the larger size range. 

Interesting questions arise around whether ultra-short ctDNA or cfDNA fragments 

detectable in the blood are the same fragments that make their way into the urine (or rather, 

fragments in the urine simply represent degraded versions of the longer plasma cfDNA 

molecules). However, our results clearly demonstrate that copy-number profiles derived from 

ultra-short trans-renal DNA (trDNA) recapitulate profiles from matched plasma or blood 

genomic DNA in patients with both solid and hematologic malignancies. Together with the 

relative ease of repeat and/or large volume urine collection in comparison to blood, these results 

support important potential utility for pairing urine-based molecular profiling approaches with 

clinical tissue and blood-based assessment strategies in managing treatment and monitoring 

disease burden in patients with advanced cancer.  

Continued computational experimentation will help to refine our urine cfDNA copy-

number profiling approach, informing parameterization best suited for ultra-short fragment 

analyses. For instance, due to enrichment of ultra-short ctDNA fragment length, precise 

determination of optimal seed length during the alignment phase (for standard NGS or even 

plasma cfDNA experiments, read mapping seed lengths of 30-40bp are typically used) will be 

critical for prioritization of high-confidence alignment of ultra-short urine cfDNA fragments in 

prospective work. Further, we expect systematic downsampling of high-depth WGS urine 

cfDNA sequencing datasets to enable a more precise estimate of the relationship between 
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coverage and assessable tumor content from urine cfDNA samples. Additional analyses 

exploring copy-number profiling performance using alternative reference cohorts for solid tumor 

plasma and urine cfDNA samples (e.g., matched blood genomic DNA vs. cohort of normal 

plasma cfDNA samples) will aid in identifying the most appropriate controls for use in potential 

prospective clinical implementation. Lastly, strategies for evaluating tumor heterogeneity and 

clonal dynamic representation from plasma cfDNA sequencing[9-11] may have utility in urine 

cfDNA NGS profiling, and could provide a relevant framework for extensions of (or synergy 

with) our work.  

Collectively, this work suggests that by pairing expanded profiling of serial urine samples 

with synchronous plasma cfDNA and longitudinal clinical outcome variables, our approach may 

support a more robust assessment of disease burden and DNA-based biomarker representation 

over time from routine clinical liquid biospecimens. Further work integrating assessment of 

circulating RNA, exosomal or circulating tumor cell (CTC) DNA and RNA, high-depth targeted 

urine cfDNA NGS mutation profiling, and even patient-matched comprehensive tissue-based 

profiles will help to shape the potential utility of urine cell-free DNA NGS for noninvasively 

characterizing relevant disease-specific DNA alterations and informing clinical care. Systematic 

evaluation of sensitivity and specificity for our approach across cancer types and alteration size 

will also enable more targeted clinical utility, perhaps supporting candidate predictive or 

prognostic biomarker assessment (such as AR amplification in prostate cancer) in relevant 

disease cohorts.  

Ultimately, we have shown that urine cfDNA WGS can recapitulate genome-wide copy-

number profiles assessed by clinical karyotype and/or plasma cfDNA WGS, including both focal 
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amplifications and broad copy-number gains and losses, and demonstrate these profiles are most 

enriched for tumor content when prioritizing ultra-short (20-40bp) urine cfDNA fragments. 

These results support the presence of detectable ultra-short trDNA fragments that may ostensibly 

be present in blood and transported to the urine through the glomerulus filter (which may filter 

out higher molecular weight DNA molecules). By urine cfDNA WGS of routine and abundant 

urine samples, we demonstrate noninvasive characterization of genome-wide copy-number 

profiles that carries important potential for complementing alternative (more targeted) urine-, 

blood-, and tissue-based molecular profiling strategies. Continued computational work will 

enable sensitivity and specificity optimization for our approach, and guide strategies for 

maximizing the utility of this approach for potential use in clinical oncology workflows. Overall, 

this work, paired with existing strategies for routine clinical biospecimen molecular profiling, 

carries significant potential for improving the temporal resolution of disease burden, circulating 

tumor clone representation, and treatment response in patients with advanced cancer.  
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Figure A1 – Urine cell-free DNA copy-number profiling recapitulates genome-wide copy-number profiles from patient-
matched clinical karyotype and plasma cell-free DNA analyses, with evidence for enrichment of ultra-short tumor-specifc 
cfDNA fragments in urine 

 
 
Figure A1 A. Genome-wide copy-number profiles derived from plasma and urine cell-free DNA sample WGS data   in a patient 
with acute myeloid leukemia. Plasma cell-free DNA copy-number profile (top) represents known profile identified by classical 
karyotype analysis, with robust detection of arm- and chromosome-level copy-number events. Synchronous single-strand urine 
cfDNA libraries from the same patient show variable signal with restricting to specific urine cfDNA fragment length, suggesting 
urine tumor-specific cfDNA fragments may be enriched at ultra-short (<40bp) lengths. B. Similar, highly concordant results are 
seen for patient-matched plasma and urine cell-free DNA samples from a patient with lung adenocarcinoma, with similar 
enrichment of tumor-specific cfDNA fragments at 20-40bp in urine cfDNA WGS data enabling detection of both broad and focal 
copy-number alterations (here, EGFR and FGFR1) originally detected by plasma cfDNA WGS. C. Analysis of  high depth 
plasma cfDNA WGS sequencing data from Snyder, et al. shows detectable tumor-specific signal at ultra-short fragment lengths 
in plasma, suggesting such fragments may be detectable in the urine after passage through  the glomerulus filter. 
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APPENDIX B: Supplementary Materials for Chapter II 

 

Supplementary Tables: 

http://www.sciencedirect.com/science/article/pii/S1476558615000445?via%3Dihub#s0115 

Supplementary Materials and Methods 

 Candidate genes with somatic driver mutations were derived from gain-of-function (GoF) 

and loss-of-function (LoF) analyses performed on 686,530 tumor samples with mutation data in 

Oncomine. GoF genes (oncogenes) were defined as those with a hotspot missense mutation (i.e. 

recurrent) rate >20% and deleterious mutation (i.e. nonsense and frameshift indels) rate <10%. 

Additionally, gene-level p values were estimated by the likelihood that a hotspot residue will 

have a given number of mutations by chance given the total number of mutations in that gene, 

with a false discovery rate (FDR) adjusted p value <0.1 required for classification as a GoF gene. 

LoF genes were defined as those with deleterious mutations in at least three samples and a 

combined deleterious and hotspot mutation frequency greater than 20%. Additionally, gene-level 

p-values were estimated, representing the significance of the proportion of deleterious mutations 

observed in each gene compared to all other genes, with a FDR adjusted p-value <0.1 required 

for classification as a LoF gene. Genes failing to meet GoF/LoF criteria were considered 

passenger genes. This approach was previously validated using a trained classifier in 2,711 

TCGA profiled samples from 13 cancer types[1].   

http://www.sciencedirect.com/science/article/pii/S1476558615000445?via%3Dihub#s0115
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Candidate driver CNA events were identified by performing a minimal common region 

(MCR) analysis that identified regions of recurrent CNA (defined ≥ 3.7 copies) or deletion (≤~1 

copy) in ≥ four samples (pan-cancer and in specific cancer type). Candidate regions were further 

filtered by imposing a requirement that at least one sample must have a copy number ≥ 8 for 

amplifications or ≤ 1 for deletions, and a further requirement that median event frequency was 

≥0.5%. MCRs observed in different cancer types that shared common genes were identified. The 

most frequently amplified or deleted gene(s) within each set of overlapping MCRs was included 

in the candidate copy number gene list. 

To identify additional fusions or novel 5’/3’ fusion partners not present in the Mitelman 

database, we analyzed 6,438 primary tumor sample RNA-seq profiles contained within 

Oncomine using publicly available fusion prediction algorithms[2, 3]. This generated a large 

number of predicted fusions; we filtered out the following fusions to nominate driver candidates: 

fusions predicted in normal samples, those involving adjacent genes, homologous genes, or 

repetitive regions, and those involving transcriptional units in opposite orientations. 

All candidate driver GoF, LoF and CNA genes, as well as gene fusions, were then 

assessed for evidence of near term potential clinical relevance. Genes (with or without a 

candidate variant) were considered for inclusion in OCP if they were 1) a target of FDA 

approved therapies, 2) associated with treatment recommendations from organizations such as 

the National Comprehensive Cancer Network (NCCN), 3) used as a biomarker for enrollment 

into ongoing clinical trials or 4) reported as associated with treatment response in clinical trials 

(or published case reports). Additional genes were considered for inclusion based on 1) 

membership in the Sanger Cancer Gene Census, 2) known cancer involvement or 3) were 

associated with investigational therapies. 
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Tissue Cohorts 

 The MO cohort consisted of all cancer specimens (including biopsy, resection and cell 

block specimens) sent during a five month period to the CLIA certified UM Molecular 

Oncology/Genetics Laboratory for 1) EGFR, BRAF or KRAS mutation testing or 2) ALK 

rearrangement testing. Testing for EGFR (exon 19 indels and residue 858 mutations by PCR 

based fragment analysis), KRAS (codon 12, 13 and 61 mutations by Sanger sequencing) and 

BRAF (codon 600 by allele-specific PCR or Sanger sequencing) was performed as described [4-

6]. FISH for ALK rearrangement was performed using the FDA approved dual color break apart 

probe strategy (Abbott Molecular).  

 Only cases testing UM FFPE tissue blocks were considered for inclusion in the MO 

cohort. H&E slides and tissue blocks were reviewed after molecular testing to ensure sufficient 

material remained for OCP evaluation. A single FFPE sample was chosen if multiple blocks 

were tested. In cases where insufficient tissue remained in the block sent for molecular testing, 

concurrent blocks or blocks from prior diagnostic procedures were used. From 130 cases 

assessed during the above time period, 105 cases were from UM samples and had sufficient 

remaining tissue. Clinicopathologic information for all included cases is provided in Table S4.  

 

Somatic variant identification 

  Variants were annotated using Annovar[7]. VCF-level filtering was applied to annotated 

variants to remove synonymous or non-coding variants, those with flow corrected read depths 

(FDP) less than 20, flow corrected variant allele containing reads (FAO) less than 6, variant 

allele frequencies (FAO/FDP) less than 0.10 in tumor suppressors or less than 0.05 in oncogenes, 
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extreme skewing of forward/reverse flow corrected reads calling the variant (FSAF/FSAR <0.2 

or >5), or indels within homopolymer runs ≥4. Any variants called in >25% of all research 

samples sequenced herein or in other cohorts using any OCP version (n=776 total) were 

excluded as technical artifacts, unless occurring at known Oncomine-prioritized hotspot variants. 

Variants with allele frequencies >0.5% in ESP6500 or 1000 Genomes (from Annovar) or those 

reported in ESP6500 or 1000 Genomes with observed variant allele frequencies between 0.40 

and 0.60 or >0.9 were considered germline variants.   

Base-level filtering was then applied to candidate somatic variants passing the above 

criteria to exclude additional technical artifacts or poorly supported variants, including removal 

of variants located at the last mapped base (or outside) of amplicon target regions, variants with 

the  majority of supporting reads harboring excess additional mismatches or indels (likely 

sequencing error), those in repeat-rich regions (likely mapping artifacts), and variants occurring 

exclusively in one amplicon if overlapping amplicons cover the variant. Variants passing these 

filters were visually confirmed in IGV. We have previously confirmed this filtering criteria 

identifies variants that pass Sanger sequencing validation with >95% accuracy[8, 9].  

 

Copy number analysis  

To identify CNAs, we utilized total amplicon read counts provided by the Coverage 

Analysis Plug-in. Read counts per amplicon for each sample (normalized to total number of 

reads for that sample) were divided by normalized counts from a composite normal male 

genomic DNA sample (comprised of multiple FFPE and frozen tissue, individual and pooled 

samples run on the same OCP version), yielding a copy number ratio for each amplicon. These 
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copy number ratios were then corrected for GC content, and gene-level copy number estimates 

were determined by taking the coverage-weighted mean of the GC-corrected per-probe ratios, 

with expected error determined by the probe-to-probe variance, as described[8-10]. Genes with a 

log2 copy number estimate of <-1 or >0.81 were considered to have high level loss or gain, 

respectively. As an estimate of data quality, we determined the standard deviation of the 

amplicon-level copy number estimates relative to the gene-level estimate for each gene per 

sample (Fig B2). Samples with median values >0.75 were deemed low quality and excluded 

from further analysis. 

 

Gene fusion analysis 

Within the Ion Reporter (4.2.0) Fusion analysis workflow, reads from the RNA 

AmpliSeq panel were aligned using TMAP to a gene reference of targeted chimeric fusion 

transcripts as well as reference sequences for expression imbalance and expression control gene 

targets. Read alignment required at least 70% overall homology to each side of the fusion 

breakpoint. Read counts were determined for expression control gene and expression imbalance 

targets; the exon imbalance metric for a given gene is calculated as the count of 3’ target reads 

minus the count of 5’ target reads divided by the sum of the expression control gene target read 

counts. 

In the MO and LU cohorts, individual absolute fusion isoform read counts <200 and non-

prioritized gene fusions were excluded. In the PR cohort, individual absolute fusion isoform read 

counts <30 were excluded. Individual isoform (i.e. TMPRSS2:ERG fusions  involving TMPRSS2 

exon 1 fused to ERG exon 4 [T1E4]) and gene level (all TMPRSS2:ERG isoforms) were summed 
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and normalized to the summed read count of the five housekeeping genes. For visualization, the 

log2 [(normalized read counts)*100,000] was used.  

 

qRT-PCR 

 qRT-PCR was performed to confirm the expression of ERC1:BRAF in MO-17 and 

TPR:NTRK1 in MO-35 as detected by OCP. Primers and probes (5’ FAM; ZEN/Iowa Black FQ 

dual quenchers) were designed using PrimerQuest (www.idtdna.com/Primerquest/Home/Index, 

hg 19 genome assembly) and obtained from IDT. Primer/probes sequences are given in Table 

S16. Reverse transcription (RT) of 1µg RNA was performed using Omniscript RT (Qiagen) in 

the presence of RNAse Inhibitor (Qiagen) and gene specific priming using a pool of the 5 reverse 

primers used in qPCR (50nM final concentration of each primer) at 37 C for 1 hour. qPCR 

reactions (15ul) were performed in triplicate using TaqMan Universal Master Mix II (Applied 

Biosystems), 50ng cDNA equivalent per reaction and a final concentration of 0.9uM each primer 

and 0.25uM probe in 384 well plates on the QuantStudio 12K Flex (Applied Biosystems). 

Baseline and Ct thresholds were set using QuantStudio 12K Flex Real-Time PCR System 

Software. All Ct threshold values >40 were set to 40. Log2 expression of TPR:NTRK1(T21N10), 

ERC1:BRAF(E12B9) and ERC1:BRAF(E12B10) were determined by the ∆∆Ct method using the 

GAPDH and HMBS Ct geometric mean as the reference and the average of the 5 assessed MO 

samples without gene fusion detection by OCP as the calibrator. A no template control (water 

subjected to RT as above) was processed in parallel.  

 

ERBB2 immunohistochemistry (IHC) 
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 IHC for ERBB2 was performed using the Ventana Benchmark System (Ventana Medical 

Systems; Tucson, Arizona) on 4-5µm thick FFPE tissue sections in the University Of Michigan 

Department of Pathology Clinical IHC Laboratory using pre-dilute mouse anti-ERBB2 

monoclonal antibody (clone 4B5).  

 

Comprehensive Cancer Panel profiling 

 PR-185 and PR-186 (FFPE prostate cancer specimens) were profiled using the Ion 

Torrent Comprehensive Cancer Panel (CCP) as described[9].  
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Figure B1. Assessment of OCP copy number alteration (CNA) profiling data noise.  

For each sample across the MO, LU and PR cohorts, the amount of noise in the copy number profiling data was assessed by 
determining the standard deviation of the target-level copy number estimates relative to the gene-level estimate for each gene in 
the sample. Values for all genes are plotted per sample, and samples with median values >0.75 (shown in red) were deemed low 
quality and excluded from CNA analysis. 
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Figure B2. Assessment of AcroMetrix Oncology Hotspot Control (AOHC) panel.   

For each single nucleotide variant (SNP), short insertion/deletion (INDEL), and multi-nucleotide polymorphism (MNP) present 
in AOHC and targeted by OCP (n=398 total variants), the observed variant allele frequency is plotted. Each bar corresponds to a 
single variant, and variants are sorted in order of descending observed variant frequency, with the expected variant allele 
frequency (0.20 for all alleles) indicated. Bars are colored by variant type and homopolymer context (< or ≥ 4bp in length). 
Variants undetected by automated variant calling are indicated in inset. The median and interquartile range for observed variant 
frequency is indicated as in the legend.  
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Figure B3. Copy number profiles from the molecular diagnostics (MO) cohort.  

Unsupervised hierarchical clustering of copy number profiles from MO samples. Copy number ratios (log2) for genes targeted by 
OCP are shown according to the color scale. Genes are arranged in genome order (from top to bottom). Pathological information 
is given in the header according to the legend.  
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Figure B4. Copy number profiles from the lung cancer (LU) cohort.  

Unsupervised hierarchical clustering of copy number profiles from LU samples. Copy number ratios (log2) for genes targeted by 
OCP are shown according to the color scale. Genes are arranged in genome order (from top to bottom). Pathological information 
is given in the header according to the legend.  
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Figure B5. Copy number profiles from the prostate cancer (PR) cohort.  

Unsupervised hierarchical clustering of copy number profiles from PR samples. Copy number ratios (log2) for genes targeted by 
OCP are shown according to the color scale. Genes are arranged in genome order (from top to bottom). Pathological information 
is given in the header according to the legend.  
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Figure B6. OCP as a translational research tool identifies IDH1 R132 mutations as defining a rare subtype of ETS- 
prostate cancer.  

A. An ETS fusion negative prostate cancer (PR-122) without other OCP defined actionable alterations harbored an IDH1 R132H 
mutation. B. Distribution of IDH1 R132 mutations and combined ERG fusions, ETV1 fusions and SPOP mutations from 453 
publically available sequenced prostate cancers (see Table S13). Two sided Fisher’s exact test significance is given.  
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Figure B7. OCP profiling of paired pre-/post-therapy prostate cancer specimens identifies CTNNB1 amplification/ 
mutation as an adaptive (or selected) response to ADT and/or chemotherapy.  

A. OCP profiling of pre- and post-treatment prostate cancer supports activating CTNNB1 mutation as an adaptive response. PR-
77 is an untreated diagnostic (dx) primary Gleason score 9 prostate cancer and PR-88 is a subsequent castration resistant prostate 
cancer (CRPC) bladder metastasis obtained after ADT, XRT and chemotherapy that had AR- phenotype. OCP profiling 
demonstrates shared high level MCL1 and MYC CNAs (and non-prioritized high level BRCA1 amplification), consistent with 
clonality; however a TMPRSS2:ERG fusion (exons T2E2) was only identified by the OCP RNA-seq panel in PR-77, consistent 
with the AR- phenotype in PR-88. PR-88 uniquely harbored AR amplification (a known ADT resistance mechanism) and 
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CDKN2A deletion, as well as a CTNNB1 S37C (variant allele frequency 10%). No read support for CTNNB1 S37C was present in 
PR-77 (>5,000 reads). B. Using the Ion Torrent Comprehensive Cancer Panel (CCP), which targets all coding exons of 409 
cancer related genes, we profiled the diagnostic prostate biopsy tissue (PR-185, top) from a 49 year old man presenting with M1 
(lymph node and liver metastases) prostate cancer. After rapidly developing CRPC after ADT and chemotherapy, liver biopsy of 
a metastasis (PR-185, middle) and an epidural metastasis resection specimen (PR-160, bottom) were obtained. PR-185 was 
profiled on the CCP and PR-185 was profiled using the OCP. All three tumors were gene fusion negative by the RNA component 
of the OCP. Integrative profiles for each tumor are shown as in A, except for CCP copy number plots, gene level copy number 
ratios are plotted as points with 95% confidence intervals indicated. Shared TP53 R248 mutations and broad low level CNAs 
(shown in red and blue points/amplicons, including 1 or 2 copy PTEN loss) were present in each sample,, consistent with clonal 
progression. High level, focal AR, PIK3CA and CTNNB1 amplifications were present in both CRPC specimens but not the 
pretreatment sample, consistent with adaptive (or selected) alterations in response to therapy. 
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Figure B8. Comparison of variant detection in complete and downsampled sequencing data using the Acrometrix 
Oncology Hotspot Control (AOHC) molecular standard.  

Variant allele frequencies (VFs) independently derived from complete and downsampled sequencing data across a set of 389 
known indels, multi nucleotide variants (MNV) and single nucleotide variants (SNV) called in the Acrometrix Oncology Hotspot 
Control (AOHC) sample.  Original VFs calculated by TVC (in orange) utilized the complete set of mapped reads for the AOHC 
sample (average per-base coverage across OCP targeted regions: 1,823x).  Random downsampling of original sequencing data 
enabled concordance analyses at 100x, 250x, and 500x effective average coverage across OCP targeted regions, with VFs for all 
variants plotted in blue.  Percentages indicate proportion of original variant calls that were also made from each donwsampled 
dataset.  Pearson correlation coefficients (r) between complete and downsampled VFs are provided; **=p <0.001. 
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APPENDIX C: Supplementary Materials for Chapter III 

 

SUPPLEMENTARY METHODS 

TCGA Data Analysis 

TCGA pan-cancer copy number analyses were run on somatic 

(scna_minus_germline_cnv_hg19__seg) segmented Affymetrix SNP6 array-based copy-number 

calls for 11,576 tumor samples across 32 tumor types contained in the most recent (01/28/2016) 

TCGA GDAC Firehose standard data run (stddata__2016_01_28)[1]. Data was downloaded 

from the TCGA GDAC Firehose repository using the firehose_get utility (v0.4.6), and the 

fraction of genome altered (FGA) was calculated as in cBioPortal 

(https://groups.google.com/forum/#!topic/cbioportal/HKLa9C9m4y4). Specifically, FGA was 

calculated for all tumor samples as the total number of bases in regions affected by copy-number 

alterations with log2(CopyNumberRatio) > 0.2 or < -0.2 divided by 3 billion (the approximate 

median number of bases in all segments for each sample across all analyzed samples and tumor 

types). 

 

Cell-free DNA extraction  

Five milliliters of peripheral blood were collected for 92 samples from 76 patients with 

metastatic castration resistant prostate cancer (mCRPC) and 10 healthy controls (5 male, 5 

https://groups.google.com/forum/#!topic/cbioportal/HKLa9C9m4y4
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female) using K2 EDTA blood collection tubes (Cat: 366643, BD, NJ) (Table S1). Within 4 hr, 

blood was mixed with equal volume of PBS and Ficoll-Paque Plus (Sigma-Aldrich; MO) was 

used to separate plasma from red blood cells and peripheral mononuclear cells (PBMC). Plasma 

was centrifuged twice at 1500 g for 12 min to limit cell contamination and stored in -80° C.  

For 11 patients (13 samples) with metastatic lung adenocarcinoma, 4 patients (7 samples) 

with metastatic colorectal cancer, 3 patients (3 samples) with leukemias, and 2 patients (4 

samples) with sarcoma, one patient with both sarcoma and breast cancer, and a patient with 

uterine leiomyosarcoma, 10 mL peripheral blood was collected using Streck Cell-Free DNA 

BCT tube (Streck; NE) (Table S1). Within 4 hr, blood was centrifuged at 1600 g for 10 min, and 

then plasma was centrifuged at 1600 g for 10 min to remove cell debris and stored in -80° C.Cell 

free DNA was extracted from all plasma (2 mL) samples with QIAamp Circulating Nucleic Acid 

Kit (Qiagen; CA) according to the manufacturer’s instructions. Sample collection and NGS was 

performed with Institutional Review Board approval. 

 

Low-pass whole-genome sequencing and copy-number detection 

 Sequencing alignment and coverage analyses were performed using Torrent Suite version 

5.0.2 (Ion Torrent, Carlsbad, CA). Initially, reads were aligned to the hg19 version of the human 

reference genome using tmap (v5.0.7) and aligned, non-PCR-duplicate reads (samtools v1.3) 

were used as input for our copy-number calling workflow. Genome-wide copy number 

alterations were first called using the QDNASeq R package (version 1.6.1) [2]. Briefly, the 

genome was divided up into variable bin sizes (15, 25, 50, 100, 500, and 1,000 kilobase-pair 
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bins), and bin-level counts of high-quality mapped reads (MAPQ ≥ 37) were calculated 

separately for each sample. Raw bin-level counts were simultaneously corrected for GC content 

and mappability by fitting a LOESS surface through median read counts for bins with the same 

combination of GC content and mappability and dividing raw bin-level counts by the 

corresponding LOESS fitted value. GC- and mappability-corrected bin-level counts were then 

normalized by median bin-level corrected counts within each sample. Bins previously shown 

using either ENCODE or 1000G data to yield anomalous copy-number results due to germline 

copy number variants (CNVs), low mappability, or large stretches of uncharacterized nucleotides 

were excluded [2]. For each bin in each tumor sample, high-quality, corrected, median-

normalized read counts were divided by average corrected, median-normalized read counts from 

our 5 normal male samples. Segmented copy-number events were called from bin-level 

corrected, median- and control-normalized read counts using the circular binary segmentation 

algorithm implemented by the DNACopy (1.44.0) R package, and final segment- and bin-level 

copy-number values were used for subsequent analyses as described. Focal CNAs were defined 

as CNAs 1.5-20Mb  long with a log2(CNRatio) ≥ 0.2, thresholds similar to those described 

elsewhere [3]. 

 

Targeted sequencing: Oncomine Comprehensive Assay 

For 60 patient cfDNA samples (31 high tumor content mCRPC samples, 13 low tumor 

content mCRPC samples, 11 high tumor content non-mCRPC samples, 1 mCRPC sample with 

germline chr20 deletion, and 4 male normals; see Table S1) and both sheared UMUC-5 and 

VCaP gDNA samples, we performed targeted NGS using the DNA component of the Oncomine 
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Comprehensive Assay (OCP), a custom multiplexed PCR-based panel of 2,530 amplicons 

targeting 126 genes. These genes were selected based on pan-cancer analysis that prioritized 

somatic, recurrently altered oncogenes, tumors suppressors and genes subject to high level copy 

alterations, combined with a comprehensive analysis of known/investigational therapeutic 

targets[4]. Barcoded libraries were generated from 1-20ng of cfDNA per sample and multiplexed 

sequencing was performed using the Ion Torrent Proton sequencer. Library preparation with 

barcode incorporation, template preparation on the OneTouch 2 and sequencing using the Ion 

Torrent Proton sequencer (Ion Torrent, Carlsbad, CA) were performed according to the 

manufacturer’s instructions. Data analysis was performed using Torrent Suite 5.0.2, with 

alignment by TMAP using default parameters, and variant calling using the Torrent Variant 

Caller plugin (5.0.2.1) using default low-stringency somatic variant settings. Variant annotation 

filtering and prioritization, along with gene-level copy number estimation, were performed 

essentially as described [4-7] using validated in house pipelines, and gene level copy-number 

calls, and prioritized point mutations, small insertions/deletions (indels), and copy-number 

variants were reported for each patient sample (Table S2 & S3). Copy number alterations called 

from targeted NGS data with log2(copy number ratio) >= 0.6 or <= -1.0 were prioritized. 

 

VCaP and UMUC-5 In silico Dilution 

To establish theoretical segment-level copy-number distributions for tumor content 

estimation, we carried out serial in silico dilution experiment by mixing read proportions derived 

from undiluted VCaP and UMUC-5 whole-genome sequencing data and our set of normal male 

patient samples. Briefly, we combined FASTQ files for the whole-genome sequencing 
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experiments from our 5 normal male samples (n=85,981,532 total unaligned reads). We then 

shuffled reads ("awk '{OFS=\"\\t\"; getline seq; getline sep; getline qual; print 

\$\$0,seq,sep,qual}' <norm_fastq_file> | shuf | awk '{OFS=\"\\n\"; print 

\$\$1,\$\$2,\$\$3,\$\$4}'), and randomly sampled an identical number of non-PCR-duplicated 

reads as was present for the VCaP (n=6,670,015 reads; whole-genome coverage= 0.26x) and 

UMUC-5 (n=16,570,486 reads; whole-genome coverage = 0.74x) undiluted whole-genome 

sequencing samples.   

In silico dilutions were subsequently carried out on both undiluted whole-genome 

sequencing cell line samples with our coverage-matched normal male sample (for all integer 

percent dilutions 0-100%), where for each dilution the following steps were executed: 

1) Shuffle undiluted cell line & normal male FASTQ files (using code above) 

2) Sample appropriate portion of reads from each file using seqtk NGS toolkit (v1.0-r31) 

(seqtk sample –s100 <FASTQ file><proportion_to_sample>) 

3) Concatenate proportional FASTQ files (cat <vcap_prop_file><normal_prop_file>) 

4) Map mixed read set to the reference genome (hg19) using identical mapping approach to 

that used for original undiluted cell line and patient whole-genome sequencing samples: 

tmap mapall –f hg19.fasta –r input.fastq –s output.bam –v –Y –u –prefix-exclude 5 –o 1 

stage1 map 4 

5) Sort and index aligned bam files for input to copy-number calling workflow 
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Genome-wide copy number variation calls were subsequently generated for each in silico 

dilution as described (see Methods). 

 

Clustering  

 Mean-shift, k-means, and xmeans clustering approaches were assessed and deployed to 

identify relevant clusters from segment- (whole-genome sequencing) or gene-level (targeted 

sequencing) copy number ratio data. All clustering analyses were carried out in R (3.2.3) using 

packages LPCM (v0.45-0), RWeka (0.4-26), or base packages as applicable. For mean-shift 

clustering, variable bandwidths were evaluated, supporting a static bandwidth value of 0.01 on 

exome or whole-genome copy-number calls. Mean-shift clustering showed the most consistent 

expected cluster identification across in vitro/in silico dilutions, and was used for all analyses 

described herein. 

Tumor Content Estimation 

For whole-genome sequencing samples, reference segment-level copy-number ratio 

distributions were established through serial in vitro and in silico VCaP and bladder (UMUC-5) 

cell line dilutions as described. A heuristic least squares based distance metric (LSS) was used to 

approximate tumor content from whole-genome copy-number data. LSS between cluster 

centroids was calculated as a proxy for tumor content using the following formula: 

��𝑎𝑎[𝑖𝑖]^2 − 𝑎𝑎[𝑖𝑖 − 1]^2
𝑛𝑛

𝑖𝑖=2
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where 𝑎𝑎 is the vector of cluster centroids for clusters identified by the mean-shift 

algorithm, 𝑛𝑛 is the length of the cluster vector, and 𝑖𝑖 is 𝑖𝑖th element of this vector. If only one 

cluster was assigned for a given sample, LSS was calculated as the square root of the cluster 

center squared (equivalently, the absolute value of the cluster centroid): 

√𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐^2= |cluster_center| 

Reference LSS distributions were established across serial in silico dilution experiments 

at all integer percent dilutions 0-100% as described, and these distributions were used to guide 

tumor content estimation for patient samples. While tumor content estimates were not generated 

for samples with LSS values < 0.1, these samples were specifically scanned for focal CNAs, as 

described above. 

 

In silico Experiments: Downsampling 

For the VCaP and UMUC-5 in silico dilutions, as well as 9 patient cfDNA samples (5 

w/highest tumor content, 1 germline chr21 deletion, 2 no tumor content), we carried out in silico 

downsampling experiments to evaluate capacity to call copy-number alterations at variable 

effective whole-genome coverages (range: 0.005–0.1x). After downsampling (using samtools 

view –s <proportion of reads to sample> –bh <original.bam.file>) for each sample, copy-

number alterations were called across variable bin sizes as described. Given the effective 

coverages analyzed, bin sizes were not analyzable across all coverages (e.g., 0.01x whole-

genome coverage corresponds to approximately 150k single-end reads, leaving <10 reads per 
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100kb bin, on average). For this reason, we considered effective coverage & bin combinations 

≥30 reads per bin as analyzable for this analysis.  

Serial in silico downsampling experiments were also carried out on targeted sequencing 

data from 10 mCRPC patient plasma cfDNA samples (5 high tumor content, 1 germline chr20 

deletion, and 3 normals) to 500, 250, 100, 50, and 25x effective target coverage by the same 

sampling approach taken with whole-genome data. 

 

VCaP cfDNA WGS vs COSMIC array-based CN calls  

Of 500 segment-level copy-number calls for chromosomes 1-22 & X reported as present 

in VCaP by COSMIC, 464 (92.8%) overlapped ≥90% of at least one 15kbp bin from our low 

pass (0.26x whole-genome coverage) analysis of undiluted VCaP, with 496 (99.2%) showing at 

least some (≥1 bp) overlap of one bin or more. We calculated median of bin-level integer copy 

number values for all 15kbp bins overlapped at ≥90% by a COSMIC-reported copy-number 

segment, and compared these low-pass sequencing derived values to segment-level integer copy-

number values reported in COSMIC. Given the known variability in reported copy-number 

estimates for VCaP focal AR amplification (copy number of 14 reported by COSMIC; at least 3-

18 copies by FISH [8]), we explored correlations between COSMIC segmented copy-number 

and both raw and capped (copy-number = 14) sequencing-derived copy-number values. 

 

UMUC-5 cfDNA WGS vs Targeted NGS CN Calls  
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Copy number calls from whole genome sequencing of sheared UMUC-5 genomic DNA 

(gDNA) were compared to calls derived from targeted sequencing (OCP) of sheared DNA in this 

study. Of 126 genes targeted on the OCP, 90 had more than 3 amplicons and amplicon-level 

estimate variability sufficient for gene-level copy-number analysis. Coding sequence for 87/90 

genes (97%) overlapped at least one 15kbp bin-level call from whole-genome sequencing data of 

sheared gDNA. Gene-level copy number estimates from whole-genome sequencing data were 

calculated as mean log2 copy number ratio for 15kb bins overlapping genome space from first to 

last coding base pair for each of the 87 genes. 

 

Application to exome sequencing segmented copy-number calls 

In order to test the efficacy of this particular approach for approximating tumor content 

from alternate datasets, we tested our LSS approach on segmented-copy-number calls from 129 

clinical advanced/treatment refractory cancer tissue samples subjected to exome sequencing as 

part of the MI-ONCOSEQ project at the University of Michigan [9, 10]. Tumor content for all 

MI-ONCOSEQ samples is estimated through a model fitting variant allele frequencies of all 

somatic mutations and a model assessing zygosity shift of heterozygous SNPs and local copy 

number [9, 10]. As our analysis of TCGA copy-number data, the fraction of genome altered 

(FGA) was calculated for each MI-ONCOSEQ sample as the total number of bases in regions 

affected by segmented copy-number alterations with log2(CopyNumberRatio) > 0.2 or < -0.2 

divided by 3 billion (the approximate median number of analyzable bases across all analyzed 

samples). 
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Concordance with tissue-based whole-exome sequencing copy-number profiles  

Segmented log2 copy number ratio data from whole-exome sequencing of fresh frozen 

tissue specimens[9, 11] was available for 23 of 27 patients also profiled by cfDNA low-pass 

WGS. Each of these 23 patients had at least 1 cfDNA plasma sample (range: 1-3), and 18 of 23 

(78.3%) had at least 1 cfDNA sample with elevated tumor content (LSS ≥ 0.1) suitable for 

concordance analyses. For these 18, the median of cfDNA low-pass WGS bin-level copy number 

values for all 500kbp bins overlapped at ≥90% by a tissue-based copy-number segment was 

calculated as a pseudo-cfDNA segment call, and correlations between tissue- and cfDNA-based 

copy number ratios were evaluated. 

 

Focal AR amplification determination 

 Given the difficulty of appropriate copy number segmentation on chrX, median 100kb 

bin-level copy number estimates across chrX q-arm were subtracted from mean 100kb bin-level 

copy-number estimates at AR locus (chrX:66.0-67.5Mb), and difference values >= 0.2 were used 

to call focal AR amplifications in our mCRPC cohort. Two cfDNA high tumor content samples 

(TP1216 and TP1295) met the above criteria, but were excluded as potential false positives due 

to use of 100kb bin width at low coverage (<300,000 total high-quality (MAPQ >= 37) mapped 

reads). An additional low tumor content sample (TP1139) met the amplification criteria, but with 

excessive variability in chrX bin-level copy-number estimates, was considered negative for AR 

amplification for all subsequent analyses.  
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Figure C1: Fraction of genome altered (FGA) analysis by stage/grade in TCGA prostate adenocarcinoma (PRAD) 
samples.  

 

Fraction of genome altered (FGA) analysis was carried out on 492 PRAD samples using segmented Affymetrix SNP6 array-
based segmented calls extracted from the most recent standard analysis set generated by GDAC Firehose (stddata__2016_01_28). 
FGA was calculated for all PRAD tumor samples as the total number of bases in regions affected by copy-number alterations 
with log (base 2) copy number ratio (Log2CN) > 0.2 or < -0.2 divided by 3 billion (the approximate median number of bases in 
all segments for each sample across all analyzed TCGA samples and tumor types). A. PRAD cohort FGA proportions are 
stratified by Gleason score, showing an increase in FGA as Gleason score increases. B & C. PRAD cohort FGA proportions are 
stratified by tumor stage (B; T Stage) and clinical stage (C; N Stage), showing increased FGA in high stage and N stage disease 
as well. 
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Figure C2: Robust copy number alteration (CNA) detection by low-pass whole genome sequencing (WGS) of artificial 
cfDNA on bench top sequencers.  

 

A. Low-pass WGS generated genome wide copy number profile of the VCaP prostate cancer cell line using sheared genomic 
DNA to simulate cfDNA. The known focal AR amplification on chr X and the chromothriptic event on chr 5 are indicated. Bin-
level estimates are plotted as black dots, and segmented copy-number calls are plotted as orange lines. B. Correlation of integer 
copy number values from low-pass WGS artificial cfDNA to reported VCaP copy number values in the COSMIC database. AR 
copy number for unamplified VCaP was capped at 14 given variability in reported copy number (see Methods). Pearson 
correlation and density plots are shown. C. The high-level AR amplification in simulated VCaP cfDNA can be detected down to 
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5% tumor content. In vitro dilution of simulated VCaP cfDNA to the indicated tumor content using was performed using a 
healthy male control cfDNA sample prior to low-pass WGS. Log (base 2) copy number ratios (Log2 CN Ratio) are plotted. D. 
Bin-level and segmented genome-wide copy number calls from a similar in vitro dilution series of simulated UMUC-5 (a 
urothelial cancer cell line) cfDNA subjected to low-pass WGS. Broad whole-chromosome and arm-level copy-number 
alterations, including both 1- and 2-copy deletions, are called at expected log2CN values across dilutions. The EGFR locus is 
highlighted. E. The known focal EGFR amplification is clearly detected down to effective tumor content of 5%. Bin sizes: 15Kbp 
(A & C) or 1Mbp (D & E). Segmentation p-value threshold: 0.01.  
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Figure C3: Cell free DNA (cfDNA) tumor content approximation from low-pass whole genome sequencing (WGS) derived 
copy number profiles.  

 

Unlike in tissue based next generation sequencing (NGS), tumor content cannot be assessed a priori for cfDNA. Such information 
is critical to guide sequencing depth. Hence, most cfDNA approaches employ ultra-deep, high fidelity sequencing at limited loci 
to guide therapy with or without direct tumor content approximation. Here we leverage the near ubiquity of copy number 
alterations (CNAs) across tumors and our ability to rapidly generate whole genome copy number profiles from cfDNA subjected 
to low-pass WGS to estimate cfDNA tumor content based on the distribution of segment-level copy-number calls as part of our 
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PRINCe workflow. A. The relative density of segment-level log (base 2) copy-number ratio (log2CN) values from low-pass 
WGS of the in vitro simulated UMUC-5 cfDNA dilution series (samples according to the legend). B. The basic principles of 
copy-number clustering and tumor content approximation as part of the PRINCe workflow are shown using the density of 
segment-level log2 copy-number ratio values for the simulated UMUC-5 cfDNA in vitro dilution series (from highlighted region 
of A). Clusters are called using a mean-shift clustering algorithm on segmented log2CN values, and cluster centers are used to 
determine a least-squares distance metric (LSS) for tumor content approximation (see Methods, Fig B2). Cluster assignment for 
presumed 1-copy deletions detected by low-pass WGS in the UMUC-5 simulated cfDNA dilution series are labeled (stars), as are 
1-copy deletion (blue dashed vertical line) and diploid/unaltered (red dashed vertical line) cluster centers. As tumor content 
decreases so does the distance between cluster centers. Aggregate distance between all cluster centers for a given cfDNA sample 
is calculated (as LSS) and translated to estimate the cfDNA tumor content. C. Tumor content approximation from segmented 
log2CN calls (bin size: 1Mbp; segmentation p-value threshold: 0.01) across in silico dilution of simulated VCaP and UMUC-5 
cfDNA were used to establish reference distributions for LSS interpretation and tumor content approximation. D. Validation of 
our LSS based tumor content approximation approach on segmented whole exome sequencing based copy number profiles from 
129 advanced/metastatic cancer (prostate, kidney, lung and breast cancer) tissue samples sequenced as part of the MI-ONCOSEQ 
program. Box-plots of our LSS metric stratified by MI-ONCOSEQ estimated tumor contents (through modeling SNVs and 
heterozygous SNPs, lower estimate is 30%) are shown. 
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Figure C4: Validation of low-pass WGS copy number estimation for use in cfDNA tumor content estimation.  

 

A. Correlation between low-pass WGS and COSMIC copy number calls for in vitro and in silico dilutions of simulated VCaP 
cfDNA. Copy number analysis was performed on data from low-pass whole-genome sequencing (WGS) of in vitro and in silico 
dilution series for simulated VCaP cfDNA (see Methods). Pearson correlations between COSMIC integer-level segmented copy-
number and low-pass WGS copy-number (UM-Derived) values are shown across select in silico and all in vitro dilutions. B. 
Scatterplot of COSMIC integer-level copy number values compared to UM-Derived values for select in silico and all in vitro 
dilutions. Points are colored by dilution, and fitted linear regression lines are plotted for each dilution. C. Key parameters for 
cfDNA tumor content estimation based on WGS copy-number profiles. Relative density of segment-level log (base 2) copy 
number ratio ( Log2[CN Ratio]) values from low-pass WGS of UMUC-5 simulated cfDNA is plotted separately for 100% 
(undiluted) and 10% dilutions. Hypothetical cluster centers are denoted as blue dashed vertical lines, and correspond to elements 
a1 - a5 labeled above each plot. A least-squares distance metric (LSS) is calculated (see Methods) from cluster centers assigned 
via a mean-shift clustering algorithm, and LSS is translated to approximate cfDNA tumor content. LSS is proportional to 
approximate tumor content, with larger LSS values representing higher effective cfDNA tumor content. 



188 
 
 

Figure C5: Genome-wide low-pass whole genome sequencing (WGS) copy number calls for in silico dilution of simulated 
VCaP and UMUC-5 cfDNA.  

 

A. Whole-genome bin- (gray points) and segmented (colored bars) copy-number calls (bin size: 1Mb, segmentation p-value 
threshold: 0.01) at select in silico dilutions for VCaP low-pass WGS data highlight log (base 2) copy number ratio values (Log2 
CN Ratio) values at expected gradations across dilutions for alterations >2Mbp in length. The known focal AR amplification in 
VCaP is ~1Mbp in length (COSMIC AR amplification call: chrX:66031108-67075149) and can be seen via bin-level estimates at 
AR loci as shown. B. Zoomed view of bin- and segmented copy-number calls for chromosomes 8, 11, and 17 shows both broad 
and focal copy number alterations at Log2 CN Ratios consistent with in silico dilution. C. Comparison of gene-level Log2CN 
values from targeted NGS of undiluted, unamplified simulated UMUC-5 cfDNA and low-pass WGS gene level calls for in vitro 
UMUC-5 dilution (see Methods). Points are colored by in vitro dilution, and fitted linear regression lines and 95% confidence 
intervals are plotted. Linear models and r2 values are provided for each in vitro dilution.  
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Figure C6: Bioinformatic analysis highlighting potential feasibility of ultra-low pass (<0.01x) whole genome sequencing 
(WGS) of cfDNA as a disease monitoring application from cell-free DNA in patients with advanced cancer.  

 

A. Genome-wide log2(CopyNumberRatio) (Log2CN) calls for TP1337, a high tumor content cfDNA sample from a patient with 
mCRPC, are displayed for low-pass WGS data (0.82x whole-genome coverage). Key copy-number alterations detected are 
circled, including broad gain of 8q (green), focal amplification of chr11p11.2 (purple) and AR (orange), and focal deletions of 
RB1 (1-copy; pink) and PTEN (2-copy; red). B. In silico downsampling experiments highlight the ability to detect both focal and 
broad copy-number alterations from TP1337 cfDNA WGS data at whole-genome coverages down to 0.005x. Bin size and 
number of high-quality (MAPQ ≥37) mapped reads used for copy-number analysis are indicated at each coverage, and regions 
affected by copy-number alterations detected in original low-pass WGS are circled. 
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Figure C7: AR and EGFR amplifications detected in in silico downsampling of simulated cell line cfDNA and patient 
cfDNA samples.  

 

In silico downsampling experiments were carried out on low-pass whole genome sequencing (WGS) data from simulated cell 
line cfDNA (VCaP and UMUC-5) and 11 cfDNA samples from patients with mCRPC to yield ultra low effective whole genome 
coverages (0.1x, 0.01x, and 0.005x). A. Bin- and segment-level log (base 2) copy number ratio (Log2 [CN Ratio]) calls are 
presented across effective whole genome coverages in AR region on chrX for mCRPC samples with detectable AR amplifications 
by low-pass WGS as well as the undiluted simulated VCaP cfDNA sample. Points are colored by sample, 500kbp bin-level and 
segment-level Log2 (CN Ratio) estimates are represented by lightly shaded circles and densely colored triangles, respectively. 
Tumor content estimates are highlighted by red (high) and blue (low) boxes at right. The AR locus is highlighted in light blue 
boxes. B. Bin- and segment-level Log2 (CN Ratio) copy number calls for undiluted artificial UMUC-5 cfDNA sample are 
presented across effective whole-genome coverages for chr7, and the EGFR locus is highlighted in light green boxes. Bin- and 
segment level estimates are indicated as in A.  
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Figure C8: PRINCe assessment of sample from patient with metastatic castration-resistant prostate cancer (mCRPC) 
identifies unique molecular alterations consistent with contaminating cell-free DNA from white blood cells in the context 
of concomitant myelodysplastic syndrome.  

 

Low-pass whole-genome sequencing (WGS) copy-number calls (bin size: 15kbp, segmentation p-value threshold: 0.01) are 
plotted for a cfDNA sample from TP1330, a patient with mCRPC. A unique 19Mbp deletion (affecting chr20q11.21-20q13.13) is 
present on chr20, with no other copy-number alterations detected genome-wide. By targeted NGS of unamplified residual cfDNA 
for this same sample, we identified a U2AF1 S34F hotspot mutation (30% variant fraction (VF), 527 covering reads) that in 
combination with the chr20 deletion is strongly suggestive of contaminating cell-free DNA (likely from white blood cells) in the 
context of concomitant myelodysplastic syndrome, consistent with clinical reports of anemia, and potentially arising in response 
to prior therapy. 
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Figure C9: Low-pass whole genome sequencing (WGS) copy number profiles from cell-free DNA (cfDNA) in patients with 
metastatic castration-resistant prostate cancer (mCRPC) highlight detection of arm- and sub-arm level copy-number 
alterations on chromosome 8 (chr8), even at low cfDNA tumor contents. 

 

A. Points representing chr8 ‘difference values’ (the absolute value of the difference in mean bin-level log2 copy-number 
estimates between p and q arm of chr8) for all samples in the mCRPC cohort (n=93). Samples are sorted in order of descending 
difference value, and colored by cfDNA tumor content as assigned by LSS analysis (red=High (LSS ≥ 0.1; blue=Low (LSS < 
0.1)). A threshold of 0.025 was applied to difference values to determine whether each cfDNA sample had detectable chr8 copy 
number alterations (≥ 0.025 = 8p or 8q copy-number alterations) consistent with copy number events known to occur early in 
prostate cancer progression. B. Low-pass WGS chr8 copy-number profiles for all high tumor content cfDNA samples (n=59) 
from men with mCRPC. As indicated, gray dots correspond to bin-level copy-number estimates, while black triangles denote the 
segment-level copy number value for the corresponding bin. The vertical red line in each plot indicates the centromere region to 
aid in p- and q-arm determination. 
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Figure C10: Clinically relevant somatic copy number alterations detected via low-pass whole genome sequencing (WGS) 
of cell-free DNA (cfDNA) in patients with metastatic castration-resistant prostate cancer (mCRPC).  

 

A. Bin- and segment-level copy-number values from low-pass WGS data in 14 cfDNA samples from patients with mCRPC that 
have copy-number alterations or breakpoints on chr21 consistent with genomic events leading to TMPRSS2:ERG or ETS family 
gene fusions (displayed region: chr21:37.0-45.0Mb). Tumor content for the corresponding cfDNA sample is listed at top. Dashed 
vertical lines at 40Mb (purple) and 42.8Mb (cyan) represent loci corresponding to ERG and TMPRSS2 coding sequence (hg19 
reference coordinates), respectively. B. Bin- and segment-level copy-number values from low-pass WGS data in 20 high tumor 
content cfDNA samples from patients with mCRPC with chr10 copy-number deletions affecting the PTEN locus (displayed 
region: chr10:86.0-95.0Mb). Samples are grouped by deletion type (broad/1-copy or deep). A dashed vertical line at 90Mb 
(orange) represents the location of PTEN coding sequence (hg19 reference coordinates). C. Combined box and scatterplot for AR 
deviance values (mean 100kb bin-level log2 copy-number estimates at AR locus [chrX:66.0-67.5Mb] minus median 100kb log2 
bin-level copy number estimates across chrX q-arm) used to identify focal AR amplifications in our mCRPC cohort (see 
Supplementary Methods). Samples with deviance values ≥ 0.2 were considered positive for AR amplification, and this threshold 
is represented by the blue horizontal dashed line as annotated on the plot. Combined box and scatter plots are plotted separately 
for high (red) and low (green) cfDNA tumor content. D. Bin- and segment-level copy-number values from low-pass WGS data in 
30 high tumor content cfDNA samples from patients with mCRPC with chr13 copy-number deletions affecting BRCA2/RB1 loci 
(displayed region: chr13:20.0-115.0Mb). Samples are grouped by deletion type (broad/1-copy vs deep deletion), and dashed 
vertical lines at 33Mb (green) and 49Mb (yellow) indicate BRCA2 and RB1 loci, respectively. Reference genome coordinates: 
hg19. Bin-width: 100kb. Copy number segmentation switch-point threshold (p-value): 0.01. 
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Figure C11: Low-pass whole genome sequencing (WGS) of cell-free DNA (cfDNA) identifies likely copy-number 
alteration affecting BRCA1 and BRCA2 in patients with mCRPC as well as clinically relevant alterations (including focal 
PTEN and RB1 deletions) in treatment-naïve patient with aggressive disease. 

 

A. Genome-wide bin- (black dots) and segment-level (orange lines) log2 copy number estimates from low-pass WGS sequencing 
data for TP1291, a patient with mCRPC who progressed rapidly through treatment with abiraterone, enzalutamide, docetaxel, and 
cabazitaxel over the course of 11 months preceding cfDNA sample collection. Broad 1-copy loss on chr13 (including BRCA2 and 
RB1) is indicated, as is the focal 2-copy deletion of a nearby loci absent any coding transcripts (chr13q21.31-q21.32). Targeted 
NGS of paired unamplified cfDNA for TP1291 identified a germline Clinvar pathogentic BRCA2 stop-gain SNV (p.R2494X; 
variant fraction = 71%,with 1,437 total covering reads), suggesting biallelic inactivation of BRCA2 through copy-number deletion 
of the non-mutated copy of BRCA2. B. Bin- (black dots) and segment-level (orange lines) log2 copy number estimates from low-
pass WGS sequencing data are presented genome-wide at for a 45Mb section of chr17 for TP1281, a sample from a patient with 
mCRPC. Region affected by putative complex rearrangement on chr17 is highlighted on the genome-wide plot, and at right, a 
zoomed version indicates the location of BRCA1 (dashed vertical pink line; hg19 reference coordinates). C. Genome-wide bin- 
(black dots) and segment-level (orange lines) log2 copy number estimates from low-pass WGS sequencing data (0.52x, 14.2 
million reads) for TP1178, a cfDNA sample from a treatment-naïve patient with mCRPC. Focal deep deletions of PTEN and RB1 
are identified in addition to multiple arm- and sub-arm level copy number gains or losses genome-wide, suggesting potential 
clinical utility for PRINCe assessment in treatment-naïve patients with advanced cancer and/or likely to have high disease 
burden. Bin width: 100kbp.  
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Figure C12: Automated point mutation and copy number alteration calls across in silico dilution and downsampling of 
targeted next generation sequencing (NGS) from simulated cell line cfDNA and patient cfDNA samples. 

 

In silico dilution and downsampling experiments were carried out on targeted NGS data for unamplified, undiluted genomic 
DNA (gDNA) from the UMUC-5 cell line, as well as unamplified aliquots of 10 patient cfDNA samples (5 high tumor content 
mCRPC samples, 1 mCRPC sample with germline chr20 deletion, and 4 male normal controls). These samples were sequenced 
using the DNA component of the Oncomine Comprehensive Assay (OCP), a targeted NGS panel comprised of 2,530 amplicons 
targeting 126 genes, including oncogenes, tumor suppressors, and copy-number targets recurrently altered across cancers. In 
silico dilutions were carried out at all integer-level dilutions (0-100%) across 5 different effective coverage thresholds (500x, 
250x, 100x, 50x, and 25x) (see Methods). A. Analyses of select in silico dilution and downsampling data from two COSMIC 
hotspot point mutations detected in targeted NGS of undiluted simulated UMUC-5 cfDNA are presented. A heterozygous 
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nonsynonymous PIK3CA hotspot mutation (p.E545K, detected at 49.6% (FAO/FDP: 916/1848)) and homozygous stop-gain 
TP53 hotpot mutation (p.W53X, 100% (668/668)) are reliably detected at expected variant fractions across targeted NGS 
coverages as low as 50x down to effective tumor contents of 10-15%. B. Box-and-whisker plots of amplicon level log base 2 
copy number ratio (Log2 [CN Ratio]) estimates from OCP sequencing of undiluted simulated UMUC-5 cfDNA are plotted for all 
OCP EGFR target amplicons (n=33) across select in silico dilutions and coverages. Known focal EGFR amplification (undiluted 
UMUC-5 OCP gene-level EGFR Log2 (CN Ratio) value = 3.89) in UMUC-5 cell line is reliably detected (median Log2 [CN 
Ratio] ≥ 0.6; see Methods) across coverages down to 25x at 5% effective tumor content. C. Box-and-whisker plots of Log2 (CN 
Ratio) values for all OCP AR amplicons (n=17) are shown across in silico dilutions and coverages for 6 patient cfDNA samples 
(5 mCRPC samples with detectable AR amplifications by low-pass whole genome sequencing (WGS) copy-number analysis, and 
1 control sample). Depending on starting tumor content of undiluted (‘100%’ dilution) patient cfDNA samples, AR amplifications 
can be reliably detected in targeted NGS data from CPRC cfDNA samples at coverages down to 25x at 5% dilution. D. Putative 
clonal somatic COSMIC hotspot mutations detected via targeted NGS in 6 mCRPC patient samples are plotted across select in 
silico dilutions and effective coverages. All mutations are detected at heterozygous variant fractions in undiluted (‘100%’ 
dilution) OCP targeted NGS data, adjusting for cfDNA tumor content. Depending on starting (undiluted) cfDNA tumor content, 
hotspot mutations were reliably detected by OCP targeted NGS at coverages as low as 50x with 15% effective tumor content. 
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Figure C13: Targeted NGS gene-level copy-number analysis across in silico dilution and downsampled coverages for 
simulated UMUC-5 cfDNA.  

 

A. Gene-level log (base 2) copy number ratio (Log2 CN Ratio) values derived from Oncomine Comprehensive Assay (OCP) 
targeted NGS data for simulated UMUC-5 cfDNA are plotted across select in silico dilutions at three separate coverages (500x, 
100x, and 25x) for all OCP target genes with at least 3 target amplicons (n=90). Points represent gene-level Log2CN Ratio 
values, with points (and lines connecting points) colored by in silico dilution proportion. The known focal EGFR amplification 
can be seen as peak on chromosome 7. B. Zoomed view of OCP gene-level Log2CN Ratio values for select chromosomes (chr3, 
chr7, chr9, and chr11). Focal amplifications or deletions identified by low-pass WGS can be detected at targeted NGS coverages 
down to 25x fordilutions with as low as 5% effective tumor content. 

 

  



198 
 
 

Figure C14: Genome-wide copy number profile concordance for cfDNA low-pass whole genome sequencing (WGS) as 
compared to patient-matched tissue whole exome sequencing (WES) copy-number profiles.  

 

Pearson correlation coefficients are plotted for genome-wide segmented copy-number profiles from 23 patients with 
comprehensive tissue NGS profiling and PRINCe assessment of at least 1 cfDNA sample (see Supplementary Methods). As 
indicated, each point represents the correlation of a single cfDNA sample’s low-pass WGS genome-wide profile as compared to 
the patient-matched whole exome sequencing tissue copy-number profile (see Supplementary Methods). The size of each point 
corresponds to the SNV-based estimated tissue tumor content (which varies from 30 to 80%), while the color represents cfDNA 
tumor content (black: high; gray: low). Circle filling represents patient-matched tissue preservation type (filled: frozen; unfilled: 
FFPE). cfDNA sample identifers are provided in red.  
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Figure C15: Somatic point mutation concordance between tissue and cell-free DNA (cfDNA) mutation analyses.  

 

Tissue and cfDNA variant fractions are plotted for 26 point mutations identified in patient-matched tissue-based whole exome 
sequencing (WES) that fall in regions targeted by the Oncomine Comprehensive Assay (OCP). Variants are sorted vertically by 
increasing cfDNA sample identifier, and all cfDNA/tissue id combinations are listed on right hand side. Each row corresponds to 
a single variant detected in the comprehensive patient-matched tissue profile, and the gene, genomic coordinates, and allelic 
changes are indicated on left hand side of each row. For each variant, both tissue- (red) and cfDNA-based (blue) variant fractions 
are plotted (variant fraction of 0% = not detected), and points are sized by whether the corresponding cfDNA sample was taken 
within 200 days of the patient-matched tissue biopsy as indicated in the legend. Variants are grouped vertically by cfDNA tumor 
content for the corresponding cfDNA sample (top: high tumor content (LSS ≥ 0.1); bottom: low tumor content (LSS < 0.1)). 
Overall, 17 of 18 (94.4%) point mutations detected in patient-matched tissue specimens with ≥ 1 high tumor content cfDNA 
sample were also detected by OCP targeted NGS of the corresponding cfDNA sample. 
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Figure C16: PSA waterfall and outcome analyses in samples from patients starting and on therapy. 

 
Exploratory analyses of association between circulating biomarkers and outcome in patients with metastatic castration-resistant 
prostate cancer (mCRPC) supports cfDNA detectable AR amplification as a poor overall prognostic factor independent of 
treatment type. A. Waterfall plot summarizing prostate specific antibody (PSA) response for all samples from men with mCRPC 
with complete PSA data taken between therapies (n=42). Height of bars represent the percentage change in PSA response as 
calculated by subtracting the PSA level at sample date from the best PSA observed after sample date while on the current or 
initiated treatment, and dividing by starting PSA value. Bars are ordered horizontally within treatment category (Abi/Enza, 
Taxane, or Other) by PSA response. Bars are colored by cfDNA detectable AR amplification status (yellow = cfDNA detectable 
AR amplification; gray = no cfDNA detectable AR amplification) and bars corresponding to samples taken from men who have 
received more than one line of therapy post-ADT are outlined in bold. B-C. Kaplan-Meier survival curves are plotted for 
analyses exploring association between cfDNA detectable AR amplification or cfDNA tumor content and total time on therapy in 
samples taken from men with CRPC (B) starting treatment and (C) on therapy. For each subset, Kaplan-Meier time on therapy 
analyses are plotted separately (from left to right) for cfDNA AR amplification, treatment by cfDNA AR amplification, cfDNA 
tumor content, and treatment by cfDNA tumor content. Survival curves are colored by corresponding strata, and risk tables at 
selected timepoints are displayed below each Kaplan-Meier plot. 



201 
 
 

Appendix C References 

1. Analysis-ready standardized TCGA data from Broad GDAC Firehose 2016_01_28 run., 
B.I.T.G.D.A. Center, Editor. 2016: Broad Institute of MIT and Harvard. 

2. Scheinin, I., et al., DNA copy number analysis of fresh and formalin-fixed specimens by 
shallow whole-genome sequencing with identification and exclusion of problematic 
regions in the genome assembly. Genome Res, 2014. 24(12): p. 2022-32. 

3. Ulz, P., et al., Whole-genome plasma sequencing reveals focal amplifications as a driving 
force in metastatic prostate cancer. Nat Commun, 2016. 7: p. 12008. 

4. Hovelson, D.H., et al., Development and validation of a scalable next-generation 
sequencing system for assessing relevant somatic variants in solid tumors. Neoplasia, 
2015. 17(4): p. 385-99. 

5. Cani, A.K., et al., Next-Gen Sequencing Exposes Frequent MED12 Mutations and 
Actionable Therapeutic Targets in Phyllodes Tumors. Mol Cancer Res, 2015. 13(4): p. 
613-9. 

6. McDaniel, A.S., et al., Genomic Profiling of Penile Squamous Cell Carcinoma Reveals 
New Opportunities for Targeted Therapy. Cancer Res, 2015. 75(24): p. 5219-27. 

7. McDaniel, A.S., et al., Next-Generation Sequencing of Tubal Intraepithelial Carcinomas. 
JAMA Oncol, 2015. 1(8): p. 1128-32. 

8. Liu, W., et al., Homozygous deletions and recurrent amplifications implicate new genes 
involved in prostate cancer. Neoplasia, 2008. 10(8): p. 897-907. 

9. Roychowdhury, S., et al., Personalized oncology through integrative high-throughput 
sequencing: a pilot study. Sci Transl Med, 2011. 3(111): p. 111ra121. 

10. Robinson, D.R., et al., Activating ESR1 mutations in hormone-resistant metastatic breast 
cancer. Nat Genet, 2013. 45(12): p. 1446-51. 

11. Robinson, D., et al., Integrative clinical genomics of advanced prostate cancer. Cell, 
2015. 161(5): p. 1215-28. 

 



202 
 
 

 

 

 

APPENDIX D: Supplementary Materials for Chapter IV 

Figure D1 – Assessment of major transcriptional programs for 234 bladder cancer specimens profiled via TCGA using 
markers targeted on a bladder RNAseq panel 

 

Figure D1 – Unsupervised hierarchical clustering of TCGA gene expression Z-score values for 234 bladder cancer tissue 
specimens profiled via TCGA. Only TCGA processed data from genes targeted on our bladder targeted RNAseq panel are 
included. Expression-based subtype annotation corresponding to TCGA (I, II, III, IV), UNC (basal, luminal), MD Anderson 
(MDA; basal, luminal, TP53-like), and Lund classification approaches for each sample are displayed at the top, and colored 
according to the legend at the bottom. UM basal signature values are also displayed, and samples with higher basal expression are 
more blue, while samples with higher luminal expression are more orange. Gene annotation is indicated at right, and major 
transcriptional programs (including proliferation and EMT markers) are indicated. 
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Figure D2 – Recapitulation of UNC and MDA expression-based subtypes using markers targeted on a custom targeted 
RNAseq panel 
 

 

Figure D2 A. Consensus clustering of gene expression Z-score values for 234 TCGA bladder samples using TCGA-processed 
expression values from genes in UNC classifier that are targeted on our custom bladder RNAseq panel. Number of clusters used 
to define UM consensus clusters was pre-defined at 2 to evaluate recapitulation of known subtypes using only markers from 
UNC classifier targeted on our panel. Expression-based subtype annotation corresponding to TCGA (I, II, III, IV), UNC (basal, 
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luminal), MD Anderson (MDA; basal, luminal, TP53-like), and Lund classification approaches for each sample are displayed at 
the top, and colored according to the legend at the bottom. UM consensus cluster and basal signature values are also displayed, 
with basal signature scores indicating whether a sample is more basal (blue) or luminal (orange). Gene annotation is indicated at 
right and colored according to gene classification/transcriptional group as indicated at the bottom. B. Here, consensus cluster 
number was pre-defined as 3 to evaluate the capacity to re-discover clusters aligned with MDA class annotation. As in A, sample 
and gene annotation is colored according to the legend at the bottom.  
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Figure D3 – Correlation matrix for all targets on custom bladder targeted RNAseq panel 

 

Figure D3 - Pearson correlation matrix for expression values from 77 high-quality tissue specimens across all 103 targets on a 
custom bladder targeted RNA sequencing panel. Major transcriptional modules assessed on this panel (e.g., proliferation, basal, 
luminal) are represented by highly inter-correlated markers as annotated at right. Genes are ordered by hierarchical clustering 
distance.  



207 
 
 

Figure D4 – Unsupervised clustering of normalized log2 expression values from all non-housekeeping gene targets and 77 
high-quality tissue specimens profiled on our custom targeted RNAseq panel  
 

 

Figure D4 A. Unsupervised clustering of normalized log2 expression values from all non-housekeeping gene targets and 77 
high-quality tissue specimens profiled on our custom targeted RNAseq panel. Sample annotation (header annotation rows at top) 
is colored corresponding to annotations contained the figure legend, while target annotation (at right) is colored according to gene 
category annotations provided. B. Unsupervised clustering of normalized log2 expression values from select basal/luminal genes 
and 77 high-quality profiled tissue specimens enables delineation of individual gene target expression, and highlights 
substantially elevated expression of ERBB2 and EGFR in samples with focal copy-number amplifications.  
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Figure D5 – Unsupervised clustering of normalized log2 expression values from all non-housekeeping gene targets for 98 
high-quality tissue specimens and cell lines profiled on a custom targeted RNAseq panel 

 
 
Figure D5 A. Unsupervised clustering of normalized log2 expression values from all non-housekeeping gene targets for 98 high-
quality tissue specimens and cell lines profiled on our custom targeted RNAseq panel. Samples are sorted left to right by 
consensus cluster, then stage, then histological subtype. Sample annotation (header annotation rows at top) is colored 
corresponding to annotations contained the figure legend, while target annotation (at right) is colored according to gene category 
annotations provided. B. Unsupervised clustering of normalized log2 expression values from select basal/luminal genes for 77 
high-quality profiled tissue specimens enables delineation of individual gene target expression, and highlights substantially 
elevated expression of ERBB2 and EGFR in samples with focal copy-number amplifications.  
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Figure D6 – Copy-number heatmap for bladder tissue and cell line samples 

 

Figure D6 Unsupervised hierarchical clustering of gene-level copy-number ratios for 77 tissue specimens (A) and 21 cell lines 
(B) with high-quality DNA profiled by targeted DNA sequencing. Gene-level copy-number ratios are displayed left to right in 
genome order, and and sample annotation (including cancer type, stage, grade, sex, and case (if relevant)) are colored at right as 
indicated in the legend. Focal alterations of relevance are highlighted in both plots.  
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Figure D7 – Validation of sub-gene RB1 copy-number deletion in UMUC-14 bladder cancer cell line 

 

Figure D7 A. Genome-wide copy-number plot from targeted DNA sequencing of urothelial cancer cell line UMUC-14. 
Individual dots represent amplicon-level log2 copy-number ratio estimates, with horizontal black lines representing log2 gene-
level copy-number ratio estimates. Black rectangle highlights portion of the plot (chr10) presented in panel B. B. At left, a 
zoomed view of amplicon- and gene-level copy number ratios on chr13 for UMUC14 demonstrates the absence of amplicon-
level copy-number ratios for a subset of RB1 target amplicons. The middle panel highlights amplicon-level copy-number ratios 
sorted in genome order, suggesting a sub-gene deletion affecting the majority of exons of RB1. At right, a sliding-window 
function applied to segmented copy number values from amplicon-level data, provides a smoothed, segmented sub-gene copy-
number call for clinical or research reporting. C. Integrated Genome Viewer (IGV) screenshot of spliced read alignment data 
across RB1 coding regions for conventional whole-transcriptome RNAseq data from UMUC14 shows depleted expression of all 
exons after exon 5. D. Zoomed view of conventional RNAseq data for the first five exons of RB1 and exon 5 shows limited read 
mapping and depleted expression of downstream exons consistent  with the observed RB1 sub-gene copy number deletion.  
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Figure D8 – Sub-gene copy-number deletions detected in retrospective cohort of samples from patients with prostate 
cancer 

 

Figure D8 A. IGV pileup of capture- (Haloplex) and amplicon-based (OCPv2) targeted DNA sequencing reads for MSH2 exons 
12-16 across a series of prostate cancer samples. PR-34 (profiled by both targeted NGS approaches) shows concordant depletion 
of reads mapping to exons 15 and 16. B. Segmented sub-gene MSH2 copy-number deletion call for PR-34 highlights sub-gene 
copy-number deletion call. C. MSH2 amplicon- and segmented CN calls cross MSH2 coding sequencing for paired PR-115 and 
PR-161 prostate cancer tissue samples. D. Elevated prioritized nonsynonymous mutation load in PR-161 is shown, consistent 
with impaired mismatch repair function of MSH2. E. At left, OCP copy-number profile for PR-2, highlighting amplicon- and 
gene-level ratios for all targeted genes with >= 3 target amplicons (PTEN is highlighted). At right, candidate PTEN sub-gene 
deletion calls, including PR-2. F. At left, copy-number profiles for both PR-26 and PR-94, with amplicon- and gene-level calls 
displayed. Calls for RB1 are circled. At right, segmented sub-gene RB1 copy-number calls are displayed.  
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Figure D9 – Sub-gene copy-number deletions detected in retrospective pan-cancer cohort 

 

Figure D9 A. At left, OCP copy-number profile for MO-32, highlighting amplicon- and gene-level ratios for all targeted genes 
with >= 3 target amplicons (RB1 is highlighted). At right, candidate RB1 sub-gene deletion calls, including MO-32 and an 
unaltered sample (MO-55). B. At top, copy-number profiles for MO-72, with amplicon- and gene-level calls displayed. Calls for 
PTEN and RB1 are circled. At bottom, candidate segmented sub-gene calls for PTEN (left) and RB1 (right) are displayed, with 
calls for MO-72 highlighted. Each gene-specific graphic is separated into 3 separate panels based on sequencing uniformity (top: 
85-90% uniformity; middle: 90-95% uniformity; bottom: 95-100% sequencing uniformity). .  
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Figure D10 – Divergent expression profiles in the context of identical genomic profiles for paired urothelial and squamous 
differentiation lesions from the same tumor. 

 

Figure D10 A. Haematoxylin and eosin staining images of individual squamous and urothelial components profiled for pair 1 are 
shown. At right, similar genome-wide copy-number profiles derived from targeted DNA sequencing are shown for each sample, 
PIK3CA E542K and CTNNB1 S37F somatic point mutations seen in both samples are indicated. B. At left, divergent basal 
signature values for BL-340 and BL-341 are highlighted in red in the context of all basal signatures for profiled tissue specimens 
in our study. At right, individual expression differences between BL-340 and BL-341 are plotted for 103 non-housekeeping 
markers, with select basal or luminal markers colored according to the legend.  
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