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ABSTRACT 

This thesis focuses on theoretical and numerical investigation of the dynamics of coupled lasers 

and laser arrays, specifically through the avenue of two different systems of interest: 1) passive 

coherent beam combining of continuous-wave fiber laser arrays, and 2) passive coupling of 

mode-locked semiconductor lasers. 

 

The coherent beam combining work contributes to understanding the phasing dynamics in 

externally-coupled fiber laser arrays (specifically here, a spatially-filtered, ring-oscillator 

combining geometry) by use of a multi-longitudinal-mode, dynamical model to study the system.  

The results show that the passive phasing and locking processes operate on a much faster 

timescale than that of the power and gain transients, and the system is able to recover its phase-

locked state within just a few cavity roundtrips after a strong perturbation from steady-state; the 

results agree with previous experiments.  The simulations also demonstrate that the non-resonant 

Kerr nonlinearity is detrimental to the system’s combining efficiency and ability to coherently 

lock in phase, as determined by qualitative examination and quantitative assessment of the far-

field output and its on-axis intensity.  A physical explanation of the role of the nonlinearity and a 

comparison to 50:50 directionally-coupled arrays, both presented within the context of 

coincident mode theory, is provided to accompany the numerical results. 

 

The mode-locked semiconductor lasers work examines the dynamics of two evanescently 

coupled, ring-cavity semiconductor lasers (with saturable absorbers) by use of a delay 
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differential equation model (that is extended to incorporate the action of a directional coupler) 

and with the aid of numerical simulations and bifurcation analyses methods.  The findings in this 

thesis include the following catalog of the variety of complex, interesting, and important 

phenomena in this system and their dependence on coupling, unsaturated gain, and linewidth 

enhancement factors: 1) symmetry-breaking effects that lead to strong modulations of and 

delayed synchronization between the two lasers’ pulse trains; 2) the evolution of the coupled 

lasers from an initial unsynchronized state to nearly-perfect, in-phase synchronization; 3) a 

subharmonic mode-locked regime in which the two lasers pulsate in anti-synchrony (i.e. anti-

phase) and, in the case of lasers with identical roundtrip times, at one half the solitary laser’s 

fundamental mode-locked repetition rate; 4) fractional harmonic mode-locking regimes with 

repetition rates corresponding to three-halves and five-halves the fundamental mode-locking 

frequency of the solitary lasers; 5) a destabilization of mode-locking and continuous-wave 

operation; and 6) multistability between the different dynamical regimes and behaviors.  These 

behaviors can be observed even in the presence of noise. 
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CHAPTER 1 

Introduction 

Coupled lasers, and more generally coupled oscillators, present a vast and rich domain of 

complex and fascinating dynamical phenomena that is of theoretical and practical interest and 

importance.  To name just a few areas of work regarding coupled lasers, there is research in 

scaling of output power/brightness, coherent locking and phase synchronization, optical 

computing and/or communications, chaos, and multistable behavior.  Research work in the 

broader scope of coupled nonlinear oscillators and dynamical systems is prevalent in numerous 

other fields, including but certainly not limited to astronomy, biology, chemical systems, 

ecology, electronic and electrical systems, geology, mathematics, mechanical systems, music, 

nuclear physics, oceanography, quantum physics, seismology, and vehicular traffic. 

 

1.1 Research objectives 

This thesis and the associated research work focuses on theoretical and numerical investigation 

of the dynamics of two different systems of interest: 

1) Passive coherent beam combining of continuous-wave fiber laser arrays 

2) Passive coupling of mode-locked semiconductor lasers 

 

For the first topic, the objective is to address several aspects of the passive phasing dynamics and 

to contribute to a more complete understanding of the underlying physical mechanisms that 
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influence the dynamical evolution and growth toward coherence (or lack thereof) of continuous-

wave fiber laser arrays coupled in a spatially-filtered unidirectional ring architecture: 

1) The behavior of the coherent phase locking processes within the fiber laser array, 

including its relation to… 

a) the evolution of the array output (i.e. power and far-field intensity distribution) 

b) the lasing medium’s population dynamics 

2) The robustness of phase-locking, specifically with regard to the coupled system’s 

response to external perturbations applied after reaching steady-state 

3) The influence of fiber nonlinearities – specifically here the non-resonant Kerr 

nonlinearity – on passive phasing and array combining efficiency 

4) The effect of optical path differences encountered in the coupling optics (which occur 

external to the individual fibers) 

5) A comparison to other coupling geometries 

 

For the second topic, the objective is to explore the dynamical regimes and interesting 

phenomena (of theoretical interest and/or for direct, practical application) that occur when two 

semiconductor lasers – each with saturable gain and saturable absorption – are passively coupled 

to each other (e.g. evanescently or via a dedicated directional coupler).  Due to the parameter 

space and already-present complexity of the system, despite a design that in principle is 

seemingly simple, the scope of this exploration and investigation at present is narrowed to focus 

on the following aspects in the context of two identical lasers: 

1) Occurrences of coupling-induced symmetry-breaking 

2) The presence (or absence) and dynamical structure of synchronization of the two lasers 
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3) The organization of and multistability between various regimes of operation (e.g. 

continuous-wave, mode-locked, burst-mode, quasi-periodic, chaotic) – synchronized, 

delayed-synchronized, or unsynchronized – with respect to the coupling strength, pump 

power, linewidth enhancement factors, initial state / initialization, and noise 

4) A comparison of the dynamics for weak coupling vs. 50:50 coupling vs. strong coupling 

(including the special case of complete cross-coupling)  

5) The role of linewidth enhancement factors and the influence of noise on all of the above 

 

1.2 Outline of the thesis 

CHAPTER 2 presents the context and the research work regarding passive coherent beam 

combining of continuous-wave fiber laser arrays.  The chapter begins with an overview of fiber 

lasers as sources for laser light, introduces the main concepts and methods of beam combining, 

and establishes a motivation for the thesis work in this field.  Then comes a brief review of the 

various types of passive coherent beam combining systems (internally vs. externally coupled 

fiber arrays) and a discussion of the relevant scientific literature in modeling approaches used for 

theoretical and numerical investigation, including the dynamic, multi-longitudinal-mode model 

of fiber lasers that is adapted to the specific research work of this thesis.  The methods section 

that follows explains the physical model for the spatially-filtered ring geometry coupling 

architecture, the mathematical model based on the Nonlinear Schrödinger Equation for the 

electric field and rate equations for the laser gain, the numerical methods used for simulation of 

the system, and the important simplifying assumptions.  The remaining sections present and 

discuss the main results and conclusions of this research work, with the bulk of the emphasis on 

the nature of the passive phasing dynamics and the role that the Kerr nonlinearity plays in this 
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system and its combining efficiency.  These two aspects are addressed from several perspectives, 

including 1) the temporal evolution of power, gain, and phasing between the fibers in the array, 

2) the temporal evolution of the extracted output’s far-field pattern, 3) the output frequency and 

phase spectra and the regions of coherently-locked, self-selected composite cavity modes, and 4) 

a combining efficiency metric derived by comparing the scaling of the far-field on-axis intensity 

in the presence vs. in the absence of coupling. 

 

CHAPTER 3 presents the context and the research work regarding passively coupled, mode-

locked semiconductor lasers.  The chapter begins with an overview of semiconductor lasers as 

sources for laser light, introduces the research interest and applications associated with coupled 

semiconductor lasers, and establishes a motivation for the thesis work in this field.  Then comes 

a review of the scientific literature regarding passively coupled, continuous-wave semiconductor 

lasers, as well as a discussion on the more recent studies of mode-locked semiconductor lasers.  

These sections present the main methodologies (for modeling and analysis), types of physical 

phenomena, and varieties of coupled systems that have been previously explored and observed 

within the field, from which this thesis work draws guidance, context, and techniques to adapt to 

the research study.  Also included are brief conceptual summaries of passive mode-locking via 

saturable absorbers and of linear stability and bifurcation analyses (specifically as they relate to 

delay differential equations).  The methods section that follows explains the physical model for 

two evanescently/directionally coupled, unidirectional-ring-cavity semiconductor lasers, along 

with both the partial differential equation and delay differential equation mathematical models, 

the numerical methods used for simulation and bifurcation analysis, and the relevant simplifying 

assumptions.  The remaining sections present and discuss the main results and conclusions 
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obtained from the research work, cataloging the rich variety of phenomena observed in this 

coupled system, including coupling-induced symmetry-breaking of identical lasers, perfect 

synchronization, delayed-synchronization, destabilization of regular mode-locked pulse trains, 

emergence of a subharmonic mode-locked regime for fully cross-coupled lasers, burst-mode 

operation at high gain, and the robustness of these behaviors in the presence of noise and 

linewidth enhancement factors.  Special attention is accorded to the subharmonic mode-locking 

phenomenon.  The dynamical structure of the coupled lasers is explored from several vantage 

points: 1) numerical simulation results of the temporal power, complex-valued amplitudes, axial 

mode spectra, and gain/loss dynamics; 2) one-parameter bifurcation diagrams generated from 

iterations of simulations with up- and down-sweeps of the relevant parameters to examine the 

multistable regimes; and 3) two-parameter numerical “continuation” of the equilibria and 

bifurcations to identify stable and unstable branches of steady states and relative periodic orbits. 

 

CHAPTER 4 summarizes the work of the thesis, highlights the main contributions with respect 

to the research objectives, and offers several suggestions for future directions. 

 

The APPENDICES provide 1) the detailed derivations for the mathematical models developed or 

extended as part of this thesis work, and 2) information about the numerical codes (written in 

MATLAB) used for the simulations and bifurcation analysis. 
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CHAPTER 2 

Passive coherent beam combining of fiber laser arrays 

2.1 Introduction 

Rare-earth-ion-doped optical fibers present an attractive option for the generation of laser output 

in visible and infrared wavelength ranges [1, 2].  Optical fiber amplifiers consist of a host 

medium (typically silica or some other glass) along with rare-earth dopants (such as Ytterbium 

and Erbium) to establish the energy transition levels (in a three- or four-level structure) that are 

utilized in conjunction with optical pumping (to establish the population inversion) for optical 

gain via stimulated emission [1].  With the addition of feedback to the fiber amplifier, and for 

sufficient pump levels, lasing can commence.  These “fiber lasers” allow for several desirable 

characteristics: built-in waveguiding, compact-yet-long gain regions, wide gain bandwidth, 

efficient pump conversion, high beam quality, effective heat dissipation, efficient pump 

conversion, to name a few [1, 3, 4, 5].  Although many advances have been made to increase 

output intensity of a single fiber laser, various physical limitations continue to pose challenges 

for further power and brightness scaling, including Stimulated Raman Scattering, Stimulated 

Brillouin Scattering, self-phase modulation, self-focusing, mode instabilities, and ultimately 

material damage [1, 3, 5, 6]. 

 

Accordingly, to circumvent many of these obstacles, there is concurrent research in methods to 

combine the outputs of multiple fiber amplifiers, both for continuous-wave (CW) as well as 
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pulsed (e.g. mode-locked, Q-switched) modes of operation.  Some common combining methods 

include spectral / wavelength beam combining, coherent beam combining, incoherent beam 

combining, and polarization beam combining [3, 7, 8].  Figure 2.1 provides simplified 

illustrations to help visualize the conceptual basis for each of these methods; of course, the actual 

systems used in practice contain more complexity, as well as variety in implementation.  

Coherent beam combining (CBC) techniques can typically be categorized into active-control 

methods and passive (self-organization) methods; the primary challenge is to ensure in-phase-

locking (constructive interference) among all elements of the fiber array and minimizing relative 

phase deviations / variations [7, 9, 10].  This is unlike incoherent beam combining, which 

implements no phase control and simply “stacks” the beams incoherently on top of each other. 

  

Figure 2.1: Simplified illustrations that depict the concept behind several types of beam combining methods.  

For CBC, perfect phase-locking leads the peak brightness to scale as N2, where N is the array size. 

 

Passive CBC is one approach that is of great research interest, especially in terms of identifying 

and assessing its prospects for robustness, scalability, and combining efficiency.  A number of 
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coupling architectures have been proposed and further studied in the scientific community, but 

much of the current literature in theoretical/numerical analyses of these systems are based on 

either steady-state or dynamic but single-longitudinal-mode models.  Although these approaches 

provide valuable insight into the practicality and underlying physics of the proposed fiber laser 

array coupling geometries, a dynamic multi-longitudinal-mode model can be used to obtain a 

more complete picture, since the evolution of the system and the stability of steady-state 

solutions are dictated by the dynamics.  An understanding of the dynamics can lead to a more 

comprehensive demonstration of coherent phasing or lack thereof for the fiber laser array.  This 

can be used to better compare different beam combining approaches, understand their 

limitations, seek methods to overcome them, and guide design considerations.  In addition, it can 

assist the scientific community to better understand and reach a consensus regarding the role of 

fiber nonlinearities (e.g. Kerr effect, thermal effects, and the Kramers-Kronig relations) in the 

passive phasing process and their ability to help improve (or hinder) combining efficiency [3]. 

 

Hence, there is a motivation for the research work to model the phase locking dynamics and 

examine the role of fiber nonlinearity in the context of passive coherent beam combining of fiber 

laser arrays.  The work covered in this chapter, particularly in SECTION 2.3, SECTION 2.4, and 

SECTION 2.5, has been published in [11]. 

 

2.2 Background and literature review 

2.2.1 Various passive coherent beam combining architectures 

Several types of coherent beam combining architectures have been studied in the literature 

theoretically and/or experimentally.  Internally-coupled methods include fiber lasers coupled 
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pair-wise via 50:50 directional couplers in a “tree arrangement” [12, 13] and multicore fiber 

lasers in which the cores are internally, evanescently coupled [14].  Externally-coupled fiber 

laser arrays present another avenue of exploration; examples of common approaches discussed in 

the scientific literature are the utilization of a self-Fourier cavity [15, 16, 17], Talbot cavity [18, 

19], diffractive optical element [20, 21], or a spatially-filtering ring geometry [10, 22, 23, 24, 25, 

26].  Other externally-coupled geometries have been introduced by specific research groups.  An 

experimental study of passive phasing of 25 lasers utilized a system that facilitated investigation 

of many different configurations of “connectivities” (between the individual array elements) by 

way of independently orienting four coupling mirrors [27]. 

 

Finally, several authors have examined the role of the resonant Kramers-Kronig (KK) 

nonlinearity in the phasing process.  In [28, 29], an experimental test-bed, consisting of two fiber 

lasers coherently coupled by an external Dammann grating, was constructed in order to isolate 

the role of the KK nonlinearity in the passive phasing process and show that it can correct for 

applied phase errors.  The mechanism was described as a redistribution of power between the 

two fibers that leads to gain changes and correspondingly KK-nonlinearity-induced phase shifts.  

In addition, recent papers by a different research group introduced a setup in a ring geometry 

with a phase-contrast filter to map phase-deviations in the array output to amplitude 

redistributions in the injected feedback, which in conjunction with the KK nonlinearity, provides 

an additional degree of freedom to assist passive phase locking [30, 31, 32].  In these papers, the 

authors reported initial experimental results of this new technique that look promising, although 

their mathematical modeling approach was limited to single-longitudinal-mode-based 
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simulations (repeated for each mode individually in order to observe for which one optimal 

output behavior was achieved). 

 

2.2.2 Theoretical/numerical studies of passive coherent beam combining 

Much of the relevant literature in modeling and theoretical/numerical studies of passive CBC, 

particularly for externally-coupled fiber laser arrays, has been limited to steady-state and 

perturbative analysis or dynamic but single-longitudinal-mode approaches.  The initial models to 

focus on the dynamics utilized an iterative map approach, required a fixed phase difference as an 

input, and did not yield spectral information, as they were based on single-longitudinal-mode 

analysis [33, 34].  A more recent model addressed a Q-switching instability found from a linear 

stability analysis and presented only a few preliminary results from the numerical solution of the 

propagation equations [10, 22].  On the other hand, a dynamic, multi-longitudinal-mode model 

[35] for the fiber laser can facilitate further study of the passive phasing dynamics and 

emergence of the cavity modes self-selected by the array to suffer minimal roundtrip loss.  For 

the case of fiber laser arrays coupled internally via directional couplers, such a model was 

developed and extensively utilized to investigate and explain the natural selection of longitudinal 

modes to achieve phase-locking, the prospects and challenges of array scalability, and the effect 

of the Kerr nonlinearity on combining efficiency [36, 37, 38]. 

 

For the externally-coupled geometries, there are some limitations in the scopes of several 

theoretical/numerical works that make claims regarding the role of fiber nonlinearities: 1) there 

is ambiguity in distinguishing the contributions from the Kerr nonlinearity vs. the KK 

nonlinearity, 2) the models do not account for the full dynamical evolution, and/or 3) the models 
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do not consider the interaction between different longitudinal modes [17, 30, 39, 40, 41, 42].  For 

this reason, the adaptation of the dynamic, multi-longitudinal-mode model for externally-coupled 

fiber laser arrays would assist in understanding the passive phasing dynamics and the influence 

of nonlinearities present in the fibers for a different class of beam combining architectures.  

Furthermore, it would aid in an understanding of the theoretical, physical, practical aspects that 

govern various passive beam combining systems, perhaps ideally in the endeavor to design new 

and improved methods.  Note that for the present thesis work, the role of the Kerr nonlinearity is 

isolated; the future direction would be to incorporate the KK nonlinearity as well (the studies in 

[22, 39, 42] account for the KK nonlinear phase contribution, thus suggesting ideas for how to 

include the KK effect in the mathematical model used in this thesis). 

 

2.3 Methods 

2.3.1 Physical model 

Figure 2.2 illustrates an array of fiber amplifiers arranged in a spatially-filtered, unidirectional, 

ring geometry architecture.  The individual amplifiers are coupled externally by means of a lens 

that focuses the output into a single-transverse-mode fiber, which then feeds back the radiation to 

the individual amplifiers through a 1:N coupler.  A beam splitter provides the output coupling as 

shown, thus allows for extraction a fraction of the circulating radiation.  The entire system forms 

a composite cavity that functions as a laser, given sufficient (i.e. threshold) pump power of the 

individual fiber amplifiers.  The output of the system is assumed to be measured and/or utilized 

in the far-field regime, and thus the output power spatial distribution is also tiled, according to 

the Fourier Transform of the near-field radiation (at the exit plane of the fiber amplifier array).  

This thesis work studies a 1-D fiber laser array, but it can also provide insight into the 2-D case. 
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Figure 2.2: Diagram of a tiled-array of fiber amplifiers in a unidirectional ring composite cavity, passively 

coupled/combined via the spatially-filtered ring-geometry architecture.  Unidirectional operation is 

assumed, in the case of this figure, to be in the clockwise direction. 

 

Spatial filtering refers to the fact that only the on-axis intensity at the entrance of the feedback 

fiber (i.e. radiation focused into the angular acceptance range of the feedback fiber, dictated by 

its numerical aperture) is fed back.  Due to the Fourier transform effect of the coupling lens, this 

on-axis intensity is maximized when the individual fibers are coherently phase-locked.  The 

presence and axial mode spectrum of this phase-locked state of operation is strongly affected by 

the degree of variation / mismatch in fiber lengths and any additional path lengths in the coupling 

optics.  As an aside, the transverse position of the feedback fiber, relative to the coupling lens, 

can spatially steer the central lobe of the output; this is referred to as “pointing agility” in [23]. 

 

There is an important issue that could limit the practicality and versatility of this coupling 

architecture, particularly as the array size increases.  Care is required in dealing with optical path 
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length differences external to the fiber, i.e. within the coupling optics.  This is because the 

system as presented is designed to self-select axial modes / frequencies that achieve good 

phasing in entrance plane of the feedback fiber, whereas the output (extracted beam quality) is 

determined by the phasing at the near-field plane at the exit of the fiber array.  If external path 

length differences are present and the coupling lens does not correct for them, then the axial 

modes that are suitable for good (i.e. perfectly constructive) phasing at the feedback entrance 

plane may not be appropriate to achieve perfect constructive phasing at the array (near-field) exit 

plane; the potential consequence is poor beam quality in the (extracted) output far-field plane. 

 

Nevertheless, the system serves as a useful model in which to study the passive phasing 

dynamics of externally coupled fiber laser arrays.  Several researchers have investigated and/or 

demonstrated this specific beam combining geometry, both theoretically [10, 22] and 

experimentally [23, 24, 26].  In addition, researchers have studied other varieties of externally 

coupled architectures (see SECTION 2.2.1), and it is a worthwhile endeavor to understand, 

compare, and contrast the physical mechanisms at play across the different systems.  SECTION 

2.7 provides a brief comparison between the spatially-filtered ring geometry and the system with 

fibers coupled internally via 50:50 directional couplers. 

 

This issue regarding optical path length differences and their effect in the context of the phasing 

dynamics is further discussed later, in SECTION 2.6.  However, the rest of this chapter neglects 

the optical path length differences; it assumes that they are either absent or properly corrected for 

by the coupling optics. 
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2.3.2 Mathematical model 

The system is mathematically described by use of a dynamic model that automatically accounts 

for multiple longitudinal modes by employing partial differential equations for the space-time 

evolution of the cavity fields [35, 36, 37].  Specifically, the model uses the Nonlinear 

Schrödinger Equation (NLSE) to describe the nonlinear wave propagation through each 

individual fiber amplifier (see [43]).  The model also relies on rate equations governing gain 

dynamics and population inversion for each fiber.  Appropriate choices of boundary conditions 

are required to model various coupling mechanisms.  In the simulations, the system begins from 

noise and is allowed to evolve toward steady-state operation over the course of many roundtrips.  

From [36, 37], the model equations are given below.  Table 2.1 provides descriptions of the 

variables and parameters in the equations. 

 
𝜕𝐸𝑗

𝜕𝑧
=
1

2
(𝑔𝑗 − 𝛼)𝐸𝑗 − 𝛽1

𝜕𝐸𝑗

𝜕𝑡
+
1

2
(𝑏 − 𝑖𝛽2)

𝜕2𝐸𝑗
(𝜕𝑡)2

+ 𝑖𝛾|𝐸𝑗|
2
𝐸𝑗  (2. 1) 

 

 𝜏
𝜕𝑔𝑗

𝜕𝑡
= 𝑔0𝑗 − 𝑔𝑗 −

|𝐸𝑗|
2

𝑃𝑆𝐴𝑇
𝑔𝑗 (2. 2) 

 

Table 2.1: List of variables and parameters used in the model (NLSE and rate equations) of passively coupled 

fiber lasers; see Equations (2.1) and (2.2). 

Variable / Parameter Description 

𝑧 
Longitudinal position along each fiber 

(𝑧 = 0 is the position adjacent to the 1:N splitter) 

𝑡 
Time 

(𝑡 = 0 is the moment of “turn-on” of the system) 

Subscripts 𝑗 Used to indicate the 𝑗th element of the array 

𝐸𝑗(𝑧, 𝑡) 
Slowly-varying electric field envelope in each fiber 

(normalized such that |𝐸|2 yields optical power) 

𝑔(𝑧, 𝑡) Gain in each fiber 

𝛼 Fiber propagation loss 
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𝛽1 Reciprocal of group velocity 

𝑏 

Accounts for frequency-dependent losses and 

limitations of the bandwidth of the spectrum of 

longitudinal modes that evolve from the system  

𝛽2 Group velocity dispersion (GVD) 

𝛾 

Coefficient of the non-resonant Kerr nonlinearity 

(𝛾 = 2𝜋𝑛2/𝜆𝐴𝑒𝑓𝑓 , 

where 𝑛2 is the nonlinear refractive index 

and 𝐴𝑒𝑓𝑓 the effective mode area of the fiber [43]) 

𝜏 Population relaxation time 

𝑔0 Small-signal (unsaturated) gain 

𝑃𝑆𝐴𝑇  Saturation power 

 

2.3.3 Simplifying assumptions 

In order to facilitate numerical simulations, the model makes a few simplifying assumptions.  

First, it only considers single polarization, single-transverse-mode, forward-propagating waves in 

the fibers [36].  Second, as earlier mentioned, optical path length differences and other 

aberrations in the coupling optics (including the 1:N splitter) are neglected; hence, the only 

source of path length differences and non-idealities in imaging arise from possible mismatches 

between the fiber amplifiers’ lengths (which are assumed here to not vary in time, e.g. due to 

thermal effects).  Furthermore, the delay time and phase accumulation due to propagation 

through the external coupling and feedback sections are ignored, as it is expected that these 

aspects are not significantly relevant to the intrinsic passive phasing process within the fiber 

array that is of interest in this study.  Next, the term 𝑏 for frequency-dependent losses in 

Equation (2.1) imposes a band-pass filter on the spectrum of the modes that evolve from the 

system.  Practical systems generally incorporate some bandwidth limiting elements in the cavity.  

Higher order dispersion and other nonlinear effects (e.g. the resonant nonlinearity associated 
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with the Kramers-Kronig phase shift) are neglected, although it should be feasible to extend this 

model accordingly. 

 

Finally, with regard to the spatial distribution of the fiber output ports, these tiled apertures are 

assumed to have a high fill factor (e.g. for these simulations a 5:1 ratio of fiber output width to 

spacing between adjacent fiber outputs) and the near-field a “top-hat” transverse profile (instead 

of the typical Gaussian profile used to approximated the fundamental spatial mode).  These 

assumptions are made for computational convenience in the simulations; indeed, in practice one 

could achieve a high fill factor effectively by inserting a microlens array, similar to that shown in 

Figure 2.2, at the near-field plane of the fiber outputs [44]. 

 

2.3.4 Numerical methods 

Numerical solution of the equations presented in SECTION 2.3.2 facilitates simulation of the 

spatiotemporal evolution of the system, starting from low-amplitude noise and dynamically 

evolving toward steady-state operation.  Each cavity roundtrip is simulated via a beam 

propagation method that utilizes the Symmetric Split-Step Fourier Method for the NLSE in 

Equation (2.1) and the Euler method for the gain dynamics in Equation (2.2), as detailed in [43] 

and [37], respectively.  Here, waves are propagated through each fiber by accounting for the 

linear portion of the NLSE in frequency domain and the nonlinear portion in time domain.  At 

the beginning of the first cavity roundtrip, the field 𝐸𝑗(0, 𝑡) for each fiber is initialized as low-

amplitude noise (numerically, an array of random complex numbers) defined within a 

computational time window 𝑇, while 𝑔𝑗 is initialized as zero.  Numerical boundary conditions 

(detailed below) account for the coupling / feedback mechanism, once the wave in each 
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individual element reaches the end of the fiber length, in order to set up the simulation of the 

subsequent cavity roundtrip.  The process of propagation, coupling, and feedback is repeated 

over numerous roundtrips to yield the dynamic evolution of the system to steady-state. 

 

In the spatially-filtered ring-geometry, as shown in Figure 2.2, the individual amplifiers are 

coupled externally by means of a lens that focuses the output into a single-mode fiber, which 

then feeds back the radiation through a 1:N coupler.  This process is implemented in the 

boundary condition for the mathematical model in a manner similar to the description in [23].  

Numerically, external coupling is accomplished as follows.  The near-field output of the fiber 

array is taken as a spatial distribution of rectangular slits corresponding to each individual fiber 

output, and so at each spatial point is a time-varying field amplitude in the near-field.  The 

Fourier Transform along the near-field spatial dimension is used to compute the far-field pattern, 

which is equivalent to the effect of the coupling lens.  The spatial filtering imposed by the single-

mode feedback fiber is accomplished numerically by extracting the on-axis time-varying field 

from the “far-field array”, which is then fed back to the 1:N splitter to begin the simulation of the 

subsequent roundtrip. 

 

2.3.5 Parameter values for the numerical simulations 

For this numerical simulation and investigation of the ring-geometry coupling mechanism, the 

fibers considered here are Ytterbium-doped.  Table 2.2 summarizes the important parameter 

values used for all simulations.  The following elaborates on a few of these parameter values.  

The coefficient of the Kerr nonlinearity is nominally 𝛾 = 0.003 W−1m−1 (corresponding to the 

nonlinear index 𝑛2 = 3.2 × 10−20 m2/W) [22, 38].  In pursuit of studying the effect of 
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nonlinearity on the system, the value is varied over a large range in the numerical simulations.  

In experiment, the Kerr nonlinearity itself is generally a fixed material parameter, and the Kerr 

phase shift, which is proportional to 𝛾|𝐸𝑗|
2
 as seen in Equation (2.1), increases as the system 

operates at higher powers.  In an alternative approach, as used in this thesis work, the role of the 

Kerr phase effect and its influence on the underlying physics of the passive phasing processes 

can be explored in the simulations by varying the nonlinear coefficient itself, in order to draw 

qualitative comparisons and intuition.  The chosen computational time window spans roughly 

two roundtrips for each individual fiber.  Given the limitations of the numerical data array sizes, 

this choice allows for sufficient temporal and spectral resolution as well as adequate spectral 

bandwidth. 

 

In addition, the population relaxation time is several orders of magnitude greater than the 

roundtrip time.  Lastly, the chosen value for the loss dispersion 𝑏 results in a Gaussian-shaped 

band-pass filter around the center frequency (i.e. the point of zero detuning from the optical 

carrier frequency) with FWHM ~230 GHz.  This bandwidth is indeed small compared to the 

gain bandwidth, but it is chosen for computational convenience so as to ensure that the spectral 

power is contained well within the boundaries of the computational frequency window (in order 

to avoid the numerical issues associated with the periodicity inherent in the usage of the 

discrete/fast Fourier Transform).  Nevertheless, the underlying physics and the qualitative trends 

from this thesis work are expected to hold.  Simulations with increased filter bandwidth and an 

increased computational frequency window verify that this expectation is well-founded. 

 



19 

 

Table 2.2: Simulation parameters for a ytterbium-doped fiber laser array coupled in the ring geometry. 

Parameter Symbol Value(s) Reference 

Refractive index of the fibers 𝑛 1.5 [36] 

Optical carrier / center wavelength 𝜆 1080 nm [22] 

Output coupler reflectivity 𝑟𝑂𝐶  0.1 Chosen 

Fiber lengths (with random variations) ℓ 

A three fiber array with lengths 
[10 m,    9.9 m,    10.013 m]  

(unless otherwise noted) 

[22] 

Computational time window 𝑇 110 ns Calculated 

Computational frequency window 𝐵 298 GHz Calculated 

Unsaturated gain 𝑔0 
0.2 m−1 or 2.67 m−1 

(unless otherwise noted) 
[38] 

Fiber propagation loss 𝛼 1.84 × 10−3 m−1 [38] 

Frequency-dependent loss parameter 𝑏 0.13 × 10−24 s2/m [36] 

Group velocity dispersion 𝛽2 0.024 × 10−24 s2/m [38] 

Non-resonant Kerr nonlinearity coefficient 
𝛾 

(𝑛2) 
varied Chosen 

Saturation power 𝑃𝑆𝐴𝑇  30 mW Calculated 

Population relaxation time 𝜏 1 ms [36] 

 

2.4 Passive phasing dynamics 

The solution of the full set of dynamic equations makes it possible to observe the evolution of 

the total power, the gain dynamics, and the onset of phase-locking in real time.  This is done via 

simulations of the dynamical evolution of the coupled system toward steady-state (ideally, 

phase-locked) from an incoherent phase state.  Here, the incoherent state represents either the 

initial state of the system at “turn-on” or the state of a system in the immediate aftermath of 

perturbations.  Assessment of the degree of phase-locking considers the dynamics of the 
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temporal and spectral phase profiles, the far-field intensity pattern, and a coherence/order 

parameter.  The results agree with published state-state and experimental analyses. 

 

2.4.1 Dynamical evolution from turn-on 

The results clearly show that phase locking occurs before the first peak of relaxation oscillations 

and that once that occurs, the amplifiers act as one in concert.  The simulations also show the 

self-selection of common axial modes as the system evolves from noise to the phase locked state.  

Figure 2.3 presents two sets of dynamic evolution results, one for uncoupled lasers and the other 

for lasers coupled by means of the single mode fiber.  Highly damped relaxation oscillations are 

seen in the near-field output power and the gain after the system is turned on.  Note that all of the 

fibers have equal near-field output power, due to the fact that the 1:N splitter equally distributes 

the radiation to all of the fibers every roundtrip (the phase of the radiation, however, can vary 

across fibers in the array, depending on the degree of phase-locking achieved). 

 

More interestingly, in the bottom row (Figure 2.3c, f) the phase differences between uncoupled 

lasers evolve randomly over the entire range of ±2𝜋 , whilst the phase differences for coupled 

lasers undergo a sharp transition to a state of reduced fluctuations at about the time the gain 

parameter crosses the threshold value.  This transition occurs before the first relaxation 

oscillation peak is attained.  The phase differences do not quite settle down to zero due to the 

presence of the Kerr nonlinearity, which results in self-phase modulation.  Note that the phase 

differences are calculated as follows: the blue trace is the phase of the complex field amplitude 

(evaluated at the near-field, exit plane of the array) for the 9.9 m fiber relative to that of the 10 m 

fiber, the green trace is the phase for the 10.013 m fiber relative to that of the 10 m fiber, and 
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the red trace is that of the 10 m fiber (relative to itself, which is why in the phase difference 

subplots the red trace is always equal to zero). 

 

Figure 2.3: Temporal evolution of near-field power, gain, and near-field phase difference for 3 fibers.  

Subplots (a-c) show the results for uncoupled fibers, whereas subplots (d-f) are for fibers coupled 

in the ring-geometry architecture.  The blue, diamond-shaped markers in (d, e) correspond to the 

time-stamps of the snapshots of the far-field in Figure 2.4.  Phase differences in (c, f) are 

calculated relative to the phase of the 10 m fiber.  The nonlinearity is γ = 0.003 W−1m−1, the 

unsaturated gain is g0 = 0.2 m−1, and the other parameter values are given in Table 2.2. 

 

The transition to a more coherent state can also be seen in the far field evolution.  Figure 2.4 

shows snapshots of the far field profile taken at the instants marked on the power evolution curve 

in Figure 2.3d.  For simplicity, a top-hat profile is assigned to the near-field distribution of each 

amplifier.  The far field is initially the broad sinc2 profile associated with randomly phased, 

incoherent sources.  It rapidly and smoothly narrows as the gain approaches threshold and attains 

the final locked profile before the first relaxation oscillation peak occurs.  This confirms the fact, 
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also seen in the directionally coupled beam combining geometry [37], that phase locking occurs 

prior to the onset of relaxation oscillations and that the array acts as one laser by the time 

threshold is reached. 

 

Figure 2.4: Temporal evolution of the far-field output intensity pattern for 3 coupled fibers.  Subplots (a-d) 

represent “snapshots” of the far-field taken at the instants marked in Figure 2.3d, e.  The 

nonlinearity is γ = 0.003 W−1m−1, the unsaturated gain is g0 = 0.2 m−1, and the other parameter 

values are given in Table 2.2.  Note: the vertical scales / axes are not the same for all plots. 

 

The simulation results shown in Figure 2.3 and Figure 2.4 are for a low value of the small-signal 

gain: 𝑔0 = 0.2 m
−1.  For higher values of gain, phase locking and the transition to steady state 

operation occur much faster.  Figure 2.5 shows the near-field power, gain, and relative phase 

dynamics for 𝑔0 = 2.67 m
−1, considering two values for the nonlinearity coefficient: (i) 𝛾 = 0, 

and (ii) 𝛾 = 0.003 W−1m−1. 
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Figure 2.5: Temporal evolution of near-field power, gain, and near-field phase difference for 3 coupled fibers.  

Subplots (a-c) are for zero nonlinearity, and subplots (d-f) are for γ = 0.003 W−1m−1.  The blue, 

diamond-shaped markers in (d, e) correspond to the time-stamps of the snapshots of the far-field 

in Figure 2.6.  Phase differences in (c, f) are calculated relative to the phase of the 10 m fiber.  The 

unsaturated gain is g0 = 2.67 m−1, and the other parameter values are given in Table 2.2. 

 

The phase plots in Figure 2.5 show that phase locking occurs within 7 μs of turn-on, compared to 

40 μs for the low-gain case (Figure 2.3f).  It is also clear that the Kerr nonlinearity is responsible 

for the phase and intensity fluctuations that occur after threshold is reached and that there is 

enough intensity in the fibers to cause self-phase modulation (see SECTION 2.5 for more 

details).  The more rapid transition to phase locking at higher gain is also confirmed in the 

sequence of far-field plots shown in Figure 2.6. 
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Figure 2.6: Temporal evolution of the far-field output intensity pattern for 3 coupled fibers.  Subplots (a-d) 

represent “snapshots” of the far-field taken at the instants marked in Figure 2.5d, e.  The 

nonlinearity is γ = 0.003 W−1m−1, the unsaturated gain is g0 = 2.67 m−1, and the other parameter 

values are given in Table 2.2.  Note: the vertical scales are not the same for all plots. 

 

The process that leads the system from an unlocked initial state to the final phase-locked (or at 

least partially phase-locked) state can be observed by examining the phase differences between 

array elements as a function of frequency.  Figure 2.7 shows the phase differences between the 

first and second lasers (blue lines) and between the first and third lasers (green lines) in the array, 

plotted versus frequency for 𝑔0 = 2.67 m−1.  Two snapshots are shown – one at turn-on and the 

other at the first peak of relaxation oscillations.  The system begins from noise (Figure 2.7a), and 

the self-selected array modes emerge by the time the relaxation oscillations begin (Figure 2.7b). 
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Figure 2.7: Snapshots of the phase difference vs. frequency detuning (from the optical carrier) profile for 3 

coupled fibers.  The plot in (a) is taken at the beginning of the simulation (i.e. at “turn-on”), while 

the plot in (b) is taken at the time at which the first peak in power occurs (as seen in Figure 2.5d).  

The phases of the 9.9 m fiber (blue trace) and the 10.013 m fiber (green trace) are computed 

relative to the phase of the 10 m fiber.  The nonlinearity is γ = 0.003 W−1m−1, the unsaturated gain 

is g0 = 2.67 m−1, and the other parameter values are given in Table 2.2.  The red dots in (b) are 

positioned at the same two frequencies as marked in Figure 2.8c. 

 

Ideally, these selected modes are common resonant modes for all fiber elements, in which case 

the corresponding field amplitudes are locked in-phase across the array.  If no such perfectly 

“coincident” modes exist within the bandwidth of available modes, then the system proceeds to 

select the modes that suffer the least loss per round trip, in a manner similar to that shown in 

[37].  Due to the non-zero width of the spectral peaks in the frequency combs, partial overlap of 

non-coincident modes is possible.  Here, “least-loss” refers to the situation where the array 

operates with a high degree of coherent locking (i.e. a fixed-phase relationship over time) and a 

state close to in-phase locking (i.e. phase differences between fiber outputs are near 0 modulo 

2𝜋).  The two red dots in Figure 2.7b indicate the frequencies at which both the blue and green 

traces intersect near 0 or 2𝜋; they correspond to two of the array modes, as confirmed by 

comparison to the location of the markers in Figure 2.8c. 
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Figure 2.8: Plots of the steady-state (near-field) power (a, b) and order parameter (c) vs. frequency detuning 

(from the optical carrier) for 3 coupled fibers.  The nonlinearity is γ = 0.003 W−1m−1, the 

unsaturated gain is g0 = 2.67 m−1, and the other parameter values are given in Table 2.2.  The data 

is taken after 2200 cavity roundtrips. 

 

Figure 2.8 illustrates the dependence of the output power and the “order parameter” (or 

coherence parameter) on the detuning from the operating wavelength of 1080 nm, as generated 

by the simulation results.  The definition is adopted from [22]: the order parameter is equal to 

|∑ 𝐸𝑛
𝑁
𝑛=1 |/ ∑ |𝐸𝑛|

𝑁
𝑛=1 , where 𝐸𝑛 is the near-field amplitude at the output of the 𝑛th fiber in the 

array of 𝑁 fibers.  The order parameter aims to characterize the degree of phasing in the array; if 
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all fibers are coherently in phase at a specific frequency, then |∑ 𝐸𝑛
𝑁
𝑛=1 | = ∑ |𝐸𝑛|

𝑁
𝑛=1 , and thus 

the order parameter equals unity.  Accordingly, the order parameter’s spectral “lobes” (Figure 

2.8c) align with the axial modes self-selected by the system (Figure 2.8b). 

 

The results in Figure 2.8c agree with the previously published steady-state results (specifically, 

Fig. 2a in [22]), with regard to the order parameter structure and the spacing between the lobes.  

From Figure 2.8c, note that the frequency spacing between the centers of two adjacent lobes is 

Δ𝑓 ≈ 1.86 GHz, which is equivalent to a wavelength spacing of Δ𝜆 = (𝜆2/𝑐) ⋅ Δ𝑓 ≈ 7.2 pm, in 

agreement with [22].  Again, recall that these simulations assume that there are no external path 

delays due to the coupling optics.  Inclusion of such delays does not affect the array dynamics, 

but it does result in a small shift of the order parameter spectrum from the power spectrum [4].  

SECTION 2.6 elaborates on the external path delays. 

 

2.4.2 Recovery after perturbation 

With the array operating in the steady state, phase-locked condition, it is of interest to see how 

quickly phase-locking is restored after a perturbation.  This would provide insight into the 

robustness of the phasing processes (especially since SECTION 2.4.1 already demonstrates that 

the phasing dynamics occur faster than the relaxation oscillations).  This perturbation event is 

simulated by starting from steady state and applying a phase varying from −3.5𝜋 to 5𝜋 radians 

to each laser and then observing the phase spectrum and far-field profiles after the perturbation.  

The results are shown in Figure 2.9 and Figure 2.10.  When the lasers operate above threshold, 

the simulations show that the in-phase locked state is recovered within two round trips of the 
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perturbation, in agreement with experimental results of [25], as well as theoretical results for 

directionally-coupled arrays [37]. 

 

Figure 2.9: Temporal evolution of the phase difference vs. frequency detuning profile after application of a 

phase perturbation for 3 coupled fibers.  Two sets of data are provided; each set uses a different 

value for the unsaturated gain, all above threshold: (a-c) g0 = 0.2 m−1, and (d-f) g0 = 2.67 m−1.  The 

phases of the 9.9 m fiber (blue trace) and the 10.013 m fiber (green trace) are computed relative to 

that of the 10 m fiber.  The nonlinearity coefficient is γ = 0.003 W−1m−1, and the other parameter 

values are given in Table 2.2.  The red dots in (a, d) are positioned at the same two frequencies as 

marked in Figure 2.8c. 
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Figure 2.10: Temporal evolution of the far-field output intensity pattern after application of a phase 

perturbation for 3 coupled fibers.  Each subplot uses a different value for the unsaturated gain, all 

above threshold: (a) g0 = 0.2 m−1, and (b) g0 = 2.67 m−1.  The nonlinearity is γ = 0.003 W−1m−1, 

and the other parameter values are given in Table 2.2.  Note that the vertical scales / axes of (a) 

and (b) are different, since the plots are for different pump powers. 

 

Of course, although the phase-locked state is recovered very rapidly, the temporal power takes 

longer.  A series of relaxation oscillations recommence as the temporal power recovers from the 

perturbation over numerous roundtrips to the steady-state level, as shown in Figure 2.10 

(compare the black vs. red traces), Figure 2.11 and Figure 2.12.  Again, there is an evident 

difference in time scales for the phase-locking mechanism vs. the power and population 

dynamics, and the results illustrate how steady-state operation is more quickly reached for higher 

small-signal gain / pump power. 
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Figure 2.11: Temporal evolution of near-field power and gain for 3 coupled fibers.  The perturbation occurs 

just before t = 100 µs.  The blue, circular markers, in chronological order, indicate the following 

moments: steady-state before the perturbation, 1 roundtrip after the perturbation, and 40 roundtrips 

after the perturbation.  These correspond to the black, blue, and red traces of Figure 2.10a. 

 

 

Figure 2.12: Temporal evolution of near-field power and gain for 3 coupled fibers.  The perturbation occurs 

just around t = 33 µs.  The blue, circular markers, in chronological order, indicate the following 

moments: steady-state before the perturbation, 1 roundtrip after the perturbation, and 10 roundtrips 

after the perturbation.  These correspond to the black, blue, and red traces of Figure 2.10b. 

 



31 

 

2.5 Effect of the non-resonant Kerr nonlinearity 

As mentioned in SECTION 2.3.5, the coefficient 𝛾 in the NLSE (non-resonant Kerr nonlinearity) 

can be varied in order to see the effect that nonlinearity has on the passive phasing mechanism in 

the ring-geometry approach.  This effect can be viewed from the perspective of the output power 

and relative phase spectra, the far-field output intensity profiles, and a combining efficiency 

metric.  Again, the following work looks at solely at the non-resonant Kerr nonlinearity, 

separately from other phase/index nonlinearities (e.g. due to the Kramers-Kronig relations). 

 

2.5.1 Excitation of more modes via Kerr-induced spectral broadening 

First, the nonlinear coefficient 𝛾 is set to zero, and simulations facilitate examination of the 

spectrum and relative phases in steady state.  In the absence of nonlinearity, for the chosen fiber 

lengths used in Figure 2.13, the array operates at only one mode/frequency (Figure 2.13a, c); the 

corresponding phase profile is shown in Figure 2.13b, d.  The existence of only one array mode 

is predicted by the Vernier effect, which requires that the common array mode spacing of the 

multiple cavities of different length be the least common multiple of the individual cavity 

resonances.  As shown in [36], the spacing between these common frequencies is related to the 

greatest common divisor (gcd) of the length differences: Δ𝑓 = (𝑐/𝑛)/ gcd({𝛥𝐿}).  For the array 

used in Figure 2.13 (with lengths of 10 m, 9.9 m, and 10.013 m), the length differences are 

0.1 m and 0.113 m (relative to the 9.9 m fiber).  The gcd of length differences is 0.001 m, 

which leads to a mode spacing of 200 GHz via the Vernier Effect formula.  However, only one 

mode is observed, near the center of the frequency window (in the absence of nonlinearity); the 

common array mode spacing is too large for any more than one mode to sit well within the 

230 GHz filter bandwidth (set by the loss dispersion) without suffering excessive loss. 
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Figure 2.13: Plots of the steady-state (near-field) power spectrum (a, c, e, g) and phase difference (b, d, f, h) vs. 

frequency detuning as nonlinearity γ is varied for 3 coupled fibers.  The values of γ listed in the 

subplot labels are in units of W−1m−1.  The plots in (c, d) are zoomed-in versions of the plots in (a, 

b), respectively.  The phases of the 9.9 m fiber (blue trace) and the 10.013 m fiber (green trace) are 

computed relative to that of the 10 m fiber.  The unsaturated gain is g0 = 2.67 m−1, and the other 

parameter values are given in Table 2.2.  All plots are taken after 2200 roundtrips. 

 

Introduction of a small amount of nonlinearity (𝛾 = 0.0004 W−1m−1) results in the excitation of 

several more axial modes.  These modes are a result of the Kerr-induced spectral broadening and 

four-wave mixing that make it possible to achieve approximate mode coincidences.  The relative 

phase between the array elements, however, is not zero modulo 2𝜋 at these frequencies.  

Increasing the nonlinear coefficient further leads to even greater spectral broadening and the 

excitation of more array modes, as shown in Figure 2.13. 
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2.5.2 Degradation of in-phase coherent locking and combining efficiency 

Next, the system is evaluated in terms of a practical metric for quantifying beam combining 

efficiency 𝜂, as per Equation (2.3) for an 𝑁-element array, in a manner similar to the approaches 

used in [44] and for the Strehl Ratio.  For a perfectly phased-locked array, the on-axis peak in the 

far-field output intensity pattern scales with array size as 𝑁2, and the interference fringe pattern 

“underneath” the single fiber output aperture diffraction lobes is of unity visibility.  On the other 

hand, in the complete absence of coherence across the fiber laser array, the on-axis peak scales as 

𝑁, there is no observable interference fringes.  Partial phase-locking of the array yields a 

scenario intermediate to these two extremes.  Accordingly, 𝜂 is computed by numerically 

simulating two cases for the same parameter set describing a fiber laser array: one with coupling 

“on” and the other with coupling off (each fiber operates with independent feedback).  The on-

axis intensity is extracted for each case, and Equation (2.3) is applied. 

 
𝜂 =

𝐼on-axis
coupled

𝐼 on-axis
perfectly
coupled

=

𝐼on-axis
coupled

𝑁 ⋅ 𝐼 on-axis
uncoupled

 (2. 3) 

 

Figure 2.14 shows the output far-field profiles of the 3-fiber array as the nonlinearity is varied, 

while Table 2.3 lists the computed values for the combining efficiency.  The results indicate that 

the non-resonant Kerr nonlinearity introduced in the system is detrimental to coherent, in-phase 

combination of fibers in the ring-geometry coupling scheme from Figure 2.2, leading to lower 

on-axis output intensity in the far-field as well as decreased efficiency of combination, as 

quantified by 𝜂 in Equation (2.3). 
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Figure 2.14: Far-field output intensity patterns (at steady-state) as non-resonant Kerr nonlinearity γ is varied for 

3 fibers (N = 3) coupled in the ring-geometry architecture.  The plots display only the portion of 

the far field that lies within the central diffraction lobe, so that fine details can be more easily 

discerned.  In any case, power outside the central diffraction lobe is typically not very useful in the 

tiled array structure.  The listed values of γ are in units of W−1m−1.  The unsaturated gain value is 

g0 = 2.67 m−1, and the other parameter values are given in Table 2.2.  All plots are taken after 2200 

cavity roundtrips.  Note: the vertical scales are not the same for all plots. 

 

Table 2.3: Steady-state, far-field intensity, and combining efficiency η as nonlinearity is varied, for a 3-fiber 

array (lengths 10 m, 9.9 m, and 10.013 m) coupled in the ring geometry. 

Nonlinearity 𝜸 

(W−𝟏m−𝟏) 

Far-field, on-axis intensity 

with coupling 

(a.u.) 

Far-field, on-axis intensity 

without coupling 

(a.u.) 

Combining efficiency 𝜼 

(%) 

0.000 1.8020 0.8486 70.79 

0.003 0.2621 0.1261 69.29 

0.030 0.0758 0.0759 33.31 

0.070 0.0433 0.0681 21.17 
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0.100 0.0349 0.0645 18.01 

0.150 0.0289 0.0616 15.63 

0.200 0.0273 0.0605 15.02 

0.250 0.0264 0.0593 14.83 

 

Figure 2.14 illustrates the far-field profile’s dependence on the Kerr nonlinearity coefficient.  

The red trace (solid) shows the far-field when coupling is turned on.  The blue trace (dashed) 

shows the far-field for the uncoupled system (with same nonlinearity as the coupled system), 

multiplied by the number of elements – in this case there are 3 fibers.  From the latter, the on-

axis intensity corresponding to perfect coherent combination is extrapolated, as in the 

denominator in the right-hand-side of Equation (2.3).  For 𝛾 = 0, the steady state far field 

profile shows the narrowed central peak and the interference nulls associated with in-phase 

locking of three elements.  As nonlinearity increases, the graphs clearly indicate leakage of 

power from the main (on-axis) lobe to interference side lobes.  In addition, the overall amplitude 

of the far-field profile decreases.  The presence of large side lobes in the far-field indicates 

deficiencies in the coherent, in-phase locking, due to phase fluctuations and mismatches.  

Meanwhile, the decrease in the overall far-field amplitude implies that there is increased loss in 

the cavity for the dominant modes that emerge from the system (specifically, losses that arise 

from the lack of perfect co-phasing and the frequency-dependent loss factor). 

 

2.5.3 Physical interpretation in the context of coincident mode theory 

Coincident mode theory helps to establish a physical picture that can be used to explain the 

above results (see [17, 36, 37, 45]).  Each individual fiber element has its own frequency comb, 

comprised of the modes that satisfy the specific fiber’s roundtrip phase constraint.  Hence, this 
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frequency comb is length-dependent.  In the passive combining method used here, the coincident 

modes – those that satisfy the roundtrip phase constraints of all of the fibers – are the ones that 

emerge from the system.  These coincident modes arise at the overlap of the frequency combs of 

all of the fiber elements.  Figure 2.15 provides a simple illustration of this concept. 

 

Figure 2.15: Illustration of coincident modes arising from the overlap between the frequency combs of the 

individual array elements.  In this diagram, the horizontal axis is frequency, and the arrows/peaks 

denote the locations of the resonant longitudinal mode frequencies for each fiber.  

 

In many cases, especially as the number of elements is increased, the likelihood of achieving 

coincident modes, within the bandwidth of available modes, is greatly reduced.  This leads to a 

reduced chance of coherent locking of the system.  As the system self-adjusts to coherently lock 

the elements, the modes that emerge are those that best satisfy the roundtrip phase constraints of 

all of the fibers.  When there is no “exact” coincident mode in the spectral bandwidth, partial 

overlap of peaks from different frequency combs yield the modes that emerge.  In this process, 

the system is expected to self-select modes that incur the least loss in the system as a whole [37].  

Here, loss in the system can arise due to phasing mismatches and the loss dispersion (i.e. the 

spectral band-pass filter).  Nevertheless, coherent, in-phase locking is more difficult when there 

are no perfectly coincident modes. 
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Nonlinearity can increase the likelihood of finding coincident modes [17].  It is known that the 

Kerr nonlinearity leads to spectral broadening, which in the coincident mode model yields 

broadened peaks in the frequency combs.  This in turn increases the chance of overlap across 

multiple frequency combs.  Consequently, nonlinearity broadens the range of frequencies over 

which the overlap occurs.  Moreover, in the context of four-wave mixing, nonlinearity provides a 

mechanism for communication between modes in different frequency combs.  The nonlinear 

effect redistributes energy from modes in one frequency comb to modes of another, thus 

influencing the coupling mechanism.  It seems that nonlinearity also plays a role in large arrays 

with random length variations, where it becomes very difficult to find spectral regions in which 

there is at least partial overlap of all of the individual fibers’ frequency combs. 

 

However, in the same manner, the four-wave mixing and phase fluctuations that arise from the 

Kerr nonlinearity lead to greater loss in the system and decreased in-phase, coherent locking 

among the fiber elements.  While the nonlinearity increases overlap of spectral peaks, it also 

results in the transfer of energy from coincident or partially coincident modes to modes that 

suffer high loss in the cavity (via phase mismatches and the loss dispersion); this effectively 

reduces the power coupled out of the cavity.  The nonlinear phase accumulation also contributes 

to increased phase fluctuations in the output, and this effect manifests itself in decreased 

efficiency of coherent locking and increased power leakage to the interference side lobes in the 

far-field region of the tiled output and the back focal plane of the feedback lens.  Elevated side 

lobes in the far-field translate to loss in the combining scheme, since the combined output power 

of the fiber array is designed to be extracted from the central (on-axis) channel. 
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Lastly, note that in the simulation results presented, the uncoupled system’s far-field output also 

decreases as nonlinearity increases; this is attributed to the loss dispersion coefficient 𝑏 in 

Equation (2.1).  The bandwidth limitation is required for computational feasibility in the 

simulations.  Nevertheless, the overall trend of decreasing efficiency with increasing nonlinearity 

is still expected to hold in the absence of the narrow loss dispersion filter.  In addition, 

real/physical systems all include some bandwidth limiting elements; hence, such systems are 

expected to behave in a similar manner when nonlinearity is increased. 

 

2.6 Effect of external path length differences due to the coupling optics 

As mentioned earlier in SECTION 2.3.1, external path length differences due to the coupling 

optics can degrade the extracted output beam quality.  The coupling mechanism is set up in a 

manner such that the phasing quality at entrance to feedback entrance plane determines the axial 

modes that are self-selected to emerge from the system.  Meanwhile, the phasing at the near-field 

plane at the exit of the fiber array determines the output (extracted) beam quality.  In the absence 

of external path length differences, the phasing is the same at the two planes.  However, if 

external path lengths are present, then the axial modes/frequencies that are suitable for good (i.e. 

perfectly constructive) phasing at the feedback entrance plane may not be appropriate to achieve 

perfect constructive phasing at the array (near-field) exit plane, thus potentially resulting in poor 

beam quality in the (extracted) output far-field plane.  The coupling system as modeled cannot 

correct through the self-organization processes for this issue.  Figure 2.16 and Figure 2.17 

demonstrate the effect of external path length differences, for two different values of 

nonlinearity.  The axial modes selected on the merits of phasing in the feedback entrance plane 

result in stark phase mismatches in the outputs of the fibers in the array (near-field) exit plane.  
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An increase in Kerr nonlinearity results in larger near-field phase fluctuations, and as expected it 

is unable to correct for the issue of phase mismatches due to the external path length differences. 

 

Figure 2.16: Demonstration of the effect of external path lengths.  For the top row, the external path lengths are 

0 m, 0.005 m, 0.00233 m [22]; for the bottom row, they are all set to zero.  The near-field phase 

differences are calculated relative to the phase for the 10 m fiber.  The nonlinearity is γ = 0.0004 

W−1m−1, the unsaturated gain is g0 = 2.67 m−1, and Table 2.2 lists the other parameter values. 

 

 

Figure 2.17: Same as Figure 2.16, except that the nonlinearity coefficient is increased to γ = 0.003 W−1m−1. 
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2.7 Comparison with 50:50 directionally-coupled arrays 

Previous dynamic, multi-mode studies have investigated, numerically and experimentally, the 

passive phasing mechanism in the 50:50 directional coupler approach, as well as the role of the 

Kerr nonlinearity [36, 37, 38].  Regarding the passive phasing mechanism, their results indicate 

that the system self-adjusts and self-selects modes with least loss.  As for the role of nonlinearity, 

these studies seem to indicate that nonlinearity does not significantly contribute to the ability of 

the system to coherently lock all of the fiber elements and that nonlinearity can even be 

detrimental to the phase-locking.  Again, coincident mode theory is used establish the physical 

picture, in which the coincident modes that satisfy the roundtrip phase constraints of all of the 

fibers and experience the minimal loss are the ones that survive the system’s self-selection 

process and emerge.  In the 50:50 directional coupler system, additional constraints on the phases 

of the outputs from each fiber element arise in part from the matrix describing the couplers [36]: 

 [

 
 
 
 

𝐸𝑜𝑢𝑡,1
 

𝐸𝑜𝑢𝑡,2

 
 
 
 

] =
1

√2
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𝐸𝑖𝑛,1
 

𝐸𝑖𝑛,2

 
 
 
 

] (2. 4) 

 

The 50:50 couplers used here send 𝐸𝑜𝑢𝑡,2 to an angle-cleaved facet that effectively serves as a 

loss port, and they retain 𝐸𝑜𝑢𝑡,1 as the output.  In order for the inputs 𝐸𝑖𝑛,1 and 𝐸𝑖𝑛,2 to combine 

most efficiently, they must ideally have a phase difference of 𝜋/2 with respect to each other, so 

that all of the power is sent to the output port and none of the power is sent to the loss port.  This 

phase constraint is imposed by every coupler upon its two inputs, and thus the system as a whole, 

in its efforts to self-select modes that experience minimal loss, strives to satisfy these constraints 

in addition to the overall roundtrip phase constraints.  Kerr nonlinearity introduced to the system 

leads to spectral broadening and increased likelihood of overlap of the frequency combs of the 

individual fiber elements.  However, it also introduces nonlinear phase accumulation in each 
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fiber element, which must be included in the total roundtrip phase calculation and made to satisfy 

the respective phase constraints, including those imposed by the 50:50 couplers.  The additional 

requirement of satisfying the phase constraints of the couplers makes it difficult for the nonlinear 

effect to improve coherent locking.  In fact, very high values of the nonlinearity coefficient can 

lead to large fluctuations in the phase and increased loss to the cavity, which become detrimental 

to the phase-locking mechanism.  Similar to the case of the ring-geometry architecture, 

nonlinearity can cause the transfer of energy from low-loss modes to high-loss modes that do not 

sufficiently satisfy the imposed phase constraints, leading to reduced power and lower efficiency. 

 

2.8 Conclusion 

In conclusion, this chapter has investigated the dynamics of passive coherent beam combining of 

fiber laser arrays using the spatially-filtered ring geometry coupling scheme.  It has also 

examined the role of the non-resonant Kerr nonlinearity in the coherent phase-locking process.  

The results from the simulations regarding phase-locking dynamics are consistent with previous 

steady-state results as well as experimental results: (i) phase-locking occurs quickly and 

smoothly after the system is turned on, operating on a time scale shorter than that of the gain 

dynamics and relaxation oscillations, and (ii) once in steady-state operation, the system recovers 

from phase perturbations very quickly, within just a few round trips in the composite cavity.  In 

addition, numerical simulations indicate that the presence of the Kerr nonlinearity hinders the 

system’s ability to coherently lock the fiber lasers in phase, limiting the system from achieving 

efficient combining in this ring-geometry architecture.  Here, the combining efficiency is 

quantified by a metric that examines the far-field output intensity pattern of the tiled array. 
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CHAPTER 3 

Coupled mode-locked semiconductor lasers 

3.1 Introduction 

Semiconductor lasers also serve as a popular source for laser light.  Given the diverse set of 

semiconductor materials that can be used as the gain medium, they collectively enable access to 

a wide range of the wavelengths, including parts of the ultraviolet, visible, and infrared ranges 

[46, 47].  They offer several benefits that incentivize their widespread use and versatility: they 

are compact, relatively inexpensive, can be electrically pumped with good efficiency [2, 46, 48].  

In addition, manufacturing processes can allow them to be readily integrated on chip or a 

monolithic platform, which is often a very desirable quality.  A brief review of semiconductor 

laser physics is provided in the following paragraph. 

 

Semiconductor materials are well known for their band structure, which form when a large 

collection of atoms (each with its own set of atomic orbital energy levels) come within close 

proximity of each other (e.g. in a crystal lattice) [2].  The resultant groups of densely packed (but 

distinct) molecular orbitals form an approximate continuum, leading to so-called “bands” of 

energy levels [2].  The two important bands are the valence and conduction bands, where the 

latter is at the higher energy and generally unoccupied by the electrons unless they are excited to 

that state; the energy “bandgap” separates the two levels [48].  The basic example of a 

semiconductor optical amplifier is a p-n junction, which is formed by adjacent p-type and n-type 
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semiconductors that have holes and electrons, respectively, as the main charge carriers [2, 48].  

When a forward-biased current is applied across the p-n junction, then the two types of charge 

carriers are pushed to cross the junction to the other side; along the way, they can interact with 

each other through a recombination process to produce photon emission [2, 46].  This “injection 

current” can be used to create a population inversion of carriers (electrons in the conduction 

band, holes in the valence band) in this active region between the p-type and n-type materials, 

which can then enable stimulated emission and thus optical gain [2, 48].  In practice, the p-n 

junction is accompanied by a (single or double) heterostructure design that essentially provides 

better confinement of the charge carriers (thus enhancing recombination processes to improve 

gain) as well as waveguiding of the generated light [2, 46, 48].  The addition of a feedback 

mechanism facilitates the construction of a semiconductor laser. 

 

The versatility of semiconductor lasers has spurred high interest in the specific study of coupled 

semiconductor lasers and arrays for diverse applications and theory.  First, it is already well-

known that coupled continuous-wave (CW) semiconductor lasers are a source for a richly 

complex breadth of phenomena that have theoretical and practical importance, such as phase-

locking and synchronization, symmetry-breaking and leader-laggard dynamics, chaos (including 

synchronized chaos), and multistable behaviors (see SECTION 3.2.1 for a detailed literature 

review).  In fact, even after decades of research by numerous groups, there is continued interest 

and activity to better understand the varieties of systems and behaviors that exist.  Second, 

semiconductor lasers with saturable absorbers are themselves able to produce complex behavior, 

both in isolation as well as when coupled to passive/external feedback cavities, particularly in the 
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domain of mode-locking and pulse generation (see SECTION 3.2.4 for a review of the relevant 

scientific literature). 

 

It is therefore natural to anticipate an even greater degree of complexity when two or more 

mode-locked semiconductor lasers are mutually coupled.  At present, however, there is scarcely 

any prior work, for both the evanescently coupled and face-to-face/delay coupled cases.  Both 

cases can be expected to yield new, intriguing physical phenomena and novel dynamical 

behavior, which, given the versatility and inexpensiveness of semiconductor lasers, can be 

utilized for practical applications (e.g. communications, computing, clocking, frequency combs) 

and exploit the speed and bandwidth capacity of all-optical constructs.  In addition, coupled, 

mode-locked lasers can serve as a readily accessible platform/test-bed for theoretical and 

experimental studies of coupled nonlinear oscillators and dynamical systems, in a similar manner 

as the CW counterpart has been.  As an example of a promising practical application, a study of 

two ring-cavity semiconductor lasers, actively mode-locked via electro-optic modulators and 

passively coupled via 50:50 directional couplers, reported the construction of an all-optical flip-

flop [49].  Granted, this study did not involve passive mode-locking (via saturable absorbers) and 

was limited in exploration of the coupling dynamics and other possible phenomena. 

 

Hence, there is a motivation for the research work to model and investigate the dynamics and 

synchronization properties of passively coupled mode-locked semiconductor lasers.  The work 

covered in this chapter, particularly in SECTION 3.3, SECTION 3.4, and SECTION 3.6, will be 

included in several manuscripts currently under preparation. 
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3.2 Background and literature review 

3.2.1 Coupled continuous-wave semiconductor lasers 

Passively coupled CW semiconductor lasers and the dynamics of their “compound laser modes” 

or “supermodes” have been studied in great detail in the scientific literature.  Many different 

coupling setups have been explored analytically, numerically, and experimentally.  Two 

important categories are delay-coupled lasers and evanescently coupled lasers [47].  The 

following review highlights a sample of important studies and diversity of interesting nonlinear 

dynamical phenomena that occur; exposure to these works has assisted in developing a direction, 

applying mathematical techniques, and identifying/interpreting the results for this thesis work. 

 

One of the early systems that set the framework for much of the studies of delay-coupled lasers 

is that of a single semiconductor laser with external, delayed feedback – in a sense, this is a self-

coupled system [47].  In the case of weak or moderate external feedback, the Lang-Kobayashi 

(L-K) model was developed to investigate the delay-coupling-induced frequency shift (due to 

competition between the active and external feedback cavities’ modes), relaxation oscillation 

enhancement and instabilities, multistability, and hysteresis [50].  The L-K model has two 

equations: the first is a delay differential equation for the electric field (where the delayed term 

accounts for the feedback delay time), and the second is a rate equation for the population 

inversion.  Numerous subsequent papers have extensively used linear stability and bifurcation 

analyses methods (analytical and numerical) to further study the L-K equations, with interests 

such as the dynamics and stability of the external cavity mode solutions, routes to “coherence 

collapse” and chaos (e.g. via a process that undampens the relaxation oscillations), and a closer 

look at “mode-hopping” and multistability.  A small subset of such works are found in [51, 52, 
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53, 54, 55], and a review of a larger collection of works is given in [47].  A limitation of the L-K 

model is the single-longitudinal-mode framework, but there have been extensions to multimode 

versions, e.g. by writing L-K equations for each lasing mode in consideration and coupling the 

sets of equations for each mode to those of the other modes via cross-saturation terms [56]. 

 

The L-K equations serve as an important foundation and basis for models of many of the various 

systems of delay-coupled semiconductor lasers, such as unidirectionally and mutually-injected 

coupled lasers.  The modeling approaches for coupled lasers is to assign a set of L-K equations to 

each laser and apply coupled-mode theory, specifically by including the electric field of one laser 

as an additional source term in the delay differential equation of the electric field amplitude of 

the other laser.  Unidirectionally coupled lasers are set up with asymmetry in the manner that 

coupling is one-way: a fraction of the drive laser’s output is injected or coupled into the response 

laser, with the delay arising from the time of propagation between the lasers [47].  The coupled 

system then can exhibit several behaviors, such as frequency-locking and synchronization, 

delayed synchronization, absence of synchronization, or synchronized chaos induced in the 

response laser by a chaotic drive laser [47]. 

 

On the other hand, for two mutually-injected lasers, the two lasers are placed face-to-face with 

each other, such that a portion of each laser’s output is injected into one of the facets of the other 

laser.  As such, the delay time arises from propagation of light from one laser to the other, and 

vice versa.  The symmetry in this setup provides avenues for interesting synchronization and/or 

symmetry-breaking phenomena to naturally occur and be observed.  Mutually-injected 

semiconductor lasers have been studied in the context of “compound laser modes” (CLMs) and 
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the framework they provided for organizing the dynamics [47].  CLMs are simple, CW solutions 

to the coupled L-K equations, for which the two lasers are frequency-locked, maintain constant 

amplitudes, and possibly have a time-independent phase difference [57].  Several papers have 

explored different facets of the dynamics of CLMs, including their stability regions and 

bifurcation pictures, because the CLMs’ structure can provide information about the frequency-

locking and synchronization behavior [57, 58, 59].  These papers also considered small 

frequency detuning between the solitary modes of the two lasers (thus introducing an asymmetry 

to consider) and the associated impact on the trajectories and stability of the CLMs in the 

presence of coupling [57, 58, 59].  Recent papers have further explored detuning effects [60, 61]. 

 

In another set of numerical and experimental studies, for otherwise perfectly identical lasers 

(including zero frequency detuning), the coupled system was found to spontaneously break 

symmetry and assume robust leader-laggard delayed synchronization between the two lasers , 

even when both lasers operated in chaotic regimes (i.e. delay-synchronized chaos was also 

observed) [62, 63].  Here, the numerical simulations showed that zero-lag synchronization 

occurred for the two lasers if they were given the same initial conditions and the noise sources 

were absent, whereas the addition of a spontaneous emission noise term to the model equations 

caused the zero-lag scenario to lose stability and the leader-laggard delayed synchronization 

scenario to prevail [62, 63].  Alternatively to numerical bifurcation analysis, a recent paper 

suggested a complementary group-theory-based approach in order to examine and classify 

symmetry-breaking bifurcations of coupled identical lasers and extend to larger symmetric 

coupled laser arrays [64]. 
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Asymmetry has also been further explored in mutually-injected semiconductor lasers.  In fact, 

one of the earlier studies – numerical and experimental – considered weakly mutually-coupled 

lasers with non-identical coupling strengths and gains [65].  The authors observed localized 

synchronization (strong oscillations in one laser, weak oscillations in the other) and entrainment 

of one laser to weakly oscillate at the relaxation oscillation frequency of the other laser [65].  

Furthermore, they addressed the dependence of this behavior on the asymmetry in laser pumping 

and (and thus solitary relaxation oscillation frequencies) and in coupling strength [65]. 

 

One additional study considered the limiting case for which the delay approaches zero (but the 

electric field phase rotation due to propagation is retained as a parameter) and thus the face-to-

face coupling is instantaneous [47, 66].  The authors showed how the dynamics and stability of 

synchrony and anti-synchrony between two identical lasers (without any frequency detuning 

between them) depend on the coupling strength and especially the phase of the instantaneous 

mutual injection [66].  The paper also addresses phase-locked CW operation, self-pulsations, and 

chaos when symmetry is broken through frequency detuning [66]. 

 

The second category, evanescently coupled lasers, lends itself to slightly different modeling 

approaches and behaviors.  A key difference is that, typically, there is negligible delay time in 

the process of coupling the field of each laser to the other – coupling can be treated as 

instantaneous.  The relevant theoretical studies employed models predominantly of the ordinary 

or partial differential equation variety, as opposed to delay differential equations [67, 68, 69].  

Some of the significant findings and observations included, among others, 1) the dynamic 

instability and strong chaotic pulsing for individual lasers in a phase-locked array whose total 



49 

 

array output relaxed toward quasi-steady-state [67], 2) the ability of the lasers in the array to 

phase-lock and its dependence on various parameters [68, 70], and 3) synchronized chaos [69]. 

 

3.2.2 Conceptual review of passive mode-locking with a saturable absorber 

The essential idea behind mode-locking is the phase-locking of many longitudinal modes / 

frequencies in a manner that yields a periodic train of pulses.  To illustrate the basic concept, 

Figure 3.1 depicts the difference between the scenario of randomly-phased, uncorrelated 

sinusoids and the scenario of phase-locked sinusoids.  In the case of a laser, the set of modes that 

can be phase-locked in order to generate the pulse train are limited by two main factors.  First, 

the modes must satisfy the roundtrip phase constraint of the cold cavity (i.e. these frequencies are 

equidistantly spaced by the cavity’s free-spectral range, 1/𝑇, where 𝑇 is the roundtrip delay 

time).  Second, the modes must observe sufficient net gain in order to lase.  The width of each 

pulse in the train is inversely proportional to the bandwidth of the mode spectrum available. 

 

Figure 3.1: Illustration of the basic concept of mode-locking.  In the left column, the sinusoids are randomly-

phased, while in the right column all of the sinusoids phase-locked.  Note that for the sake of 

clarity, the top row shows only the first 5 harmonics, whereas the bottom row shows the synthesis 

of up to 40 harmonics.  The horizontal axis is time, while the vertical axis is amplitude/power. 
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There are several popular techniques that are used in order to achieve mode-locking in a laser, 

and a good review of many techniques and the history of their development can be found in [71].  

This section, however, will review only mode-locking using a saturable absorber.  The saturation 

of the absorption coefficient leads to an intensity-dependent transmission profile: when the 

optical intensity passing through it is sufficiently high, the absorption saturates and thus 

attenuation is thus low; when the optical intensity is low (e.g. after the pulse passes through), the 

absorption recovers and the attenuation becomes high again [2].  Therefore, the saturable 

absorber can be used to shorten the pulse circulating in the laser cavity as the pulse passes 

through it, and the saturable absorber can meanwhile suppress/attenuate noise and other weaker 

fluctuations before and after the pulse.  In the context of semiconductor laser, the absorber 

section can be implemented similarly as the gain section, except with the application of a reverse 

bias: when the circulating pulse passes through the absorber, many charge carriers (electron-hole 

pairs) are created and the material’s absorption decreases; as the pulse leaves, the reverse bias 

quickly sweeps the charge carriers out of the active section in order to recover the high-

attenuation state of the absorber [72, 73].  Note that this reverse bias can be used to adjust the 

absorber’s recovery time: larger reverse bias levels can lead to faster absorber recovery and, 

consequently, further shortening of the pulses [72]. 

 

The recovery time of the saturable absorber is an important parameter in the mode-locking 

process, as is the depth/strength of the absorber saturation.  For a fast saturable absorber, the 

recovery time is shorter than the width of the circulating pulse, and so the absorber responds and 

recovers nearly instantaneously with respect to the time scale of the pulse [74].  The saturation 

needs to be strong enough in order to open a window of net gain [71, 75].  The left column of 
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Figure 3.2 shows an example of pulse formation in the presence of fast saturable absorption, as 

described in [71].  Note that, in this figure, the gain is assumed to have a very slow relaxation 

time and to be only negligibly saturated by the passage of a single pulse, in which case the gain 

is saturated primarily by the average circulating power and can be considered more or less 

constant on the time scale of a single pulse (this is reasonable, for example, in the case of solid-

state lasers with small gain cross-sections) [74, 75].  On the other hand, mode-locking is also 

possible with a slow saturable absorber, one with a recovery time that is much longer than the 

pulsewidth but shorter than the cavity roundtrip time, as exemplified in the right column of 

Figure 3.2 and described in [71, 76].  In this figure, note the interplay between absorber 

saturation and gain saturation in order to open and close the net gain window around the pulse 

(here, the gain is saturated appreciably by the pulse and is clearly time-varying on the time scale 

of the pulse and the cavity roundtrip time) [71].  As the pulse arrives, the absorber saturates first, 

deeply/strongly enough to open a window of net gain, which is then closed through a 

combination of gain saturation and absorption recovery as the pulse departs [71].  The absorption 

recovers then faster than does the gain, such that, after the pulse passes through and generally 

between subsequent pulses, there is higher loss than gain and consequently near-zero intensity 

[71, 76].  There is also another, slightly different scenario for mode-locking with a slow absorber 

that can occur, as shown in Figure 3.3.  Here, the general idea still holds regarding the formation 

of the net gain window to sustain pulsed operation, but an interesting observation is that stable 

mode-locking can occur even if the opening of this window slightly precedes the leading edge of 

the pulse [72, 77].  In addition, it has been observed and reported that stable mode-locking can 

also be achieved even if the closing of the net gain window occurs slightly after the pulse’s 

trailing edge [78, 79]. 
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Figure 3.2: Example of the dynamics of passive mode-locking via saturable absorber, distinguishing between 

the usages of fast vs. slow absorbers.  It is seen that the fast absorber saturates with a profile that 

tracks the pulse’s instantaneous and peak power, whereas the slow absorber saturates depending 

on the pulse energy (in a sense, the saturation profile tracks the integral of the pulse power) [75].  

Note that the horizontal and vertical scales in the subplots are in arbitrary units, because the 

purpose of this figure is simply to provide a qualitative illustration. 

 

 

Figure 3.3: Example of mode-locking with slow saturable absorber in which the opening net gain window 

slightly precedes the leading edge of the pulse. 
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3.2.3 Conceptual review of linear stability analysis and bifurcation theory 

A brief recap of the linear stability analysis and relevant bifurcation theory of DDEs is provided 

here.  Namely, the Hopf bifurcation is described here, as it is used in this thesis work to 

understand and describe the mode-locked regimes for the single laser and the coupled system.  

Of course, there are many other types of bifurcations, local and global, often seen in dynamical 

systems.  An excellent introduction to bifurcation theory and its applications can be found in [80] 

(although the material in this book is covered in the context of ordinary differential equations, 

the conceptual framework is qualitatively similar to that of delay differential equations), and a 

brief review of linear stability analysis of DDEs as well as a list of references that treat the theory 

in greater rigor are both provided in [81].  The following recap of linear stability analysis and 

bifurcation theory refers to the material explained and presented in [80, 81]. 

 

Without a loss of generality, consider a system of DDE with a single delay (𝑇) given by 

𝑑

𝑑𝑡
𝑥(𝜏) = 𝑓(𝑥(𝜏), 𝑥(𝜏 − 𝑇)), where the state variable is 𝑥(𝜏) ≡ [𝑥1(𝜏) 𝑥2(𝜏) ⋯]⊺.  Suppose 

𝑥∘ is an equilibrium/steady-state of the system, i.e. 𝑓(𝑥∘, 𝑥∘) = 0.  The local stability of this 

equilibrium can be found as follows.  First, the DDE is linearized around 𝑥∘ via the Jacobian; the 

DDE that results from linearization is called the “variational equation” and has the form 

𝑑

𝑑𝜏
𝑥(𝜏) ≈ 𝑓(𝑥∘, 𝑥∘) +

𝜕𝑓(𝑥∘,𝑥∘)

𝜕𝑥(𝜏)
(𝑥(𝜏) − 𝑥∘) +

𝜕𝑓(𝑥∘,𝑥∘)

𝜕𝑥(𝜏−𝑇)
(𝑥(𝜏 − 𝑇) − 𝑥∘).  Note here the use of the 

shorthand: 
𝜕𝑓

𝜕𝑥(𝜏)
 and 

𝜕𝑓

𝜕𝑥(𝜏−𝑇)
 are actually the Jacobian matrices evaluated at the equilibrium; the 

elements are given as 𝐽𝑖𝑗(𝜏) = 𝜕𝑓𝑖(𝑥
∘, 𝑥∘)/𝜕𝑥𝑗(𝜏) and 𝐽𝑖𝑗(𝜏 − 𝑇) = 𝜕𝑓𝑖(𝑥

∘, 𝑥∘)/𝜕𝑥𝑗(𝜏 − 𝑇), 

respectively.  Next, a small perturbation from the equilibrium 𝑥(𝜏) = 𝑥∘ + 𝑥𝑝𝑒
𝜆𝜏, where 𝑥𝑝 is a 

constant vector and 𝜆 is a constant scalar, is inserted into the variational equation in order to 
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derive the characteristic equation: det (−𝜆𝐼 +
𝜕𝑓(𝑥∘,𝑥∘)

𝜕𝑥(𝜏)
+ 𝑒−𝜆𝑇

𝜕𝑓(𝑥∘,𝑥∘)

𝜕𝑥(𝜏−𝑇)
) = 0, where 𝐼 is the 

identity matrix. 

 

The roots of the characteristic equation (generally complex-valued) are the eigenvalues, and this 

“eigenvalue spectrum” provides information about the local stability of the equilibrium 𝑥∘ for the 

DDE: if all of the eigenvalues are in the open left-half plane, then the equilibrium is stable, and if 

there are any eigenvalues in the open right-half plane, then the equilibrium is unstable.  This is 

clear from examination of the perturbation: 𝑥(𝜏) = 𝑥∘ + 𝑥𝑝𝑒
𝜆𝜏, and so if Re{𝜆} < 0, then 𝑥(𝜏) 

eventually “returns” to 𝑥∘, whereas is Re{𝜆} > 0, then it does not.  Moreover, the right-most 

eigenvalue in the complex plane is the one that determines the stability.  Typically, as one of the 

parameters of the differential equation is gradually and smoothly varied, the equilibria of the 

system may smoothly change in value too, but the system remains qualitatively similar in its 

structure/topology.  Bifurcations occur when the system encounters a qualitative/topological 

change in its dynamical behavior as a result of a smooth variation of one of the parameters.  

Examples are the creation and/or annihilation of one or more equilibria and/or limit cycles, the 

exchange of stability between equilibria, etc.  Bifurcations can be identified when the right-most 

eigenvalue crosses the imaginary axis of the complex plane. 

 

Now, in the case of ordinary differential equations, only the first two terms are present inside the 

determinant for the characteristic equation.  As a result, the characteristic equation is a 

polynomial, which has a finite number of roots.  However, for DDEs, the situation is more 

complicated, due to the factor of 𝑒−𝜆𝑇 in the third term inside the determinant.  The characteristic 

equation here is transcendental, and consequently it generally has an infinite number of 
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roots/eigenvalues.  Fortunately, it can be shown for a causal system (positive values of the delay 

𝑇) that there are only a finite number of eigenvalues in any right-half plane Re{𝜆} > const ∈ ℝ.  

This facilitates numerical computation (see SECTION 3.3.4 and APPENDIX B.3). 

 

Hopf bifurcations occur when a complex-conjugate pair of stability-determining eigenvalues 

cross the imaginary axis.  Recalling the form of the small perturbation 𝑥(𝜏) = 𝑥∘ + 𝑥𝑝𝑒
𝜆𝜏 from 

the equilibrium 𝑥∘, a pair of purely imaginary eigenvalues (that are complex-conjugates) for the 

term 𝑥𝑝𝑒
𝜆𝜏 corresponds to oscillatory behavior around the equilibrium 𝑥∘, and this oscillation is 

also known as a periodic orbit or a limit cycle.  Thus, the Hopf bifurcation signifies the creation 

or annihilation of a limit cycle from the equilibrium point.  As an example in the context of 

mode-locked semiconductor lasers, a CW state can be considered an equilibrium point of a 

differential equation of the slowly-varying envelope of the complex field (i.e. the slowly-varying 

envelope is a constant) while a mode-locked pulse train (i.e. the slowly-varying envelope itself is 

a periodic function) is seen to emerge as a limit cycle that bifurcates from the CW solution.  The 

point along the imaginary axis at which the eigenvalues cross for a Hopf bifurcation is the 

frequency of the limit cycle that is created.  Therefore, in the mode-locked lasers example given, 

the imaginary part of the eigenvalue at the Hopf bifurcation would yield the repetition rate of the 

mode-locked pulse train.  There are two varieties of Hopf bifurcations, depending on the nature 

of the limit cycle that emerges from it.  The first is called supercritical, in which a stable 

equilibrium becomes unstable in favor of the generation of a stable limit cycle.  The second is 

subcritical, in which an unstable equilibrium becomes stable, and an unstable limit cycle emerges 

at the bifurcation point. 
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3.2.4 Passively mode-locked semiconductor lasers 

The work of Haus with the “master equation” approach was a key development in the theory of 

passive mode-locking via a saturable absorber (both fast and slow) [71, 74, 76].  However, the 

drawbacks of this model arise for semiconductor lasers due to the model’s assumptions of small 

gain and loss per roundtrip [77, 82].   This led to the development of a more general model that 

made fewer assumptions, aside from the stipulation of a unidirectional ring cavity, and was 

formulated as a delay differential equation (DDE) system [77, 82].  This model has been used in 

many subsequent works on passively mode-locked semiconductor lasers.  It is general enough to 

account for the dynamical phenomena, it facilitates easy and efficient numerical simulation, and 

it allows for rigorous bifurcation analysis and some analytical insight (in contrast to spatio-

temporal, traveling-wave models, which although very general, are computationally expensive to 

solve numerically and are limited in yielding physical insight from analytical methods) [72]. 

 

To date, however, the relevant recent literature following the introduction of this DDE model has 

been predominantly focused on the following setups (for an excellent and very detailed review of 

the first two items and a thorough study of the third item in this list, one can refer to [73]): 

1) A single laser within a ring cavity restricted to unidirectional operation [77, 82, 83, 84], 

where the studies identified through simulations and bifurcation analysis different 

dynamical regimes of operation (e.g. CW, mode-locked, harmonic mode-locked, Q-

switched mode-locked), assessed the effect of the linewidth enhancement factors, and 

examined the multistability at the transitions between the different operating regimes 

2) A single laser within a linear cavity that permits counter-propagating waves [85]; 

although this study did not specifically use the DDE modeling approach, it did provide a 
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comparison between the dynamics of the linear cavity vs. the unidirectional ring cavity, 

which indicates the DDE model can yield insight for linear cavities too 

3) A single active cavity coupled to one passive cavity [86, 87] or two passive cavities [88, 

89]; the authors in [86] report results on harmonic mode-locking at a repetition rate 

determined by the passive cavity length and optical bistability, while the authors for each 

of the other three papers use the passive cavities in order tune the pulse repetition rates 

and to reduce/stabilize pulse timing jitter 

4) Extensions of the DDE model specifically for mode-locked quantum-dot lasers [90, 91] 

 

At present, prior work on the dynamics of two coupled, mode-locked semiconductor lasers is 

scarce.  The case of two mode-locked semiconductor lasers coupled in a face-to-face 

configuration has been mentioned [89] but accorded limited attention.  Given the wealth of 

dynamic phenomena and synchronization behaviors observed for passively coupled CW 

semiconductor lasers, it is important to examine the mode-locked case.  Using the DDE model 

earlier introduced for a single mode-locked, ring-cavity laser, this thesis sets out to explore the 

coupled-laser case in the context of evanescent coupling. 

 

3.3 Methods 

3.3.1 Physical model 

Figure 3.4 illustrates the setup of the two coupled laser cavities, each with separate saturable gain 

and saturable absorption sections (note: these are slow saturable absorbers), as well as a lumped-

element spectral filtering element; “passive sections” are present in between.  Both cavities are 

assumed to operate in a unidirectional manner (as labeled in Figure 3.4), and the two are 
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evanescently coupled by means of a directional coupler within the passive sections that precede 

the output coupler.  Coupling is assumed to be lossless and well-phase-matched; the latter 

assumption is reasonable when the field amplitude envelope is slowly-varying compared to the 

optical frequency, e.g. in this case picosecond-scale pulses enveloping femtosecond-scale optical 

carrier oscillations.  This model for the coupled system is an extension of the single, mode-

locked semiconductor laser cavity in [77, 82, 83, 84].  Both lasers are considered identical, 

except for the possibility of asymmetry in pumping (i.e. gain injection currents), cavity roundtrip 

time, and/or the initial state before “turning on” the coupling.  Further details of the simplifying 

assumptions are provided in SECTION 3.3.3. 

SA 1 G 1
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F

G 2 SA 2

S

F

Passive 

Coupling

M

M

M M M

M

OC

iz fz
izfz

1 2

 

Figure 3.4: Diagram of two passively coupled, mode-locked, unidirectional ring-cavity semiconductor lasers.  

The labels denote saturable absorbers (SA), gain sections (G), lumped element spectral filtering 

(SF), mirrors with 100% reflectivity (M), and output couplers (OC).  The spaces between the 

lumped elements are “passive sections” in the cavities.  In each cavity, the labels 𝑧𝑖 and 𝑧𝑓 denote 

the beginning and end, respectively, of a roundtrip. 
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As an aside, the location chosen here at which mutual coupling occurs (i.e. immediately before 

the output coupler) simplifies the derivations involved when transforming the partial differential 

equation model into the delay differential equation model.  This thesis work at present does not 

consider alternative locations for coupling, such as after the spectral filter or within the gain 

and/or saturable absorber sections.  Indeed, it would be interesting to examine these scenarios in 

the future, especially for passive coupling immediately after the spectral filter (which could serve 

as a step towards extending the model to systems of three or more adjacently coupled lasers). 

 

3.3.2 Mathematical model and parameter values for numerical simulations 

The two coupled lasers are mathematically described as per Equations (3.1) – (3.6).  Here, a set 

of traveling wave (partial differential) equations – similar to that utilized in [77] – accounts for 

the evolution of the slowly-varying, complex-valued envelope of the electric field through each 

absorber, gain, and passive section.  For the gain and absorber sections, accompanying rate 

equations model the respective carrier densities.  For the passively coupled region, standard 

coupled mode theory is utilized [2, 69, 70, 92, 93].  Table 3.1 describes each and every variable 

and parameter used in the equations. 

 

For the absorber/gain sections, 

 
𝜕𝐸1,2(𝑡, 𝑧)

𝜕𝑧
+
1

𝑣

𝜕𝐸1,2(𝑡, 𝑧)

𝜕𝑡
=
𝑔𝑟Γ𝑟
2

(1 − 𝑖𝛼𝑟)(𝑁(1,2),𝑟(𝑡, 𝑧) − 𝑁𝑟
𝑡𝑟)𝐸1,2(𝑡, 𝑧) (3. 1) 

 

 
𝜕𝑁(1,2),𝑟(𝑡, 𝑧)

𝜕𝑡
= 𝐽(1,2),𝑟 − 𝛾𝑟𝑁(1,2),𝑟(𝑡, 𝑧) − 𝑣𝑔𝑟Γ𝑟(𝑁(1,2),𝑟(𝑡, 𝑧) − 𝑁𝑟

𝑡𝑟)|𝐸1,2(𝑡, 𝑧)|
2
 (3. 2) 

 

For the passive sections with and without coupling, respectively, 
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𝜕𝐸1,2(𝑡, 𝑧)

𝜕𝑧
+
1

𝑣

𝜕𝐸1,2(𝑡, 𝑧)

𝜕𝑡
= 0 (3. 3) 

 

 
𝜕𝐸1,2(𝑡, 𝑧)

𝜕𝑧
+
1

𝑣

𝜕𝐸1,2(𝑡, 𝑧)

𝜕𝑡
= +𝑖Κ12,21𝐸2,1(𝑡, 𝑧) (3. 4) 

 

To account for the ring cavities’ periodic boundary conditions, 

 𝐸1,2(𝑡, 𝑧 + 𝐿1,2) = 𝐸1,2(𝑡, 𝑧) (3. 5) 

 

To describe the spectral filtering with frequency response function 𝑓(𝑤) – where ^ denotes the 

Fourier Transform, and Figure 3.4 indicates the positions 𝑧𝑖 and 𝑧𝑓 – for each laser cavity, 

 𝐸̂1,2(𝑤, 𝑧𝑖) = 𝐸̂1,2(𝑤, 𝑧𝑖 + 𝐿1,2) = 𝑓(𝑤)𝐸̂1,2(𝑤, 𝑧𝑓) (3. 6) 

 

Table 3.1: List of variables and parameters in the partial differential equation model of two coupled mode-

locked semiconductor lasers; see Equations (3.1) – (3.6). 

Variable / Parameter Description 

𝑡 Temporal coordinate 

𝑧 
Spatial coordinate (with respect to the position in each 

cavity, along its longitudinal direction) 

Subscripts 1 and 2 Referring to lasers 1 and 2, respectively 

Subscripts 𝑟 = 𝑔 and 𝑞 Referring to the gain and absorber sections 

𝐸1,2(𝑡, 𝑧) Electric field (slowly-varying envelope) 

𝐿1,2 Cavity roundtrip lengths 

𝑁(1,2),(𝑔,𝑞)(𝑡, 𝑧) Carrier densities in the gain and absorber sections 

𝑁𝑔,𝑞
𝑡𝑟  Carrier densities at transparency threshold 

𝑣 Light group velocity 

𝛼𝑔,𝑞 Linewidth enhancement factors 

𝑔𝑔,𝑞 Differential gains 

Γ𝑔,𝑞 Transverse modal fill factors 
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Κ12,21 
Coupling coefficients, referring to coupling from laser 

cavity 2 → 1 or 1 → 2, respectively 

𝛾𝑔,𝑞 Carrier density relaxation rates 

𝐽(1,2),(𝑔,𝑞) Injection currents (note that 𝐽(1,2),𝑞 = 0) 

 

After non-dimensionalizing the above equations (including a coordinate change to a retarded 

time frame that moves along with the circulating wave/pulse), evaluating the transformation of 

each field amplitude from the beginning of its roundtrip through all of the cavity sections to the 

end of the same roundtrip, and then applying the spectral filters (treated as Lorentzian in 

lineshape) and boundary conditions, the model equations yield a system of six delay differential 

equations (DDE) that serve as the basis for the numerical simulation and bifurcation analysis 

results of this chapter.  The DDE system is given below in Equations (3.7) – (3.16), while the 

full details of its derivation are relegated to APPENDIX A.1.  The action of the directional 

coupler is captured by the coupling matrix in Equation (3.17).  Table 3.2 describes the variables 

and parameters in the model, along with the parameter values used in the numerical simulations. 

 

The amplitude equations are given below: 

 
𝜕𝐴1(𝜏)

𝜕𝜏
= −𝛾𝐴1(𝜏) + 𝛾𝑒

−𝑖𝜑1(𝑅11(𝜏 − 𝑇1)𝐴1(𝜏 − 𝑇1) + 𝑅12(𝜏 − 𝑇1)𝐴2(𝜏 − 𝑇1)) (3. 7) 

 

 
𝜕𝐴2(𝜏)

𝜕𝜏
= −𝛾𝐴2(𝜏) + 𝛾𝑒

−𝑖𝜑2(𝑅21(𝜏 − 𝑇2)𝐴1(𝜏 − 𝑇2) + 𝑅22(𝜏 − 𝑇2)𝐴2(𝜏 − 𝑇2)) (3. 8) 

 

Here, the terms 𝑅𝑖𝑗 that describe the coupling are given below: 

 𝑅11(𝜏) ≡ cos(Κ′ℓ)√𝜅𝑒(1−𝑖𝛼𝑔)𝐺1(𝜏)/2−(1−𝑖𝛼𝑞)𝑄1(𝜏)/2 (3. 9) 
 

 𝑅12(𝜏) ≡
𝑖

Κ′′
sin(Κ′ℓ)√𝜅𝑒(1−𝑖𝛼𝑔)𝐺2(𝜏)/2−(1−𝑖𝛼𝑞)𝑄2(𝜏)/2 (3. 10) 

 

 𝑅21(𝜏) ≡ 𝑖Κ
′′ sin(Κ′ℓ)√𝜅𝑒(1−𝑖𝛼𝑔)𝐺1(𝜏)/2−(1−𝑖𝛼𝑞)𝑄1(𝜏)/2 (3. 11) 
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 𝑅22(𝜏) ≡ cos(Κ′ℓ)√𝜅𝑒(1−𝑖𝛼𝑔)𝐺2(𝜏)/2−(1−𝑖𝛼𝑞)𝑄2(𝜏)/2 (3. 12) 
 

The gain equations are given below: 

 
𝜕𝐺1(𝜏)

𝜕𝜏
= 𝑔01 − Γ𝐺1(𝜏) − 𝑒

−𝑄1(𝜏)(𝑒𝐺1(𝜏) − 1)|𝐴1(𝜏)|
2 (3. 13) 

 

 
𝜕𝐺2(𝜏)

𝜕𝜏
= 𝑔02 − Γ𝐺2(𝜏) − 𝑒

−𝑄2(𝜏)(𝑒𝐺2(𝜏) − 1)|𝐴2(𝜏)|
2 (3. 14) 

 

The absorber equations are given below: 

 
𝜕𝑄1(𝜏)

𝜕𝜏
= 𝑞0 − 𝑄1(𝜏) − 𝑠(1 − 𝑒

−𝑄1(𝜏))|𝐴1(𝜏)|
2 (3. 15) 

 

 
𝜕𝑄2(𝜏)

𝜕𝜏
= 𝑞0 − 𝑄2(𝜏) − 𝑠(1 − 𝑒

−𝑄2(𝜏))|𝐴2(𝜏)|
2 (3. 16) 

 

The coupling matrix below describes the transfer of radiation from each laser cavity to the other, 

where Κ′ℓ is the coupling parameter (physically, Κ′ℓ = 0 indicates uncoupled lasers, Κ′ℓ = 𝜋/4 

indicates 50:50 coupling, and Κ′ℓ = 𝜋/2 indicates complete cross-coupling): 

 

[

 
 
 
 

𝐴1(𝜏)
 

𝐴2(𝜏)

 
 
 
 

]

after coupling

= [

 
 
 
 

cos(Κ′ℓ) 𝑖 sin(Κ′ℓ)
  

𝑖 sin(Κ′ℓ) cos(Κ′ℓ)

 
 
 
 

] ⋅ [

 
 
 
 

𝐴1(𝜏)
 

𝐴2(𝜏)

 
 
 
 

]

before coupling

 

(3. 17) 

 

Table 3.2: List of variables and parameters – with values used for simulations – in the delay differential 

equation model of two coupled mode-locked semiconductor lasers; see Equations (3.7) – (3.16). 

Variable / 

Parameter 
Description Value(s) Reference 

𝜏 Temporal coordinate 𝜏 = 𝛾𝑞(𝑡 − 𝑧/𝑣) n/a  

𝛾𝑞  

(1/𝛾𝑞)  

Saturable absorber carrier density relaxation time 

(note that this term is not explicitly present in the 

DDE model; instead, a typical, example value is 

provided here simply to give a sense for the 

physical time scale and to accordingly aid 

interpretation of the numerical simulation results; 

𝑡 = 𝜏 ⋅ 1/𝛾𝑞 for 𝑧 = 0)  

100 GHz  
(10 ps) 

[82, 83] 
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Subscripts 1 and 2 Referring to lasers 1 and 2, respectively n/a  

𝐴1,2(𝜏) 
Amplitude at the beginning of the roundtrip 

(complex-valued, normalized) 
n/a  

𝐺1,2(𝜏) Saturable gain (real-valued, normalized) n/a  

𝑄1,2(𝜏) Saturable absorption (real-valued, normalized) n/a  

𝑇1,2 

Cold-cavity roundtrip times (normalized), i.e. 

𝑇1,2 = 𝛾𝑞𝐿1,2/𝑣 (for nearly all of the simulation 

results, the two lasers have identical lengths / 

roundtrip times, i.e. 𝑇1 = 𝑇2 = 𝑇) 

Unless otherwise 

specified, two different 

values are used: 1.875 

(in SECTION 3.4 and 

SECTION 3.5) and 2 

(in SECTION 3.6) 

[77] 

𝛾 Spectral filtering bandwidth/FWHM (normalized) 33.3 [77] 

𝜅 
Accounts for the total, linear, roundtrip 

loss/attenuation (in intensity) for each cold cavity 
0.1 [77] 

𝛼𝑔,𝑞 

Linewidth enhancement factors for the gain and 

absorber sections, respectively (the two lasers are 

assumed to have identical linewidth enhancement 

factors, i.e. 𝛼𝑔1 = 𝛼𝑔2 = 𝛼𝑔 and 𝛼𝑞1 = 𝛼𝑞2 = 𝛼𝑞) 

0 (if left unspecified), 

otherwise two other 

sets of values are used: 

𝛼𝑔 = 3 and 𝛼𝑞 = 1 or 

𝛼𝑔 = 𝛼𝑞 = 3 

 

𝜑1,2 

𝜑1,2 = Ω𝑇1,2, where Ω is the detuning between the 

filter’s center and the nearest cold cavity axial 

mode/frequency 

0  

𝑔0(1,2) 

Unsaturated gain parameter for each laser 

(in all of the simulation results for this thesis 

work, the two lasers are identically pumped, i.e. 

𝑔01 = 𝑔02 = 𝑔0) 

Varied from 0 to 9  

Γ Ratio between gain/absorber relaxation rates 1.33 × 10−2 [77] 

𝑞0 
Unsaturated absorption parameter (assumed to be 

the same for both lasers) 

4 (unless otherwise 

specified) 
 

𝑠 
Ratio between gain/absorber sections’ saturation 

intensities, i.e. 𝑠 = (𝑔𝑞Γ𝑞)/(𝑔𝑔Γ𝑔) 
25 [77] 

Κ′ℓ 

Coupling parameter Κ′ℓ = √Κ12
′ Κ21

′ ⋅ ℓ, where ℓ 

is the normalized length (i.e. multiplied by 𝛾𝑞/𝑣) 

of the passive section of the two cavities within 

which coupling occurs 

Varied in the range 0 to 

2𝜋, but mainly from 0 

to 𝜋/2 

 

Κ′′ 
Κ′′ = √Κ21

′ /Κ12
′ , assumed to equal to unity 

(generally, Κ12 = Κ21
∗  due to symmetry in the 

coupling setup) 

1 [93] 
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[
𝐴10,   𝐺10,   𝑄10,
𝐴20,   𝐺20,   𝑄20

] 

Initial “history”/state for the numerical integration 

(the DDE system is accompanied by a set of 

“initializations” for the variables, in this case as 

constant-valued, continuous functions defined 

from 𝜏 = −max{𝑇1, 𝑇2} to 𝜏 = 0; these initial 

histories are analogous to initial conditions for an 

ODE system) 

Unless otherwise 

specified, three main 

initialization sets are 

used in the simulations: 

[
 0.6,   2.5,   0.1,
0.6,   2.5,   0.1

]  

(referred to here as 

“in-phase history”), 

[
   0.6,   2.5,   0.1,
𝑖 0.6,   2.5,   0.1

]  

(referred to here as 

“90° out-of-phase 

history”), 

and [
 0,   0,   0,
0,   0,   0

]  

(referred to here as 

“zero-state history” and 

used for the simulations 

with noise) 

 

 

This DDE system can be numerically integrated in order to investigate the temporal profiles and 

dynamics of the two coupled lasers.  However, it needs to be further manipulated in order to 

facilitate stability and bifurcation analyses via numerical continuation methods.  Specifically, the 

S1 group symmetry corresponding to rotation of the complex-valued field amplitudes 𝐴1,2 must 

be removed from the equations, so as to yield isolated equilibria of the system.  Otherwise, the 

characteristic equation from the linearization would persistently contain a zero eigenvalue from 

the S1 equivariance of the DDE system.  This observation can be intuitively explained as a result 

of the fact that the set of equilibria for which the amplitudes differ only by rotation around the 

complex plane all simultaneously have the same stability; essentially, the DDE system sees no 

difference between these equilibria.  The presence of the zero eigenvalue could then obfuscate 

the numerical determination of the stability and bifurcation scenarios, since the bifurcations 

themselves are identified by a change in stability (i.e. when an eigenvalue crosses zero as a 

parameter is varied) [94].  Specifically, if a zero eigenvalue is always present, then the stability is 

always left undetermined, and so this zero eigenvalue that results from the S1 symmetry must be 
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removed by removing the symmetry.  This type of issue is commonly encountered in the 

literature [57, 94, 95, 96, 97, 98, 99], including the studies that utilize the Lang-Kobayashi 

equations for continuous-wave lasers (see some of the aforementioned references) and the DDE 

model for mode-locked lasers [77].  As described in the references, the standard approach that is 

used to proceed is to insert into the DDEs the ansatz 𝐴1,2(𝜏) = 𝐴𝑟(1,2)(𝜏)𝑒
𝑖𝐴𝜙(1,2)(𝜏), where 

𝐴𝑟(1,2)(𝜏) and 𝐴𝜙(1,2)(𝜏) are all real-valued quantities, and then separate the respective 

derivative terms in order to obtain a system of eight DDEs. 

 

The starting point for linear stability and bifurcation analysis is to consider rotating-wave (CW) 

solutions of the system equations (note that non-CW solutions, e.g. mode-locked pulses, can be 

treated as time-dependent modulations of real-valued amplitudes 𝐴𝑟(1,2)(𝜏), and these can 

bifurcate from the “constant-amplitude” CW solutions, e.g. as periodic orbits).  To do this, one 

sets 𝐴𝜙1(𝜏) = 𝛾𝜔𝜏 and 𝐴𝜙2(𝜏) = 𝛾𝜔𝜏 + 𝜎, where 𝛾𝜔 represents the (normalized) frequency of 

the rotation around the complex plane, and 𝜎 is a constant, time-independent phase difference.  

Furthermore, 𝜔 and 𝜎 are treated as “free” parameters, i.e. not as variables.  The resultant system 

consists of six DDEs (two for 𝐴𝑟(1,2)(𝜏), two for 𝐺1,2(𝜏), and two for 𝑄1,2(𝜏)) and two algebraic, 

“constraint” equations (because 𝑑𝐴𝜙(1,2)/𝑑𝜏 = 𝛾𝜔).  The rotational symmetry having been 

removed, this modified system now has isolated equilibria that are ready for numerical 

continuation and bifurcation analysis.  The equations and derivations are provided in 

APPENDIX A.2.  For the sake of clarity in the following sections, the phrase “the rotating-wave 

DDE model” is used to refer to this resultant system, whereas “the DDE model” is used to refer 

to the system earlier described by Equations (3.7) – (3.16). 
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3.3.3 Simplifying assumptions 

Several model simplifications have been assumed in order to contain the model’s complexity for 

the purpose of the present investigation.  First, the traveling wave equations operate within the 

slowly-varying-envelope approximation for the electric field, which is reasonable for the time 

scale examined: picosecond-scale mode-locked pulses.  Furthermore, the traveling wave 

equation model, as presented in Equations (3.3) and (3.4), does not account for multiple 

transverse spatial modes and field polarization (rather, it only focuses on the behavior in the axial 

spatial direction) [100, 101, 102], assumes no carrier diffusion [100] (instead, the carrier 

densities are assumed to be uniform and thus the rate equations take their average [101]), and 

neglects group velocity dispersion and the Kerr nonlinearity [84].  The carrier densities are 

modeled with a relatively simple set of rate equations in a phenomenological manner [72, 101].  

Although it is feasible (albeit more complicated) to incorporate greater modeling complexity and 

precision to account for other aspects of the carrier dynamics (i.e. those corresponding to specific 

constructs, e.g. quantum-well vs. quantum-dot vs. bulk semiconductor media) in order to better 

compare numerical results with experiments, the simplicity of the model used here can still lend 

insights into the qualitative trends and underlying physics, and thus the simple carrier rate 

equations can be considered sufficient for the initial study in this thesis work. 

 

Second, in order to incorporate the conventional coupled-mode theory into the traveling wave 

model, the coupling process is assumed to be lossless and well-phase-matched (again, valid 

under the slowly-varying-envelope approximation and the identicality of the two cavities’ 

material parameters and waveguide structures).  Third, a few assumptions are made in the 

subsequent derivation of the DDE equation model [82]: each laser is treated as unidirectional 
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cavity in order to avoid spatial effects (e.g. spatial hole-burning, self-interference), the spectral 

filter is given a Lorentzian lineshape that accounts for all frequency-dependent effects (e.g. gain 

bandwidth, mirror dispersion) into one lumped element, and all cold-cavity propagation losses 

are accounted for in a lumped manner at the boundary condition (i.e. along with the spectral 

filter).  Finally, for all of the results in this chapter, each laser’s spectral filter is assumed to be 

centered exactly on one of its cold-cavity resonant modes (i.e. Ω = 0 → 𝜑 = Ω𝑇1,2 = 0).  This 

assumption is made for the sake of simplicity in the efforts to isolate and identify the effects on 

the dynamics that arise purely due to the coupling mechanisms. 

 

3.3.4 Numerical methods 

The study of this system calls for both time simulation and bifurcation analysis in order to 

explore the dynamical picture.  The MATLAB function dde23() (see [103, 104] and 

APPENDIX B.2) is used for numerical integration of the DDE model and limited bifurcation 

analysis.  DDE-BIFTOOL (see [105, 81] and APPENDIX B.3) is used for more extensive 

bifurcation analysis of the rotating-wave DDE model and numerical continuation of its 

equilibria, limit cycles, and bifurcations in the parameter space.  The former tool provides 

versatility in terms of fewer constraints and simplifying assumptions on the model equations 

(e.g. avoidance of explicitly fixing the frequency 𝜔 and phase difference 𝜎 as parameters, which 

is a limitation of the rotating-wave DDE model), whereas the latter tool facilitates observation 

and computation of both stable and unstable equilibria and orbits (also often enabling exploration 

of a larger parameter space).  The two approaches complement one another. 
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3.4 Coupling dynamics of two identical lasers 

This study of the coupled system begins by considering the situation in which both laser cavities 

are fully identical.  In terms of the parameters of the model equations, this means that the gain 

parameters 𝑔01 = 𝑔02 = 𝑔0 and the roundtrip times 𝑇1 = 𝑇2 = 𝑇.  An important consideration in 

the solution of any delay differential equation system is the initial history of the state variables.  

Much of the theoretical literature regarding coupled lasers modeled by delay differential 

equations lacks clear mention of the role of the initial history.  This information is important, and 

its choice can influence the solution of the delay differential equations, along with the 

understanding of the dynamical picture, especially where regions of multistability exist.  The 

effect of the initial history needs to be considered in exhaustive detail in a future study to acquire 

a comprehensive understanding of the coupled, mode-locked laser system.  For now, the 

simulations in this section primarily use two sets of initializations.  The first, referred to here as 

the “in-phase” history, uses the initialization [
𝐴10,   𝐺10,   𝑄10,
𝐴20,   𝐺20,   𝑄20

] = [
 0.6,   2.5,   0.1,
0.6,   2.5,   0.1

], which 

represents two lasers that are in-phase and equal in amplitude (and equal in carrier densities) 

immediately prior to the “activation” of coupling.  The second, referred to here as “90° out-of-

phase” history, uses the initialization  [
𝐴10,   𝐺10,   𝑄10,
𝐴20,   𝐺20,   𝑄20

] = [
   0.6,   2.5,   0.1,
𝑖 0.6,   2.5,   0.1

], which represents 

two lasers whose amplitudes are equal but have a phase difference of 90° prior to coupling.  

Alternatively, as done in SECTION 3.6, the inclusion of a stochastic source term can enable 

simulation of the system from an initialized state of low-amplitude, random noise to assist in 

better understanding the preferred (a)synchronized states and the robustness of the phenomena 

with regard to noise perturbations.  Also, for the initial investigation and in order to isolate the 

dynamics that arise due to the coupling processes, the linewidth enhancement factors for the gain 
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and absorber sections of both laser cavities are set to zero (i.e. 𝛼𝑔,𝑞 = 0), unless otherwise 

specified.  Later, in SECTION 3.5, it is of interest to generalize the results to the more realistic 

scenarios of non-zero and possibly unequal 𝛼 factors (i.e. 𝛼𝑔 ≠ 0 ≠ 𝛼𝑞). 

 

In this section of the thesis, the synchronization dynamics of the coupled lasers are the focus.  

However, first the frequency comb perspective is presented.  Next, the ability of the lasers to 

synchronize is examined from the lasers’ output temporal profiles across a range of parameter 

values.  Specifically, it is seen that there is the possibly of a symmetry-breaking effect leading to 

delay-synchronized or anti-synchronous modulations of the pulse amplitudes; this is in spite of 

the fact that the two lasers are completely identical, and it occurs even when they are initialized 

identically with the in-phase history.  Alternatively, it is also seen that the two lasers can evolve 

into perfect, in-phase synchronization, even when initialized non-identically (e.g. out of phase or 

with other differences in initial amplitudes).  Finally, this section concludes with a close look at a 

special case of the anti-synchronous behavior of the lasers, a “subharmonic mode-locked” 

regime, which arises for fully cross-coupled lasers. 

 

3.4.1 Coupling-induced frequency shift/detuning 

As shown in Figure 3.5, the frequency spectrum for the single (or uncoupled) laser can exhibit 

one of several types of profiles, depending on the pump and unsaturated absorption parameters, 

including the following: 

 A single dominant mode for continuous wave (CW) operation 

 A “comb” of frequencies for mode-locked regimes of operation (spaced by the pulse 

repetition rate, which is an integer multiple of the reciprocal of the cavity roundtrip time) 
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 “Packets” of spectral peaks for Q-switched mode-locked operation (within each packet 

the peaks are spaced by the Q-switching frequency, while the spacing between the strong 

comb lines of adjacent packets is the reciprocal of the cavity roundtrip time) 

 

Figure 3.5: Frequency spectrum for a single (or uncoupled) laser for three different values of unsaturated gain, 

corresponding to Q-switched mode-locked, fundamental mode-locked, and 2nd harmonic mode-

locked regimes.  Table 3.2 lists the parameter values, and the initial history used for the numerical 

simulations is [𝐴, 𝐺, 𝑄] = [0.6, 2.5, 0.1]. 

 

For the single laser, there are mechanisms that can cause the spectrum to shift horizontally and/or 

become asymmetric.  The DDE model accounts for two such mechanisms.  The first is the 

presence of amplitude-phase coupling (see Figure 3.6), via the linewidth enhancement 𝛼-factors 

for the gain and/or absorber sections, which causes a self-phase modulation due to the carrier 

densities’ influence on the refractive index [85, 106].  The second is a result of the detuning Ω 

between the spectral filter peak and the nearest cold-cavity mode (results not shown here).  Here, 

the laser may be forced to select frequencies that deviate slightly from the cold-cavity 

resonances, which satisfy the roundtrip phase constraint, in order to optimize for the attenuation 

due to the spectral filter. 
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Figure 3.6: Same as Figure 3.5, except that linewidth enhancement factors are non-zero: 𝛼𝐺 = 3 and 𝛼𝑄 = 1.  

The spectrum is shifted to the right, and the amplitude-phase coupling broadens and degrades the 

quality of the spectral peaks, increasingly with the pump level. 

 

Figure 3.7, Figure 3.8, Figure 3.9, and Figure 3.10 show the spectra for two coupled, identical 

lasers for various coupling and unsaturated gain parameter values.  In the absence of the two 

aforementioned frequency-pulling mechanisms (i.e. with 𝛼𝑔,𝑞 = 0 and Ω = 0) and even though 

the two lasers are identical in every respect, coupling induces a frequency shift relative to the 

solitary laser modes.  This frequency shift increases (decreases) as the coupling parameter is 

increased from 0 to 𝜋 (from 𝜋 to 2𝜋).  The shift is small compared to the cavity’s free spectral 

range (i.e. the reciprocal of the roundtrip cavity time, or the fundamental mode-locked frequency 

comb spacing), but it is on a similar scale as the Q-switching frequency, a result whose relevance 

resurfaces in the subsequent sections.  In fact, the maximum shift, obtained when Κ′ℓ = 𝜋, is one 

half of the cavity’s free spectral range.  Physically, the frequency shifts can be explained as a 

result of the extra roundtrip phase accumulation that each laser acquires from the coupling 

processes.  This extra phase causes the solitary lasing modes to suffer higher loss, due to the 
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disruption of their 0 modulo 2𝜋 total roundtrip phase conditions.  Consequently, the two coupled 

lasers each detune from their solitary modes to frequencies that meet a more optimal balance in 

minimizing the losses from both the roundtrip phase accumulation and the spectral filter. 

 

Figure 3.7: Frequency spectrum (in arbitrary units) for two coupled lasers at low pump levels for several 

values of the coupling parameter.  The frequency detuning increases as coupling increases, and the 

magnitude of this shift is comparable to the Q-switching frequency (the fine spacing, between the 

spectral side-bands), while it is less than half of the cold-cavity free spectral range (the coarse 

spacing, 1/𝑇 = 1/1.875 ≈ 0.53, between the strong comb lines).  For Κ′ℓ = 𝜋/2, the two scales 

become degenerate; this corresponds to the subharmonic mode-locked regime (refer to SECTION 

3.4.3).  Table 3.2 lists the other parameter values, and here the in-phase initial history is used. 
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Figure 3.8: Frequency spectrum (in arbitrary units) for two coupled lasers at moderate pump levels for several 

values of the coupling parameter (denoted by the color code for the traces).  The entire frequency 

comb is increasingly shifted as the coupling parameter value increases, and the magnitude of the 

shift is less than half of the cold-cavity free spectral range, which is 1/𝑇 = 1/1.875 ≈ 0.53.  

Table 3.2 lists the other parameter values, and here the numerical simulations are initialized with 

the in-phase initial history. 

 

 

Figure 3.9: Same as Figure 3.8, except that the unsaturated gain is higher; here it corresponds to the 2nd 

harmonic mode-locked regime, in which the pulse repetition time is twice the roundtrip time, as 

evidenced by the fact that the comb lines are spaced twice as far apart as in Figure 3.8 (except for 

when Κ′ℓ = 𝜋).  Note again that the entire frequency comb is shifted by increasing amounts as the 

coupling parameter value increases.  Table 3.2 lists the other parameter values, and here the 

numerical simulations are initialized with the in-phase initial history. 
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Figure 3.10: Same as Figure 3.8, except that now the two coupled lasers are at very high pump levels.  Note 

that for most values of coupling, there is clearly a single dominant lasing mode, whose frequency 

is increasingly detuned from the center as coupling increases.  For Κ′ℓ = 𝜋, the behavior is 

slightly different: several lasing modes are still excited.  Table 3.2 lists the other parameter values, 

and here the in-phase initial history is used. 

 

The same frequency shifts can be computed directly from the equations that arise when solving 

for the equilibria of the rotating-wave DDE model.  For example, as derived in APPENDIX 

A.2.2, the occurrence of in-phase and frequency-locked CW solutions requires that the set of 

transcendental equations below are satisfied.  Specifically, the second and third equations place 

constraints relating the parameters 𝜔, 𝛾, 𝑇, and Κ′ℓ, and they can be used to determine viable 

values for 𝜔 for a given parameter set.  Recall that 𝛾𝜔 is the frequency of the CW solution 

(detuned from one of the cold-cavity modes of the solitary lasers). 

1 + 𝜔2 = 𝜅𝑒𝐺
∘−𝑄∘ 

 

cos(𝛾𝜔𝑇 − Κ′ℓ) > 0 
 

𝜔 + tan(𝛾𝜔𝑇 − Κ′ℓ) = 0 
 

0 = 𝑔0 − Γ𝐺
∘ − 𝑒−𝑄

∘
(𝑒𝐺

∘
− 1)(𝐴𝑟

∘ )2 

 

0 = 𝑞0 − 𝑄
∘ − 𝑠(1 − 𝑒−𝑄

∘
)(𝐴𝑟

∘ )2 
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When coupling is off (i.e. Κ′ℓ = 0), then 𝜔 = 0 is the smallest frequency detuning to satisfy the 

equations, and it corresponds to a mode residing at the same location as the spectral filter’s 

center frequency, i.e. at one of the cold-cavity modes (given that 𝜑 = 0).  Although there are an 

infinite number of solutions for 𝜔, the CW mode with minimal absolute detuning from the 

spectral filter, say 𝜔𝑚𝑖𝑛, suffers the least loss and is the first (and only one) to bifurcate from the 

off-state once the threshold gain for lasing is reached [77].  However, as the coupling parameter 

is increased from 0 to 𝜋, this minimal solution 𝜔𝑚𝑖𝑛 increases.  Accordingly, the frequency 

detuning occurs for the CW mode as well as for the centers of the frequency combs of the mode-

locked and Q-switched mode-locked pulse waveforms, since the latter two waveforms emerge as 

periodic orbits that bifurcate from the CW solution. 

 

3.4.2 Coupling-induced symmetry-breaking 

With the initial histories of the lasers’ state variables chosen to be fully identical (i.e. using the 

in-phase history), an interesting symmetry-breaking phenomenon is observed for small values of 

unsaturated gain when the two lasers are coupled.  Here, the lasers’ pulse trains undergo 

fluctuations in the peak heights, as shown in Figure 3.11, which contains plots of the steady-state 

temporal power for various values of coupling.  Note that the solitary/uncoupled laser (the top 

subplot: Κ′ℓ = 0) operates in the Q-switched mode-locked regime.  For intermediate coupling 

values (the middle three subplots: Κ′ℓ = 𝜋/6, 𝜋/4, and 𝜋/3), the fluctuations of the pulse 

amplitude heights/peaks differ between the two lasers.  The fully cross-coupled system (the 

bottom subplot: Κ′ℓ = 𝜋/2) presents an extreme case of broken symmetry, with perfectly anti-

synchronous pulsing, for which the pulse spacing for each laser is double the roundtrip time (i.e. 

the repetition rate is a subharmonic of the fundamental mode-locked rate); this regime is 
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discussed in further detail in SECTION 3.4.3.  Given that the two lasers are completely identical 

and also identically initialized, the observed symmetry-breaking and destabilization of the 

perfectly synchronized initial state can be attributed to the passive coupling.  As the coupling 

parameter Κ′ℓ increases from 0 to 𝜋/2, the transition from the synchronized, Q-switched mode-

locked state to the symmetry-broken behavior occurs more quickly (see Figure 3.12).  An 

examination of the real/imaginary parts of the complex amplitudes indicates that the symmetry-

broken state corresponds to the two lasers acquiring a 90° phase difference relative to each other 

(see Figure 3.13 and Figure 3.14).  On the other hand, when the lasers are initialized 90° out-of-

phase (instead of being initialized in-phase), the transition occurs immediately (see Figure 3.15). 

 

Figure 3.11: Output power temporal profile for two weakly-pumped lasers as coupling is varied.  Note the 

symmetry-breaking in the presence of coupling: the fluctuations of the peak heights for Laser 1 

differ from those of Laser 2.  In an extreme case, fully cross-coupled lasers (Κ′ℓ = 𝜋/2 ≈ 1.571) 

exhibit perfectly anti-synchronous, mode-locked pulse trains.  These behaviors are observed even 

in spite of the fact that this simulation is initialized with the in-phase history and that the lasers are 

completely identical in all other respects.  Table 3.2 lists the other parameter values. 
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Figure 3.12: Output power for two weakly-pumped lasers as coupling is varied.  The results are from the same 

simulations as in Figure 3.11.  The transition to the symmetry-broken state occurs sooner with 

increased coupling.  Note: the horizontal time scales of the subplots (and insets) are different. 

 

 

Figure 3.13: Phase-plane plots of complex amplitudes for the two lasers, showing that the lasers are in-phase 

before and 90° out-of-phase after the transition points observed in Figure 3.12. 
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Figure 3.14: Temporal profiles of the real and imaginary parts of the lasers’ complex amplitudes.  The results 

are from the same simulations as in Figure 3.12.  The transition points at which the two lasers’ 

amplitudes switch from in-phase to 90° out-of-phase align with the transitions in Figure 3.12. 
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Figure 3.15: Same as Figure 3.12, except that the simulations are initialized with the 90° out-of-phase history.  

Here, the two lasers are immediately away from the in-phase, synchronized state.  Examination of 

the real/imaginary parts of the complex amplitudes show that the two lasers’ amplitudes maintain 

the 90° phase difference between each other (the results are not shown here). 

 

A careful inspection of the symmetry-broken states, such as in Figure 3.12 and Figure 3.15, 

reveals that the two lasers’ output power time series are in fact delay-synchronized by large 

multiples of the cavity roundtrip time.  For example, Figure 3.16 shows that if one of the lasers’ 

time series is shifted by roughly 7 times roundtrip delay, then it aligns nearly perfectly with the 

time series of the other laser (these time series considered here are from the same simulations as 

in Figure 3.12 for Κ′ℓ = 𝜋/6 ≈ 0.524 and for Κ′ℓ = 𝜋/3 ≈ 1.047).  For each coupling value, 

this delay is numerically determined by identifying the delay time associated with the maximum 

peak in the cross-correlation profile of the two lasers’ time series of complex-amplitudes.  It is 

not entirely clear from a physical perspective why the “best” delay is 7 roundtrips in these two 

cases, but a more detailed investigation into this aspect is relegated for the future.  Nevertheless, 

the delayed-synchronization behavior of this symmetry-broken state is interesting and important. 
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Figure 3.16: Plots showing delayed synchronization between the two lasers (for different coupling values) after 

the transition point where symmetry-breaking occurs.  The results are from the same simulations 

as in Figure 3.12, and they indicate that, in the symmetry-broken state, the two lasers are delay-

synchronized, in this case by roughly 7 times the cavity roundtrip delay.  The middle two subplots 

are directly from Figure 3.12 (zoomed-in on the time axis), whereas in each of the top two 

subplots the time series of Laser 2 is shifted by the delay time at which the maximum peak in the 

corresponding cross-correlation profile occurs (shown in the bottom two subplots).  The cross-

correlation computations are performed on the lasers’ complex-valued amplitudes.  Also, note in 

those plots the nulls at zero delay, showing a clear absence of perfect, zero-delay synchronization 
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In contrast, for moderate/high pump levels (at which the solitary laser operates in the mode-

locked/CW regimes), coupling-induced symmetry-breaking is absent when the initialization 

choice is the in-phase history, and a transition to in-phase synchronization can be seen even with 

non-identical initial histories (i.e. for which the lasers’ amplitudes initially start with differences 

in magnitude and/or phase).  This suggests that perfect synchronization can be achieved and/or 

preserved in the presence of coupling, under the right conditions.  Specifically, there are 

initializations from which two coupled lasers can evolve to operate in an in-phase, synchronized 

manner, within the mode-locked/CW regimes similar to those of the solitary/uncoupled laser.  At 

the same time, for other initial states, the coupled lasers can also behave in a 90°-out-of-phase, 

desynchronized manner coinciding with significant fluctuations in each laser’s pulse heights. 

 

To illustrate, consider an example case in which the coupling parameter value Κ′ℓ = 𝜋/4, 

corresponding to 50:50 coupling.  Figure 3.17 and Figure 3.18 each compare the output temporal 

power from simulations using the in-phase vs. 90° out-of-phase histories, whereas Figure 3.19 

presents examples of in-phase synchronization occurring even when the lasers are not initialized 

in-phase.  In Figure 3.17 and Figure 3.19, the gain parameter 𝑔0 = 2 (at which the solitary laser 

operates in the fundamental mode-locked regime).  Note in Figure 3.17 the deteriorated pulse 

quality of each laser for the 90° out-of-phase initialization, along with the varying peak heights.  

In Figure 3.18, the unsaturated gain is 𝑔0 = 6 (at which the solitary laser operates in the CW 

regime); interestingly here, coupling can induce large temporal power fluctuations in steady-state 

(e.g. see the results shown in the bottom-left subplot the figure, i.e. with the 90° out-of-phase 

initialization) for which the lasers appear to be delay-synchronized (compare the blue trace 

starting at time 𝜏 ≈ 90 to the red trace at 𝜏 ≈ 94 in the bottom-left subplot’s inset). 
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Figure 3.17: Output temporal power and phase-plane plots for two 50:50-coupled lasers with moderate pump 

value 𝑔0 = 2 (at which the solitary laser is in the fundamental mode-locked regime).  For the in-

phase history, the two lasers are synchronized.  For the 90° out-of-phase history, they are not, and 

in fact there is some deterioration of the pulse quality.  Table 3.2 lists the other parameter values. 

 

 

Figure 3.18: Same as Figure 3.17, except for high gain 𝑔0 = 6 (at which the solitary laser is CW).  Note the 

top-right subplot indicates a sinusoidal oscillation of the real/imaginary parts of the complex 

amplitude, consistent with the coupling-induced detuning of the CW mode shown in Figure 3.10. 
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Figure 3.19: Similar to Figure 3.17, except for different initializations.  The results evidence synchronization. 

 

Further insight is gained from the bifurcation diagram with respect to the unsaturated gain 𝑔0 

(here considered as the sweep parameter) in Figure 3.20, showing branches of perfectly-

synchronized, regular, mode-locked states (see the bottom subplot), as well as their bistability 

with regimes of complex modulations of the pulse heights (see the top subplot).  This bifurcation 

diagram is generated by performing up- and down-sweeps of the gain parameter 𝑔0.  For each 

value of 𝑔0 (i.e. each iteration), the numerical simulation is run with all other parameters fixed, 

and the local maxima/minima of the temporal power are extracted and then plotted.  For the first 

iteration (𝑔0 = 0.05), the in-phase initial history is used, and the lasers are simulated to steady 

state.  Each subsequent iteration runs a simulation, initialized/“seeded” by the previous 

iteration’s solution / temporal profile, for a time span of ~ 100 roundtrips and finds the local 

extrema from the final ~ 50 roundtrips.  This approach is somewhat analogous to an experiment 
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in which the pump current / unsaturated gain is incremented (decremented) slowly at regular 

time intervals in order to observe the different dynamical regimes. 

 

Figure 3.20: Bifurcation diagram with respect to the pump parameter 𝑔0 for the case of 50:50-coupling.  The 

plotted points are local maxima/minima extracted from the simulations for each value of 𝑔0 (i.e. 

each iteration).  Regular, “clean” mode-locked pulse train with no pulse height variations yield 

“straight-line” sections in the bifurcation plot.  Fluctuations/modulations of the pulse heights yield 

a wide spread of the local extrema.  Table 3.2 lists the other parameter values. 

 

3.4.3 Subharmonic mode-locked regime with anti-synchronous pulsing 

As described in the preceding section, the dynamical behavior and synchronization properties 

can be strongly affected by the presence of coupling.  A particularly interesting scenario of 

symmetry-breaking occurs near Κ′ℓ = 𝜋/2, leading the lasers to perfect anti-synchrony for 

somewhat small pump levels.  As the coupling nears Κ′ℓ = 𝜋/2, a “subharmonic mode-locked” 

regime emerges, as indicated by the bifurcation diagrams in Figure 3.21 and Figure 3.22.  In this 

regime, the two lasers generate perfectly anti-synchronous pulse trains (without any modulation 

of the pulse amplitudes due to the Q-switching instabilities), each with a repetition rate of 

1/(𝑇1 + 𝑇2) (see Figure 3.23).  For identical lasers (𝑇1 = 𝑇2), this repetition rate is half of the 

fundamental mode-locked rate (i.e. it is a subharmonic), as previously presented in the bottom 

subplot of Figure 3.11 (time domain) and the fourth subplot of Figure 3.7 (frequency domain). 
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Figure 3.21: Bifurcation diagram, with respect to coupling Κ′ℓ as the sweep parameter, for two weakly-

pumped lasers.  Note the emergence of the 90° out-of-phase, anti-synchronous, subharmonic 

mode-locked regime for values of coupling near 𝜋/2.  Outside of the interval, the two lasers 

undergo significant fluctuations in the pulse peak heights, similar to the behavior presented in 

SECTION 3.4.2.  Table 3.2 lists the other parameter values. 

 

 

Figure 3.22: Same as Figure 3.21, except at slightly higher gain, 𝑔0 = 1.5.  Again, the subharmonic mode-

locked regime appears for coupling values near 𝜋/2.  However, at this pump level there is a 

bistability with the in-phase, synchronized, fundamental mode-locked regime, for both the region 

where the subharmonic exists and the region where the two lasers pulse trains irregularly fluctuate 

and are 90° out-of-phase (this corroborates the indications in SECTION 3.4.2). 
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Figure 3.23: Temporal profile of output power of two fully cross-coupled, weakly-pumped lasers for varying 

roundtrip times.  Note that the subharmonic repetition rate for each laser is 1/(T1 + T2) and that the 

lasers alternately generate pulses.  The simulations are initialized with the 90° degree out-of-phase 

history.  Table 3.2 lists the other parameter values. 

 

The bifurcation diagram in Figure 3.24 assists in understanding the stability of the subharmonic 

mode-locking behavior, as well as the parameter space within which it occurs.  A few important 

aspects of the phenomena and dynamics can be discerned.  First, by comparing the top subplot to 

the bottom subplot, the transition away from Q-switched mode-locked operation is achieved at 

smaller pump levels for the two cross-coupled lasers (around 𝑔0 = 0.9) as compared to the 

uncoupled lasers (around 𝑔0 = 1.2).  Thus, cross-coupling appears to mitigate the Q-switching 

instability to some degree.  Second, the cross-coupled lasers allow a region of bistability between 

the subharmonic and fundamental mode-locking regimes.  For the same values of unsaturated 

gain within this region, there are two possible output behaviors for the two lasers: in-phase, 

synchronized pulsations at the fundamental rate or 90° out-of-phase, anti-synchronized outputs 

with each laser pulsing at half the fundamental rate and with twice or more the peak pulse power.  

In addition, the bifurcation diagram reveals a few other mode-locked regimes of the cross-
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coupled lasers that are not seen in the solitary lasers: 90° out-of-phase, anti-synchronous 

pulsations at 1.5 and 2.5 times that fundamental mode-locked repetition rate.  Interestingly, in all 

of the observations of this thesis work, the integer harmonic mode-locked regimes (labeled as F, 

2H, and 3H in the bottom subplot of Figure 3.24) all coincide with in-phase synchronization 

between the two lasers, while the “half harmonics” (labeled as SH, 1.5H, and 2.5H) all coincide 

with 90° out-of-phase anti-synchronous behavior. 

 

Figure 3.24: Bifurcation diagrams, as the unsaturated gain 𝑔0 is swept back and forth (numerous times and 

each from a different set of initial histories) within the interval 0 to 6, for the solitary/uncoupled 

laser (Κ′ℓ = 0) and the fully cross-coupled lasers (Κ′ℓ = 𝜋/2).  The different branches / 

dynamical regions labeled are as follows: subharmonic (SH), fundamental (F), and harmonic 

(1.5H, 2H, 2.5H, and 3H) mode-locked regimes (note the multistability); Q-switched mode-

locking (QS); and continuous-wave operation (CW).  Table 3.2 lists the other parameter values. 

 

Time simulations (see Figure 3.25) indeed confirm this behavior and further indicate that the 

subharmonic mode-locked pulse has narrower pulsewidth and slightly less than twice the energy 

as compared to the fundamental.  In Figure 3.25, for the subharmonic each pulse has an FWHM 

of ~0.062, a peak height/power of ~6.23, and a pulse energy of ~0.25, whereas for the 
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fundamental each pulse has an FWHM of ~0.085, a peak height/power of ~2.61, and a pulse 

energy of ~0.45, all in normalized units.  It is also important to note the observation regarding 

the gain/absorption dynamics leading to the opening of a net gain window that facilitates mode-

locked pulse generation.  As seen in the bottom subplot of Figure 3.25, the net gain window for 

the fundamental is essentially contained within the time interval of the corresponding 

pulsewidth.  On the other hand, the net gain window for the subharmonic opens before the 

corresponding subharmonic pulse’s leading edge.  The distinction between the two cases is just 

as discussed in SECTION 3.2.2, specifically the distinction drawn between the two cases of slow 

saturable absorber mode-locking in Figure 3.2 and Figure 3.3. 

 

Figure 3.25: Temporal plots of the output power and the population dynamics of two fully cross-coupled lasers 

for two different initial histories: in-phase and 90° out-of-phase.  Due to the bistability of the 

system at 𝑔0 = 1.5, the former initial history leads to the lasers mode-lock at the fundamental 

repetition rate, while latter leads them to mode-lock at the subharmonic rate.  Since the two lasers 

operating at the fundamental rate are synchronized, their outputs are identical, as shown by the 

blue trace.  For the subharmonic, the lasers are anti-synchronous, as shown by the red trace (solid 

and dotted, for Laser 1 and Laser 2, respectively). 
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The results indicate that the underlying physics of the subharmonic mode-locked regime is as 

follows.  For two fully cross-coupled lasers, i.e. Κ′ℓ = 𝜋/2, each laser transfers 100% of its 

radiation to the other cavity.   In a sense, the effective roundtrip time is then effectively the sum 

𝑇1 + 𝑇2 of the two individual roundtrip times (for example, see Figure 3.23), because any 

circulating radiation or circulating pulse propagates through the figure-eight structure of both 

cavity before returning to the same point of origin.  In the case of identical lasers (𝑇1 = 𝑇2 = 𝑇), 

this means the roundtrip time is doubled, and so the pulse repetition rate is halved.  Accordingly, 

the enhancement of the intensity in the case of subharmonic operation is consistent with the 

effective doubling of the round trip time and the slow recovery of the gain media (see Figure 

3.25).  For instance, the emission of an intense mode-locked pulse from Laser 1 depletes the gain 

in that laser cavity.  Since the gain recovery time is much longer than the nominal round trip time 

𝑇, a pulse that returns to Laser 1 after time 2𝑇 (after passing through both cavities) experiences a 

gain that has recovered more than a pulse that returns after a delay of 𝑇.  As a result, the pulse 

with the longer delay extracts more energy from the gain medium. 

 

The bifurcation diagrams presented so far are generated via direct time integration / numerical 

simulation of the DDE model over the parameter sweeping, thus yielding the stable mode 

dynamical phenomena that can occur for various combinations of parameter values and initial 

histories.  In order to acquire even further insight, numerical continuation (via DDE-BIFTOOL) 

of equilibria of the rotating-wave DDE model provides a complementary approach to assist in 

quickly spanning the parameter space.  Specifically, it allows numerical continuation of the Hopf 

bifurcations, which as described in SECTION 3.2.3 signify the presence of nearby limit cycles 

that bifurcate from the CW solution (noting that the CW solution is a fixed point of the rotating-
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wave DDE model), such as mode-locked pulse trains that serve as periodic modulations of the 

CW amplitude.  The dynamical structure of the branches of Hopf bifurcations in the (𝑔0, 𝑞0) 

parameter space is useful to understand the emergence of this subharmonic mode-locked regime.  

In fact, for this thesis work, the numerical continuation (via DDE-BIFTOOL) approach was used 

first, to guide further exploration of the parameter space via direct time integration/simulation, in 

particular for the subharmonic mode-locked regime.  Granted, the presentation of the content in 

the thesis does not exactly follow the chronology by which the research itself was conducted. 

 

First, Figure 3.26 shows branches of Hopf bifurcations in the (𝑔0, 𝑞0) parameter space for the 

single (or uncoupled) laser; the results are consistent with the findings in [77, 82].  The plots 

provide information on the whether the bifurcations are supercritical (blue trace) or subcritical 

(red trace), i.e. whether the limit cycles that bifurcate from the CW equilibrium at the Hopf point 

are stable or unstable, respectively.  The plots also indicate whether the equilibrium itself is 

stable (thick linewidth) or unstable (thin linewidth) at each point on the Hopf branch; if the CW 

equilibrium is not stable, then neither would be the limit cycle that bifurcates from it in the 

vicinity of the Hopf point.  The Hopf frequencies, 𝜈 = 2𝜋𝑛/𝑇, labeled in the figure correspond 

to the fundamental and harmonic mode-locked pulse repetition rates, where 𝑛 = 1, 2, 3, … 

(positive integers), and 𝑇 is the roundtrip time (here, 𝑇 = 1.875).  In addition, one of the Hopf 

branches is associated with the Q-switching frequency (for which 𝜈 ≈ 0.2) that amplitude-

modulates the fundamental mode-locked pulse train for small unsaturated gain values 𝑔0.  

Numerically, these frequencies are determined from the imaginary component of the complex-

conjugate pair of eigenvalues that cross the imaginary axis at the Hopf bifurcation.  When 𝑔0 is 
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small, the branch associated with Q-switched mode-locking is initially supercritical and stable, 

and then it loses stability to the fundamental mode-locked state. 

  

Figure 3.26: Branches of Hopf bifurcations in the (𝑔0, 𝑞0) parameter space for a single/uncoupled laser.  Each 

branch is labeled with the frequency 𝜈 associated with the periodic orbits that emerge (averaged 

over all of the branch points).  The line color indicates whether the Hopf bifurcation at a particular 

point on a branch is super-critical (blue) or sub-critical (red), while the linewidth indicates whether 

the equilibrium point from which the periodic orbit bifurcates at the Hopf point is stable (thick) or 

unstable (thin).  Table 3.2 lists the other parameter values used. 

 

In contrast, the two-parameter bifurcation diagram shown in Figure 3.27 for Κ′ℓ = 𝜋/2 has two 

very noticeable differences.  First, there are roughly double the number of Hopf branches, at 

frequencies equal to 𝜈 = 2𝜋𝑛/𝑇, where now 𝑛 = 0.5, 1.0, 1.5, 2.0,…, and again 𝑇 = 1.875.  In 

addition, there is a Hopf branch with frequency 𝜈 ≈ 0.2, again identifying the Q-switched mode-

locked regime.  Second, as can be discerned from the zoomed-in plot in the figure, the branch 

labeled 𝜈 = 2𝜋(1/2)/𝑇 ≈ 1.8 is supercritical and stable well before the 𝜈 ≈ 0.2 branch 

bifurcates from the CW equilibrium, unlike the single-laser case.  This 𝜈 ≈ 1.8 branch identifies 

the subharmonic mode-locked pulse regime, as expected based on the discussion earlier in this 

section.  In addition, all of the “half-harmonic” mode-locked regimes seen in Figure 3.24 (i.e. 

those labeled as SH, 1.5H, and 2.5H in the bottom subplot) are accounted for in Figure 3.27. 
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Figure 3.27: Branches of Hopf bifurcations in the (𝑔0, 𝑞0) parameter space for 2 identical, fully cross-coupled 

lasers (Κ′ℓ = 𝜋/2).  Each branch is labeled with the frequency 𝜈 associated with the periodic 

orbits that emerge (averaged over all of the branch points).  The line color indicates whether the 

Hopf bifurcation at a particular point on a branch is super-critical (blue) or sub-critical (red), while 

the linewidth indicates whether the equilibrium point from which the periodic orbit bifurcates at 

the Hopf point is stable (thick) or unstable (thin).  Table 3.2 lists the other parameter values used. 

 

3.5 Effect of the linewidth enhancement factors 

The linewidth enhancement or 𝛼-factors, briefly mentioned in SECTION 3.4.1 for the solitary 

laser, describe carrier-density-dependent phase modulation effects.  They play a key role in the 

destabilization of phase-locking of evanescently-coupled, continuous-wave semiconductor lasers 

[68] and the break-up of mode-locking for a single, mode-locked semiconductor laser [77].  

Accordingly, the role of the 𝛼-factors is an essential consideration for the case of evanescently-

coupled, mode-locked lasers.  In this thesis, three important, representative cases are compared 

and contrasted: 1) zero 𝛼-factors, i.e. 𝛼𝐺 = 𝛼𝑄 = 0; 2) unequal, non-zero 𝛼-factors, e.g. 𝛼𝐺 = 3 

and 𝛼𝑄 = 1; and 3) non-zero but equal 𝛼-factors, e.g. 𝛼𝐺 = 𝛼𝑄 = 3.  Furthermore, each of these 

cases is examined as coupling and pump current parameters are varied.  To clarify, both lasers 

are set to have identical material parameters, including the values for 𝛼𝐺  and 𝛼𝑄 (i.e. 𝛼𝐺1 = 𝛼𝐺2 

and 𝛼𝑄1 = 𝛼𝑄2).  The terms “unequal” or “equal” 𝛼-factors are used in the following discussions 
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instead to indicate whether 𝛼𝐺 ≠ 𝛼𝑄 or 𝛼𝐺 = 𝛼𝑄 for each laser cavity, respectively (i.e. the 

linewidth enhancement factor of the gain section vs. that of the saturable absorption section). 

 

3.5.1 Solitary/uncoupled lasers 

The presence of the linewidth enhancement factors and the associated phase fluctuations disrupts 

the phase-locking of longitudinal modes necessary for mode-locking, and as a result, this leads to 

irregular pulse amplitude fluctuations and an overall decreased peak pulse power (see Figure 

3.28).  When the gain and absorber 𝛼-factors are set equal to each other, the linewidth 

enhancement effects of the gain and absorber sections compensate for each other in opposite 

directions [77], and a more regular mode-locked pulse train is observed for appropriate pump 

parameters (see Figure 3.29).  On the other hand, sufficiently high pump parameter values 

nevertheless lead to CW operation with a minimally noticeable effect on the temporal power, 

perhaps because there is only one longitudinal mode significantly at play (see Figure 3.28).  It is 

interesting to note that in one of the observed cases for weak pump levels, non-zero, unequal 𝛼-

factors lead to a regular mode-locked pulse train (albeit with greatly decreased peak pulse power) 

while the zero-𝛼-factor case results in Q-switched mode-locked operation (see Figure 3.30). 

  

Figure 3.28: Output power temporal profile for a solitary/uncoupled laser with unequal, non-zero 𝛼-factors.  

For the left subplot, the pump parameter is moderate, and the temporal power has an appearance of 

deteriorated mode-locking.  For the right subplot, the pump parameter is very high, and the 

uncoupled laser is in the CW regime.  Table 3.2 lists the parameter values not specified here, and 

the initial history used is [𝐴, 𝐺, 𝑄] = [0.6, 2.5, 0.1]. 
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Figure 3.29: Output power temporal profile for a solitary/uncoupled laser with moderate pump currents and 

non-zero 𝛼-factors.  For the left subplot, the gain and absorber 𝛼-factors are equal for each laser, 

and the pulses are regular in shape and repetition rate (but there is a slight variation in the pulse 

heights).  For the right subplot, the 𝛼-factors are unequal, and mode-locking behavior and pulse 

shapes are deteriorated.  Note that the vertical scales of the plots are different.  Table 3.2 lists the 

parameter values not specified here, and the initial history used is [𝐴, 𝐺, 𝑄] = [0.6, 2.5, 0.1]. 

 

  

Figure 3.30: Output power temporal profile for a solitary-uncoupled laser at low pump parameters.  For the left 

subplot, the 𝛼-factors are non-zero and unequal, and mode-locked operation is observed (although 

the peak pulse power is roughly an order of magnitude lower than in the case of zero 𝛼-factors), 

while in the right subplot the 𝛼-factors are zero for the gain/absorber sections, and Q-switched 

mode-locked operation is observed.  Note: the vertical scales of the two plots are different.  Table 

3.2 lists the parameter values not specified here.  The initial history is [𝐴, 𝐺, 𝑄] = [0.6, 2.5, 0.1]. 

 

3.5.2 Two lasers with intermediate coupling strength 

When the lasers are coupled, the synchronization properties become more complex in the 

presence of linewidth enhancement factors as compared to in their absence.  Recall the two 

behaviors observed in the results of SECTION 3.4 for zero 𝛼-factors: in-phase synchronization 

vs. 90°-phase delayed-synchronization.  In order to quickly reach the delayed-synchronization 

behavior and focus on how the behavior changes in the presence of the 𝛼-factors, the lasers are 

initialized to be 90° out-of-phase.  With intermediate values of coupling (i.e. 0 ≪ Κ′ℓ ≪ 𝜋/2) 

and non-zero 𝛼-factors, the delayed synchrony can still be partially present, but it is noticeably 

and often substantially degraded.  To illustrate, consider an example case of 50:50 coupling (i.e. 
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Κ′ℓ = 𝜋/4).  Figure 3.31 and Figure 3.32 show the irregular power fluctuations (and the partial 

delayed-synchronization between the two lasers), along with auto- and cross-correlation plots of 

their complex-valued amplitudes, for moderate and strong pump parameters, respectively. 

 

  

Figure 3.31: Results for two 50:50 coupled lasers at moderate pump levels and with non-zero, unequal 𝛼-

factors.  The top-left column of subplots show the temporal power for Laser 1 (top) and Laser 2 

(bottom), while the top-right column of subplots show the auto- and cross-correlations of the 

complex-valued amplitudes of the two lasers.  The bottom subplot shows the time series of Laser 2 

shifted by the delay corresponding to the maximal peak in the cross-correlation.  Table 3.2 lists the 

parameter values not specified here, and the 90° out-of-phase initial history is used. 

 



96 

 

 

  

Figure 3.32: Similar to Figure 3.31, except for high pump parameter. 

 

When the gain and absorber 𝛼-factors are set equal to each other, the regularity of each laser’s 

mode-locked pulse train is much improved, and there is again some partial degree of delayed 

synchronization, as exemplified by the case of 50:50 coupling (i.e. Κ′ℓ = 𝜋/4) in Figure 3.33 for 

a moderate pump parameter at which the laser generates mode-locked pulses.  However, the 

equalization of the 𝛼-factors does not lead to any appreciable improvement of the (delayed) 

synchronization between the coupled lasers beyond that solely due to improving the pulse 

quality, pulse power, and regularity of each individual laser’s temporal power profile (compare 
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Figure 3.33, for which 𝛼𝐺 = 𝛼𝑄 = 3, to Figure 3.31, for which 𝛼𝐺 = 3 ≠ 𝛼𝑄 = 1).  Instead, the 

results indicate that while equalizing the 𝛼-factors clearly improves each laser’s correlation with 

itself, the presence of non-zero 𝛼-factors can continue to disrupt delayed synchronized behavior 

regardless of whether or not the gain and absorber sections’ 𝛼-factors are set equal to each other.  

Likewise, in the case of the high pump parameter value, equalization of the 𝛼-factors does not 

appear to improve the delayed synchrony of the irregular fluctuations seen for unequal 𝛼-factors 

(compare Figure 3.34, for which 𝛼𝐺 = 𝛼𝑄 = 3, to Figure 3.32, for which 𝛼𝐺 = 3 ≠ 𝛼𝑄 = 1). 

 

  

Figure 3.33: Same as Figure 3.31, except for equal, non-zero 𝛼-factors, i.e. 𝛼𝐺 = 𝛼𝑄 = 3.  The lasers are not 

delay-synchronized, even when the gain and absorber sections’ 𝛼-factors are set equal to each 

other.  Note: the axes limits/scales here are not the same as in Figure 3.31. 
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Figure 3.34: Same as Figure 3.32, but with equal, non-zero 𝛼-factors: 𝛼𝐺 = 𝛼𝑄 = 3. 

 

3.5.3 Fully cross-coupled lasers 

For fully cross-coupled lasers, the results of SECTION 3.4.3 demonstrate the existence of anti-

synchronous pulsing within the subharmonic mode-locked regime, and the bifurcation diagram 

in the bottom subplot of Figure 3.24 displays the many multistable dynamical regions in the 𝑔0 

parameter space.  In contrast, here, the linewidth enhancement factors can disrupt the mode-

locking process, including that of the subharmonic pulsing, by degrading the pulse quality and 

accordingly decreasing the pulse heights / peak powers.  When the 𝛼-factors are non-zero and 
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unequal (see the bifurcation diagram in Figure 3.35), this degradation of the mode-locking 

processes is far more severe than when the 𝛼-factors are non-zero but equal (see the bifurcation 

diagram in Figure 3.36).  Furthermore, in the latter case (i.e. 𝛼𝐺 = 𝛼𝑄) the cross-coupled lasers 

achieve clean CW operation at high pump levels. 

 

Figure 3.35: Bifurcation diagram, as the parameter 𝑔0 is swept up from 0 to 9, for the case of non-zero and 

unequal 𝛼-factors.  The down-sweep after the up-sweep follows more or less the same pattern; 

hence, only the up-sweep is shown here.  Note the large variations in the local extrema, indicating 

the absence of clean mode-locked behavior.  Table 3.2 lists the parameter values not specified 

here, and the in-phase initial history is used for the first iteration (𝑔0 = 0.05), after which the 

subsequent iterations are initialized with the solution structure from the previous iteration. 

 

 

Figure 3.36: Same as Figure 3.35, except that here the 𝛼-factors are set equal to each other: 𝛼𝐺 = 𝛼𝑄 = 3. 

 

In addition, the anti-synchronous nature of the subharmonic mode-locked pulsations appears in 

both cases (see bottom two subplots of Figure 3.37).  Moreover, the bistability (between the in-

phase, synchronized pulsations at the fundamental mode-locked repetition rate and the 90° out-

of-phase, anti-synchronous pulsations at the subharmonic rate) seen in the absence of 𝛼-factors is 
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also seen in their presence, as shown in Figure 3.37 for 𝛼𝐺 ≠ 𝛼𝑄 (in the left column of subplots) 

and 𝛼𝐺 = 𝛼𝑄 (in the right column of subplots).  Note that for unequal 𝛼-factors, the pulse quality 

is significantly deteriorated, but nevertheless the two qualitative behaviors of synchronization vs. 

anti-synchronization, depending on the initial history, is still evident. 

 

Figure 3.37: Temporal power for two cross-coupled lasers (Κ′ℓ = 𝜋/2) with non-zero 𝛼-factors.  The top two 

subplots are initialized with the in-phase history, while the bottom two subplots are initialized with 

the 90° out-of-phase history.  The left two subplots are for unequal 𝛼-factors, while the right two 

subplots are for equal 𝛼-factors.  Note that in both sets of 𝛼-factors, there is bistability between 

synchronized pulsing at the fundamental mode-locked rate and anti-synchronous pulsing at the 

subharmonic repetition rate, as shown by comparing the results initialized in-phase vs. 90° out-of-

phase.  Table 3.2 lists the parameter values not specified here. 

 

3.6 Inclusion of a δ-correlated noise source term for each laser 

The DDE model in the absence of noise (i.e. that is used to obtain the results in SECTION 3.4 

and SECTION 3.5) serves as a good approach to studying the dynamics of the coupled lasers: it 

allows for quick numerical simulation via MATLAB’s dde23() function and straightforward 
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bifurcation analysis via iterations of time simulations and via DDE-BIFTOOL.  However, for 

numerical simulations performed by time integration of the model equations, the specification of 

the initial history vector does present somewhat of a limitation to the generality of the results.  

For example, the method commonly adopted in the literature sets the initial histories as non-zero, 

constant values for the entire time interval −𝑇max ≤ −𝜏 ≤ 0 before the integration “begins” 

(where 𝑇max is the largest time delay in the set of DDEs; in this thesis work, there is only one 

time delay 𝑇 = 𝑇1 = 𝑇2).  This choice is not entirely representative of practical situations, and it 

does not account for noise perturbations later applied to the system.  Accordingly, it is unclear 

for the coupled lasers work presented in SECTION 3.4 and SECTION 3.5 whether the observed 

synchronization behaviors (or lack thereof) are completely intrinsic to the system or partially an 

artifact of any synchrony, phase relationship, and/or non-time-varying states all imposed at 

initialization.  In addition, since the simulations with constant-valued initializations reveal 

regions of multistability, it is also useful to understand whether these dynamical regimes are 

accessible if the system is initialized to a zero-state and then allowed to evolve from noise. 

 

The inclusion of noise into the DDE model facilitates a further generalized treatment of the 

system and the results from the numerical simulations, yielding insight into the stability of the 

dynamical regimes and robustness of the synchronization behaviors observed earlier, but now in 

the presence of noise perturbations.  In this section, the implementation is phenomenological: a 

𝛿-correlated, complex-valued noise source term is simply added/appended to each of the 

amplitude DDEs (note that the two noise sources have no correlation with each other) in the 

DDE model from SECTION 3.3.2.  These modified amplitude DDEs are given below in 

Equations (3.18) and (3.19), with all of the 𝑅𝑖𝑗(𝜏) terms defined as per Equations (3.9) – 
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(3.12), and the DDEs for the saturable gain and absorption defined as per Equations (3.13) – 

(3.16).  For the numerical simulation results that follow, each of the two complex-valued noise 

functions, 𝑅noise, (1, 2)(𝜏), fluctuates randomly in both magnitude (within a uniform distribution 

between 0 and 0.1) and phase (within a uniform distribution between 0 and 2𝜋).  The initial 

history vector is set as zero-state, i.e. [
𝐴10,   𝐺10,   𝑄10,
𝐴20,   𝐺20,   𝑄20

] = [
 0,   0,   0,
0,   0,   0

], such that the transient 

build-up from noise can be observed.  For now, the scope of this section of the thesis is primarily 

to identify whether or not the behaviors observed in SECTION 3.4 and SECTION 3.5 can be 

observed in the presence of noise, with an additional focus on the dynamics of subharmonic 

pulse generation for full cross-coupling (Κ′ℓ = 𝜋/2).  A more in-depth and extensive analysis of 

this stochastic version of the DDE model is reserved for the future. 

 

In this section of the thesis, for the purpose of categorizing and cataloging the various 

phenomena, it is helpful to separate the discussion of moderately-pumped lasers (for which the 

solitary/uncoupled laser is mode-locked) into SECTION 3.6.1 and strongly-pumped lasers (for 

which the solitary/uncoupled laser operates in the CW regime) into SECTION 3.6.2.  The cross-

coupled lasers and the subharmonic regime are addressed separately in SECTION 3.6.3.  Note 

that, as listed in Table 3.2, the simulation results in this section primarily use 𝑇 = 2 as the 

parameter value for the (normalized) roundtrip time delay, in contrast to SECTION 3.4, which 

uses 𝑇 = 1.875.  The change is made simply for the convenience that 𝑇 = 2 being an integer 

makes it easier to read the plots along the axis ticks. 

 𝜕𝐴1(𝜏)

𝜕𝜏
= −𝛾𝐴1(𝜏)

+𝛾𝑒−𝑖𝜑1(𝑅11(𝜏 − 𝑇1)𝐴1(𝜏 − 𝑇1) + 𝑅12(𝜏 − 𝑇1)𝐴2(𝜏 − 𝑇1))

+𝑅noise, 1(𝜏)

 
(3. 18) 
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 𝜕𝐴2(𝜏)

𝜕𝜏
= −𝛾𝐴2(𝜏)

+𝛾𝑒−𝑖𝜑2(𝑅21(𝜏 − 𝑇2)𝐴1(𝜏 − 𝑇2) + 𝑅22(𝜏 − 𝑇2)𝐴2(𝜏 − 𝑇2))

+𝑅noise, 2(𝜏)

 
(3. 19) 

 

3.6.1 Moderate pump parameter values 

First, the operation in the mode-locked regime is considered, using a moderate pump parameter 

value of 𝑔0 = 2.  As discussed in SECTION 3.4.2, the two coupled lasers are capable of 

synchronizing in-phase or achieving nearly perfect delayed synchronization, due to the bistability 

of the two behaviors, in the absence of linewidth enhancement factors.  Both states are 

achievable in the presence of noise, even when the lasers are initialized to a zero state and 

allowed to evolve from low-amplitude noise.  The left column of subplots in Figure 3.38 shows 

an example of in-phase synchronization for Κ′ℓ = 𝜋/3, while the right column of subplots in 

Figure 3.38 shows delayed synchronization for the same coupling value but with a different 

randomized noise function.  Note that both simulations are run with the same exact set of 

parameter values and are initialized with the zero-state history, and so the difference in the two 

behaviors arises from the difference in the noise source term.  This reaffirms the nature of the 

bistability.  In addition, Figure 3.39 shows an example of 50:50 coupled lasers that evolve 

toward a state of synchronization of the temporal power but with a 180° phase difference 

between their complex amplitudes.  The fact that there are bistable domains in the parameter 

space is not surprising, because even a single mode-locked laser has dynamical regions of 

multistability between the different mode-locked behaviors [84].  However, the interesting aspect 

here in the coupled mode-locked laser system is an additional manifestation of the multistability, 

namely that of synchrony vs. delay-synchrony, in which different initial states and/or different 

randomized noise perturbations can push the system into one domain or the other. 
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Figure 3.38: Temporal power for two coupled lasers with moderate pump level and zero 𝛼-factors.  Here the 

coupled system exhibits a bistability between in-phase synchronization (the left column of 

subplots) and delay-synchrony (the right column of subplots).  Both simulations use the same 

exact set of parameter values; the only difference between them is that they are started with 

different randomized noise terms.  Table 3.2 lists the parameter values not specified here. 

 

 

Figure 3.39: Temporal power for two 50:50 coupled lasers synchronizing with a 180° phase difference 

between their complex amplitudes.  Table 3.2 lists the parameter values not specified here. 
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As seen in SECTION 3.5.2, the linewidth enhancement factors deteriorate mode-locking and 

disrupt synchronization, and the latter effect appears to be more severe in the simulations from 

noise.  As an example, Figure 3.40 considers two 50:50 coupled lasers (i.e. Κ′ℓ = 𝜋/4).  When 

𝛼𝐺 = 𝛼𝑄 = 0, the two lasers evolve from uncorrelated noise to in-phase synchrony (top subplot 

of Figure 3.40).  When 𝛼𝐺 ≠ 𝛼𝑄 ≠ 0, the pulse quality is degraded (middle subplot of Figure 

3.40), with what appear to be chaotic fluctuations (see auto-correlation plots in Figure 3.41), and 

there is no synchronization (see cross-correlation plot in Figure 3.41).  When 𝛼𝐺 = 𝛼𝑄 ≠ 0, the 

pulse quality for each individual laser is significantly improved, and the pulse arrival times of 

Laser 1 align with those of the Laser 2 (bottom subplot of Figure 3.40).  However, the 

modulations of the lasers’ pulse amplitudes are not well-correlated with each other; accordingly, 

the cross-correlation in Figure 3.42 indicates no appreciable degree of delayed synchronization. 

 

Figure 3.40: Temporal evolution of power from noise for two 50:50 coupled lasers with moderate pump level 

𝑔0 = 2 and varying 𝛼-factors.  Table 3.2 lists the parameter values not specified here. 
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Figure 3.41: Auto- and cross-correlations of the complex-valued amplitudes of the two 50:50 coupled lasers for 

moderate pump level and non-zero, unequal 𝛼-factors.  The results indicate that the amplitudes are 

somewhat irregular/chaotic, due to the presence of essentially only one strong peak (at zero delay) 

in the auto-correlation plots.  The results also indicate that the two lasers have little to no 

synchronization between them, due to the absence of any significant peaks in the cross-correlation 

plot at any values of the delay.  Table 3.2 lists the parameter values not specified here. 

 

 

Figure 3.42: Cross-correlation profile of the complex-valued amplitudes of the two 50:50 coupled lasers for 

moderate pump level and non-zero, equal 𝛼-factors.  The plots indicate that the modulations of the 

two lasers’ pulse trains are not very well-correlated with each other.  However, in the figure there 

are small peaks at delays that are integer multiples of the roundtrip time, consistent with the 

observation that the lasers’ pulse arrival times align, although their peak heights and the 

modulation of such are not synchronized.  Table 3.2 lists the parameter values not specified here. 

 



107 

 

3.6.2 Strong pump parameter values 

Next, the coupled system is simulated (with noise) for a large pump parameter value of 𝑔0 = 6.  

As expected, when the 𝛼-factors are zero, the solitary (uncoupled) lasers operate steadily in the 

CW regime (the top-most subplot of Figure 3.43).  Interestingly, the noise simulation results in 

the middle subplots of Figure 3.43 show that, for intermediate values of coupling between the 

lasers (0 ≪ Κ′ℓ ≪ 𝜋/2), the two lasers can operate in a “burst-mode” regime, in which there are 

regularly occurring, delay-synchronized bursts of power fluctuations in the output temporal 

profiles.  A particularly vivid display of this behavior is seen in the second subplot of Figure 3.43 

for a coupling parameter value of Κ′ℓ = 𝜋/6.  Also, looking at all of the subplots of Figure 3.43, 

the highest degree of fluctuations are found to occur for 50:50 coupling (the third subplot of 

Figure 3.43).  This behavior is somewhat similar to the power fluctuations for the coupled laser 

system observed even when noise is absent, e.g. as in the bottom subplot of Figure 3.18 back in 

SECTION 3.4.2.  Finally, note that the uncoupled lasers (Κ′ℓ = 0) and the fully cross-coupled 

lasers (Κ′ℓ = 𝜋/2) both show negligible power fluctuations.  Indeed, the aforementioned 

behaviors are in the absence of amplitude-phase coupling provided via the linewidth 

enhancement factors.  The inclusion of the 𝛼-factors induces appreciable temporal power 

fluctuations for the uncoupled lasers and large, complicated and irregular oscillations for the 

coupled lasers (see Figure 3.44).  Furthermore, the delayed synchronization is heavily degraded, 

whether or not the non-zero gain and absorber 𝛼-factors are set equal to each other (i.e. whether 

or not 𝛼𝐺 = 𝛼𝑄 ≠ 0); this is evidenced in Figure 3.44 (temporal profile) and Figure 3.45 (profile 

of the cross-correlation of the lasers’ complex-valued amplitudes with each other).  The observed 

effects of the 𝛼-factors and their role in disrupting the synchronization are consistent with the 

previous observations from SECTION 3.5. 
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Figure 3.43: Temporal power for coupled lasers with high pump level and zero 𝛼-factors.  Note the periodic 

bursts of power fluctuations, especially clear for Κ′ℓ = 𝜋/6 ≈ 0.524.  Table 3.2 lists the 

parameter values not specified here. 
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Figure 3.44: Same as a subset of the subplots in Figure 3.43, except for non-zero 𝛼-factors. 

 

 

Figure 3.45: Cross-correlation plots of the two lasers’ complex-valued amplitudes, corresponding to the same 

simulation results in Figure 3.44, for the respective coupling parameter values. 
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3.6.3 Fully cross-coupled lasers and robust subharmonic mode-locking 

The results in Figure 3.46 provide evidence that the subharmonic mode-locked operation 

phenomenon (see SECTION 3.4.3) can occur in the presence of noise perturbations and non-zero 

linewidth enhancement factors, lending credence to its stability and robustness to some degree.  

In the figure, due to the amplitude-phase coupling due to the 𝛼-factors, there can be irregular 

modulations of the pulse peak amplitudes and possibly a noticeable worsening of the pulse 

quality.  In any case, however, the pulses for each laser are separated by twice the roundtrip time, 

the two lasers alternately generate pulses in an anti-synchronous manner, and the lasers maintain 

a 90° phase difference (in complex amplitudes) between each other, all in the presence of noise 

and 𝛼-factors, as is consistent with the properties characteristic of the subharmonic regime. 

 

Figure 3.46: Temporal profile of fully cross-coupled lasers simulated from noise, operating in the subharmonic 

mode-locked regime, for varying 𝛼-factors.  For these simulations, 𝑇 = 1.875, in order to 

facilitate comparisons to the corresponding results in SECTION 3.4.3 and SECTION 3.5.3.  Table 

3.2 lists the parameter values not specified here. 
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Furthermore, anti-synchronous behavior can also occur in at higher values of unsaturated gain.  

As mentioned in SECTION 3.4.3, there are other “half-harmonic” mode-locked regimes for 

which the lasers are 90° out-of-phase and pulse anti-synchronously.  Finally, Figure 3.47 and 

Figure 3.48 show an intriguing phenomenon obtained from the noise simulations of the lasers at 

high unsaturated gain 𝑔0.  Here, there is a nearly perfectly delay-synchronized temporal power 

profile of the cross-coupled lasers for each of three cases of linewidth enhancement factors, with 

the power fluctuations particularly noticeable for the non-zero 𝛼-factors.  Interestingly, the 

temporal profile for each laser is somewhat periodic at the subharmonic rate, and the delay 

between time series for the two lasers is approximately one roundtrip for each set of 𝛼-factors. 

 

Figure 3.47: Temporal power for two fully cross-coupled lasers with large unsaturated gain values, as the 𝛼-

factors are varied.  Note that the top subplot here is the same as the bottom subplot of Figure 3.43.  

Recall that for other coupling values in that figure, the inclusion of the non-zero 𝛼-factors 

disturbed the delayed synchrony.  On the other hand, for fully cross-coupled lasers, delayed 

synchrony is preserved even with non-zero 𝛼-factors, as is evidenced more clearly in Figure 3.48.  

Table 3.2 lists the parameter values not specified here. 
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Figure 3.48: Same as a zoomed-in version of Figure 3.47, except that the time series for the second laser is 

shifted by the delay corresponding to the maximum peak in the cross-correlation profile of 𝐴1(𝜏) 
vs. 𝐴2(𝜏).  Note that in all three subplots, this delay is approximately the roundtrip time 𝑇 = 2.  

Also note that the vertical scales of the three subplots are different. 

 

3.7 Conclusion 

In conclusion, this chapter has investigated, explored, and uncovered a rich variety of passive 

coupling dynamics and synchronization phenomena of two identical, evanescently/directionally 

coupled, mode-locked, ring-cavity semiconductor lasers.  The results show that passive coupling 

can 1) detune the lasers from their solitary lasing modes by up to half the cavity free spectral 

range, 2) induce symmetry-breaking effects that lead to strong modulations of and delayed 

synchronization between the two lasers’ pulse trains, 3) provide a mechanism for the lasers to 

evolve from an initial unsynchronized state to nearly-perfect, in-phase synchronization, and 4) 

destabilize mode-locked and CW operation of the solitary lasers.  The state of perfect synchrony 

of the lasers’ temporal power / pulse trains is tied to the lasers acquiring a 0° (or also 180°) 

phase difference between their complex field amplitudes, whereas the delay-synchronized 
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behavior is tied to a 90° phase difference in the complex amplitudes.  Two coupled lasers 

initialized with some other initial phase and/or amplitude differences can also evolve over time 

toward achieving one of the two aforementioned behaviors: in-phase, perfect synchronization or 

90° out-of-phase, delayed synchronization.  As a special case of the delayed synchrony, two 

fully cross-coupled lasers are capable of producing anti-synchronous mode-locked pulse trains, 

each at a subharmonic of the solitary laser’s fundamental repetition rate, determined by the sum 

of the lasers’ roundtrip times.  For example, in the case of two identical lasers, the subharmonic 

repetition rate is one half of the fundamental rate, and the energy per pulse in the subharmonic 

regime can be close to twice that of each pulse in the fundamental mode-locked regime. 

 

A third scenario is a degradation or even a complete lack of synchronization.  In particular, non-

zero linewidth enhancement factors introduce amplitude-phase coupling processes into the 

system that can disrupt the synchronization dynamics of the two lasers earlier described.  

Unequal 𝛼-factors (i.e. when 𝛼𝐺 ≠ 𝛼𝑄) break up the mode-locked pulsing regime and the 

(delayed) synchrony.  Equalizing the 𝛼-factors can aid the recovery of the mode-locked pulse 

quality and help realign the two lasers’ pulse arrival times (at least for identical lasers), but the 

correlation between the two lasers’ fluctuating pulse heights/amplitudes is seen to remain poor.  

Hence, the synchronization behavior is sensitive to the linewidth enhancement factors’ effects. 

 

In addition, the bifurcation analysis and simulations show that this coupled-laser system supports 

a fair degree of bistability or multistability between the different dynamical regimes.  Finally, 

most of the above phenomena can be observed even in the presence of noise and/or non-zero 𝛼-

factors; in particular, the subharmonic regime is relatively robust with regard to both aspects. 
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CHAPTER 4 

Conclusion 

4.1 Summary 

This thesis has presented the results of theoretical and numerical investigations of two different 

passively coupled laser systems: 1) an array of fiber amplifiers in continuous-wave operation and 

coupled via a spatially-filtered ring geometry, and 2) two evanescently/directionally coupled, 

unidirectional-ring-cavity, mode-locked semiconductor lasers. 

 

CHAPTER 2 used the results of numerical simulations to elucidate the phasing dynamics for the 

fiber laser array, including clear demonstrations of the time scale within which the passive 

phasing processes occur.  Phase-locking was shown to occur on a much quicker time scale than 

the transient dynamics of power and gain, with the array reaching a locked state well before the 

onset of relaxation oscillations after the laser is turned on.  In addition, it was found that the 

phase-locked state is quickly recovered after perturbation from steady-state, within merely a few 

cavity roundtrips, while the relaxation oscillation transients require many more roundtrips before 

recovery to steady-state.  The results on passive phasing dynamics were found to be consistent 

and in agreement with previous theoretical (steady-state analysis) and experimental results.  

Next, the focus shifted to evaluating the role of Kerr nonlinearity in the combining architecture.  

Qualitative examination of the far-field output intensity profiles along with quantitative 

assessment of the combining efficiency for varying values of the nonlinear coefficient revealed 
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the nonlinearity’s detrimental effect with regard to the system’s ability to achieve in-phase 

coherent locking.  The underlying physics was explained in the context of coincident mode 

theory, in that Kerr nonlinearity, through the mechanisms of spectral broadening and four-wave 

mixing, leads to the excitation of lossy axial modes at the expense of less lossy modes of the 

composite cavity, thus frustrating the system’s self-organization processes. 

 

CHAPTER 3 presented the results of numerical simulations and numerical bifurcation analysis 

that detailed the dynamics of synchronization and showcased the variety of interesting 

phenomena for a system of two identical, coupled mode-locked semiconductor lasers.  The 

mathematical model was developed through the application of coupled-mode theory to the 

traveling wave equations and subsequent conversion of this partial differential equation system 

to a delay differential equation system.  The DDE system was then theoretically investigated 

using methods of numerical simulations and bifurcation analysis.  The results sections first 

discussed the coupling-induced frequency detuning (relative to the lasing modes of the 

solitary/uncoupled lasers) to which the lasers are subject, explained the physical mechanism by 

which coupling causes this detuning, and showed that the frequency shifts that arise from 

numerical simulation of the (multi-longitudinal-mode) DDE model match theoretical 

calculations using the DDE model.  The numerical results and the theoretical approach both 

showed that the shift can range from zero to up to half the cavity free spectral range.  Next, it 

was shown that the two lasers can achieve with respect to each other 1) perfect, in-phase 

synchronization, 2) 90° out-of-phase, delayed synchronization, or 3) lack of synchronization, as 

well as a number of other complex dynamics and behaviors.  The chapter presented a special 

case of delayed synchronization in which the two lasers are fully cross-coupled, i.e. when the 
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action of the directional coupler leads each laser to transfers 100% of its circulating radiation to 

the other cavity.  Here, the two lasers are capable of operating in perfect anti-synchrony in a 

well-defined and robust subharmonic mode-locked regime, in which each laser generates pulses 

at half of the fundamental mode-locked repetition rate.  Also seen are other fractional (e.g. 3/2 

and 5/2) harmonic mode-locked regimes.  The chapter further investigated how the different 

synchronization properties and other behaviors/phenomena are affected by 1) the initial state, 

due to bistability/multistability between the dynamical regimes, 2) the coupling parameter, 3) the 

unsaturated gain / pump strength, 4) linewidth enhancement factors, and 5) noise. 

 

4.2 Future work 

The research work in passive coherent beam combining of fiber laser arrays has several 

interesting directions for future study: 

 Include the resonant Kramers-Kronig nonlinearity (and perhaps other nonlinear effects, 

e.g. thermal variations), and compare its role in externally- vs. internally-coupled arrays 

 Extend the model to consider mode-locked fiber laser arrays, as was done similarly in the 

past for internally-coupled arrays [107] 

 Extend the model to account for transverse spatial considerations 

 Identify or suggest possible robust and effective methods to overcome the limitations 

presented by external path differences in the coupling optics for the spatially-filtered ring 

geometry coupling architecture 

 Apply the modeling approach to other externally-coupled array combining schemes that 

do not have the design limitations of this spatially-filtered ring geometry 
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The research work in passively coupled mode-locked semiconductor laser arrays also has a broad 

scope for further investigation, particularly with the following considerations: 

 Reformulate the DDE model with the separation of the magnitude and phase of the 

lasers’ complex amplitudes in order to facilitate (via direct numerical simulation) 

tracking of the evolution of the phase difference between the two lasers 

 Understand the physics and factors that determine the amount of delay between the two 

lasers’ output power temporal profiles when delay-synchronized, e.g. in Figure 3.16. 

 Perform further bifurcation analysis of the effects of linewidth enhancement factors 

 Examine the system’s evolution from other initial histories, constant or time-varying 

 As it relates to the stochastic version of the DDE model (i.e. with the inclusion of noise 

source terms), perform an analysis using a more rigorous probabilistic/statistical 

methodology and framework, include a treatment of various other types of noise, and/or 

adopt/implement an appropriate physical model for a spontaneous emission type of noise 

 Extensively consider the effects of non-identical cavity lengths / roundtrip delay times 

𝑇1 ≠ 𝑇2, including their role in tuning the pulse repetition rate and frequency comb 

properties for different coupling strengths 

 Investigate in depth the coupled system for non-identical pump currents 𝑔01 ≠ 𝑔02 

 Explore of other sources of asymmetry in this system 

 Apply a modulation or time-varying profile to the unsaturated gain / injection current 

 Investigate cases of three or more adjacently-coupled, mode-locked semiconductor lasers 

 Revise the mathematical model to be more closely and precisely tied to real experimental 

setups, and use it to develop practical applications 
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APPENDIX A 

Derivation of the coupled mode-locked semiconductor lasers model 

Starting from the traveling-wave equation model given in SECTION 3.3.2, “the DDE model” is 

derived in APPENDIX A.1.   This set of six DDEs is the one used for the numerical simulations 

(see APPENDIX B.2) that account for the bulk of the results presented in CHAPTER 3.  Starting 

from this system of six DDEs, APPENDIX A.2.1 provides the subsequent derivation of “the 

rotating-wave DDE model” that consists of six DDEs and two algebraic “constraint” equations.  

In the process, the DDE system is reformulated into eight DDEs, specifically with the equations 

for the complex-valued amplitudes separated into magnitude and phase.  This reformulation can 

enable numerical simulations that track the evolution of the phase time; however, this thesis 

work does not follow up on this aspect, and instead it is included in the list of work to be done in 

the future.  Finally, APPENDIX A.2.2 shows the derivation of the formulae that can be used, 

given an initial set of parameter values, to solve for isolated equilibria (in this case, continuous-

wave solutions) of the DDE system.  These equilibria can be used as initial starting points for the 

bifurcation analysis / numerical continuation routines (see APPENDIX B.3). 

 

A.1 Derivation of “the DDE model” (for numerical simulations) 

Traveling-wave equation model 

(note that the equations below do not include noise source terms as in SECTION 3.6) 

Amplitude and carrier density equations for the absorber and gain sections… 

 
𝜕𝐸1,2(𝑡,𝑧)

𝜕𝑧
+
1

𝑣

𝜕𝐸1,2(𝑡,𝑧)

𝜕𝑡
=

𝑔𝑟Γ𝑟

2
(1 − 𝑖𝛼𝑟)(𝑁(1,2),𝑟(𝑡, 𝑧) − 𝑁𝑟

𝑡𝑟)𝐸1,2(𝑡, 𝑧)   



120 

 

 
𝜕𝑁(1,2),𝑟(𝑡,𝑧)

𝜕𝑡
= 𝐽(1,2),𝑟 − 𝛾𝑟𝑁(1,2),𝑟(𝑡, 𝑧) − 𝑣𝑔𝑟Γ𝑟(𝑁(1,2),𝑟(𝑡, 𝑧) − 𝑁𝑟

𝑡𝑟)|𝐸1,2(𝑡, 𝑧)|
2

 

 

 Amplitude equations for the passive section without coupling… 

 
𝜕𝐸1,2(𝑡,𝑧)

𝜕𝑧
+
1

𝑣

𝜕𝐸1,2(𝑡,𝑧)

𝜕𝑡
= 0  

 

 Amplitude equations for the passive section with coupling… 

 
𝜕𝐸1,2(𝑡,𝑧)

𝜕𝑧
+
1

𝑣

𝜕𝐸1,2(𝑡,𝑧)

𝜕𝑡
= +𝑖Κ12,21𝐸2,1(𝑡, 𝑧)  

 

 Equations describing the actions of the spectral filters 

 𝐸̂1,2(𝑤, 𝑧1 + 𝐿1,2) = 𝑓(𝑤)𝐸̂1,2(𝑤, 𝑧5) ,  where the ^ indicates Fourier Transform 

 

 Ring cavity boundary conditions 

 𝐸1,2(𝑡, 𝑧 + 𝐿1,2) = 𝐸1,2(𝑡, 𝑧)  

 

Variables/parameters used in the above 

 𝑡 ≡ time coordinate 

 𝑧 ≡ spatial coordinate 

  𝑧1 < 𝑧 < 𝑧2: Passive without coupling 

  𝑧2 < 𝑧 < 𝑧3: Absorber 
  𝑧3 < 𝑧 < 𝑧4: Gain 

  𝑧4 < 𝑧 < 𝑧5: Passive with coupling 

  𝑧5 < 𝑧 < 𝑧1 + 𝐿1,2: Spectral filter 

 Subscripts 1,2 refer to the two individual lasers 
 Subscript 𝑟 = 𝑔, 𝑞 refers to the gain, absorber sections 
 𝐸1,2(𝑡, 𝑧) ≡ E-field envelope 

 𝐿1,2 ≡ Cavity length 

 𝑁(1,2),(𝑔,𝑞)(𝑡, 𝑧) ≡ Carrier densities in gain, absorber sections 

 𝑁𝑔,𝑞
𝑡𝑟 ≡ Carrier densities at transparency threshold 

 𝑣 ≡ Light group velocity 

 𝛼𝑔,𝑞 ≡ Linewidth enhancement factors 

 𝑔𝑔,𝑞 ≡ Differential gains 

 Γ𝑔,𝑞 ≡ Transverse modal fill factors 

 Κ12,21 ≡ Coupling coefficients; refers to coupling from 2→1, 1→2 

 𝛾𝑔,𝑞 ≡ Carrier density relaxation rates 

 𝐽(1,2),(𝑔,𝑞) ≡ Injection currents (note that 𝐽(1,2),𝑞 = 0) 

 

Coordinate change (𝑡, 𝑧) → (𝜏, 𝜁) to a retarded time frame that moves along with the circulating 

waves/pulses in the laser cavities 

 𝜏 = 𝛾𝑞(𝑡 − 𝑧/𝑣) 

 𝜁 = 𝑧𝛾𝑞/𝑣 
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Derivation of the traveling-wave equation model after the coordinate change 

 
𝜕𝐴1,2(𝜏,𝜁)

𝜕𝜁
=

1

2
(1 − 𝑖𝛼𝑟)𝑛(1,2),𝑟(𝜏, 𝜁)𝐴1,2(𝜏, 𝜁) ← For the absorber and gain sections 

  Start with 
𝜕𝐸1,2

𝜕𝑧
+
1

𝑣

𝜕𝐸1,2

𝜕𝑡
=

𝑔𝑟Γ𝑟

2
(1 − 𝑖𝛼𝑟)(𝑁(1,2),𝑟 − 𝑁𝑟

𝑡𝑟)𝐸1,2 

  
𝜕𝐸1,2

𝜕𝑧
=

𝜕𝐸1,2

𝜕𝜁

𝜕𝜁

𝜕𝑧
+
𝜕𝐸1,2

𝜕𝜏

𝜕𝜏

𝜕𝑧
=

𝜕𝐸1,2

𝜕𝜁

𝛾𝑞

𝑣
−
𝜕𝐸1,2

𝜕𝜏

𝛾𝑞

𝑣
 

  
𝜕𝐸1,2

𝜕𝑡
=

𝜕𝐸1,2

𝜕𝜁

𝜕𝜁

𝜕𝑡
+
𝜕𝐸1,2

𝜕𝜏

𝜕𝜏

𝜕𝑡
= 0 +

𝜕𝐸1,2

𝜕𝜏
𝛾𝑞 

  →
𝜕𝐸1,2

𝜕𝑧
+
1

𝑣

𝜕𝐸1,2

𝜕𝑡
=

𝜕𝐸1,2

𝜕𝜁

𝛾𝑞

𝑣
−
𝜕𝐸1,2

𝜕𝜏

𝛾𝑞

𝑣
+ 0 +

𝜕𝐸1,2

𝜕𝜏

𝛾𝑞

𝑣
=

𝜕𝐸1,2

𝜕𝜁

𝛾𝑞

𝑣
 

  →
𝜕𝐸1,2

𝜕𝜁

𝛾𝑞

𝑣
=

𝑔𝑟Γ𝑟

2
(1 − 𝑖𝛼𝑟)(𝑁(1,2),𝑟 − 𝑁𝑟

𝑡𝑟)𝐸1,2 

 →
𝜕𝐸1,2

𝜕𝜁
=

𝑣

𝛾𝑞

𝑔𝑟Γ𝑟

2
(1 − 𝑖𝛼𝑟)(𝑁(1,2),𝑟 − 𝑁𝑟

𝑡𝑟)𝐸1,2 

  
𝜕𝐸1,2

𝜕𝜁
=

1

2
(1 − 𝑖𝛼𝑟)𝑛(1,2),𝑟𝐸1,2 

   where 𝑛(1,2),𝑟 ≡
𝑣𝑔𝑟Γ𝑟

𝛾𝑞
(𝑁(1,2),𝑟 − 𝑁𝑟

𝑡𝑟) 

  
𝜕𝐴1,2

𝜕𝜁
=

1

2
(1 − 𝑖𝛼𝑟)𝑛(1,2),𝑟𝐴1,2 

   where 𝐴1,2 ≡ 𝐸1,2√
𝑣𝑔𝑔Γ𝑔

𝛾𝑞
 

 

 
𝜕𝑛(1,2),𝑔(𝜏,𝜁)

𝜕𝜏
= 𝑗(1,2),𝑔 − Γ𝑛(1,2),𝑔(𝜏, 𝜁) − 𝑛(1,2),𝑔(𝜏, 𝜁)|𝐴1,2(𝜏, 𝜁)|

2
← For the gain 

  Start with 
𝜕𝑁(1,2),𝑔

𝜕𝑡
=

𝜕(𝑁(1,2),𝑔−𝑁𝑔
𝑡𝑟)

𝜕𝑡
= 𝐽(1,2),𝑔 − 𝛾𝑔𝑁(1,2),𝑔 − 𝑣𝑔𝑔Γ𝑔(𝑁(1,2),𝑔 −𝑁𝑔

𝑡𝑟)|𝐸1,2|
2
 

  
𝜕𝑁(1,2),𝑔

𝜕𝑡
=

𝜕𝑁(1,2),𝑔

𝜕𝜏

𝜕𝜏

𝜕𝑡
+
𝜕𝑁(1,2),𝑔

𝜕𝜁

𝜕𝜁

𝜕𝑡
=

𝜕𝑁(1,2),𝑔

𝜕𝜏
𝛾𝑞 + 0 = 𝛾𝑞

𝜕(𝑁(1,2),𝑔−𝑁𝑔
𝑡𝑟)

𝜕𝜏
 

  → 𝛾𝑞
𝜕(𝑁(1,2),𝑔−𝑁𝑔

𝑡𝑟)

𝜕𝜏
= 𝐽(1,2),𝑔 − 𝛾𝑔𝑁(1,2),𝑔 − 𝑣𝑔𝑔Γ𝑔(𝑁(1,2),𝑔 − 𝑁𝑔

𝑡𝑟)|𝐸1,2|
2
 

  𝑛(1,2),𝑔 =
𝑣𝑔𝑔Γ𝑔

𝛾𝑞
(𝑁(1,2),𝑔 −𝑁𝑔

𝑡𝑟) →
𝜕𝑛(1,2),𝑔

𝜕𝜏
=

1

𝛾𝑞

𝑣𝑔𝑔Γ𝑔

𝛾𝑞
𝛾𝑞

𝜕(𝑁(1,2),𝑔−𝑁𝑔
𝑡𝑟)

𝜕𝜏
 

  →
𝜕𝑛(1,2),𝑔

𝜕𝜏
=

𝑣𝑔𝑔Γ𝑔

𝛾𝑞
2 (𝐽(1,2),𝑔 − 𝛾𝑔𝑁(1,2),𝑔) −

𝑣𝑔𝑔Γ𝑔

𝛾𝑞

𝑣𝑔𝑔Γ𝑔

𝛾𝑞
(𝑁(1,2),𝑔 − 𝑁𝑔

𝑡𝑟)|𝐸1,2|
2
 

  →
𝜕𝑛(1,2),𝑔

𝜕𝜏
=

𝑣𝑔𝑔Γ𝑔

𝛾𝑞
2 (𝐽(1,2),𝑔 − 𝛾𝑔𝑁𝑔

𝑡𝑟) −
1

𝛾𝑞

𝑣𝑔𝑔Γ𝑔

𝛾𝑞
𝛾𝑔(𝑁(1,2),𝑔 −𝑁𝑔

𝑡𝑟) −
𝑣𝑔𝑔Γ𝑔

𝛾𝑞
𝑛(1,2),𝑔 (

𝛾𝑞

𝑣𝑔𝑔Γ𝑔
|𝐴1,2|

2
) 

  →
𝜕𝑛(1,2),𝑔

𝜕𝜏
= 𝑗(1,2),𝑔 − Γ𝑛(1,2),𝑔 − 𝑛(1,2),𝑔|𝐴1,2|

2
 

  where 𝑗(1,2),𝑔 ≡
𝑣𝑔𝑔Γ𝑔

𝛾𝑞
2 (𝐽(1,2),𝑔 − 𝛾𝑔𝑁𝑔

𝑡𝑟)  and  Γ ≡ 𝛾𝑔/𝛾𝑞 

 

 
𝜕𝑛(1,2),𝑞(𝜏,𝜁)

𝜕𝜏
= −𝑗𝑞 − 𝑛(1,2),𝑞(𝜏, 𝜁) − 𝑠𝑛(1,2),𝑞(𝜏, 𝜁)|𝐴1,2(𝜏, 𝜁)|

2
← For the absorber 

  Start with 
𝜕𝑁(1,2),𝑞

𝜕𝑡
=

𝜕(𝑁(1,2),𝑞−𝑁𝑞
𝑡𝑟)

𝜕𝑡
= 𝐽(1,2),𝑞 − 𝛾𝑞𝑁(1,2),𝑞 − 𝑣𝑔𝑞Γ𝑞(𝑁(1,2),𝑞 −𝑁𝑞

𝑡𝑟)|𝐸1,2|
2
 

  
𝜕𝑁(1,2),𝑞

𝜕𝑡
=

𝜕𝑁(1,2),𝑞

𝜕𝜏

𝜕𝜏

𝜕𝑡
+
𝜕𝑁(1,2),𝑞

𝜕𝜁

𝜕𝜁

𝜕𝑡
=

𝜕𝑁(1,2),𝑞

𝜕𝜏
𝛾𝑞 + 0 = 𝛾𝑞

𝜕(𝑁(1,2),𝑞−𝑁𝑞
𝑡𝑟)

𝜕𝜏
 

  Also, recall that 𝐽(1,2),𝑞 = 0 → 𝛾
𝑞

𝜕(𝑁(1,2),𝑞−𝑁𝑞
𝑡𝑟)

𝜕𝜏
= 0 − 𝛾

𝑞
𝑁(1,2),𝑞 − 𝑣𝑔𝑞Γ𝑞(𝑁(1,2),𝑞 − 𝑁𝑞

𝑡𝑟)|𝐸1,2|
2
 

  𝑛(1,2),𝑞 =
𝑣𝑔𝑞Γ𝑞

𝛾𝑞
(𝑁(1,2),𝑞 − 𝑁𝑞

𝑡𝑟) →
𝜕𝑛(1,2),𝑞

𝜕𝜏
=

1

𝛾𝑞

𝑣𝑔𝑞Γ𝑞

𝛾𝑞
𝛾𝑞

𝜕(𝑁(1,2),𝑞−𝑁𝑞
𝑡𝑟)

𝜕𝜏
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  →
𝜕𝑛(1,2),𝑞

𝜕𝜏
= −

𝑣𝑔𝑞Γ𝑞

𝛾𝑞
2 𝛾𝑞𝑁(1,2),𝑞 −

𝑣𝑔𝑞Γ𝑞

𝛾𝑞

𝑣𝑔𝑞Γ𝑞

𝛾𝑞
(𝑁(1,2),𝑞 −𝑁𝑞

𝑡𝑟)|𝐸1,2|
2
 

  →
𝜕𝑛(1,2),𝑞

𝜕𝜏
= −

𝑣𝑔𝑞Γ𝑞

𝛾𝑞
2 𝛾𝑞𝑁𝑞

𝑡𝑟 −
1

𝛾𝑞

𝑣𝑔𝑞Γ𝑞

𝛾𝑞
𝛾𝑞(𝑁(1,2),𝑞 −𝑁𝑞

𝑡𝑟) −
𝑣𝑔𝑞Γ𝑞

𝛾𝑞
𝑛(1,2),𝑞 (

𝛾𝑞

𝑣𝑔𝑔Γ𝑔
|𝐴1,2|

2
) 

  →
𝜕𝑛(1,2),𝑞

𝜕𝜏
= −𝑗𝑞 − 𝑛(1,2),𝑞 − 𝑠𝑛(1,2),𝑞|𝐴1,2|

2
 

  where 𝑗𝑞 ≡
𝑣𝑔𝑞Γ𝑞

𝛾𝑞
𝑁𝑞
𝑡𝑟   and  𝑠 ≡

𝑔𝑞Γ𝑞

𝑔𝑔Γ𝑔
 

 

 
𝜕𝐴1,2

𝜕𝜁
= 0 ← For the passive section without coupling 

  Start with 
𝜕𝐸1,2

𝜕𝑧
+
1

𝑣

𝜕𝐸1,2

𝜕𝑡
= 0 

  →
𝛾𝑞

𝑣

𝜕𝐸1,2

𝜕𝜁
= 0 →

𝜕𝐸1,2

𝜕𝜁
= 0 →

𝜕𝐴1,2

𝜕𝜁
= 0 

 

 
𝜕𝐴1,2

𝜕𝜁
= 𝑖Κ12,21

′ 𝐴2,1 ← For the passive section with coupling 

  Start with 
𝜕𝐸1,2

𝜕𝑧
+
1

𝑣

𝜕𝐸1,2

𝜕𝑡
= 𝑖Κ12,21𝐸2,1 

  →
𝛾𝑞

𝑣

𝜕𝐸1,2

𝜕𝜁
= 𝑖Κ12,21𝐸2,1 →

𝜕𝐸1,2

𝜕𝜁
= 𝑖Κ12,21

′ 𝐸2,1 →
𝜕𝐴1,2

𝜕𝜁
= 𝑖Κ12,21

′ 𝐴2,1 

  where Κ12,21
′ ≡

𝑣

𝛾𝑞
Κ12,21 

 

New variables/parameters introduced above 

 𝜏 ≡ Normalized time coordinate = 𝛾𝑞(𝑡 − 𝑧/𝑣) 

 𝜁 ≡ Normalized spatial coordinate = 𝑧𝛾𝑞/𝑣 

 𝐴1,2(𝜏, 𝜁) ≡ Normalized amplitude = 𝐸1,2(𝑡, 𝑧)√𝑣𝑔𝑔Γ𝑔/𝛾𝑞 

 𝑛𝑔,𝑞(𝜏, 𝜁) = 𝑣𝑔𝑔,𝑞Γ𝑔,𝑞(𝑁𝑔,𝑞(𝑡, 𝑧) − 𝑁𝑔,𝑞
𝑡𝑟 )/𝛾𝑞 

 𝑗(1,2),𝑔 = 𝑣𝑔𝑔Γ𝑔(𝐽(1,2),𝑔 − 𝛾𝑔𝑁𝑔
𝑡𝑟)/𝛾𝑞

2 

 Γ = 𝛾𝑔/𝛾𝑞 

 𝑗𝑞 = 𝑣𝑔𝑞Γ𝑞𝑁𝑞
𝑡𝑟/𝛾𝑞 

 𝑠 = (𝑔𝑞Γ𝑞)/(𝑔𝑔Γ𝑔) 

 Κ12,21
′ ≡ Normalized coupling coefficient =

𝑣

𝛾𝑞
Κ12,21 

 

Relations between the amplitudes in different sections for each laser cavity 

 𝐴1,2(𝜏, 𝜁2) = 𝐴1,2(𝜏, 𝜁1)     Passive section without coupling 

  Start with 
𝜕𝐴1,2

𝜕𝜁
= 0 

  → 𝜕𝐴1,2 = 0𝑑𝜁 

  → 𝐴1,2 = constant 
  → 𝐴1,2(𝜏, 𝜁2) = 𝐴1,2(𝜏, 𝜁1) 
 

 𝐴1,2(𝜏, 𝜁3) = 𝑒
−(1−𝑖𝛼𝑞)𝑄1,2(𝜏)/2𝐴1,2(𝜏, 𝜁2)     Absorber section 

  Start with 
𝜕𝐴1,2

𝜕𝜁
=

1

2
(1 − 𝑖𝛼𝑞)𝑛(1,2),𝑞𝐴1,2 →

𝜕𝐴1,2

𝐴1,2
=

1

2
(1 − 𝑖𝛼𝑞)𝑛(1,2),𝑞𝑑𝜁 
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  → ∫
𝜕𝐴1,2

𝐴1,2

𝜁3

𝜁2
=

1

2
(1 − 𝑖𝛼𝑞) ∫ 𝑛(1,2),𝑞𝑑𝜁

𝜁3

𝜁2
= −

(1−𝑖𝛼𝑞)𝑄1,2(𝜏)

2
 

   where 𝑄1,2(𝜏) ≡ −∫ 𝑛(1,2),𝑞𝑑𝜁
𝜁3

𝜁2
 

  → ln (𝐴1,2(𝜏, 𝜁3)) − ln (𝐴1,2(𝜏, 𝜁2) = ln (
𝐴1,2(𝜏,𝜁3)

𝐴1,2(𝜏,𝜁2)
) = −

(1−𝑖𝛼𝑞)𝑄1,2(𝜏)

2
 

  → 𝐴1,2(𝜏, 𝜁3) = 𝑒−(1−𝑖𝛼𝑞)𝑄1,2(𝜏)/2𝐴1,2(𝜏, 𝜁2)  

 

 𝐴1,2(𝜏, 𝜁4) = 𝑒
(1−𝑖𝛼𝑔)𝐺1,2(𝜏)/2𝐴1,2(𝜏, 𝜁3)     Gain section 

  Start with 
𝜕𝐴1,2

𝜕𝜁
=

1

2
(1 − 𝑖𝛼𝑔)𝑛(1,2),𝑔𝐴1,2 →

𝜕𝐴1,2

𝐴1,2
=

1

2
(1 − 𝑖𝛼𝑔)𝑛(1,2),𝑔𝑑𝜁 

  → ∫
𝜕𝐴1,2

𝐴1,2

𝜁4

𝜁3
=

1

2
(1 − 𝑖𝛼𝑔) ∫ 𝑛(1,2),𝑔𝑑𝜁

𝜁4

𝜁3
=

(1−𝑖𝛼𝑔)𝐺1,2(𝜏)

2
 

   where 𝐺1,2(𝜏) ≡ ∫ 𝑛(1,2),𝑔𝑑𝜁
𝜁4

𝜁3
 

  → ln (𝐴1,2(𝜏, 𝜁4)) − ln (𝐴1,2(𝜏, 𝜁3)) = ln (
𝐴1,2(𝜏,𝜁4)

𝐴1,2(𝜏,𝜁3)
) =

(1−𝑖𝛼𝑔)𝐺1,2(𝜏)

2
 

  → 𝐴1,2(𝜏, 𝜁4) = 𝑒(1−𝑖𝛼𝑔)𝐺1,2(𝜏)/2𝐴1,2(𝜏, 𝜁3) 
 

 [
𝐴1(𝜏, 𝜁5)

𝐴2(𝜏, 𝜁5)
] = [

cos(Κ′ℓ) 𝑖

Κ′′
sin(Κ′ℓ)

𝑖Κ′′ sin(Κ′ℓ) cos(Κ′ℓ)
] [
𝐴1(𝜏, 𝜁4)

𝐴2(𝜏, 𝜁4)
]     Passive section with coupling 

  Start with system of equations {

𝜕𝐴1

𝜕𝜁
= 𝑖Κ12

′ 𝐴2

𝜕𝐴2

𝜕𝜁
= 𝑖Κ21

′ 𝐴1
 

  𝐴2 = −
𝑖

𝐾12
′

𝜕𝐴1

𝜕𝜁
→

𝜕𝐴2

𝜕𝜁
= −

𝑖

𝐾12
′

𝜕2𝐴1

(𝜕𝜁)2
= 𝑖Κ21

′ 𝐴1 

  →
𝜕2𝐴1

(𝜕𝜁)2
+ (Κ12

′ Κ21
′ )𝐴1 =

𝜕2𝐴1

(𝜕𝜁)2
+ (Κ′)2𝐴1 = 0,  where  Κ′ ≡ √Κ12

′ Κ21
′  

  → {
𝐴1(𝜏, 𝜁) = 𝐴01 cos(Κ

′(𝜁 − 𝜁4)) + 𝐴02 sin(Κ
′(𝜁 − 𝜁4))

𝐴2(𝜏, 𝜁) = 𝑖Κ′′𝐴01 sin(Κ
′(𝜁 − 𝜁4)) − 𝑖Κ

′′𝐴02 cos(Κ
′(𝜁 − 𝜁4))

 

   where 𝐴01  and 𝐴02  are constants (with respect to 𝜁), and Κ
′′ ≡ √

Κ21
′

Κ12
′   

  → {
𝐴01 = 𝐴1(𝜏, 𝜁4)

𝐴02 =
𝑖

Κ′′
𝐴2(𝜏, 𝜁4)

 

  → {
𝐴1(𝜏, 𝜁5) = cos(Κ′ℓ) 𝐴1(𝜏, 𝜁4) +

𝑖

Κ′′
sin(Κ′ℓ) 𝐴2(𝜏, 𝜁4)

𝐴2(𝜏, 𝜁5) = 𝑖Κ
′′ sin(Κ′ℓ) 𝐴1(𝜏, 𝜁4) + cos(Κ

′ℓ) 𝐴2(𝜏, 𝜁4)
 

   where ℓ ≡ 𝜁5 − 𝜁4 
 

New variables/parameters introduced above 

 Κ′ ≡ √Κ12
′ Κ21

′  

 Κ′′ ≡ √Κ21
′ /Κ12

′ = Κ21
′ /Κ′ = Κ′/Κ12

′  

 ℓ ≡ Normalized length of passive section with coupling = 𝜁5 − 𝜁4 

 𝑄1,2(𝜏) ≡ Saturable absorption = −∫ 𝑛(1,2),𝑞𝑑𝜁
𝜁3

𝜁2
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 𝐺1,2(𝜏) ≡ Saturable gain = ∫ 𝑛(1,2),𝑔𝑑𝜁
𝜁4

𝜁3
 

 

Combined transformation of the amplitudes by absorber, gain, and passive sections in each laser 

 𝐴1(𝜏, 𝜁5) =    cos(Κ′ℓ)𝑒(1−𝑖𝛼𝑔)𝐺1(𝜏)/2−(1−𝑖𝛼𝑞)𝑄1(𝜏)/2 𝐴1(𝜏, 𝜁1)

+
𝑖

Κ′′
sin(Κ′ℓ) 𝑒(1−𝑖𝛼𝑔)𝐺2(𝜏)/2−(1−𝑖𝛼𝑞)𝑄2(𝜏)/2𝐴2(𝜏, 𝜁1)

 

 𝐴2(𝜏, 𝜁5) =     𝑖Κ
′′ sin(Κ′ℓ) 𝑒(1−𝑖𝛼𝑔)𝐺1(𝜏)/2−(1−𝑖𝛼𝑞)𝑄1(𝜏)/2𝐴1(𝜏, 𝜁1)

+ cos(Κ′ℓ) 𝑒(1−𝑖𝛼𝑔)𝐺2(𝜏)/2−(1−𝑖𝛼𝑞)𝑄2(𝜏)/2𝐴2(𝜏, 𝜁1)

 

 

Equations governing the saturable gain and saturable absorption  

 
𝜕𝐺1,2(𝜏)

𝜕𝜏
= 𝑔0(1,2) − Γ𝐺1,2(𝜏) − |𝐴1,2(𝜏, 𝜁4)|

2
+ |𝐴1,2(𝜏, 𝜁3)|

2
← Gain 

  Start with 
𝜕𝑛(1,2),𝑔

𝜕𝜏
= 𝑗(1,2),𝑔 − Γ𝑛(1,2),𝑔 − 𝑛(1,2),𝑔|𝐴1,2|

2
 

  → ∫
𝜕𝑛(1,2),𝑔

𝜕𝜏
𝑑𝜁

𝜁4

𝜁3
= ∫ 𝑗(1,2),𝑔𝑑𝜁

𝜁4

𝜁3
− Γ∫ 𝑛(1,2),𝑔𝑑𝜁

𝜁4

𝜁3
− ∫ 𝑛(1,2),𝑔|𝐴1,2|

2
𝑑𝜁

𝜁4

𝜁3
 

  →
𝜕

𝜕𝜏
∫ 𝑛(1,2),𝑔𝑑𝜁
𝜁4

𝜁3
=

𝜕𝐺1,2(𝜏)

𝜕𝜏
= 𝑔0(1,2) − Γ𝐺1,2(𝜏) − ∫ 𝑛(1,2),𝑔|𝐴1,2|

2
𝑑𝜁

𝜁4

𝜁3
 

   where 𝑔0(1,2) ≡ ∫ 𝑗(1,2),𝑔𝑑𝜁
𝜁4

𝜁3
 

  Now consider 
𝜕𝐴1,2

𝜕𝜁
=

1

2
(1 − 𝑖𝛼𝑔)𝑛(1,2),𝑔𝐴1,2 

   →
𝜕𝐴1,2

∗

𝜕𝜁
=

1

2
(1 + 𝑖𝛼𝑔)𝑛(1,2),𝑔𝐴1,2

∗  

   → {
𝐴1,2
∗ 𝜕𝐴1,2

𝜕𝜁
=

1

2
(1 − 𝑖𝛼𝑔)𝑛(1,2),𝑔|𝐴1,2|

2

𝐴1,2
𝜕𝐴1,2

∗

𝜕𝜁
=

1

2
(1 + 𝑖𝛼𝑔)𝑛(1,2),𝑔|𝐴1,2|

2
 

   
𝜕|𝐴1,2|

2

𝜕𝜁
=

𝜕(𝐴1,2𝐴1,2
∗ )

𝜕𝜁
= 𝐴1,2

𝜕𝐴1,2
∗

𝜕𝜁
+
𝜕𝐴1,2

𝜕𝜁
𝐴1,2
∗  

   →
𝜕|𝐴1,2|

2

𝜕𝜁
=

1

2
(1 + 𝑖𝛼𝑔)𝑛(1,2),𝑔|𝐴1,2|

2
+
1

2
(1 − 𝑖𝛼𝑔)𝑛(1,2),𝑔|𝐴1,2|

2
 

   →
𝜕|𝐴1,2|

2

𝜕𝜁
= 𝑛(1,2),𝑔|𝐴1,2|

2
 

  → ∫ 𝜕|𝐴1,2|
2|𝐴1,2(𝜏,𝜁4)|

2

|𝐴1,2(𝜏,𝜁3)|
2 =∫ 𝑛(1,2),𝑔|𝐴1,2|

2
𝑑𝜁

𝜁4

𝜁3
 

  → ∫ 𝑛(1,2),𝑔|𝐴1,2|
2
𝑑𝜁

𝜁4

𝜁3
= |𝐴1,2(𝜏, 𝜁4)|

2
− |𝐴1,2(𝜏, 𝜁3)|

2
 

  Therefore 
𝜕𝐺1,2(𝜏)

𝜕𝜏
= 𝑔0(1,2) − Γ𝐺1,2(𝜏) − |𝐴1,2(𝜏, 𝜁4)|

2
+ |𝐴1,2(𝜏, 𝜁3)|

2
 

 

 
𝜕𝑄1,2(𝜏)

𝜕𝜏
= 𝑞0 − 𝑄1,2(𝜏) + 𝑠|𝐴1,2(𝜏, 𝜁3)|

2
− 𝑠|𝐴1,2(𝜏, 𝜁2)|

2
← Absorber 

  Start with 
𝜕𝑛(1,2),𝑞

𝜕𝜏
= −𝑗𝑞 − 𝑛(1,2),𝑞 − 𝑠𝑛(1,2),𝑞|𝐴1,2|

2
 

  → ∫
𝜕𝑛(1,2),𝑞

𝜕𝜏
𝑑𝜁

𝜁3

𝜁2
= −∫ 𝑗𝑞𝑑𝜁

𝜁3

𝜁2
− ∫ 𝑛(1,2),𝑞𝑑𝜁

𝜁3

𝜁2
− 𝑠∫ 𝑛(1,2),𝑞|𝐴1,2|

2
𝑑𝜁

𝜁3

𝜁2
 

  → −
𝜕

𝜕𝜏
∫ 𝑛(1,2),𝑞𝑑𝜁
𝜁3

𝜁2
=

𝜕𝑄1,2(𝜏)

𝜕𝜏
= 𝑞0 − 𝑄1,2(𝜏) + 𝑠 ∫ 𝑛(1,2),𝑞|𝐴1,2|

2
𝑑𝜁

𝜁3

𝜁2
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   where 𝑞0 ≡ ∫ 𝑗𝑞𝑑𝜁
𝜁3

𝜁2
 

  Now consider 
𝜕𝐴1,2

𝜕𝜁
=

1

2
(1 − 𝑖𝛼𝑞)𝑛(1,2),𝑞𝐴1,2 

   →
𝜕𝐴1,2

∗

𝜕𝜁
=

1

2
(1 + 𝑖𝛼𝑞)𝑛(1,2),𝑞𝐴1,2

∗  

   → {
𝐴1,2
∗ 𝜕𝐴1,2

𝜕𝜁
=

1

2
(1 − 𝑖𝛼𝑞)𝑛(1,2),𝑞|𝐴1,2|

2

𝐴1,2
𝜕𝐴1,2

∗

𝜕𝜁
=

1

2
(1 + 𝑖𝛼𝑞)𝑛(1,2),𝑞|𝐴1,2|

2
 

   
𝜕|𝐴1,2|

2

𝜕𝜁
=

𝜕(𝐴1,2𝐴1,2
∗ )

𝜕𝜁
= 𝐴1,2

𝜕𝐴1,2
∗

𝜕𝜁
+
𝜕𝐴1,2

𝜕𝜁
𝐴1,2
∗  

   →
𝜕|𝐴1,2|

2

𝜕𝜁
=

1

2
(1 + 𝑖𝛼𝑞)𝑛(1,2),𝑞|𝐴1,2|

2
+
1

2
(1 − 𝑖𝛼𝑞)𝑛(1,2),𝑞|𝐴1,2|

2
 

   →
𝜕|𝐴1,2|

2

𝜕𝜁
= 𝑛(1,2),𝑞|𝐴1,2|

2
 

  → ∫ 𝜕|𝐴1,2|
2|𝐴1,2(𝜏,𝜁3)|

2

|𝐴1,2(𝜏,𝜁2)|
2 = ∫ 𝑛(1,2),𝑞|𝐴1,2|

2
𝑑𝜁

𝜁3

𝜁2
 

  → ∫ 𝑛(1,2),𝑞|𝐴1,2|
2
𝑑𝜁

𝜁3

𝜁2
= |𝐴1,2(𝜏, 𝜁3)|

2
− |𝐴1,2(𝜏, 𝜁2)|

2
 

  Therefore 
𝜕𝑄1,2(𝜏)

𝜕𝜏
= 𝑞0 − 𝑄1,2(𝜏) + 𝑠|𝐴1,2(𝜏, 𝜁3)|

2
− 𝑠|𝐴1,2(𝜏, 𝜁2)|

2
 

 

New variables/parameters introduced above 

 𝑔0(1,2) ≡ Unsaturated gain parameter = ∫ 𝑗(1,2),𝑔𝑑𝜁
𝜁4

𝜁3
 

 𝑞0 ≡ Unsaturated absorption parameter = ∫ 𝑗𝑞𝑑𝜁
𝜁3

𝜁2
 

 𝐴1,2(𝜏) ≡ 𝐴1,2(𝜏, 𝜁1) ≡ Normalized amplitude at beginning of RT 

 𝑇1,2 ≡ Normalized cavity roundtrip time (same for 𝜏 and 𝜁) = 𝛾𝑞𝐿1,2/𝑣 

 𝜅 ≡ Attenuation factor, accounting for total nonresonant linear intensity loss per RT 
 

Spectral filter (general) 

 

𝐴1(𝜏 + 𝑇1) = ∫ 𝑓(𝜏 − 𝜃)𝑅11(𝜃)𝐴1(𝜃)𝑑𝜃
𝜏

−∞
+ ∫ 𝑓(𝜏 − 𝜃)𝑅12(𝜃)𝐴2(𝜃)𝑑𝜃

𝜏

−∞

𝐴2(𝜏 + 𝑇2) = ∫ 𝑓(𝜏 − 𝜃)𝑅21(𝜃)𝐴1(𝜃)𝑑𝜃
𝜏

−∞
+ ∫ 𝑓(𝜏 − 𝜃)𝑅22(𝜃)𝐴2(𝜃)𝑑𝜃

𝜏

−∞

where 

{
  
 

  
 𝑅11(𝜏) ≡ cos(Κ

′ℓ)√𝜅𝑒
(1−𝑖𝛼𝑔)𝐺1(𝜏)

2
−
(1−𝑖𝛼𝑞)𝑄1(𝜏)

2

𝑅12(𝜏) ≡
𝑖

Κ′′
sin(Κ′ℓ)√𝜅𝑒

(1−𝑖𝛼𝑔)𝐺2(𝜏)

2
−
(1−𝑖𝛼𝑞)𝑄2(𝜏)

2

𝑅21(𝜏) ≡ 𝑖Κ
′′ sin(Κ′ℓ)√𝜅𝑒

(1−𝑖𝛼𝑔)𝐺1(𝜏)

2
−
(1−𝑖𝛼𝑞)𝑄1(𝜏)

2

𝑅22(𝜏) ≡ cos(Κ
′ℓ)√𝜅𝑒

(1−𝑖𝛼𝑔)𝐺2(𝜏)

2
−
(1−𝑖𝛼𝑞)𝑄2(𝜏)

2

 

  First, use the periodic boundary condition: 𝐸1,2(𝑡, 𝑧 + 𝐿1,2) = 𝐸1,2(𝑡, 𝑧) 

   Recall that  𝜏 = 𝛾𝑞 (𝑡 −
𝑧

𝑣
) ,  𝜁 =

𝑧𝛾𝑞

𝑣
,  and  𝐴1,2(𝜏, 𝜁) = 𝐸1,2(𝑡, 𝑧)√

𝑣𝑔𝑔Γ𝑔

𝛾𝑞
  

   → 𝐸1,2(𝑡, 𝑧 + 𝐿1,2) = 𝐴1,2 (𝛾𝑞 (𝑡 −
𝑧+𝐿1,2

𝑣
) ,

(𝑧+𝐿1,2)𝛾𝑞

𝑣
) = 𝐴1,2 (𝜏 −

𝛾𝑞𝐿1,2

𝑣
, 𝜁 +

𝛾𝑞𝐿1,2

𝑣
) 

   𝐸1,2(𝑡, 𝑧) = 𝐸1,2(𝑡, 𝑧 + 𝐿1,2) → 𝐴1,2(𝜏, 𝜁) = 𝐴1,2 (𝜏 −
𝛾𝑞𝐿1,2

𝑣
, 𝜁 +

𝛾𝑞𝐿1,2

𝑣
) 
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   → 𝐴1,2 (𝜏 +
𝛾𝑞𝐿1,2

𝑣
, 𝜁) = 𝐴1,2 (𝜏, 𝜁 +

𝛾𝑞𝐿1,2

𝑣
) 

   Therefore, 𝐴1,2(𝜏 + 𝑇1,2, 𝜁) = 𝐴1,2(𝜏, 𝜁 + 𝑇1,2) ,  where 𝑇1,2 ≡ 𝛾𝑞𝐿1,2/𝑣 

  Next, start with spectral filter 𝐸̂1,2(𝜔, 𝑧1 + 𝐿1,2) = 𝑓(𝜔)𝐸̂1,2(𝜔, 𝑧5) 

   → 𝐴̂1,2(𝜔, 𝜁1 + 𝑇1,2) = 𝑓(𝜔)𝐴̂1,2(𝜔, 𝜁5) 

   → 𝐴1,2(𝜏, 𝜁1 + 𝑇1,2) = ∫ 𝑓(𝜏 − 𝜃)𝐴1,2(𝜃, 𝜁5)𝑑𝜃
𝜏

−∞
 

   → 𝐴1,2(𝜏 + 𝑇1,2, 𝜁1) = ∫ 𝑓(𝜏 − 𝜃)𝐴1,2(𝜃, 𝜁5)𝑑𝜃
𝜏

−∞
 

   Define 𝑅11(𝜏), 𝑅12(𝜏), 𝑅21(𝜏), and 𝑅22(𝜏) 

    𝑅11(𝜏) ≡ cos(Κ
′ℓ)√𝜅𝑒(1−𝑖𝛼𝑔)𝐺1(𝜏)/2−(1−𝑖𝛼𝑞)𝑄1(𝜏)/2 

    𝑅12(𝜏) ≡
𝑖

Κ′′
sin(Κ′ℓ)√𝜅𝑒(1−𝑖𝛼𝑔)𝐺2(𝜏)/2−(1−𝑖𝛼𝑞)𝑄2(𝜏)/2 

    𝑅21(𝜏) ≡ 𝑖Κ
′′ sin(Κ′ℓ)√𝜅𝑒(1−𝑖𝛼𝑔)𝐺1(𝜏)/2−(1−𝑖𝛼𝑞)𝑄1(𝜏)/2 

    𝑅22(𝜏) ≡ cos(Κ
′ℓ)√𝜅𝑒(1−𝑖𝛼𝑔)𝐺2

(𝜏)/2−(1−𝑖𝛼𝑞)𝑄2(𝜏)/2 

    The extra, appended term √𝜅 accounts for linear cavity loss 

   → {
𝐴1(𝜏, 𝜁5) = 𝑅11(𝜏)𝐴1(𝜏, 𝜁1) + 𝑅12(𝜏)𝐴2(𝜏, 𝜁1)

𝐴2(𝜏, 𝜁5) = 𝑅21(𝜏)𝐴1(𝜏, 𝜁1) + 𝑅22(𝜏)𝐴2(𝜏, 𝜁1)
 

   Define 𝐴1,2(𝜏) ≡ 𝐴1,2(𝜏, 𝜁1) 

   → {
𝐴1(𝜏 + 𝑇1) = ∫ 𝑓(𝜏 − 𝜃)𝑅11(𝜃)𝐴1(𝜃)𝑑𝜃

𝜏

−∞
+ ∫ 𝑓(𝜏 − 𝜃)𝑅12(𝜃)𝐴2(𝜃)𝑑𝜃

𝜏

−∞

𝐴2(𝜏 + 𝑇2) = ∫ 𝑓(𝜏 − 𝜃)𝑅21(𝜃)𝐴1(𝜃)𝑑𝜃
𝜏

−∞
+ ∫ 𝑓(𝜏 − 𝜃)𝑅22(𝜃)𝐴2(𝜃)𝑑𝜃

𝜏

−∞

 

 

Lorentzian spectral filter response function 

 𝑓(𝜏) = 𝛾𝑒(−𝛾+𝑖Ω)𝜏𝑢(𝜏) → 𝑓(𝑤) =
𝛾

𝛾+𝑖(𝑤−Ω)
 

  𝛾 ≡ Bandwidth of spectral filter 
  Ω ≡ Detuning from spectral filter (𝑤 − 𝑤0, where 𝑤0 is the center frequency) 

  𝑢(𝜏) ≡ Step function = {
0 𝜏 < 0
1 𝜏 ≥ 0

 

 

Delay differential equations 

 

𝜕𝐴̃1(𝜏)

𝜕𝜏
= −𝛾𝐴̃1(𝜏) + 𝛾𝑒

−𝑖φ(𝑅11(𝜏 − 𝑇)𝐴̃1(𝜏 − 𝑇) + 𝑅12(𝜏 − 𝑇)𝐴̃2(𝜏 − 𝑇))

𝜕𝐴̃2(𝜏)

𝜕𝜏
= −𝛾𝐴̃2(𝜏) + 𝛾𝑒

−𝑖φ(𝑅21(𝜏 − 𝑇)𝐴̃1(𝜏 − 𝑇) + 𝑅22(𝜏 − 𝑇)𝐴̃2(𝜏 − 𝑇))

where 

{
 
 

 
 𝑅11(𝜏) ≡ cos(Κ

′ℓ)√𝜅𝑒(1−𝑖𝛼𝑔)𝐺1(𝜏)/2−(1−𝑖𝛼𝑞)𝑄1(𝜏)/2

𝑅12(𝜏) ≡
𝑖

Κ′′
sin(Κ′ℓ)√𝜅𝑒(1−𝑖𝛼𝑔)𝐺2(𝜏)/2−(1−𝑖𝛼𝑞)𝑄2(𝜏)/2

𝑅21(𝜏) ≡ 𝑖Κ
′′ sin(Κ′ℓ)√𝜅𝑒(1−𝑖𝛼𝑔)𝐺1(𝜏)/2−(1−𝑖𝛼𝑞)𝑄1(𝜏)/2

𝑅22(𝜏) ≡ cos(Κ
′ℓ)√𝜅𝑒(1−𝑖𝛼𝑔)𝐺2(𝜏)/2−(1−𝑖𝛼𝑞)𝑄2(𝜏)/2

 ← Amplitude DDEs 

Start with the following equations 

 {
𝐴1(𝜏 + 𝑇1) = ∫ 𝑓(𝜏 − 𝜃)𝑅11(𝜃)𝐴1(𝜃)𝑑𝜃

𝜏

−∞
+ ∫ 𝑓(𝜏 − 𝜃)𝑅12(𝜃)𝐴2(𝜃)𝑑𝜃

𝜏

−∞

𝐴2(𝜏 + 𝑇2) = ∫ 𝑓(𝜏 − 𝜃)𝑅21(𝜃)𝐴1(𝜃)𝑑𝜃
𝜏

−∞
+ ∫ 𝑓(𝜏 − 𝜃)𝑅22(𝜃)𝐴2(𝜃)𝑑𝜃

𝜏

−∞

 

   𝑅11(𝜏) ≡ cos(Κ
′ℓ)√𝜅𝑒(1−𝑖𝛼𝑔)𝐺1(𝜏)/2−(1−𝑖𝛼𝑞)𝑄1(𝜏)/2 

   𝑅12(𝜏) ≡
𝑖

Κ′′
sin(Κ′ℓ)√𝜅𝑒(1−𝑖𝛼𝑔)𝐺2(𝜏)/2−(1−𝑖𝛼𝑞)𝑄2(𝜏)/2 
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   𝑅21(𝜏) ≡ 𝑖Κ
′′ sin(Κ′ℓ)√𝜅𝑒(1−𝑖𝛼𝑔)𝐺1(𝜏)/2−(1−𝑖𝛼𝑞)𝑄1(𝜏)/2 

   𝑅22(𝜏) ≡ cos(Κ
′ℓ)√𝜅𝑒(1−𝑖𝛼𝑔)𝐺2(𝜏)/2−(1−𝑖𝛼𝑞)𝑄2(𝜏)/2 

   𝑓(𝜏) = 𝛾𝑒(−𝛾+𝑖Ω)𝜏𝑢(𝜏) 
  Recall the Leibniz Integral Rule 

   
𝑑

𝑑𝑡
(∫ 𝑓(𝑥, 𝑡)𝑑𝑥

𝑏(𝑡)

𝑎(𝑡)
) = ∫

𝜕𝑓

𝜕𝑡
𝑑𝑥

𝑏(𝑡)

𝑎(𝑡)
+ 𝑓(𝑏(𝑡), 𝑡) ∙ 𝑏′(𝑡) − 𝑓(𝑎(𝑡), 𝑡) ∙ 𝑎′(𝑡) 

   Proof: https://en.wikipedia.org/wiki/Leibniz_integral_rule 

(see the proofs section for the “general form with variable limits”) 

   →

{
 
 

 
 
𝜕𝐴1(𝜏+𝑇1)

𝜕𝜏
=     ∫ 𝑓′(𝜏 − 𝜃)𝑅11(𝜃)𝐴1(𝜃)𝑑𝜃

𝜏

−∞
+ 𝑓(0)𝑅11(𝜏)𝐴1(𝜏) − 0

+∫ 𝑓′(𝜏 − 𝜃)𝑅12(𝜃)𝐴2(𝜃)𝑑𝜃
𝜏

−∞
+ 𝑓(0)𝑅12(𝜏)𝐴2(𝜏) − 0

 
𝜕𝐴2(𝜏+𝑇2)

𝜕𝜏
=     ∫ 𝑓′(𝜏 − 𝜃)𝑅21(𝜃)𝐴1(𝜃)𝑑𝜃

𝜏

−∞
+ 𝑓(0)𝑅21(𝜏)𝐴1(𝜏) − 0

+∫ 𝑓′(𝜏 − 𝜃)𝑅22(𝜃)𝐴2(𝜃)𝑑𝜃
𝜏

−∞
+ 𝑓(0)𝑅22(𝜏)𝐴2(𝜏) − 0

 

  Note that  𝑓(0) = 𝛾  and  𝑓′(𝜏) = (−𝛾 + 𝑖Ω)𝑓(𝜏) for 𝜏 > 0 

   → 𝑓′(𝜏 − 𝜃) = (−𝛾 + 𝑖Ω)𝑓(𝜏 − 𝜃) 

   →

{
 
 

 
 
𝜕𝐴1(𝜏+𝑇1)

𝜕𝜏
=     (−𝛾 + 𝑖Ω) ∫ 𝑓(𝜏 − 𝜃)𝑅11(𝜃)𝐴1(𝜃)𝑑𝜃

𝜏

−∞
+ 𝑓(0)𝑅11(𝜏)𝐴1(𝜏)

+(−𝛾 + 𝑖Ω)∫ 𝑓(𝜏 − 𝜃)𝑅12(𝜃)𝐴2(𝜃)𝑑𝜃
𝜏

−∞
+ 𝑓(0)𝑅12(𝜏)𝐴2(𝜏)

 
𝜕𝐴2(𝜏+𝑇2)

𝜕𝜏
=     (−𝛾 + 𝑖Ω) ∫ 𝑓(𝜏 − 𝜃)𝑅21(𝜃)𝐴1(𝜃)𝑑𝜃

𝜏

−∞
+ 𝑓(0)𝑅21(𝜏)𝐴1(𝜏)

+(−𝛾 + 𝑖Ω)∫ 𝑓(𝜏 − 𝜃)𝑅22(𝜃)𝐴2(𝜃)𝑑𝜃
𝜏

−∞
+ 𝑓(0)𝑅22(𝜏)𝐴2(𝜏)

 

   → {

𝜕𝐴1(𝜏+𝑇1)

𝜕𝜏
= (−𝛾 + 𝑖Ω)𝐴1(𝜏 + 𝑇1) + 𝛾𝑅11(𝜏)𝐴1(𝜏) + 𝛾𝑅12(𝜏)𝐴2(𝜏)

𝜕𝐴2(𝜏+𝑇2)

𝜕𝜏
= (−𝛾 + 𝑖Ω)𝐴2(𝜏 + 𝑇2) + 𝛾𝑅21(𝜏)𝐴1(𝜏) + 𝛾𝑅22(𝜏)𝐴2(𝜏)

 

   → {

𝜕𝐴1(𝜏)

𝜕𝜏
+ (𝛾 − 𝑖Ω)𝐴1(𝜏) = 𝛾𝑅11(𝜏 − 𝑇1)𝐴1(𝜏 − 𝑇1) + 𝛾𝑅12(𝜏 − 𝑇1)𝐴2(𝜏 − 𝑇1)

𝜕𝐴2(𝜏)

𝜕𝜏
+ (𝛾 − 𝑖Ω)𝐴2(𝜏) = 𝛾𝑅21(𝜏 − 𝑇2)𝐴1(𝜏 − 𝑇2) + 𝛾𝑅22(𝜏 − 𝑇2)𝐴2(𝜏 − 𝑇2)

 

  Let 𝐴1,2(𝜏) = 𝐴̃1,2(𝜏)𝑒
𝑖Ω𝜏 

   →
𝜕𝐴1,2(𝜏)

𝜕𝜏
=

𝜕𝐴̃1,2(𝜏)

𝜕𝜏
𝑒𝑖Ω𝜏 + 𝑖Ω𝐴̃1,2(𝜏)𝑒

𝑖Ω𝜏 

   →

{
 
 

 
 (

𝜕𝐴̃1(𝜏)

𝜕𝜏
𝑒𝑖Ω𝜏 + 𝑖Ω𝐴̃1(𝜏)𝑒

𝑖Ω𝜏)

+(𝛾 − 𝑖Ω)(𝐴̃1(𝜏)𝑒
𝑖Ω𝜏)

=
   𝛾𝑅11(𝜏 − 𝑇1)𝐴̃1(𝜏 − 𝑇1)𝑒

𝑖Ω(𝜏−𝑇1)

+𝛾𝑅12(𝜏 − 𝑇1)𝐴̃2(𝜏 − 𝑇1)𝑒
𝑖Ω(𝜏−𝑇1)

 

(
𝜕𝐴̃2(𝜏)

𝜕𝜏
𝑒𝑖Ω𝜏 + 𝑖Ω𝐴̃2(𝜏)𝑒

𝑖Ω𝜏)

+(𝛾 − 𝑖Ω)(𝐴̃2(𝜏)𝑒
𝑖Ω𝜏)

=
   𝛾𝑅21(𝜏 − 𝑇2)𝐴̃1(𝜏 − 𝑇2)𝑒

𝑖Ω(𝜏−𝑇2)

+𝛾𝑅22(𝜏 − 𝑇2)𝐴̃2(𝜏 − 𝑇2)𝑒
𝑖Ω(𝜏−𝑇2)

 

   → {

𝜕𝐴1(𝜏)

𝜕𝜏
= −𝛾𝐴̃1(𝜏) + 𝛾𝑒

−𝑖Ω𝑇1 (𝑅11(𝜏 − 𝑇1)𝐴̃1(𝜏 − 𝑇1) + 𝑅12(𝜏 − 𝑇1)𝐴̃2(𝜏 − 𝑇1))

𝜕𝐴2(𝜏)

𝜕𝜏
= −𝛾𝐴̃2(𝜏) + 𝛾𝑒

−𝑖Ω𝑇2 (𝑅21(𝜏 − 𝑇2)𝐴̃1(𝜏 − 𝑇2) + 𝑅22(𝜏 − 𝑇2)𝐴̃2(𝜏 − 𝑇2))
 

  Therefore {

𝜕𝐴̃1(𝜏)

𝜕𝜏
= −𝛾𝐴̃1(𝜏) + 𝛾𝑒

−𝑖𝜑1(𝑅11(𝜏 − 𝑇1)𝐴̃1(𝜏 − 𝑇1) + 𝑅12(𝜏 − 𝑇1)𝐴̃2(𝜏 − 𝑇1))

𝜕𝐴̃2(𝜏)

𝜕𝜏
= −𝛾𝐴̃2(𝜏) + 𝛾𝑒

−𝑖𝜑2(𝑅21(𝜏 − 𝑇2)𝐴̃1(𝜏 − 𝑇2) + 𝑅22(𝜏 − 𝑇2)𝐴̃2(𝜏 − 𝑇2))
 

   where  𝜑1,2 ≡ Ω𝑇1,2  and  𝐴̃1,2(𝜏) ≡ 𝐴1,2(𝜏)𝑒
−𝑖Ω𝜏 
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𝜕𝐺1,2(𝜏)

𝜕𝜏
= 𝑔0(1,2) − Γ𝐺1,2(𝜏) − 𝑒

−𝑄1,2(𝜏)(𝑒𝐺1,2(𝜏) − 1)|𝐴̃1,2(𝜏)|
2
← Gain DDEs 

Start with the following relations 

   
𝜕𝐺1,2(𝜏)

𝜕𝜏
= 𝑔0(1,2) − Γ𝐺1,2(𝜏) − |𝐴1,2(𝜏, 𝜁4)|

2
+ |𝐴1,2(𝜏, 𝜁3)|

2
 

   𝐴1,2(𝜏, 𝜁2) = 𝐴1,2(𝜏, 𝜁1) = 𝐴1,2(𝜏) 

    → |𝐴1,2(𝜏, 𝜁2)|
2
= |𝐴1,2(𝜏)|

2
 

   𝐴1,2(𝜏, 𝜁3) = 𝑒
−(1−𝑖𝛼𝑞)𝑄1,2(𝜏)/2𝐴1,2(𝜏, 𝜁2) = 𝑒

−(1−𝑖𝛼𝑞)𝑄1,2(𝜏)/2𝐴1,2(𝜏) 

    → |𝐴1,2(𝜏, 𝜁3)|
2
= 𝑒−𝑄1,2(𝜏)|𝐴1,2(𝜏)|

2
 

   𝐴1,2(𝜏, 𝜁4) = 𝑒
(1−𝑖𝛼𝑔)𝐺1,2(𝜏)/2𝐴1,2(𝜏, 𝜁3) 

    → |𝐴1,2(𝜏, 𝜁4)|
2
= 𝑒𝐺1,2(𝜏)|𝐴1,2(𝜏, 𝜁3)|

2
= 𝑒𝐺1,2(𝜏)𝑒−𝑄1,2(𝜏)|𝐴1,2(𝜏)|

2
 

  →
𝜕𝐺1,2(𝜏)

𝜕𝜏
= 𝑔0(1,2) − Γ𝐺1,2(𝜏) − 𝑒

𝐺1,2(𝜏)𝑒−𝑄1,2(𝜏)|𝐴1,2(𝜏)|
2
+ 𝑒−𝑄1,2(𝜏)|𝐴1,2(𝜏)|

2
 

  Also note that |𝐴1,2(𝜏)|
2
= |𝐴̃1,2(𝜏)|

2
 

 

 
𝜕𝑄1,2(𝜏)

𝜕𝜏
= 𝑞0 − 𝑄1,2(𝜏) − 𝑠(1 − 𝑒

−𝑄1,2(𝜏))|𝐴̃1,2(𝜏)|
2
← Absorber DDEs 

Start with the following relations 

 
𝜕𝑄1,2(𝜏)

𝜕𝜏
= 𝑞0 − 𝑄1,2(𝜏) + 𝑠|𝐴1,2(𝜏, 𝜁3)|

2
− 𝑠|𝐴1,2(𝜏, 𝜁2)|

2
 

   𝐴1,2(𝜏, 𝜁2) = 𝐴1,2(𝜏, 𝜁1) = 𝐴1,2(𝜏) 

    → |𝐴1,2(𝜏, 𝜁2)|
2
= |𝐴1,2(𝜏)|

2
 

   𝐴1,2(𝜏, 𝜁3) = 𝑒
−(1−𝑖𝛼𝑞)𝑄1,2(𝜏)/2𝐴1,2(𝜏, 𝜁2) = 𝑒

−(1−𝑖𝛼𝑞)𝑄1,2(𝜏)/2𝐴1,2(𝜏) 

    → |𝐴1,2(𝜏, 𝜁3)|
2
= 𝑒−𝑄1,2(𝜏)|𝐴1,2(𝜏)|

2
 

  →
𝜕𝑄1,2(𝜏)

𝜕𝜏
= 𝑞0 − 𝑄1,2(𝜏) + 𝑠𝑒

−𝑄1,2(𝜏)|𝐴1,2(𝜏)|
2
− 𝑠|𝐴1,2(𝜏)|

2
 

  Also note that |𝐴1,2(𝜏)|
2
= |𝐴̃1,2(𝜏)|

2
 

 

New variables/parameters introduced above 

 𝐴̃1,2(𝜏) ≡ Normalized, "detuned" amplitude at beginning of RT = 𝐴1,2(𝜏)𝑒
−𝑖Ω𝜏 

 𝜑1,2 = Ω𝑇1,2 

 

Finally, below is “the DDE model” that can be solved by time integration / numerical simulation 

(note: for convenience of notation, the ~ for 𝐴̃1,2(𝜏) is dropped) 

 

𝜕𝐴1(𝜏)

𝜕𝜏
= −𝛾𝐴1(𝜏) + 𝛾𝑒

−𝑖𝜑1(𝑅11(𝜏 − 𝑇1)𝐴1(𝜏 − 𝑇1) + 𝑅12(𝜏 − 𝑇1)𝐴2(𝜏 − 𝑇1))

𝜕𝐴2(𝜏)

𝜕𝜏
= −𝛾𝐴2(𝜏) + 𝛾𝑒

−𝑖𝜑2(𝑅21(𝜏 − 𝑇2)𝐴1(𝜏 − 𝑇2) + 𝑅22(𝜏 − 𝑇2)𝐴2(𝜏 − 𝑇2))

where 

{
 
 

 
 𝑅11(𝜏) ≡ cos(Κ

′ℓ)√𝜅𝑒(1−𝑖𝛼𝑔)𝐺1(𝜏)/2−(1−𝑖𝛼𝑞)𝑄1(𝜏)/2

𝑅12(𝜏) ≡
𝑖

Κ′′
sin(Κ′ℓ)√𝜅𝑒(1−𝑖𝛼𝑔)𝐺2(𝜏)/2−(1−𝑖𝛼𝑞)𝑄2(𝜏)/2

𝑅21(𝜏) ≡ 𝑖Κ
′′ sin(Κ′ℓ)√𝜅𝑒(1−𝑖𝛼𝑔)𝐺1(𝜏)/2−(1−𝑖𝛼𝑞)𝑄1(𝜏)/2

𝑅22(𝜏) ≡ cos(Κ
′ℓ)√𝜅𝑒(1−𝑖𝛼𝑔)𝐺2(𝜏)/2−(1−𝑖𝛼𝑞)𝑄2(𝜏)/2

 ←
Amplitude
DDEs
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𝜕𝐺1(𝜏)

𝜕𝜏
= 𝑔01 − Γ𝐺1(𝜏) − 𝑒

−𝑄1(𝜏)(𝑒𝐺1(𝜏) − 1)|𝐴1(𝜏)|
2

𝜕𝐺2(𝜏)

𝜕𝜏
= 𝑔02 − Γ𝐺2(𝜏) − 𝑒

−𝑄2(𝜏)(𝑒𝐺2(𝜏) − 1)|𝐴2(𝜏)|
2
← Gain DDEs 

 

𝜕𝑄1(𝜏)

𝜕𝜏
= 𝑞0 − 𝑄1(𝜏) − 𝑠(1 − 𝑒

−𝑄1(𝜏))|𝐴1(𝜏)|
2

𝜕𝑄2(𝜏)

𝜕𝜏
= 𝑞0 − 𝑄2(𝜏) − 𝑠(1 − 𝑒

−𝑄2(𝜏))|𝐴2(𝜏)|
2
← Absorber DDEs 

 

A.2 Derivation of “the rotating-wave DDE model” (for bifurcation analysis) 

A.2.1 The “rotating-wave DDE model” 

Amplitude DDEs 

{

𝜕𝐴1

𝜕𝜏
= −𝛾𝐴1(𝜏) + 𝛾𝑒

−𝑖𝜑1(𝑅11(𝜏 − 𝑇1)𝐴1(𝜏 − 𝑇1) + 𝑅12(𝜏 − 𝑇1)𝐴2(𝜏 − 𝑇1))

𝜕𝐴2

𝜕𝜏
= −𝛾𝐴2(𝜏) + 𝛾𝑒

−𝑖𝜑2(𝑅21(𝜏 − 𝑇2)𝐴1(𝜏 − 𝑇2) + 𝑅22(𝜏 − 𝑇2)𝐴2(𝜏 − 𝑇2))
  

 where 

{
 
 

 
 𝑅11(𝜏) = cos(Κ′ℓ)√𝜅𝑒(1−𝑖𝛼𝑔)𝐺1(𝜏)/2−(1−𝑖𝛼𝑞)𝑄1(𝜏)/2

𝑅12(𝜏) =
𝑖

Κ′′
sin(Κ′ℓ)√𝜅𝑒(1−𝑖𝛼𝑔)𝐺2(𝜏)/2−(1−𝑖𝛼𝑞)𝑄2(𝜏)/2

𝑅21(𝜏) = 𝑖Κ
′′ sin(Κ′ℓ)√𝜅𝑒(1−𝑖𝛼𝑔)𝐺1(𝜏)/2−(1−𝑖𝛼𝑞)𝑄1(𝜏)/2

𝑅22(𝜏) = cos(Κ
′ℓ)√𝜅𝑒(1−𝑖𝛼𝑔)𝐺2(𝜏)/2−(1−𝑖𝛼𝑞)𝑄2(𝜏)/2

 

 

 In order to write these expressions in a more compact form, define 

 𝜗𝑇#𝐿# ≡
𝐺𝐿#(𝜏−𝑇𝑇#)−𝑄𝐿#(𝜏−𝑇𝑇#)

2
 and 𝜃𝑇#𝐿# ≡ −

𝛼𝑔𝐺𝐿#(𝜏−𝑇𝑇#)

2
+
𝛼𝑞𝑄𝐿#(𝜏−𝑇𝑇#)

2
− 𝜑𝑇# 

 where 𝐿# can be 1 or 2, referring to either of the two lasers 

 and 𝑇# can be 1 or 2, referring to either delay/roundtrip time 𝑇1 or 𝑇2 

 

 Substitute these expressions above to get a more compact form of the amplitude DDEs 

 → {

𝜕𝐴1

𝜕𝜏
= −𝛾𝐴1(𝜏) + 𝛾√𝜅 (cos(Κ

′ℓ) 𝑒𝜗11+𝑖𝜃11𝐴1(𝜏 − 𝑇1) +
𝑖

Κ′′
sin(Κ′ℓ) 𝑒𝜗12+𝑖𝜃12𝐴2(𝜏 − 𝑇1))

𝜕𝐴2

𝜕𝜏
= −𝛾𝐴2(𝜏) + 𝛾√𝜅 (𝑖Κ

′′ sin(Κ′ℓ) 𝑒𝜗21+𝑖𝜃21𝐴1(𝜏 − 𝑇2) + cos(Κ
′ℓ) 𝑒𝜗22+𝑖𝜃22𝐴2(𝜏 − 𝑇2))

 

 

Gain DDEs 

{

𝜕𝐺1(𝜏)

𝜕𝜏
= 𝑔01 − Γ𝐺1(𝜏) − 𝑒

−𝑄1(𝜏)(𝑒𝐺1(𝜏) − 1)|𝐴1(𝜏)|
2

𝜕𝐺2(𝜏)

𝜕𝜏
= 𝑔02 − Γ𝐺2(𝜏) − 𝑒

−𝑄2(𝜏)(𝑒𝐺2(𝜏) − 1)|𝐴2(𝜏)|
2
  

 

Absorber DDEs 

{

𝜕𝑄1(𝜏)

𝜕𝜏
= 𝑞0 − 𝑄1(𝜏) − 𝑠(1 − 𝑒

−𝑄1(𝜏))|𝐴1(𝜏)|
2

𝜕𝑄2(𝜏)

𝜕𝜏
= 𝑞0 − 𝑄2(𝜏) − 𝑠(1 − 𝑒

−𝑄2(𝜏))|𝐴2(𝜏)|
2
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Let 𝐴1,2(𝜏) = 𝐴𝑟(1,2)(𝜏)𝑒
𝑖𝐴𝜙(1,2)(𝜏)… 

 Then the left-hand-side of the amplitude DDEs (the derivative) is given by 

 
𝜕𝐴1,2

𝜕𝜏
= (

𝜕𝐴𝑟(1,2)

𝜕𝜏
+ 𝑖𝐴𝑟(1,2)(𝜏)

𝜕𝐴𝜙(1,2)

𝜕𝜏
) 𝑒𝑖𝐴𝜙(1,2)(𝜏)

= (
𝜕𝐴𝑟(1,2)

𝜕𝜏
cos (𝐴𝜙(1,2)(𝜏)) − 𝐴𝑟(1,2)(𝜏)

𝜕𝐴𝜙(1,2)

𝜕𝜏
sin (𝐴𝜙(1,2)(𝜏)))

+𝑖 (
𝜕𝐴𝑟(1,2)

𝜕𝜏
sin (𝐴𝜙(1,2)(𝜏)) + 𝐴𝑟(1,2)(𝜏)

𝜕𝐴𝜙(1,2)

𝜕𝜏
cos (𝐴𝜙(1,2)(𝜏)))

 

 

Substitute 𝐴1,2(𝑡)  = 𝐴𝑟(1,2)(𝜏)𝑒
𝑖𝐴𝜙(1,2)(𝜏) into the right-hand-side of the amplitude DDEs 

 The amplitude DDEs (in compact form) are repeated below, for convenience 

 {

𝜕𝐴1

𝜕𝜏
= −𝛾𝐴1(𝜏) + 𝛾√𝜅 (cos(Κ

′ℓ) 𝑒𝜗11+𝑖𝜃11𝐴1(𝜏 − 𝑇1) +
𝑖

Κ′′
sin(Κ′ℓ) 𝑒𝜗12+𝑖𝜃12𝐴2(𝜏 − 𝑇1))

𝜕𝐴2

𝜕𝜏
= −𝛾𝐴2(𝜏) + 𝛾√𝜅 (𝑖Κ

′′ sin(Κ′ℓ) 𝑒𝜗21+𝑖𝜃21𝐴1(𝜏 − 𝑇2) + cos(Κ
′ℓ) 𝑒𝜗22+𝑖𝜃22𝐴2(𝜏 − 𝑇2))

 

 

 Substitution 

 

{
 
 

 
 𝜕𝐴1
𝜕𝜏
= −𝛾𝐴𝑟1(𝜏)𝑒

𝑖𝐴𝜙1(𝜏) + 𝛾√𝜅 (
   cos(Κ′ℓ) 𝑒𝜗11𝑒𝑖𝜃11𝐴𝑟1(𝜏 − 𝑇1)𝑒

𝑖𝐴𝜙1(𝜏−𝑇1)

+
𝑖

Κ′′
sin(Κ′ℓ) 𝑒𝜗12𝑒𝑖𝜃12𝐴𝑟2(𝜏 − 𝑇1)𝑒

𝑖𝐴𝜙2(𝜏−𝑇1)
)

 

𝜕𝐴2

𝜕𝜏
= −𝛾𝐴𝑟2(𝜏)𝑒

𝑖𝐴𝜙2(𝜏) + 𝛾√𝜅 (
    𝑖Κ′′ sin(Κ′ℓ) 𝑒𝜗21𝑒𝑖𝜃21𝐴𝑟1(𝜏 − 𝑇2)𝑒

𝑖𝐴𝜙1(𝜏−𝑇2)

+cos(Κ′ℓ) 𝑒𝜗22𝑒𝑖𝜃22𝐴𝑟2(𝜏 − 𝑇2)𝑒
𝑖𝐴𝜙2(𝜏−𝑇2)

)

 

  

 Combine the complex exponential terms inside the parentheses 

 

{
  
 

  
 𝜕𝐴1
𝜕𝜏
= −𝛾𝐴𝑟1(𝜏)𝑒

𝑖𝐴𝜙1(𝜏) + 𝛾√𝜅 (
    cos(Κ′ℓ) 𝑒𝜗11𝐴𝑟1(𝜏 − 𝑇1)𝑒

𝑖(𝜃11+𝐴𝜙1(𝜏−𝑇1))

+
𝑖

Κ′′
sin(Κ′ℓ) 𝑒𝜗12𝐴𝑟2(𝜏 − 𝑇1)𝑒

𝑖(𝜃12+𝐴𝜙2(𝜏−𝑇1))
)

 

𝜕𝐴2

𝜕𝜏
= −𝛾𝐴𝑟2(𝜏)𝑒

𝑖𝐴𝜙2(𝜏) + 𝛾√𝜅 (
    𝑖Κ′′ sin(Κ′ℓ) 𝑒𝜗21𝐴𝑟1(𝜏 − 𝑇2)𝑒

𝑖(𝜃21+𝐴𝜙1(𝜏−𝑇2))

+cos(Κ′ℓ) 𝑒𝜗22𝐴𝑟2(𝜏 − 𝑇2)𝑒
𝑖(𝜃22+𝐴𝜙2(𝜏−𝑇2))

)

 

 

 Separate the real and imaginary parts of each equation 

 

{
 
 
 
 
 

 
 
 
 
 Re {

𝜕𝐴1

𝜕𝜏
} = −𝛾𝐴𝑟1(𝜏) cos (𝐴𝜙1(𝜏))

+𝛾√𝜅 cos(Κ′ℓ) 𝑒𝜗11𝐴𝑟1(𝜏 − 𝑇1) cos (𝜃11 + 𝐴𝜙1(𝜏 − 𝑇1))

−𝛾√𝜅
1

Κ′′
sin(Κ′ℓ) 𝑒𝜗12𝐴𝑟2(𝜏 − 𝑇1) sin (𝜃12 + 𝐴𝜙2(𝜏 − 𝑇1))

 

Im {
𝜕𝐴1

𝜕𝜏
} = −𝛾𝐴𝑟1(𝜏) sin (𝐴𝜙1(𝜏))

+𝛾√𝜅 cos(Κ′ℓ) 𝑒𝜗11𝐴𝑟1(𝜏 − 𝑇1) sin (𝜃11 + 𝐴𝜙1(𝜏 − 𝑇1))

+𝛾√𝜅
1

Κ′′
sin(Κ′ℓ) 𝑒𝜗12𝐴𝑟2(𝜏 − 𝑇1) cos (𝜃12 + 𝐴𝜙2(𝜏 − 𝑇1))
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{
 
 
 
 
 

 
 
 
 
 Re {

𝜕𝐴2

𝜕𝜏
} = −𝛾𝐴𝑟2(𝜏) cos (𝐴𝜙2(𝜏))

−𝛾√𝜅Κ′′ sin(Κ′ℓ) 𝑒𝜗21𝐴𝑟1(𝜏 − 𝑇2) sin (𝜃21 + 𝐴𝜙1(𝜏 − 𝑇2))

+𝛾√𝜅 cos(Κ′ℓ) 𝑒𝜗22𝐴𝑟2(𝜏 − 𝑇2) cos (𝜃22 + 𝐴𝜙2(𝜏 − 𝑇2))
 

Im {
𝜕𝐴2

𝜕𝜏
} = −𝛾𝐴𝑟2(𝜏) sin (𝐴𝜙2(𝜏))

+𝛾√𝜅Κ′′ sin(Κ′ℓ) 𝑒𝜗21𝐴𝑟1(𝜏 − 𝑇2) cos (𝜃21 + 𝐴𝜙1(𝜏 − 𝑇2))

+𝛾√𝜅 cos(Κ′ℓ) 𝑒𝜗22𝐴𝑟2(𝜏 − 𝑇2) sin (𝜃22 + 𝐴𝜙2(𝜏 − 𝑇2))

 

 

Equations for Re{𝜕𝐴1,2/𝜕𝜏} 

 
𝜕𝐴𝑟1

𝜕𝜏
cos (𝐴𝜙1(𝜏))

−𝐴𝑟1(𝜏)
𝜕𝐴𝜙1

𝜕𝜏
sin (𝐴𝜙1(𝜏))

= −𝛾𝐴𝑟1(𝜏) cos (𝐴𝜙1(𝜏))

+𝛾√𝜅 cos(Κ′ℓ) 𝑒𝜗11𝐴𝑟1(𝜏 − 𝑇1) cos (𝜃11 + 𝐴𝜙1(𝜏 − 𝑇1))

−𝛾√𝜅
1

Κ′′
sin(Κ′ℓ) 𝑒𝜗12𝐴𝑟2(𝜏 − 𝑇1) sin (𝜃12 + 𝐴𝜙2(𝜏 − 𝑇1))

 

 

 
𝜕𝐴𝑟2

𝜕𝜏
cos (𝐴𝜙2(𝜏))

−𝐴𝑟2(𝜏)
𝜕𝐴𝜙2

𝜕𝜏
sin (𝐴𝜙2(𝜏))

= −𝛾𝐴𝑟2(𝜏) cos (𝐴𝜙2(𝜏))

−𝛾√𝜅Κ′′ sin(Κ′ℓ) 𝑒𝜗21𝐴𝑟1(𝜏 − 𝑇2) sin (𝜃21 + 𝐴𝜙1(𝜏 − 𝑇2))

+𝛾√𝜅 cos(Κ′ℓ) 𝑒𝜗22𝐴𝑟2(𝜏 − 𝑇2) cos (𝜃22 + 𝐴𝜙2(𝜏 − 𝑇2))

 

 

Equation for Im{𝜕𝐴1,2/𝜕𝜏} 

 
𝜕𝐴𝑟1

𝜕𝜏
sin (𝐴𝜙1(𝜏))

+𝐴𝑟1(𝜏)
𝜕𝐴𝜙1

𝜕𝜏
cos (𝐴𝜙1(𝜏))

= −𝛾𝐴𝑟1(𝜏) sin (𝐴𝜙1(𝜏))

+𝛾√𝜅 cos(Κ′ℓ) 𝑒𝜗11𝐴𝑟1(𝜏 − 𝑇1) sin (𝜃11 + 𝐴𝜙1(𝜏 − 𝑇1))

+𝛾√𝜅
1

Κ′′
sin(Κ′ℓ) 𝑒𝜗12𝐴𝑟2(𝜏 − 𝑇1) cos (𝜃12 + 𝐴𝜙2(𝜏 − 𝑇1))

 

 

 
𝜕𝐴𝑟2

𝜕𝜏
sin (𝐴𝜙2(𝜏))

+𝐴𝑟2(𝜏)
𝜕𝐴𝜙2

𝜕𝜏
cos (𝐴𝜙2(𝜏))

= −𝛾𝐴𝑟2(𝜏) sin (𝐴𝜙2(𝜏))

+𝛾√𝜅Κ′′ sin(Κ′ℓ) 𝑒𝜗21𝐴𝑟1(𝜏 − 𝑇2) cos (𝜃21 + 𝐴𝜙1(𝜏 − 𝑇2))

+𝛾√𝜅 cos(Κ′ℓ) 𝑒𝜗22𝐴𝑟2(𝜏 − 𝑇2) sin (𝜃22 + 𝐴𝜙2(𝜏 − 𝑇2))

 

 

For laser 1… 

 Add Re{𝜕𝐴1/𝜕𝜏} ⋅ cos (𝐴𝜙1(𝜏)) and Im{𝜕𝐴1/𝜕𝜏} ⋅ sin (𝐴𝜙1(𝜏)) 

 
𝜕𝐴𝑟1

𝜕𝜏
= −𝛾𝐴𝑟1(𝜏)

+𝛾√𝜅 cos(Κ′ℓ) 𝑒𝜗11𝐴𝑟1(𝜏 − 𝑇1) cos (𝜃11 + 𝐴𝜙1(𝜏 − 𝑇1) − 𝐴𝜙1(𝜏))

−𝛾√𝜅
1

Κ′′
sin(Κ′ℓ) 𝑒𝜗12𝐴𝑟2(𝜏 − 𝑇1) sin (𝜃12 + 𝐴𝜙2(𝜏 − 𝑇1) − 𝐴𝜙1(𝜏))

 

 

 Add −Re{𝜕𝐴1/𝜕𝜏} ⋅ sin (𝐴𝜙1(𝜏)) and Im{𝜕𝐴1/𝜕𝜏} ⋅ cos (𝐴𝜙1(𝜏)) 
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𝑑𝐴𝜙1

𝜕𝜏
=

𝛾√𝜅

𝐴𝑟1(𝜏)
cos(Κ′ℓ) 𝑒𝜗11𝐴𝑟1(𝜏 − 𝑇1) sin (𝜃11 + 𝐴𝜙1(𝜏 − 𝑇1) − 𝐴𝜙1(𝜏))

+
𝛾√𝜅

𝐴𝑟1(𝜏)

1

Κ′′
sin(Κ′ℓ) 𝑒𝜗12𝐴𝑟2(𝜏 − 𝑇1) cos (𝜃12 + 𝐴𝜙2(𝜏 − 𝑇1) − 𝐴𝜙1(𝜏))

 

 

For laser 2… 

 Add Re{𝜕𝐴2/𝜕𝜏} ⋅ cos (𝐴𝜙2(𝜏)) and Im{𝜕𝐴2/𝜕𝜏} ⋅ sin (𝐴𝜙2(𝜏)) 

 
𝜕𝐴𝑟2

𝜕𝜏
= −𝛾𝐴𝑟2(𝜏)

−𝛾√𝜅Κ′′ sin(Κ′ℓ) 𝑒𝜗21𝐴𝑟1(𝜏 − 𝑇2) sin (𝜃21 + 𝐴𝜙1(𝜏 − 𝑇2) − 𝐴𝜙2(𝜏))

+𝛾√𝜅 cos(Κ′ℓ) 𝑒𝜗22𝐴𝑟2(𝜏 − 𝑇2) cos (𝜃22 + 𝐴𝜙2(𝜏 − 𝑇2) − 𝐴𝜙2(𝜏))

 

 

 Add −Re{𝜕𝐴2/𝜕𝜏} ⋅ sin (𝐴𝜙2(𝜏)) and Im{𝜕𝐴2/𝜕𝜏} ⋅ cos (𝐴𝜙2(𝜏)) 

 
𝜕𝐴𝜙2(𝜏)

𝜕𝜏
=

𝛾√𝜅

𝐴𝑟2(𝜏)
Κ′′ sin(Κ′ℓ) 𝑒𝜗21𝐴𝑟1(𝜏 − 𝑇2) cos (𝜃21 + 𝐴𝜙1(𝜏 − 𝑇2) − 𝐴𝜙2(𝜏))

+
𝛾√𝜅

𝐴𝑟2(𝜏)
cos(Κ′ℓ) 𝑒𝜗22𝐴𝑟2(𝜏 − 𝑇2) sin (𝜃22 + 𝐴𝜙2(𝜏 − 𝑇2) − 𝐴𝜙2(𝜏))

 

 

Rotating-wave / continuous-wave (CW) solutions 

 Consider the following case: 

  𝐴1(𝜏) = 𝐴𝑟1(𝜏)𝑒
𝑖𝛾𝜔𝜏 → 𝐴𝜙1(𝜏) = 𝛾𝜔𝜏 → 𝐴𝜙1(𝜏 − 𝑇1,2) = 𝛾𝜔𝜏 − 𝛾𝜔𝑇1,2 

  𝐴2(𝜏) = 𝐴𝑟2(𝜏)𝑒
𝑖(𝛾𝜔𝜏+𝜎) → 𝐴𝜙2(𝜏) = 𝛾𝜔𝜏 + 𝜎 → 𝐴𝜙2(𝜏 − 𝑇1,2) = 𝛾𝜔𝜏 − 𝛾𝜔𝑇1,2 + 𝜎 

  where 𝜎 is a constant (time-independent) phase shift between the two amplitudes 

  𝐴𝜙1(𝜏), 𝐴𝜙2(𝜏) linear → rotational symmetry of 𝐴1(𝜏), 𝐴2(𝜏) in complex plane 

 

 The boxed equations below serve as “the rotating-wave DDE model” 

 
𝜕𝐴𝑟1

𝜕𝜏
= −𝛾𝐴𝑟1(𝜏)

+𝛾√𝜅 cos(Κ′ℓ) 𝑒
𝐺1(𝜏−𝑇1)−𝑄1(𝜏−𝑇1)

2 cos (−
𝛼𝑔𝐺1(𝜏−𝑇1)

2
+

𝛼𝑞𝑄1(𝜏−𝑇1)

2
− 𝜑1 − 𝛾𝜔𝑇1)𝐴𝑟1(𝜏 − 𝑇1)

−𝛾√𝜅
1

Κ′′
sin(Κ′ℓ) 𝑒

𝐺2(𝜏−𝑇1)−𝑄2(𝜏−𝑇1)

2 sin (−
𝛼𝑔𝐺2(𝜏−𝑇1)

2
+

𝛼𝑞𝑄2(𝜏−𝑇1)

2
− 𝜑1 − 𝛾𝜔𝑇1 + 𝜎)𝐴𝑟2(𝜏 − 𝑇1)

 

 
𝜕𝐺1(𝜏)

𝜕𝜏
= 𝑔01 − Γ𝐺1(𝜏) − 𝑒

−𝑄1(𝜏)(𝑒𝐺1(𝜏) − 1)(𝐴𝑟1(𝜏))
2

 

 
𝜕𝑄1(𝜏)

𝜕𝜏
= 𝑞0 − 𝑄1(𝜏) − 𝑠(1 − 𝑒

−𝑄1(𝜏))(𝐴𝑟1(𝜏))
2

 

 
𝜕𝐴𝑟2

𝜕𝜏
= −𝛾𝐴𝑟2(𝜏)

−𝛾√𝜅Κ′′ sin(Κ′ℓ) 𝑒
𝐺1(𝜏−𝑇2)−𝑄1(𝜏−𝑇2)

2 sin (−
𝛼𝑔𝐺1(𝜏−𝑇2)

2
+

𝛼𝑞𝑄1(𝜏−𝑇2)

2
− 𝜑2 − 𝛾𝜔𝑇2 − 𝜎)𝐴𝑟1(𝜏 − 𝑇2)

+𝛾√𝜅 cos(Κ′ℓ) 𝑒
𝐺2(𝜏−𝑇2)−𝑄2(𝜏−𝑇2)

2 cos (−
𝛼𝑔𝐺2(𝜏−𝑇2)

2
+

𝛼𝑞𝑄2(𝜏−𝑇2)

2
− 𝜑2 − 𝛾𝜔𝑇2) 𝐴𝑟2(𝜏 − 𝑇2)

 

 
𝜕𝐺2(𝜏)

𝜕𝜏
= 𝑔02 − Γ𝐺2(𝜏) − 𝑒

−𝑄2(𝜏)(𝑒𝐺2(𝜏) − 1)(𝐴𝑟2(𝜏))
2

 

 
𝜕𝑄2(𝜏)

𝜕𝜏
= 𝑞0 − 𝑄2(𝜏) − 𝑠(1 − 𝑒

−𝑄2(𝜏))(𝐴𝑟2(𝜏))
2

 

  

 Additional conditions/constraints (note that 𝜔 and 𝜎 are treated as “free parameters”) 
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  For laser 1… 

  
𝑑𝐴𝜙1

𝜕𝜏
= 𝛾𝜔 =     

𝛾√𝜅

𝐴𝑟1(𝜏)
cos(Κ′ℓ) 𝑒𝜗11𝐴𝑟1(𝜏 − 𝑇1) sin (𝜃11 + 𝐴𝜙1(𝜏 − 𝑇1) − 𝐴𝜙1(𝜏))

+
𝛾√𝜅

𝐴𝑟1(𝜏)

1

Κ′′
sin(Κ′ℓ) 𝑒𝜗12𝐴𝑟2(𝜏 − 𝑇1) cos (𝜃12 + 𝐴𝜙2(𝜏 − 𝑇1) − 𝐴𝜙1(𝜏))

 

  → 0 = −𝜔𝐴𝑟1(𝜏)

+√𝜅 cos(Κ′ℓ) 𝑒
𝐺1(𝜏−𝑇1)−𝑄1(𝜏−𝑇1)

2 sin (−
𝛼𝑔𝐺1(𝜏−𝑇1)

2
+
𝛼𝑞𝑄1(𝜏−𝑇1)

2
− 𝜑1 − 𝛾𝜔𝑇1) 𝐴𝑟1(𝜏 − 𝑇1)

+√𝜅
1

Κ′′
sin(Κ′ℓ) 𝑒

𝐺2(𝜏−𝑇1)−𝑄2(𝜏−𝑇1)

2 cos (−
𝛼𝑔𝐺2(𝜏−𝑇1)

2
+
𝛼𝑞𝑄2(𝜏−𝑇1)

2
− 𝜑1 − 𝛾𝜔𝑇1 + 𝜎)𝐴𝑟2(𝜏 − 𝑇1)

 

 

  For laser 2… 

  
𝜕𝐴𝜙2(𝜏)

𝜕𝜏
= 𝛾𝜔 =

𝛾√𝜅

𝐴𝑟2(𝜏)
Κ′′ sin(Κ′ℓ) 𝑒𝜗21𝐴𝑟1(𝜏 − 𝑇2) cos (𝜃21 + 𝐴𝜙1(𝜏 − 𝑇2) − 𝐴𝜙2(𝜏))

+
𝛾√𝜅

𝐴𝑟2(𝜏)
cos(Κ′ℓ) 𝑒𝜗22𝐴𝑟2(𝜏 − 𝑇2) sin (𝜃22 + 𝐴𝜙2(𝜏 − 𝑇2) − 𝐴𝜙2(𝜏))

 

  → 0 = −𝜔𝐴𝑟2(𝜏)

+√𝜅Κ′′ sin(Κ′ℓ) 𝑒
𝐺1(𝜏−𝑇2)−𝑄1(𝜏−𝑇2)

2 cos (−
𝛼𝑔𝐺1(𝜏−𝑇2)

2
+
𝛼𝑞𝑄1(𝜏−𝑇2)

2
− 𝜑2 − 𝛾𝜔𝑇2 − 𝜎)𝐴𝑟1(𝜏 − 𝑇2)

+√𝜅 cos(Κ′ℓ) 𝑒
𝐺2(𝜏−𝑇2)−𝑄2(𝜏−𝑇2)

2 sin (−
𝛼𝑔𝐺2(𝜏−𝑇2)

2
+
𝛼𝑞𝑄2(𝜏−𝑇2)

2
− 𝜑2 − 𝛾𝜔𝑇2)𝐴𝑟2(𝜏 − 𝑇2)

 

 

A.2.2 Equilibria 

“Equal-amplitude” equilibria (denoted by superscript ∘) for rotating-wave DDE model 

 Assume the case where… 

  Κ′′ = 1 ← coupling coefficients between the two lasers are equal 

  𝑇1 = 𝑇2 = 𝑇 ← cavity roundtrip times (normalized) for the two lasers are equal 

  𝑔01 = 𝑔02 = 𝑔0 ← gain parameters for the two lasers are equal 

  𝛼𝑔 = 0 and 𝛼𝑞 = 0 ← zero linewidth enhancement factors 

  𝜑1,2 = 0 ← Ω𝑇 = 0 ← Ω = 0 ← zero detuning from spectral filter center 

 

 Substitute these simplifications into the DDEs (and constraint equations on 𝐴𝜙1 and 𝐴𝜙2) 

  From the amplitude equation for laser 1… 

  0 = −𝛾𝐴𝑟1
∘ + 𝛾√𝜅 cos(Κ′ℓ) 𝑒

𝐺1
∘ −𝑄1

∘

2 cos(𝛾𝜔𝑇) 𝐴𝑟1
∘ + 𝛾√𝜅 sin(Κ′ℓ) 𝑒

𝐺2
∘ −𝑄2

∘

2 sin(𝛾𝜔𝑇 − 𝜎)𝐴𝑟2
∘  

  → 𝐴𝑟1
∘ = √𝜅𝑒

𝐺1
∘−𝑄1

∘

2 𝐴𝑟1
∘ cos(Κ′ℓ) cos(𝛾𝜔𝑇) + √𝜅𝑒

𝐺2
∘ −𝑄2

∘

2 𝐴𝑟2
∘ sin(Κ′ℓ) sin(𝛾𝜔𝑇 − 𝜎) 

  → (𝐴𝑟1
∘ )2 = 𝜅𝑒𝐺1

∘−𝑄1
∘
(𝐴𝑟1

∘ )2 cos2(Κ′ℓ) cos2(𝛾𝜔𝑇) + 𝜅𝑒𝐺2
∘−𝑄2

∘
(𝐴𝑟2

∘ )2 sin2(Κ′ℓ) sin2(𝛾𝜔𝑇 − 𝜎)

+2𝜅𝑒
𝐺1
∘ −𝑄1

∘ +𝐺2
∘ −𝑄2

∘

2 𝐴𝑟1
∘ 𝐴𝑟2

∘ sin(Κ′ℓ) cos(Κ′ℓ) sin(𝛾𝜔𝑇 − 𝜎) cos(𝛾𝜔𝑇)

 

 

  From the constraint equation for laser 1… 

  0 = −𝜔𝐴𝑟1
∘ − √𝜅 cos(Κ′ℓ) 𝑒

𝐺1
∘−𝑄1

∘

2 sin(𝛾𝜔𝑇) 𝐴𝑟1
∘ + √𝜅 sin(Κ′ℓ) 𝑒

𝐺2
∘ −𝑄2

∘

2 cos(𝛾𝜔𝑇 − 𝜎) 𝐴𝑟2
∘  

  → 𝜔𝐴𝑟1
∘ = −√𝜅𝑒

𝐺1
∘ −𝑄1

∘

2 𝐴𝑟1
∘ cos(Κ′ℓ) sin(𝛾𝜔𝑇) + √𝜅𝑒

𝐺2
∘ −𝑄2

∘

2 𝐴𝑟2
∘ sin(Κ′ℓ) cos(𝛾𝜔𝑇 − 𝜎) 

  → 𝜔2(𝐴𝑟1
∘ )2 = 𝜅𝑒𝐺1

∘−𝑄1
∘
(𝐴𝑟1

∘ )2 cos2(Κ′ℓ) sin2(𝛾𝜔𝑇) + 𝜅𝑒𝐺2
∘−𝑄2

∘
(𝐴𝑟2

∘ )2 sin2(Κ′ℓ) cos2(𝛾𝜔𝑇 − 𝜎)

−2𝜅𝑒
𝐺1
∘ −𝑄1

∘ +𝐺2
∘ −𝑄2

∘

2 𝐴𝑟1
∘ 𝐴𝑟2

∘ sin(Κ′ℓ) cos(Κ′ℓ) sin(𝛾𝜔𝑇) cos(𝛾𝜔𝑇 − 𝜎)

 

 

  Combine the above two results 
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  (1 + 𝜔2)(𝐴𝑟1
∘ )2 = 𝜅𝑒𝐺1

∘−𝑄1
∘
(𝐴𝑟1

∘ )2 cos2(Κ′ℓ) + 𝜅𝑒𝐺2
∘−𝑄2

∘
(𝐴𝑟2

∘ )2 sin2(Κ′ℓ)

+2𝜅𝑒
𝐺1
∘ −𝑄1

∘ +𝐺2
∘ −𝑄2

∘

2 𝐴𝑟1
∘ 𝐴𝑟2

∘ sin(Κ′ℓ) cos(Κ′ℓ)

(

 

sin(𝛾𝜔𝑇) cos 𝜎 cos(𝛾𝜔𝑇)

− sin 𝜎 cos2(𝛾𝜔𝑇)

− sin(𝛾𝜔𝑇) cos(𝛾𝜔𝑇) cos 𝜎

− sin2(𝛾𝜔𝑇) sin 𝜎 )

 

 

  → (1 + 𝜔2)(𝐴𝑟1
∘ )2 = 𝜅𝑒𝐺1

∘−𝑄1
∘
(𝐴𝑟1

∘ )2 cos2(Κ′ℓ) + 𝜅𝑒𝐺2
∘−𝑄2

∘
(𝐴𝑟2

∘ )2 sin2(Κ′ℓ)

−2𝜅𝑒
𝐺1
∘ −𝑄1

∘ +𝐺2
∘ −𝑄2

∘

2 𝐴𝑟1
∘ 𝐴𝑟2

∘ sin(Κ′ℓ) cos(Κ′ℓ) sin 𝜎

 

 

  From the amplitude equation for laser 2… 

  0 = −𝛾𝐴𝑟2
∘ + 𝛾√𝜅 sin(Κ′ℓ) 𝑒

𝐺1
∘ −𝑄1

∘

2 sin(𝛾𝜔𝑇 + 𝜎)𝐴𝑟1
∘ + 𝛾√𝜅 cos(Κ′ℓ) 𝑒

𝐺2
∘−𝑄2

∘

2 cos(𝛾𝜔𝑇) 𝐴𝑟2
∘  

  → 𝐴𝑟2
∘ = √𝜅𝑒

𝐺1
∘−𝑄1

∘

2 𝐴𝑟1
∘ sin(Κ′ℓ) sin(𝛾𝜔𝑇 + 𝜎) + √𝜅𝑒

𝐺2
∘ −𝑄2

∘

2 𝐴𝑟2
∘ cos(Κ′ℓ) cos(𝛾𝜔𝑇) 

  → (𝐴𝑟2
∘ )2 = 𝜅𝑒𝐺1

∘−𝑄1
∘
(𝐴𝑟1

∘ )2 sin2(Κ′ℓ) sin2(𝛾𝜔𝑇 + 𝜎) + 𝜅𝑒𝐺2
∘−𝑄2

∘
(𝐴𝑟2

∘ )2 cos2(Κ′ℓ) cos2(𝛾𝜔𝑇)

+2𝜅𝑒
𝐺1
∘ −𝑄1

∘ +𝐺2
∘ −𝑄2

∘

2 𝐴𝑟1
∘ 𝐴𝑟2

∘ sin(Κ′ℓ) cos(Κ′ℓ) sin(𝛾𝜔𝑇 + 𝜎) cos(𝛾𝜔𝑇)

 

 

  From the constraint equation for laser 2… 

  0 = −𝜔𝐴𝑟2
∘ + √𝜅 sin(Κ′ℓ) 𝑒

𝐺1
∘ −𝑄1

∘

2 cos(𝛾𝜔𝑇 + 𝜎)𝐴𝑟1
∘ − √𝜅 cos(Κ′ℓ) 𝑒

𝐺2
∘ −𝑄2

∘

2 sin(𝛾𝜔𝑇) 𝐴𝑟2
∘  

  → 𝜔𝐴𝑟2
∘ = √𝜅𝑒

𝐺1
∘ −𝑄1

∘

2 𝐴𝑟1
∘ sin(Κ′ℓ) cos(𝛾𝜔𝑇 + 𝜎) − √𝜅𝑒

𝐺2
∘ −𝑄2

∘

2 𝐴𝑟2
∘ cos(Κ′ℓ) sin(𝛾𝜔𝑇) 

  → 𝜔2(𝐴𝑟2
∘ )2 = 𝜅𝑒𝐺1

∘−𝑄1
∘
(𝐴𝑟1

∘ )2 sin2(Κ′ℓ) cos2(𝛾𝜔𝑇 + 𝜎) + 𝜅𝑒𝐺2
∘−𝑄2

∘
(𝐴𝑟2

∘ )2 cos2(Κ′ℓ) sin2(𝛾𝜔𝑇)

−2𝜅𝑒
𝐺1
∘ −𝑄1

∘ +𝐺2
∘ −𝑄2

∘

2 𝐴𝑟1
∘ 𝐴𝑟2

∘ sin(Κ′ℓ) cos(Κ′ℓ) sin(𝛾𝜔𝑇) cos(𝛾𝜔𝑇 + 𝜎)

 

 

  Combine the above to results 
  (1 + 𝜔2)(𝐴𝑟2

∘ )2 = 𝜅𝑒𝐺1
∘−𝑄1

∘
(𝐴𝑟1

∘ )2 sin2(Κ′ℓ) + 𝜅𝑒𝐺2
∘−𝑄2

∘
(𝐴𝑟2

∘ )2 cos2(Κ′ℓ)

+2𝜅𝑒
𝐺1
∘ −𝑄1

∘ +𝐺2
∘ −𝑄2

∘

2 𝐴𝑟1
∘ 𝐴𝑟2

∘ sin(Κ′ℓ) cos(Κ′ℓ)

(

 

sin(𝛾𝜔𝑇) cos 𝜎 cos(𝛾𝜔𝑇)

+ sin 𝜎 cos2(𝛾𝜔𝑇)

− sin(𝛾𝜔𝑇) cos(𝛾𝜔𝑇) cos 𝜎

+ sin2(𝛾𝜔𝑇) sin 𝜎 )

 

 

  → (1 + 𝜔2)(𝐴𝑟2
∘ )2 = 𝜅𝑒𝐺1

∘−𝑄1
∘
(𝐴𝑟1

∘ )2 sin2(Κ′ℓ) + 𝜅𝑒𝐺2
∘−𝑄2

∘
(𝐴𝑟2

∘ )2 cos2(Κ′ℓ)

+2𝜅𝑒
𝐺1
∘ −𝑄1

∘ +𝐺2
∘ −𝑄2

∘

2 𝐴𝑟1
∘ 𝐴𝑟2

∘ sin(Κ′ℓ) cos(Κ′ℓ) sin 𝜎

 

 

  From the gain/absorber equations for lasers 1 and 2 

  0 = 𝑔0 − Γ𝐺1
∘ − 𝑒−𝑄1

∘
(𝑒𝐺1

∘
− 1)(𝐴𝑟1

∘ )2 

  0 = 𝑞0 − 𝑄1
∘ − 𝑠(1 − 𝑒−𝑄1

∘
)(𝐴𝑟1

∘ )2 

  0 = 𝑔0 − Γ𝐺2
∘ − 𝑒−𝑄2

∘
(𝑒𝐺2

∘
− 1)(𝐴𝑟2

∘ )2 

  0 = 𝑞0 − 𝑄2
∘ − 𝑠(1 − 𝑒−𝑄2

∘
)(𝐴𝑟2

∘ )2 

 

 Solve the above equations for 𝐴𝑟
∘ , 𝜔, 𝜎, 𝐺∘, and 𝑄∘ 

 Add together the expressions for (1 + 𝜔2)(𝐴𝑟1
∘ )2 and (1 + 𝜔2)(𝐴𝑟2

∘ )2 

 (1 + 𝜔2)((𝐴𝑟1
∘ )2 + (𝐴𝑟2

∘ )2) = 𝜅(𝑒𝐺1
∘−𝑄1

∘
(𝐴𝑟1

∘ )2 + 𝑒𝐺2
∘−𝑄2

∘
(𝐴𝑟2

∘ )2)  

 The general approach has not progressed beyond this step 

 

For now, a simplifying assumption is made (the general approach is left for future work...); 

consider the case in which the two lasers have the same equilibria for |𝐴|, 𝐺, and 𝑄 
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 Specifically, assume the following: 

 𝐴𝑟1
∘ = 𝐴𝑟2

∘ = 𝐴𝑟
∘   

 𝐺1
∘ = 𝐺2

∘ = 𝐺∘  
 𝑄1

∘ = 𝑄2
∘ = 𝑄∘  

 

 Furthermore, consider three special cases: 

  1. 𝜎 = 0 ← The two lasers’ complex amplitudes are in-phase 

  2. 𝜎 = 𝜋/2 ← The two lasers’ complex amplitudes are 90° out-of-phase 

  3. 𝜎 = 𝜋 ← The two lasers’ complex amplitudes are 180° out-of-phase 

 

 If 𝜎 = 0 (in-phase)… 

  The amplitude and constraint equations are as follows when 𝜎 = 0 

  (note that, for 𝜎 = 0, the two sets equations below are identical) 

  Laser 1: {
1 = √𝜅𝑒

𝐺∘−𝑄∘

2 (sin(Κ′ℓ) sin(𝛾𝜔𝑇 − 0) + cos(Κ′ℓ) cos(𝛾𝜔𝑇))

𝜔 = √𝜅𝑒
𝐺∘−𝑄∘

2 (sin(Κ′ℓ) cos(𝛾𝜔𝑇 − 0) − cos(Κ′ℓ) sin(𝛾𝜔𝑇))
} 

  Laser 2: {
1 = √𝜅𝑒

𝐺∘−𝑄∘

2 (sin(Κ′ℓ) sin(𝛾𝜔𝑇 + 0) + cos(Κ′ℓ) cos(𝛾𝜔𝑇))

𝜔 = √𝜅𝑒
𝐺∘−𝑄∘

2 (sin(Κ′ℓ) cos(𝛾𝜔𝑇 + 0) − cos(Κ′ℓ) sin(𝛾𝜔𝑇))
} 

 

  Note the following: 

  1 = √𝜅𝑒
𝐺∘−𝑄∘

2 (sin(Κ′ℓ) sin(𝛾𝜔𝑇) + cos(Κ′ℓ) cos(𝛾𝜔𝑇)) = √𝜅𝑒
𝐺∘−𝑄∘

2 cos(Κ′ℓ − 𝛾𝜔𝑇) 

  𝜔 = √𝜅𝑒
𝐺∘−𝑄∘

2 (sin(Κ′ℓ) cos(𝛾𝜔𝑇) − cos(Κ′ℓ) sin(𝛾𝜔𝑇)) = √𝜅𝑒
𝐺∘−𝑄∘

2 sin(Κ′ℓ − 𝛾𝜔𝑇) 
 

  Square both equations and then add them → 1+ 𝜔2 = 𝜅𝑒𝐺
∘−𝑄∘  

 

  Note that (√𝜅𝑒
𝐺∘−𝑄∘

2 )
−1

> 0 → cos(𝛾𝜔𝑇 − Κ′ℓ) > 0  

 

  Divide the two equations → 𝜔 + tan(𝛾𝜔𝑇 − Κ′ℓ) = 0   

 

  From the gain and absorber DDEs (which are also identical due to the fact that 

  𝐴𝑟1
∘ = 𝐴𝑟2

∘ = 𝐴𝑟
∘  and 𝐺1

∘ = 𝐺2
∘ = 𝐺∘ and 𝑄1

∘ = 𝑄2
∘ = 𝑄∘) 

  0 = 𝑔0 − Γ𝐺
∘ − 𝑒−𝑄

∘
(𝑒𝐺

∘
− 1)(𝐴𝑟

∘ )2  

  0 = 𝑞0 − 𝑄
∘ − 𝑠(1 − 𝑒−𝑄

∘
)(𝐴𝑟

∘ )2  

 

  Solve the following… 

  1. 𝜔 Solve 𝜔 + tan(𝛾𝜔𝑇 − Κ′ℓ) = 0  and cos(𝛾𝜔𝑇 − Κ′ℓ) > 0  

  2. 𝑄∘ Solve 0 = 𝑔0 − Γ(𝑄
∘ + ln (

1+𝜔2

𝜅
)) + (𝑒−𝑄

∘
−

1+𝜔2

𝜅
)

𝑞0−𝑄
∘

𝑠(1−𝑒−𝑄
∘
)
 

  3. 𝐺∘ 𝐺∘ = 𝑄∘ + ln (
1+𝜔2

𝜅
)  
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  4. 𝐴𝑟
∘  𝐴𝑟

∘ = √
𝑞0−𝑄∘

𝑠(1−𝑒−𝑄
∘
)

 

 

  Derivation for 2, 3, and 4 above… 

   𝜅𝑒𝐺
∘−𝑄∘ = 1 + 𝜔2 → 𝐺∘ = 𝑄∘ + ln (

1+𝜔2

𝜅
) 

   (𝐴𝑟
∘ )2 =

𝑞0−𝑄
∘

𝑠(1−𝑒−𝑄
∘
)
 

    → 0 = 𝑔0 − Γ(𝑄
∘ + ln (

1+𝜔2

𝜅
)) − 𝑒−𝑄

∘
(𝑒𝑄

∘ 1+𝜔2

𝜅
− 1) (

𝑞0−𝑄
∘

𝑠(1−𝑒−𝑄
∘
)
) 

    → 0 = 𝑔0 − Γ (𝑄
∘ + ln (

1+𝜔2

𝜅
)) + (𝑒−𝑄

∘
−
1+𝜔2

𝜅
)

𝑞0−𝑄
∘

𝑠(1−𝑒−𝑄
∘
)
 

  If 𝜎 = 𝜋 (180° out-of-phase)… 

    Left for future work… 

  If 𝜎 = 𝜋/2 (90° out-of-phase)… 

    Left for future work… 

  For arbitrary 𝜎 (“intermediate” phase)… 

   Using DDE-BIFTOOL, start with equilibrium point for 𝜎 = 0, 

   and then continue the branch as 𝜎 is varied; left for future work… 

 Note that for the trivial steady state (in which both lasers are “off”)… 

  𝐴𝑟
∘ = 0  

  𝐺∘ = 𝑔0/Γ 

  𝑄∘ = 𝑞0 
 Bifurcation from the trivial solution 

  Note that the CW solution bifurcates from the trivial, zero-amplitude solution at  

  the intersection of the equations 𝐺∘ = 𝑔0/Γ, 𝑄∘ = 𝑞0, and 𝜅𝑒𝐺
∘−𝑄∘ − 1 − 𝜔2 = 0 

  This happens when the gain parameter 𝑔0 crosses the following condition: 

  ln 𝜅 + 𝐺∘ − 𝑄∘ = ln(1 + 𝜔2) 

  → 𝐺∘ =
𝑔0

Γ
= 𝑄∘ − ln 𝜅 + ln(1 + 𝜔2) = 𝑞0 − ln 𝜅 + ln(1 + 𝜔

2) 

  → 𝑔0 = Γ(𝑞0 − ln 𝜅 + ln(1 + 𝜔
2))  
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APPENDIX B 

List of MATLAB codes written and used for the thesis work 

Due to formatting constraints, in particular a lack of adequate page-width for proper display of 

the MATLAB code, the following section does not include the entire codes used for the thesis.  

Instead, descriptions of the .m files written / developed for the thesis work are provided.  To 

request a copy of the code, please send an email to the author at sivas@umich.edu and/or the 

author’s research advisor (and dissertation committee chair) at arrays@umich.edu. 

 

B.1 Simulation of coherent beam combining of fiber laser arrays 

The dynamical evolution of the system from “turn-on” and as it recovers from a perturbation on 

its steady state are simulated by use of the numerical code in the following .m files: 

 coupledGlobal_M_fiber.m implements the Split-Step Fourier Method for 

nonlinear wave propagation through the fiber laser array, the Euler Method for the gain 

dynamics, and the Fourier-Transform-based boundary condition imposed by the spatially-

filtered ring geometry coupling mechanism). 

 test_fiber_array.m is the main script file: it initializes the parameter sets and runs 

the simulations by calling coupledGlobal_M_fiber). 

 

B.2 Simulation of coupled mode-locked semiconductor lasers 

The following .m files run the numerical simulations via time integration of the DDE model: 
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 mlsl_2.m numerically solves the model equations for a given parameter set and initial 

history (which can be a constant vector, a function handle, or a previous simulation’s 

solution structure).  The code makes use of dde23(), a built-in MATLAB function. 

 mlsl_2_bif1p.m generates the one-parameter bifurcation diagrams, for a given 

parameter set, a given set of values for the sweep parameter over which the iterations are 

performed, and a given initial history to use for the first iteration, in the manner described 

as follows.  The first iteration uses the given initial history and then simulates the system 

to steady using the parameter set and the first value of the sweep parameter.  Each 

subsequent iteration, after updating the sweep parameter to its next value, runs a 

simulation initialized/”seeded” by the previous iteration’s solution structure.  Every 

iteration extracts and plots the local minima/maxima. 

 

B.3 Bifurcation analysis of coupled mode-locked semiconductor lasers 

The following .m files used here make use of DDE-BIFTOOL (version 3.1, August 22, 2015, 

developed in the MATLAB language [105, 81]) and automate the bifurcation analysis: 

 mlslBIF2.m automates the bifurcation routines for the rotating-wave DDE model and 

plots the branch of the equilibria / periodic orbits in one parameter as well as the 

continuation of Hopf branches in two parameters (and identifies their stability/criticality). 

 stdystsol2.m solves for the equilibrium (and the rotating frequency 𝜔) given an 

input parameter set, as per the method described in APPENDIX A.2.2, to provide an 

initial point for the branch of equilibria created by mlslBIF2 for the parameter sweeps. 
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