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ABSTRACT

Bi2Se3 is a known topological insulator. When doped with certain metals, this compound

becomes superconducting. To date, doping Bi2Se3 has been one of the leading avenues to

search for topological superconductivity. In this dissertation, I present toque mangetom-

etry studies on Cu-doped and Nb-doped Bi2Se3, which are candidates to be topological

superconductors.

Quantum oscillations are generally studied to resolve the electronic structure of topo-

logical insulators. Using torque magnetometry, I observed quantum oscillations (the de

Haas-van Alphen effect) in Cu-doped and Nb-doped Bi2Se3. The doping of Cu in Bi2Se3

increases the carrier density and the effective mass without increasing the scattering rate

or decreasing the mean free path. As the magnetic field tilts from the crystalline c axis to

the ab plane, the change of the oscillation period follows the prediction of the ellipsoidal

Fermi surface. As the doping level changes, the 3D Fermi surface becomes quasicylindrical

at high carrier density. Such a transition is potentially a Lifshitz transition of the electronic

state in Cu-doped Bi2Se3. In addition, the Fermi velocity remains the same in Cu-doped

Bi2Se3 as that in Bi2Se3. These results imply that the insertion of Cu does not change the

band structure and that conduction electrons in Cu doped Bi2Se3 sit in the linear Dirac-like

band.

In the fully superconducting Nb-doped Bi2Se3 crystal, two distinct quantum oscilla-

tions frequencies are observed, in sharp contrast to Bi2Se3 and Cu-doped Bi2Se3. The

multiple frequencies observed in the quantum oscillations, combined with the electrical

transport studies, indicate the multi-orbit nature of the electronic state of Nb-doped Bi2Se3.

The observation of the multiple orbits in the superconducting Nb-doped Bi2Se3 also points

to Fermi surface nesting as a possible superconducting mechanism, and reveals that the

insertion of Nb radically changes the band structure of Bi2Se3.

For topological superconductors, the coupling between the physical properties in the

xviii



superconducting state and its underlying crystal symmetry is a crucial test for the topolog-

ical nature of the superconductivity. The superconducting magnetic response in Nb-doped

Bi2Se3 couples strongly to the underlying 3-fold crystal symmetry. More importantly, the

magnetic response is greatly enhanced along one preferred direction spontaneously break-

ing the rotational symmetry. This confirms the presence of nematic order in the supercon-

ducting ground state of Nb-doped Bi2Se3. The observation of nematic order in the super-

conducting state provides a strong evidence of odd-parity topological superconductivity.
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CHAPTER 1

Introduction

1.1 Introduction to Topological Superconductivity

Topological superconductivity sits at the intersection of two exciting fields in condensed
matter physics - unconventional superconductivity and topological materials. A super-
conductor has zero electrical resistance and it completely expels magnetic flux (i.e. the
Meissner effect). A conventional superconductor can be described by the Bardeen Cooper
Schrieffer (BCS) theory. An unconventional superconductor does not follow the predic-
tions of BCS theory leading to interesting physical consequences such as enhanced critical
temperature. Unconventional superconductivity has been an exciting field of research that
has captivated the condensed matter community for over 30 years since it was first discov-
ered [25].

Topological materials are a class of materials classified by a bulk topological invari-
ant. The theory originally arose to explain the integer Quantum Hall effect [26] where
time-reversal symmetry is broken. However, more recently it has been found that the
time-reversal invariant Quantum Spin Hall effect arises because of a topological index,
which distinguishes the Quantum Spin Hall phase from a trivial phase [27, 28]. Over
the last decade, there has been a flurry of research on new topological phases of matter.
The first three dimensional (3D) topological insulating phase was discovered in 2008 in
Bi1−xSbx [29]. Topological phases usually give rise to symmetry protected edge or surface
conduction with spin-momentum locking. Despite a hundred years of band theory success-
fully describing electronic phases of matter like metals, insulators, and semiconductors,
studying the topological aspects of band theory and the role of symmetries and Berry phase
has lead to the discoveries of completely new properties of matter in the last 10 years.

At the crossroads of these two fascinating fields, topological superconductivity has been
theoretically established but has yet to be experimentally realized. A topological supercon-
ductor is an unconventional superconductor with a gap classified by a non-trivial topologi-
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cal invariant. Similar to the topological insulator, the superconducting topological invariant
can cause the superconducting gap to close due to a symmetry protected surface state. On
the other hand, unlike the topological insulator, the surface state on the topological super-
conductor may support Majorana fermions - a particle that is its own antiparticle.

A normal solid has negatively charged electrons and positively charged holes. Due to
the charge difference, these two particles are definitely not their own antiparticle. However,
in a superconductor, charge carriers form Cooper pairs, and the particle number is no longer
conserved. The Bosonic condensate of Cooper pairs masks the charge properties of carriers
making a superconductor a promising platform to realize Majorana particles [30]. However,
a problems still exists: an antiparticle is the negative energy counterpart of a particle and
thus the particle and antiparticle are different. This is the case of electrons which exist
in the conduction band above the Fermi level and holes which exist in the valence band
below the Fermi level. For a Majorana particle to be realized, there has to be a zero-energy
mode at the Fermi level (i.e. the gap needs to be closed). This is where the cross-section
of topological band theory and superconductivity comes to the rescue. The non-trivial
topology of a topological superconductor closes the gap giving rise to the possibility of
Majorana zero modes on the surface where the gap closes [31].

In the case of the Majorana, the exciting prospect of discovering a new quasiparticle
with exotic physical properties is coupled by the coinciding applications should it be dis-
covered. Recently, a framework has been developed for encoding a quantum state that is
robust to decoherence on a Majorana in a topological superconductor [31, 32]. This has
lead to the exciting prospect of topological quantum computation that is robust against
decoherence, the main obstacle of traditional quantum computers. However, whether topo-
logical superconductivity is a real piece of nature or simply an interesting mathematical
exercise is still a mystery waiting to be discovered.

Bi2Se3 is a topological insulator that has attracted special interest since Cu, Sr, or Nb in-
tercalation between quintuple layers of Bi2Se3 can induce superconductivity. It is proposed
that doped Bi2Se3 is a topological superconductor [5], which has a full pairing gap in the
bulk and a topologically protected gapless surface state consisting of Majorana fermions.

Specific heat measurement showed that CuxBi2Se3 is a bulk superconductor with a full
pairing gap [6]. Furthermore, point-contact spectroscopy studies discovered that CuxBi2Se3

exhibits a surface Andreev bound state [8]. However, the observation of quantum oscilla-
tions, which are generally studied to resolve the electronic structure of topological materi-
als, was missing in CuxBi2Se3. For a topological superconductor, as well as the topological
insulators such as Bi2Se3 and Bi2Te3, the observation of quantum oscillations (arising from
Landau level quantization) is important since it is a direct measurement of the bulk and
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surface states [33, 34, 35]. As a result, before the observation of quantum oscillations, the
exact measurement of the effective mass and the scattering rate of this topological super-
conductor candidate was controversial [4, 6, 36, 37]. Furthermore, the geometry of the
Fermi surface has profound consequences on topological superconductivity [5, 38]. Quan-
tum oscillations can be used to map the Fermi surface and thus are an important probe into
the nature of topological superconductor candidates.

This work contributes to the search for topological superconductivity by answering
some key questions to one of the most promising platforms for topological supercon-
ductivity to date - doped Bi2Se3. Here, I studied the quantum oscillations of Cu-doped
Bi2Se3 [39, 40] and Nb-doped Bi2Se3 [41] presenting the first report of Landau level quan-
tization in both of those systems. Furthermore, using torque magnetometry rotational sym-
metry breaking, a feature of a new theory for topological superconductivity [12], was ob-
served in Nb-doped Bi2Se3 [42].

The rest of chapter 1 introduces some of the theoretical framework for topological
superconductivity and briefly presents other candidates for topological superconductivity.
Chapter 2 is a review of the literature to date concerning the search for topological super-
conductivity in doped Bi2Se3, including some of the key questions and debates. Chapter 3
describes the experimental techniques used in this thesis. And chapters 4 and 5 present the
key results of this work for CuxBi2Se3 and NbxBi2Se3 respectively.

1.2 Signatures of Topological Superconductivity

1.2.1 Topological Superconductor Criteria

In a paper by Fu and Berg [5], sufficient criteria for the realization of topological supercon-
ductivity are derived. Fu and Berg show that a time-reversal invariant (TRI), centrosym-
metric superconductor is necessarily a topological superconductor if it meets the following
two criteria

1. The superconducting pairing is odd-parity, and

2. There are an odd number of TRI momenta enclosed in the Fermi surface.

Much of the experimental literature (discussed further in chapter 2) concerns the first
criteria. Odd-parity superconductivity is rare, even in unconventional superconductors, and
has some clear experimental signatures. Many other papers concern the Majorana surface
modes expected to arise from non-trivial bulk topology, as shown in the next section. The
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experiments in this thesis, which probe the Fermiology of topological superconductor can-
didates, address the second criteria.

Here, I will walk through the proof made in ref. [5] which shows that criteria 1 and 2
lead to topological superconductivity.

As shown in ref. [43] (and work out in Appendix A), Z2 topological invariants are
calculated from

δi =

√
det[w(Γi)]

Pf[w(Γi)]
= ±1, (1.1)

δi is related to the change in time-reversal polarization (see Appendix A) giving rise to
Kramers pairs switching partners [44]. This results in edge states crossing the Fermi energy
an odd number of times. In equation 1.1, Pf donates the Pfaffian of a matrix and w(k) is a
unitary, antisymmetric matrix that connects time-reversed wavefunctions given by

wmn(k) = 〈um(−k)|Θ |un(k)〉 , (1.2)

where |un(k)〉 are eigenstates of the Block Hamiltonian and Θ is the time-reversal
operator given by

Θ = eiπSyK. (1.3)

Sy is a spin operator and K is the complex conjugate operator. Θ takes k to−k. A TRI
Hamiltonian will be transformed by Θ as

ΘH(k)Θ−1 = H(−k) (1.4)

k = Γi are the TRI momenta given by a superposition of reciprocal lattice primitive
vectors, bi,

Γi=(n1n2n3) =
1

2
(n1b1 + n2b2 + n3b3) (1.5)

Γi satisfy

− Γi = Γi + G (1.6)

where G is a reciprocal lattice vector. The solution to the periodic Block Hamilto-
nian for a topological insulator are Bloch waves, eik·r |un(k)〉 = |ψn,k〉, with the property,
|ψn,k〉 = |ψn,k+G〉, thus at TRI momenta
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ΘH(Γi)Θ
−1 = H(Γi) (1.7)

In two dimensions there are 4 TRI momenta in the Brillouin zone and there are 8 in
three dimensions - consisting of high symmetry points such as Γ, Z, K, etc.

As shown in appendix A, the topological invariant, ν, is given by the product of δi over
all the TRI momenta in the Brillouin zone. In two dimensions this is given by [44, 45]:

(−1)ν =
4∏
i=1

δi, (1.8)

and in three dimensions, there are four invariants given by

(−1)ν0 =
8∏
i=1

δi (1.9)

and

(−1)νi=1,2,3 =
∏

ni=1;nj 6=i=0,1

δ(i=n1n2n3). (1.10)

For a 3D TRI insulator, ν0 = 1 is sufficient criteria for a strong topological insulator;
however, with ν0 = 0 and νi 6=0 = 1 for any i 6= 0, a weak topological insulator phase is
realized with topological surface states on some surfaces. In a weak topological insulator,
the surface states can be destroyed without violating time-reversal symmetry [44].

For the superconductor Hamiltonian (Bogoliubov-de Gennes Hamiltonian) and the band
insulator Hamiltonian (Bloch Hamiltonian), the time-reversal operator, Θ, is the same.
Thus, the topological invariant, ν0 = 1, is sufficient to establish a topological phase in a
superconductor as well as an insulator [5].

Consider the superconducting Hamiltonian [38]

H =
1

2

∑
kαα′

(c†kα, c−kα)H(k)

(
ckα′

c†−kα′

)
, (1.11)

where H(k) is the Bogoliubov-de Gennes Hamiltonian given by

H(k) =

(
E(k)αα′ ∆(k)αα′

∆†(k)αα′ −ET (−k)αα′

)
. (1.12)

c†kα is the creation operator for an electron with momentum, k. The subscript, α, indexes
the electron spins and orbital degrees of freedom. Fu and Berg explicitly give the spin
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degree of freedom in their Hamiltonian, but not the orbital degree of freedom [5]. ∆(k)αα′

is the superconducting gap function, and E(k)αα′ is the matrix giving the normal state
electron energy. The Bogoliubov-de Gennes Hamiltonian can also be written as [5]

H(k) = [H0(k)− µ]τz + ∆(k)τx (1.13)

where E(k)αα′ is replaced by the difference between kinetic energy, H0, and the chem-
ical potential, µ. τx,z are the Pauli spin matrices in Nambu space (particle-hole space).
Nambu space is often used with describing superconductors [47, 48]. The Pauli matri-
ces in this space are identical to the Pauli matrices in spin-space [49]; however in Nambu
space, z-spin up represents and occupied state and z-spin down represents an unoccupied
state [5, 46].

Criteria 1 requires that the superconducting gap has odd-parity, or P∆(k)P = −∆(−k).
P is the parity operator that takes r → −r and k → −k. Note, since P = P−1 and since
P is unitary, P = P †. Here I will use P for P−1 and P † as done in ref. [5]. H0(k) is even
under parity, so PH0(k)P = H0(−k)

Given the odd parity gap function, the Hamiltonian in equation 1.12, or equivalently
1.13, has the following symmetry

ΠH(k)Π = H(−k),where Π = P ⊗ τz =

(
P 0

0 −P

)
, (1.14)

which allows the Z2 topological invariant in equation 1.9 to be solved in similar fash-
ion to the inversion symmetric topological insulator [45]. This is done by rephrasing√

det[w(Γi)] and Pf[w(Γi)] in terms of the eigenvalues of Π at the TRI momenta as shown
below.

The eigenstates of the Bogoliubov-de Gennes Hamiltonian at Γi can be approximated
by the Block eigenstates, |un(k)〉, since Γi is generally far from the Fermi surface [5].
Given the symmetry in equation 1.14, [Π, H(Γi)] = 0, thus the eigenstates of the Bogoliubov-
de Gennes Hamiltonian at Γi are also eigenstates of Π:

Π |un(Γi)〉 = ξn(Γi) |un(Γi)〉 . (1.15)

To start, I’ll introduce a new matrix

vmn(k) = 〈um(k)|ΠΘ |un(k)〉 . (1.16)

The matrix, wmn(k) from equation 1.2 at k = Γi can be restated as
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wmn(Γi) = ξm(Γi)vmn(Γi) (1.17)

by noting

vmn(Γi) = 〈um(Γi)|ΠΘ |un(Γi)〉

= ξm(Γi) 〈um(−Γi)|Θ |un(Γi)〉

= ξm(Γi) 〈um(Γi)|Θ |un(Γi)〉

= ξm(Γi)wmn(Γi)

then dividing both sides by ξm(Γi), which can be moved to the numerator because
ξm(Γi) = ±1.

The determinant of wmn(Γi) from equation 1.17 is given by

det[w(Γi)] = det[v(Γi)]
∏
m

ξm(Γi) (1.18)

det[v(Γi)] = 1 by gauge choice. In fact, the more rigorous condition of Pf[v(k)] =

1 ∀ k can be shown, thus det[v(Γi)] = Pf[v(Γi)]
2 = 1 [45]. Since [Π,Θ] = 0, Kramer’s

pairs, |u2n(Γi)〉 and |u2n+1(Γi)〉 ≡ Θ |u2n(Γi)〉 also share the same Π eigenvalue.
∏

m ξm(Γi) =

1 because ξm(Γi) = ±1 and thus the product of each Kramer’s pair must be 1. In conclu-
sion, det[w(Γi)] = 1 and therefore

√
det[w(Γi)] = 1. (1.19)

Due to Kramer’s degeneracy, the product in equation 1.18 can be restated over one of
each Kramer’s pair

∏
m

ξm(Γi) = (
∏
m

ξ2m(Γi))
2 (1.20)

From the definition of the Pfaffian, Pf[w(Γi)]
2 = det[w(Γi)]. Pf[w(Γi)] can be solved

by taking the square root of the right hand side of equation 1.18 after substituting equation
1.20 for the product. This gives

Pf[w(Γi)] =
√

det[v(Γi)]
∏
m

ξ2m(Γi) =
∏
m

ξ2m(Γi). (1.21)

Substituting equations 1.19 and 1.21 into equation 1.1 yields
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δi =
1∏

m ξ2m(Γi)
=
∏
m

ξ2m(Γi). (1.22)

The second equality follows because
∏

m ξ2m(Γi) = ±1. Thus, the topological invari-
ant in equation 1.9 can be restated in terms of the product of the eigenvalues of Π at the
TRI momenta

(−1)ν0 =
∏
i,m

ξ2m(Γi). (1.23)

The eigenstates of the Bogoliubov-de Gennes Hamiltonian at Γi were previously ap-
proximated by the Block eigenstates. This is equivalent to taking ∆(Γi) → 0 since
the energy scale of the gap function is generally much smaller than H0(k) − µ when
k = Γi. Thus the eigenstates of the Bogoliubov-de Gennes Hamiltonian in equation 1.13
are |φ(Γi)〉 ⊗ |τz = 1〉 for an occupied band (sgn[µ− εm(Γi)] > 0) or |φ(Γi)〉 ⊗ |τz = −1〉
for an unoccupied band (sgn[µ − εm(Γi)] < 0). Where |φ(Γi)〉 are eigenstates of H0 with
energy εm(Γi). This can be also be noted in matrix form using the Hamiltonian from equa-
tion 1.12 used in ref. [38].

As the eigenstates of H are also the eigenstates of Π,

ξm(Γi) = pm(Γi)τm(Γi) (1.24)

where pm(Γi) = ±1 is the eigenvalue of the parity operator and τm(Γi) = ±1 is the
eigenvalue of the particle-hole operator. The product of these two operators make up Π in
equation 1.14. Substituting equation 1.24 into equation 1.23 yields

(−1)ν0 =
∏
i,m

p2m(Γi)τ2m(Γi)

=
∏
i,m

p2m(Γi)sgn[µ− ε2m(Γi)]

∏
i,m p2m(Γi) =

∏
i det[P ] = 1 since there are an even number of TRI momenta in the

Brillouin zone and det[P ] is independent of Γi. Thus the previous equation simplifies to

(−1)ν0 =
∏
i,m

sgn[µ− ε2m(Γi)] =
∏
i

(−1)N(Γi) (1.25)

where N(Γi) is the number of unoccupied bands at Γi. For a topologically nontrivial
superconductor, ν0 = 1. Again, since there are an even number of TRI momenta in the
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Brillouin zone, this can be simply interpreted as criteria 2 from the beginning of the section:
A topological superconductor has an odd number of TRI momenta enclosed in the Fermi
surface.

It is interesting to note that the topological superconductor keeps time-reversal symme-
try [5]. This is not necessarily the case for odd-parity superconductors such as Sr2RuO4

where time-reversal symmetry is shown to be broken using the Kerr effect [50]. Time-
reversal invariance supports the spacial separated Majorana surface states discussed briefly
in the next section [51]. In superconductors like Sr2RuO4 with broken time-reversal sym-
metry, Majorana modes can arise from half-quantum vortices [52].

1.2.2 Majorana Surface State

Topological superconductors are predicted to host non-abelian, Majorana modes on its sur-
face [38, 51, 53, 54, 55]. Due to the non-abelian statistics, methods have been suggested
to utilize these modes to build a robust quantum computer that is resistant to decoher-
ence [31, 32]. The potential applications of a topological superconductor which hosts Ma-
jorana modes has been a key motivator for this field outside of the interest for fundamental
science.

The theory of Majorana modes in a 3D, time-reversal invariant topological supercon-
ductor [51] will not be worked out here. However, to introduce the idea of Majorana modes,
consider a simple Hamiltonian of a spinless one-dimensional superconductor [51, 56]:

H = −µ
N∑
i=1

c†ici −
N−1∑
i=1

(tc†ici+1 −∆cici+1 + tc†i+1ci −∆c†i+1c
†
i ) (1.26)

where µ is the chemical potential, c†i and ci are the creation and annihilation operators
respectively at site i, ∆ is the superconducting gap (which we assume for simplicity ∆ =

|∆|), and t is the hopping strength. To show that the eigenstates of this Hamiltonian are
Majorana fermions, we split each fermion operator into Majorana operators:

ci =
1

2
(γ2i−1 + iγ2i) (1.27)

c†i =
1

2
(γ2i−1 − iγ2i) (1.28)

The operators, γi, are seen to be Majorana since they are their own Hermitian conjugates
as is clear in equations 1.29 and 1.30.
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γ2i−1 = ci + c†i (1.29)

γ2i = i(c†i − ci) (1.30)

Subsituting equations 1.27 and 1.28 into equation 1.26 while taking advantage of the
anti-commutator relations

{γi, γi′} = 2δi,i′ (1.31)

yields

H =
iµ

2

N∑
i=1

γ2iγ2i−1 −
i

2

N−1∑
i=1

[(t−∆)γ2i−1γ2i+2 + (t+ ∆)γ2i+1γ2i] (1.32)

In the trivial phase, µ < 0 and ∆ = t = 0, the Hamiltonian becomes

H =
iµ

2

N∑
i=1

γ2iγ2i−1 (1.33)

where each Majorana is coupled to another at each physical site. However, in the topo-
logical phase, µ = 0 and ∆ = t > 0, the Hamiltonian becomes

H = −it
N−1∑
i=1

γ2i+1γ2i (1.34)

where γ1 and γ2N are uncoupled resulting in two spatially separated Majorana modes.
Here for simplicity the chemical potential is taken to be 0 for the topologically non-trivial
phase. It can be further demonstrated that in this 1D system the topological phase holds for
any chemical potential in the gap: |µ| < 2t [56].

1.3 Search for Topological Superconductivity

To date, the search for the Majorana fermion in a topological system involving a super-
conductor has taken many forms. A prevalent method is to create a heterostructure with a
superconductor-topological insulator interface [57]. In particular, there has been promis-
ing preliminary results with topological insulator Bi2Se3 and superconductor NbSe2 [58]
and with a Nb-Bi2Te3-Nb junction [59]. Similarly, it has been proposed that a Majorana
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could be realized by building a heterostructure with a semiconducting thin film sandwiched
between a superconductor and a magnetic insulator [60].

Other than with heterostructures, topological superconductivity hosting Majorana par-
ticles have been proposed for nodal superconductors with spin-orbit coupling [61] or mag-
netic order [62]. Theoretical work on p-wave superconductors show topological order and
Majorana modes [63, 64]. Sr2RuO4 has been proposed to be spin-triplet and has drawn a
lot of attention lately [65]. A whole class of half-Heusler materials, RPtBi and RPdBi (R
= La, Y, Lu, Er, Ce, Lu), have been suggested to be candidates of topological superconduc-
tivity [66, 67, 68]. Closer to this work, doped semiconductor, Sn1−xInxTe, has also shown
promising signs of topologically protected surface Majorana states [69].

Bi-based topological insulators, Bi2Se3 and Bi2Te3, have taken a central role in the
search for topological superconductivity. One method to realize topological superconduc-
tivity in these materials has been to induce superconductivity by applying pressure [70, 71].
Another method, which is the topic of this thesis, has been to dope these known topological
insulators with metals to induce superconductivity [5]. To date, CuxBi2Se3 has been the
most researched topological superconductor candidate.
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CHAPTER 2

Search for Topological Superconductivity in
Doped Bi2Se3

2.1 Cu-doped Bi2Se3

Topological insulators make up a novel state of matter consisting of an insulating bulk and
symmetry-protected conductive surface states. Since the discovery of the first 3D topo-
logical insulator bismuth-antimony [29] and the subsequent bismuth and antimony-based
systems [72, 73, 74], a new field emerged sparking broad research interest.

Since the 3D topological insulator can also be a platform for magnetization and super-
conductivity, there is much interest in the interaction of topological order and phases with
broken symmetry [4]. This interest first manifested with the study of proximity effects of
spin-triplet superconductors with 3D topological insulators [30, 57], but has also spurred
on a search for 3D topological superconductors [5, 53, 75].

Bi2Se3 is one of the few 3D topological insulators to date. It has attracted special atten-
tion since Cu intercalation between quintuple layers of Bi2Se3 can induce superconductivity
below 3.8 K [3, 76]. CuxBi2Se3 has been proposed to be a leading candidate for topological
superconductivity for this reason [5]. Cu-doped Bi2Se3 was the first of a series of doped
Bi2Se3 materials that has been studied in the search for 3D topological superconductivity.

In this section, I describe the literature on CuxBi2Se3 as it applies to the question of
topological superconductivity. The progression of this topic has been very fascinating.
Early results made the condensed matter community very optimistic that CuxBi2Se3 would
be the first material to realize topological superconductivity [4, 5, 6, 7, 8, 39, 77]. This
excitement fizzled out as an increasing number of controversial results emerged [9, 10, 11],
but the prediction and following observations of topological nematic superconductivity in
CuxBi2Se3 has renewed some of the early promise in this material [12, 13, 14].
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2.1.1 Early Results on Cu-doped Bi2Se3

The first report of superconducting Cu doped Bi2Se3 was by Y.S. Hor in 2010 [3]. This
report details the growth conditions needed to obtain high quality superconducting crystals
by melting stoichiometric ratios of the reactants. The crystal structure of CuxBi2Se3 taken
from this report is shown in fig. 2.1. Hor et. al. successfully characterized the crystal
structure and superconducting property of CuxBi2Se3 through X-ray Diffraction (XRD),
Scanning Tunneling Microscopy (STM), Superconducting QUantum Interference Device
(SQUID) magnetometry, and electric transport. The notable result from this early work
is that Bi2Se3 could be made superconducting below 3.8 K when Cu (with concentration
0.10 < x < 0.30) is intercalated between quintuple layers rather than substituting Bi
sites in the parent compound. The difference between intercalated Cu dopants and Cu
substitutions was observed in an earlier work to have a profound effect on the number
of free carriers [78]. It was shown that intercalated Cu acts as a donor, and substituted
Cu acts as an acceptor. However, though this was known since the 1970s, the presence of
superconductivity and the effect of the Cu inclusion on the superconductivity was not noted
until Hor et. al. in 2010.

Figure 2.1: Crystal structure of CuxBi2Se3. Taken from ref [3].

A year later, Kriener et. al. developed a new method of intercalating Cu dopants into
Bi2Se3 using an electrochemical synthesis and annealing technique [36]. Kriener et. al.
reports superconductivity in CuxBi2Se3 for Cu concentration between 0.09 < x < 0.64,
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far wider than that achieved by the melt method [3, 36]. Also, they achieved a shielding
fraction near 50%, exceeding the previous shielding fraction of 20% [3]. Later improve-
ments increased the shielding fraction of crystals grown with the melt method [79], which,
by studying the quenching conditions, eventually achieved a superconducting fraction of
56% [80]. Another growth method combining the melt and electrochemical technique con-
sistently produced samples with a shielding fraction larger than 40% [81]. Large single
crystals of CuxBi2Se3 were also grown with a floating zone [80] and high Cu concentration
crystals by a novel layered nanoribbon method [82], but good superconducting crystals
were not achieved by these means.

Soon after superconductivity was observed in Cu-doped topological insulator Bi2Se3,
it was proposed to be a prime candidate to realize topological superconductivity by Fu and
Berg [5]. In this report, Fu and Berg established that if a fully gapped, centrosymmetric
odd-parity superconductor were to have an odd number of TRI momentum enclosed in
its Fermi Surface, it would necessarily be a topological superconductor. This result was
concurrently arrived at by Sato [38] (see chapter 1 subsection 1.2.1 for a detailed derivation
of these criteria). Fu and Berg developed a model hamiltonian for CuxBi2Se3 based on
a first principle band structure calculation of Bi2Se3 [83] and proposed that CuxBi2Se3

realizes the topological superconductor phase. This prediction sparked a flurry of research
on this new superconductor.

Around the same time as Fu and Berg’s theoretical prediction of topological supercon-
ductivity in CuxBi2Se3 was a Angle Resolved Photoemission Spectroscopy (ARPES) paper
by Wray et. al. which revealed that superconducting Cooper pairing occurs in a relativistic,
Dirac bulk band in CuxBi2Se3 [4]. Fig. 2.2(f) taken from Wray et. al. reveals that the bulk
conduction band is best modeled by a Dirac distribution (blue) over a classical parabolic
distribution (gray). The residuals from the Dirac fitting, shown in the inset of fig. 2.2(f),
have a kink likely arising from electron-boson interactions. This suggests that Cooper pair-
ing occurs in the Dirac regime where the chemical potential is located. A massive, bulk
Dirac band is characteristic of the topological insulator state.

Even more significant in the result by Wray et. al. was that Cooper pairing at the
chemical potential occurred in the presence of a non-degenerate surface state. Fig. 2.2(g)
contrasts the band structure of a surface state that is degenerate and non-degenerate with the
bulk band. Comparing with the ARPES data in panels (a)-(f), CuxBi2Se3 clearly fits with
the non-degenerate model. Wray. et. al. suggest that the surface state revealed by ARPES
is topological in nature and appears in the presence of bulk superconducting pairing.

Lastly, the photoemission data from Wray et. al. in conjunction with a theoretical model
from Fu and Berg suggest that CuxBi2Se3 could have an odd-parity pairing symmetry - a
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Figure 2.2: ARPES data on Cu0.12Bi2Se3 taken from ref. [4]. (a)(b)(c) Bulk and Surface
conduction bands along the Γ−M , Γ−K, and Γ− Z directions. (d) Zoomed in view of
ARPES data near chemical potential reveal non-degenerate bulk and surface bands. (e)(f)
Comparison of Dirac fitting and classical parabolic fitting of ARPES data. Inset shows
a kink in the residuals of the Dirac fit, indicative of electron-boson interaction. (g) Non-
degenerate bulk and surface bands suggest the presence of topologically nontrivial surface
state.

necessary condition for topological superconductivity. The theoretical model from Fu and
Berg produced a phase boundary between an odd parity pairing and even parity pairing
phase given by

U

V
= 1− 2m2

µ2
(2.1)

where U is the intraorbital interaction, V is the interorbital interaction, m is the Dirac
rest mass, and µ is the chemical potential [5]. From this phase boundary equation, Fu and
Berg developed the phase diagram in fig. 2.3. In this diagram ∆2 represents the odd-parity
topologically nontrivial phase and ∆1 represents an even-parity topologically trivial phase.
The red arrow indicates m/µ = 1/3, which is the value extracted from the ARPES result
in Wray et. al. Given the small value of m/µ, as long as V is sufficiently larger than U, the
topologically nontrivial odd-parity phase will be realized. The results by Wray et. al. were
later elaborated on in a second, more comprehensive publication a year later [37].

The results from Wray et. al. in conjunction with Fu and Berg caused no little stir in
the condensed matter community and several more papers came out in the next few years
discussing experimental signatures of topological superconductivity in CuxBi2Se3. One of
the most pressing questions was whether the superconducting pairing in CuxBi2Se3 had
even or odd parity.

A heat capacity study by Kriener et. al. in 2011 was one of the first investigations of
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Figure 2.3: Phase diagram taken from ref [5]. ∆1 and ∆2 are even and odd parity phases
respectively. The red arrow is the experimental value of m/µ from ref. [4].

the superconducting gap of CuxBi2Se3 [6]. Fig. 2.4 shows the temperature dependence
of the heat capacity of CuxBi2Se3 from this study. Panel (a) shows cp/T as a function of
temperature in the normal state (applied external field B = 2 T) and in the superconducting
state (no external field). From the normal state heat capacity, the phonon contribution was
determined and subtracted to get the electronic contribution of the heat capacity in the
superconducting state, cel/T, shown in panel (b).

Figure 2.4: Heat capacity of CuxBi2Se3 taken from ref [6]. (a) The heat capacity, cp/T,
as a function of temperature in the superconducting state (blue) and normal state (red). (b)
The electronic contribution of the heat capacity, cel/T, after the subtraction of the phonon
contribution determined from the normal state.

There are two interesting conclusions from the heat capacity data drawn by Kriener et.
al.. First, the exponential decay of cel/T at low temperature is indicative of a fully-gapped,
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nodeless superconducting state (see chapter 5 section 5.1 for a discussion of how nodes
effect the heat capacity).

Second, they determine that the superconducting gap does not have conventional s-wave
symmetry. Using their transport and magnetization data, Kriener et. al. determined the
superconducting gap size at 0 K, ∆0, to be 7.3 K. From this they found ∆0/Tc = 2.3. ∆0/Tc
is the parameter for the α model used to describe the heat capacity verses temperature for
superconductors with strong coupling [84]. As seen in fig. 2.4(b), the calculated ∆0/Tc does
not fit the heat capacity data for CuxBi2Se3. Kriener et. al. concludes that the temperature
dependence of the superconducting gap is not well described by BCS theory and thus may
not be s-wave. This result, suggesting an unconventional superconducting order parameter,
gives rise to the possibility that CuxBi2Se3 could be a odd-parity superconductor.

A magnetization study by Das et. al. also claims that the superconductivity in CuxBi2Se3

is odd-parity, spin triplet [77]. Based on a theoretical study of the effect of vortex currents
on the magnetic flux in a superconductor [85], they calculate the non-uniform magnetic
field in the superconducting vortices. They find that for a spin-singlet superconductor, the
magnetic field induced by vortices is always positive meaning that the interaction between
vortices should always be repulsive. However, for a spin-triplet superconductor the vor-
tex magnetic field is negative at a set distance away from the vortex center resulting in an
attractive force between vortices.

The measured magnetization data showed a rapid increase of the sample’s magnetiza-
tion just above Hc1, which then slows down at higher field. Das et. al. suggests that the
rapid increase in the magnetization is due to the low vortex density at Hc1. For a spin-triplet
superconductor, when the vortices are far apart, the attractive magnetic force between vor-
tices would rapidly increase the vortex density. Once the vortex density is high, the vortices
would feel a repulsive force, thus leveling off the increase in magnetization. In this way,
Das et. al. argues that the magnetization in CuxBi2Se3 is consistent with the prediction for
a spin-triplet superconducting order. It should be noted that some theoretical calculations
have been critical of this argument [86].

A study of the upper critical field under pressure by Bay et. al. also suggests spin-
triplet superconductivity in CuxBi2Se3 [7]. Fig. 2.5(a) shows the upper critical field in
CuxBi2Se3 as a function of temperature for different pressures. Bay et. al. calculates
the Pauli paramagnetic limit for the upper critical field [87, 88] given the orbital and spin
limiting effects to beBc2(0) =Borb

c2 (0)/
√

1 + α2 = 3.3 T [7, 89] whereBorb
c2 (0) is the orbital

limited upper-critical field given by Borb
c2 (0) = 0.72 × Tc|dBc2/dT |Tc [7, 89] and α is the

Maki parameter given by α =
√

2Borb
c2 (0)/BP (0) [7, 89, 90] with BP (0) = 1.86 × Tc the

weak coupling Pauli paramagnetic limit at 0 K [7, 91]. The upper critical field seen in fig.
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2.5(a) at ambient pressure clearly exceeds the 3.3 T Pauli paramagnetic limit with orbital
and spin considerations. In the absence of Pauli limiting on the upper critical field, the
presence of spin-triplet superconductivity, which is not subject to the Pauli limit, is likely.
This has been seen in other spin-triplet superconductors like URhGe [92], UCoGe [93],
and (most likely spin-triplet) Sr2RuO4 [94, 95].

Figure 2.5: Pressure dependence of upper critical field in CuxBi2Se3 taken from ref [7]. (a)
Upper critical field as a function of temperature for different pressures. (b) Upper critical
field follows the same functional form at every pressure. Data agrees best with a p-wave
model with a 5% adjustment of the initial slope (black). The s-wave and p-wave models
are shown in red and blue respectively.

Bay et. al. found that at every pressure, the upper critical field followed the same func-
tional behavior as seen in fig. 2.5(b). Furthermore, the functional fitting for a spin-singlet,
orbital-limited superconductor [89] (red curve) is not a good fit of the data. However, the
functional fit for a p-wave superconductor [96] (blue) is a much better fit to the data, espe-
cially after a small adjustment of the initial slope (black).

An important feature of p-wave superconductivity is that it is very sensitive to impuri-
ties [7, 93, 94, 97]. As noted by Bay et. al., to meet this condition the mean free path, l,
must be larger than the coherence length, ξ [94]. From the upper critical field, in CuxBi2Se3

the coherence length is ξ = 13-14 nm [3, 6, 7]. Bay et. al. estimates the mean free path to
be 34 nm and argues that CuxBi2Se3 is in the clean limit because l > ξ. Furthermore, using
a model for the slope of the temperature dependence of the upper critical field in the clean
limit [98], Bay et. al. calculates l = 90 nm and ξ = 9 nm further reinforcing the possibility
of spin-triplet superconductivity.

The mean free path was later determined from quantum oscillations to range between
14 nm and 30 nm depending on the sample [40]. Bay et. al. suggests that superconductivity
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in CuxBi2Se3 is in the clean limit [7], but the high dingle temperature reported by quan-
tum oscillations [39, 40, 99] challenges this view. This remains as a challenge for triplet
superconductivity in CuxBi2Se3.

Though the issue of impurity scattering has cast doubts on possible p-wave supercon-
ductivity in CuxBi2Se3, a theoretical work by Michaeli and Fu argues that chiral symmetry
and spin-orbit effects can counteract the pair breaking due to impurity scattering [100].
In conjunction with an experimental work following the theory [101], it is possible that
CuxBi2Se3 could host a disorder-resistant odd-parity superconducting phase. Later theo-
retical works also showed that topological superconductivity can be robust against disor-
der [102, 103, 104].

The combined results by Kriener et. al. [6], Das et. al. [77], and Bay et. al. [7] all
pointed to odd-parity pairing in CuxBi2Se3, a necessary condition to realize 3D topological
superconductivity. In the meantime, the smoking gun for topological superconductivity,
Majorana zero-modes, was reported to be seen by point-contact spectroscopy by Sasaki et.
al. [8] and later confirmed in other works [105, 106, 107].

Majorana excitations on the surface of a topological superconductor should result in a
finite density of states in the middle of the superconducting gap. This density of states will
lead to a conductance peak at zero bias in tunneling or Andreev reflection measurements.
Fig. 2.6 shows the point-contact spectroscopy data for CuxBi2Se3 by Sasaki et. al. [8].
As seen in panels (a) and (b), a zero bias conductance peak exists in the center of the gap.
Sasaki et. al. argues that this feature is evidence of Majorana zero-modes on the surface
of CuxBi2Se3. From the magnetic field dependence of the zero bias conductance peak
(fig. 2.6(c)), Sasaki et. al. rules out spurious effects such as heating that could give rise to a
non-intrinsic zero bias conductance peak. Two theoretical works following this observation
interpret the zero bias conductance peak in Sasaki et. al. as evidence of surface Majorana
modes in a 3D topological superconductor [55, 108].

The strong suggestion that CuxBi2Se3 is a spin-triplet superconductor [6, 7, 77] and the
apparent observation of Majorana zero-modes on its surface [8] created extreme enthusiasm
in the topological materials community. Quantum oscillations, which are used to probe
the electronic state of topological materials [33, 34, 35], were missing up to this point.
Detailed knowledge of the Fermiology in CuxBi2Se3 is particularly necessary since the
criteria for topological superconductivity developed by Fu and Berg requires that there are
an odd number of TRI momenta enclosed in the Fermi surface [5]. Lawson et. al. solved
this problem by measuring quantum oscillations in the magnetization of CuxBi2Se3 using
torque magnetometry [39].

Lawson et. al. measured a single ellipsoidal Fermi surface centered on the Γ point
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Figure 2.6: Zero Bias Conductance Peak in CuxBi2Se3 taken from ref [8]. (a) Temperature
dependence of point-contact spectrum (dI/dV versus bias voltage). Peak in the center of
the gap is evidence of Majorana surface state. (b) Point-contact spectrum in narrow energy
range. (c) Field dependence of point-contact spectrum at T = 0.35 K.

as in the parent compound [39]. This Fermi surface contains only one TRI momentum,
thus meets the criteria for topological superconductivity set by Fu and Berg [5]. For more
details on the result by Lawson et. al. see chapter chapter 4.

2.1.2 Evidence Against Topological Superconductivity in Cu-doped
Bi2Se3

In early 2013, Levy et. al. came out with a STM study on CuxBi2Se3 [9]. As shown in
fig. 2.7, they observed a full superconducting gap. In particular, the data in fig. 2.7(b) is
well fit by an s-wave superconducting model (blue). In contrast to suggestions of p-wave
superconductivity as described in the previous section [6, 7, 77], the simplest explanation
of the tunneling spectrum in CuxBi2Se3 is conventional s-wave superconductivity. Levy
et. al. notes that an exotic pairing could account for the full gap seen in the tunneling
spectrum, but it is most likely s-wave.

Mostly notably, the in-gap state observed by point-contact spectroscopy [8, 105, 106,
107] is completely missing in the tunneling spectrum [9]. Though they see an apparent
zero bias peak in fig. 2.7(c), this occurred when the tip crashed into the sample resulting in
a zero bias peak due to Josephson tunneling rather than surface Majorana modes. Clearly
in the two samples shown in fig. 2.7(b) and (d), there are no states in the gap.

The lack of in-gap states in STM was a major case against topological superconductivity
in CuxBi2Se3. The conflict between the point-contact results [8, 105, 106, 107] and the
tunneling results [9] is an intriguing mystery. This mystery was addressed in an Andreev
reflection spectroscopy study by Peng et. al. [10].
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Figure 2.7: STM on CuxBi2Se3 taken from ref [9]. (a) Tunneling spectrum including
background. (b) Tunneling spectrum showing full superconducting gap with no in-gap
states. Blue line is a fit for an s-wave superconductor. (c) Tunneling spectrum after the
STM tip crashed into the sample surface. In-gap peak is due to Josephson tunneling. (d)
Tunneling spectrum of a second sample with different junction impedances confirming no
in-gap states.

Peng et. al. argues that the zero bias conductance peak observed in CuxBi2Se3 is not due
to surface Majorana zero modes [10]. In this study, they performed point contact Andreev
reflection spectroscopy [109] in two configurations - one with a finite barrier strength at
the metal-superconductor junction and one with a barrier strength in the transparent limit.
Fig 2.8(a) and (b) show the Andreev reflection spectrum with a finite barrier strength at
different temperatures and external magnetic fields respectively. The two lobes in the data
correctly give a superconducting gap of ∆ = 0.35 meV in good agreement with the gap
from the tunneling spectrum [9]. Notably, the zero-bias conductance peak that is usually
seen in point-contact experiments [8, 105, 106, 107] is missing.

Fig 2.8(c) and (d) show the Andreev reflection spectrum with a barrier strength in the
transparent limit. Similar to the other point-contact experiments [8, 105, 106, 107], this
data shows a peak at zero bias. Peng et. al. argues that in the transparent barrier limit, the
metal-superconductor junction is dominated by inelastic scattering that changes the energy
of the carriers. They estimate that the threshold for ballistic transport RN = 4ρ/3πl [110]
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to be ∼13 Ω, where RN is the junction resistance, ρ is the bulk resistivity of the material
being studied, and l is the mean free path of electrons in the junction. Given that the finite
barrier strength junctions have RN > 100 Ω and the junctions in the transparent limit have
RN < 10 Ω, Peng et. al. shows that the transparent barrier junctions are not in the ballistic
regime, whereas the finite barrier junctions are.

Furthermore, Peng et. al. points out that the spectrum from the transparent barrier
strength experiment did not correctly give the gap energy except for when the barrier
strength was at the threshold for ballistic transport [10]. Fig. 2.8(c) and (d) only show
the data from when the junction resistance is at the ballistic threshold, but more data sets
for different barrier strengths can be found in ref. [10].

Figure 2.8: Andreev reflection on CuxBi2Se3 taken from ref [10]. (a) Andreev spectrum
with finite barrier strength at different magnetic fields and (b) at different temperatures.
(c) Andreev spectrum with a barrier strength in the transparent-limit at different magnetic
fields and (d) at different temperatures.

Peng et. al. argues that the zero bias conductance peak is unlikely to be due to Majorana
surface states since it can be tuned out by varying the barrier strength in the point-contact
measurement. Instead, Peng et. al. claims that the zero bias conductance peak is more
consistently explained by a conductance enhancement from the Andreev reflection due to
the bulk superconducting gap. The origin of the zero bias conductance peak remains a
matter of much debate [111, 112, 113].

In addition to the controversy about the supposed in-gap states, the pairing symmetry
in CuxBi2Se3 has also been under scrutiny. Despite previous reports of odd-parity super-
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conductivity [6, 7, 77], the tunneling spectrum suggests that CuxBi2Se3 is a conventional
s-wave superconductor [9]. In addition, the high level of disorder in CuxBi2Se3 casts doubts
on the presence of a delicate p-wave superconducting order [39, 40, 99] unless a disorder-
tolerant odd-parity superconducting state exists [100, 101].

As stated before, the theoretical criteria for topological superconductivity require (1)
odd-parity pairing and (2) an odd number of TRI momenta enclosed in the Fermi sur-
face [5]. In addition to the pairing symmetry being called into question, criteria (2), which
was confirmed to be met by the de Haas-van Alphen (dHvA) effect [39], has been shown
to be contingent on the doping level [11, 40].

Lahoud et. al. performed an ARPES and Shubnikov-de Haas (SdH) study on CuxBi2Se3

[11]. They found that the ellipsoidal Fermi surface in CuxBi2Se3 becomes increasingly
elongated as a function of carrier concentration. Eventually the Fermi surface touches
the Brillouin zone boundary and becomes quasi-cylindrical. Fig. 2.9(a)(b)(c) shows the
Fermi surface calculated from SdH oscillations at different carrier concentrations. Fig.
2.9(e)(f)(g) shows the size of the Fermi surface with respect to the Brillouin zone. As seen
in panel (g), the Fermi surface crosses the Brillouin zone boundary at high carrier concen-
tration. The ARPES data in Lahoud et. al. confirms that, for CuxBi2Se3 samples with
high carrier concentrations, the bottom of the bulk conduction band is visible for momenta
covering the whole Γ − Z range indicating an open Fermi surface. The evolution of the
Fermi surface with carrier concentration was later confirmed by dHvA effect in Lawson et.
al. [40].

Figure 2.9: Evolution of the Fermi surface in CuxBi2Se3 taken from ref [11]. (a)(b)(c)
Fermi surface of CuxBi2Se3 with increasing carrier concentration calculated from SdH
oscillations. (d) Momentum axes of the Brillouin zone. (e)(f)(g) Fermi surfaces from (a)-
(c) plotted to scale in the Brillouin zone.

This result has significant implications for topological superconductivity in CuxBi2Se3.
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The Fermi surface depicted in fig. 2.9(e)(f) only contains the Γ point. However, the Fermi
surface in fig. 2.9(g) contains both the Γ point and the Z points. Thus, the Fermi surface
contains an even number of TRI momenta in the Brillouin zone. The high carrier concen-
tration CuxBi2Se3 crystal therefore does not meet criteria (2) from the theoretical work by
Fu and Berg [5].

It has been suggested that the open cylindrical Fermi surface could indicate two di-
mensional (2D) topological superconductivity in CuxBi2Se3 [11, 12, 114]. In this case, the
topological boundary states would only exist on the edge surfaces and not on the surface
perpendicular to the crystal c-axis. This could possibly explain why in-gap states are miss-
ing in the tunneling spectrum [9], but seen in point-contact spectroscopy where there could
be tunneling into surfaces other than (001) [8, 105, 106, 107].

The question of topological superconductivity in CuxBi2Se3 remains controversial. There
have been many other studies for, against, and agnostic about topological superconductiv-
ity in CuxBi2Se3 including theoretical works [115, 116, 117, 118, 119, 120, 121, 122, 123,
124, 125, 126], ARPES [127, 128, 129, 130], STM [131, 132], optical [99, 133, 134],
transmission electron microscopy (TEM) [135], thermal hall [136], and transport [99, 130,
137].

2.1.3 Renewed Interest in Cu-doped Bi2Se3 and Nematic Supercon-
ductivity

Until 2015, the debate around CuxBi2Se3 has been centered around whether it realized a
A1u (∆2) representation of the D3d point group, which was predicted by Fu and Berg to
realize the topological superconducting phase [5]. Of the four possible pairing symmetries,
only the A1u representation is odd-parity and has a full superconducting gap, both of which
are required for topological superconductivity. However, a new theory by Fu [12] argued
that the Eu representation can also be fully gapped. The presence of a hexagonal warping
term in the Hamiltonian [138] can spontaneously break the rotational symmetry, lifting the
nodes in the superconducting gap, and give rise to a new ”nematic superconductor” phase
that is topological in nature.

To understand this new phase, it is first necessary to understand the possible order
parameters for CuxBi2Se3. Fu and Berg give the following 4 possible pairing functions for
CuxBi2Se3 [5]:
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∆1 : c1↑c1↓ + c2↑c2↓ and c1↑c1↓ − c2↑c2↓

∆2 : c1↑c2↓ + c1↓c2↑

∆3 : c1↑c1↓ − c2↑c2↓

∆4 : (c1↑c2↑, c1↓c2↓)

(2.2)

∆1 and ∆3 are spin-singlet. Whereas, ∆2 and ∆4 are spin-triplet. Fu and Berg point
out that only the ∆2 pairing function is spin-triplet and fully gapped as is required for
topological superconductivity [5].

In a later paper proposing nematic superconductivity in CuxBi2Se3, Fu takes a closer
look at the ∆4 pairing function [12]. To determine the presence of nodes, Fu calculates the
superconducting gap from the Hamiltonian derived using k · p theory [83] which to first
order is

H0 =
∑
k

c†k[v(kxsy − kysx)σz + vzkzσy +mσx − µ]ck, (2.3)

where c† = (c†1↑, c
†
1↓, c

†
2↑, c

†
2↓) is the creation operator for two orbitals, v is the strength of

the spin-orbit interaction, s is the spin operator, σ is the orbital operator, m is the rest mass,
and µ is the chemical potential [5, 12]. For Eu pairing, electrons form spin-triplet pairs
with zero total spin in an in-plane direction given by n = (nx, ny), which is determined to
be the ”nematic vector”. The pair potential for ∆4 is

Vn = nxVx + nyVy (2.4)

where

Vx = i∆0(c†1↑c
†
2↑ − c

†
1↓c
†
2↓)

Vy = ∆0(c†1↑c
†
2↑ + c†1↓c

†
2↓)

(2.5)

By diagonalizing the Hamiltonian, Hsc = H0 + Vn, the superconducting gap is found
to be

δn(k) = ∆

√
k̃2
z + (k̃ · n)2 (2.6)

where
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∆ = ∆0

√
1−m2/µ2

k̃ = (vkx, vky, vzkz)/
√
µ2 −m2

(2.7)

It can be seen that when ±k0 = ±kF ẑ× n, k̃ is completely in plane and orthogonal to
n, thus the gap, δn(k) from eq. 2.6, goes to zero. This indicates two point nodes in plane
for the Eu pairing function ∆4.

Fu notes that though H0 is rotationally invariant, CuxBi2Se3 has a threefold crystalline
symmetry [12]. To account for the crystalline anisotropy, Fu adds a hexagonal warping
term to the Hamiltonian that accounts for the spin-orbit interaction related to the crystalline
anisotropy. This term was previously used to explain the hexagonal Fermi surface in Bi2Te3

as resolved by ARPES [138, 139]. Thus the corrected Hamiltonian becomes

H = H0 + λ
∑
k

(k3
+ + k3

−)c†kσzszck (2.8)

where λ is the parameter characterizing the strength of the hexagonal warping and
k± ≡ kx ± iky. With the introduction of crystalline anisotropy, it is necessary to define the
coordinate axes with respect to the crystal lattice. The x-axis is defined along the normal
of the mirror plane as seen in fig. 2.10(a).

By diagonalizing the new Hamiltonian Hsc = H + Vn, the gap in the presence of the
hexagonal warming term becomes

δn(k) = ∆

√
1− [k̃ · (ẑ× n)]2 (2.9)

k̃, defined in eq. 2.7, has values given by the Fermi surface

µ =
√
m2 + v2(k2

x + k2
y) + λ2(k3

+ + k3
−)2 + v2

zk
2
z . (2.10)

For kz = 0, this can be simplified to

µ2 −m2 = v2(k2
x + k2

y) + λ2(2k3
x − 6kxk

2
y)

2. (2.11)

The Fermi surface at kz = 0 is shown in fig. 2.10(b). The gap given by eq. 2.9 goes to
zero when |k̃ · (ẑ× n)| = |n · (k̃× ẑ)| = 1.

Using eq. 2.7, |(k̃ × ẑ)| =
√

v2

µ2−m2 (k2
x + k2

y) which equals to one when k2
x + k2

y =

µ2−m2

v2 . As seen in eq. 2.11, for k on the Fermi surface, this condition can be met only
when λ = 0 or when 2k3

x − 6kxk
2
y = 0 which happens at k = kF ŷ, ±kF (

√
3

2
x̂ + 1

2
ŷ), and
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Figure 2.10: Taken from ref [12]. (a) Crystal structure of CuxBi2Se3 viewed down the
c-axis. (b) Fermi surface with hexagonal warping from eq. 2.10 with kz = 0. (c) Super-
conducting gap for ∆4x with n ‖ x̂, which has point nodes at k ⊥ n. (d) Superconducting
gap for ∆4y with n ‖ ŷ, which is fully gapped.

±kF (
√

3
2
x̂− 1

2
ŷ). In other words, for k on the Fermi surface in eq. 2.10, |(k̃× ẑ)| = 1 only

for k = kF ŷ and k on the other five corners of the Fermi surface shown in fig. 2.10(b).
Thus in the presence of hexagonal warping (λ 6= 0) the zero gap condition, |n·(k̃×ẑ)| =

1, occurs only when n lies along x̂ or one of the 6 directions orthogonal to the mirror
planes (i.e. the directions orthogonal to ẑ and k̃ for which |(k̃× ẑ)| = 1). For n in all other
directions, the nodes are lifted leaving a full gap. Thus for Eu pairing there are two different
order parameters. The first named ∆4x (illustrated in Fig. 2.10(c)) occurs when the nematic
vector points in the x̂ direction, which results in point nodes. For n in any other direction
except those orthogonal to the mirror planes, there is a second order parameter named ∆4y

(illustrated in Fig. 2.10(d) with n ‖ ŷ), which is fully gapped. With the lifting of the point
nodes, ∆4y is fully gapped and spin-triplet, thus can realize a topological superconducting
order. Table 2.1 summarizes the different possible gap structures for CuxBi2Se3, and fig.
2.11 shows a graphic of the same gap structures.

This new phase has been dubbed ”nematic superconductor” due to the nematic order in
the superconducting gap resulting from the nematic vector, n [12]. This new superconduct-
ing phase is experimentally characterized by a broken in-plane rotational symmetry, which
has now been observed for CuxBi2Se3 [14, 13].

Matano et. al. first observed the in-plane rotational symmetry breaking in CuxBi2Se3
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Table 2.1: Possible order parameters for CuxBi2Se3. Adapted from ref. [1] and [2].
order parameter D3d representation spin pairing topology gap

∆1 A1g singlet - full
∆2 A1u triplet Z full
∆3 A2u singlet Z2 point nodes at the poles
∆4x Eu triplet Z2 point nodes on equator
∆4y Eu triplet Z full

Figure 2.11: Graphics of the gap structures in table 2.1 taken from ref [13]. The oval is
the Fermi surface and the color indicates the gap amplitude.

with nuclear magnetic resonance (NMR) [14]. Fig. 2.12 shows the in-plane angular de-
pendence of the of the Knight shift reduction in the superconducting state of CuxBi2Se3.
There is a sharp drop in the Knight shift at θ = 30◦ and -120◦. These two dips are separated
by 180◦. This is indicative of a nematic order that clearly breaks the hexagonal crystal
symmetry.

It is noteworthy that in the normal state, the in-plane Knight shift is isotropic, thus fig.
2.12 reveals broken rotational symmetry only in the superconducting state as predicted by
Fu [12]. Matano et. al. argues that the spontaneous rotational symmetry breaking in the
superconducting state implies that CuxBi2Se3 is Eu and spin-triplet. This study however is
not able to differentiate between a ∆4x and ∆4y order parameter. Nagai shows theoretically
that the location of the point nodes can be determined by angle-resolved thermal transport
or heat capacity [140].

Yonezawa et. al. solved this problem by measuring the in-plane angular dependence of
the heat capacity [13]. By measuring a gap minimum normal to the mirror plane, Yonezawa
et. al. concludes that CuxBi2Se3 has the ∆4y order parameter and is a fully gapped, odd
parity topological superconductor.

Fig. 2.13 shows evidence for nematic superconductivity in CuxBi2Se3. Fig. 2.13(a)
shows the heat capacity divided by temperature, C(φ)/T , for CuxBi2Se3 as a function of
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Figure 2.12: Angular dependence of the reduction in the Knight shift taken from ref. [14].
∆Ks = K(3K) −K(1.4K) and Ks = K(3K) −KBi2Se3 . The insert shows the in-plane
crystal structure and defines θ as the azimuthal angle measured from the normal to the
mirror plane.

the angle, φ, between the in-plane external magnetic field and x̂ (the crystal axis orthogonal
to the mirror plane). Above Hc2 in the normal state, C(φ)/T is completely independent
of the azimuthal angle. However, in the superconducting state, there is a clear two-fold
oscillation in C(φ)/T . As in the NMR study, this two-fold oscillation, occurring only in
the superconducting state, breaks the in-plane hexagonal crystal symmetry. Fig. 2.13(b)
displays this same data in a polar plot where the nematic direction is more apparent. The
magnitude of C(θ, φ)/T is shown in a contour plot in fig. 2.13(c), where θ is the polar
angle. The minimum at θ = 90◦ for all φ confirms that the apparent nematic order in fig.
2.13(a) is not due to magnetic field misalignment.

In addition to symmetry breaking in the heat capacity, Yonewaza et. al. observes similar
in-plane anisotropy in the upper critical field, Hc2. The magnetic field dependence of C/T
for different angles is shown fig. 2.13(e). The upper critical field was determined to be
the field where the heat capacity deviates from the linear field dependence of the normal
state. Fig. 2.13(d) shows upper critical field as a function of the azimuthal angle. Like
the heat capacity in fig. 2.13(a), there is a clear two-fold oscillation. A theoretical study
on superconductors with a trigonal lattice, like CuxBi2Se3, indicates that broken rotational
symmetry of Hc2 indicates a two-component pairing symmetry such as ∆4x or ∆4y [141].

Yonezawa et. al. argues that the two-fold behavior that breaks the in-plane crystal sym-
metry arises from a nematic superconducting order parameter, ∆4x or ∆4y. To determine
which order parameter, Yonezawa et. al. determines the location of the gap minimum (for
∆4y) or point nodes (for ∆4x). The temperature and field dependence of C/T is sensitive
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Figure 2.13: Evidence for nematic superconductivity in CuxBi2Se3 taken from ref. [13].
(a) Dependence of heat capacity on azimuthal angle, φ. ∆C(φ)/T = C(φ)/T − C(H ‖
x̂)/T . Gray points are in the normal state, and blue points are in the superconducting state.
(b) Polar plot of panel (a). (c) Contour plot of heat capacity amplitude. (d) Dependence of
upper critical field on azimuthal angle. (e) Field dependence of heat capacity at different
angles.

to the location of the gap minimum due to quasiparticle excitations at the gap minimum
that are dependent on field and angle [142, 143, 144]. Yonezawa et. al. discovered a sign
change in the oscillatory C/T at intermediate temperatures and magnetic field in the super-
conducting state. By comparing to a theoretical model of a spherical Fermi surface with a
gap minimum, Yonezawa et. al. conclude that the gap minimum occurs along the kx direc-
tion. This is consistent with the ∆4y state illustrated in fig. 2.11. Consequently, Yonezawa
et. al. claims that CuxBi2Se3 is a fully-gapped, odd-parity superconductor as required for
topological superconductivity.

In summary, the nature of the superconducting state in CuxBi2Se3 is still controversial.
Early results suggested that it hosts a nodeless, odd-parity A1u state [4, 5, 6, 7] and sur-
face Majorana modes [8] - strong evidence for topological superconductivity. A later STM
study called both the pairing symmetry and the existence of surface states into question [9].
An increasing number of results from photoemission to point-contact spectroscopy brought
additional scrutiny to claims of topological superconductivity in CuxBi2Se3 [10, 11]. How-
ever, various experimental and theoretical studies attempted to reconcile these experiments
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and held to the claim of topological superconductivity in CuxBi2Se3 [111] or in the case of
a cylindrical Fermi surface, 2D topological superconductivity [11, 12, 114]. Recently, new
evidence points to a nematic Eu state in CuxBi2Se3 [12, 13, 14]. However, at the time of
this dissertation, there has yet to be a strong consensus in the condensed matter community
about these questions.

2.2 Sr-doped Bi2Se3

CuxBi2Se3 has been by far the most studied topological superconductor candidate among
the doped Bi2Se3 compounds. However, SrxBi2Se3 and more recently NbxBi2Se3 have
also emerged as promising candidates for topological superconductivity. Though this the-
sis only presents new contributions made in the pursuit of topological superconductivity
with the Cu-doped and Nb-doped systems, the literature on Sr-doped Bi2Se3 is of great
consequence to the search for topological superconductivity in doped Bi2Se3 and will be
discussed here.

In many ways, the story about SrxBi2Se3 has been very similar to that of CuxBi2Se3.
There were early papers noting that superconductivity can be induced in a topological in-
sulator, Bi2Se3, with metallic dopants (this case Sr rather than Cu) [15, 145]. This cre-
ated some initial interest in the prospect of dopant induced topological superconductiv-
ity. Later, ARPES found evidence of a surface state [16, 146], but the tunneling spec-
trum failed to resolve in-gap states [16, 17]. Lastly, like in CuxBi2Se3, in-plane rota-
tional symmetry breaking suggested evidence of topological nematic superconductivity in
SrxBi2Se3 [19, 147, 148]. Now I will discuss these results in a little more detail, with
emphasis on the similarities with and differences from the Cu-doped alternative.

The first report of superconductivity in Sr-doped Bi2Se3 was in 2015 by Lui et. al.
showing Tc = 2.57 K [15]. A few features immediately make SrxBi2Se3 favorably stand
out over CuxBi2Se3. First, while CuxBi2Se3 only achieved a maximum superconducting
fraction of 56% [80] and more often far lower [3], SrxBi2Se3 has a superconducting frac-
tion of over 90% [15]. Second, SrxBi2Se3 is robust to air. Lui et. al. showed that the
superconducting volume fraction in SrxBi2Se3 was unchanged after 4 hours exposure to
air. It is commonly known that superconductivity in CuxBi2Se3 is easily damaged over
time and especially after exposure to air. This makes SrxBi2Se3 easier to work with and
more promising for potential future applications.

Lui et. al. measured quantum oscillations in the magnetoresistance of SrxBi2Se3 (the
SdH effect). Fig. 2.14 (a) and (c) show the SdH oscillations in the resistance and hall
channels respectively. Lui et. al. indexes the Landau levels and plots them against 1/B
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in fig. 2.14 (b) and (d). The fitting for the Landau level indices gives an intercept, γ,
in infinite field limit (1/B = 0). γ = -1/2 is indicative of a π Berry phase revealing the
presence of Dirac electrons. This method has been used to identify non-trivial topology in
graphene [34, 149] and topological Kondo insulator, SmB6 [150]. As shown in fig. 2.14,
in the infinite field limit, the Landau level plot gives an intercept near γ = -1/2. This is
evidence of Dirac electrons and possibly non-trivial topology in SrxBi2Se3.

Figure 2.14: SdH oscillations in SrxBi2Se3 taken from ref [15]. (a) Quantum oscillations
in magnetoresistance. (b) Landau level index plot of oscillations in magnetoresistance. (c)
Quantum oscillations in the Hall signal. (d) Landau level index plot of oscillations in the
Hall signal. High field intercepts of γ = -0.39 for magnetoresistance and γ = -0.48 for Hall
are near the half-integer Berry phase.

A report by Shruti et. al. provides a conglomeration of transport, Hall, magnetization,
XRD, and thermopower data on SrxBi2Se3 [145]. They measure numerous properties such
as the effective mass, carrier density, coherence length, upper and lower critical field, etc.
Their most notable results are that SrxBi2Se3 is superconducting with Sr levels between
0.1 < x < 0.2, with optimal doping at x = 0.1. Though other reports shows supercon-
ductivity with samples with Sr concentration x < 0.1 [15, 16]. Shruti et. al. also find that
the carrier concentration (n = 1.85 × 1019cm−3, an order of magnitude smaller than in
CuxBi2Se3 [3]) is very low for a superconductor given the Tc and suggest that this could
indicate an unconventional superconducting order. Furthermore, they find that the super-
conductivity occurs in the clean limit with an estimated mean free path (assuming a spheri-
cal Fermi surface) of 49.4 nm, which is greater than their calculated coherence length, ξ, of
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15.3 nm. Despite this, unlike in CuxBi2Se3, they show that the upper critical field is Pauli
limited in SrxBi2Se3. This article also briefly discusses the in and out of plane anisotropy of
SrxBi2Se3, but the authors later produced another article discussing this particular feature
in greater detail, as well as the details of their growth parameters [151].

Figure 2.15: ARPES data for SrxBi2Se3 for different incident photon energies taken from
ref [16]. In panel (a) the surface state (SS) and conduction band (CB) are labeled.

ARPES studies by Han et. al. [16] and Neupane et. al. [146] both show the coexistence
of a Dirac surface state with the bulk conduction band just as in CuxBi2Se3 [4]. Fig. 2.15
shows the ARPES data for SrxBi2Se3 for different incident photon energies. As seen in
panel (a), the surface state (labeled SS) is seen along with the bulk conduction band (labeled
CB). The Dirac point is also easily recognizable and is comparable to that of CuxBi2Se3

(see fig. 2.2) [4].
From the ARPES data, Han et. al. calculates m/µ, the ratio of the Dirac rest mass and

the chemical potential, to be 0.44 [16]. This ratio is a parameter in the phase boundary
between the topologically non-trivial, ∆2, and topologically trivial, ∆1, phases shown in
fig. 2.3 [5]. For CuxBi2Se3, Wray et. al. makes a similar argument that the low value of
m/µ (1/3 in the case of CuxBi2Se3) is suggestive of an odd-parity, topologically non-trivial
phase [4]. However, it is hard to say whether this phase diagram between the ∆1 and ∆2

phases is relevant since there is increasing evidence that the ∆4 phase (see table 2.1) is
more likely than the ∆2 phase for topological superconductivity in doped Bi2Se3.
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Just as in CuxBi2Se3, STM measurements on SrxBi2Se3 do not show any in-gap states
arising from surface Majorana excitations. [16, 17]. Fig. 2.16 shows the tunneling spectrum
of SrxBi2Se3 taken from STM. Also as in CuxBi2Se3 [9], the tunneling spectrum is well fit
by an s-wave model.

Figure 2.16: STM data for SrxBi2Se3 taken from ref [17]. There are no in-gap states, and
the tunneling spectrum is well fit by an s-wave model.

From the fitting of the data in fig. 2.16, Du et. al. concludes that there are two bands
that contribute to Cooper pairing in SrxBi2Se3 [17]. Due to the coexistence of a surface
Dirac band and bulk conduction band from ARPES [16, 146], Du et. al. argues that Dirac
electrons from the surface are driven into Cooper pairs. Furthermore, Du et. al. reports
the Scanning Tunneling Spectroscopy (STS) spectrum in magnetic field. They were able
to resolve the Landau levels due to surface excitations. They find that the magnitude of the
STS signal fluctuations due to Landau quantization within the gap shrinks with magnetic
field. Since STS is sensitive to surface excitations, they argue that the amplitude of these
fluctuations is related to the population of surface Dirac electrons, and the reduction of
the fluctuation amplitude in the gap with increasing magnetic field is due to the breaking
of Cooper pairs from the surface state. This unique argument has not been proposed in
CuxBi2Se3. Du et. al. claim that the behavior of Cooper pairs made of Dirac surface
electrons could form a 2D topological superconductor.

Pressure studies of SrxBi2Se3 by Zhou et. al. [18] show interesting features in contrast
to CuxBi2Se3 [7]. Fig. 2.17 shows the resistance of SrxBi2Se3 as a function of temperature
for different pressures up to 80 GPa. The first notable difference is that superconductivity
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Figure 2.17: Temperature dependence of resistance at different pressures up to 80 GPa in
SrxBi2Se3 taken from ref [18]. (a) Low pressure region. (b) High pressure region. (c) Data
from (b) in narrow temperature range. (d) Extension of data to higher pressures up to 80
GPa.

is killed much faster in SrxBi2Se3 (∼1.1 GPa [18]) compared to CuxBi2Se3 (6.3 GPa [7]).
Another pressure study shows a superconducting transition above 1.1 GPa by measuring
the temperature dependence of resistance down to 300 mK rather than the minimum tem-
perature in Zhou et. al. of 2 K [147]. They estimate that the critical pressure is ∼3.5 GPa.
Either way, the critical pressure in SrxBi2Se3 is much lower than in CuxBi2Se3, which is
likely due to the lower carrier concentration.

A second, more interesting difference is that superconductivity reemerges at pressure
over 6 GPa as seen in fig. 2.17(b) and (c). This feature has not been reported in CuxBi2Se3.
In fig. 2.17(c), it can be seen that the transition temperature in the reemergent supercon-
ductive phase increases to 8.3 K over 14 GPa and persists up to the highest measured
pressure of 80 GPa. This enhanced superconductivity under pressure has also been ob-
served in iron chalcogenide superconductors such as Tl0.6Rb0.4Fe1.67Se2, K0.8Fe1.7Se2,
and K0.8Fe1.78Se2 [152]. Zhou et. al. argues from XRD data that the emergence of
superconductivity arises from a pressure-induced structural phase transition. A similar
structural phase transition and emergent superconductivity has been observed in undoped
Bi2Se3 [153, 70], though the behavior of Tc as a function of pressure is different from
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SrxBi2Se3.

Figure 2.18: (a) Temperature dependence of resistance for SrxBi2Se3 in the reemer-
gent phase (19.5 GPa) in different magnetic fields taken from ref. [18]. (b) Fitting of
h∗ = (Bc2/Tc)/|dBc2/dT |Tc vs T/Tc for an s-wave and p-wave model. Data suggests
unconventional superconductivity in SrxBi2Se3.

Similar to Bay et. al., Zhou et. al. plots the relationship of h∗ = (Bc2/Tc)/|dBc2/dT |Tc
against T/Tc for the reemergent superconducting phase. They then fit it with an s-wave
and a p-wave model (fig. 2.18). The corresponding plot for CuxBi2Se3 is shown in fig.
2.5. As seen in fig. 2.18(b), the data follows the p-wave model suggesting unconventional
superconductivity in the reemergent phase of SrxBi2Se3. The same plot for the low pressure
superconducting phase can be found in ref. [147], which also shows good agreement with
the p-wave model. Pressure-induced superconductivity with a Tc enhancement is very
interesting in its own right, but the implications of unconventional superconductivity make
this result relevant to potential topological superconductivity in SrxBi2Se3.

However, a recent contradictory report by Manikandan et. al. [154] suggest that
SrxBi2Se3 is a conventional superconductor. Like Zhou et. al., they perform electrical
transport under pressure. But in contrast, they do not see the reemergence of superconduc-
tivity up to 8 GPa arguing that the result in Zhou et. al. is simply due to the structural
transition of Bi2Se3 and is unrelated to Sr dopants. However, it is unclear why they do not
also see the reemergence of superconductivity due to structural transition or why the be-
havior of Tc as a function of pressure is different between SrxBi2Se3 [18] and Bi2Se3 [70].
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Manikandan et. al. further argue that the suppression of Tc as a function of pressure
in SrxBi2Se3 is consistent with the model for conventional superconductors. The debate
about the interpretation of the pressure dependent superconductivity in SrxBi2Se3 is very
new at the time of this dissertation and is thus unresolved.

Another point of disagreement in the SrxBi2Se3 community concerns the location of
the Sr dopants. In CuxBi2Se3, the consensus is that superconductivity occurs when Cu-
dopants are intercalated in the van der Waals gap between quintuple Bi2Se3 layers. It has
been clearly seen that when the Cu dopants substitute Bi sites, they act as an acceptor rather
than a donor and there is no superconductivity [3, 78].

In agreement with CuxBi2Se3, Liu et. al. [15] and Shanti et. al. [145] argue that the
Sr dopants intercalate in the van der Waals gap in superconducting SrxBi2Se3. Liu et.
al. measures the expansion of the c-axis lattice parameter by XRD and argue that it is
evidence of Sr sitting in the van der Waals gap [15]. Shanti et. al. perform XRD and TEM
on SrxBi2Se3. In agreement with Liu et. al. they claim that Sr dopants sit in the van der
Waals gap due to the size of the van der Waals gap [145].

Data from STM studies are a bit more contradictory. Han et. al. does not observe any Sr
atoms by STM in the van der Waals gap where SrxBi2Se3 cleaves [16]. They find that the
cleaved surface is much cleaner than CuxBi2Se3 and appears much like undoped Bi2Se3.
Due to the absence of Sr atoms on the cleaved surface, they argue that most of the Sr atoms
are intercalated within the quintuple layer rather than between quintuple layers. In contrast
to this result, Du et. al. measures clumps of Sr atoms in the van der Waals gap by STM, and
they find that the Sr clusters can be moved around by the STM tip [17]. Furthermore, Du
et. al. finds regions where there is Sr substitution; however, there is not a superconducting
gap in these regions as seen by STS.

Rotational symmetry breaking in SrxBi2Se3. As discussed in section 2.1.3, evidence of
odd-parity, Eu superconducting pairing in CuxBi2Se3 was discovered with the observation
of basal plane rotational symmetry breaking in the knight shift [14] and heat capacity [13].
Similarly, in-plane rotational symmetry breaking has been observed in the resistivity and
upper critical field, Hc2, in SrxBi2Se3 [19].

Fig. 2.19 shows the magnetoresistance of SrxBi2Se3 as a function of angle, θ, in a polar
plot for different temperatures between 2 K and 3 K. θ is defined to be the angle between
the mirror plane axis (called a∗ in Pan et. al. [19] and ŷ in fig. 2.10) and an in-plane external
magnetic field of 0.4 T. A diagram defining a and a∗ is in the inset of fig. 2.20(b).

In the superconducting state of SrxBi2Se3, there is a clear two-fold anisotropy. For
example, in the data at 2.2 K (in pink), the Sr0.1Bi2Se3 crystal is superconducting with the
magnetic field pointed normal to the mirror plane (θ = 90◦), but it is in the normal state with
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Figure 2.19: Polar plot of the basal plane magnetoresistance for different temperatures in
Sr0.1Bi2Se3 taken from ref. [19]. Strong in-plane anisotropy can be clearly seen below Tc,
but vanishes above Tc.

field in the mirror plane (θ = 0◦). At higher temperature above Tc, the in-plane anisotropy
of SrxBi2Se3 vanishes.

Fig. 2.20, shows the in-plane anisotropy of Hc2 as a function of θ for Sr0.1Bi2Se3 (a)
and Sr0.15Bi2Se3 (b). As can be seen, Hc2 is enhanced normal to the mirror plane (labeled a
in fig. 2.20 and x̂ in fig. 2.10) thus breaking the rotational symmetry. Using the Ginzburg-
Landau relations Ba

c2 = Φ0/(2πξa∗ξc), Ba∗
c2 = Φ0/(2πξaξc), and Bc

c2 = Φ0/(2πξa∗ξa), Pan
et. al. calculates the coherence lengths in various crystal directions to be ξa = 19.6 nm, ξa∗

= 7.6 nm, and ξc = 5.4 nm. Naively, since the coherence length is inversely proportional
to the gap size by ξ0 = ~vF

π∆(0)
, the superconducting gap in-plane should have a minimum

in the a direction. This is consistent with the ∆4y order parameter from table 2.1, which
was proposed by Fu to be a candidate order parameter for topological superconductivity
(discussed in detail in section 2.1.3) [12]. However, a detailed theoretical study of the
relationship between the superconducting gap and the coherence length for a non-BCS
superconductor with basal plane anisotropy is needed.

A later paper from the same group shows that the rational symmetry breaking of the up-
per critical field in SrxBi2Se3 persists and is enhanced under pressure up to 2.2 GPa [147].
A more recent report by Du et. al. shows that the nematic axis is sample dependent, some-
times falling on the mirror plane and sometimes normal to the mirror plane [148]. This
result is intriguing since a nodeless, potentially-topological ∆4y order parameter is realized
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Figure 2.20: Basal plane anisotropy of upper critical field in Sr0.1Bi2Se3 (a) and
Sr0.15Bi2Se3 (b) taken from ref. [19]. Inset of panel (b) shows the definition of a and
a∗ axes.

when the nematic director falls on the mirror plane. However, when the nematic director
falls normal to the mirror plane, the order parameter is ∆4x and the superconducting gap
develops point nodes on the equator as seen in fig. 2.11.

Du et. al. fails to comment on the sharp contrast between the ∆4x and ∆4y order
parameters that seem to be realized in different SrxBi2Se3 samples. In particular, they don’t
comment on what could be the difference between the samples to realize these different
superconducting phases.

If their result is true, this has potentially large impacts on the search for topological
superconductivity. Since the ∆4x order parameter does not realize topological supercon-
ductivity and ∆4y is a candidate order parameter for topological superconductivity, study-
ing the difference between these two samples by other means could be quite illuminat-
ing. For example, if point-contact spectroscopy measured in-gap states as was reported in
CuxBi2Se3 [8] for the ∆4y sample and not the ∆4x sample, this would prove to be strong
evidence of Majorana surface states in the ∆4y SrxBi2Se3 and provide strong experimental
confirmation of Fu’s theory [12].

One shortcoming of the observation of rotational symmetry breaking in SrxBi2Se3 as
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opposed to CuxBi2Se3 is that it was done by electrical transport. In transport studies, a
current must be applied which inherently breaks the rotational symmetry. Pan et. al. argues
that their observed in-plane anisotropy is not due to the current direction by performing the
experiment with the current both along the a axis and c axis. Du et. al. tries to avoid this
problem by using a Corbino geometry that is described in other works [155]. However,
these methods are not as robust as the purely thermodynamic measurements used with
CuxBi2Se3 that don’t introduce any external symmetry breaking [13, 14].

2.3 Nb-doped Bi2Se3

From all the doped Bi2Se3 compounds, NbxBi2Se3 is the newest and least investigated. At
the time of this dissertation, there are only three peer-reviewed articles on NbxBi2Se3 [21,
41, 42], two of which are from the University of Michigan [41, 42] and will be dis-
cussed in chapter 5. However, there are various papers on arXiv [20, 156, 157], and
NbxBi2Se3, though very young, is shaping up to be an interesting system that poten-
tially hosts topological superconductivity [20, 21, 42, 156, 157], nematic superconduc-
tivity [42, 156, 157], coexistence of superconductivity and ferromagnetism [20], chiral
superconductivity [156, 157], and/or topological Weyl superconductivity [156, 157].

Figure 2.21: Comparison of ARPES data between NbxBi2Se3 and undoped Bi2Se3 both
showing a Dirac point taken from ref. [20].

Superconductivity in NbxBi2Se3 was first observed by Qiu et. al. with Tc = 3.6 K [20].
Like in Bi2Se3, CuxBi2Se3 and SrxBi2Se3, ARPES revealed a Dirac band in the gap. Fig.
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2.21 shows the ARPES comparison between NbxBi2Se3 and undoped Bi2Se3. For compar-
ison, see fig. 2.2 for CuxBi2Se3 and fig. 2.15 for SrxBi2Se3.

Figure 2.22: Magnetization of NbxBi2Se3 taken from ref. [20]. Insets show the low-
field hysteresis behavior typical of type-II superconductors for H in the ab plane (upper
left) and H in the c plane (bottom right). A zero-field magnetic moment is seen inside the
superconducting hysteresis loop.

The most striking feature observed by Qiu et. al. is in the magnetization data. They
report broken time reversal symmetry in NbxBi2Se3 with the observation of a zero-field
magnetic moment within the superconducting state and abnormal hysteresis behavior. The
magnetization data for NbxBi2Se3 is show in fig. 2.22. The insets show the low field
magnetic hysteresis typical of type-II superconductors. Oddly, the magnetization curves
start from a non-zero magnetic moment in the superconducting state (labeled ZFM in
fig. 2.22). Qiu et. al. argue that this is evidence of the coexistence of ferromagnetism
and superconductivity in NbxBi2Se3 previously only seen in Uranium based superconduc-
tors [158, 159, 160]. In addition, Qiu et. al. note an unusual behavior of the central peak in
the hysteresis loop (labeled CP in fig. 2.22). They argue that the position of the central peak
is explained by contributing effects of superconducting vortex current and the Nb magnetic
moments similar to layered superconductor/ferromagnetic films [161].

This experimental observation of unusual magnetic order in the superconducting state
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has motivated new theories suggesting the possibility of Weyl physics in NbxBi2Se3 that
is very distinct from its Cu-doped and Sr-doped counterparts [156, 157]. These unusual
features and subsequent theories are in their very early stages and haven’t had the oppor-
tunity to face the scrutiny of the community. None of these works have been published in
peer reviewed journals due to how recently they’ve appeared on the scene, and there has
not been any further experimental works confirming or denying these results.

One argument put forth from Qiu et. al. is that Nb dopants do more that simply move
the chemical potential as is the case in Cu-doped Bi2Se3 [20]. This indeed has been con-
firmed by quantum oscillations, which, through the observation of multiple Fermi surfaces,
have clearly shown that NbxBi2Se3 has different Fermiology from other doped Bi2Se3 com-
pounds [41]. This quantum oscillation study is one of the key works of this thesis and will
be discussed in detail in chapter 5.

As in CuxBi2Se3 and SrxBi2Se3, basal plane rotational symmetry breaking has also
been observed in NbxBi2Se3 [42]. This time it has been observed in the superconducting
hysteresis loop as measured by torque magnetometry. This result as well is discussed in
chapter 5.

Lastly, a penetration depth study by Smylie et. al. observed nodes in the superconduct-
ing gap of NbxBi2Se3 [21]. Fig. 2.23 shows the penetration depth (translated into nm on
right axis) vs T/Tc for NbxBi2Se3. The data is fit by a quadratic curve, which is indicative
of point nodes in the superconducting gap. Smylie et. al. also plots exponential fits with
dashed lines according to a model for BCS full gapped superconductors. The data clearly
deviates from these fits suggesting a nodal gap.

A gap with point nodes in NbxBi2Se3 is very interesting in light of the history of the
search for topological superconductivity in doped Bi2Se3. As has been discussed in this
chapter, it has been thought that a topological superconductor requires a nodeless gap -
hence special attention has been given to the ∆2 and ∆4y order parameters from table 2.1.
From the penetration depth study [21] and the observation of basal plane rotational symme-
try breaking [42], Smylie et. al. argues that NbxBi2Se3 has the ∆4x order parameter with
point nodes on the equator. Early theoretical works would have thus eliminated NbxBi2Se3

as a candidate for topological superconductivity [5, 12]. However, there has more recently
been some discussion of nodal topological superconductivity in non-centrosymmetric and
Weyl superconductors [162], and as stated above, NbxBi2Se3 has been considered as a plat-
form for Weyl physics [156, 157]. In addition, other theoretical works have not precluded
nodal superconductors from the topological superconductor discussion [104, 126, 140]. A
theoretical work by Sato also briefly discusses the condition under which a nodal super-
conductor could be topological [38]. In light of the observation of nodes in NbxBi2Se3 and
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Figure 2.23: Penetration depth in NbxBi2Se3 vs T/Tc taken from ref. [21]. The quadratic
fit is characteristic of point nodes. Fully-gapped, exponential models are show for compar-
ison.

these theoretical developments, a more detailed theoretical analysis on the role of nodes in
topological superconductors would be an asset to the field.

2.4 Summary

In summary, there have been three material candidates for topological superconductivity
in the Bi2Se3 family - CuxBi2Se3, SrxBi2Se3, and NbxBi2Se3. The search for topological
superconductivity in these compounds began in 2010 and has yet to reach consensus in the
condensed matter community. There has been an increase in controversial evidence for and
against topological superconductivity in CuxBi2Se3; however, signatures of new physics
with implications for topological order in all three compounds has reinvigorated life into
this excited field. For example, basal plane rotational symmetry breaking in all three doped
Bi2Se3 compounds has been the subject of much discussion in the community [13, 19, 42].
Potential coexistence of magnetic order and superconductivity in NbxBi2Se3 has been a
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platform for several exotic new theories [156, 157]. For SrxBi2Se3 and NbxBi2Se3, there
is still a lot more to be done to solidify their position in this search. This dissertation is
written in midst of the development of this fascinating field. Knowledge of the Fermiology,
electronic and magnetic properties of doped Bi2Se3 is essential for clarifying the physics
in these exotic materials. Torque magnetometry, the primary tool in this work, is sensitive
to these properties. The results from my studies have been some of the staple results in
field [39, 41, 42], including the first published work on NbxBi2Se3 [41].
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CHAPTER 3

Experiments

3.1 Torque Magnetometry

3.1.1 Experimental Setup

The primary technique used in this study is torque magnetometry. Torque magnetometry is
a very versatile tool that is sensitive to magnetic properties. In particular, capacitive torque
magnetometry, which is described here, can be performed at ultra-low temperatures down
to 10 mK and high magnetic field up to 45 T. This makes it an ideal technique for studying
materials at low temperatures and high magnetic fields.

Generally, quantum oscillation experiments are used to reveal the electronic structure of
topological materials and topological material candidates. These experiments reveal many
important material properties such as the effective mass, mean free path, Fermi velocity,
etc. They also can be used to map the Fermi surface. In the search for topological super-
conductivity, the shape of the Fermi surface of a topological superconductor candidate is
crucial in order to identify whether it contains an odd number of TRI momentum - one of
the sufficient criteria for topological superconductivity described in section 1.2.1.

High magnetic fields are needed to resolve quantum oscillations. Also quantum oscil-
lations are strongly suppressed by temperature. Torque magnetometry, which can operate
under these harsh conditions, is an ideal technique to search for quantum oscillations. Fur-
thermore, the magnetic properties probed by torque magnetometry depend on the density
of states at the Fermi level - the origin of quantum oscillations as described in section 3.1.2.

Beyond quantum oscillations, torque magnetometry is sensitive to phase transitions,
magnetic anomalies, and symmetry breaking. Sections 5.4 and 5.5 discuss some of these
observations by torque magnetometry in NbxBi2Se3.

The principle of torque magnetometry is based on elementary electrodynamics. When
an external magnetic field is applied to a material, the induced magnetic moment in the
sample causes a torque given by
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τ = µ0m×H (3.1)

where µ0 is the vacuum permeability, m is the sample magnetic moment, and H is an
applied external magnetic field. Without losing any generality the coordinate system can
be defined such that the cross product simplifies to

τ = µ0VM×H

= µ0V (MzHx −MxHz)ŷ (3.2)

where V is the volume of the sample and M is the sample magnetization.

a-axis	

c-axis	
m	

H	

θ	

H	

θ	c	 a	
(a)	 (b)	 τ	

τ	

Figure 3.1: (a) Schematic of the magnetic torque of a sample with magnetic moment, m
and external field H. The angle θ is defined as the angle between the external magnetic
field and the crystal c-axis. (b) Magnetic torque on a sample mounted on a thin metallic
cantilever.

Fig. 3.1(a) is a schematic of the magnetic moment of the sample and the applied mag-
netic field. When the sample is glued to the end of a cantilever as shown if fig. 3.1(b),
H lies in the a-c plane and the torque is isolated to in or out of the page. For samples
with basal plane rotational symmetry breaking such as doped Bi2Se3, the sample can be
mounted on its side such that the applied magnetic field is always in the a-b plane rather
than the a-c plane as in section 5.5.

Given the configuration in fig. 3.1(b) it is convenient to define the z-axis to be along the
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crystalline c-axis, and to define the the x-axis to be along the crystalline a-axis. This defi-
nition would change depending on the crystalline direction that points along the cantilever
arm.

Using M = χH where χ is the magnetic susceptibility and the coordinate system
described above, equation 3.1 simplifies further to

τ = µ0V (χzHzHx − χxHxHz)ŷ

= µ0V∆χH2 sin θ cos θŷ (3.3)

Thus the magnetic torque on the sample is proportional to the magnetic susceptibility
anisotropy of the sample, the square of the external magnetic field, and factors related to
the angle, θ, between the external magnetic field and the crystal c-axis. The angle, θ, can
be changed by rotating the cantilever in field as shown in fig. 3.1(b). Typically, the whole
cantilever setup is mounted on a rotation stage via thermal joint compound or N-grease in
order to measure the angular dependence of the magnetic torque on the sample. The angle
is determined by a Hall sensor attached to the rotation stage, which has a strong angular
dependence. It is further confirmed by tracking the angular dependence ofC0, the zero-field
capacitance of the cantilever, which will change as a function of the angle as the weight of
the sample applies a torque on the cantilever. This is discussed in more detail below.

The samples are glued to the tip of a thin-film cantilever using GE varnish. The torque
is then measured by tracking the capacitance between the thin metallic cantilever and a
gold film underneath as shown in fig. 3.2(b). The capacitance is tracked with a digital
Andeen-Hagerling AH2700A 50 Hz - 20 kHz Ultra-Precision Capacitance Bridge. Gold
leads connected to the metallic cantilever and gold film connect to co-ax cables leading
to the digital capacitance bridge. Co-ax cables are necessary to provide good shielding to
prevent excess noise and stray capacitance.

The torque magnetometers shown in fig. 3.2 are handmade. The substrate and spacer
are made of quartz or sapphire. The gold film is evaporated on thin sapphire. The size of
the gap between the metallic cantilever and gold film is determined by the relative width
of the spacer and gold film. The spacers are typically 500 µm and the sapphire on which
the gold film is evaporated is 250 µm. This gives a gap of 250 µm. However, this can be
adjusted depending on the needs of the experiment.

A small gap leads to a larger zero-field capacitance, C0. For a larger C0 the change in
capacitance is easier to measure. The capacitance for the cantilever shown in fig. 3.2 is
given by
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Figure 3.2: (a) Top view of handmade torque magnetometer. w and L are the width and
the length of the cantilever arm respectively. (b) Side view of torque magnetometer with
various components labeled. t is the thickness of the thin metallic cantilever. The torque is
tracked by measuring the capacitance of the metallic cantilever and gold film. Gold leads
from these two components lead to the digital capacitance bridge.

C0 = ε0
A

d
(3.4)

where A is the area of the cantilever head and d is the gap between the metallic can-
tilever and gold film. When a torque is applied to the cantilever, the deflection can be seen
in the change in the capacitance caused by a shrinking or growing gap. This is given by

C = ε0
A

(d+ ∆d)
(3.5)

where ∆d is the change in the gap size caused by the magnetic torque on the cantilever.
For a small ∆d, this is approximately
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C = ε0
A

d
(1 +

∆d

d
)

= C0(1 +
∆d

d
) (3.6)

Using Hooke’s law, the torque is given by τ ∝ ∆φ. Where ∆φ is the angular displace-
ment of the cantilever, which is approximately equal to ∆d/L. ∆C = C0

∆d
d
∼ C0

L
d
∆φ.

Thus, for a small deflection of the cantilever, the magnetic torque is proportional to the
change in capacitance.

τ ∝ ∆C (3.7)

If ∆d is a large fraction of the gap, d, equation 3.6 is not valid. In this case, ∆d can be
expressed exactly as

∆
1

C
=

1

C
− 1

C0

=
(d+ ∆d)

ε0A
− d

ε0A

=
∆d

ε0A
(3.8)

Thus ∆d ∝ ∆ 1
C

. Since ∆d ∝ τ , τ ∝ ∆ 1
C

. The absolute value of the torque is rarely of
interest, and the physical information from quantum oscillations can be extracted directly
from the change in capacitance. In most circumstances (especially in this study), the small
angle approximation in equation 3.6 is sufficient. If the percent change of the gap size is
even larger (larger than 20% - 30%), Hooke’s law breaks down and the torque is no longer
proportional to the angular deflection of the cantilever. In this case, a stiffer cantilever is
needed as described below.

The digital capacitance bridge can measure a capacitance down to 10−6 pF. However,
the noise floor is typically on the order of 10−4 pF to 10−5 pF. Using equation 3.6 given a
typical C0 ∼ 0.3 pF - 1 pF, a 0.1% - 0.01% change in the gap can be detected. A smaller
signal can be detected by increasing C0 via shrinking the gap. However for a cantilever
with too small a gap, the magnetic torque can cause the metallic film to touch the gold film,
which will short the capacitor. So a small gap is advantageous for samples with a small
signal and a larger gap is needed for samples with a large signal. It should also be noted
that the weight of the sample can cause the cantilever to short if the gap is too small. So the
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cantilever must be custom made to fit the need of the sample weight and signal strength.
The thin metallic film is cut brass or beryllium copper. Occasionally, a softer cantilever

can be made from Kapton with a thin film of aluminum evaporated on the bottom for higher
sensitivity. The sensitivity of the cantilever is determined by its spring constant, which is
given by

k =
Ewt3

4L3
(3.9)

where E is the Young’s modulus of the metallic cantilever, w is the width of the can-
tilever arm, t is the thickness of the cantilever arm, and L is the length of the cantilever
arm [163]. These geometric parameters of the cantilever are labeled in fig. 3.2. By varying
E, w, t, and L, the cantilever can be made more sensitive to pick up small signals or more
stiff to handle larger, heavier samples. A stiffer cantilever is also often used in high field
measurements up to 45 T to prevent the cantilever from shorting.

Figure 3.3: Photograph of handmade torque magnetometer under magnification. The
sample mounted is NbxBi2Se3.

The typical cantilever thickness is either 25 µm, 75 µm, or 125 µm. For brass and
beryllium copper which have a higher Young’s modulus, 25 µm is most commonly used.
For Kapton which has a much lower Young’s modulus, 75 µm is standard. The length of
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the cantilever arm is typically kept to ∼ 3 mm, and the width, which is most often used to
fine tune the cantilever’s spring constant, is usually less than 1 mm. A photograph under
magnification of one of these handmade cantilevers with NbxBi2Se3 mounted on it is shown
in fig. 3.3.

3.1.2 The de Haas-van Alphen Effect

Though other experiments will be reported in brief, the focus of this thesis is the de Haas-
van Alphen effect (dHvA) in doped Bi2Se3. Torque magnetometry as described in the
previous section is sensitive to quantum oscillations in the magnetization of materials. Here
I describe the dHvA effect and the information that can be extracted from it.

Quantum oscillations are used to resolve Fermi surface geometry and to discover elec-
tronic properties of topological materials. Oscillations in magnetization are called the
dHvA effect and oscillations in magneto-transport are called the Shubnikov-de Haas ef-
fect (SdH). Both result from the quantization of the orbitals of charge carriers into Landau
levels resulting in the oscillation of the density of states at the chemical potential.

An applied magnetic field will quantize the motion of electrons or other charge carriers
in the plane normal to the applied field. These quantized orbitals are called Landau levels.
For a free electron, solving the Schrödinger equation in a uniform magnetic field gives the
following energy levels

Eν(kH) = (ν +
1

2
)~ωc +

~2k2
H

2m0

(3.10)

where ν is the quantized orbital of the electron, ωc is the cyclotron frequency for a free
electron, m0 is the free electron mass, and kH is the component of the electron momentum
parallel to the external field, H . For a free electron, the orbitals quantized by ν are the
Landau levels.

In general, for an electron or charge carrier in a solid, this quantization condition isn’t as
easily calculated. However, by utilizing the correspondence principle, the energy difference
between two Landau levels should be ~ωc, where ωc is the classical cyclotron frequency
given by

ωc =
eB

m∗
(3.11)

where m∗ is the cyclotron effective mass, which can be derived from the semiclassical
orbit of a carrier in a uniform magnetic field [22, 164] to be
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m∗(E, kz) =
~2

2π

∂A(E, kz)

∂E
. (3.12)

In this equation, A(E, kz) is the k-space area inclosed by an orbital of energy E. For a
free electron, m∗ = me and for a metal with an isotropic effective mass, m∗ is the effective
mass of the carriers. Though the following arguments are based on these equations derived
from the correspondence principle, which should only be valid for large quantum numbers,
it is found to be a good approximation in general [165].

The density of states from the Landau levels is a delta function at each Landau level
since all other energies are forbidden. However, the carrier momentum parallel to the
external magnetic field is not quantized. This contributes a one-dimensional density of
states, which is proportional to E−1/2, at each Landau level. Therefore, the density of
states for a metal in an external magnetic field looks like figure 3.4 where the energy of the
νth Landau level is given by Eν = ~ωc(ν + 1

2
) as is the case for a free-electron.

Figure 3.4: Density of states of a 3D metal in an applied magnetic field take from ref. [22].
The x-axis gives the energy of each Landau level where the energy of the νth Landau level
is given by Eν = ~ωc(ν + 1

2
).
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Since ωc ∼ B, the energy distance between the Landau levels increases as the mag-
netic field increases. Consequently, the peaks in the density of states (occurring at the
Landau levels) will sweep across the chemical potential, µ, as the magnetic field increases.
Thus the density of states at the chemical potential will oscillate as the chemical potential
corresponds with the peaks and troughs in the density of states. At low temperatures, the
chemical potential is roughly equal to the Fermi energy. Many physical phenomena depend
on the density of states at the Fermi energy, so this oscillatory behavior can be measured in
these physical properties such as resistance (SdH effect) or magnetization (dHvA effect).

Plotting the available energies in k-space will produce Landau tubes. Fig. 3.5 shows
how an external field quantizes k-space into tubes of allowed states. Fig. 3.5(a) shows
Landau tubes for a spherical Fermi surface and Fig. 3.5(b) for an ellipsoidal Fermi surface
with H pointing in an arbitrary direction. In both panels, the dashed line shows the Fermi
surface. Only states within this line are occupied at zero temperature.

Figure 3.5: Landau tubes in k-space take from ref. [23] with (a) a spherical Fermi surface
and (b) and ellipsoidal Fermi surface. The direction of the external field, H , is indicated.

Fig. 3.6 shows a Landau tube as it crosses a surface of constant energy, E. As the field,
B, increases, the tube expands outward. The number of orbits between the constant energy
surfacesE andE+dE is maximized when an extremal cross-section of the constant energy
surface, E, corresponds to the cross-section of the Landau tube perpendicular to B.

Thus, for the constant energy surface at E = EF (µ = EF at zero temperature), the
density of states at the Fermi level is maximized when the Landau tube crosses an extremal
cross-section of the Fermi surface. To determine when this happens, first we must find
the area of the cross-section of the Landau tube perpendicular to the magnetic field. This
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Figure 3.6: Landau tube crossing an constant energy surface in k-space, taken from
ref. [22]. (a) Landau tube with magnetic field pointed in the z-direction. (b) Orbits (i.e.
states) on the Landau tube lying between E and E + dE. (c) When the Landau tube’s
cross-section is equal to an extremal cross-section of the constant energy surface, E, the
number of states between E and E + dE is maximized.

quantity can be determined with the following argument. As stated above, the energy
between two successive energy levels is given by

E(ν + 1)− E(ν) = ∆E = ~ωc =
~eB
m∗

. (3.13)

Substituting m∗ from equation 3.12 and rearranging gives

∆E
∂A(E, kz)

∂E
=

2πeB

~
. (3.14)

Near EF , the energy difference between adjacent levels is much smaller than EF . Thus

∂A(E, kz)

∂E
∼ A(E(ν + 1), kz)− A(E(ν), kz)

E(ν + 1)− E(ν)
=

∆A(E, kz)

∆E
. (3.15)

Substituting 3.15 into 3.14 gives the difference in the k-space cross-sectional area of
two successive Landau levels:

∆A =
2πeB

~
. (3.16)

Thus, the k-space cross-sectional area of the νth Landau tube is ν∆A plus some con-
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stant, which can be expressed as

A = (ν + λ)∆A = (ν + λ)
2πeB

~
(3.17)

where λ is a constant. As argued above, the density of states at the Fermi level is
maximized when this k-space area is equal to an extrema of the Fermi surface. Thus, the
density of states at the Fermi level will oscillate with a period of

∆(
1

B
) =

2πe

~Aext
(3.18)

where Aext is an extremal Fermi surface cross-section. Thus it is clear that quantum
oscillations are periodic in inverse magnetic field. This is more often expressed by the
Onsager relation

Fs =
~

2πe
Aext (3.19)

where Fs is the frequency of the quantum oscillation measured in units of Telsa. By
measuring this frequency as a function of angle, the Fermi surface of a metal can be con-
structed. There are many resources with further details on the origins of quantum oscilla-
tions in metals, this brief discussion is based on arguments from ref. [22, 23, 164].

So far, I’ve focuses on how the Fermiology of a material can be extracted from the
quantum oscillation frequency. However, the quantum oscillation amplitude also reveals a
lot of useful properties of a metal such as the effective mass, Fermi velocity, and mean free
path.

In metals, the first harmonic of the oscillating magnetic torque is well described by the
Lifshitz-Kosevich formula [23]. The amplitude of the quantum oscillation is proportional
to the thermal damping factor RT and the Dingle damping factor RD, as follows,

RT =
αTm∗

B sinh(αTm∗/B)
, (3.20)

RD = exp(αTm∗/B), (3.21)

where m∗ is the effective mass, TD = ~/2πkBτs is the Dingle temperature, τs is the
scattering time, and α = 2π2kBme/e~ ∼ 14.69 T/K.

From eq. 3.20, it is seen that by fitting the temperature dependence of the quantum
oscillation amplitude, the effective mass of the carriers can be extracted. The amplitude
damping occurs from the broadening of the Fermi-Dirac distribution edge by kBT . Due
to this thermal broadening, at finite T , the density of states moves across a more gradual
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transition at the chemical potential. If ~ωc is smaller than kBT , successive peaks in the
density of states will pass through the transition around the chemical potential together and
quantum oscillations can’t be resolved. This is why quantum oscillation experiments must
be done at low temperatures. The temperature required to observe quantum oscillations
depends on the effective mass in eq. 3.20 - heavier masses require lower temperatures due
to larger amplitude damping.

The Dingle damping factor, eq. 3.21, is due to scattering in the metal. Therefore, the
Dingle temperature, TD, is a measure of the disorder in the system. Given the effective mass
extracted by the thermal damping factor, the scattering time can be extracted by fitting the
field dependence of the quantum oscillation amplitude to eq. 3.20.

Dingle damping occurs because scattering causes the Landau levels to broaden. Thus
the density of states from the orbital motion of the carriers is no longer a delta function, but
are broadened by ∼ ~/τs [22]. If the broadening is too great, successive Landau levels will
smear into each other and a higher magnetic field (thus a higher ~ωc) is needed to resolve
the Landau levels. As is the case with the thermal damping, the broadening of the density
of states peaks due to disorder will dampen the amplitude of the quantum oscillations at
low B.

The Fermi velocity, vF , can be determined by

vF =
~kF
m∗me

(3.22)

where m∗ is determined from the thermal damping of the quantum oscillations and kF
is determined from the Fermi surface cross-section - for example, for a spherical Fermi
surface, kF = (Aext/π)1/2 where Aext is calculated from eq. 3.19. The Fermi velocity is
the slope of the band structure at the chemical potential. Lastly, the mean free path is given
by

l = vF τs. (3.23)

3.2 Cryostats and Magnets

As discussed in the previous section, the broadening of the Landau levels due to disorder
and the smearing of the Fermi level due to thermal excitation dampen the amplitude of
quantum oscillations. Thus low temperatures and high magnetic fields are needed to resolve
Landau level quantization and quantum oscillations. In this section, I will briefly discuss
the experimental apparatuses used to achieve low temperatures and high magnetic fields.
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The data in this dissertation was largely acquired at the National High Magnetic Field
Laboratory in Tallahassee, FL. But some measurements were performed at the University
of Michigan in our Janis Variable Temperature cryostat with a 12 T magnet.

Liquid	Helium	Bath	

Cryostat	 Probe	

Magnet	

(a)	 (b)	 (c)	 (d)	

Figure 3.7: The three parts of the cryostat/magnet apparatus. (a) The helium bath and
magnet. For superconducting magnets, the magnet is submerged in the liquid helium-4
bath, whereas resistive magnets are not submerged in liquid. (b) The cryostat gets placed
inside the magnet bore and is submerged in the helium bath. There are three kinds of
cryostats used in this work - helium-4, helium-3, and dilution refrigerator. (c) The sample is
mounted on the probe, which is placed within the cryostat. (d) Schematic of the assembled
apparatus.

The basic principle behind the cooling and magnet apparatus is fairly simple and comes
in three parts. Fig. 3.7 shows these three parts. First is the magnet shown in panel (a). There
are three kinds of magnets used in this study - superconducting magnet, resistive magnet,
and hybrid magnet. These magnets will be discussed in greater detail in section 3.2.2.
Only the superconducting magnet is submerged in liquid helium as shown in fig. 3.7(a).
However, a liquid helium bath is still utilized in every apparatus in this study.

The second part of the apparatus is the cryostat shown in fig. 3.7(b). The cryostat
allows the sample temperature to be regulated, and for low temperatures to be achieved.
There are three kinds of cryostats used in this study: a helium-4 cryostat (base temperature
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1.5 K), helium-3 cryostat (base temperature of 300 mK), and dilution refrigerator (base
temperature of 10 mK). A detailed discussion of the cryostats, their operation and working
principles, is given in section 3.2.1.

The third part of the apparatus is the probe shown in fig. 3.7(c). The sample is mounted
on the probe, which has a rotation stage. Though different probes are used in this study,
they all have the same basic characteristics - a rotation stage, coax cables, twisted pairs,
and feedthroughs. There are some important differences between probes used in different
cryostats, which will be discussed in section 3.2.3. Fig. 3.7(d) shows a cross-section of the
assembled magnet-cryostat apparatus.

3.2.1 Cryogenics

Here I will discuss the three cryogenic apparatuses used in this study. Each of these have
their own advantages and setbacks. This is meant to serve as an overview of how these
systems work and how they are operated in general terms.

The first cryostat is the Variable Temperature Insert for a Janis cryogenic system, which
is a helium-4 cryostat. Though similar cryostats can be used at the facilities at the National
High Magnetic Field Lab, the only helium-4 cryostats used in this study were the in-house
Janis cryogenic system with a 12 T superconducting magnet at the University of Michigan
and the cryostats in the Quantum Design Physical Properties Measurement System (PPMS)
and Magnetic Properties Measurement System (MPMS). These systems were mostly used
for screening samples and taking preliminary data.

The principle behind the helium-4 cryostat is fairly simple in comparison to the other
types of cryostats. Fig. 3.8 shows the main elements of a helium-4 cryostat. This apparatus
is placed into a liquid helium bath as shown in fig. 3.7(d). Liquid helium-4 at atmospheric
pressure is 4.2 K. By submerging the cryostat into the liquid helium bath, it is cooled to
this temperature.

The space within the helium-4 cryostat is kept under vacuum. The vacuum flange
shown in fig. 3.8 is connected to a standard roughing pump. Near the bottom of the
cryostat, a pickup line can pull liquid helium out of the bath and deposit it in the low
pressure environment within the cryostat. The flow of the helium can be controlled by a
needle valve at the top of the cryostat. Liquid helium under low pressure within the cryostat
can bring the temperature down to 1.4 K - 1.7 K depending on the conditions and thermal
isolation.

The operation of the needle value is a delicate matter. If the flow is too high, the
sample space will be flooded with liquid helium and the low pressure required to reach
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Helium	pick-up	
pipe	

Needle	valve	
Vacuum	flange	

Probe	flange	

Figure 3.8: General schematic of a helium-4 cryostat.

base temperature will not be able to be maintained. On the other hand, if the needle valve
is not open enough, the helium in the cryostat will get pumped out and there won’t be
enough cooling power to maintain base temperature. In the Janis system at the University
of Michigan, the needle valve must be kept open wider (0.5 - 0.75 turns) while the cryostat
is cooling down and the heat load is high, but closed to about a quarter turn to achieve base
temperature.

This cryostat can be regulated even above room temperature by applying heat through
a resistor within the cryostat. This is why it is called a Variable Temperature Insert. The
temperature is measured by Cernox thermometers near the bottom of the cryostat and in the
probe. Temperature is controlled via PID using a LakeShore 340 temperature controller.

On the top of the cryostat is the probe flange. The sample and measurement apparatus
(i.e. torque magnetometer) is mounted to a probe and loaded through this flange. The top
of the probe is sealed to this flange via a standard rubber o-ring.

The procedure for loading a probe depends on the specifics of the cryostat. The cryostats
used at the National High Magnetic Field Lab use a load-lock technique to load the probe.
Since only helium-3 cryostats and dilution refrigeration was used at the National High
Magnetic Field Lab, discussion of this technique will be saved for those cryostats.

For the Variable Temperature Insert at the University of Michigan, the probe loading
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procedure is straightforward. Before opening the probe flange, a pressurized helium cylin-
der (with a pressure regulator) is attached to the vacuum flange. A positive pressure is
applied to the cryostat before the probe flange is opened. After, the probe flange is opened
and the probe is lowered into the cryostat. The positive pressure prevents air from contami-
nating the cryostat during loading of the probe. Once the probe is loaded, it is sealed to the
probe flange. Once the cryostat is sealed, the cryostat is purged and flooded with helium
gas several times to clear out any contaminates that may have entered during the loading of
the probe.

The second type of cryostat is a helium-3 cryostat. This utilizes an isotope of helium,
helium-3, rather than the naturally occurring helium-4. Helium-3 is rather expensive, so
great care is taken to prevent any loss of helium-3 to the air or the contamination of the
helium-3 by the air. The main advantage of the helium-3 cryostat is that the base tempera-
ture is 0.3 K. This is the simplest method to do experimental physics below 1 K.

Fig. 3.9 shows a schematic of a helium-3 cryostat. The three main elements of the
helium-3 cryostat are labeled: the sorb, 1 K pot, and helium-3 pot.

Probe	flange	

Helium	pick-up	
pipe	

Helium	pick-up	
pipe	

Sorb	

1	K	pot	

Helium-3	pot	

Figure 3.9: General schematic of a Helium-3 Cryostat.

The sorb contains charcoal, which is used to absorb the helium-3 gas. The temperature
of the charcoal is controlled by a resistive heater and a helium pick-up line. As in the
helium-4 cryostat, the helium pick-up line is directly submerged in a liquid helium-4 bath.
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Unlike the Variable Temperature Cryostat, this pick-up line does not deposit liquid helium-
4 into the main chamber of the cryostat. Rather, it is kept in an isolated chamber that is
thermally linked to the charcoal to prevent mixing of the helium-3 and helium-4 isotopes.

Below the sorb is the 1 K pot. This element of the helium-3 cryostat functions much like
the helium-4 cryostat. As before, this chamber is kept under low pressure by continually
pumping via a roughing pump not shown in fig. 3.9. A pick-up pipe to the liquid helium-4
bath deposits liquid helium-4 into the 1 K pot. A needle valve on top of the cryostat is used
to control the flow of the helium-4 to keep the 1 K pot near base temperature. The 1 K pot
serves to cool a region of the main cryostat chamber below the boiling point of helium-3
(3.2 K), so that helium-3 can condense. The condensed liquid helium-3 then falls down to
the helium-3 pot where a pool of liquid helium-3 accumulates.

To condense liquid helium-3, first the temperature of the sorb is raised to 45 K. This
releases all the gaseous helium-3 trapped in the charcoal. As the chamber fills with gaseous
helium-3, some starts to condense on the 1 K pot and drips down to the helium-3 pot until a
pool of liquid helium-3 accumulates in the helium-3 pot. Spending more time condensing
the helium-3 will increase the holding time of the base temperature with eventual dimin-
ishing returns. The holding time that can be achieved before recondensing depends on
the particular design of the cryostat and the heat load applied by the experiment. For the
helium-3 cryostats at the National High Magnetic Field Lab, one hour of condensing will
allow base temperature to be held for a couple days unless a significant heat load is applied
by the experiment.

After condensation, the sorb heater is turned off and the sorb is cooled back to 4.2 K
by the thermal link to the liquid helium-4. As the sorb is cooled, gaseous helium-3 gets
reabsorbed by the charcoal. This reduces the pressure on the pool of liquid helium-3 in
the helium-3 pot. As the pressure is reduced by the charcoal pump, the temperature of the
helium-3 pot falls. By this method, a base temperature of 0.3 K can be obtained.

The sorb is used to regulate the temperature between 0.3 K and∼2 K. By applying heat
to the sorb, warm gaseous helium-3 is released and warms up the helium-3 pot. There is a
one-to-one correspondence between the sorb temperature and the helium-3 pot temperature
in this temperature range after condensation of the liquid helium-3. To regulate the temper-
ature above 2 K, a resistive heater on the helium-3 pot and PID can be used just like in the
helium-4 cryostat. Going above 2 K will boil any liquid helium-3 in the helium-3 pot and
a recondensation is needed to recover base temperature. Unlike the helium-4 cryostat, the
helium-3 cryostat cannot be stabilized above about 40 K - 70 K depending on the cryostat.
So for high temperature measurement, the helium-4 cyostat is required.

Loading a probe into a chamber with gaseous helium-3 is tricky because any exposure
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to air could cause contamination to the helium-3 or a very expensive loss of helium-3 gas
to the air. For this reason, many commercial helium-3 cryostats have the helium-3 in a
closed system that is never opened during operation. These systems, rather than mounting
the experiment on a probe, have the experiment mounted on a copper cold finger that is
thermally linked to the helium-3 pot. This is called a ”dry system” because the sample and
experiment sit in vacuum and is cooled by the thermal link to the helium-3 pot.

Dry systems are generally bad for torque magnetometry since the sample sits on the
end of a thin cantilever. The small cross-section of the cantilever makes it difficult to
cool down the sample in a dry cryostat. Though it is not impossible to perform torque
magnetometry in a dry system, it takes a long time for the sample to thermalize, and unless
there is an independent thermometer on the sample, the exact temperature of the sample
is suspect. This is even a bigger problem in dilution refrigerators. Dry systems are ideal
for transport measurements where the sample can be directly thermalized by contact with
the cold finger. In thermal transport measurements, a dry system is required because if the
sample was sitting in cold gas, it would be impossible to establish a thermal gradient across
the sample.

The helium-3 cryostats at the National High Magnetic Field Lab are wet systems -
meaning that the experiment is put directly in cold helium-3 gas or submerged in liquid
helium-3. This is perfect for torque magnetometry since the whole experiment including
the sample can be quickly thermalized. However, great care needs to be taken while loading
the probe into a wet helium-3 cryostat to prevent loss or contamination of helium-3.

To prevent exposure of helium-3 to air, a lock-lock chamber is used to load a probe into
a wet helium-3 cryostat. An expanded view of the probe flange from fig. 3.9 is shown in
fig. 3.10 where the o-ring seal is the top of the helium-3 cryostat.

With the gate valve in fig. 3.10 closed, the load-lock chamber and probe can be mounted
and attached at the o-ring seal. Then, the sliding seal valve and the load-lock valve are
opened evacuating the load-lock chamber. Once the load-lock chamber is fully evacuated,
the load-lock valve is closed and the gate valve is opened. At this point the probe can be
lowered into the helium-3 cryostat. The sliding seal is kept under vacuum during loading
to prevent any contamination to the helium-3 while the probe is lowered. The sample stage
indicated in fig. 3.10 is at the bottom of the probe.

The gate valve separates the helium-3 chamber from the loading and unloading mecha-
nism. For this reason, it is paramount that the load-lock chamber is fully evacuated before
opening the gate valve to prevent contamination of the helium-3. Furthermore, the load-
lock valve must be closed before opening the gate valve or else helium-3 will be pumped
out of the cryostat into the air.
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Figure 3.10: Schematic of the load-lock mechanism for loading a probe into a wet helium-
3 cryostat or dilution refrigerator.

During loading and unloading, the sorb temperature is raised to 20 K to allow exchange
gas to cool down the probe. During unloading after the probe has been fully raised back
into the load-lock chamber, the sorb must fall below 5 K before closing the gate valve to
ensure all the helium-3 has returned to the sorb. Failure to do this would result in a loss of
helium-3 trapped in the load-lock chamber after it is detached from the cryostat.

The dilution refrigerator is the most complex of the three apparatuses. However, it is
the only continuous method to reach temperatures below the helium-3 cryostat, and can
maintain temperatures down to 10 mK. Fig. 3.11 is a block diagram of the main elements
of the dilution refrigerator.

In the dilution refrigerator, helium-3 is recycled in a closed loop. After being pre-
cooled to liquid helium-4 temperature (4.2 K), it passes into the helium-3 cooling line.
The helium-3 cooling line is thermally linked at various stages. The first, the 1 K pot,
is essentially a helium-4 refrigerator described above for the helium-3 cryostat and the
Variable Temperature Insert. Here the helium-3 is cooled to 1 K and begins to condense.
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Figure 3.11: Block diagram of the dilution refrigerator. Helium-3 is initially cooled
through the helium-3 cooling line. It finally enters the mixing chamber where the dilution
of the helium-3 into superfluid helium-4 provides the cooling power of the refrigerator. The
helium 3 is then separated from the helium-4 in the still where it is recycled back into the
helium-3 cooling line.

Next it is forced through the main impedance, a region in the cooling line that resists the
flow of helium-3 thus raising the pressure above the vapor pressure for helium-3 at 1 K
guaranteeing that all the helium-3 is liquified.

After the main impedance, the helium-3 is further cooled to 500 mK - 700 mK from
a thermal link to the still, which will be described later in the helium-3 cycle. Next it
passes through the secondary impedance. This keeps the pressure high enough to prevent
the helium-3 from revaporizing. The helium is then further cooled in a series of heat ex-
changers that thermally link the incoming helium-3 with the outgoing helium-3/helium-4
mixture later in the cycle.

At the bottom and coldest section of the dilusion refrigerator, the helium-3 enters the
mixing chamber. In the mixing chamber, there are two helium phases separated by a phase
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boundary. The lighter, concentrated phase is pure helium-3. Underneath is the heavier
dilute phase consisting of superfluid helium-4 with a 6.6% helium-3 concentration mixed
in.

Fig. 3.12 is a phase diagram of helium-3/helium-4 mixture. Below 100 mK, the 100%
helium-3 rich phase and the 6.6% helium-3, 93.4% superfluid helium-4 mixed phase are
separated by a phase gap, which produces the sharp phase boundary in the mixing chamber.

Figure 3.12: Phase diagram of helium-3/helium-4 mixture taken from ref. [24].

The enthalpy of mixing as the helium-3 dilutes into the dilute phase region of the mixing
chamber provides the cooling power of the dilution refrigerator. This method can produce
a base temperature of ∼10 mK depending on the heat load and thermal isolation of the
mixing chamber.

The dilute phase is then pumped through the heat exchangers to precool the helium-3
in the cooling line. It is then deposited into the still. In the still, the helium-3 is removed
from the dilute phase since the vapor pressure of helium-3 is lower than helium-4 at 700
mK. The gaseous helium-3 is then pumped out of the still and recycled back to through the
helium-3 cycle.

The base temperature of a dilusion refrigerator is very sensitive to the thermal isola-
tion. Heat shielding and vacuum layers are often used to prevent any excess heat load from
reaching the mixing chamber. References [24, 166] provide more detail about the princi-
ples behind dilusion refrigeration. In the wet dilusion refrigerators at the National High
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Magnetic Field Lab, the probe is deposited directly into the mixing chamber utilizing the
load lock technique described for a helium-3 cryostat. However, most commercial dilution
refrigerators are dry systems where the sample is cooled on a cold finger that is thermally
linked to the mixing chamber.

Cernox thermometers are useful from 0.1 K up to room temperature, but are most sen-
sitive above 1 K. However, they cannot be used to measure temperature at dilution refrig-
erator temperatures. Therefore, RuOx thermometers are used which are sensitive down to
10 mK. Since RuOx thermometers aren’t very accurate above 1 K, the mixing chamber
and probe usually have both a RuOx and Cernox thermometer, so that the temperature can
be tracked while the system is cooling down. In addition, Cernox and sometimes RuOx
thermometers also track the temperature on the 1 K pot and still. The probe and still both
have resistive heaters with a PID to regulate temperature. All the thermometry is controlled
by Lakeshore temperature controllers. Models 336, 340, and 350 can be used.

3.2.2 Magnets

There are three classes of magnets used in this thesis - superconducting magnets, resistive
magnets, and a hybrid magnet. The superconducting magnets are all very similar in princi-
ple. They are made by winding superconducting Nb3Sn or NbTi coils into a solenoid. The
superconducting magnet is placed directly into the helium-4 bath so that it can be cooled
below its critical temperature. A power supply is then used to place a voltage across the
superconducting coil producing a magnetic field.

The maximum magnetic field obtainable by a superconducting magnet is limited in
theory by the upper critical field of the superconducting material where the coil ceases
to superconduct. However, practically it is limited by the critical current density of the
superconducting wire. Currently, no superconducting magnet can support a magnetic field
above about 27 T due to the limiting factor of the critical current. But the National High
Magnetic Field Lab is in process of building a 32 T superconducting magnet.

One advantage of superconducting magnets is that they can be run in persistent mode
where the supercurrent continually flows through the magnet without any applied volt-
age. This allows for a high magnetic field to continually be applied without expensive
power consumption. In normal operation, a small segment of the superconducting magnet
is heated above Tc to allow a voltage to be applied. The persistence heater provides the heat
necessary to raise part of the magnet above Tc. Typically the persistence heater stays on
during the whole operation of the magnet. However, to put the magnet in persistent mode,
the persistence heater is turned off allowing for a continual flow of supercurrent. With the
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heater off, the power supply can also be turned off without changing the magnetic field.

Figure 3.13: Picture of the 12 T superconducting magnet in the Janis cryostat. (Left) Side
view of superconducting magnet. Cables to the power supply are marked. (Right) Top view
of superconducting magnet as it is lowered into the empty helium bath. The magnet bore
which fits the Variable Temperature Insert and probe is labeled.

The magnetic field in a superconducting magnet must be ramped slowly. At the Na-
tional High Magnetic Field Lab, the maximum sweep rate is 0.3 T/min. At the University
of Michigan it is even slower. A fast sweep rate can cause joule heating to occur in the
magnet. If the heating is too great, a small piece of the magnet becomes resistive and much
more heat creates a cascading effect pushing the whole magnet into the normal state. This
is called a quench and it can result in damage to magnet as well as a rapid boiling of the
liquid helium bath.

Five superconducting magnets were used in this study. For heat capacity and transport
measurements, a quantum design PPMS with a 14 T superconducting magnet was used. To
measure the superconducting volume fraction, a SQUID magnetometer in a quantum de-
sign MPMS with a 5 T superconducting magnet was employed. For torque magnetometry
and transport measurements, a 12 T magnet with a Janis Variable Temperature Insert was
used as well as the millikelvin lab at the National High Magnetic Field Lab which has two
18 T superconducting magnets. The first, SCM1, has a wet dilution refrigerator and the
second, SCM2, has a helium-3 cryostat.

Fig. 3.13 shows a picture of the 12 T superconducting magnet from the Janis system.
There are four power cables. Two are for the power supply of the main solenoid, and two
are for the magnet gradient that was not used in this study. The right panel shows the
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magnet from above as it is lowered into the empty helium bath. The magnet bore fits the
Variable Temperature Insert and probe. The max field occurs in the center of the bore.

Resis%ve	Magnet	

Load-lock	

Top	of	Probe	

Cryostat	
Cryostat	Pla<orm	

Chilled	Water	In	

Warm	Water	Out	

Figure 3.14: Schematic of a resistive magnet from the National High Magnetic Field Lab
with probe fully loaded.

To achieve higher magnetic fields, a resistive magnet is needed. The National High
Magnetic Field Lab has numerous resistive magnets consisting of stacks of metal sheets.
A large current is run through the sheets producing a magnetic field as high as 35 T. In this
study, two resistive magnets were used - the 31 T magnet in cell 9 and the 35 T magnet is
cell 12 of the National High Magnetic Field Lab. Fig. 3.14 shows a schematic of a resistive
magnet from cell 9 or 12 with a probe fully loaded. Note that the bottom of the probe sits
at the field center. The load-lock from fig. 3.10 sits on top of the cryostat.

To prevent the magnet from melting due to resistive heating, chilled water is constantly
run through holes in the metal sheets at 15,000 liters/min. The water is de-ionized and
must maintain a high level purity because conductive impurities can cause neighboring
metal sheets of the magnet to short. The path of the cooling water is indicated in fig. 3.14.

Other than a higher peak field, the magnetic field sweep rate is much faster than in a
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superconducting magnet - up to 7 T/min. However, it is expensive to sweep the resistive
magnets slowly, which would provide more data per Tesla, because of the enormous power
consumed by the magnet. In practice, the magnet sweep rate is typically kept between 2-3
T/min.

The strong electric currents and flow of the cooling water creates substantial mechanical
noise in resistive magnets. To combat this effect, the cryostat is mechanically isolated from
the magnet by hanging it from a concrete platform above the magnet that is mechanically
isolated from the magnet itself. This is depicted in fig. 3.14.

Resis%ve	Insert	Magnet	

Load-lock	

Top	of	Probe	

Cryostat	

Cryostat	Pla=orm	

Superconduc%ng	
Outsert	Magnet	

Chilled	Water	In	 Warm	Water	Out	

Helium	Bath	for	
Superconduc%ng	
Magnet	

Figure 3.15: Schematic of the hybrid magnet at the National High Magnetic Field Lab
with probe fully loaded.

Lastly, the 45 T hybrid magnet at the National High Magnetic Field lab was used.
This is the largest DC magnet in the world. Its high field is achieved by putting a 33.5 T
resistive magnet inside a large bore 11.5 T superconducting magnet. In normal operation,
the superconducting outsert is ramped up to full field and placed in persistent mode. The
magnetic field is then swept via the resistive insert from a combined field of 11.5 T (insert
off) to 45 T (insert at full field). Consequently, a fully field trace from 0 T to 45 T can
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only be taken at the beginning of the day during the outsert up ramp and the end of the day
during the outsert ramp down.

Fig. 3.15 shows a schematic of the hybrid magnet with a probe fully loaded. As with the
normal resistive magnet, the cryostat hangs from a platform to create mechanical isolation
from the magnet. The superconducting outsert magnet is submerged in a liquid helium bath
to keep it in the superconducting state. Unlike other superconducting magnets, the helium
bath is pumped liquid helium kept at 1.8 K. Unlike the solely resistive magnet, the path
of the chilled water goes through the bottom of the resistive insert magnet rather than the
top/bottom on the side.

Figure 3.16: Photograph taken from the hybrid platform at the National High Magnetic
Field Lab before the probe is loaded into the hybrid magnet. The sample stage at the bottom
of the probe sits just above the gate valve. When the probe is loaded, the top of the probe
will rest at the top of the load-lock chamber and the sample stage will be in the field center.
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Fig. 3.16 is a picture taken from the top of the hybrid platform (labeled cryostat plat-
form in fig. 3.15) before the probe is inserted. The top of the probe, load-lock chamber,
gate valve (see fig. 3.10), and the top of the cryostat are labeled. The hybrid magnet is
underneath the ground in this picture. When the probe is fully loaded, the top of the probe
will be at the top of the load-lock as indicated in the schematic in fig. 3.15. In the picture,
the sample stage at the end of the probe sits right above the gate valve. After the probe is
inserted into the hybrid magnet, the sample stage will be at the field center.

3.2.3 Probes

All the cryostats used in this study are top loading cryostats. This means that the experi-
mental apparatus is loaded into the cryostat via a probe from the top of the cryostat. The
size of the probe depends on the bore size of the magnet. The superconducting magnets
used in this study tend to have a larger bore and the sample stage is consequently bigger
allowing for more samples to be measured at once.

The experiment (such as a torque magnetometer) is mounted on a socket that is then
attached to the sample stage on the probe. Two kinds of sockets are used for different
probes. Larger probes, such as the ones that fit into the larger superconducting magnet
bores, have 16 pin sockets. The sockets plug in to a female socket receptacle. The pins
of the socket are then electrically connected to twisted pairs or coax cables that run up the
probe.

Figure 3.17: Picture of 16 pin socket used in many of the superconducting magnets. Left
panel shows a socket with two torque magnetometers before it is mounted on a probe. Right
panel shows a socket mounted on the probe used in SCM1.

Fig. 3.17 shows a picture of a 16 pin socket with two torque magnetometers mounted.
The left image is the socket under magnification before it is mounted on the probe. The
right picture is the socket after mounted on the probe used in SCM1 at the National High
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Magnetic Field Lab. The 16 pins line the sides of the socket. Coax cable extensions are
soldered onto four of the pins and gold leads connect the cantilevers to these pins. The Hall
sensor, which is used to determine the position of the socket with respect to the external
field is labeled. The Hall sensor is electrically connected to four pins corresponding to two
sets of twisted pairs at one end of the socket. SCM2 has a larger bore and can accommodate
two of these 16 pin sockets - large enough to measure two torque magnetometers and four
transport experiments at once as shown in fig. 3.18.

Figure 3.18: Sample stage for the probe used in SCM2 at the National High Magnetic
Field Lab. The left socket has two cantilevers for torque magnetometry and the right socket
has four transport measurements.

Smaller probes, like the one used for the hybrid magnet, use a round socket that fits
into a hole at the end of the probe. The socket remains in place mechanically because it fits
tightly into the hole. There are no pins to make electrical contacts, so extension wires run
from the socket further up the probe to make contact with coax cables or twisted pairs.

Fig. 3.19 shows a picture of a socket used for a resistive magnet probe with a torque
magnetometer attached. The left picture is the socket before being mounted on the probe.
Coax cables for the cantilever and twisted pairs for the Hall sensor are labeled. The right
panel shows the socket after being mounted on the probe. The socket fits tightly into the
hole in the probe. GE varnish is added for extra security. A thin piece of teflon is tied
around to prevent wires from protruding. The twisted pairs and coax cables connect with
the probe wires further up the probe.
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Figure 3.19: Picture of a socket used in resistive magnets. Left panel shows a socket with a
torque magnetometer before it is mounted on a probe. Right panel shows a socket mounted
on the probe used in the hybrid magnet.

Many physical phenomena depend on the angle between the crystal axis of the sample
and the external magnetic field. For example, to map the Fermi surface from quantum
oscillations, an angular dependence is needed. For this reason, it is important to be able
to change the angle of the sample with respect to the magnetic field in situ. To change
the angle of the sample, the probes used in this study all have a rotation stage where the
sample socket is attached. In this way, the sample stage can rotate and the crystal axis of
the sample changes with respect to the fixed magnetic field.

The mechanism for the sample rotation is the same in all the probes used. There is a
rotation stage that receives the socket as described above. The rotation stage shown in the
right panel of fig. 3.20 sits on a bearing. On the left side of the stage, there is a string
that connects to a fixed spring. The tension in the spring provides a leftward torque on the
rotation stage. On the right side of the rotation stage, a string is attached that extends all
the way to the top of the probe. The tension in the string provides a rightward torque on the
rotation stage. By giving slack to the string, the spring will contract rotating the rotation
stage counterclockwise as viewed from the right. By pulling on the string, the spring will
stretch and the rotation stage will rotate clockwise.

On the top of the probe, there is a rotation mechanism shown in the left panel of fig.
3.20. The string connecting to the rotation stage connects to this mechanism. The rotation
mechanism has a turn dial that will pull the string or give slack to the string. This will cause
the sample stage to rotate. Tension on the string will cause the sample stage to turn towards
the probe bottom and slack on the string will cause the sample stage to rotate towards the
probe head. The rotator position can be approximated by the value on the turn dial, which
can change the length of the string with precision down to 0.001”. The angular change
of the rotation stage by a change in the string length of ∆s depends on the radius of the
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Figure 3.20: Mechanism for rotating sample in magnetic field. Left panel shows a picture
of the rotator on the top of the probe. Right panel shows the rotation stage where the
experiment is mounted.

rotation stage, R, by Rθ = ∆s.
The exact position of the rotation stage cannot be reliably determined by the position

of the rotation dial on the top of the probe. This mechanism always has some backlash
when changing the rotation direction. Also, occasionally the rotation stage will get stuck
due to the cables used in the experiment. The coax extensions can pull on the rotation stage
if too short or push on the rotation stage if they run into the sides of the cryostat after the
probe is loaded. Therefore, a Hall sensor is typically employed which has a strong angular
dependence with the applied magnetic field to confirm the position of the rotation stage
with respect to the external field.

The probes are fitted with twisted pairs of phosphor-bronze wires connected to feedthroughs
at the top of the probe. Twisted pairs are used to minimize noise picked up by the changing
magnetic flux through the wire loops. Phosphor-bronze rather than copper is used because
of the comparatively low thermal conductivity. The heat load from the top of the probe
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through copper wires is enough to raise the temperature of the cryostat. These twisted pairs
are used to supply current and measure voltage for transport measurements, to measure the
Hall sensor, and to track the resistance of resistive thermometers. The probes also have thin
coax cables for measuring capacitance.

3.3 Other Characterization Methods

3.3.1 Electrical Transport

Electrical transport measurements, such as resistivity and Hall effect, are standard tech-
niques in experimental condensed matter physics. Resistivity measurements are sensitive
to phase transitions such as the superconducting transition and they can be used to measure
quantum oscillations - the SdH effect. The Hall effect can reveal whether the carriers in the
sample are electrons or holes as well as give a measure of the carrier density. Thus electrical
transport is an important probe into the properties of novel condensed matter systems.

A standard 4-wire resistivity measurement was performed on the doped Bi2Se3 samples.
Gold wires are attached to the sample using a conductive paste as illustrated in fig. 3.21.
Most often, silver paste is used to make contacts, but silver epoxy is sometimes also used
for more robust contacts. Contacts can be directly soldered to the sample to achieve a
lower contact resistance; however, this technique was not used in this study. An AC current
is applied on the outer terminals from a Keithley 6220 current source. The voltage is
measured on the inner terminals with a Stanford Research SR830 lock-in amplifier. The
current source and lock-in amplifier are connected with a trigger link.

The resistivity of the sample is given by

ρ =
V A

Il
(3.24)

Where V is the voltage measured across the sample, I is the current in the sample, A
is the cross-sectional area of the sample perpendicular to the current, and l is the distance
between the voltage leads. To extract the resistivity of the sample, the geometric factors
need to be carefully measured. Typically, these factors are measured using a reticle in a
high-magnification microscope. Often the sample shape is irregular rather than a nice bar
shown if fig. 3.21(b). When this is the case, the geometric factors are estimated by taking
a average of the geometric factors of the sample.

In the case of an AC measurement like the lock-in method, VRMS and IRMS are used to
determine the resistivity. The advantage of using a lock-in amplifier is that it only measures
the voltage at the excitation frequency. This isolates the signal of interest from much of the
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Figure 3.21: (a) Schematic of 4-wire resistivity measurement. A current is applied via the
outer leads and the resulting voltage is measured on the inner leads. Contacts between gold
wires and the sample are made with silver paste. (b) Resistivity and torque magnetometry
can be measured in tandem by attaching current and voltage leads to a sample mounted on
a cantilever.

other noise.
Though the AC lock-in method was most commonly used to measure transport in this

study, other techniques were also used. The Electrical Transport Option of a Quantum
Design PPMS was occasionally used to measure resistivity. This utilizes the same con-
figuration as fig. 3.21; however, the current source and voltmeter are integrated into the
PPMS.

The other method less often used is a DC resistance technique using the Delta Mode
option of the Keithley 6220 or 6221. In this method, the Keithley current source provides
a square wave that switches the current direction rather than using a sinusoidal waveform.
Thus in short time intervals, there is a DC current in the sample. The voltage is then
measured by a Keithley 2182A nano-voltmeter. The difference in the voltage for the top
and bottom of the square wave divided by 2 provides a measure of the voltage response to
the applied current. Averaging over several cycles can remove thermal or electrical noise
from the measurement with similar effect as the lock-in technique.

As depicted in fig. 3.21(b), resistivity and torque magnetometry can be measured in
tandem by attaching current and voltage leads to a sample mounted on a cantilever. In
addition to taking advantage of the limited magnet time available at the National High
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Magnetic Field Lab, by attaching wires to the sample, there is further insurance that if the
sample becomes detached from the cantilever, it won’t fall into the cryostat.

To measure the Hall effect, the contacts are arranged as shown in fig. 3.22. Though four
voltage leads are not required to measure the Hall effect, having four voltage leads serves a
couple purposes. First, by tracking both the longitudinal voltage, ∆V12 or ∆V34, in tandem
with the transverse voltage, ∆V13 or ∆V24, both the Hall resistance and the traditional
magnetoresistance can be measured. In addition, the small contacts used to measure the
Hall effect are very fragile. If one breaks during loading and cooling of the probe, the
measurement can commence with the other three available leads.

I+	 I-	V1	 V2	

V3	 V4	
Sample	

Au	Wires	

Silver	Paste	

He-	

Figure 3.22: Placement of leads to measure both magnetoresistance and the Hall effect.
The motion of a negative charge carrier in the presence of a magnetic field, H, is indicated.
The photograph shows a sample under magnification with the same contact configuration
as the schematic.

Generally, the voltage leads that are being measured should be connected to the same
twisted pair. So when measuring the Hall effect, V1 and V3 should be together on the same
twisted pair. If Hall effect and magnetoresistance are being measured together, one of the
voltage measurements will be connected to different twisted pairs introducing extra noise.
For example, if V1 and V3 share a twisted pair and V2 and V4 share a twisted pair as is ideal
for measuring the Hall effect, then the voltage giving the magnetoresistance, ∆V12, will be
measured from different twisted pairs.

The principle behind the Hall effect is very simple. When charge carriers are put in an
applied magnetic field, H , they experience the Lorentz force,
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F = q(E + µ0v ×H) (3.25)

where q is the charge of the carrier, E is the electric field, µ0 is the vacuum permeability,
v is the velocity of the carriers, and H is the external magnetic field.

In the presence of the magnetic field, charge carriers are forced to the sides of the
sample by the Lorentz force until the resultant transverse electric field balances out the
magnetic force. For an external field into the page as shown in fig. 3.22, negative charge
carriers, like electrons, will be forced to the top of the sample resulting in a positive ∆V13.
If the sample is dominated by positive charge carriers, such as holes, the positive charge
carriers will be forced to the top of the sample resulting in a negative ∆V13. Note that the
conventional current goes from I+ to I−, and qv points in the direction of the conventional
current regardless of the sign of the charge carrier since both q and v change sign according
the sign of the charge carrier. Thus the sign of the transverse voltage reveals the sign of the
charge carriers.

The Hall coefficient is given by

RH =
EH

jµ0H⊥
(3.26)

where EH is the transverse electric field created by the build up of charge carriers at the
sides of the sample, j is the current density, and H⊥ is the component of the magnetic field
perpendicular to the large crystal face. The current density can be given by the sign of the
charge carrier, q = ±e, the carrier density, n, and the velocity of the carriers, v, as j = qnv.
The Lorentz force becomes zero when EH = −v×µ0H (i.e. when the magnitude of EH is
given by |v|µ0H⊥). Substituting the steady state condition and the magnitude of the current
density into eq. 3.26 yields

RH =
1

qn
. (3.27)

Thus, the carrier density, n, can be extracted from the Hall coefficient. By substituting
EH = VH/d and j = I/A into eq. 3.26, the Hall coefficient can be written in terms of the
measured parameters:

RH =
VHA

Idµ0H⊥
=

VHt

Iµ0H⊥
(3.28)

where VH is the measured Hall voltage (such as ∆V13 in fig. 3.22), A is the cross-
sectional area of the sample perpendicular to the current, I is the applied current, and d
is the distance between voltage contacts in Hall configuration. Since the cross-sectional
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area is given by the thickness of the sample, t, times the width of the sample, which is
approximately equal to d, the second equality follows. Thus RH is proportional to the
slope of the VH vs H⊥ curve. So for samples with large carrier concentrations, the slope of
VH vs H⊥ is shallow and for samples with small carrier concentrations, the slope of VH vs
H⊥ is steep.

From eq. 3.28, it can be seen that the Hall voltage should be linear with magnetic field.
The VH vs H⊥ curve is antisymmetrized to extract the Hall signal from any magnetoresis-
tance being picked up by misalignment of the voltage leads. For samples with carriers from
multiple bands, the Hall voltage won’t be linear with magnetic field, thus a non-linear VH
vs H⊥ curve indicates a complicated electronic structure.

Since the Hall effect depends on the angle between the current and the applied magnetic
field, the Hall effect can be used to extract the angle between the applied magnetic field and
the rotation stage of the probe. This is the principle behind the Hall sensor described in the
previous section.

3.3.2 Heat Capacity

Heat capacity is a useful tool to determine the properties of superconductors including
their gap structure. Since superconducting gap structure has implications on topological
superconductivity as discussed in chapter 2, heat capacity is a useful tool for probing topo-
logical superconductor candidates. Section 5.1 discusses in greater detail the interpretation
of the heat capacity in Nb-doped Bi2Se3. Here I will briefly discuss how heat capacity is
measured.

Heat capacity was measured using a Quantum Design PPMS. The PPMS measures heat
capacity at constant pressure given by

Cp =
∂Q

∂T
|p. (3.29)

In basic terms, a known quantity of heat, Q, is applied to the sample and the response
of the temperature, T , is tracked. The experimental apparatus is shown in fig. 3.23. Fig.
3.23(a) shows the apparatus from the side. A platform is suspended by wires from the puck
frame, which is in thermal equilibrium with the cryostat. The cryostat is considered an
infinite thermal bath. The PPMS in this study has both a helium-3 and helium-4 option, so
heat capacity can be measured down to 300 mK. There are four wires holding the platform.
As can be seen from the top view in panel (b), two wires are connected to a heater and
two to a thermometer. The heater provides a known heat load to the platform and the
thermometer tracks the temperature. The whole setup is kept in vacuum so that the most
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significant source of thermal conduction is through the support wires.

(a)	Side	view	

(b)	Top	view	 (c)	

Sample	

Pla3orm	

Puck	

Sample	

Pla3orm	

Puck	

N-grease	

Heater	 Thermometer	

Heater	wires	

Thermometer	
wires	

Figure 3.23: (a) Side view of heat capacity apparatus. The sample is attached to a platform
using N-grease. The platform is suspended by support wires from the puck which acts as
a thermal bath. (b) Top view of the heat capacity apparatus. Two of the four support wires
provides current to a heater which supplies a known power load. The other two wires are
connected to a thermometer which tracks the temperature. (c) Photograph of Nb-doped
Bi2Se3 mounted on the heat capacity platform. A silver stage holds the platform in place
during mounting to prevent damage to the support wires.

The sample is mounted on the platform via N-grease. Before mounting the sample,
the heat capacity of the platform and grease are measured alone. Then when the heat
capacity is measured with the sample included, the heat capacity of the grease and platform
is subtracted away. If a temperature and magnetic field dependence of the heat capacity of
the sample are going to be measured, the temperature and field dependence of the grease
must be measured in the same range.

When mounting the sample or applying grease, a custom puck holder is used to prevent
damage to the four support wires. As seen in the picture in fig. 3.23(c), a silver stage holds
the platform in place to prevent stress on the wires. Below the platform, a small roughing
pump provides a low pressure to fix the platform in place.

When heat is applied to the platform, the flow of heat can be used to determine the
temperature response of the platform/sample by
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dQ

dt
= Cp

dT

dt
= −Kw[T (t)− T0] + P (t) (3.30)

where Cp is the heat capacity of the system consisting of the sample, platform and N-
grease, Kw is the thermal conductance of the support wires, T0 is the temperature of the
puck (temperature of the cryostat), and P (t) is the power as a function of time provided by
the heater, which is a step function given by P (t) = P0 when the heater is on and P (t) = 0

when the heater is off.
Solving 3.30 with the conditions that T (0) = T0 and T (t) is continuous at time, t0,

when the heater is turned off yields

T (t) =

{
T0 + P0

Kw
(1− e−t/τ ) t ≤ t0

T0 + P0

Kw
(1− e−t0/τ )e−(t−t0)/τ t ≥ t0

(3.31)

This solution contains a time constant τ = Cp/Kw, which can be extracted by fitting
the temperature data as a function of time. From the time constant, the heat capacity is
determined. The heat capacity of the sample is arrived after subtracting the heat capacity
of the platform and N-grease previously measured.

The PPMS also uses a more complicated model considering the heat flow between the
sample and platform in case the thermal link between the two is poor. Several heat capacity
measurements are done at each temperature and field and an average is taken. The PPMS
uses the model that gives the smallest variation between measurements taken at the same
temperature and field.

3.3.3 SQUID Magnetometry

The magnetic moment of a sample contains a lot of useful information. Most basically, with
magnetic field dependence, it can show whether a material is diamagnetic or paramagnetic.
For superconductors in particular, measuring the magnetic susceptibility as a function of
temperature can give the superconducting volume fraction - an important indicator of the
percent of the superconductor that is in the superconducting state. This is one indicator of
the quality of a superconductor. As discussed in chapter 2, finding a CuxBi2Se3 crystal with
a large superconducting fraction is difficult. Therefore, measuring the superconducting
volume fraction is an important way to screen samples for further studies. Furthermore, it
is an important quantity to report to verify the quality of samples reported on.

In this study a Quantum Design MPMS was used to screen and measure the magnetic
moment of doped Bi2Se3 crystals. The MPMS utilizes a SQUID magnetometer to deter-
mine the magnetic moment of the sample. Fig. 3.24 shows a schematic of the SQUID
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magnetometer. It is comprised of a single superconducting coil. As shown in the figure
starting at the bottom, it has a single counterclockwise loop followed by two clockwise
loops in the center and ends with a counterclockwise loop. The balance of the right-handed
and left-handed loops in the coil should cancel out any emf coming from non-local change
in magnetic flux.

Straw	

Sample	

Puck	

SQUID	

Probe	

Figure 3.24: Model of SQUID magnetometer. The magnetometer is made from a single
coil of superconducting wire. The loops are a balance of left-handed loops and right-handed
loops to remove the pick up of changing non-local magnetic fields. The sample is mounted
on a puck placed within a straw. The straw is attached to a rigid probe which is moved up
and down inside the SQUID. The local change in the magnetic flux through a coil due to
the motion of the sample induces a current in the SQUID from which the magnetization of
the sample can be extracted.

During measurement, the sample is moved up and down through the magnetic coil. The
changing magnetic flux coming from the dipole moment of the moving sample induces a
voltage in the superconducting coil. Since the coil is superconducting, the resulting current
doesn’t decay with time. The sign and magnitude of induced voltage in the coil depends on
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the magnetic moment of the sample and the handedness of the local coil where the sample is
passing through. As the sample moves through the coil, the voltage in the superconducting
coil as a function of the sample position can be used to extract the magnetic moment of the
sample.

To move the sample through the coil, the sample is mounted to a small plastic puck
with N-grease. The puck is then fit into a drinking straw as shown in fig. 3.24. The puck
is machined to fit tightly in the straw, but sometimes a small about of N-grease is used
to keep undersized pucks from sliding around. The bottom of the straw is covered with
a small piece of Kapton tape to prevent loss of the sample into the MPMS if the puck
gets displaced. The straw is then stuck to the end of a rigid probe and lowered into the
MPMS. Before lowering the probe, the straw and sample are closed in a small version
of a load-lock. The load-lock is flooded with helium and purged several times to prevent
contamination to the cryostat. Several holes are placed in the straw above and below the
sample puck to prevent the sample puck from dislodging when the pressure changes during
the flood/purge.

After the probe is lowered, the sample can be moved up and down from a stepper motor
that raises and lowers the probe. Before commencing the measurement, a series of short
measurements are taken to center the sample in the middle of the SQUID. There is a peak in
the voltage profile when the sample passes through the central turns in the coil. If this peak
is not in the center of the probe’s motion, then the sample will not pass through the entire
SQUID. The MPMS has a method for automatically or manually recentering the sample in
the SQUID. There is a limited range for which the probe position can be readjusted, so the
sample must be initially mounted at a given distance from the top of the straw according to
the specifications of the MPMS.

The MPMS used in this study is fitted with a helium-4 cryostat that can measure the
temperature dependence of the magnetization down to 1.8 K. It also has a 5 T supercon-
ducting magnet for measuring the field dependence. Before each measurement, the field
and temperature are stabilized at the desired value. Even though the coils are designed to
not pick up changing magnetic flux from non-local magnetic sources - like the magnet -
the coils can never be perfectly balanced. To counter this effect, the MPMS heats a portion
of the SQUID while the magnetic field is changing. In addition, occasionally a technique
called ”rocking the field” is applied where the magnetic field is swept up and down even-
tually settling on zero. This serves to remove any trapped supercurrent in the SQUID.

Sometimes, the presence of trapped magnetic flux cannot be fully removed from the
magnetometer. When measuring the magnetic susceptibility to determine the supercon-
ducting volume fraction, a small field (such as 5 Oe) is applied and a temperature depen-
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dence is taken. When the field is very small, the trapped flux in the SQUID can act as an-
other external magnetic field that is a significant fraction of the applied field. To eliminate
this effect, the measurement is repeated with the magnetic field in the opposite direction
(-5 Oe). This can be used to determine the true value of the magnetic susceptibility. For
example, the measured value of the magnetization at base temperature with field, Happ, in
the positive z-direction, M+, and with the field in the negative z-direction, M−, is given by

M+ = χ(Happ +H0)

M− = χ(−Happ +H0)
(3.32)

where χ is the magnetic susceptibility of the sample and H0 is the field from trapped
flux in the SQUID. The effect of trapped flux can be eliminated and the magnetic suscep-
tibility can be found to be

χ =
M+ −M−

2Happ

. (3.33)

The volume magnetic susceptibility can be found from the dimensions of the sample
and the magnetic susceptibility. This is an measurement of the superconducting volume
fraction of the sample.
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CHAPTER 4

de Haas-van Alphen Effect in Cu-doped Bi2Se3

CuxBi2Se3 has drawn much attention as the leading candidate to be the first topological
superconductor and the realization of coveted Majorana particles in a condensed matter
system. However, there has been increasing controversy about the nature of its supercon-
ducting phase. This study, based on my publication [39, 40], sheds light on ambiguity in
the normal-state electronic state by providing a complete look at the quantum oscillations
in magnetization in CuxBi2Se3 at high magnetic fields up to 31 T. This study focuses on
the angular dependence of the quantum oscillation pattern for samples with different car-
rier concentrations. As the magnetic field tilts from the crystalline c axis to the ab plane,
the change of the oscillation period follows the prediction of the ellipsoidal Fermi surface.
As the doping level changes, the 3D Fermi surface becomes quasi-cylindrical at high car-
rier density. Such a transition is potentially a Lifshitz transition of the electronic state in
CuxBi2Se3.

A comparison is made between the superconducting CuxBi2Se3 and its parent com-
pound, the topological insulator Bi2Se3. The doping of Cu in Bi2Se3 increases the carrier
density and the effective mass without increasing the scattering rate or decreasing the mean
free path. In addition, the Fermi velocity remains the same in Cu0.25Bi2Se3 as that in
Bi2Se3. These results imply that the insertion of Cu does not change the band structure and
that conduction electrons in CuxBi2Se3 sit in a linear Dirac-like band.

Topological superconductors are a novel phase of matter that has been theoretically
predicted but has yet to be experimentally verified. Among topological materials, topo-
logical superconductors are especially interesting because they are a platform to realize
Majorana particles, an elusive particle that is its own antiparticle. Furthermore, topological
superconductors have been proposed as a platform for topological quantum computation
[30, 57, 167]. The robustness of the topological surface states makes this avenue an attrac-
tive alternative to traditional methods for realizing quantum computation [56].

As discussed in chapter 1 section 1.2.1, sufficient criteria for topological supercon-
ductivity are a full superconducting gap in the bulk with odd-parity pairing, and a Fermi
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surface enclosing an odd number of time-reversal-invariant momenta in the Brillouin zone;
i.e., the Fermi surface must contain an odd number of high-symmetry points such as Γ, Z,
X , etc. It also has a topologically protected gapless surface state with Majorana fermions
[57]. CuxBi2Se3 has been proposed as a leading candidate for topological superconduc-
tivity [5] and has sparked a lot of interest. Experiments have shown that by intercalating
Cu between Se layers in the known topological insulator Bi2Se3 the compound becomes
superconducting at 3.8 K [3].

CuxBi2Se3 has been confirmed to be a bulk superconductor with a full pairing gap by
specific-heat measurement [6]. There are some reports of surface Andreev bound states
through the observation of a zero bias conductance peak [8], but other reports suggest that
the zero bias conductance peak can be removed with gating [10]. The zero bias conduc-
tance peak was also not observed in other works using scanning tunneling spectroscopy
[9]. ARPES measurements have argued against the topological superconducting mech-
anism in CuxBi2Se3 by reporting an even number of time-reversal-invariant momenta in
the Brillouin zone [11]. Both ARPES and quantum oscillation experiments show a Dirac
dispersion in CuxBi2Se3 - a characteristic feature of topological systems [4, 39]. The con-
tinued interest in CuxBi2Se3 and the increasing controversy over its exotic phase calls for
this thorough look at quantum oscillations in magnetization.

Single crystals of CuxBi2Se3 were grown by Yew San Hor at the Missouri Institute of
Science and Technology. Stoichiometric mixtures of high-purity elements Bi (99.999%),
Cu (99.99%), and Se (99.999%) were melted in a sealed evacuated quartz tube then slowly
cooled from 850◦C down to 620◦C at which point the crystal was quenched in cold water.
The nominal doping level was determined by the mole ratio of the reactants used in the
crystal growth. However, the samples were categorized by their measured carrier concen-
tration since the Cu concentration could not be directly measured. The samples used in the
study were cut out from larger boules. They are generally black with a typical size of about
5 mm x 2 mm x 0.5 mm.

Six samples are reported on in this study. The original paper only reported on a single
sample with a nominal doping of 0.25. That crystal is labeled Cu0.25Bi2Se3 [39]. Five other
crystals were measured in the second paper comparing samples different carrier concentra-
tions [40]. These samples are labeled sample 1-5, where sample 4 was broken into two
pieces - sample 4a and sample 4b. A single crystal Bi2Se3 was also measured.
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4.1 Superconductivity in Cu-doped Bi2Se3

To determine the superconducting properties of the CuxBi2Se3 crystals, the resistivity was
measured to verify a zero-resistance superconducting transition. Also, the volume magnetic
susceptibility was measured in a Quantum Design MPMS.

The resistance, R, of the Cu0.25Bi2Se3 sample from the first study was measured with
the four-wire method. R as a function of T is shown in fig. 4.1(a). As T decreases, a su-
perconducting phase transition is observed. R starts to fall at 3.3 K, then rapidly decreases
through T = 3 K, and becomes zero below T = 1.2 K.

Figure 4.1: (a) The temperature dependence of sample resistance R. Zero resistance is
observed below 1.2 K. (b) Volume magnetic susceptibility, χ, with external magnetic field
H = 2 G in the crystal ab plane. χ is measured under both the zero-field-cooled (ZFC)
and the field-cooled (FC) conditions. From the ZFC curve, the nominal superconducting
fraction is found to be around 35%.

Figure 4.1(b) shows the volume magnetic susceptibility χ =M/µ0H in the temperature
range 1.8 ≤ T ≤ 6 K. First the sample is cooled to 1.8 K without any external magnetic
field. An external magnetic field H = 2 G was applied and χ was measured while warming
up. This is the zero-field-cooled (ZFC) run shown in fig. 4.1(b). Afterwards, the sample
was cooled again under the 2 G magnetic field, while measuring χ. This is the field-cooled
(FC) sweep.

In both runs, rapid decrease of χ was observed at T = 3.5 K. At the lowest temperature,
T = 1.8 K, χ reaches a minimum of -0.35 in the zero-field-cooled run. This suggests a
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35% superconducting volume. This is not the highest superconducting volume observed
in CuxBi2Se3 [80]; however, it is typical for CuxBi2Se3 and is comparable to other reports
[6]. This relatively large superconducting fraction suggests that this Cu0.25Bi2Se3 sample
is indeed high quality single phased crystal. Moreover, the observation of zero resistance
implies that a large scale phase separation does not occur.

Fig. 4.2 shows the volume magnetic susceptibility of three of the other CuxBi2Se3 sam-
ples. Sample 4 shows a superconducting transition with a 16% superconducting volume.
Samples 3 and 5 don’t show a superconducting transition. The magnetic susceptibility
was measured two weeks after the high-field torque experiments. CuxBi2Se3 generally is
susceptible to degradation over time and exposure to air. There is even a possibility that
the samples could lose Cu over time and exposure. Therefore, the non-superconducting
samples may or may not have been superconducting when their quantum oscillations were
measured.
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Figure 4.2: Volume susceptibility measurements of 3 different samples. Sample 4 shows
a superconducting transition at 3 K and a 16% superconducting volume. Samples 3 and 5
do not show any superconducting property most likely due to sample quality degradation
over time.

From the Dingle temperature (see section 4.3.2), sample 4 turns out to have the highest
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level of disorder of any of the CuxBi2Se3 samples measured. However, it shows a super-
conducting transition whereas sample 5, which has twice the mean free path as sample 4,
does not. On the other hand, the Cu0.25Bi2Se3 sample from the original paper is super-
conducting but has the same mean free path as sample 5 [39, 40]. Therefore, it is not the
case that superconductivity only occurs in the extreme case of highly disordered samples.
Rather, the degradation from the two weeks between measuring the magnetic torque (from
which the mean free path is determined) and measuring the magnetic susceptibility makes it
impossible to draw conclusive comparisons between sample quality and superconductivity
in this study.

To further elucidate the relation between sample quality and superconductivity, as well
as search for basal plane rotational symmetry breaking (which wasn’t predicted until after
the publication of the second dHvA study on Cu0.25Bi2Se3 [40]), more high quality crystals
were screened. All of the samples from the earlier study had lost their superconducting
properties.

Fig. 4.3 shows the magnetic susceptibility taken when screening samples from a new
batch - designated sample 6 and 7. Sample 7 only had a 7% superconducting volume
fraction and sample 6 had less than a 1% superconducting volume fraction.

Figure 4.3: Volume susceptibility measurements while screening a new batch of
CuxBi2Se3 crystals. Neither of the new crystals showed larger than a 10% superconducting
volume.

This illustrates a common problem while working with CuxBi2Se3. First, it is difficult
to find high quality superconducting crystals. Second, when good crystals are found, they
must be measured quickly and great care is needed during storage to prevent loss of their
superconducting quality.
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4.2 Angular Dependance of Quantum Oscillations

Quantum oscillations are used to resolve Fermi surface geometry and to discover the elec-
tronic properties of topological materials. Oscillations in magnetization, the dHvA effect,
arise from the quantization of the Fermi surface into Landau levels. To measure quan-
tum oscillations in magnetization, M , I employed a highly sensitive torque magnetometry
method described in chapter 3 section 3.1.

The samples are glued to the head of a thin-film cantilever. To provide a balance be-
tween strength for heavier samples and sensitivity, both brass cantilevers and Kapton can-
tilevers with a metalized surface were used. The brass cantilevers are thinner, 0.001”, but
have a higher Youngs modulus, whereas the Kapton thin films are 0.003” thick but have
a lower Youngs modulus. The magnetic torque was tracked by measuring the capacitance
between the metal surface of the cantilever and a thin gold film underneath. An example of
oscillations in the torque is shown in fig. 4.4 with a schematic of the experimental setup in
the bottom left.

Figure 4.4: Quantum oscillations in Cu0.25Bi2Se3 observed by torque magnetometry. Mag-
netic torque τ is plotted as a function of 1/µ0H. The lower left panel shows the sketch of
the torque magnetometer, where the magnetic field is applied to the sample with a tilt an-
gle φ relative to the crystalline c axis. The fast Fourier transform (FFT) plot of the torque
signal is shown in the upper right panel. The FFT is taken after subtracting the polynomial
background in the raw torque signal.

As discussed in chapter 3 section 3.1.2, the magnetic oscillations are periodic in 1/µ0H ,
so fig. 4.4 shows the torque on the cantilever as a function of 1/µ0H to highlight the peri-
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odicity of the oscillations. This particular curve was taken at the National High Magnetic
Field Laboratory in the superconducting magnet in SCM2. This facility is fitted with a
helium-3 cryostat with a base temperature of 300 mK. This curve is taken at base tempera-
ture with the magnetic field at φ = 11◦ from the crystal c-axis.

In the upper right panel of fig. 4.4, the Fast Fourier transformation (FFT) of the os-
cillatory torque is displayed. There is a single peak in the FFT corresponding to FS , the
frequency of the quantum oscillation, of 325 T. All CuxBi2Se3 crystals show a single peak
in the FFT at all angles. This is indicative of a single Fermi surface. As derived in sec-
tion 3.1.2, the frequency of the quantum oscillation is proportional to extrema in the Fermi
surface cross-section by the Onsager relation,

Fs =
~

2πe
Aext. (4.1)

Before extracting the oscillation frequency some processing must be performed on the
raw data. Fig. 4.5 shows some raw data taken on undoped Bi2Se3. It is curious that quantum
oscillations should be seen in an insulator since they arise from Fermi surface quantization,
which should only exist in metals. Indeed in topological insulators, quantum oscillations
can arise from the topological surface state [150]; however, the oscillations seen in Bi2Se3

arise from the bulk as is clear from the angular dependence. In fact, Bi2Se3 turns out to be a
poor insulator, and defects can pin the the Fermi level to the bottom of the conduction band
leading to bulk conductivity [168]. This is unideal for studying the topological surface
states of Bi2Se3, but is useful for drawing comparisons between the electronic structures of
undoped and doped Bi2Se3.

Fig. 4.5 is raw, unprocessed torque data as a function of the applied external magnetic
field. Note that the y-axis is capacitance measured in picoFarads (pF). This is what is
measured directly from the Andeen-Hagerling AH2700A 50 Hz - 20 kHz Ultra-Precision
Capacitance Bridge. As derived in section 3.1, the torque on the cantilever is proportional
to the change in capacitance of the magnetometer. Furthermore, it was shown that the
torque should go as

τ = µ0V∆χH2 sinφ cosφ (4.2)

where V is the volume of the sample, ∆χ is the magnetic susceptibility anisotropy,
H is the external magnetic field, and φ is the angle between the external magnetic field
and the crystal c-axis. The oscillations in torque are due to oscillations in the magnetic
susceptibility anisotropy. The paramagnetic background goes as H2 as seen in equation
4.2. Fig. 4.5 has a quadratic fit of the data. The residuals of this fit represent the oscillatory
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Figure 4.5: Raw torque data on undoped Bi2Se3. The torque is proportional to the change
in capacitance. The red line is a fit to the polynomial background, which is subtracted to
get the oscillatory torque signal.

torque, τosc.
After extracting the oscillatory torque, the data is interpolated so that the data points are

evenly spaced in magnetic field. Then the data is smoothed either by adjacent averaging or
by applying a Savitzky-Golay filter. The later locally fits the region around each data point
with a linear regression and then replaces the data with a new data point less effected by
noise in the data. Lastly, the data is interpolated in inverse magnetic field so that an FFT
can be performed.

Fig. 4.6 shows the oscillatory torque, τosc, after the background is subtracted for sample
4 plotted against inverse magnetic field. This curve was measured in a 31 T resistive magnet
at the National High Magnetic field Lab down to 300 mK. As before, the FFT shows a
single oscillation frequency.

To highlight the effect of Cu doping on Bi2Se3, fig. 4.7 shows the oscillation frequency
Fs as a function of tilt angle for Cu0.25Bi2Se3 (panel a) and Bi2Se3 (panel b). The solid red
lines are fits based on a model of an ellipsoidal Fermi surface given by

F (φ) = F0(cos2[φ] + (
kxF
kzF

)2 sin2[φ])−
1
2 (4.3)

where F (φ) is the frequency of the quantum oscillations at a particular φ, F0 is the
quantum oscillation frequency at φ = 0◦, and kxF/k

z
F is the ratio of the Fermi momentum
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Figure 4.6: Oscillations in the torque data of sample 4 with the polynomial background
subtracted. The inset in the upper right-hand corner is a schematic of the experimental
setup. The lower inset is a fast Fourier transformation (FFT) of the oscillatory torque after
subtracting the polynomial background. The single peak in the FFT spectrum reveals a
single Fermi pocket.

in the kx direction and kz direction - a measure of the eccentricity of the Fermi surface. A
model of the ellipsoidal Fermi surface is shown in the lower right inset of fig. 4.7(a). The
extremal cross-section perpendicular to H is proportional to Fs at that angle.

First of all, Fs for Cu0.25Bi2Se3 is much larger than that of the undoped sample, sug-
gesting the Cu doping indeed adds carriers into the electronic state. For both samples the
oscillation from the bulk state shows only one oscillation frequency, implying a single el-
lipsoidal Fermi pocket in both samples.

The angular dependence of the quantum oscillation frequency provides the size of the
Fermi pocket. From the Onsager relation (equation 4.1), the frequency of the quantum
oscillation is proportional to the cross-sectional area of extrema in the Fermi surface. For
an ellipsoidal Fermi surface, this is given by

A = πkxFkF (φ), (4.4)

with kF (φ) and kxF , the semimajor and seminor axes, respectively, of the elliptical cross-
section of the Fermi surface. Thus F0 from equation 4.3 yields kxF = kyF and the eccentricity
gives kzF . For a closed, ellipsoidal Fermi pocket, the bulk carrier concentration, n, is given
by
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Figure 4.7: Angular dependence of the oscillation frequency Fs is compared between (a)
Cu0.25Bi2Se3 and (b) Bi2Se3. Solid lines are the fits based on a single ellipsoidal Fermi
surface. A model of the ellipsoidal Fermi surface is shown in the lower right of panel
(a). The extremal cross-section perpendicular to H is proportional to Fs at that angle. An
example of the oscillating magnetic torque is shown in the inset of (b) for Bi2Se3.

n =
1

3π2
kxFk

y
Fk

z
F . (4.5)

The Fs vs φ curve of Cu0.25Bi2Se3 is consistent with an ellipsoidal Fermi surface with
cross section Axz ∼ 4.02 nm−2. Based on the data in fig. 4.7(a), kxF = kyF = 0.97 nm−1 and
kzF = 1.3 nm−1. Thus, the bulk carrier density n is 4.3 × 1019 cm−3. This carrier density is
similar to that derived from the Hall effect [169] and ARPES [4].

For the undoped Bi2Se3 sample, the fit gives kxF = kyF = 0.69 nm−1 and kzF = 1.2 nm−1.
The bulk carrier density n is calculated to be 1.8 × 1019 cm−3. This number is larger than
those generally seen in results based on quantum oscillations [170], which suggests that
there are quite a number of carriers caused by defects. Table 4.1 summarizes the quantum
oscillation data for Cu doped and undoped Bi2Se3.

Table 4.1: Comparison of quantum oscillation data for Cu doped and undoped Bi2Se3.
n(1019cm−3) F0(T ) kxF (nm−1) kzF/k

x
F

Cu0.25Bi2Se3 4.3 325 0.97 1.3
Bi2Se3 1.8 150 0.69 1.6

The data taken to produce fig. 4.7 was taken in the 18 T superconducting magnet in
SCM2 at the National High Magnetic Field Lab. As seen in the panel (a), data is only taken
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up to 35◦. Above this angle, quantum oscillations weren’t resolved due to insufficient
magnetic field. With such a small angle range, the shape of the Fermi surface is somewhat
questionable. Therefore, more samples were measured in a resistive magnet up to 31 T.
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Figure 4.8: (a) Quantum oscillations in torque of sample 4 at different angles after back-
ground subtraction. Oscillations are visible in the raw signal up to 90◦. At high tilt angle,
the oscillation signal is multiplied by a factor of 10 for clarity. (b) The FFT spectra of
oscillations in panel (a) show a single Fermi pocket with clear angular dependence. The
FFT amplitude is normalized by the height of the peak in the range of 200-600 T. For the
high tilt angles, the divergence of FFT amplitude in the dc end arises from an incomplete
background subtraction.

Fig. 4.8 shows the torque signal from sample 4 from the 31 T resistive magnet at
different angles. This is done in a helium-3 cryostat at 300 mK. As compared with the
data taken in the superconducting magnet, the high field and low temperature increase the
sensitivity of the measurement to be able to resolve more quantum oscillations.

In fig. 4.8(a), oscillations are clearly seen up to 90◦ in the raw data. This indicates that
the Fermi surface has a cross-section perpendicular to the field when the field is pointing in
plane. In other words, the Fermi surface is a closed ellipsoid. Note that the amplitude of the
oscillations above 77◦ in fig. 4.8(a) are multiplied by a factor of 10 to make them visible.
Figure 4.8(b) shows the FFT of the raw signal from panel (a). Clear angular dependence
can be tracked up to 90◦, where H is parallel to the plane.

Fig. 4.9 shows the angular dependence up to 90◦ of the quantum oscillation frequencies
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Figure 4.9: Angular dependence of the oscillation frequency of the various CuxBi2Se3

samples. Dashed lines are ellipsoidal fits for the Fermi surfaces. The inset expands the y
axis of the data plot to a higher frequency range to show the extrapolation of the ellipsoidal
fits.

for various samples measured in the 31 T magnet. As before, 0◦ is field along the c-axis
and 90◦ is field in the basal plane. The inset in the upper left corner is the same data in a
wider frequency range to see the extrapolation of the fits. For Sample 4a, kxF = kyF = 0.95
nm−1 and kzF/k

x
F = 2.06.

Most of the samples are fit well by a closed, ellipsoidal Fermi Surface; however, for the
highest carrier concentration sample (sample 5), a closed Fermi Surface fitting yields kzF =
4.69 nm−1, which is longer than the Brillouin Zone height of ∼3.28 nm−1 [171]. Thus, it
is clear that the Fermi Surface crosses the Brillouin Zone boundary and becomes open at
high carrier concentration as was reported in SdH [11].

For sample 5, which has an open Fermi surface, the bulk carrier concentration was
calculated by integrating the ellipsoidal fit up to the Brillouin zone boundary to find the
volume of the Fermi surface. The validity of this model relies on the assumption that the
deviation from the ellipsoidal fit around the Brillouin Zone boundary due to bending is
small. In this case the carrier concentration is given by
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n =
1

2π2
kxFk

y
F (kBZ −

k3
BZ

(kzF )2
) (4.6)

where kBZ is the Γ− Z distance.
For various CuxBi2Se3 samples, the value of kzF/k

x
F goes from 2.06 to 3.10 as the carrier

concentration increases from 5.9× 1019 cm−3 to 10.1× 1019 cm−3 revealing that the Fermi
surface gets increasingly elongated in the z direction as carriers are added. Then the Fermi
surface opens up and becomes quasi-cylindrical at high carrier concentration consistent
with quantum oscillation measurements in magnetoresistance [11].

The evolution of the Fermi surface from a closed ellipsoid to an open cylinder has
implications for topological superconductivity in CuxBi2Se3. As discussed in chapter 1
section 1.2.1, the sufficient criteria for topological superconductivity developed by Fu and
Berg include a Fermi surface that contains an odd number of TRI momenta in the Brillouin
zone [5]. The closed ellipsoid seen in the lower carrier concentration samples only contain
the Γ point. However, sample 5, which touches the Brillouin Zone boundary contains both
the Γ and the Z point - thus including an even number of high symmetry points.

As mentioned in chapter 2, an open cylindrical Fermi surface could still be a platform
to realize 2D topological superconductivity, which only has topological boundary states
on the edge surfaces rather than all exposed surfaces [11, 12, 114]. On the other hand,
whereas this result clearly excludes CuxBi2Se3 from 3D topological superconductivity in
the heavily doped regime (at least according to the current theory), it does not exclude the
samples of lower doping levels.

To confirm the carrier densities measured by quantum oscillations, the Hall effect was
also studied in all the CuxBi2Se3 samples. Figure 4.10(a) shows the antisymmeterized
Hall effect data of all the CuxBi2Se3 samples taken at T = 1.5 K in the Janis Variable
Temperature Insert at the University of Michigan.

Two key features are found in the Hall effect data. First, the Hall signal ρxy is linear with
H , confirming the single-band nature of the electronic state. Second, the carrier density
determined by the Hall effect closely agrees with the carrier density determined from the
dHvA effect.

Table 4.2 summarizes the data for various CuxBi2Se3 samples in order of increasing
carrier concentration as determined by the dHvA effect. The in-plane Fermi surface cross-
section doesn’t change much between samples, but the eccentricity increases. The com-
parison between the hall carrier density, nH , and the dHvA carrier density, nM , is also
summarized in table 4.2.

In addition to extracting the carrier density from the Hall effect in low field, 3 out of the
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Figure 4.10: Hall effect on Cu-doped Bi2Se3. Each sample is cleaved from the same
batch as the samples used in the torque measurement. (a) The Hall signal ρxy is plotted
against field H up to 5 T at T =1.5 K. The Hall signal curves have been antisymmetrized
to eliminate the magnetoresistance pickup. The slopes of the ρxy-H curves are used to
determine the Hall carrier density shown in Table 4.2. (b) Measurements of ρxy in H up to
12 T show quantum oscillations in three samples. In this panel, a polynomial background
is subtracted to show the oscillatory part of ρxy. The oscillation frequency is found to be
the same as the measured frequency in the dHvA effect.

5 samples show quantum oscillations in the Hall signal in higher magnetic field up to 12 T
(the SdH effect). The SdH oscillations after background subtraction, ∆ρxy, are shown in
fig. 4.10(b) plotted against inverse magnetic field. In this measurement, the magnetic field
is pointed along the c-axis. The frequency of the oscillations in the Hall effect, F0H , agree
with those measured by torque magnetometry. Though the comparatively low field, 12 T,
provides less precision in determining the frequency as compared to the torque experiment
which was performed up to 31 T. The comparison of the frequency of quantum oscillations
in magnetization, F0, and in magnetoresistance, F0H , with the magnetic field in plane are
shown in table 4.2. F0 was determined from the ellipsoidal fit of angular dependence of the
quantum oscillation frequencies, whereas F0H is directly determined by the oscillations in
the Hall channel.

The nominal Cu doping, x, in the CuxBi2Se3 crystals as determined by the mole ratio
of the reactants during the crystal growth is also listed in table 4.2. As the nominal doping
increases, the Hall carrier density increases accordingly. This may suggest that the nom-
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Table 4.2: Summary of results in order of increasing carrier concentration. *The value
of kzF/k

x
F for sample 5 is ill-defined since kzF is taller than the Brillouin Zone. This is the

value extracted from the ellipsoidal fit.
x nM(1019cm−3) nH(1019cm−3) F0(T ) F0H(T ) kxF (nm−1) kzF/k

x
F

4a 0.25 5.93 6.6 297 300 0.95 2.06
4b 0.25 6.31 no data 306 no data 0.96 2.09
1 0.02 6.78 2.51 292 no data 0.94 2.41
3 0.20 7.65 5.16 284 no data 0.93 2.83
2 0.15 10.05 3.46 317 300 0.98 3.16
5 0.30 13.91 8.87 327 360 1.00 (4.69)*

inal doping level is relatively accurate, though it was never confirmed by measurements
sensitive to the stoichiometry.

4.3 Temperature Dependance of Quantum Oscillations

4.3.1 Thermal Damping of Quantum Oscillation Amplitude

The effective mass can be extracted from the temperature dependence of the oscillation
amplitudes. The amplitude of the dHvA oscillation is damped by the thermal damping
factor [23],

RT =
αTm∗

B sinh(αTm∗/B)
(4.7)

where the effective mass m = m∗me. me is the bare electron mass, B = µ0H is the
magnetic flux density, and α = 2π2kBme/e~ ∼14.69 T/K.

Fig. 4.11(a) displays the oscillatory amplitude dτ versus 1/µ0H at selected T between
300 mK and 30 K. The curves are offset for clarity. Fig. 4.11 is a temperature dependence
with H near the c-axis. φ = 4◦ for panels (a) and (b). Later, the angular dependence of the
effective mass will be discussed.

With the external magnetic field fixed, the temperature dependence of normalized dτ is
determined by the effective mass m∗me according to eq. 4.7. Fig. 4.11(b) shows dτ versus
T at H = 16.07 T. The oscillating amplitude dτ is normalized by dτ0, the amplitude of
the quantum oscillation at the lowest temperature, T = 300 mK. Fitting the data with the
thermal damping RT formula in equation 4.7, yields the effective mass m = 0.194 me.

To see the effect of Cu dopants on the topological insulator Bi2Se3, the same analysis
was performed in undoped Bi2Se3 as shown in Fig. 4.11(c). Here the field value at which
the amplitude analysis is performed is H = 16.5 T. The fit from equation 4.7 yields an
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Figure 4.11: Temperature dependence of oscillatory magnetic torque. (a) Magnetic torque
after subtracting a polynomial background dτ is plotted as a function of 1/µ0H at selected
T between 0.3 and 30 K. The magnetic field,H , is at an angle φ = 4◦ from the crystal c-axis.
Curves at different T are offset for clarity. (b) In Cu0.25Bi2Se3, temperature dependence of
an oscillating amplitude dτ yields the effective massm = 0.194me. (c) In updoped Bi2Se3,
the T dependence of dτ at H = 16.5 T yields m = 0.140 me.

effective mass of m = 0.140 me for undoped Bi2Se3. This is in good agreement with other
reports [170].

Comparing the thermal damping of quantum oscillations between Cu-doped and un-
doped Bi2Se3 shows that the effective mass increases slightly in the topological supercon-
ductor candidate Cu0.25Bi2Se3. However, this result does not agree with the large mass
enhancement suggested by heat capacity measurements [6].

To determine the angular anisotropy of the effective mass, a temperature dependence
was taken for sample 4b at two different angles. Fig. 4.12 shows the temperature depen-
dence of the oscillatory torque at two different angles. Fig. 4.12(a) has oscillatory torque
curves taken with the magnetic field at a tilt angle of φ = 10◦ from the crystal c-axis. The
oscillatory torque curves for select temperatures from 0.3 to 25 K are stacked to emphasize
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Figure 4.12: Temperature dependence from 0.3 to 25 K of the quantum oscillation ampli-
tude in sample 4b. Oscillatory torque was measured with the magnetic field at a tilt angle
of φ = 10◦ (panel a) and φ = 65◦ (panel c) from the crystal c-axis. Panels (b) and (d) are the
normalized amplitude of the FFT on the data in panel (a) and (c) respectively plotted as a
function of temperature. The fits gives an effective mass of 0.16 me (b) and 0.32 me (d).

the damping in the oscillation amplitude.
Differently from before, the normalized amplitude of the FFT peak corresponding to

the oscillation frequency is plotted as a function of temperature in fig. 4.12(b). This serves
to average the effect of thermal damping over all the oscillation peaks, rather than isolating
a single peak whose amplitude is susceptible to errors from the background subtraction.
The FFT used to build fig. 4.12(b) is taken in the field range from 20 - 31 T. The frequency
of the oscillation at φ = 10◦ is 306 T. Equation 4.7 takes a field value as an input. This field
value is given to be 24.3 T, which is one over the average of the inverse magnetic fields
of the FFT range. The effective mass derived from the fit to the thermal damping factor is
0.16 me.
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Fig. 4.12(c)(d) show the same analysis with the magnetic field tilted φ = 65◦ from the
crystal c-axis. The effective mass increases from 0.16 me to 0.32 me as the angle increases
from 10◦ to 65◦. A temperature dependence on sample 3 was also measured at φ = 57◦

yielding an effective mass of 0.29 me. Effective mass anisotropy was seen in early studies
of infrared reflection on Cu-doped Bi2Se3 measuring m‖/m⊥ to be 4.35 [169].

The temperature dependence of the oscillations seen in the Hall measurement (see fig.
4.10) was also measured. The effective masses for the various samples extracted by SdH is
in good agreement with those extracted from dHvA. Table 4.3 gives the effective mass from
dHvA, mM , and from SdH, mH , with the field pointed along the c-axis. No temperature
dependence was taken for sample 3 with magnetic field along the c-axis. The last two rows
of table 4.3 gives the comparison of doped and undoped Bi2Se3.

The Fermi velocity, vF , was determined from the Fermi momentum, kxF , and the effec-
tive mass by

vF =
~kxF
m∗me

. (4.8)

Based on the effective mass values and kxF , the Fermi velocity is found to be 5.8 × 105

m/s for Cu0.25Bi2Se3, and 5.7 × 105 m/s for undoped Bi2Se3.
The Fermi velocity is the slope of the energy momentum dispersion at the chemical po-

tential. Adding Cu dopants to Bi2Se3 adds carriers to the bulk band, and thus increases the
chemical potential. As the chemical potential increases, kxF will increase. For a quadratic
dispersion, the slope of the E-k curve, vF , increases as the chemical potential (and kxF ) gets
larger. In contrast, for a linear dispersion, vF should remain unchanged since the slope of a
linear band is constant. From undoped Bi2Se3 to Cu0.25Bi2Se3, kxF increases by more than
40% from 0.69 nm−1 to 0.97 nm−1, yet the value of vF remains unchanged indicating that
carriers sit in a linear, Dirac band.

However, even for a quadratic band the change in the slope of the E-k curve could
be small if the chemical potential is sufficiently high on the band. Regardless, the Dirac-
like band is consistent with the band structure calculation and ARPES measurements [4,
83]. Furthermore, Se vacancies cause the chemical potential to pin near the bottom of the
conduction band at the Γ point in undoped Bi2Se3. Nonetheless, the possibility that the
chemical potential is high up on a quadratic band cannot be completely ruled out. It should
also be noted that the measured Fermi velocity vF is slightly larger than the averaged vF
measured by ARPES [37].

Table 4.3 gives the Fermi velocities, vF , and Fermi momentums, kxF , for the various
samples measured in this study. Sample 3 is omitted from table 4.3 since its temperature
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Table 4.3: Effective masses extracted from quantum oscillations in magnetization, mM ,
and in the Hall effect, mH . No temperature dependence was performed on sample 3 with
field along the c-axis. The last two rows gives a comparison of doped and undoped Bi2Se3.
The last column gives the Fermi velocities, vF , for the various CuxBi2Se3 samples.

nM(1019cm−3) F0(T ) mM

me

mH

me
kxF (nm−1) vF (105m/s)

1 6.78 292 0.17 no data 0.94 6.4
2 10.05 317 0.19 0.18 0.98 6.0
4 5.93 297 0.16 0.15 0.95 6.9
5 13.91 327 0.17 0.16 1.00 6.8

Cu0.25Bi2Se3 4.3 325 0.19 no data 0.97 5.8
Bi2Se3 1.8 150 0.14 no data 0.69 5.7

dependence was only measured with the magnetic field tilted away from the crystal c-axis
and vF cannot be determined without the in-plane effective mass. vF is unchanged between
the original Cu0.25Bi2Se3 and Bi2Se3 samples; however, it is higher and more varied in the
new samples from the second study. In these samples, vF varies in a random fashion and not
proportionally to kxF . Therefore, the variation is indicative of the error in the measurement.

4.3.2 Dingle Damping of Quantum Oscillation Amplitude

Further analysis of the quantum oscillation amplitude damping yields the mean free path
and scattering times of the samples.

The amplitude of the quantum oscillations are also damped by the Dingle damping
factor,

RD = exp(−αTDm/B), (4.9)

where the Dingle temperature, TD, is given by

TD = ~/2πkBτS, (4.10)

α = 2π2kBme/e~ ∼ 14.69 T/K, and τS is the scattering time. Since TD is proportional
to the scattering rate, 1/τS , it is a measure of disorder.

Fig. 4.13 is a Dingle plot for Cu0.25Bi2Se3 (panel a) and undoped Bi2Se3 (panel b)
with magnetic field along the crystal c-axis and at temperature, T = 300 mK. This plot is
made from the base temperature curve of the temperature dependence shown in fig. 4.11.
The oscillatory torque, dτ , is normalized by the thermal damping factor, RT , at 300 mK so
that the oscillation amplitude will only be proportional to RD. Then the logarithm is taken
so that the amplitude of the quantum oscillations will be linearly proportional to 1/µ0H .
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Figure 4.13: Dingle plot of Cu0.25Bi2Se3 (a) and undoped Bi2Se3 (b). Fitting with the
Dingle damping factor yields a Dingle temperature of 23.5 K for Cu0.25Bi2Se3 and 23.9 K
for Bi2Se3.

The Dingle plot shows the peaks in log(dτ/RT ) plotted against 1/µ0H with a linear fit.
According to equation 4.9, the slope of the linear fit is given by −αTDm, from which the
Dingle temperature is extracted to be 23.5 K for Cu0.25Bi2Se3 and 23.9 K for undoped
Bi2Se3.

From the Dingle temperature, the scattering time is found to be 5.2×10−14 s for Cu0.25Bi2Se3

and 5.1×10−14 s for undoped Bi2Se3. The mean free path which is given by

l = vF τS (4.11)

is 30 nm for Cu0.25Bi2Se3 and 29 nm for Bi2Se3. Table 4.4 summarizes the Dingle
analysis for the various samples. Samples 4b and 3 are not listed because their temperature
dependences were taken with the magnetic field tilted far from the crystal c-axis.

In other literature, the Dingle temperature of Bi2Se3 varies from 4 K in clean sam-
ples [172] to 9.5 K in disordered samples [170]. The higher Dingle temperature in this
study suggests that this Bi2Se3 sample is very disordered.

With the exception of sample 4, the scattering times and mean free paths are relatively
constant with added carriers varying by 25% in a random fashion. The average scattering
time, excluding the outlier, is 5.1×10−14 s and the average mean free path is 31 nm. The
variance in these parameters is due to sample quality. Sample 4 appears to be especially
disordered.
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Table 4.4: Summary of results from the Dingle analysis. Samples 4b and 3 are not listed
here since the temperature dependence for those two samples were taken with the magnetic
field tilted far from the crystal c-axis.

TD(K) τs(10−14sec) l(nm)
1 20.7 5.9 38
2 25.8 4.7 28
4a 57.1 2.1 15
5 27.7 4.4 30

Cu0.25Bi2Se3 23.5 5.2 30
Bi2Se3 23.9 5.1 29

Assuming the BCS gap, ∆ = 1.764kBTc the Pippard length can be calculated to be

ξP =
~vF
π∆

= 230nm, (4.12)

which is an order of magnitude larger than the mean free path. Thus the coherence
length is determined by the mean free path. Indeed, the coherence length as determined by
the upper critical field is 13.9 nm [6], which is on the order of the mean free path determined
from quantum oscillations. The dominance of impurity scattering in the superconducting
coherence length indicates that superconductivity occurs in the dirty limit.

This analysis considers the ratio of the mean free path and the Pippard length. Assum-
ing the BCS gap, the ratio of TD to Tc is proportional to the ratio of ξP to l by a factor close
to one. Thus, the ratio of TD to Tc also gives a sense of whether a superconductor is in the
clean or dirty limit. For CuxBi2Se3, TD ∼ 21 - 57 K and Tc = 3.5 K, which also suggests
that superconductivity occurs in the dirty limit.

The disorder measured in CuxBi2Se3 provides a bleak picture for the presence of topo-
logical superconductivity in CuxBi2Se3, which requires a p-wave superconducting order.
A common feature of p-wave superconductivity is that it is easily destroyed by impuri-
ties [7, 93, 94, 97]. However, theoretical works suggest the possibility of disorder-resistant
p-wave superconductivity in CuxBi2Se3 [100, 102, 103, 104]. This question is nonetheless
troubling and has come up in the debate about topological superconductivity in CuxBi2Se3

as described in chapter 2.

4.4 Discussion

Quantum oscillations are observed in the magnetization of CuxBi2Se3. Based on the quan-
tum oscillation angular dependence, only one Fermi pocket exists in CuxBi2Se3. The dop-
ing of Cu to the topological insulator Bi2Se3 increases the carrier density and the effective
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mass without changing the mean free path or the Fermi velocity, vF . As vF determines
the slope of the energy dispersion at the chemical potential, the unchanged vF implies that
the added carriers by Cu doping go into the same conductive band as undoped Bi2Se3. kxF
increases by more than 40% in CuxBi2Se3 over Bi2Se3, which should lead to an increase in
vF for a quadratic band. The observed unchanged vF suggests a linear, Dirac band. This is
consistent with the expectations for topological superconductivity.

Samples at different doping levels were studied with higher magnetic fields up to 31 T
to resolve quantum oscillations up to 90◦. The ellipsoidal Fermi pocket was observed to be
increasingly elongated as carriers were added, going from being a closed ellipsoid at low
carrier concentration to being quasi-cylindrical at high carrier concentration.

The nature of the transition of the Fermi surface topology is an interesting question. At
higher concentration, the elongated 3D ellipsoidal Fermi surface touches the Fermi surface
in the neighboring Brillouin zone, mandating the transition from the 3D Fermi surface to
a quasi-2D cylindrical-like one. Such a dramatic change of the Fermi surface topology
suggests a Lifshitz transition [173] or potentially a topological Lifshitz transition [174] as
the Cu brings in extra carriers and changes the chemical potential.

Two experimental consequences are essential to confirm the dimensionality change and
probe the nature of the transition. First, since every extrema in the Fermi surface cross-
section should give rise to quantum oscillations, the highly doped CuxBi2Se3 crystal with
the quasi-2D Fermi surface should have two quantum oscillation frequencies, a large one
from the belly and a small one from the neck at or near the Brillouin Zone boundary.
The large frequency is what was observed in this dHvA study and was confirmed by SdH
measurements [11]. In contrast, the small neck frequency was not observed either in dHvA
nor SdH [11, 39, 40].

Since this small oscillation frequency arises from a Fermi surface cross-section near the
Brillouin Zone boundary, the umklapp scattering will be greatly enhanced. The stronger
umklapp scattering can greatly reduce the mean free path [175, 176]. Therefore, quan-
tum oscillation measurements at dilution refrigerator temperatures and even higher fields
are needed to resolve the second oscillation frequency and to confirm the 3D to quasi-2D
transition.

The second consequence of the dimensionality change in the electronic state is the
enhancement of thermopower near the 3D to quasi-2D transition. A topology change in
the electronic state usually leads to a large thermopower, a typical signature of the Lif-
shitz transition [177, 178]. Further thermoelectric measurements are essential to confirm
this transition. If the dimensionality change indeed occurs and enhances the thermopower
greatly, the Cu doping might lead to another interesting application of topological materials
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in thermoelectrics.
Lastly, close to the dimensionality transition, a strong enough magnetic field may lead

to magnetic breakdown [179]. The current observations do not reveal the signature of
magnetic breakdown, but future studies with fine tuning of the Cu concentration may reveal
the interesting phenomenon of magnetic breakdown.
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CHAPTER 5

Torque Magnetometry on Nb-doped Bi2Se3

There has been much interest in superconductivity induced by copper or strontium dopants
in Bi2Se3, and extensive studies on those materials reveal their single-band nature [11, 15,
39, 40]. However, questions remain as to whether these materials demonstrate topological
superconductivity. The recent discovery of superconducting niobium-doped Bi2Se3 makes
it an exciting new candidate for the realization of topological superconductivity.

A recent study reveals the coexistence of superconductivity and magnetic ordering in
Nb-doped Bi2Se3 as well as surface Dirac dispersion [20]. Heat capacity measurements
reveal that it has a nodeless superconducting gap consistent with odd-parity p-wave super-
conductivity [42]. However, penetration depth measures point nodes possibly suggesting
an exotic chiral phase [21, 156].

In this early stage, many questions remain about this new topological superconductor
candidate. Generally, quantum oscillation experiments are used to reveal the electronic
structure of topological materials and topological material candidates. This work, based
on my publication [41], was the first, and only to date, report on quantum oscillations in
Nb-doped Bi2Se3. In Nb-doped Bi2Se3, a fully superconducting volume is observed in
conjunction with at least two quantum oscillation frequencies. This observation points to
a multiband electronic state in Nb-doped Bi2Se3 that is distinct from the single-band state
seen in the parent compound or Cu-doped and Sr-doped Bi2Se3 [11, 15, 39, 40]. Further-
more, my coauthored publication shows rotational symmetry breaking which is indicative
of an odd-parity nematic superconducting order [42]. This very interesting combination
creates much promise for new physics in this material.

5.1 Superconductivity in Nb-doped Bi2Se3

We measured several samples of Nb-doped Bi2Se3. Two of these samples from different
growth batches, designated samples A and E, are of high enough quality to show a large
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superconducting volume. Figure 5.1(a) shows the temperature dependence of the resistivity
for samples A and E. Zero resistance is observed below 3.5 K as shown by the inset of Fig.
5.1(a). Figure 5.1(b) shows the volume susceptibility of the two samples measured in a
Quantum Design MPMS with an applied magnetic field of 5 Oe. Sample E shows 60%
superconducting volume and sample A shows a more than 90% superconducting volume,
much higher than that of Cu-doped Bi2Se3 [6, 36, 39] and similar to certain dopings in
Sr-doped Bi2Se3 [15].
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Figure 5.1: Superconducting signal of two Nb-doped Bi2Se3 crystals. (a) Resistivity of
samples A and E as a function of temperature T . The inset highlights the superconduct-
ing transition at 3.5 K. (b) Volume magnetic susceptibility of Nb-doped Bi2Se3 crystals,
measured in zero-field-cooling (ZFC) and field-cooling (FC) conditions. For sample A,
the Meissner effect in the ZFC condition reaches close to -1, indicating a nearly 100%
superconducting volume.

The higher superconducting volume fraction makes Nb-doped Bi2Se3 a much more
convenient material to study than Cu-doped Bi2Se3. In addition, there is less concern about
experimental results coming from mixed phases.

In addition to resistivity and magnetic susceptibility, heat capacity is a powerful tool
to study the properties of superconductors. Fig. 5.2 shows the heat capacity of Nb-doped

109



Bi2Se3 sample A measured in a Quantum Design PPMS. The experimental details of this
measurement are described in chapter 3 section 3.3.2.

The heat capacity C was measured at selected T between 0.4 K and 20 K in the helium-
3 option of our PPMS. Fig. 5.2(A) shows C/T both in the superconducting state at µ0H

= 0 T as well as in the normal state at µ0H = 0.75 T. Above 4 K, the heat capacity C

at 0 T is the same as that at 0.75 T, within measurement errors. Therefore, the 0.75 T
heat capacity curve can be reliably taken as the normal state heat capacity Cn. From this
the phonon contribution was determined following the same practice that was done with
Cu-doped Bi2Se3 (see Fig. 2.4) [6]:

Cn = Cn
el(H > Hc) + Cph = γnT + aT 3 + bT 5 (5.1)

where the electronic heat capacity Cn
el(H > Hc) = γnT is the normal state electronic

contribution to the heat capacity. By fitting the normal state heat capacity with equation
5.1, the phonon heat capacity, which is unchanged in the superconducting state, can be
extracted.

The superconducting state electronic heat capacity Cel can be inferred by subtracting
the phonon heat capacity, Cph, from the total superconducting state heat capacity, C(H =

0). The resulting superconducting state electronic heat capacity Cel at 0 T is plotted as
Cel/T vs. T in Fig. 5.2(B). The heat capacity at 0 T shows an exponential decay as T drops
to base temperature, which is indicative of fully gapped bulk superconductivity.

The exponential decay, rather than a power-law dependence, observed in Cel - T is in-
dicative of a nodeless superconducting gap. It has been fairly recognize that in heat capacity
measurements, a high order power-law can be hard to distinguish from an exponential de-
cay at low temperatures [8]. For line nodes, Cel/T should fall linearly with T , and for
point nodes, Cel/T should go as T 2 [144, 180]. Line nodes, as have been seen in other
unconventional superconductors [181, 182, 183], are not consistent with the data in Fig.
5.2. Therefore, this data is not necessarily in contradiction with the point nodes seen in
penetration depth [21]. However, since both this study and the penetration depth study are
only performed down to helium-3 temperatures, there remains questions about the nodal
structure of the gap. Heat capacity and penetration depth down to 20 mK would provide
more robust evidence for a nodal or nodeless gap.

The Cel/T trace approaches a finite value γres near base temperature. This suggests
a partial non-superconducting volume in the crystal of about γres

γn
∼<20%. This value is

larger than the Meissner effect value of ∼10% in sample A. The difference may be from
the demagnetization factor due to sample geometry in the SQUID measurement. On the
other hand, it is possible that if there are point nodes in the gap, the nodal gap structure
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Figure 5.2: Fully gapped bulk superconductivity revealed by the heat capacity of Nb-
doped Bi2Se3 sample A. (A) Sample heat capacity C is displayed as the ratio of C and
temperature T plotted against T . The zero field curve is compared with the µ0H = 0.75
T curve. The 0.75 T curve is used to determine the phonon contribution Cph. (B) The
electronic part of heat capacity Cel is shown as Cel/T vs. T . A clear kink is observed at the
superconducting transition temperature Tc. Near T ∼ 0, the curve approaches a finite value
in Cel/T and gives a measurement of the non-superconducting volume fraction of around
20%. As T increases from the base temperature, Cel/T follows the exponential curve
(dashed pink line), as expected from a fully gapped superconductor. Numerical calculation
of Cel in BCS superconductors are shown with the only parameter α ≡ kBTc

∆
, where ∆ is

the superconducting gap. For the overall trace, α = 1.76 trace gives the best fit of the heat
capacity trace below Tc.

may lead to residual density of states contributing to γres.
Despite the high superconducting volume fraction, not every NbxBi2Se3 sample shows

superconductivity. Fig. 5.3 compares the resistivity (panel a) and volume magnetic sus-
ceptibility (panel b) of superconducting sample A with a non-superconducting sample D.
Sample D does not show zero-resistance or diamagnetism down to 1.5 K. It is unknown
whether this sample will show a superconducting transition in resistance or susceptibility
at lower temperature. At 20 mK, a very small superconducting hysteresis loop in the mag-
netic torque was observed in sample D; however, the amplitude was an order of magnitude
smaller than in sample A. Thus sample D does have a small superconducting fraction at
zero temperature, though the majority of the sample does not superconduct.

It is not clear what the exact chemical difference is between the superconducting and the
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Figure 5.3: The comparison of the electrical resistance (a) and volume magnetic suscepti-
bility (b) of a superconducting (sample A) and non-superconducting (sample D) Nb-doped
Bi2Se3 crystals.

non-superconducting NbxBi2Se3. Early work on NbxBi2Se3 shows that only the samples
with Nb intercalation are superconducting [20]. It is also known that for the supercon-
ducting Sr-doped and Cu-doped Bi2Se3, the dopant prefers to intercalate between Bi2Se3

layers [15, 36].

5.2 Angular Dependance of Quantum Oscillations

Torque magnetometry was used to measure the magnetic properties of Nb-doped Bi2Se3.
Single crystal samples of Nb-doped Bi2Se3, with a nominal stoichiometric Nb concentra-
tion of 0.25 for sample A and 0.28 for sample E, were glued to the tip of a beryllium copper
thin-film cantilever using GE varnish. Because the Nb concentration was determined from
the starting concentration of the reactants, the exact Nb concentration is unknown in these
crystals. The torque on the cantilever was then measured by tracking the capacitance be-
tween the metallic cantilever and a gold film placed underneath as described in chapter
3.
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Due to low field anomalies discussed in section 5.4, the background subtraction of
several Nb-doped Bi2Se3 torque curves were more complicated than Cu-doped Bi2Se3 de-
scribed in chapter 4. First, the derivative of the raw torque is taken. This does not effect
the quantum oscillations, whose derivative are also sinusoidal. Afterwards, the background
signal is removed by applying a polynomial fitting in the magnetic field range above the low
field anomalies. The residuals of the polynomial fit are just the oscillatory torque signal,
τosc.
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Figure 5.4: (a) Derivative of oscillatory magnetic torque of Nb-doped Bi2Se3. Torque from
sample A is plotted against inverse magnetic field 1/µ0H . A polynomial background has
been subtracted from the torque τ −H curves to obtain the oscillatory torque τosc. The top
red curve is taken at a tilt angle of the magnetic field around 8◦ and shows one oscillation
frequency. The lower black curve taken at the magnetic field tilt angle of 103◦ shows two
oscillation frequencies. The amplitude of the second curve is multiplied by a factor of 10
and the two curves have been shifted apart for clarity. (b) The fast Fourier transformation
(FFT) of the two τosc−1/µ0H traces. (c) A sketch of the torque magnetometry setup shown
together with the crystal structure of Bi2Se3 to demonstrate the magnetic field rotation
plane.

Examples of dτosc/dH plotted against 1/µ0H for sample A at two different angles are
shown in Fig. 5.4(a). The angle φ is defined as the angle between the external magnetic
field, H , and the crystal c-axis as shown in the schematic of the torque experiment in fig.
5.4(c). The crystal axes are labeled in the crystal structure diagram in the same panel. Nb
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dopants sit intercalated between quintuple Bi2Se3 layers.
With the external magnetic field pointing along the c-axis (φ = 8◦), a single quantum

oscillation frequency is observed similar to Bi2Se3, Cu-doped Bi2Se3 [39], and Sr-doped
Bi2Se3 [15]. This can be seen clearly in the FFT of τosc in fig. 5.4(b). However, at φ =

103◦, the two distinct quantum oscillation frequencies are observed, in sharp contrast to
Bi2Se3, Cu-doped Bi2Se3 [39], and Sr-doped Bi2Se3 [15]. In fig. 5.4(a), the amplitude of
τosc(φ = 103◦) is multiplied by a factor of 10 for clarity. The amplitudes of the FFT are
plotted on different scales for φ = 8◦ (right axis) and φ = 103◦ (left axis).
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Figure 5.5: Comparison of the angular dependence of the oscillation frequencies of Nb-
doped Bi2Se3 in sample A (red) and sample E (black) taken at T = 300 mK. The solid lines
are fits for ellipsoidal Fermi surfaces. The dashed lines are guides for the eye for the second
Fermi pocket. The maximum magnetic field used in each run is labeled in the legend.

Figure 5.5 shows the angular dependence of the dHvA frequencies. Since the dHvA
frequency is proportional to the Fermi surface cross section, the angular dependence gives
the approximate size and shape of the Fermi surface. These data were taken in three dif-
ferent magnets with different peak magnetic fields. The peak magnetic field is indicated in
parentheses in the legend of Fig. 5.5.

In the 33.6 T and 34.5 T magnets, the magnetic field is being rotated from along the
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c-axis towards the a-axis. For the 45 T magnet, the magnetic field is being rotated from
the c-axis towards the in-plane axis 30◦ from the a-axis. The angular dependence of the
dHvA frequencies does not show any dependence on which in-plane axis the magnetic field
rotates into.

There are two branches of quantum oscillation frequencies revealing multiple Fermi
surfaces in Nb-doped Bi2Se3. The solid lines in Fig. 5.5 are ellipsoidal Fermi surface fits
of the first branch of dHvA frequencies. The fitting function is the same as was applied to
CuxBi2Se3 (equation 4.3 from chapter 4). The ellipsoidal Fermi surface is located in the
center of the Brillouin zone around the Γ point just as it is in the parent compound [39, 170].
Based on the fits and the Onsager relation (equation 3.19 in chapter 3), both samples have an
in-plane Fermi momentum of kx = ky ≈ 0.75 nm−1 and an out-of-plane Fermi momentum
of kz ≈ 1.43 nm−1 (the details of how this is extracted are discussed in chapter 4 section
4.2). The parameters from the ellipsoidal Fermi surface are summarized in Table 5.1.

The second branch of dHvA frequencies appears at around 60◦. This indicates that
the superconducting Nb-doped Bi2Se3 has an additional smaller Fermi pocket or family of
Fermi pockets besides the ellipsoidal pocket seen in the parent compound [39, 170].

The lower branch should be symmetric around 90◦ because of the crystal symmetry.
In the 45 T sweep, there is evidence of splitting in the lower branch of dHvA frequencies
indicating the symmetric Fermi pocket. It should be noted, however, that this torque mag-
netometry study is unable to clearly resolve a splitting of these branches in the 34 T sweeps
due to the limited range of the quantum oscillation pattern. As a result, these torque mea-
surements resolve only the dominating feature of the lower branch for each sample, which
seems to be asymmetric and varies between samples in the 34 T runs. The sample depen-
dence suggests that the sample quality and even the possible domain structure may affect
the apparent features in the FFT spectra. To confirm this frequency splitting, further quan-
tum oscillation studies are required in the higher fields or at lower temperatures in a dilution
refrigerator.

The angular dependence of the lower branch of frequencies indicates that the corre-
sponding Fermi surface is tilted with respect to the c-axis. It is probably located away from
the Γ point and has symmetric pockets elsewhere in the Brillouin zone. The exact shape of
these low-frequency Fermi pockets is unknown. A grey dashed line is drawn on Fig. 5.5 as
an eye guide.

The larger Fermi pocket, though slightly fatter and longer, is similar to the bulk Fermi
surface in undoped Bi2Se3 [39, 170]. However, the second pocket is completely different
from anything seen in the parent compound or the other superconducting doped Bi2Se3

compounds, such as Cu-doped Bi2Se3 [11, 39, 40].
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In addition to measuring quantum oscillations in magnetization, quantum oscillations
in magnetoresistance were measured in a Quantum Design PPMS using the four probe
technique described in chapter 3. The SdH oscillations are shown in fig. 5.6.

Figure 5.6: Shubnikov-de Haas oscillations in sample E with field along the sample crys-
talline c axis. The inset shows the Hall signal from the two samples.

To determine the carrier concentration, the Hall effect in both Nb-doped Bi2Se3 samples
was studied. The Hall data are shown in the inset of fig. 5.6. The carrier density as
determined from the Hall effect is n = 2.4 × 1020 cm−3 for sample A and n = 1.8 ×
1020 cm−3 for sample E. The carrier densities are the same order of magnitude of the
CuxBi2Se3 sample with the highest carrier concentration. This is the case even though the
quantum oscillation frequency in NbxBi2Se3 is half as large as CuxBi2Se3 - indicating a
much smaller Fermi surface [40]. Consequently, the second family of Fermi surfaces must
contribute many carriers to NbxBi2Se3.

As with CuxBi2Se3, the carrier density can be calculated from the dHvA data using
equation 4.5 from chapter 4. However, this will only determine the contribution to the
carrier concentration coming from the ellipsoidal Fermi surface. The contribution from
the second branch of Fermi pockets cannot be accurately determined since their shape and
number are not clear from the data. Nonetheless, the comparison of the ellipsoidal Fermi
surface contribution to the carrier density with the carrier density measured by the Hall
effect will give a quantitative approximation of the carriers contributed from the second
family of Fermi surfaces.
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The carrier density coming from the ellipsoidal Fermi surface is calculated to be n=2.6×1019

cm−3 for sample A and n = 2.8×1019 cm−3 for sample E. The Hall carrier density is an or-
der of magnitude larger than the carrier density given by the ellipsoidal Fermi surfaces.
This indicates that the low frequency branch of quantum oscillations in fig. 5.5 correspond
to many symmetric Fermi surfaces in the Brillouin zone. The carrier concentration data
from the Hall effect and quantum oscillations are summarized in Table 5.1.
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Figure 5.7: Angular dependence of the oscillation frequency in the non-superconducting
NbxBi2Se3 sample D. Unlike samples A and E, there is only a single quantum oscillation
frequency arising from the ellipsoidal Fermi surface for all angles.

Finally, the quantum oscillations of the non-superconducting sample D were measured.
Fig. 5.7 shows the angular dependence of the quantum oscillation frequency for NbxBi2Se3

sample D. Filled squares and empty squares represent data taken different days during the
same cool down.

Similarly to samples A, E, and CuxBi2Se3, the quantum oscillation frequencies follow
the angular dependence of an ellipsoidal Fermi surface as shown by the fitting function.
However, unlike the other NbxBi2Se3 samples, there is no evidence of a second branch
of quantum oscillation frequencies in the non-superconducting sample D. Sample D was
measured on a stiffer cantilever with a thicker beam width, thus it was less sensitive than
the cantilevers used for samples A and E. Indeed, no quantum oscillations were observed,
even for the ellipsoidal pocket, in the angular range where most of the second branch oscil-
lations occured (∼ 70◦ - 110◦). However, for samples A and E, the low frequency branch
persists down to 60◦ and up to 120◦. Furthermore, the carrier concentration extracted from
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the ellipsoidal fit for sample D (n=3.0×1019 cm−3) is in good agreement with the car-
rier concentration extracted from the Hall effect for the same sample (n=2.8×1019 cm−3).
Thus all the carriers in the non-superconducting sample D arise from the ellipsoidal Fermi
surface. This suggests that the second family of Fermi surfaces are only present in the
superconducting NbxBi2Se3 and could be related to the superconducting mechanism.

The observed quantum oscillation signals show a sharp contrast between the fully su-
perconducting Nb-doped Bi2Se3 and its non-superconducting counterpart. However, there
is still much similarity in their magnetic response, which will be expounded upon in section
5.4.

Table 5.1: Parameters extracted from Torque Magnetometry and Transport in Nb-doped
Bi2Se3. nM is the contribution to the carrier density extracted from the quantum oscillations
arising from the ellipsoidal Fermi surface. χ(T→0) is the volume susceptibility measured
with a SQUID magnetometer.

χ(T→0) nM(1019cm−3) nH(1019cm−3) F0(T ) kxF (nm−1) kzF/k
x
F

Sample A -0.9 2.6 24 181 0.74 1.9
Sample E -0.6 2.8 18 188 0.76 1.9
Sample D 0 3.0 2.8 183 0.75 2.1

5.3 Amplitude Damping of Quantum Oscillations

Examples of the temperature dependence of the FFT amplitude on τosc are plotted as a
function of temperature in Fig. 5.8. This is done in the same fashion as in section 4.3.1 of
chapter 4 and is described in detail there. Included is a fit of these data to equation 4.7 from
chapter 3 which yields effective masses of the large and small pockets in Nb-doped Bi2Se3

samples. The results are listed in Table 5.2.
For sample E, the temperature dependence on the ellipsoidal pocket at φ = 0◦ was

performed on the SdH oscillations shown in Fig. 5.6. The frequency of oscillations and
effective mass extracted from SdH are in good agreement with dHvA.

The damping of the dHvA oscillations with respect to the field gives a measure of the
electron scattering in the crystal. This is called Dingle damping and is described in chapter
4 section 4.3.2. The insets in Fig. 5.8 show the log of the amplitudes of the peaks from the
plot of τosc - 1/µ0H after dividing out the thermal damping factor. The fit using equation
4.9 from chapter 3 yields the Dingle temperature TD from which the scattering time and
mean free path can be extracted. The results of the Dingle analysis are summarized in Table
5.2.
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Figure 5.8: Temperature dependence of the oscillation amplitude of (a) sample A at φ = 1◦

and (b) ample E at φ = 103◦. The insets are the Dingle fits of the oscillation amplitude, with
the vertical axis the ratio of the log of the oscillation amplitude and the thermal damping
factor.

Furthermore, the scattering time of the lower branch is the same order of magnitude as
the higher branch. Therefore, disorder and Dingle phase smearing would unlikely prevent
observing the lower branch if the higher branch is observed. If the lower branch is missed,
it is due to an intrinsic difference of the electronic state. Therefore, the missing branch
of quantum oscillations in sample D is likely intrinsic. The results from the amplitude
damping analysis in sample D are also given in Table 5.2.

Lastly, the mean free paths in these crystals are on the order of 20 - 60 nm, which is
about two orders of magnitude longer than the crystal lattice. The mean free path of sample
A and D are very similar, despite the fact that sample A has the highest superconducting
volume and sample D is non-superconducting. The cleanest sample is sample E with l =
60 nm. So it does not appear that the superconducting fraction is related to the variation in
the cleanliness of the samples.
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Table 5.2: Information extracted from torque magnetometry and transport in Nb-doped
Bi2Se3. The effective mass and scattering time of the ellipsoidal pocket in sample E was
determined from Shubnikov-de Haas oscillations. mEP is the effective mass of the ellip-
soidal pocket taken with field along the crystal c-axis. mLB and τsLB are taken from the
low branch quantum oscillations in samples A and E. The temperature dependence for the
low branch frequencies was done at φ = 72◦ and 103◦ for samples A and E respectively.
Sample D doesn’t show any quantum oscillations from the low branch.

mEP vF (105 m/s) τs (10−14s) l (nm) mLB τsLB (10−14s)
Sample A 0.13 me 6.5 3.1 20 0.26 me 2.2
Sample E 0.12 me 7.3 8.2 60 0.22 me 6.0
Sample D 0.12 me 7.4 2.2 16 n/a n/a

5.4 Magnetic Order

So far the sharp contrast in the quantum oscillation patterns of the superconducting and
non-superconducting Nb-doped Bi2Se3 has been demonstrated. However, there is still
similarities in their magnetic response. Fig. 5.9 shows the magnetic torque of the non-
superconducting crystal (Sample D) and superconducting crystal (Sample A) of Nb-doped
Bi2Se3. Both samples display distinct peaks near µ0H = 9 T. The peaks in the τ - H curves
suggest that the field-driven magnetic transitions in Nb-doped Bi2Se3 do not depend on
superconductivity, nor the electronic state revealed by the high field quantum oscillations.

It is unclear from the torque curve what is the exact nature of the magnetic order. How-
ever, the first study on Nb-doped Bi2Se3 reported an unusual magnetic order and the co-
existence of superconductivity and ferromagnetism [20]. The bump feature in Fig. 5.9
cannot confirm that feature; however, such a magnetic transition has never been seen in
either Cu-doped Bi2Se3 or undoped Bi2Se3.

5.5 Rotational Symmetry Breaking

As discussed in chapter 2, basal plane rotational symmetry breaking has been predicted to
be a sign of odd-parity topological superconductivity. Such a feature has been observed
in Cu-doped Bi2Se3 [13, 14] and Sr-doped Bi2Se3 [19]. This study, which utilizes a com-
pletely new technique, was the first observation of nematic superconductivity in Nb-doped
Bi2Se3 [42].

Though this result is a central aspect of my dissertation research and I made significant
contributions, this project was lead by my colleague Tomoya Asaba who deserves most of
the credit. In this section, I will briefly discuss the key results. For greater detail, see ref.
[42] and its supplemental materials.
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Figure 5.9: (Panel a) The τ - H curves of sample D - the non-superconducting crystal of
Nb-doped Bi2Se3. The magnetic field H is close to the c-axis of the crystal, and the sample
temperature is at 300 mK. (Panel b) The τ - H curves of sample A - a superconducting
crystal of Nb-doped Bi2Se3 under the same conditions. Black arrows indicate a bump in
the torque curve indicative of a magnetic transition.

To measure basal plane rotational symmetry, the torque is measured by mounting the
sample on the cantilever standing on its edge. This serves to keep the external magnetic
field in the sample’s ab plane. A schematic of this set up is shown in Fig. 5.10(a). In addi-
tion, a photograph of the experimental setup is given in Fig. 3.3 and Fig. 3.17 from chapter
3. Then, as the cantilever is rotated, an azimuthal angular dependence of the sample’s
superconducting properties can be studied.

Fig. 5.10(b) shows the crystal structure of Nb-doped Bi2Se3 looking down the crystal c-
axis. The crystal is made of layered hexagons. The azimuthal angle φ is the angle between
the external magnetic field and the x-axis, which is defined to be along the cantilever arm.
XRD was performed on sample A (which was used in this study) to determine the crystal
axes. φ = 0◦, 60◦, and 120◦ correspond to the in-plane mirror lines of the crystal (marked
by dashed lines in Fig. 5.10(b)). The blue arrows in Fig. 5.10(b) are the in-plane crystal
axes (30◦ away from the mirror lines).

In a type-II superconductor, the magnetization as a function of magnetic field shows
hysteresis while in the mixed state. An explanation of this phenomena based on the Bean
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Figure 5.10: Experimental setup, basal plane crystal symmetry, and select torque curves
for basal plane study of NbxBi2Se3. (a) Schematic of the torque magnetometry setup with
field isolated to the ab plane. The azimuthal angle φ is defined as the angle between the
external magnetic field and the cantilever arm (x axis). (b) Crystal structure of NbxBi2Se3

viewed down the crystalline c axis. The dashed lines are the mirror planes of the crystal,
and the blue arrows are the crystal axes. (c) Selected torque curves at 0.3 K at different φ.
The magnitude of the hysteresis loop is maximum near φ = 120◦ and is almost zero at 30◦

and 90◦.

model is given in appendix B. Studying the angular dependence of the magnitude of the
hysteresis (which is related to the critical current density - a property of the superconducting
state) provides a way to probe the basal plane symmetry in the superconducting state.

Figure 5.10(c) shows several magnetic torque curves with evident superconducting hys-
teresis. Black arrows indicated the direction of the field sweep. The torque, τ , is plotted
against the external magnetic field at temperate T = 0.3 K. Unlike quantum oscillations,
which require a high magnetic field to resolve, magnetic hysteresis only occurs below the
upper critical field, Hc2. Therefore, only a low magnetic field is needed. As can be seen,
the whole hysteresis loop appears as the field is swept up and down from -1 T to 1 T.

Even from just a select few curves, a pattern is clear. The magnitude of the hysteresis
loop is almost zero at 30◦ and 90◦, and non-zero at 0◦, 60◦, and 120◦. In addition, it is
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maximum near φ = 120◦. A more thorough look at the angular dependence below will
confirm this periodicity.
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Figure 5.11: (a) An example of the hysteresis in the M −H curve. The definition of M ,
∆M , and χ are given. Note that τ+ (τ−) is the torque signal from the up-sweep (down
sweep) of the magnetic field. (b) Angular dependence of effective susceptibility χ in a
normal state at 0.3 K. The azimuthal angle φ is defined in Fig. 5.10. The open circles
are the negative field data which is equivalent to a 180◦ cantilever rotation. (c) The FFT
plot of the data shown in (b). (d) Angular dependence of effective susceptibility χ in a
superconducting state at 0.3 K. (e) FFT plot of the data shown in (d). The contrast between
the pattern in the normal state and the superconducting state demonstrates the breaking of
the rotational symmetry in the superconducting state.

Figure 5.11(a) shows the definition of the features investigated for rotational symmetry
breaking. This is a plot of the sample’s magnetization, M = τ/µ0H , as a function of
magnetic field. The magnetic torque from the upsweep (downsweep) is defined as τ+ (τ−)
and the corresponding magnetization isM+ (M−). The average magnetizationM = (M++

M−)/2 gives the intrinsic magnetic susceptibility of the sample, χ = dM/dH .
Rotational symmetry breaking should only occur in the superconducting state; therefore

the area in the hysteresis loop, where the sample is in the mixed state, is of interest. By
comparison, outside of the mixed state, where the upsweep and downsweep magnetization
overlap, there should be no basal plane symmetry breaking. Fig. 5.11(b) and (d) show the
magnitude of χ as a function of azimuthal angle φ for the normal state (µ0H = ±0.8 T)
and mixed state (µ0H = ±0.05 T) respectively. The negative field value of the hysteresis
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loop corresponds to a rotation of 180◦ and is represented by open circles.
The FFTs of the angular dependence of χ from Fig. 5.11 panels (b) and (d) are given

in panels (c) and (e) respectively. This gives the periodicity of the magnetic susceptibility
in the normal and mixed states. The dominate peak in the FFT for the normal state is at 6φ
- corresponding to the symmetry of the hexagonal crystal. However, in the mixed state, the
FFT has peaks at 2φ and 4φ, which results from an enhancement of χ along one particular
crystal axis, breaking the rotational symmetry. For more detail on what harmonics in the
FFT are expected, see ref. [42].

The symmetry breaking is even more pronounced in the magnitude of the hysteresis
loop itself defined as ∆Meff = (M+−M−)/2 in Fig. 5.11(a). The angular dependence of
∆Meff at different magnetic fields is shown in Fig. 5.12(a).

0 6 0 1 2 0 1 8 0 2 4 0 3 0 0 3 6 0
- 3 0
- 2 0
- 1 0

0
1 0
2 0
3 0
4 0

 ∆M
eff

= (
M +-M

-)/2
 (1

0-9  Nm
/T)

A n g l e  ( d e g r e e )

 0 . 0 1  T
 0 . 1
 0 . 2
 0 . 3
 0 . 4
 0 . 5

0 5 1 00 . 0 0 0
0 . 0 0 1
0 . 0 0 2
0 . 0 0 3
0 . 0 0 4
0 . 0 0 5

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8
1 E - 5

1 E - 4

0 . 0 0 1

A 4 φ µ0 H  =  0 . 0 5  T

FF
T A

mp
litu

de
 (a

.u.
)

H a r m o n i c s  o f  n

A 2 φ

 A 2 φ

 A 4 φ

( C )

FF
T a

mp
litu

de

µ0 H  ( T )

( B )( A )

Figure 5.12: (a) The angular dependence of the effective magnetization, ∆Meff . The
data were taken at 0.3 K at a few selected H fields. Data taken from the positive field
sweep are plotted as filled symbols, and data from the negative field sweep are plotted as
open symbols. The solid line is the fitting function f(φ) = 2A2φ sin(φ− 30◦) cos 3φ. (b)
FFT of ∆Meff − φ at µ0H = 0.05 T. The first peak, A2φ, is the amplitude of the nematic
order term. (c) The magnetic field dependence of the FFT amplitudes A2φ and A4φ in the
superconducting state of Nb-doped Bi2Se3. The FFT amplitude is plotted in logarithmic
scale for clarity. Above 0.6 T, the superconducting hysteresis loop quickly vanishes as H
approaches the upper critical field.

The FFT of the 0.05 T data in Fig. 5.12(a) shown in panel (b) has the same 2φ-4φ
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feature expected for broken in-plane symmetry. In addition, it is clear from the raw data
in panel (a) that the magnitude of ∆Meff is greatly enhanced along 120◦ and 300◦, a 180◦

difference representing a single nematic axis as predicted by Fu (see chapter 2 section
2.1.3) [12]. Fig. 5.12(c) shows the amplitude of the 2φ and 4φ components as the sample
transitions from the mixed state to the normal state. Though they both dramatically de-
crease, the 2φ component, resulting from the nematic axis, falls of quicker as the sample
approaches the normal state.

Since the amplitude of the 2φ and 4φ components are equal, ∆Meff is fit by the func-
tion f(φ) = 2A2φ sin(φ− 30◦) cos 3φ, which is plotted as a black line in Fig. 5.12(a).
The effective superconducting magnetic moment follows the product of sin(φ− 30◦) and
cos 3φ, rather than the sum of two ordering functions. Therefore, there is a strong cou-
pling between the crystalline symmetry and nematic ordering possibly suggesting that the
nematic order is stabilized by the crystalline symmetry, (i.e. the nematic axis is locked to
one of the mirror planes of the triangular lattice).

The breaking of rotational symmetry can be seen more easily when the data from Fig.
5.12(a) is plotted in polar coordinates. However, when doing so, the information about
the sign is lost. Nonetheless, Fig. 5.13 shows the effective magnetization plotted in polar
coordinates. The polar plot has six lobes reflecting the basal plane crystal symmetry of
NbxBi2Se3 seen in Fig. 5.10(b). However, one axis is clearly enhanced.

Figure 5.13: Data from Fig. 5.12(a) plotted in polar coordinates. The six lobes correspond
to the crystal symmetry, and the nematic axis is evident.

As pointed out in ref. [12], the nematic order verifies the two-component nature of the
superconducting order parameter. Thus, an odd-parity, Eu superconducting order is very
likely to exist in the ground state, which creates promise for topological superconductivity
in Nb-doped Bi2Se3.
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5.6 Discussion

One question that could arise is whether the second family of Fermi pockets are an intrinsic
property of Nb-doped Bi2Se3 or if they comes from crystallized domains of other materials
such as NbSe2, NbSe3, or elemental Nb present in the samples. NbSe3 is not superconduct-
ing unless under pressure, and it shows dominant quantum oscillation frequencies under
100 T [184, 185, 186]. This is much smaller than either Fermi pocket seen in these Nb-
doped Bi2Se3 samples. Moreover, 2H-NbSe2 shows superconductivity, but the Tc = 7.2
K [187] is much higher than the critical temperature in Nb-doped Bi2Se3. Quantum oscil-
lations in 2H-NbSe2 show only one Fermi pocket with F0 = 150 T that increases up to 400
T at ∼80◦ [187, 188]. This is distinctly different from the Fermi surfaces observed here,
suggesting that the dHvA signal in Nb-doped Bi2Se3 is not from unintended crystallization
of NbSe2 and NbSe3. The smallest orbital observed in elemental Nb is 8.1 nm−2 [189, 190]
corresponding to a dHvA frequency of 850 T, which is much higher than the quantum
oscillation frequencies reported here in Nb-doped Bi2Se3.

This leads to an important question: Why does Nb intercalation in Bi2Se3 lead to mul-
tiple Fermi surfaces when Cu and Sr intercalations do not? It is possible that Nb introduces
d-orbital electrons causing the multiple-orbit feature observed in this study. A preliminary
calculation of the band structure suggests the Nb d states are very close to the chemical
potential in Nb-doped Bi2Se3. These results call for a detailed electronic band structure
calculation, the results of which can be compared to the observed quantum oscillation pat-
terns reported here. These further steps will map the exact electronic ground state of the
newly discovered superconductor Nb-doped Bi2Se3.

The observation of the multiple orbits in the superconducting Nb-doped Bi2Se3 also
points to Fermi surface nesting as a possible superconducting mechanism. In many families
of Fe-based superconductors, where unconventional s-wave pairing is believed to exist, the
superconducting pairing mechanism has been attributed to the nesting between electron
and hole pockets [191, 192, 193]. To check this possibility for Nb-doped Bi2Se3, further
experiments are needed to look for the charge density wave that would arise from the Fermi
surface nesting. Such a charge density wave pattern may be detected by scanning tunneling
microscopy or photoemission.
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CHAPTER 6

Conclusion

In conclusion, quantum oscillations are observed in the magnetization of CuxBi2Se3 and
NbxBi2Se3. Based on the quantum oscillation pattern, only one Fermi pocket exists in
CuxBi2Se3; however, for NbxBi2Se3, there are several Fermi pockets showing that Nb
dopants change the band structure of the parent compound. In addition, the second family
of Fermi pockets in NbxBi2Se3 only occur in the superconducting samples. The observation
of this multi-orbital nature reveals the complex electronic ground state of superconducting
Nb-doped Bi2Se3. It also sheds light on the superconducting pairing mechanism in this
unconventional superconductor.

By comparing the quantum oscillations in CuxBi2Se3 with the undoped topological
insulator Bi2Se3, it is found that the doping of Cu increases the carrier density and the
effective mass without changing the mean free path. The Fermi velocity stays the same
after the Cu doping, which implies the band structure is Dirac-like and is not affected by
the insertion of Cu.

Higher field quantum oscillations in CuxBi2Se3 reveal that the single ellipsoidal Fermi
pocket increasingly elongates as carriers are added, going from being a closed ellipsoid
at low carrier concentration to being quasicylindrical at high carrier concentration. This
disagrees with the theory of topological superconductivity developed by Fu and Berg [5].

Therefore, the analysis of the quantum oscillations has cast doubt that CuxBi2Se3 will
be the first topological superconductor. However, given the Dirac-band structure, it is still
a prime candidate in the low doped regime when the Fermi surface is elliptical.

NbxBi2Se3 is an exciting new candidate for topological superconductivity. The ob-
servation of multiple Fermi surfaces fails to answer whether the Fermi surface contains
an odd-number of TRI momenta. However, it does show the unique role of Nb-dopants
as compared to the Cu or Sr dopants. Exotic magnetic transitions at 9 T suggest that
NbxBi2Se3 holds more interesting physics unseen in other doped Bi2Se3 compounds, and
thus it is a worthwhile candidate for further study. Finally, as predicted for Eu topological
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superconductivity, the observation of basal plane rotational symmetry breaking in the su-
perconducting state makes NbxBi2Se3 a platform for exciting new physics. This work is
among the very first studies on NbxBi2Se3.

The properties of CuxBi2Se3 and NbxBi2Se3 are quite different. The later has a much
higher superconducting volume, which is more robust over time. As far as their electronic
properties, they both have an ellipsoidal Fermi surface similar to the parent compound
Bi2Se3. The size of the ellipsoidal pocket in NbxBi2Se3 is similar to Bi2Se3 though it is
much larger in CuxBi2Se3. Despite this, the carrier concentration in NbxBi2Se3 is higher
than in CuxBi2Se3 due to its extra Fermi surfaces. These differences show that though
both materials are candidates for topological superconductivity, they likely host different
physics.
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APPENDIX A

Time-reversal Polarization

An article by Fu and Kane derives equation 1.1 from the time reversal polarization for a one
dimensional insulator [43]. They further argue that this topological invariant is equivalent
to the Z2 topological order that describes the quantum spin hall effect [27, 28]. These results
are novel because the Chern number derived from the change in the charge polarization,
which gives rise to the Hall conductivity of a band insulator, is zero for a TRI system [51,
194, 195]. Here I will go through the derivation of equation 1.1 for a TRI insulator by
looking at a one dimensional insulator.

For a TRI insulator, the Bloch eigenstates come in degenerate Kramers pairs given by

∣∣uIn(−k)
〉

= −eiχk,nΘ
∣∣uIIn (k)

〉
(A.1)

where the indices, I and II , label the Kramer’s pair and the index, n, labels the band.
This is the same as the notation in section 1.2.1 except with the Kramers pairs labeled
explicitly. eiχk,n is the phase factor from the time-reversal operation. Fig. A.1 shows the
bands of a one dimensional insulator with with the time-reversed Kramer’s pairs. Γi are the
TRI momenta.

The Berry vector potential is the defined as

As(k) = i
∑
n

〈usn(k)| ∇k |usn(k)〉 , (A.2)

where s is the Kramer’s index I or II . The charge polarization from one of the Kramer’s
pairs is given by

P s =
1

2π

∮
C

dkAs(k) =
1

2π

∫ Γ2

−Γ2

dkAs(k), (A.3)

where C is a closed loop in the Brillouin zone containing the TRI momenta. The
second equality for a one dimensional insulator holds because of the periodic nature of the
Brillouin zone - the integral from −Γ2 to Γ2 is a closed loop.
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Figure A.1: Bands of a one dimensional insulator. Time-reversed Kramer’s pairs are in
black and gray and denoted by roman numerals I and II . Γi are the TRI momenta.

The total charge polarization, which gives the Chern number in a system that breaks
time reversal symmetry, is then given by

Pρ = P I + P II , (A.4)

and the time reversal polarization, which gives rise to topological properties in TRI
systems, is

PΘ = P I − P II . (A.5)

To calculate PI , equation A.3, which integrates half the bands over the whole Brillouin
zone, can be converted to integrate all the bands over half the Brillouin zone as below

P I =
1

2π

∫ Γ2

−Γ2

dkAI(k)

=
1

2π

∫ Γ2

Γ1

dk(AI(k) + AI(−k))

=
1

2π

∫ Γ2

Γ1

dk(AI(k) + AII(k)−
∑
n

∇kχk,n)

The the last line comes from AI(−k) = AII(k) −
∑

n∇χk,n as worked out explicitly
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in ref. [51] equations (10.39)-(10.41). The gradient of the phase preserves gauge invariance
and arises from inserting equation A.1 into A.2 then utilizing the product rule.

Integrating the last term gives P I to be

P I =
1

2π
[

∫ Γ2

Γ1

dkA(k)−
∑
n

(χΓ2,n − χΓ1,n)] (A.6)

Similarly, P II can be derived to be

P II =
1

2π
[

∫ Γ1

Γ2

dkA(k) +
∑
n

(χΓ2,n − χΓ1,n)] (A.7)

Inserting equations A.6 and A.7 into equation A.5 gives the time-reversal polarization:

PΘ =
1

π
[

∫ Γ2

Γ1

dkA(k)−
∑
n

(χΓ2,n − χΓ1,n)]. (A.8)

This result can be rephrased in terms of the matrix, wmn(k) = 〈um(−k)|Θ |un(k)〉,
given in equation 1.2. To start, utilizing the property that Θ†Θ = −1, A(k) can be restated
as

A(k) = −i
∑
n

〈un(k)|Θ†Θ∇k |un(k)〉 (A.9)

The identity operator I =
∑

n |un(−k)〉 〈un(−k)| can be placed inside equation A.9
yielding

A(k) = −i
∑
n=m

〈un(k)|Θ† |um(−k)〉 〈um(−k)|Θ∇k |un(k)〉 . (A.10)

Then by noting,

∇k 〈um(−k)|Θ |un(k)〉 = 〈∇kum(−k)|Θ |un(k)〉+ 〈um(−k)|Θ |∇kun(k)〉

= 2 〈um(−k)|Θ∇k |un(k)〉 ,

A(k) reduces to

A(k) =
1

2i

∑
n=m

〈un(k)|Θ† |um(−k)〉∇k 〈um(−k)|Θ |un(k)〉 (A.11)

=
1

2i
Tr[w†∇kw]. (A.12)
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Jacobi’s formula gives the relation

∇k det[w] = Tr[adj[w]∇kw], (A.13)

where adj[w] is the adjunct of w defined as wadj[w] = det[w]I . Since w is unitary, this
can be written as

adj[w] = w† det[w]. (A.14)

Thus

A(k) =
1

2i
Tr[w†∇kw] (A.15)

=
1

2i
Tr[

adj[w]

det[w]
∇kw] (A.16)

=
1

2i

Tr[adj[w]∇kw]

det[w]
(A.17)

=
1

2i

∇k det[w]

det[w]
(A.18)

=
1

2i
∇k log[det[w]] (A.19)

= −i∇k log[
√

det[w]] (A.20)

The phase term in equation A.8, can be rephrased in terms of the Pfaffian of w. In terms
of the Kramer’s indices in equation A.1, w can be written as

w =


〈
uI
1(−k)

∣∣∣Θ ∣∣∣uI
1(k)

〉 〈
uI
1(−k)

∣∣∣Θ ∣∣∣uII
1 (k)

〉 〈
uI
1(−k)

∣∣∣Θ ∣∣∣uI
2(k)

〉
. . .

〈
uI
1(−k)

∣∣∣Θ ∣∣∣uII
N (k)

〉〈
uII
1 (−k)

∣∣∣Θ ∣∣∣uI
1(k)

〉 〈
uII
1 (−k)

∣∣∣Θ ∣∣∣uII
1 (k)

〉 〈
uII
1 (−k)

∣∣∣Θ ∣∣∣uI
2(k)

〉
. . .

〈
uII
1 (−k)

∣∣∣Θ ∣∣∣uII
N (k)

〉
.
.
.

.

.

.
.
.
.

. . .
.
.
.〈

uII
N (−k)

∣∣∣Θ ∣∣∣uI
1(k)

〉 〈
uII
N (−k)

∣∣∣Θ ∣∣∣uII
1 (k)

〉 〈
uII
N (−k)

∣∣∣Θ ∣∣∣uI
2(k)

〉
. . .

〈
uII
N (−k)

∣∣∣Θ ∣∣∣uII
N (k)

〉

 (A.21)

At the TRI momenta, −k = k. Then utilizing equation A.1, most of the elements go
to zero leaving only certain off diagonal elements equal to ±eiχΓi,n . w is thus a 2N × 2N ,
antisymmetric matrix with a Pfaffian given by

Pf[w(Γi)] =
∏
n

eiχΓi,n = ei
∑

n χΓi,n . (A.22)

Therefore,

∑
n

(χΓ2,n − χΓ1,n) = −i log[
Pf[w(Γ2)]

Pf[w(Γ1)]
] (A.23)
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Thus by inserting equations A.20 and A.23 into equation A.8, the time-reversal polar-
ization in terms of the matrix w is given by

PΘ =
1

πi
[

∫ Γ2

Γ1

dk(∇k log[
√

det[w]])− log[
Pf[w(Γ2)]

Pf[w(Γ1)]
] (A.24)

After integrating the first term, the time-reversal polarization can be written in a single
logarithm,

PΘ =
1

πi
log[

√
det[w(Γ2)]Pf[w(Γ1)]√
det[w(Γ1)]Pf[w(Γ2)]

] (A.25)

or

eiπPΘ =

√
det[w(Γ2)]

Pf[w(Γ2)]

Pf[w(Γ1)]√
det[w(Γ1)]

. (A.26)

Since the determinate is equal to the Pfaffian squared,
√

det[w(Γi)]

Pf[w(Γi)]
= ±1. Therefore, PΘ

is an integer. The second quotient can be inverted (since it is equal to ±1) to reframe the
result as it is in Fu and Kane [43],

eiπPΘ = (−1)PΘ =

√
det[w(Γ2)]

Pf[w(Γ2)]

√
det[w(Γ1)]

Pf[w(Γ1)]
. (A.27)

Equation A.27 is not gauge invariant; however, the change in the time-reversal polar-
ization due to Kramer’s pairs switching partners (leading to topologically protected surface
states) is gauge invariant and defines a Z2 topological invariant [44].

The change in the time-reversal polarization is clearest to see in 2D. There are four TRI
momenta: (kx,ky): Γ1 = (0,0), Γ2 = (π,0), Γ3 = (0,π), and Γ4 = (π,π).

The one dimensional the time-reversal polarization at ky=0 is

PΘ(ky = 0) =
1

πi
log[

√
det[w(Γ2)]

Pf[w(Γ2)]

√
det[w(Γ1)]

Pf[w(Γ1)]
] (A.28)

and the one dimensional the time-reversal polarization at ky=π is

PΘ(ky = π) =
1

πi
log[

√
det[w(Γ4)]

Pf[w(Γ4)]

√
det[w(Γ3)]

Pf[w(Γ3)]
]. (A.29)

The difference of the one dimensional the time-reversal polarizations at ky=0 and ky =
π is then given by
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ePΘ(ky=π)−PΘ(ky=0) =
4∏
i=1

δi, (A.30)

where δi =

√
det[w(Γi)]

Pf[w(Γi)]
is given in equation 1.1. This change in time-reversal polar-

ization is related to how the Kramer’s pairs at the TRI momenta are connected [44]. A
non-zero change in the time-reversal polarization occurs when the Kramer’s pairs switch
partners leading to an energy band spanning the gap as depicted in fig. A.2. This band
will cross the Fermi level an odd number of times leading to a topologically protected edge
state. This is discussed more thoroughly in ref. [51].
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Figure A.2: Modification of fig. A.1. v is the band number of the top of the valence band,
thus the bands shown are in the gap. The left panel shows the topologically trivial insulator.
In the right panel, Kramer’s pairs switch partners causing an energy band to span the gap.

Equation A.30 is the same as equation 1.8 from chapter 1 section 1.2.1. Thus, PΘ(ky =

π) − PΘ(ky = 0) defines the 2D topological invariant, ν. A similar argument by Fu,
Kane, and Mele in ref. [44] derives equation 1.9 for a 3D topological insulator. This is the
topological invariant used for a 3D topological superconductor.
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APPENDIX B

Bean Model

An external magnetic field kills the superconducting state in a type I superconductor at the
critical field, Hc. However, in a type II superconductor, there is a mixed state between the
lower critical field, Hc1, and the upper critical field, Hc2. For Hc1 < H < Hc2, magnetic
flux penetrates the superconductor creating a lattice of vortices. Due to defects in the
sample, these vortices are pinned in place. In order for the vortices to move, the Lorentz
force from a current near the vortices would need to overcome this pinning force. Thus,
the pinned magnetic flux has an irreversible response to a changing external magnetic field.
This gives rise to hysteresis in the magnetic response of the superconductor.

The Bean model [196, 197] successfully explained the hysteresis feature in type II
superconductors. In this model, we assume that the current density in the superconductor
can only take the values of 0 and Jc, where Jc is the critical current density. Due to the
Ampere’s law, the spacial profile of Jc determines b(x), the magnetic flux density per unit
volume at each location x in the superconductor. Integrating b(x) gives the total magnetic
field density B inside the superconductor.

Figure B.1 shows the magnetic flux density inside the superconductor (represented by
the grey shaded region) for (A) field increasing from H = 0 to H0 and (B) field decreasing
to H0 after an applied external field greater than Hc2. Due to the flux-pinning, the internal
magnetic flux density b(x)/µ0 cannot respond to the change in the sweep direction of the
external magnetic field. Fig. B.1(A) represents the magnetic flux density b(x)/µ0 as the
applied magnetic field is swept up from zero to H0. In this one dimensional analysis,
Jc = 1

µ0
∇b(r) = 1

µ0

db(x)
dx

would be simply the slope of b(x)
µ0

vs. x. The spacial profile of Jc
is constant, as shown in the right panel of Fig B.1(A).

The situation of field-sweeping-down is different. As the applied field is swept from a
large field to the same H0, the b(x)/µ0 profile response lags, as show in Fig. B.1(B).

The magnetization of the sample is given by the difference between the average mag-
netic flux density within the sample, B, and the applied field, H , outside:
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Figure B.1: Schematic of magnetic flux density in type II superconductors. (A) Magnetic
flux density in a type II superconductor as external magnetic field is swept up from H = 0
to H0 > 0 according to the Bean model. The right inset shows a sketch of the critical
current density profile atH0 during the upsweep. MagnetizationM corresponds to the dark
shaded area. (B) Magnetic flux density in a type II superconductor as external magnetic
field is swept down from H > Hc2 to H0. The lagging of the internal magnetic flux density
due to flux pinning gives rise to hysteresis in magnetization. The sample’s critical current
density profile for the down sweep is shown in the right panel.

M =
B

µ0

−H =
1

w

∫
dx
b(x)

µ0

−H (B.1)

where w is the typical width of the domain size in the superconductor, or the sample
size of the whole sample if it has only a single domain. In the case of Panel A, equation
B.1 would be simply the shaded area −wJc which gives M+, the magnetization at field
sweeping up.

Furthermore, the difference between panels A and B demonstrates the hysteresis in the
magnetization of type II superconductors. Going through the same analysis as above, we
find the magnetization of field sweeping down M− = wJc As a result, the hysteresis loop
size ∆M(H) ≡ M+ −M− = 2wJc. Therefore, the measurement of the hysteresis loop is
a direct probe of the critical current density in a type II superconductor.
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