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ABSTRACT 
 

 Atmospheric aerosols have significant impacts on air quality, climate, and human health, yet 

analytical and logistical challenges have limited our ability to measure these aerosol particles, 

particularly in remote regions. In this dissertation, individual atmospheric particles were 

chemically characterized in rural northern Michigan and remote northern Alaska for the first 

time. To enable this measurements, Chapter 2 details the construction and characterization of an 

updated aircraft-capable aerosol time-of-flight mass spectrometer (A-ATOFMS), capable of 

measuring size-resolved chemical composition of 0.07 – 1.6 µm individual particles up to 40 Hz 

with lower mass (~25 kg saved) and power (~600 W saved) consumption than the previous A-

ATOFMS. Chapter 3 discusses size-resolved chemical composition of atmospheric aerosols in 

northern Michigan while the site was influenced by Canadian wildfire, urban, and local forest air 

masses. Throughout the study, long-range transported biomass burning aerosols were the cores 

of particles primarily consisting, by mass, of secondary organic aerosol from the oxidation of 

volatile organic compounds emitted from both wildfires and forests. In Chapter 4, we identified 

14 periods of ultrafine particle growth at the same field site. Urban air mass influence during the 

daytime led to the highest observed growth rates, likely due to increased atmospheric oxidant 

levels producing condensable material. Nighttime wildfire air masses were likely influenced by 

increased SO2 and NO2 in the plumes leading to NO3 radical oxidation. TEM-EDX showed 

contributions from sulfur, carbon, and oxygen down to 20 nm particles, suggesting contributions 

from H2SO4 and SOA. As particle growth was previously thought to be suppressed in this 

isoprene-rich forest, these measurements represent a source of particles not previously 

considered in this environment.  

 Chapters 5 – 6 discuss the results from field campaigns conducted in the Alaskan Arctic. In 

Chapter 5, I show results of A-ATOFMS and scanning electron microscopy with energy-

dispersive x-ray spectroscopy (SEM-EDX) analyses of atmospheric particles transported to 

Utqiaġvik, AK from the Prudhoe Bay oil fields, located hundreds of kilometers to the east, in 
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comparison to the pristine Arctic Ocean background. During Arctic Ocean influence, fresh sea 

spray aerosol (SSA) was the primary contributor to aerosol number concentrations, compared to 

transported organic carbon and aged SSA particles during Prudhoe Bay air masses. Chapter 6 

details the 2016 field campaign within the Prudhoe Bay oil fields, where we deployed the A-

ATOFMS to characterize local oil field combustion plumes and the overall oil field background 

aerosol population; these were the first single particle measurements within an Arctic oil field. 

Diesel and natural gas combustion were the major influences on the aerosol population, with 

unique amine-containing particles identified from the processing of natural gas. Overall, the 

results from these field campaigns, aided by the newly constructed A-ATOFMS, provided new 

insights into the chemical composition of local and transported atmospheric particles on rural 

and remote environments influenced by the changing climate. 
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Chapter 1. Introduction 
 

1.1. Characteristics of Atmospheric Particulate Matter 

Atmospheric particles, especially particulate matter less than 2.5 µm in diameter (PM2.5), 

can impact climate, health and air quality (Pöschl, 2005; Calvo et al., 2013; Pöschl and Shiraiwa, 

2015). Atmospheric particle number distributions show the majority of particles are less than 100 

nm, though contributions by mass are primarily between 100 – 1000 nm (Seinfeld and Pandis, 

2016). Particles less than 100 nm will have a larger impact on health due to their ability to travel 

further into the body and enter the lungs and bloodstream (Brook et al., 2004; Pope and Dockery, 

2006). PM2.5 can originate from natural sources, such as the ocean, or anthropogenic sources, 

such as vehicular combustion. Particulate matter is classified as primary, or directly emitted from 

a source such as forest fires, or secondary, formed in-situ in the atmosphere from species such as 

sulfuric acid and low volatility biogenic gases (Pöschl, 2005; Kulmala et al., 2004; Sipila et al., 

2010; Jayne et al., 2000; Jokinen et al., 2015). PM2.5 directly impacts the climate either by 

absorbing or scattering incoming solar radiation, or indirectly by acting as cloud condensation 

nuclei (CCN) or ice nuclei (IN) (IPCC, 2013). Increased levels of PM2.5 are also linked to 

negative health effects (Pope and Dockery, 2006). Particles of different chemical composition 

have vastly different impacts. For example, a hygroscopic particle, such as sea salt, will act much 

more readily as a CCN and have a larger indirect effect on the climate (O'Dowd et al., 1997). On 

the other hand, soot particles will readily absorb incoming solar radiation, leading to a warming 

effect (Koch et al., 2009; Bond et al., 2013; Moffet and Prather, 2009); whereas, other particle 

types, such as ammonium sulfate, will readily scatter the incoming light and lead to a cooling 

effect (Kiehl and Briegleb, 1993; Haywood and Boucher, 2000).  

PM2.5 impacts are not limited to the area surrounding their source, and PM2.5 can be 

transported to influence locations hundreds of kilometers away (Uno et al., 2009). Transported 

emissions will impact the aerosol populations in these locations, which can lead remote areas to 

be out of compliance with National Ambient Air Quality Standards (NAAQS) standards 
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(Dreessen et al., 2016; National Research Council and National Academies, 2010). 

Characterizing the impact of these transported particles and the changes in their properties 

occurring during transport is necessary to predict air quality and climate changes (Calvo et al., 

2013). During transport, particles can undergo heterogeneous reactions and gas-particle 

partitioning, forming secondary species such as water, ammonium, nitrate, sulfate, and oxidized 

organic carbon (Moffet and Prather, 2009; Riemer and West, 2013). This leads to internally 

mixed particles, where different chemical species are within the same particle, or externally 

mixed particles, where chemical species are contained within different particles (Riemer and 

West, 2013; Ault and Axson, 2017). Changes in particulate chemical composition impacts 

properties such as reactivity, hygroscopicity, toxicity, scattering and absorption (Pöschl, 2005; 

Brook et al., 2004; Calvo et al., 2013; Fierce et al., 2016; Furutani et al., 2008). However, 

assessing the impacts of individual particle mixing state is complex. Many modeling and field 

studies have found that when sulfate or oxidized organic carbon is internally mixed with soot, 

particle absorption is increased (e.g. Knox et al., 2009; Liu et al., 2015; Moffet and Prather, 

2009; Ramanathan and Carmichael, 2008); however, other studies have found that there may not 

be significant enhancement of absorption (e.g. Cappa et al., 2012; Healy et al., 2015). Therefore, 

obtaining measurements of particle mixing state and associated particle properties is essential for 

understanding the complex impacts of aerosols on climate (Matsui et al., 2013; Bauer et al., 

2013).  

 

1.2. Impacts of Climate Change on Natural and Anthropogenic Aerosol Production 

 While climate change has been impacting areas around the globe for decades, this 

dissertation will focus on two distinct impacts of climate change. First, increased wildfire 

activity has been impacting the United States and Canada due to increasing temperatures in 

wildfire-active regions (Gillett et al., 2004; Knorr et al., 2016; Liu et al., 2010; Veira et al., 

2016). Wildfires emit large quantities of PM2.5, primarily organic carbon particles, which can 

have impacts on surrounding areas as well as areas far away through long range transport 

(Hudson et al., 2004; Pratt et al., 2010). They are also a major contributor of volatile organic 

compounds (VOCs), which can undergo oxidization and form secondary organic aerosol (SOA) 

through condensation onto existing particles (Jaffe and Wigder, 2012; Andreae and Merlet, 

2001). In fact, models predict that on a national level wildfire emissions are currently the largest 
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contributor of SOA to PM2.5 by mass (Jathar et al., 2014). Ozone is also often produced within 

these plumes, which can lead to areas far away from the source being out of compliance with 

ozone regulatory standards (Hu et al., 2008; Jaffe and Wigder, 2012; Lu et al., 2016). With 

wildfire activity expected to continue increasing due to increasing temperatures and precipitation 

changes (Liu et al., 2010), it is important to characterize the contributions of long-range 

transported wildfire emissions to the upper Midwest US atmosphere in order to inform air quality 

modeling efforts (Smith and Mueller, 2010).  

Elevated global temperatures have also made the Arctic more vulnerable to an increase in 

oil and gas extraction; the melting of Arctic sea ice (Overland and Wang, 2013; Wang and 

Overland, 2015) has made the area more accessible for increased shipping traffic and extraction 

activities (Harsem et al., 2015; Allison and Bassett, 2015). With 30% of the world’s 

undiscovered gas and 13% of undiscovered oil thought to be in the Arctic (Gautier et al., 2009), 

increased access to the open waters is making this area very attractive for further oil and gas 

extraction activities, adding local pollutants to the atmosphere. The major PM emissions from oil 

and gas extraction are soot and organic carbon (Peters et al., 2011). Modeling conducted by Sand 

et al. (2013) predicted that soot emitted within the Arctic will have as much as a factor of five 

greater warming impact compared to transported soot. With soot estimated to be under predicted 

by models in the Arctic by a factor of 2.5 (Koch et al., 2009; Bond et al., 2013), accurately 

quantifying soot, along with other particulate emissions, is critical to fully understand the 

impacts that oil and gas extraction emissions will have on the Arctic. 

 

1.3. Measurements of Bulk Aerosol Properties  

 The measurement of atmospheric particles is a challenge due to their complex and evolving 

nature. Their chemical composition, and therefore properties, is constantly changing, as particles 

can react with other species in the atmosphere, such as oxidants, and have species partition 

between gas and particle phases. The chemical composition of particles can be determined 

through bulk or single particle measurements (Figure 1.1., Prather et al., 2008). One of the most 

common online bulk measurement techniques is the Aerodyne aerosol mass spectrometer 

(AMS), where particles are collected onto a tungsten filament where they undergo thermal 

particle vaporization and electron impact ionization (Jimenez et al., 2003; Jayne et al., 2000). 

The AMS typically measures size-resolved chemical composition of non-refractory PM less than 
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1 micron in diameter (PM1), with collection of mass spectra at a rate of up to 100 Hz and typical 

data reporting intervals of 1 – 5 minutes. Offline bulk measurements are typically achieved 

through filter-based sampling, followed by extraction and analysis using methods such as gas or 

liquid chromatography coupled with mass spectrometers (Pratt and Prather, 2012a). Since offline 

measurements are not completed in real-time, artifacts can occur, such as the evaporation of 

semivolatile aerosol components, as well as heterogeneous reactions on the filters. Also, time 

resolution is limited by how often the filter is changed, typically multiple hours to days. High 

time resolution is necessary to observe changes in particles due to rapidly changing conditions, 

such as shifts in wind direction. As these are bulk measurement techniques, they provide an 

average chemical composition of the particles and can identify contributing sources using tracer 

compounds (e.g. Sheesley et al., 2004), but the characteristics of each individual particle cannot 

be isolated. Also, a major drawback of bulk measurements is the inability to measure individual 

particle mixing state. Using single particle measurement techniques, individual particle mixing 

states can be determined through both offline and online techniques. 

 

Figure 1.1. Comparison of mass spectra obtained using (a) bulk ensemble analysis versus (b) 
single-particle analysis. The interpretations of the bulk versus single-particle analyses are 
shown below. (Figure 1.1 reprinted with permission from Prather, K.A., Hatch, C.D., 
Grassian, V.H. Analysis of Atmospheric Aerosols. Annual Review of Analytical Chemistry, 
2008. 1:16.1-16.30.) 
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1.4. Off-line Chemical Characterization of Individual Aerosol Particles  

  For offline single particle measurements, particles are collected on substrates using an 

impactor, such as a multiple orifice uniform deposition impactor (MOUDI, MSP Corp.) or a 

microanalysis particle sampler (MPS, California Instruments). These types of impactors collect 

particles on size-resolved stages, allowing analysis to be focused on certain particle size ranges. 

Applying offline single particle measurements of these collected particles, particle morphology 

and the distribution of chemical species within each particle can be measured (Ault and Axson, 

2017). In addition, non-destructive techniques allow for the same samples to undergo multiple 

analyses. Many different types of offline single particle measurements are commonly used, 

including electronic spectroscopy, x-ray techniques, optical microscopy, and vibrational 

spectroscopy, detailed thoroughly in a recent review by Ault and Axson (2017). This dissertation 

utilizes electronic spectroscopy, particularly scanning electron microscopy (SEM) and 

transmission electron microscopy (TEM), both coupled with energy dispersive X-ray (EDX) 

spectroscopy. 

  SEM can collect detailed morphological images of single particles down to ~100 nm (Laskin 

and Cowin, 2001). These images result from the interaction of the particle with a beam of 

electrons (Ault and Axson, 2017). Computer-controlled SEM automates the collection of these 

particle images, allowing for substantially more particles to be analyzed with ease (Laskin and 

Cowin, 2001). TEM has much greater spatial resolution than SEM, allowing for the analysis of 

~20 nm particles (Prather et al., 2013); however, it has not yet been automated making the 

collection of a large number of particles time consuming. When SEM and TEM are coupled with 

EDX, semi-quantitative chemical information can be obtained by measuring element specific X-

rays emitted during interactions between the particle and the electron beam. By rastering across 

the entire particle, spatially-resolved (<10 nm) chemical composition can be measured (Conny 

and Norris, 2011). This allows for not only the measurement of individual particle mixing state, 

but where these species are located within individual particles as well. Elemental mapping can 

give information on the heterogeneity of the particles, which influence particle properties, such 

as the ability to scatter and absorb radiation, particle toxicity, and particle reactivity (Conny and 

Norris, 2011). Both SEM-EDX and TEM-EDX have been used to analyze particles from both 

field and laboratory studies around the world (e.g. Niemi et al., 2006; Ault et al., 2013; Ault et 

al., 2014; Gunsch et al., 2017; Adachi and Buseck, 2008; Krueger et al., 2004). However, these 
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offline techniques require samples to be impacted on substrate, which can change particle 

morphology through spreading, splattering or fragmenting. These samples also need to be 

transported and then stored for periods of days to years, which could potentially impact the 

chemical composition of the particles due to chemical reactions occurring on these particles after 

collection.  

 

1.5. On-line Chemical Characterization of Individual Aerosol Particles through Single 

Particle Mass Spectrometry 

 Almost 50 years ago, the ideal aerosol instrument was described as one that can 

simultaneously measure the size and chemical composition of aerosol particles in real-time 

(Friedlander, 1970). This idea began to be realized in the 1980’s, when an instrument capable of 

these measurements was first proposed (Marijnissen et al., 1988), followed by their development 

in the early 1990’s (Prather et al., 1994; Hinz et al., 1994). While there are many different single 

particle mass spectrometers in use today, both commercially and custom built, most share 

common characteristics (Pratt and Prather, 2012b; Murphy, 2007). All single particle mass 

spectrometers have an inlet, either an aerodynamic lens or nozzle, for aerosols to enter and be 

focused into a tight beam in the instrument. This is typically, though not always, followed by a 

particle sizing region, either using a one laser configuration that sizes particles based on scattered 

light, or two lasers which measure the velocity of the particle based on the transit time between 

them, which can be calibrated to standards of known particle size. Finally, the particles enter a 

time-of-flight mass spectrometer, where the particles undergo laser desorption and ionization, 

with either single or dual polarity mass spectra collected by the mass analyzer. Previous reviews 

have described these instruments in detail (Noble and Prather, 2000; Pratt and Prather, 2012b; 

Murphy, 2007); here, a brief description of some common single particle mass spectrometer 

designs is provided. 

 

1.5.1. Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) 

 The ATOFMS was originally designed in Kimberly Prather’s lab in the early 1990’s at the 

University of California – Riverside, and it was one of the first online single particle mass 

spectrometers developed (Prather et al., 1994). While it has undergone decades of refinement, 

the basic operating principles have stayed the same. A thorough description of the instrument can 
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be found in Chapter 2. Briefly, particles enter the instrument through a nozzle or aerodynamic 

lens system, accelerating the particles to terminal velocity and focusing them in a beam. They 

continue into the sizing region of the instrument, where particle velocity is measured based on 

the time it takes to traverse two continuous wave lasers spaced a set distance apart. This can be 

calibrated to particle diameter based on the velocity of polystyrene latex spheres of a known size 

and density. The particles then continue into the time-of-flight mass spectrometer, where the 

particle is desorbed and ionized by a 266nm Nd:YAG laser triggered based on the particle 

velocity calculated in the sizing region, producing both positive and negative ion mass spectra 

for each particle. 

The ATOFMS has undergone five major revisions following the first ATOFMS 

described in 1994 (Prather et al., 1994). In 1997, the second generation of the ATOFMS was 

finished, resulting in dual polarity mass spectra and a field portable instrument (Gard et al., 

1997). This was followed by a third generation in 1999, used as a prototype for the TSI 3800, the 

first commercially available ATOFMS. In 2009, a description of the fourth generation ATOFMS 

Figure 1.2. Simplified schematic of A-ATOFMS with notable regions outlined. See Chapter 
2 for detailed description. 
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was published, a much more compact ATOFMS (reduction of volume by 57%, length by 69% 

and weight by 33%) and the first ATOFMS capable of operation on an aircraft (A-ATOFMS, 

Figure 1.2.) (Pratt et al., 2009b). The A-ATOFMS utilizes a Z-configuration dual polarity time-

of-flight mass spectrometer, greatly reducing the overall footprint of the flight tubes, while also 

increasing ion transmission and resolution. A fifth generation ATOFMS was recently built in the 

Pratt lab based on the design of the A-ATOFMS and is described in Chapter 2 of this thesis. To 

date, the ATOFMS has been used in numerous ground, flight and ship-based field campaigns 

around the world (e.g. Pratt et al., 2009a; Silva et al., 1999; Liu et al., 2003; Qin et al., 2012; 

Gunsch et al., 2017; Sierau et al., 2014). 

   

 

1.5.2. Other Single Particle Mass Spectrometers 

The design of single particle mass spectrometers has varied since their initial conception 

(Table 1.1). Two notable examples of different designs are the Particle Analysis by Laser Mass 

Spectrometry (PALMS) and the Single Particle Laser Ablation Time-of-flight mass spectrometer 

(SPLAT). The PALMS was developed by Daniel Murphy at the National Oceanic and 

Table 1.1. Comparison of single particle mass spectrometers, with published work in the last 
five years. 
 Instrument Inlet	Type

Aerodynamic	
Size	Range	(μm) Particle	Sizing	Method Ionization	Method

Single	or	Dual	
Polarity	Mass	
Spectrometer Notes References

Nozzle	ATOFMS Nozzle 0.2	-	3.0 Aerosol	time	of	flight
266	nm	Nd:YAG							

(20	Hz) Dual
Prototype	for	TSI	3800	

ATOFMS Gard	et	al.,	1997

UF-ATOFMS Aerodynamic	lens 0.05	-	0.3 Aerosol	time	of	flight
266	nm	Nd:YAG							

(20	Hz) Dual
First	ATOFMS	with	
aerodynamic	lens Su	et	al.,	2004

A-ATOFMS	(Prather	Lab) Aerodynamic	lens 0.09	-	1.2 Aerosol	time	of	flight
266	nm	Nd:YAG							

(50	Hz) Dual Capable	of	use	in	aircraft. Pratt	et	al.,	2009
A-ATOFMS	

(supermicron	aerosol	
lens) Aerodynamic	lens 4.0	-	10 Aerosol	time	of	flight

266	nm	Nd:YAG							
(50	Hz) Dual

New	aerodynamic	lens	on	
previous	A-ATOFMS Cahill	et	al.,	2014

A-ATOFMS	(Pratt	Lab) Aerodynamic	lens 0.07	-	1.6 Aerosol	time	of	flight
266	nm	Nd:YAG					

(100	Hz) Dual
Based	on	design	of	
previous	A-ATOFMS. Chapter	2,	this	thesis

PALMS Aerodynamic	lens 0.15	-	2.0 Aerosol	time	of	flight 193	nm	excimer Single

Capable	of	use	in	NASA	
WB-57F	and	NOAA	P3	

aircraft.
Thomson	et	al.,	2000	
Cziczo	et	al.,	2006

SPLAT	II Aerodynamic	lens 0.05	-	3.0 Aerosol	time	of	flight
two	step	CO2	(10.6	
μm)	and	UV	(193	nm) Dual

miniSPLAT	was	developed	
with	reduced	footprint.

Zelenyuk	et	al.,	2009	
Zelenyuk	et	al.,	2015

NAMS Aerodynamic	lens 0.01	-	0.03 Ion	trap 532	nm	Nd:YAG Single

Particles	are	not	sized,	
however	size	can	be	

selected	by	quadrupole.
Wang	et	al.,	2006							
Horan	et	al.,	2017

LAMPAS-3
Aerodynamic	lens	or	

nozzle 0.2	-	2.5 aerosol	time	of	flight 337	nm	laser Dual
Previous	models	include	
LAMPAS	and	LAMPAS-2 Hinz	et	al.,	2011

ALABAMA Aerodynamic	lens 0.15	-	0.9 aerosol	time	of	flight
266	nm	Nd:YAG									

(5	Hz) Dual
Particle	sizing	uses	fiber	

optic	lasers. Brand	et	al.,	2009

SPAMS	3.0 Aerodynamic	lens 0.1	-	12* laser	light	scattering 248	nm	excimer Dual

Commercially	available	
from	Livermore	
Instruments.	

*Characterization	not	
available Livemoreinstruments.com

SPAMS	0515-R Aerodynamic	lens 0.25	-	2.0 aerosol	time	of	flight
266	nm	Nd:YAG							

(50	HZ) Dual

Commercially	available	
from	Hexin	Mass	
Spectrometry Li	et	al.,	2011

LAAPTOF Aerodynamic	lens 0.1	-	1.0 aerosol	time	of	flight 193	nm	excimer Dual
Commercially	available	
from	Aeromegt,	GmbH Gemayel	et	al.,	2017
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Atmospheric Administration Earth Research Laboratory (NOAA ERL) and obtains single 

polarity (either positive or negative ion) mass spectra for individual particles 0.3 – 16 µm in 

diameter (Murphy and Thomson, 1995). Particles enter the PALMS through a differentially 

pumped inlet, perpendicular to the scattering and ionization laser. Particles pass through and 

scatter a 532 nm continuous wave laser, and the scattered light is collected and used to obtain the 

approximate diameter of the particles. This is also used as a trigger for the 193 nm excimer laser, 

which desorbs and ionizes individual particles. Unlike the 266 nm Nd:YAG desorption and 

ionization (DI) laser used on the ATOFMS, an excimer laser does not require a flash lamp to 

charge and can therefore immediately fire following particle detection. However, the 193 nm 

excimer laser causes a higher degree of fragmentation of compounds compared to the 266 nm 

laser, limiting the information obtained about particle chemistry, particularly for organic 

compounds (Murphy, 2007). As the 193 nm laser operates at high photon energy (6.42 eV) 

compared to the 266 nm laser (4.66 eV), mass spectrometers incorporating the 193 nm laser are 

able to characterize species that are unable to be ionized by the 266 nm laser, such as ammonium 

sulfate, allowing more quantitative characterization (Murphy, 2007). However, increased 

fragmentation of organic compounds occur (Murphy, 2007; Pratt and Prather, 2012b). In later 

versions of the PALMS (Thomson et al., 2000), the inlet was replaced with an aerodynamic lens 

in order to increase the transmission of smaller particles (yet limiting particle analysis to 0.2 – 3 

µm), and the 532 nm Nd:YAG laser was split into two beams to provide particle velocity based 

on particle transit time, similar to the ATOFMS. Sizing particles using transit time between two 

lasers has been shown to be the more accurate measurement of size compared to the collection of 

scattered light due to variance in the amount of scattered light based on the spatial orientation of 

the particle when it scatters the laser beam (Murphy, 2007). This later version of the PALMS is 

also an aircraft compatible single particle mass spectrometer (SPMS) similar to the A-ATOFMS; 

however it can only be installed into the nose of the NASA WB-57F research plane or the wing 

pod of the NOAA P-3, limiting the availability to only these planes.  

 The SPLAT was developed in Alla Zelenyuk’s lab at Pacific Northwest National Laboratory 

(PNNL) in 2005, and it has since undergone two revisions (SPLAT II and miniSPLAT, both 

aircraft capable instruments) (Zelenyuk and Imre, 2005; Zelenyuk et al., 2009; Zelenyuk et al., 

2015). Similar to the ATOFMS, the SPLAT uses an aerodynamic lens for the inlet and two 

continuous wave lasers for particle sizing. Instead of an Nd:YAG, the SPLAT typically utilizes a 
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combination of a pulsed CO2 infrared (9.4 µm) laser to vaporize semi-volatile species and an 

excimer (193 nm) laser to ionize the resulting plume as well as non-volatile components, in order 

to reduce fragmentation of organic compounds. SPLAT II and miniSPLAT both follow these 

same general principles with a reduced footprint. SPLAT and SPLAT II both produce single 

polarity (either positive or negative) mass spectra, whereas miniSPLAT uses a Z-configuration 

dual-polarity time-of-flight mass spectrometer, similar to the A-ATOFMS.  

 Various other single particle mass spectrometers are in use today, all roughly based on one of 

the designs above. The Rapid Single Particle Mass Spectrometer (RSMS) was one of the first 

SPMS instruments, however, it did not include particle sizing (Carson et al., 1995). It later 

underwent revisions (RSMS-II) to include particle sizing (Phares et al., 2002); however presently 

it has been repurposed as the Nano Aerosol Mass Spectrometer (NAMS), capable of measuring 

the chemical composition (but not size) of individual particles less than 10 nm (Horan et al., 

2017; Pennington and Johnston, 2012; Wang and Johnston, 2006; Wang et al., 2006). The LAser 

Mass analyzer for Particles in the Airborne State (LAMPAS) was developed around the same 

time as the original ATOFMS (Hinz et al., 1994) and was notably the first SPMS to collect dual 

polarity mass spectra (Trimborn et al., 2000). It has since undergone two major revisions 

(LAMPAS 2 and LAMPAS 3), reducing the volume of the instrument in order to fit into a single 

19” rack typically used on aircraft missions (Trimborn et al., 2000; Hinz et al., 2011). The 

Aircraft-based Laser Ablation Aerosol Mass Spectrometer (ALABAMA) is one of the most 

recently developed single particle mass spectrometer, which operates on similar principles to the 

ATOFMS (Brands et al., 2011). Several commercial SPMS are now sold today, including the 

Laser Ablation of Aerosol Particles Time of Flight Mass Spectrometer (LAAPTOF, AeroMegt 

GmbH), Livermore Instrument’s Single Particle Aerosol Mass Spectrometer 3.0 (SPAMS 3.0), 

and Hexin Mass Spectrometry’s Single Particle Aerosol Mass Spectrometer (SPAMS 0515-R). 

The LAAPTOF follows a similar design of the PALMS using a split 532 nm continuous wave 

laser for sizing and a 193 nm excimer laser for particle ablation. The SPAMS 3.0 and SPAMS 

0515-R operate similar to the ATOFMS and use a 266 nm laser for particle ablation triggered 

based on particle velocity.  
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1.6. Goals of Dissertation 

 This dissertation focuses on using single particle chemical composition to investigate aerosol 

populations in rural environments impacted by the changing climate. Chapter 2 details the design 

and operation of the newest aircraft-capable aerosol time-of-flight mass spectrometer (A-

ATOFMS), built in the Pratt Lab. Chapter 3 describes the characterization of long-range 

transported aerosols in remote northern Michigan using the TSI 3800 ATOFMS. Chapter 4 

details how these same long-range influences impact particle growth in remote northern 

Michigan, with these particle growth events characterized using aerosol size distribution 

instrumentation and chemically characterized through TEM-EDX of individual particles. Chapter 

5 describes the size-resolved chemical characterization of individual atmospheric particles from 

within the Prudhoe Bay oil fields located in the Arctic, using the newest A-ATOFMS. Chapter 6 

details the chemical characterization of particles transported from Prudhoe Bay to Utqiaġvik, 

AK, located over 250 km away, using A-ATOFMS and SEM-EDX. Finally, Chapter 7 concludes 

the dissertation and discusses the future directions of on-going projects. Appendix 1 contains 

FAA certification documents necessary for the use of the A-ATOFMS within aircraft.  
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Chapter 2.  

Construction and Characterization of a Second Generation Aircraft Aerosol 

Time-of-Flight Mass Spectrometer 
 

2.1 Introduction  

The aerosol time-of-flight mass spectrometer, a single particle mass spectrometer 

developed by Kimberly Prather’s labs at the University of California – Riverside and San Diego, 

measures the size and chemical composition of individual aerosol particles in real-time (Cahill et 

al., 2014; Gard et al., 1997; Prather et al., 1994; Pratt et al., 2009b; Su et al., 2004). The 

ATOFMS provides dual-polarity time-of-flight mass spectra for individual particles from 50 nm 

to 10 µm, depending on the configuration (Cahill et al., 2014; Gard et al., 1997; Pratt et al., 

2009b; Su et al., 2004). The description of a compact, aircraft-capable version of the ATOFMS 

was published in 2009 (Pratt et al., 2009b),; the A-ATOFMS features reduced footprint and 

weight, while increasing performance, and has been used for numerous ground and aircraft-based 

studies (e.g. Creamean et al., 2013; Pratt et al., 2009a). As part of this dissertation, an updated 

version of this A-ATOFMS was constructed, using upgraded technology and lower wavelength 

sizing lasers, increasing characterization down to 70 nm particles, and doubling the maximum 

theoretical data collection rate while lowering the weight and power consumption of the 

instrument. In this chapter, the design, upgrades, and performance of the updated A-ATOFMS, 

built in the Pratt Lab, are discussed. This updated A-ATOFMS was deployed during 2015 and 

2016 to the Alaskan Arctic (Chapters 5 and 6), providing valuable insights onto particulate 

matter contributions from Arctic oil and gas extraction.  

 

2.2 Experimental 

2.2.1. Design of the A-ATOFMS 

A field-capable instrument requires a high data acquisition rate in order to obtain the 

necessary time resolution to distinguish different atmospheric sources that quickly pass (e.g. 
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moving plume, nearby vehicles, etc.). Atmospheric aerosols enter the A-ATOFMS (Figures 1.2 

and 2.1) through a 1.5 mCi 210Po neutralizer (3 x Staticmaster 1400, Amstat Industries Inc, 

custom built enclosure), which imparts a Boltzmann distribution of charges on the aerosol 

population. Particles then pass through an orifice with an opening of 75 - 100 µm, depending on 

the aerodynamic lens system in use (Section 2.3.2.1), at ~0.1 L/min. Particles continue into the 

aerodynamic lens system (ALS), consisting of a relaxation chamber, orifice disks of varying 

sizes, and an accelerating nozzle, which collimates the particles into a tight beam. Two 

aerodynamic lens systems were constructed and tested with the A-ATOFMS: one with a 

cylindrical relaxation region and six orifices of decreasing internal diameter (ALS A) and one 

with a conical relaxation region and seven orifices spaced 30 mm apart (ALS B). A conical 

relaxation region is preferable as it limits losses of large particles impacting onto the walls 

(Zhang et al., 2004). When using ALS B during both aircraft and ground studies, a pressure-

controlled inlet based on the design of Bahreini et al. (2008) needs to be used in order to set the 

upstream pressure to 4.8 torr. The aerodynamic lens system is installed within a moveable dome, 

Figure 2.1. Picture of the A-ATOFMS within the Pratt 
Lab. 
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which allows for adjustment to the alignment of the aerodynamic lens. A stationary dome can 

also be used, which removes this adjustment ability while increasing the overall stability and 

decreasing the weight of the instrument; however, initial tests indicated that our aerodynamic 

lens requires the adjustment from the moveable dome to transmit the particles down the center of 

the light scattering region. Four Agilent TwisTorr 84 turbomolecular pumps, operating at 66 L/s, 

are used on the dome, replacing the previous Agilent V70 pumps. These pumps have reduced 

weight (~2 lbs less each, including the controller) and power consumption (~0.2 amps less each). 

While it is optimal to use four turbomolecular pumps for pumping the dome, the instrument can 

function with only two of these pumps active (though it increases the stress on the active pumps). 

This allows for greater flexibility for weight restrictions during flight campaigns. A Pirani 

Vacuum Sensor Series 917 (MKS) is used to monitor the pressure of this region. The particle 

beam exits the dome through a 1.0 mm diameter skimmer and continues into the particle sizing 

region of the instrument. 

  The particle sizing region consists of two orthogonal continuous wave lasers, focused 

using plano-convex lenses (KPX055-C, Newport), vertically spaced 6 cm apart. The particle 

beam travels perpendicular to the two lasers and as a particle passes by the first laser beam from 

a 50 mW 488nm laser (OBIS, Coherent Inc.), the scattered light is focused using an elliptical 

mirror (Optiforms) onto a photomultiplier tube (PMT, U10721-110, Hamamatsu). The scattering 

signal is amplified to a +5V square wave and sent to the timing circuit, beginning a timing 

sequence. The particle continues and scatters the light of a 50 mW 405 nm laser (OBIS, 

Coherent, Inc) with the scattered light similarly focused into a second PMT, the action of which 

triggers stopping the timing sequence. In the future, the scattered light waveform will be 

optionally collected using a digitizer (Express OSCAR 12-bit, GaGe) to further investigate 

particle density and refractive index (Moffet and Prather, 2005). Particle velocity is calculated by 

the time it takes the particle to traverse the 6 cm spacing of the two lasers. Particle velocity is 

then converted to particle vacuum aerodynamic diameter by applying a calibration of the 

velocities of polystyrene latex spheres (Polysciences, Inc.), with known diameter, shape, and 

density, using a 5th power polynomial (Figure 2.2). Below 300 nm, particle velocity is fit to a 

power regression (Figure 2.2). For a quick fit to visualize the data in real-time within the A-

ATOFMS software, the particle diameter calibration curve is fit to a power regression. The 
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particle sizing region is pumped by one TwisTorr 84 (Agilent), and the pressure is monitored by 

a 925 MicroPirani (MKS).  

 

The particle beam exits the particle sizing region and enters the mass spectrometer, a 

second generation Z-configuration dual-polarity reflectron time-of-flight mass spectrometer 

(ZTOF, Tofwerk). The ZTOF is separated from the aerodynamic sizing region by a ball valve, 

allowing the ZTOF to be isolated in case of vacuum loss. Based on particle velocity, a Q-

switched 100 Hz 266 nm Nd:YAG laser (Centurion, Quantel Inc), operating at ~1 mJ, is 

triggered by the timing circuit to desorb and ionize the single particle. A series of pins and 

jumpers have been added to the timing circuit to control the Nd:YAG laser makeup pulses, 

replacing the previous dial. These makeup pulses just fire the LED within the Nd:YAG laser, 

keeping it warmed up in low particle concentrations. However, these makeup pulses can interfere 

with “real” laser shots, leading to missed particles. These jumpers allow the timing circuit to be 

pre-programmed with up to nine unique pulse rates, easily configurable through the 

programmable port on the back of the timing circuit. This pulse rate should be set as low as 

Figure 2.2. Particle diameter calibration of ALS 1 using atomized PSLs. A 5th order 
polynomial is fit to PSLs from 0.090 – 1.6 µm (vacuum aerodynamic diameter). Note: 
When using size calibration data during data processing, 11 significant figures should be 
used to ensure software applies the correct calibration. 
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possible while ensuring that the laser fires at ~1 mJ, in order to minimize the number of particles 

missed during these make-up pulses. 

 The laser is positioned underneath the mass spectrometer (Figure 2.3), and the laser 

beam is directed to the ZTOF using four 12.5 mm Nd:YAG laser line mirrors (47-980, Edmund 

Optics) and focused using a plano-convex lens (SPX025AR.10, Newport). The positive and 

negative ions are extracted using a pulsed (triggered) high voltage (+/- 2.8 kV) and accelerated 

into field free drift regions. Ions are focused within reflectrons into second field free regions and 

onto 25 mm bipolar time-of-flight ion detectors, each made up of an microchannel plate (MCP), 

scintillator, and photomultiplier tube (PMT). Positive and negative ion mass spectra (see 

example individual particle mass spectra in Figure 2.4) are collected by two data acquisition 

cards (U1071-001, Agilent Technologies), with each polarity collected onto two channels (one 

attenuated, one unattenuated) for a greater dynamic range of signal. These data acquisition cards 

are triggered by the Q-switch of the Nd:YAG laser, and the data is processed using custom 

software programmed in LabVIEW and C. The mass spectrometer is pumped by an Agilent 

TwisTorr 304 (220 L/s), capable of operating with a lower backing pressure (0.75 torr), 

compared the previous Agilent V301. This has allowed the entire instrument to be backed by a 

single Agilent IDP-3 dry scroll (60 L/min), isolated from the instrument by four vibration 

dampeners (T22-AB-5, Barry Controls). The entire instrument is situated on similar vibration 

Figure 2.3. Position of the laser beneath the A-ATOFMS. The laser 
beam path is drawn below the instrument in red. 
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dampeners, discussed in Section 2.2.2. This pump is oil-free and therefore requires minimal 

maintenance, only needing the tip seals replaced every ~20,000 run hours, or when the ultimate 

pressure starts decreasing. 

  The A-ATOFMS is powered by a custom built power distribution unit (PDU), with 17 

locking switches and independent fuses, to provide power to individual components. The PDU 

itself is plugged into a 1500 VA (1350 W) uninterruptable power supply (UPS), capable of 

running the entire instrument for ~10 minutes. While this provides a short amount of time to 

allow the instrument to be properly shut down and sealed in case of power loss, the UPS is 

primarily needed to bridge the brief power outage when switching from ground power to aircraft 

power. From the UPS, the entire A-ATOFMS is run from a single NEMA 5-15P plug and can 

plug into standard electric outlets, with a maximum power draw of 1100 W, ~400 W less than 

the original A-ATOFMS (Pratt et al., 2009b). During normal operation (without pressure 

controlled inlet), the new A-ATOFMS draws only 840 W, ~600 W less than the original A-

ATOFMS (Pratt et al., 2009b).  

 

2.2.2. Aircraft Specifications 

  In order for the A-ATOFMS to operate on most research aircraft, the instrument needs to 

undergo FAA approval on the design, construction, and components of the instrument. The 

previous A-ATOFMS has undergone this approval process, and the current A-ATOFMS will 

undergo approval before the first flight campaign. In order to be approved for flight, the 

structural design must conform to all guidelines listed in within the National Science 

Foundation/National Center for Atmospheric Research (NSF/NCAR) High-performance 

Figure 2.4. Dual-polarity mass spectrum of a 300 nm polystyrene latex 
sphere (PSL) standard collected by the A-ATOFMS. 
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Instrumented Airborne Platform for Environmental Research (HIAPER) Investigator Handbook 

and NSF/NCAR C-130 Investigator Handbook, limiting hazards and ensuring the instrument can 

perform during flight. For example, the updated A-ATOFMS now uses an air-cooled Nd:YAG 

laser instead of a water cooled one, limiting this potential hazard. In addition, the instrument 

must be able to handle all loads imposed by emergency landings, in-flight lift and drag forces, 

and gust loads. The preferred material for aircraft flight is aluminum primarily due to a high 

strength to weight ratio. Therefore, the body of the A-ATOFMS is constructed out of machined 

6061 aluminum alloy and assembled using various cadmium-plated fasteners which conform to 

Military Specifications (MS) and National Aerospace Standards (NAS). To protect the 

instrument from vibrations during use, cadmium-plated lock nuts were used for all fasteners not 

directly attached to the body, and helicoil-inserts were used for the rest of the fasteners directly 

attached to the body of the A-ATOFMS in order to strengthen the threaded holes. Also to isolate 

the instrument from the influence of external vibration, the entire A-ATOFMS body is attached 

to the rack by four vibration dampeners (T64-AB-80, Barry Controls). 

In addition to structural requirements, all custom-built electrical systems must conform to 

the guidelines stated in the FAA Advisor Circulars: Chapter 11 – Aircraft Electrical Systems of 

AC 43.13-1B – Acceptable Methods, Techniques, and Practices – Aircraft Inspection and Repair. 

Briefly, this indicates that all wiring must be self-extinguishing and made of an approved 

material, typically a fluoropolymer. For the A-ATOFMS, all internal custom wiring is made out 

of tinned copper insulated by ethylene tetrafluoroethylene (ETFE), as described in military 

specification MIL-W-22759. Power cables were constructed out of silver-coated copper insulated 

with polytetrafluoroethylene (PTFE), as described in military specification MIL-W-16878. BNC 

signal cables consist of a conductor made out of silver covered copper clad steel, dielectric 

material of PTFE, silver covered copper shields and a fluorinated ethylene propylene (FEP) 

jacket, as described in military specification MIL-DTL-17. RS-232 signal cables have a low 

smoke zero halogen (LSZH) insulation specifically designed for use within aircrafts. 

Commercially purchased electronics that have not undergone modification are exempt from 

these specifications. These include the computer, monitor, all laser power supplies, and ZTOF-

MS power supply. All power connectors have been designed to use MS locking circular power 

connectors, approved for use within aircraft. 
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2.2.3. Instrument Characterization 

In order to assess the performance of the aerodynamic lens system in a controlled 

environment, as well as calibrate particle velocity and size, a set of standards were used. A ~150 

mL water solution of NIST-calibrated polystyrene latex spheres (PSLs, Polysciences) of known 

diameter (90 – 2000 nm) and density (1 g/mL) were aerosolized using a custom-built Collison 

atomizer and passed through two silica diffusion driers to remove particle water (relative 

humidity following driers is ~ 20 – 40%). For characterizing aerodynamic lens transmission, the 

atomized PSL flow was split between the ATOFMS, a scanning mobility particle sizer (SMPS 

3082, TSI Inc.), and an aerodynamic particle sizer (APS 3321, TSI Inc.) in order to compare the 

atomized particle number concentration to the ATOFMS measured particle number 

concentration. 

 

2.3. Results and Discussion 

 

 

 

Figure 2.5. Schematic of A-ATOFMS with notable regions outlined. Upgraded lasers are 
highlighted in yellow.  
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2.3.1. Design Modifications 

2.3.1.1. Improved Light Scattering Region 

  The light scattering region was optimized for improved detection of ultrafine (<0.1 µm) 

particles. Previously, two 50 mW continuous wave 532 nm solid-state lasers (JDS Uniphase) 

were used in this region. These were expensive lasers that are now difficult to acquire if one 

were to fail while the instrument was in use. These have been replaced with 50 mW Coherent 

OBIS lasers, one 405 nm and one 488 nm, which had many added benefits (Figure 2.5). First, the 

OBIS lasers are more compact (~38 mm less in length) and weigh less (~0.5 kg less). Also, using 

smaller wavelengths takes advantage of scattering intensity being proportional to λ-4 (Bohren and 

Huffman, 2008), such that a 405 nm laser has 3x greater scattering than 532 nm, for example. 

The photomultiplier tubes (PMT) have also been upgraded to a newer model (H-10721, 

Hamamatsu) that have a higher quantum efficiency, leading to greater signal associated with the 

scattered light. The timing circuit has been redesigned using modern components and now 

incorporates a second PMT output channel, which gives an attenuated signal in order to 

accurately measure the light scattered by individual particles without saturating the signal, as 

previously occurred. This will allow the instrument to be used to measure chemically-resolved 

single-particle refractive index and density (Moffet and Prather (2005) with increased accuracy 

as both an attenuated and non-attenuated signal will be able to be collected. This collection 

should also be improved by the implementation of two scattering laser wavelengths (488 nm and 

405 nm). Previous studies (Moffet and Prather, 2005, 2009) that used two 532 nm lasers found 

that scattering curves for particles greater than 600 nm began to “tip over” at characteristic 

refractive index and density values, allowing for these properties to be determined for these size 

particles. In contrast, particles smaller than 600 nm in diameter showed a single curve, such that 

refractive indices and densities could not be determined. Therefore, with the new lasers, we will 

be able to probe smaller particles with the 405 nm laser, as scattered light increases by λ-4, and 

larger particles with the 488 nm laser, without saturating the signal. In addition, the interior of 

the light scattering region was black anodized, limiting interference from stray light for more 

accurate light scattering signal collection.  
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2.3.1.2. Improved Mass Spectrometer 

Upgrades were also made to the Z-configuration dual-polarity reflectron time-of-flight 

mass spectrometer (ZTOF). First, the ZTOF power supply was upgraded by Tofwerk, leading to 

a significant reduction in weight (~4.5 kg). The ion optics within the ZTOF were also upgraded 

with the newer technology available during this build, though the mass resolving power of the 

positive (~500 at m/z 100) and negative spectra (~800 at m/z -100) are still similar to the previous 

A-ATOFMS (Pratt et al., 2009b). Finally, a high voltage pulser has been added to the ZTOF ion 

extraction plates, which is synced with the Q-switch on the ionization laser, pulsing the voltages 

as soon as the laser is fired.  

The original 50 Hz Ultra CFR 266nm laser (Big Sky Laser/Quantel) was replaced with a 

100 Hz Centurion 266nm laser (Quantel) (Figure 2.5). The Centurion is an air-cooled solid-state 

laser, which eliminates the need for a flash lamp (can burn out or break) and water cooling 

(hazard for aircraft operation), leading to an overall more reliable laser both on the ground and 

during flight. In addition, the laser is now controlled directly through the computer, allowing for 

streamlined control of the instrument through the updated custom software. The 100 Hz fire rate 

allows the instrument to analyze more particles as it is not limited by the previous 50 Hz fire 

rate. Laboratory studies show an increased maximum rate of data collection (Section 2.3.2).  

 

2.3.2. Performance 

2.3.2.1. Transmission and Scattering Efficiency 

  In order to characterize the two aerodynamic lens systems used on the A-ATOFMS, 

particle transmission and scattering efficiency was compared to previous modeled (transmission 

only) and experimental (transmission + scattering, Pratt et al., 2009) results. Particle transmission 

and scattering efficiency is defined as the percentage of particles that are focused within the ALS 

and subsequently scatter the light of both sizing lasers, Modeling of the aerodynamic lens system 

A (ALS A), based on previous designs (Liu et al., 1995a, b), indicates that particle transmission 

less than 600 nm should be close to 100%, and decrease to ~25% by 1000 nm and 10% by 3000 

nm (Wang and McMurry, 2006). However, even if 100% of the particles are transmitted through 

the lens, the A-ATOFMS still needs to be able to detect the particles within the aerodynamic 

sizing region. Therefore, in practice, the transmission and scattering efficiency is much less, as 

not all particles traverse in a straight line between the two lasers and smaller particles do not 
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scatter enough light from the continuous wave lasers to be detected by the PMTs. The scattering 

efficiency curve for the aerodynamic lens system on the current and previous A-ATOFMS 

instruments, as well as the modeled transmission efficiency (Wang and McMurry, 2006) are 

shown in Figure 2.6. Similar to the previous A-ATOFMS (Pratt et al., 2009), the transmission 

and scattering efficiency minimum was 0.2% for 90 nm PSLs and increased to a maximum of 

60% at 800 nm. Above 800 nm the transmission begins to decline, reaching a minimum of 5% at 

3 µm. Ambient soot, which is not spherical and can therefore scatter more light per its vacuum 

aerodynamic diameter, was observed down to 70 nm (Chapter 6); however, attempts to run PSLs 

smaller than 90 nm have not been made. While the transmission curves for the two A-ATOFMS 

instruments deviate some above 1.5 µm, the mode diameter for the atmospheric aerosol 

population is <0.2 µm; therefore, this inconsistency (likely due to minute differences in 

machining of the aerodynamic lens system) is not expected to significantly impact ambient 

aerosol sampling and characterization.  

Figure 2.6. A-ATOFMS (#2, “Maverick”, University of Michigan) scattering 
efficiency compared to the previous A-ATOFMS (#1, “Shirley”, University of 
California, San Diego; Pratt et al., 2009) and modeled transmission (Wang and 
McMurry, 2006).  
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  Aerodynamic lens system B (ALS B) has not previously been fully characterized; 

however, it has been used in past aircraft-based field campaigns by the Prather Lab (Cazorla et 

al., 2013; Creamean et al., 2013). Since ALS B uses a conical relaxation chamber, fewer larger 

particles should be lost through impaction compared to a cylindrical chamber. Also, ALS B is 

designed for use in flight, and therefore a pressure-controlled inlet, based on the design of 

Bahreini et al. (2008), was constructed and is necessary to set the pressure of the relaxation 

region at 4.8 torr to ensure the lens focuses as designed. Future work includes fully 

characterizing the transmission efficiency of this aerodynamic lens system. 

2.3.2.2. Single-particle Mass Spectral Acquisition Rate 

  The A-ATOFMS is run by custom LabVIEW instrumental software, and drivers have 

been upgraded for use with Windows 7, increasing the overall software performance and data 

collection rate. When configured for maximum data acquisition rate, the previous version of the 

A-ATOFMS needed 33.5 ms to detect, read, and save both positive and negative mass spectra of 

individual particles for a maximum theoretical collection rate of 30 Hz; however, Pratt et al. 

(2009b) noted that observed collection rates were slower due to non-ideal particle spacing. For 

the new A-ATOFMS, the upgraded software, computer, and electronics have lowered the time 

needed to collect positive and negative spectra to 15 ms, doubling the previous maximum 

theoretical collection rate to 67 Hz when configured for maximum data collection. With real-

time instrument and online analysis displays active, the new A-ATOFMS needs 25 ms for each 

hit particle, providing a maximum acquisition rate of 40 Hz, over 4 times the previous A-

ATOFMS (120 ms, or 8.3 Hz).  

2.4. Conclusions 

  An updated version of the field transportable and aircraft capable A-ATOFMS was 

constructed, based on the design of Pratt et al. (2009b). Two aerodynamic lens systems were 

characterized for this new A-ATOFMS, allowing for flexibility on studies that require the 

analysis of smaller (0.07 – 1.6 µm) particles (ALS #1) or larger particles (~0.1 – 2.5 µm) (ALS 

#2). Also, as the previous A-ATOFMS was built over 10 years ago, major technological 

upgrades were made to the instrument, including upgrading the computer, lasers, pumps, and 

mass spectrometer, reducing the weight by 23 kg and power by 400 W. Decreased sizing laser 

wavelengths, along with a black anodized light scattering region, has improved the lower limits 

of particle characterization to 70 nm. In addition, upgrades to the data acquisition computer and 
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Nd:YAG laser increased the maximum theoretical mass spectral acquisition rate from 30 Hz to 

67 Hz. As the majority of atmospheric aerosol particles are less than 100 nm by number and 

aircraft deployments require fast data acquisition for spatially resolved measurements, these 

improvements this will allow for a more complete characterization of aerosol populations while 

deployed in the field. The newly constructed A-ATOFMS has already been deployed to remote 

Alaska during 2015 and 2016 (Chapters 5 and 6), collecting valuable data on the impacts of 

Arctic oil and gas extraction activities. 
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Chapter 3. 

Ubiquitous Influence of Wildfire Emissions and Secondary Organic Aerosol 

on Summertime Atmospheric Aerosol in the Forested Great Lakes Region 

 
Accepted to Atmos. Chem. Phys. Discuss. 

 
3.1. Introduction 

  Atmospheric particulate matter less than 2.5 µm in diameter (PM2.5) has significant 

impacts on air quality, climate, and human health (Calvo et al., 2013; Pöschl and Shiraiwa, 

2015). Atmospheric particles directly affect climate by scattering incoming solar radiation and 

indirectly by acting as cloud condensation (CCN) and ice nuclei (IN) (IPCC, 2013). Increased 

levels of PM2.5 are also linked to increased health risks, particularly respiratory and 

cardiovascular diseases (Brook et al., 2004; Pope and Dockery, 2006). Particles can impact areas 

hundreds of kilometers from their sources through long-range transport, with residence times of 

up to two weeks depending on particle size and chemical composition (Uno et al., 2009). 

Determining the impact of the long-range transported particles, as well as how they are 

transformed in the atmosphere during transport, is a critical topic to accurately predict their air 

quality and climate effects (Ault et al., 2011; Creamean et al., 2013). During transport, particles 

undergo heterogeneous reactions and gas-particle partitioning, aging the particles and leading 

primary particles (e.g., soot) to become internally mixed with secondary species, including 

water, ammonium, nitrate, sulfate, and oxidized organic carbon, thus changing the chemical 

composition of individual particles (Moffet and Prather, 2009; Riemer and West, 2013). These 

aging processes are particularly important since chemical composition is directly related to 

particle properties, including reactivity, hygroscopicity, toxicity, scattering, and absorption 

properties (Brook et al., 2004; Calvo et al., 2013; Fierce et al., 2016; Pöschl, 2005). Particle 

properties also differ based on the distribution of chemical species, or mixing state, within a 

population of particles – whether various chemical species are contained within a single particle 
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(internally mixed) or within different particles (externally mixed). Particle mixing state 

representation in models is particularly important (Bauer et al., 2013), especially for predicting 

aerosol impacts on the climate (Fierce et al., 2016; Matsui et al., 2013).  

  Long-range transport of atmospheric particles can contribute to both remote and 

populated locations being out of compliance with air quality regulations (National Research 

Council and National Academies, 2010). For example, elevated aerosol mass and ozone in 

Europe, eastern Canada, and northeastern United States has been attributed to transported 

Canadian wildfire emissions (Colarco et al., 2004; Dempsey, 2013; Dreessen et al., 2016; 

Dutkiewicz et al., 2011; Forster et al., 2001; Kang et al., 2014; Miller et al., 2011; Müller et al., 

2005; Wang et al., 2010b). A multi-day exceedance of the National Ambient Air Quality 

Standard for ozone in Maryland during the summer of 2015 was attributed to Canadian wildfire 

emissions (Dreessen et al., 2016). Similarly, elevated PM2.5 observed in New York and 

Wisconsin has been attributed to Ohio River Valley emissions. Transported pollutants can 

impact biogenic secondary organic aerosol (SOA) formation in remote locations (Carlton et al., 

2010; Emanuelsson et al., 2013; Rattanavaraha et al., 2016; Xu et al., 2015). Finally, prior and 

on-going studies through the IMPROVE program in rural locations throughout North America 

have investigated both transported and local contributions to the aerosol populations (Hand et al., 

2011). Uncertainty in the contributions of long-range aerosols and limited measurements in 

remote areas can lead to inaccuracies in modeling of aerosol source contributions.  

  Relatively few studies have chemically characterized atmospheric aerosols in the rural 

Great Lakes region of the United States (Bullard et al., 2017; Jeong et al., 2011; Kim et al., 2005; 

Kim et al., 2007; Kundu and Stone, 2014; Sheesley et al., 2004; Sjostedt et al., 2011; Zhang et 

al., 2009). Except for the major metropolitan areas of Detroit (MI), Chicago (IL), Minneapolis 

(MN), and Milwaukee (WI), much of the land is characterized by rural agricultural areas and 

remote forests without significant anthropogenic emissions. A study in the upper peninsula of 

Michigan conducted by Sheesley et al. (2004) observed major contributions from secondary 

organic aerosol from both biogenic and anthropogenic volatile organic compound (VOC) 

oxidation in the summer. Studies across rural Illinois and Ohio found major atmospheric 

contributions from secondary sulfate, nitrate, and organic carbon, consistent with aerosol aging 

during transport (Kim et al., 2005; Kim et al., 2007; Zhang et al., 2009), though these locations 

were much less forested than the more northern Great Lakes regions. Kundu and Stone (2014) 
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measured composition and sources at rural locations in Iowa, identifying major PM mass 

contributions from biomass burning, combustion, and dust. Jeong et al. (2011) and (Sjostedt et 

al., 2011) identified contributions from secondary organic aerosol, elemental carbon, and dust in 

rural Harrow, Ontario, downwind of Detroit and Windsor. The scarcity of measurement data in 

the rural Great Lakes region provides limited opportunities for model evaluation and requires 

assumptions of background primary aerosol.  

  In remote regions, there are challenges in distinguishing and identifying primary and 

secondary aerosol sources, particularly for bulk methods (Pratt and Prather, 2012). Single-

particle mass spectrometry allows the identification of particle sources through comparisons with 

source ‘fingerprints’ and particle aging through characterization of individual particle chemical 

mixing state (Pratt and Prather, 2009, 2012). Therefore, to apportion the sources of the aerosol 

population influencing remote northern Michigan, single particle mass spectrometry 

measurements were conducted during July 2014 at the University of Michigan Biological Station 

(UMBS) near Pellston, MI. In this study, individual particle chemical composition, measured in 

real-time using single-particle mass spectrometry, was used to identify the sources and secondary 

processing of transported particles at UMBS. In addition, high resolution aerosol mass 

spectrometry (HR-AMS) measured chemically-resolved mass concentrations of non-refractory 

aerosol (organics, sulfate, nitrate, ammonium, and chloride) to provide complementary mass-

based characterization of the transported particles at UMBS.  

 

3.2. Methods 

3.2.1. Field Site and Instrumentation 

  Atmospheric measurements were conducted from July 13-24, 2014 at the University of 

Michigan Biological Station (UMBS) near Pellston, MI, a 10,000-acre, remote, forested location 

with little local pollution (Carroll et al., 2001). The closest major cities are Milwaukee (370 

kilometers southwest), Detroit (385 kilometers south), and Chicago (466 kilometers southwest). 

Instrumentation was located within a laboratory at the base of the Program for Research on 

Oxidants: Photochemistry, Emissions, and Transport (PROPHET) tower, a 30-meter tall 

sampling tower (45°33'31"N, 84°42'52"W) (Carroll et al., 2001). Air was sampled from 34 m 

above ground level (~14 m above the forest canopy) through foam-insulated 1.09-cm I.D. copper 

tubing at a flow rate of 9.25 L min-1 (laminar) with a residence time of 15 s. This tubing was 
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connected to a shared sampling manifold at the base of the tower, allowing individual 

instruments to each have a dedicated sampling line while limiting particle loss. 

  An aerosol time-of-flight mass spectrometer (ATOFMS model 3800, TSI, Inc., 

Shoreview, MN) (Dall'Osto et al., 2004; Gard et al., 1997), described briefly below, was used to 

measure the size and chemical composition of individual atmospheric particles ranging from 0.5 

– 2.0 µm in vacuum aerodynamic diameter (dva) (Section 3.2.2). An Aerodyne high resolution 

aerosol mass spectrometer (HR-AMS) (DeCarlo et al., 2006) measured chemically-resolved 

mass concentrations of non-refractory fine particulate material (nominal vacuum aerodynamic 

diameter range of 0.05 – 1.0 µm) from July 15–24, 2014. Concentrations for major composition 

classes (organics, sulfate, nitrate, ammonium, and chloride) are reported here. The operation of 

the HR-AMS followed standard practice as described elsewhere (Allan et al., 2004; Allan et al., 

2003; Jayne et al., 2000; Jimenez et al., 2003); the sampling resolution for the UMBS 

observations was 2.5 min. Data were analyzed using SQUIRREL (version 1.60) and the high 

resolution analysis software tool PIKA (version 1.20) (Sueper, 2010), with the concentrations 

corrected based on the estimated composition-dependent collection efficiency (Middlebrook et 

al., 2012). Additional instrumentation included an ozone analyzer (Thermo Scientific model 49), 

a scanning mobility particle sizer spectrometer (SMPS, TSI model 3936) with a sheath flow rate 

of 4 L/min and an aerosol flow rate of 0.4 L/min for measuring size-resolved number 

concentrations of mobility diameter particles 12-600 nm, and an aerodynamic particle sizer 

spectrometer (APS, TSI model 3321) for measuring size-resolved number concentrations of 0.5-

19 µm aerodynamic diameter particles. SMPS and APS size distributions were merged to give a 

continuous aerosol distribution from 0.01-2.5 µm (aerodynamic diameter) using previously 

established methods (Khlystov et al., 2004), assuming a density of 1.5 g cm-3 and shape factor of 

1.   

 

3.2.2. Aerosol Time-of-Flight Mass Spectrometer 

Using the ATOFMS, 11,430 individual atmospheric particles ranging from 0.5 – 2 µm in 

dva were chemically analyzed from July 13-24, 2014. The design and operation of the ATOFMS 

has been described in detail elsewhere (Dall'Osto et al., 2004; Su et al., 2004). Briefly, particles 

are focused through an aerodynamic lens system and optically detected by two 532 nm 

continuous wave lasers spaced 6 cm apart. Particle aerodynamic diameter is obtained from 
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particle speed by calibration using spherical polystyrene latex spheres (0.4 – 2.5 µm, 

Polysciences, Inc.) of known diameter and density. Particles are individually desorbed and 

ionized by a 266 nm Nd:YAG laser that was operated at ~1.2 mJ and the resulting ions enter a 

dual-polarity reflectron time-of-flight mass spectrometer. Positive and negative ion mass spectra 

corresponding to the same individual particles are collected. Mass spectral peak lists for 

individual particles were generated using TSI MS-Analyze software.  

The individual particle mass spectra were analyzed using YAADA (yaada.org), a 

software toolkit for MATLAB. Particles were clustered in YAADA using the ART-2a algorithm 

with a vigilance factor of 0.80 and a learning rate of 0.05 for 20 iterations (Song et al., 1999). 

The top 50 clusters were manually classified into five particle types, described in Section 3.3.1 

These top 50 clusters contained 92% of the 11,430 particle mass spectra collected and are the 

focus of the manuscript. Particle identification was based on characteristic ATOFMS mass 

spectral signatures previously described (Pastor et al., 2003; Qin et al., 2012; Silva et al., 1999). 

The errors associated with number fractions for each particle types were calculated using 

binomial statistics. 

To obtain chemically-resolved particle number and mass concentrations, ATOFMS 

particle counts were scaled with the APS size-resolved particle number concentration data using 

the method of Qin et al. (2006) to account for size-dependent particle transmission in the inlet. 

Briefly, ratios of APS number concentration to ATOFMS non-scaled number concentration were 

calculated every three hours for each individual size bin defined by the APS for use as a scaling 

factor. This scaling factor was then multiplied by the corresponding ATOFMS number 

concentration, providing size and chemically-resolved particle number concentrations for each of 

the four particle types. These number concentrations were then converted to mass concentrations 

using assumed spherical shape and compositionally-specific densities. The following densities 

were applied for the four particle types: 1.5 g cm-3 for biomass burning, 1.5 g cm-3 for salts, and 

1.25 g cm-3 for organic carbon-sulfate (OC-sulfate), and elemental carbon/organic carbon – 

sulfate (ECOC-sulfate) particles (Moffet et al., 2008; Spencer et al., 2007). 

 

3.3. Results and Discussion 

3.3.1. Overview 
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The UMBS campaign (July 13-24, 2014) was characterized by air masses from three 

primary directions: north, northwest, and southwest (Figures A.1 and A.2), representative of 

periods observed during previous UMBS summer studies (Cooper et al., 2001; VanReken et al., 

2015). Analysis of NOAA HYSPLIT backward air mass trajectories showed four distinct air 

mass time periods (Figure A.2). From July 13–15, air primarily came from northwestern Canada. 

From July 15–17, the wind shifted and came from directly north crossing over Lake Superior and 

Lake Michigan before arriving at the field site. In contrast, from July 17–22 the air came mainly 

from south-southwest of the field site, crossing over the major metropolitan areas of Chicago and 

Milwaukee followed by Lake Michigan. Finally, from July 23–24, air came from the north-

northwest of the field site, crossing Lake Superior and Lake Michigan from northern Canada 

(Figure A.2). During summer 2009, VanReken et al. (2015) found that 60% of the air masses 

came from north/northwest of UMBS, similar to this study (57%). Air came from southern 

polluted regions 43% of the time during our study, compared to 29% during July-August 2009 

(VanReken et al., 2015).  

Total PM2.5 number, PM2.5 mass, and ozone concentrations ranged from 143 to 6,031 

particles cm-3 (average ± standard deviation: 1,822 ± 1,181 particles cm-3), 1 to 43 µg/m3 

(average ± standard deviation: 8 ± 8 µg/m3) and 9 to 63 ppb (average ± standard deviation: 32 ± 

Figure 3.1. Time-resolved PM2.5 number and mass concentrations and ozone mole ratios 
during the different periods of air mass influence. Periods without data are due to instrument 
down time. Colors of the different time periods correspond to the colors of the corresponding 
HYSPLIT backward air mass trajectories in Figure A.2. 
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14 ppb), respectively (Figure 3.1). Maximum concentrations were detected when the air arrived 

from the southwestern urban areas, and the minimum values were observed for air masses from 

the north during remote air transport (Figure 3.1). Previously, VanReken et al. (2015) observed 

an 85% increase in particle number concentration when air originating from these southwestern 

urban areas impacted UMBS. These results suggest a wide range of sources affecting the field 

site, which were directly observed by the ATOFMS. Here, we examine the influences of 

wildfires (Section 3.3.3) and urban pollution (Section 3.3.4) on summertime aerosol chemical 

composition, compared to remote background (Section 3.3.2), at UMBS. 

Major individual particle types observed by ATOFMS included biomass burning, organic 

carbon-sulfate (OC-sulfate), and elemental carbon/organic carbon-sulfate (ECOC-sulfate) 

(Figure 3.2). Biomass burning particles were characterized by intense peaks at m/z 39 (K+) and -

97 (HSO4
-), as well as less intense peaks at m/z 12 (C+), 18 (NH4

+), and 27 (C2H3
+) (Pratt et al., 

2010). Biomass burning particles also contained a peak at m/z 43 (C2H3O+), a marker for 

oxidized OC on particles, which is addressed further in section 3.3.3. Biomass burning was the 

most prominent particle type, comprising ~80% of submicron (0.5 – 1.0 µm) and ~50% of 

supermicron (1 – 2 µm) particles, by number, throughout the study, with number fraction varying 

according to the level of influence from wildfires. OC-sulfate particles contributed ~7% by 

number to submicron (0.5 – 1.0 µm) particles and ~8% by number to supermicron (1.0 – 2.0 µm) 

particles and were characterized by intense peaks at m/z 27 (C2H3
+), 39 (C3H3

+/K+), +/-43 

(C2H3O+/-), and -97 (HSO4
-). OC-sulfate particles can originate from a variety of sources 

including primary vehicular emissions (Toner et al., 2008) and secondary organic sources (Pratt 

and Prather, 2009). The intense m/z 43 (most intense OC-sulfate particle ion peak) is indicative 

of significant SOA coatings on combustion particles, including biomass burning (Pratt and 

Prather, 2009). ECOC-sulfate particles, characterized by Cn
+ fragment peaks, observed at m/z 12 

(C+), 24 (C2
+), 36 (C3

+), 48 (C4
+), etc., as well as markers at m/z 27 (C2H3

+), 18 (NH4
+), and -97 

(HSO4
-), are attributed to vehicular emissions (Toner et al., 2008; Toner et al., 2006) and 

contributed ~5% by number to both sub- and supermicron particles with the majority observed 

on July 22 during an urban-influenced air mass. In addition to the previously mentioned 

combustion and secondary particles, Na and Ca salts internally mixed with nitrate were 

episodically detected, primarily during July 16–18 and July 24–25. These salts may have 
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originated from the Great Lakes (Axson et al., 2016) and/or seawater and are the focus of an 

upcoming manuscript.  

PM1 mass measured by the HR-AMS was on average 73% organics (7.8 µg/m3) 

throughout the study, with a substantial contribution from oxidized organics as determined by an 

average HR-AMS O/C ratio of 0.84 and through the ATOFMS oxidized organic carbon ion 

marker m/z 43, C2H3O+ (Aiken et al., 2008; Qin et al., 2012). O/C ratios between 0.6 – 1 are 

commonly associated with low volatility oxidized organic aerosol (LV-OOA) that has undergone 

extensive aging (Jimenez et al., 2009), consistent with the single-particle observation that SOA 

coated the major particle types. Also consistent with atmospheric processing during long-range 

Figure 3.2. Average positive and negative ion single-particle mass spectra (ATOFMS), with 
characteristic peaks labeled, for the dominant aged combustion particle types observed: (A) 
biomass burning, (B) OC-sulfate, and (C) ECOC-sulfate. 
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transport, 92% of all 0.5 – 2.0 µm particles, by number, were measured by the ATOFMS to be 

internally mixed with secondary species, including sulfate (HSO4
-, m/z -97), nitrate (NO2

-, m/z -

46 and/or NO3
-, m/z -62), ammonium (NH4

+, m/z 18), and/or oxidized OC (C3H2O-, m/z -43 or 

C3H2O+, m/z 43) (Qin et al., 2012). On average, sulfate comprised 20% (2.2 µg/m3) of the total 

PM1 mass measured by HR-AMS.  

 

 

3.3.2. Remote Background Air Mass Influence 

  From July 15-17, air arrived at UMBS originating from rural northern Canada. The 

average PM2.5 number concentration was 903 ± 499 particles cm-3 (range of 143 - 2163 particles 

cm-3, Figure 3.1) and average PM2.5 mass concentration was 1.9 ± 0.4 µg/m3 with a particle mode 

of 82 nm (Figure 3.1 and S3). The average ozone concentration was 17 ± 6 ppb (Figure 3.1). 

With a lack of direct wildfire influence (Figure 3.4), 61 ± 1% of the 0.5 – 2.0 µm particles, by 

number, were classified by ATOFMS as aged biomass burning aerosols, relatively similar to the 

background biomass burning particle influence reported by Hudson et al. (2004) and Pratt et al. 

(2010) for the United States free troposphere (33-52% by number). Biomass burning particles 

were internally mixed with oxidized OC (80 ± 2%, by number) or mixed with sulfate (85 ± 2%). 

Nitrate was internally mixed with 8 ± 2%, by number of biomass burning particles and 33 ± 3%, 

Figure 3.3. PM1 non-refractory chemically speciated mass concentrations, as well as O/C 
ratios (20 min averages), measured by HR-AMS. Periods of influence are notated and 
separated by solid vertical lines. Pie charts represent the average mass fractions for each air 
mass period, with average O/C ratio inset. 
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by number, of OC-sulfate particles. It is likely that, while the observed biomass burning particles 

have a small potassium-rich (biomass burning) core, they are primarily SOA by mass (Moffet et 

al., 2010; Pratt and Prather, 2009) (Section 3.3.3). The HR-AMS showed average PM1 organic 

mass concentrations of 4.4 µg/m3, with minimal contribution from sulfate (0.3 µg/m3), as well as 

nitrate and ammonium (both less than 0.1 µg/m3 on average) (Figure 3.3).  

  The significant internal mixing of oxidized OC combined with the significant organic 

mass loading (average HR-AMS O/C ratio of 0.9) is consistent with high SOA mass on the 

particles (Aiken et al., 2008). Previous studies in rural and forested environments found similarly 

high O/C during periods of non-polluted air and attributed this to regional SOA formation 

(Jimenez et al., 2009; Raatikainen et al., 2010; Sjostedt et al., 2011; Sun et al., 2009). There was 

Figure 3.4. Representative NOAA HMS smoke maps for four representative days during the 
time periods of different air influence: (A) July 14, wildfire influence; (B) July 16, remote 
background influence; (C) July 21, Urban influence; (D) July 24, wildfire influence. Inset 
enlarges the state of Michigan to clearly display smoke influence on the field site, shown as a 
star. 
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a notable spike in O/C on July 15 – 16 to 1.2, indicative very highly oxidized organics. O/C 

ratios of this magnitude have previously been observed at the remote Whistler Mountain, where 

organic aerosol O/C ratios up to ~1.3 where observed during organic aerosol accumulation 

events (Sun et al., 2009). Sheesley et al. (2004) found that SOA, primarily biogenic-derived, 

contributed over 90% of the total organic carbon mass observed during the summer at the Seney 

National Wildlife Refuge in northern Michigan, located 120 km northwest of UMBS. Notably, 

ultrafine particle growth was observed at UMBS on July 16 during this high O/C ratio spike 

(Gunsch et al., 2017). The air arriving during this period was not under the influence of wildfires 

(Section 3.3.3) or urban areas (Section 3.3.4), and is therefore expected to be representative of 

remote background conditions. 

 

3.3.3. Wildfire Influence 

From July 13-15 and July 24 mid-day through July 25, the NOAA Hazard Mapping 

System (HMS) Smoke Product (Rolph et al., 2009) indicated that smoke plumes originating from 

Figure 3.5. Three hour binned mass concentrations of (A) 0.5 – 1.0 µm and (B) 1.0 – 2.0 
µm particle types, as measured by ATOFMS. Gaps in the data correspond to periods when 
APS data were not available for scaling.  
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wildfires within the Northwest Territories (Canada) directly influenced UMBS (Figure 3.4). 

According to the Canadian Interagency Forest Fire Centre, over 5,500 km2 of land burned within 

the Northwest Territories during July 2014 (CIFFC, 2014). Canadian wildfires are a major 

source of global PM2.5, with estimates of ~1.6 Tg yr-1 emitted to the atmosphere (Wiedinmyer et 

al., 2006). Average PM2.5 number and concentrations during these two wildfire influence periods 

were statistically higher (t-test, α = 0.05) at 1400 ± 800 particles cm-3 (range of 147 – 4832 

particles cm-3, Figure 3.1) and 5.4 ± 2.6 µg/m3 (range of 1.3 – 10.5 µg/m3, Figure 3.1), 

respectively, compared to the background period (Section 3.3.2). The particle mode during 

wildfire influence was 80 nm, similar to background periods (Figure A.3). Ozone was also 

elevated during July 13-15 reaching as high as 35 ppb, compared to an average of 10 ppb during 

the background period (Figure 3.1). During these periods, the air masses did not pass over any 

major urban areas (Figure A.2), making ozone production within the smoke plume during 

transport the likely source (Jaffe and Wigder, 2012). Ozone did not increase during the July 24 

smoke plume, staying near the average for the study (25 ± 12 ppb) with a concentration of 26 ± 3 

ppb (Figure 3.1). While an ozone increase is often observed for aged wildfire plumes, an increase 

does not always occur during wildfire influence, such as when low NOx levels within plumes, 

potentially due to smoldering combustion, limit the production of ozone (Jaffe and Wigder, 

2012).  

During the wildfire influenced periods, 88 ± 1% of the measured 0.5 – 2.0 µm particles, 

by number, were biomass burning particles, with an average mass concentration of 0.42 µg/m3 

(Figure 3.5) and a maximum of 0.80 µg/m3 occurring during the early afternoon of July 14 when 

the heaviest wildfire smoke was reported by the NOAA smoke product (Figure 3.4A). Minor 

contributions of OC-sulfate particles (8 ± 1% by number) were also measured. The OC-sulfate 

particle mass spectra (Figure 3.2B) showed that 75 ± 5%, by number, contained potassium (K+, 

m/z 39), suggesting that these were highly aged biomass burning particles coated by SOA such 

that the typical biomass burning mass spectral signature had been masked, as observed 

previously by Pratt and Prather (2009) using a thermodenuder. These OC-sulfate particles 

featured a dominant intense m/z 43 (C2H3O+) ion peak, indicating that these particles were 

heavily coated with SOA. During the afternoon event on July 24, PM1 organic mass 

concentrations measured by HR-AMS nearly doubled from 2.5 ± 0.1 µg/m3 before the event to 

4.5 ± 0.3 µg/m3 during the event (Figure 3.3), accounting for ~90% of the total PM1 mass 
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concentration. The HR-AMS O/C ratio was 0.8 during wildfire periods, consistent with biomass 

burning particles heavily coated with SOA (Aiken et al., 2008), as also observed by 95 ± 1%, by 

number, of the biomass burning and OC-sulfate particles, measured by ATOFMS during these 

periods, featuring the oxidized OC ion marker (m/z 43, C2H3O+) (Figure 3.6). Freshly emitted 

biomass burning has a O/C ratio of ~0.2, which can increase to ~0.6 in only a few hours as 

oxidized material condenses onto the particles (Grieshop et al., 2009; Pratt et al., 2011). As the 

wildfire air masses measured during the present study were transported over multiple days over 

Canadian forests, biogenic SOA, from condensation of monoterpene oxidation products (Slowik 

et al., 2010), likely contributed to the observed O/C ratio of 0.8 at UMBS.  

 

Figure 3.6. Number fractions of individual particle mixing states for biomass burning, OC-
sulfate and ECOC-sulfate particle types during: (A) Wildfire influence between July 13-15, 
(B) Clean air from northern Canada between July 15-17, (C) Mix of wildfire and urban 
influences from July 17-22, (D) Mix of clean air and Canadian wildfires between July 23-24. 
Species observed include oxidized OC (C2H3O+, m/z 43), ammonium (NH4

+, m/z 18), nitrate 
(NO2

-, m/z -46, and/or NO3
-, m/z -62), and sulfate (HSO4

-, m/z -97).   
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 During transport of the biomass burning aerosols, accumulation of sulfate also 

occurred, with 97 ± 1%, by number, of biomass burning particles internally mixed with sulfate 

(m/z -97, HSO4
-) (Figure 3.6). HR-AMS measured PM1 sulfate also increased from less than 0.1 

µg/m3 to 2 µg/m3 after mid-day July 24 (Figure 3.3). Increases in particulate sulfate mass have 

been observed during wildfire plume aging (DeBell et al., 2004; Pratt et al., 2010). In 

comparison, the HR-AMS measured limited amounts of PM1 ammonium (~2% of total mass, 0.2 

µg/m3) during the wildfire event on July 24 (Figure 3.3). However, ammonium was internally 

mixed in 38 ± 2%, by number, of biomass burning and 68 ± 2%, by number, of OC-sulfate 

particles (Figure 3.6). This result indicates that while ammonium was present within many 

particles, it was a minor fraction of the particle mass. Nitrate was also internally mixed with 43 ± 

2% of biomass burning particles, by number, and 17 ± 2%, by number, of OC-sulfate particles 

(Figure 3.6), and the HR-AMS only measured ~1% of PM1 mass to be nitrate (0.06 µg/m3). 

Therefore, it is likely that the ammonium was present in the form of ammonium sulfate internally 

mixed with biomass burning and OC-sulfate.  

 

3.3.4. Urban Air Mass Influence  

  From July 17-22, UMBS was influenced by air masses from the southwest, passing over 

the major metropolitan areas of Chicago and Milwaukee before arriving at the site (Figure A.2) 

after transport times of 24-36 hours. The average ozone concentration was elevated at an average 

of 41 ± 12 ppb similar to previous measurements by Cooper et al. (2001) at UMBS when under 

the direct influence of urban pollution (Figure 3.1). The PM2.5 number and mass concentration 

for this period were 2,700 ± 900 particles cm-3 (range of 414 – 6,031 particles cm-3) and 14 ± 8 

µg/m3 (range of 2 – 43 µg/m3), respectively, the highest for the study (Figure 3.1). The particle 

mode of 69 nm was also the smallest of the study (Figure A.3). VanReken et al. (2015) 

previously observed the highest particle number concentrations (3,000 ± 1,300 particles cm-3) at 

UMBS during the influence of southern air masses. Wildfire smoke influence was present during 

this period as shown by the NOAA smoke product (Figure 3.4C). However, unlike during the 

previous periods, this smoke originated mainly from the southern United States (active fires were 

located in Tennessee, Arkansas, and Missouri). Biomass burning particles measured by 

ATOFMS steadily increased in mass concentration throughout this period (Figure 3.5), with a 

notable spike in the mass concentration on July 22 observed in both the submicron (2.3 µg/m3) 
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and supermicron (0.3 µg/m3) size ranges (Figure 3.5). Overall, during urban influence, biomass 

burning particles accounted for 72 ± 2% of the particles by number and ~30% of the total mass 

concentration (Figure 3.5). The biomass burning particles were aged, as shown by internal 

mixtures of sulfate (88 ± 2%, by number), oxidized OC (92 ± 1%, by number), ammonium (58 ± 

2%, by number), and nitrate (30 ± 2%, by number) (Figure 3.6). The greatest internal mixing 

with ammonium was observed during this period. The HR-AMS also measured the highest 

average ammonium mass concentration during this period of 1.6 µg/m3, accounting for 10% of 

the total PM1 particle mass (Figure 3.3). Agricultural activities, both crop and livestock, located 

to the south and southwest of the field site (Paulot et al., 2014; Stephen and Aneja, 2008) may be 

the source of the elevated ammonium levels.  

  ECOC-sulfate and OC-sulfate particles comprised the second most prominent particle 

types measured by ATOFMS during this urban-influenced period at 12 ± 1% and 9 ± 1% of the 

submicron (0.5 – 1.0 µm) particles, by number, and an average of 0.08 µg/m3 and 0.03 µg/m3, 

respectively (Figure 3.5). The influence of urban vehicular combustion resulted in the increased 

levels of measured ECOC-sulfate particles (Toner et al., 2008; Toner et al., 2006), compared to 

non-urban influenced periods (2 ± 1% by number). HR-AMS PM1 mass concentrations (Figure 

3.3) showed increased organic mass during urban influence with an average mass concentration 

of 9.7 µg/m3 (Figure 3.3), likely due to a mixture of biomass burning, anthropogenic, and 

biogenic organic aerosol. The average HR-AMS O/C ratio during the urban period was the 

lowest of the study (0.78), likely due to increased contributions from hydrocarbon-like organic 

aerosol from urban vehicle combustion emissions (Aiken et al., 2008), in contrast to primarily 

oxidized organic aerosol during regional background periods (Jimenez et al., 2009). An increase 

in less oxidized organic aerosol was similarly observed in rural Ontario when the site was 

influenced by urban air masses from Detroit, compared to remote air masses (Sjostedt et al., 

2011). The ECOC-sulfate and OC-sulfate particles were highly aged, with ~75%, by number, of 

each particle type internally mixed with ammonium, consistent with particle aging during 

transport (Figure 3.6C). Ammonium (1.6 µg/m3) and sulfate (4.9 µg/m3) comprised over 40% of 

the total PM1 mass measured by the HR-AMS during these periods, likely in the form of 

ammonium sulfate (Figure 3.3). Urban influenced air masses had the highest mass concentration 

of sulfate (up to 10 µg/m3) measured throughout the study. In contrast, there was little presence 

of nitrate internally mixed in the ECOC-sulfate (4 ± 2% by number) and OC-sulfate (19 ± 5% by 
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number) particles (Figure 3.6), and nitrate only comprised 1% (0.2 µg/m3) of the total PM1 mass 

concentration from the urban influence (Figure 3.3).  

3.4. Conclusions 

Source apportionment of atmospheric particles in the summertime was conducted at the 

forested University of Michigan Biological Station, located in remote northern Michigan. The 

field site was impacted by air masses from three distinct areas: remote background, northwestern 

Canada, and southwestern urban areas. July 2014 was one of the most active burning seasons for 

the Northwest Territories in over two decades with a total of 10,643 km2 of land burned, 

significantly more than the ten-year (1,944 km2) and twenty-five year (2,423 km2) averages 

(CIFFC, 2014). The increased wildfire activity noticeably impacted northern Michigan, as the 

presence of biomass burning particles was ubiquitous throughout the study and made up the 

majority of measured particle number and mass concentrations. While air also came from urban 

areas southwest of UMBS, aged biomass burning particles dominated particle number 

concentrations due to wildfire influences from the southern United States. Due to the urban 

influence, these air masses had the highest mass contributions of sulfate (over 50 times the 

background) detected during the entire study. The accumulation of soluble secondary species, 

including sulfate and nitrate, increases the CCN ability of biomass burning particles (Furutani et 

al., 2008; Petters et al., 2009; Wang et al., 2010a), illustrating the importance of transported 

wildfire emissions.  

While biomass burning particles were the most dominant particle core detected, SOA was 

a major contributor to particle mass during the study. On average, the HR-AMS organic aerosol 

O/C ratio was 0.84, indicative of highly oxidized organic carbon (Aiken et al., 2008). During 

remote background periods, internal mixing of oxidized OC combined with the significant PM1 

organic mass loading is indicative of the high mass loading of biogenic SOA in the forested 

region (Sheesley et al., 2004). During wildfire-influenced air masses, organics contributed ~90% 

to the PM1 mass, with SOA internally mixed with biomass burning and OC-sulfate particles, 

indicating that SOA from both biogenic VOC oxidation and wildfire combustion is a major 

source of OC in the region. Models under-predict OC in this region, and Jathar et al. (2014) 

indicates that on a national level, models predict biomass burning is the largest combustion 

contributor to SOA by mass, consistent with the significant influence of wildfires during this 

work. 
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Modeling studies have called for further investigations of wildfire emissions and areas 

they affect in order to reduce uncertainty within models due to limited data, particularly when 

modeling interactions between wildfire plumes and urban emissions. Wildfire plume ozone 

production can lead to areas far from the original source to be out of compliance with regulatory 

standards, demonstrating the importance to be able to accurately model ozone production (Hu et 

al., 2008; Jaffe and Wigder, 2012; Lu et al., 2016). Also, as described here, particles aged 

through transport show internal mixtures of nitrate, sulfate and oxidized organics, which can lead 

to increased CCN activity (Furutani et al., 2008). With wildfires expected to increase in both 

intensity and frequency due to climate change (Gillett et al., 2004; Knorr et al., 2016; Liu et al., 

2010; Veira et al., 2016), the contributions of long-range transported biomass burning emissions 

to the upper Midwest US atmosphere are expected to increase, such that air quality modeling 

efforts will need to supplement their existing emissions to account for the expected increase in 

wildfire emissions (Smith and Mueller, 2010). 
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4.1. Introduction 

New particle formation and growth (NPFG) has been identified as an important (Gordon 

et al., 2016; Jokinen et al., 2015b; Kulmala et al., 2014; Kulmala et al., 2000), but uncertain 

(Pierce and Adams, 2007, 2009b), contributor to global aerosol concentrations. Growth events, 

where newly formed particles increase in size through condensation, impact climate by acting as 

cloud condensation nuclei (CCN) (Laaksonen et al., 2005; Merikanto et al., 2009; Pierce and 

Adams, 2009a; Sotiropoulou et al., 2006), thereby modifying cloud properties and leading to 

cooling through the indirect effect (Ruehl et al., 2016). Through model simulations, Gordon et al. 

(2016) suggested that biogenic NPFG events are the source of 50-100% of particles by number 

within 500 m of the surface over large swaths of North America, from interior Alaska to the 

northern Great Lakes region, with these particles increasing CCN concentrations by 3-40% and 

altering the cloud albedo effect by up to 0.5 W/m2. Growth events have been observed in 

forested (e.g. Creamean et al., 2011; Dal Maso et al., 2005; Yu et al., 2015), urban (e.g. Salimi et 

al., 2017; Wang et al., 2013), marine (e.g. Allan et al., 2015; Sipila et al., 2016), and polar 

regions (e.g. Weller et al., 2015; Willis et al., 2016), as well as in the free troposphere (e.g. 

Bianchi et al., 2016; Rose et al., 2015). However, there have been few studies in the upper 

Midwest United States (Kanawade et al., 2011; Lee et al., 2008; Pierce et al., 2014; Twohy et al., 

2002). 

Nucleated particles are formed in-situ in the atmosphere from stable molecular clusters 

(Zhang, 2010), including a variety of chemical species, such as sulfuric acid (Sipila et al., 2010; 
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Zhang et al., 2004), low volatility oxidized biogenic gases (Jokinen et al., 2015b; Troestl et al., 

2016), organic (including amine) salts (Barsanti et al., 2009; Jen et al., 2016; Smith et al., 2010), 

iodine-containing gases (Allan et al., 2015; Sipila et al., 2016), and gaseous ions (Kirkby et al., 

2016). In particular, low volatility oxidation products of biogenic volatile organic compounds 

(BVOCs), including monoterpenes and sesquiterpenes, are thought to play an important role in 

new particle formation due to the prevalence of events in forested regions (Laaksonen et al., 

2008). Growth events have been observed in boreal forests (Mäkelä et al., 1997; Sellegri et al., 

2005), European coniferous forests (Gonser et al., 2014; Manninen et al., 2010), African savanna 

forests (Laakso et al., 2008; Vakkari et al., 2011), and deciduous forests (Jung et al., 2013; 

Manninen et al., 2010; Pryor et al., 2011), all of which have significant concentrations of 

BVOCs. The oxidants present prior to and during growth events also impact the formation of low 

volatility species, with OH oxidation dominating during the day and NO3 at night (Brown et al., 

2006; Ziemann and Atkinson, 2012). In addition to precursor and oxidant concentrations, key 

factors determining whether a growth event will occur are background aerosol concentration 

(condensation sink) (Dal Maso et al., 2002), season (Kulmala et al., 2004), and radiation (George 

et al., 2015; Zhang et al., 2011). While the majority of growth events are observed during the 

daytime (Kulmala et al., 2014; Kulmala et al., 2004), some events have been measured at night 

(Lee et al., 2008; Salimi et al., 2017). Also, while most growth events have been observed during 

clean conditions in remote areas, growth events can also begin due to the influence of transported 

emissions from long-range sources, including urban areas (Chandra et al., 2016; Salma et al., 

2016; Venzac et al., 2008; Yue et al., 2013) and wildfires (Bein et al., 2008). Given the wide 

range of chemical and atmospheric variables that can impact growth events, studies are needed 

that compare events that occur during different atmospheric conditions at the same location. 

Growth rate is a key variable once particle growth is occurring, as this determines the 

time necessary for particles to reach a size where nucleated particles can act as CCN. While 

H2SO4 is a key gaseous precursor for NPF (Kulmala and Laaksonen, 1990; Kulmala et al., 2004; 

Sipila et al., 2010), nucleation growth rates (J) are typically faster than can be explained by 

binary nucleation of H2SO4 and water vapor (Jokinen et al., 2015b; Kulmala et al., 2014; 

Kulmala et al., 2012; Kulmala et al., 2004; Sipila et al., 2016). In some locations, growth rates 

are seasonally dependent (Kulmala et al., 2004; Yu et al., 2015), but a great deal of uncertainty 

remains due to significant interannual variation (Kanawade et al., 2011; Yu et al., 2015). Growth 
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rates are strongly related to the concentration and chemical form of low volatility materials 

present (Laaksonen et al., 2008). However, there are limited measurements of growth rates for 

growth events with different gaseous precursors and oxidants at the same site, particularly in 

northern portions of North America where growth events are expected to contribute substantially 

to CCN concentrations (Gordon et al., 2016).  

A potential complicating factor for growth events in forested regions is that isoprene has 

been speculated to suppress growth events. For the summer of 2009 in northern Michigan, 

Kanawade et al. (2011) credited isoprene suppression leading to a lack new particle formation 

events at UMBS, though growth of ultrafine aerosol was observed on a few occasion from ~20 

nm particles that were too small to have been regionally transported. This hypothesis was based 

on results from a laboratory chamber experiment, where a lack of nucleation was attributed to the 

high reactivity of isoprene with the hydroxyl radical, inhibiting nucleation (Kiendler-Scharr et 

al., 2009). However, many other studies (e.g. Jokinen et al., 2015a; Kourtchev et al., 2005; 

Limbeck et al., 2003) have observed that isoprene could potentially enhance new particle 

formation and growth instead of inhibiting it. Therefore, it is important to investigate particle 

growth events in isoprene-rich environments.  

At the University of Michigan Biological Station (UMBS) in northern Michigan, the 

Program for Research on Oxidants PHotochemistry, Emissions and Transport (PROPHET) tower 

is located within a temperate mixed-deciduous forest, dominated by isoprene emissions (Ortega 

et al., 2007), and representative of north-central US and south-central Canada (Carroll et al., 

2001; VanReken et al., 2015). Herein, frequent ultrafine particle growth events at UMBS during 

summer 2014 are reported. Particle size distributions, individual particle chemical composition, 

meteorological parameters, and air mass trajectories were examined from June 24 – August 2, 

2014 to understand the conditions that led to particle growth. This paper highlights particle 

growth occurring during three unique air mass types within the same forest: transported urban air 

masses, transported wildfire-influenced air masses, and stagnant local air masses rich in isoprene 

from the surrounding forest. 

4.2. Methods 

Atmospheric sampling was conducted between June 24 and August 2, 2014 at UMBS 

near Pellston, Michigan (45°33'31"N, 84°42'52"W). UMBS is a remote 40 km2 research forest 

with little local pollution. The forest is dominated by aspen (61%), northern hardwoods (17%), 
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and upland conifers (13%), with an average canopy height of 22.5 m (VanReken et al., 2015). 

Major nearby metropolitan areas include Milwaukee (370 km southwest), Detroit (385 km south-

southeast), and Chicago (466 km south-southwest).  

Instruments were located within the PROPHET laboratory adjacent to a 31 m tall outdoor 

tower. Above canopy air was sampled from 34 m (~12 m above the forest canopy) through an 

insulated 1.1 cm ID copper tubing inlet using a cylindrical sampling manifold with dedicated 

lines for each instrument. Sampled air had a residence time from the top of the tower to the 

instruments of ~15 s. Meteorological data were obtained from the UMBS AmeriFlux tower at a 

height of 46 m, located 100 m to the northeast of PROPHET, and are detailed in the 

Supplemental Information (SI). Tropospheric NO2 column data were obtained from Global 

Ozone Monitoring Experiment–2 (GOME-2) data products (Boersma et al., 2004). 

  Particle size distributions were measured using two scanning mobility particle sizer 

(SMPS) instruments. From June 24 – July 20, a SMPS 3936 system (TSI Inc., model 3080 

electrostatic classifier, model 3081 long differential mobility analyzer, model 3025A 

condensation particle counter) was used, and from July 10 – August 2, a SMPS 3938 system 

(TSI Inc., model 3082 electrostatic classifier, model 3081A long differential mobility analyzer, 

and a model 3775 condensation particle counter) was used. Both SMPS systems used a sheath 

flow rate of 4 L/min and an aerosol flow rate of 0.4 L/min, allowing for the detection of particles 

from 11.5 nm – 603.4 nm (electrical mobility diameter). A correction factor was derived for data 

reported by the SMPS 3936 and the SMPS 3938 for each size bin to account for any instrumental 

differences, allowing for the direct comparison of the concentrations reported by the two 

instruments. Details of the comparison between the measurements of the two SMPS systems 

(Figure B.1), including the derived size-dependent correction factor (Figure B.2), are available in 

the SI. During the 10-day period when both SMPS systems were present, the SMPS 3938 

sampled above the forest canopy at 34 m, and the SMPS 3936 sampled at ~3 m above ground 

level through 0.5 cm ID copper tubing with a residence time of ~2 s. A particle concentration 

gradient was not observed between these two sampling heights (Figure B.1), and therefore, the 

analysis presented focuses only on above canopy sampling that was available throughout the 

study. It should be noted that new particle formation occurs at ~1 nm (Zhang, 2010), while the 

lower limit of the SMPS systems used herein is 11 nm. Thus, since only particle growth is 
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directly observed, the events are referred to as growth events, even though the likely origin of the 

particles is nucleation.  

Particle samples for transmission electron microscopy (TEM) were collected using a 

micro-orifice uniform deposition impactor (MOUDI, model 110, MSP Corp.), sampling at 30 

L/min. In order to prevent particle overloading on the substrates, the MOUDI flow was diluted to 

10 L/min, with the remaining 20 L/min comprised of particle-free air sampled through a HEPA 

capsule (Pall Laboratory). Particles were impacted on 200 mesh carbon type B with Formvar 

grids (Ted Pella Inc.) and analyzed at the Michigan Center for Materials Characterization (MC2) 

at the University of Michigan. A JEOL 2100 probe-corrected analytical electron microscope 

equipped with a zirconated tungsten thermal field emission tip operating at 200 kV and a high 

angle annular dark field (HAADF) detector were used for analysis. The microscope was 

equipped with an energy dispersive X-ray (EDX) detector (EDAX, Inc.), and EDX spectra from 

individual particles were collected and analyzed to determine their elemental composition. 

  In order to investigate the air masses impacting the site, the NOAA Hybrid Single 

Particle Lagrangian Integrated Trajectory (HYSPLIT) model was run for each growth event at a 

starting height of 100 m to obtain 72 h backward air mass trajectories, allowing particle growth 

events to be classified based on air mass origin at the onset of the event (Stein et al., 2015). The 

NOAA Hazard Mapping System Fire and Smoke Product was also used to probe the influence of 

wildfire smoke emissions on the field site (Rolph et al., 2009). This product is produced as daily 

images using MODIS satellite imagery to locate wildfire smoke plumes.  

4.3. Results & Discussion 

A typical particle growth event was defined as having a starting particle mobility 

diameter mode less than 40 nm with consistent growth over at least three subsequent hours. From 

June 24 – August 2, 2014, 14 particle growth events occurred over 31% of the sampling days 

(Table 4.1). Growth rates ranged from 0.8 – 10.2 nm h-1 (Table 4.1), consistent with previous 

observations of particle growth in the mid-latitudes (Holmes, 2007; Kulmala et al., 2004). 

Example growth events are shown in Figure 4.1, and all events are detailed in Table 4.1. Particle 

growth event frequency was higher here than during the summer 2009 Community Atmosphere-

Biosphere Interactions Experiment (CABINEX) at the PROPHET tower, when particle growth 

occurred on 6% of sampling days at the same site (Kanawade et al., 2011; Yu et al., 2015). 

However, during CABINEX, there were lower than average temperatures (22°C during 
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CABINEX, compared to the UMBS July average of 26°C and August average of 25°C), due in 

part to increased cloud coverage (Bryan et al., 2012; Steiner et al., 2011), which limited the 

amount of incoming solar radiation and inhibited photochemical reactions needed for particle 

growth (Zhang et al., 2011). In addition, greater summertime Canadian wildfire activity occurred 

in 2014 (46,000 km2 burned) compared to 2009 (8,500 km2 burned) (CIFFC, 2017), contributing 

to the wildfire-influenced particle growth events observed in this study, as discussed in Section 

4.3.3.  

 

Each particle growth event observed in the present study was preceded by low particle 

concentrations, typically due to increased particle scavenging from rain or passing cold fronts 

(Nilsson et al., 2001). This creates favorable conditions for nucleation, as there are fewer existing 

aerosols for low volatility gases to condense on. The condensation sink (CS), a measure of how 

fast condensable vapor condenses onto existing aerosols, was calculated using the method 

described by Dal Maso et al. (2002) and particle number size distributions. The CS varied by a 

factor of 35 during the study (2 x 10-4 to 7 x 10-2 s-1, Figure 4.2), a similar range to the forested 

study described by Dal Maso et al. (2002). This low CS is favorable for NPF and particle growth 

(e.g. Chandra et al., 2016; Dal Maso et al., 2002; Gordon et al., 2016; Riipinen et al., 2007). As 

Event	
Number	

Event	Start	
(EDT)	

Event	End	
(EDT)	

Start	
Diameter	
(nm)	

Stop	
Diameter	
(nm)	

Growth	Rate	
(nm	h-1)	

Urban	(Midday)	
3	 6/29/14	14:05	 6/30/14	0:00	 17	 62	 4.5	
4	 7/1/14	11:54	 7/1/14	14:30	 20	 41	 8.1	
5		 7/2/14	8:50	 7/2/14	15:05	 38	 67	 4.6	
6	 7/5/14	15:00	 7/5/14	18:20	 23	 57	 10.2	
11	 7/16/14	10:25	 7/16/14	23:45	 36	 59	 1.7	
14	 7/25/14	12:00	 7/25/14	17:40	 19	 69	 8.8	

Wildfire	(Nighttime)	
2	 6/25/14	17:10	 6/26/14	1:40	 25	 71	 5.4	
7	 7/7/14	17:35	 7/8/14	7:25	 35	 61	 1.9	
8	 7/9/14	20:00	 7/10/14	4:15	 32	 66	 4.1	
10	 7/13/14	16:45	 7/14/14	9:30	 32	 57	 1.5	
12	 7/22/14	22:20	 7/23/14	10:55	 38	 87	 3.9	
13	 7/24/14	22:00	 7/25/14	1:00	 15	 24	 3.0	

Forested/Stagnant	(Multiday)	
1	 6/25/14	7:10	 6/26/14	12:35	 50	 115	 2.2	
9	 7/11/14	0:10	 7/13/14	7:00	 47	 91	 0.8	

Table	4.1.	Characteristics	of	the	14	particle	growth	events	observed	at	UMBS.		
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shown in Figure 4.2, growth events typically began during CS minima with an average initial CS 

of 2 x 10-3 s-1, compared to an average of 6.0 x 10-3 s-1 during non-event periods. As the events 

progressed, the CS typically increased as the particles grew to larger sizes and provided a surface 

for condensation. 

Figure 4.1. (Left) Example time-resolved aerosol size distributions for representative (A) 
midday, (B) nighttime, and (C) multiday growth events. (Right) Corresponding aerosol size 
distributions (D, E, and F) are shown for the start (red), middle (green), and end (blue) of each 
event, with the particle size mode notated above each trace. The timing of selected aerosol 
size distributions are indicated by diamonds on the temporal size distribution plot. A red 
arrow in plot D indicates the first of the two modes in that size distribution. Time periods 
without data are indicated in gray.  
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The 14 growth events occurred while the field site was influenced by air masses from 

three unique locations: 1) urban areas to the southwest, 2) wildfires from the northwest, and 3) 

stagnant air local to the forest field site. Four of the 14 events began midday (12:00 EDT +/- 3 h) 

and were classified as urban air mass influenced events. Two additional events began midday (#5 

and #11), but were not influenced by urban air masses. Five events began at night (20:00 EDT 

+/- 3 h) and were classified as wildfire air mass influenced events. One additional event (#2) 

began at night, but was not under wildfire air mass influence. Although the general starting 

diameter cut-off for a particle growth event was defined as 40 nm, there were two unique cases 

identified as stagnant/forested (multiday) events where growth began at 7:10 EDT and 00:10 

EDT, respectively, and lasted for greater than 24 h with observed starting diameters of 50 nm. 

Figure 4.1 shows the progression of the aerosol size distributions during example growth events 

for each air mass type, Figure 4.3 shows the progression of the particle modes during each of the 

14 events, and Figure 4.4 shows average growth rate during each event type. Across all event 

types, particle growth rates were generally dependent on initial particle diameter, with smaller 

particles growing faster than particles with larger starting diameters (Figure B.3). The event 

categories and characteristics are discussed in detail in the following sections.  

Figure 4.2. Calculated condensation sink (CS) as a function of time, with colored bars 
representing the duration of individual growth events and their classification. Event 
numbers are denoted at the top of the plot above each bar, and an asterisk indicates the 
continuous nature of event #1 after the conclusion of event #2 (Figure B.9).  
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4.3.1. Urban (Midday) Events 

The four urban (midday) events occurred when air masses were transported from 

metropolitan areas, including Chicago and Milwaukee, with transport times of 12 to 24 h (Figure 

4.5). They had an average growth rate of 8 ± 2 nm h-1, the fastest of the three event types (Figure 

4.4). Two additional midday growth events (#5, #11) not influenced by urban air masses had 

slower growth (3 ± 2 nm h-1), likely due to limited influence from the urban precursors O3 and 

NOx. Average mid-day (12:00 EDT +/- 3 h) incident radiation was also higher during growth 

event days (748 ± 108 W m-2) compared to non-event days (623 ± 92 W m-2) (Figure B.4). 

Previous measurements at UMBS have indicated that elevated O3 and NOx levels are present 

during periods of urban influence (Thornberry et al., 2001). During the urban events in this 

study, increased transported tropospheric (column) NO2 was also observed during these events 

Figure 4.3. Progression of particle size modes during each growth event. Start and end 
mobility diameters are notated for each growth event, as well as the classification as a midday 
(D), nighttime (N), or multiday (M) event. Detailed characteristics of each event are located in 
Table 4.1. Events 1** and 9* include 10 h and 23 h, respectively, of stagnant nighttime 
periods, when particle growth appeared to pause. 
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(Figures 4.5 and B.5). Additionally, since these events not 

only occurred during midday, but on days with high solar 

radiation, it is expected that OH reactions with BVOCs 

emitted from the forest likely contributed to the production 

of semi-volatile organic compounds (Zhang et al., 2011), 

which condense onto particles. In the daytime at UMBS, 

isoprene dominates these OH reactions with minor 

contributions from monoterpenes and sesquiterpenes 

(Ortega et al., 2007). Therefore, it is expected that the 

midday growth events occurred through photochemical 

reactions likely driven by increased levels of anthropogenic 

oxidants reacting with local BVOCs and transported 

anthropogenic VOCs. Similar growth events were 

characterized during a campaign in California, where growth 

was driven by the condensation of oxidized organics and 

ammonium sulfate from the mixing of biogenic and urban 

emissions (Setyan et al., 2014; Shilling et al., 2013).  

When considering climate impacts of particles from growth events, single particle 

composition and mixing state is a key factor (Ault and Axson, 2017; Craig et al., 2017). In the 

analysis of individual particles during an example urban (midday) event, large carbon and 

oxygen peaks, indicative of oxidized organics likely from BVOC photooxidation, were observed 

using TEM-EDX (Figure 4.6), though elemental concentrations were not quantitative since 

carbon and oxygen are also present from the TEM substrate (Ault et al., 2013; Guasco et al., 

2013; Shen et al., 2016). TEM-EDX also showed significant contributions from sulfur (Figure 

4.6), and composition was uniform enough to suggest a mostly internal mixture. Based on these 

observations, it is possible that sulfuric acid formed within the urban air mass, as previously 

observed by Kanawade et al. (2011) at UMBS, and contributed to particle growth (Zhang et al., 

2011). Amines or ammonium may have also contributed to the observed particle growth, 

however nitrogen-containing species are difficult to detect by EDX (Laskin et al., 2002). Other 

studies have also observed similar contributions from organics and sulfate within both individual 

and bulk nucleated particles during a growth event (Bzdek and Johnston, 2010) and in submicron 

Figure 4.4. Average particle 
growth rates and 95% 
confidence interval (error 
bars) for urban (midday), 
wildfire (nighttime), and 
forested/stagnant (multiday) 
influenced growth events at 
UMBS. 
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particles at the UMBS site (Craig et al., 2015). Therefore, it is likely that the combination of 

H2SO4 and BVOC photooxidation, followed by subsequent gas-particle partitioning, contributed 

to particle growth and led to the highest average growth rate (8 ± 2 nm h-1; maximum 10.2 nm h-

1, Table 4.1) observed in this study.  

Figure 4.5. (A) and (B) NOAA HYSPLIT backward air mass trajectories (72 h) for the 
start of each growth event. (C) Tropospheric column NO2 from TEMIS GOME-2 for July 
1, 2014 (Urban – Midday event). (D) NOAA HMS smoke maps for July 13, 2014 
(Wildfire - Nighttime event). Smoke coverage is categorized as heavy (red), medium 
(yellow), and light (green). Field site is indicated by white star, and state/international 
boundaries are indicated in black lines. Areas outside satellite field of view are depicted in 
gray. Map imagery for (A), (B) and (D) was provided by ArcGIS 10.3.1 with World 
Imagery basemap (Sources: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, 
CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community).  
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4.3.2. Wildfire (Nighttime) Events 

  Six events began during reduced solar radiation between 16:45 – 22:20 EDT (Table 4.1), 

with an average growth rate of 3 ± 2 nm h-1 (Figure 4.4). While nighttime particle growth has 

been observed in previous mid-latitude studies (e.g. Lee et al., 2008; Ortega et al., 2012; Russell 

et al., 2007; Suni et al., 2008), it is less common compared to daytime particle growth (Zhang et 

al., 2011). Five of the six nighttime events occurred during the influence of northwest Canadian 

air masses which passed over active wildfires, with smoke observed over UMBS as indicated by 

Figure 4.6. Example TEM dark field images (left) and EDX spectra (right) of 
individual particles collected during: A) urban (midday) growth event (July 12, 
2014), B) wildfire (nighttime) growth event (July 25, 2014), and C) 
forested/stagnant (multiday) growth event (July 24, 2014). Note the carbon peak is 
off scale, and asterisks indicate interference from the substrate or detector. 
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the NOAA Hazard Mapping System (HMS) Smoke and Fire Product (Figures 4.5 and B.7, as 

well as Gunsch et al., 2017). All five of the wildfire-influenced nighttime events were preceded 

by cold fronts, which led to decreased particle number concentrations and surface area (average 

CS of 4 x 10-3 s-1). The only nighttime event that did not occur during wildfire influence (Figure 

B.7, event #2) was likely influenced by similar conditions as the multiday events and is therefore 

discussed in Section 4.3.3. 

NPFG events during wildfire influence have been observed in other locations, including 

Pittsburgh, PA under summertime Canadian wildfire influence; however, these events occurred 

during periods of solar radiation maxima and were driven by photochemical reactions (Bein et 

al., 2008). Wildfire plumes are rich in SO2 and NOx (Jaffe and Wigder, 2012; Viswanathan et al., 

2006) and Lee et al. (2008) hypothesized that nighttime oxidants such as NO3 could oxidize SO2 

to H2SO4 at night, which would therefore contribute to particle growth. In addition to growth by 

H2SO4, these air mass trajectories came from areas of high monoterpene emissions (Guenther et 

al., 1995), which upon NO3 oxidation could contribute to particle growth (Lee et al., 2008). 

Similar to the urban (midday) events, TEM-EDX confirmed the presence of sulfur, as well as 

oxygen and carbon, within 100 nm and 200 nm particles collected during nighttime growth at 

UMBS (Figure 4.5), indicating similar contributions from H2SO4 and oxidized BVOCs.  

As previously measured nighttime particle growth occurred during nighttime with NO2 

mole ratios as high as 15 ppbv (Rollins et al., 2012), elevated NOx would likely be needed at 

UMBS for nighttime particle growth to occur. UMBS is typically a low NOx environment, with 

average [NO] of 67 ppt and average [NO2] of 1.2 ppb (Griffith et al., 2013; Pratt et al., 2012). 
Previously modeled summer nighttime NO3 levels at UMBS are <1.5 x 107 molecules cm-3 (Pratt 

et al., 2012). Jaffe and Wigder (2012) point out that NOx in wildfire plumes can impact areas far 

away from the source by regeneration through the decomposition of peroxyacetyl nitrate (PAN), 

a NOx reservoir species, effectively extending the lifetime of NOx. In fact, a recent study 

conducted in Maryland measured elevated NOx in air masses impacted by Canadian wildfires 

3,100 km away (Dreessen et al., 2016). Therefore, NO3 oxidation of monoterpenes and SO2 

appears to be the most likely mechanism driving the observed growth events. However, a more 

comprehensive study including precursor and oxidant measurements is needed to fully 

understand the nighttime particle growth mechanism during wildfire influence. 
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During summer 2009 CABINEX at UMBS, Kanawade et al. (2011) detected a small 

number of nighttime growth events and suggested influence from transported ultrafine particles 

(3-10 nm) from urban air to the southwest. However, the short lifetimes of particles in this size 

range (roughly minutes), due to condensation and coagulation (Hinds, 2012; Seinfeld and Pandis, 

2016; Williams et al., 2002), make it unlikely that such small particles would survive the 30-35 h 

transport from downwind urban environments without undergoing growth. An alternative theory 

proposed here suggests that the nighttime CABINEX growth events observed by Kanawade et al. 

(2011) were actually due to Canadian wildfire influence, as shown in Figure B.8, similar to the 

nighttime events observed in the present study. Kanawade et al. (2011) reported elevated NOx, 

SO2, and H2SO4 mole ratios during the growth events, consistent with both urban and wildfire 

influences. Kanawade et al. (2011) also observed a similar spike in SO2 and H2SO4 during 

daytime urban influence on July 5, 2009; however, a growth event was not observed, further 

supporting the role of wildfires and NO3 chemistry in nighttime events. 

 

4.3.3. Forested/Stagnant (Multiday) Events 

Two particle growth events lasted longer than 24 h with starting diameters of 50 nm, 

larger than the previously discussed growth events (average starting diameter 28 ± 9 nm). These 

multiday events had the slowest average growth rate (2 ± 1 nm h-1) compared to the other 12 

events (4 ± 2 nm h-1). A second mode (classified as event #2) appeared during the evening period 

of the first multi-day event (#1) and lasted until the morning (Figure B.9). No wildfire or urban 

influence was observed during these events. Average NOx (NO = ~70 ppt and NO2 = ~0.5 ppb 

for summer 2009) (Griffith et al., 2013) and O3 levels (~28 ppb for summer 2009) at UMBS are 

expected to be lower than when the site is under urban (Cooper et al., 2001; Gunsch et al., 2017); 

or wildfire (Gunsch et al., 2017; Jaffe and Wigder, 2012) influence, suggesting that lower 

oxidant levels may play a role in reduced growth during stagnant events. As shown in Figure 4.2, 

these multiday events began at a similarly low CS compared to midday and nighttime events. As 

the multiday events progressed for 29 and 55 h, respectively, the CS increased to the highest 

levels detected during the campaign (9.2 x 10-3 s-1). Meteorological conditions, including wind 

direction, wind speed, and temperature, were stable for the duration of each event (Figure B.6), 

and the events were uninterrupted by external factors, such as precipitation, that could impact the 

aerosol size distribution. On average, wind speed was slower during multiday (1.9 ± 0.7 m/s) 
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compared to midday (2.8 ± 0.7 m/s) growth events, leading to more stagnant conditions. The 

growth rate varied diurnally, with the highest growth rate observed during the daytime (~3 nm h-

1) and growth stopping (~0 nm h-1) at night (20:00 – 06:00 EDT), when the lack of solar 

radiation halts photochemical reactions. Due to the stagnant air, growth restarted the following 

morning upon sunrise. 

As the air was relatively stagnant throughout these events, local BVOCs emitted within 

the forest, including isoprene, monoterpenes, and sesquiterpenes (Ortega et al., 2007), were the 

main sources of VOCs present. Therefore, BVOC oxidation products were the likely source of 

condensable material. EDX spectra of ultrafine (~20 nm) and fine (~200 nm) mode example 

particles from multi-day growth events indicate large contributions from carbon, oxygen, and 

sulfur (Figure 4.6). These measurements are consistent with the presence of condensed 

secondary organic aerosol (SOA) and sulfate observed during previous NPFG events (Bzdek and 

Johnston, 2010). 

Similar multiday growth events were previously observed by Pierce et al. (2012) at 

Whistler Mountain, also a pristine, forested site. Without influence from anthropogenic sources 

on this remote environment, SO2 was below 0.05 ppb (method limit of detection) during the 

Whistler Mountain study, and therefore, the authors attributed the observed particle growth to 

BVOC oxidation products. Pierce et al. (2012; 2011) simulated the observed continuous growth 

by assuming that the SOA was essentially non-volatile with a saturation vapor concentration of 

10-3 µg m-3.  

 

4.4. Conclusion 

 In forested northern Michigan during summer 2014, 14 particle growth events were observed 

during three different air mass conditions: urban influence, wildfire influence, and 

forested/stagnant conditions over multiple days. Six growth events began midday, with four of 

the six events under the influence of urban air masses. Increased oxidants within urban air 

masses, combined with elevated radiation, likely led to BVOC photochemical oxidation and 

particle growth. Mixing of urban oxidants and BVOCs in forested environments has previously 

been shown to increase SOA formation and particle growth (Setyan et al., 2014; Shilling et al., 

2013). Six growth events occurred during the nighttime, with five of these occurring under the 

influence of transported Canadian wildfires, suggesting that elevated SO2 and NOx levels in the 
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smoke plumes likely resulted in increased NO3 levels, for reaction with SO2 and monoterpenes 

for the production of condensable species. Similar wildfire influence in summer 2009 at UMBS 

may have contributed to the growth events described by Kanawade et al. (2011). Given the 

frequent impact of Canadian wildfires on air quality in the midwest and northeast US and the 

expected increase in fires due to warming climate (Gillett et al., 2004; Knorr et al., 2016; Liu et 

al., 2010; Veira et al., 2016), particle growth during these wildfire-influenced nighttime events 

should be considered in future climate and air quality modeling assessments. Finally, two events 

occurred over multiple days during stagnant conditions influenced by regional forest BVOC 

emissions. Example particles measured during all growth event types contained sulfur, carbon, 

and oxygen, consistent with H2SO4 and SOA contribution to particle growth within this forested 

environment. 
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5.1. Introduction 

 The Arctic is experiencing dramatic climate change with sea ice extent declining rapidly and 

complete summertime sea ice loss expected by 2050 (Wang and Overland, 2015; Overland and 

Wang, 2013). With 30% of the world’s undiscovered natural gas and 13% of undiscovered oil 

thought to be located in the Arctic (Gautier et al., 2009), increasing open water makes previously 

inaccessible areas of the Arctic available for oil and gas development and shipping (Harsem et 

al., 2015; Allison and Bassett, 2015). These oil and gas extraction activities add pollutants, 

including particulate matter (PM), volatile organic compounds (VOCs), SO2, and NOx, to the 

Arctic atmosphere (Peters et al., 2011), thereby influencing climate. The Arctic aerosol 

population is characterized by a maximum mass loading in the winter, due to transported 

pollutants from the mid-latitudes, and a minimum in the summer, when local sources, including 

sea spray aerosol, dominate (Quinn et al., 2002; Quinn et al., 2007). However, there is limited 

knowledge of aerosols produced within the Arctic, particularly in the context of changing 

emissions from both natural and anthropogenic sources (Arnold et al., 2016).  

Modeling by Peters et al. (2011) estimates that Arctic oil and gas extraction during 2004 

contributed 47 kilotons (kt) of PM emissions, with 15 kt corresponding to black carbon (BC) and 

16 kt attributed to organic carbon (OC). The majority of emissions originated in western Russia 

(~41 kt in 2004); activities within the Alaskan Arctic, primarily the Prudhoe Bay oil fields, 
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contributed 6 kt during 2004 (Peters et al., 2011). Prudhoe Bay is the third largest oil field and 

tenth largest gas field in the US by estimated production as of 2013 (EIA, 2015). The majority of 

PM emitted by US Arctic oil and gas extraction sources (turbine gas combustion, diesel 

emissions from generators and vehicles, and flaring (Stohl et al., 2013)) in 2004 corresponded to 

BC (1.9 kt) and OC (2.0 kt) (Peters et al., 2011). With new drilling operations opening due to 

reduced sea ice coverage, Peters et al. (2011) estimate US contributions increasing up to 10 kt of 

primary PM (including 3.3 kt BC and 3.5 kt OC) by 2030 and 17 kt of PM (including 5.3 kt BC 

and 5.7 kt OC) by 2050. In addition to directly emitted PM, drilling operations can emit aerosol 

precursors (NOx, SO2, and VOCs), and alter oxidant levels, which can lead to the formation of 

secondary aerosol, as well as contribute to new particle formation (Peters et al., 2011; Volkamer 

et al., 2006; Roiger et al., 2015; Kolesar et al., 2017; Jaffe et al., 1995). 

BC is estimated to have a warming effect on the Arctic atmosphere (e.g. Flanner, 2013; 

Sand et al., 2013a; Sharma et al., 2013; Bond et al., 2013; Flanner et al., 2007). Modeling 

predicts local Arctic BC emissions to cause as much as a factor of five greater increase in Arctic 

warming compared to BC transported from the lower latitudes (Sand et al., 2013b). Koch et al. 

(2009) suggested that Arctic BC concentrations are under-predicted by a variety of models by an 

average factor of 2.5, which may be improved by more accurately incorporating local BC 

sources (Flanner, 2013). However, few studies have measured PM emitted from oil and gas 

extraction in the Arctic. Measurements of BC from 1977 – 1997 in Utqiaġvik showed 

contributions from Russian oil fields year round (Polissar et al., 1999; Polissar et al., 2001), 

similar to the recent results of Barrett et al. (2015) at Utqiaġvik during December 2012 – March 

2013 when transported particles from Russian oil fields were observed. Barrett et al. (2015) also 

measured regional Arctic BC from both fossil fuel combustion and biomass burning. The Arctic 

Climate Change, Economy, and Society (ACCESS) aircraft field campaign recently investigated 

emissions from oil and gas extraction in the Norwegian Arctic and measured increased BC, 

among other pollutants, compared to the Arctic background while sampling within plumes from 

oil and gas extraction facilities (Roiger et al., 2015). Also, Brock et al. (2011) conducted aircraft 

measurements of Prudhoe Bay emissions and detected increased PM, including OC and BC. 

Stohl et al. (2013) modeled BC contributions from flaring due to Arctic oil and gas extraction 

and determined that it contributed 42% of the annual surface soot concentrations in the Arctic. 
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With only these limited measurements available, further characterization of combustion 

emissions from oil and gas extraction activities are needed to further improve simulations.  

During transport, primary aerosol can undergo chemical aging and accumulate secondary 

species, such as sulfate, nitrate, ammonium, oxidized organic carbon, and water, impacting both 

chemical composition and particle properties, such as light absorption and scattering, 

hygroscopicity, toxicity, and chemical reactivity (Moffet and Prather, 2009; Pöschl, 2005). 

Combustion particles in particular are co-emitted with VOCs and can rapidly undergo aging and 

accumulate these secondary organic species (Petzold et al., 2005). The distribution of these 

secondary species across the aerosol population determines aerosol climate impacts (Prather et 

al., 2008). It is currently not clear whether light absorption by a BC particle is enhanced by 

sulfate or organic coatings (e.g., Chung and Seinfeld, 2005; Jacobson, 2001; Moffet and Prather, 

2009; Knox et al., 2009; Liu et al., 2015; Cappa et al., 2012; Healy et al., 2015). In contrast, pure 

sulfate particles (i.e., without BC (soot) inclusions) primarily scatter light (Haywood and 

Boucher, 2000). In addition, soot particles internally mixed with nitrate and sulfate have been 

shown to have increased CCN-activity (Bond et al., 2013). Ambient aerosol populations 

typically vary between internal mixtures, with multiple chemical species contained within a 

single particle, and external mixtures, with multiple chemical species present as separate 

particles (Prather et al., 2008).  Therefore, it is important to determine the influence of Prudhoe 

Bay emissions on downwind aerosol chemical composition and mixing state of the individual 

particles in order to better understand and predict the effects of oil and gas extraction activities 

on the Arctic aerosol population and climate. 

To investigate particle chemical composition and sources in the coastal Alaskan Arctic, 

sampling was conducted at Utqiaġvik, Alaska, a location influenced by Prudhoe Bay (Jaffe et al., 

1995) and the Arctic Ocean (Quinn et al., 2002) in August – September 2015. On-line aerosol 

time-of-flight mass spectrometry (ATOFMS) and off-line computer controlled scanning electron 

microscopy with energy dispersive X-ray spectroscopy (CCSEM-EDX) analyses provided size-

resolved individual particle chemical composition. The impacts of transported Prudhoe Bay oil 

field emissions on aerosol size distributions, primary combustion particle contributions, and 

secondary aerosol formation are compared to the background Arctic aerosol composition.  

5.2. Methods  
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  Atmospheric aerosol sampling was conducted over a period of August 21 – September 

30, 2015 at a field site (71°16’30"N, 156°38'26"W), on the Barrow Environmental Observatory, 

located 4 km southeast of the town of Utqiaġvik, AK. Aerosol sampling occurred 4.5 m above 

ground level through 1.4 cm ID copper tubing at a flow rate of 17 Lpm through a PM10 (PM less 

than 10 µm)  teflon-coated aluminum cyclone (URG-2000-30ENB, URG Corp., Chapel Hill, 

NC). A stainless steel cylindrical manifold (ID 8.9 cm) split the flow to dedicated insulated 

sampling lines for each instrument. Meteorological data, including wind speed, wind direction, 

relative humidity, and temperature, were obtained from the National Oceanic and Atmospheric 

Administration (NOAA) Earth System Research Laboratory (ESRL) Global Monitoring Division 

(GMD) long-term monitoring station (NOAA Barrow Observatory, 71°19’40”N, 156°38’20”W), 

located 5.5 km across flat tundra to the northeast of the aerosol sampling site. On-line 

measurements of aerosol absorption at seven wavelengths, including 880 nm, were completed 

using an aethalometer to obtain BC mass concentrations. BC concentrations were calculated, at 5 

– 10 minute time resolution, using a portable aethalometer (Model AE42, Magee Scientific, 

Berkeley, CA). The aethalometer was outfitted with a seven wavelength source and PM2.5 inlet. 

The sample is collected on a quartz fiber filter tape and the optical analysis (wavelengths ranging 

from 370 to 950 nm) is performed continuously. 

5.2.1. Air Mass Classification 

  Backward air mass trajectories were calculated using the NOAA Hybrid Single Particle 

Lagrangian Integrated Trajectory (HYSPLIT) Model (Stein et al., 2015). A final height of 50 m 

AGL was used for arrival at the field site, and a new trajectory was calculated every 8 h and 

modeled the preceding 48 h. Trajectories originated from three major directions: north/northeast, 

southeast, and to the west (Figure 5.1). Based on these trajectories, air masses were classified 

into three areas of influence. Air masses that originated in the Beaufort Sea to the north/northeast 

of the site were classified as Arctic Ocean influenced periods. Air masses from the southeast that 

crossed over the Prudhoe Bay oil fields were classified as Prudhoe Bay influenced air masses, 

based on a previous study of air mass transport from Prudhoe Bay to Utqiaġvik (Kolesar et al., 

2017). Air masses that originated from the west were primarily influenced by the town of 

Utqiaġvik and classified as local influence. 
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5.2.2. Particle Number Distributions 

  A scanning mobility particle sizer (SMPS, model 3082, TSI Inc., Shoreview, MN) was 

located at the field site from August 21 – September 20, 2015 for online measurements of size-

resolved particle number concentrations from 13 – 746 nm (mobility diameter). Additionally, 

long-term measurements of particle number size distributions (10 – 810 nm mobility diameter) 

from the NOAA Barrow Observatory were collected with a TROPOS-type mobility particle size 

spectrometer (Wiedensohler et al., 2012) to determine daily average particle number 

concentrations and size distributions in August and September for the available years of 2008, 

2009, 2013, and 2014. Time periods when the wind direction was between 170 and 330° were 

excluded from daily averages because of the influence from the town of Utqiaġvik. In addition, 

short (< 1 h) bursts of ultrafine particles during clean time periods were excluded due to the 

Figure 5.1. Average 48 h HYSPLIT backward air mass trajectories for three major areas of 
influence: Prudhoe Bay, the ice-free Arctic Ocean, and the town of Utqiaġvik. 6 h time 
intervals are indicated by black circles. The Utqiaġvik, AK sampling site is indicated by the 
yellow star, and the area of the greatest Prudhoe Bay emissions influence is indicated by the 
white dashed square as defined by Kolesar et al. (2017). The map background was provided 
by ArcGIS 10.3.1 with the World Imagery basemap (Sources: Esri, DigitalGlobe, Earthstar 
Geographics, CNES/Airbus DS, GeoEye, USDA FSA, USGS, Getmapping, Aerogrid, IGN, 
IGP, and the GIS User Community). 
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likely short-term influence from local vehicle emissions. For the long-term data, the daily 

averages were classified according to air mass source region using 48 h backward air mass 

trajectories and then averaged over a month-long period. 

5.2.3. Computer-Controlled Scanning Electron Microscopy with Energy Dispersive X-Ray 

Spectroscopy 

  From August 21-September 30, 2015, 0.07 – 5.0 µm particles were collected during 8 h 

sampling periods  (00:00 – 08:00, 08:00 – 16:00, 16:00 – 00:00 AKDT) on aluminum foil 

substrates (MSP Corp., Shoreview, MN) and transmission electron microscopy (TEM) grids 

(carbon Type-B Formvar film copper grids, Ted Pella Inc., Redding, CA) using a three-stage 

impactor (MPS-3, California Measurements, Sierra Madre, CA) with aerodynamic diameter size 

cuts of 0.07 – 0.4 µm, 0.4 –2.8 µm, and 2.8 – 5 µm, respectively. Individual particles were 

analyzed using computer-controlled scanning electron microscopy with energy dispersive X-ray 

spectroscopy (CCSEM-EDX). A FEI Quanta environmental SEM with a field emission gun 

(FEG) operating at 20 keV with a high-angle annular dark field (HAADF) detector collected 

SEM images and morphological data (including diameter, perimeter, and projected area) of 

individual particles 0.13 – 4.0 µm projected area diameter (Laskin et al., 2006; Laskin et al., 

2012). The instrument is equipped with an EDX spectrometer (EDAX Inc., Mahwah, NJ) to 

measure X-ray spectra of elements with atomic numbers higher than Be, providing the relative 

atomic abundance of elements C, N, O, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Fe, and Zn. 

Additional CCSEM-EDX analysis was conducted using the same method with an FEI Helios 650 

Nanolab SEM/FIB (focused ion beam) with an FEG operating at 20 keV using HAADF and 

through-the-lens detectors with an EDX spectrometer.  

K-means cluster analysis was conducted over EDX spectra from 13,972 individual 

particles analyzed by the Quanta instrument and 5,121 particles analyzed by the Helios 

instrument, resulting in 50 clusters from each data set. These clusters were then regrouped into 

seven main particle classes based on elemental composition, described in Section 5.3.2 and the 

supplemental information. For periods corresponding to Arctic Ocean air mass influence, SEM 

images and EDX spectra were obtained for 2,869 particles from four samples which coincided 

with ATOFMS sampling: September 8, 2015 (00:00 – 08:00 and 08:00 – 16:00 AKDT), 

September 9, 2015 00:00 – 08:00, and September 15, 2015 00:00 – 08:00. For periods of 

Prudhoe Bay air mass influence, 1,997 particles from two samples which coincide with 
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ATOFMS sampling (September 23, 2015 00:00 – 08:00 and 08:00 – 16:00) were analyzed. Error 

resulting from number fraction for different particle types were calculated using binomial 

statistics, and the minimum number of particles for a representative sample are between ~300 - 

1,000 (Willis et al., 2002). 

5.2.4 Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) 

  An aerosol time-of-flight mass spectrometer (ATOFMS) measured the size and chemical 

composition of individual aerosol particles (0.2 – 1.5 µm) in real-time from September 8 – 30, 

2015. The ATOFMS used in the current study is based on the design of Pratt et al. (2009) with 

modifications as described below. Briefly, particles are focused using an aerodynamic lens 

system, and particle velocity is measured by the transit time between two continuous wave 

lasers, 405 nm and 488 nm (OBIX LX, Coherent, Inc., Santa Clara, CA), spaced 6 cm apart. 

Vacuum aerodynamic particle diameter (dva) is calculated based on particle velocity from 

polystyrene latex sphere standards of known diameter (90 nm – 1.5 µm) and density (1 g cm-3). 

Particles enter a dual-polarity reflectron time-of-flight mass spectrometer (Tofwerk AG, Thun, 

Switzerland) and are desorbed and ionized by a Q-switched 100 Hz 266 nm Nd:YAG laser 

(Centurion, Quantel USA, Bozeman, MT) operated at 0.8 – 1.0 mJ, resulting in positive and 

negative ion mass spectra of laser-ablated individual particles. Mass spectral peak lists were 

created in custom software developed in LabVIEW and MATLAB. Prior to ATOFMS sampling, 

particles were dried in-line using two silica gel diffusion driers. Despite this, negative ion mass 

spectra were present for only 53% of the detected particles due to the accumulation of particulate 

water which suppresses negative ion formation (Neubauer et al., 1997), as commonly observed 

for marine environments (Spencer et al., 2008).  

The ATOFMS collected dual-polarity mass spectra of 496 individual particles with 

aerodynamic diameters of 0.2 – 1.5 µm from September 8-30, 2016. In addition to low ambient 

particle concentrations impacting the data collection rate, an instrumental issue with the time-of-

flight mass analyzer, which has since been fixed, led to a significantly reduced particle hit rate 

(fraction of mass spectra collected per number of particles sized within the instrument) of less 

than 1%; however, laboratory tests showed that the quality of the mass spectra collected were not 

affected. Individual mass spectra were analyzed using YAADA, a custom software toolkit for 

MATLAB (Allen, 2004). Mass spectra were clustered based on the presence and intensity of ion 

peaks within individual mass spectra using an ART-2a algorithm, with a vigilance factor of 0.8 
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and a learning rate of 0.05 for 20 iterations (Song et al., 1999). Mass spectral peaks were 

identified based on the most probable m/z considering previous laboratory and field studies 

(Toner et al., 2008; Pratt et al., 2011; Ault et al., 2013; Qin et al., 2012; Rehbein et al., 2011). 

The resulting clusters were manually combined into five groups, each representing an individual 

particle type (Section 5.3.2 and supplemental information). Due to the small sample number of 

particles, 100% of the measured particles were clustered either by ART-2a or manually. Despite 

the low number of collected mass spectra, the observed particle types are consistent with 

previous Arctic surface-based ATOFMS measurements by Sierau et al. (2014), who also 

obtained a similar number of mass spectra in part due to low particle number concentrations in 

the summertime Arctic boundary layer. The errors associated with number fractions for different 

particle types were calculated using binomial statistics. 

5.3. Results and Discussion 

5.3.1. Air Masses from the Arctic Ocean and Prudhoe Bay Oil Fields 

  The prevailing wind direction at Utqiaġvik is from the northeast across the Beaufort Sea 

(Searby and Hunter, 1971). Based on backward air mass trajectories (Figure 5.1) and wind 

direction (Figure C.1), 70% of the days between August 21 – September 30, 2015 were 

influenced by the Arctic Ocean (~6 km northeast), with 10% of days influenced by the Prudhoe 

Bay oil fields (~300 km southeast) and 20% influenced by the town of Utqiaġvik (~5 km 

northwest). Prudhoe Bay air masses traveled along the coast and were therefore influenced by 

both tundra and the Beaufort Sea, in addition to the emissions from the Prudhoe Bay oil fields. 

Here we discuss the influences from the two main source regions of interest, the Arctic Ocean 

and Prudhoe Bay, on atmospheric particle number and chemical composition.   

From August 21 to September 20, 2015, the average number concentration of 13 – 746 

nm particles during Arctic Ocean influenced air masses (130 ± 1 particles cm-3 with standard 

error of the mean) was nearly five times less than the average number concentration of the 

Prudhoe Bay influenced air masses (920 ± 4 particles cm-3 with standard error of the mean) 

characterized on August 24 – 25 (Figure 5.2 and C.2). Aerosol number distributions for time 

periods classified as Arctic Ocean and Prudhoe Bay are shown in Figure C.2; corresponding 

median and 25th and 75th percentile aerosol number distributions for both time periods are shown 

in Figure C.3. Notably, the average particle mode diameter of 27 ± 4 nm during Prudhoe Bay 

influence was smaller than the average particle mode diameter of 76 ± 40 nm during Arctic 
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Ocean influenced air masses, illustrating that the majority of the additional particles in the 

Prudhoe Bay air mass were less than 30 nm in diameter (Figure 5.2). Particles smaller than ~50 

nm are often associated with combustion emissions, either from primary particles or nucleated 

particles within the emission plume, but can also be indicative of regional new particle 

formation. However, regional new particle formation would typically be followed by particle 

growth (Kulmala et al., 2004), which was not observed (Figure C.2). Rather, this ultrafine 

particle mode was sustained over multiple hours (Figure C.2), which also eliminates the 

possibility that these were from local vehicle emissions.  

 

The condensation sink, a measure of how fast molecules will condense onto existing 

particles (Lehtinen et al., 2003), was calculated during the 2015 study Prudhoe Bay air mass 

periods using the method of Dal Maso et al. (2002). The average condensation sink was 6 x 10-4 

s-1, over an order of magnitude lower than typically observed at mid-latitude and boreal forest 

sites (e.g. Jung et al., 2013; Dal Maso et al., 2002; Kulmala et al., 2001). Based on the 

simulations by Fierce et al. (2015), particle growth during transport for particles ~30 – 50 nm 

would take ~1 – 7 days, if coagulation-dominated due to limited condensable material. Particle 

growth was not observed during this study, suggesting that sufficient condensable material was 

not available for an observable change in particle diameter. Therefore, particles of this size could 

potentially be transported from Prudhoe Bay to Utqiaġvik during the average 21 ± 7 h transit 

time. Given the lack of primary ultrafine aerosol sources between Utqiaġvik and Prudhoe Bay, it 

Figure 5.2. Average, and standard error of the mean, particle number size (14 – 746 nm 
mobility diameter) distributions during Prudhoe Bay and Arctic Ocean influenced air masses 
from August 21 – September 20, 2015, with the above 100 nm distributions inset. The full 
time series of the time-varying aerosol distribution is shown in Figure C.2. 
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is suggested that these particles were likely transported from Prudhoe Bay. During semi-

continuous measurements between January 2008 and July 2015, Kolesar et al. (2017) previously 

observed Prudhoe Bay air masses to preferentially exhibit particle growth, compared to Arctic 

Ocean air masses. However, particle growth was not observed to occur within all Prudhoe Bay 

air masses during the summer, and particle growth events were not observed in September in 

Utqiaġvik (Kolesar et al., 2017). 

Multi-year measurements of particle number size distributions were also compared for 

Arctic Ocean and Prudhoe Bay influenced air masses for the months of August and September 

(Figure 5.3). Prudhoe Bay air masses had a significantly (95% confidence interval) higher 

median concentration (407 particles cm-3) compared to Arctic Ocean air masses (294 particles 

cm-3), similar to the trends observed during the 2015 study. The median particle concentration 

within Arctic Ocean air masses is similar to the median particle number concentrations during 

Figure 5.3. Particle number distribution (10 – 810 nm mobility diameter) for (a) Arctic Ocean 
and (b) Prudhoe Bay air masses observed for August-September 2008, 2009, 2013, and 2014 
(median shown by the solid line, 25th and 75th percentiles shaded) at the NOAA Barrow 
Observatory. 
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August at Station Nord, Greenland (227 particles cm-3, Nguyen et al., 2016) and Alert, Canada 

(~160 particles cm-3; Croft et al., 2016), during September at Tiksi, Russia (222 particles cm-3; 

Asmi et al., 2016), and within the range of observations onboard the Swedish icebreaker Oden 

from July – September during multiple central Arctic Ocean studies when the air masses were 

exposed to the open ocean (90 – 210 particles cm-3; Heintzenberg et al., 2015). However, the 

median particle number concentration during August in Tiksi, Russia (383 particles cm-3) is 

similar to the median concentration of Prudhoe Bay influenced air masses (407 particles cm-3) 

even though the elevated number concentrations in Tiksi are due to biogenic influence leading to 

new particle formation and growth (Asmi et al., 2016). 

Figure 5.4. Representative SEM images (left) and EDX spectra (middle), as well as average 
ATOFMS mass spectra (right), for the major particle types observed: (a) Sea Spray Aerosol 
(SSA), (b) Partially Aged SSA, (c) Soot, (d) Organic Carbon (OC). 
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For the multi-year measurements, the median Arctic Ocean influenced particle size 

distribution has three modes (10 nm, 35 nm, 118 nm), similar to observations during August at 

Alert, Canada (Croft et al., 2016), Station Nord, Greenland (Nguyen et al., 2016), and Ny-

Ålesund, Svalbard (Tunved et al., 2013). The Prudhoe Bay air mass median size distribution also 

has a clear accumulation mode ~150 nm that is typical of summertime background Arctic aerosol 

seen in the previously mentioned studies. A two-sample Kolmogorov-Smirnov test on Prudhoe 

Bay and Arctic Ocean influenced distributions from both the multi-year and 2015 study 

concluded that the two distributions are not significantly different (p = 0.05) above 100 nm, 

despite chemical differences described below.  

5.3.2. Single Particle Chemical Characterization 

  Analysis of the individual particle (0.1 – 4.0 µm) ATOFMS and CCSEM-EDX spectra 

resulted in the identification of five major single-particle types: sea spray aerosol (SSA), soot, 

organic carbon (OC), biomass burning, and mineral dust (Figure 5.4). Detailed descriptions of 

particle-type mass spectra and classifications can be found in the supplemental information. SSA 

internally mixed with nitrate (NO2
- [m/z -46] or NO3

-
 [m/z -62] using ATOFMS; N using EDX) 

and/or sulfate (SO3
- [m/z -80] using ATOFMS; S using EDX) were sub-classified as partially 

Figure 5.5. ATOFMS individual particle composition (0.2 – 1.5 µm) number fractions for 
496 analyzed particles from September 8 – 20, 2015, based on wind direction (left) and air 
mass influence (right), determined by backward air mass trajectories. Data were binned every 
40 degrees. 
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aged SSA (Qin et al., 2012; Gard et al., 1998) and are discussed further in Sections 5.3.2.1 and 

5.3.2.2. Sulfate is identified as SO3
- [m/z -80] in SSA due to mass spectral interference between 

HSO4
- [m/z -97] and NaCl2

- [m/z -93,95,97] (Qin et al., 2012; Sultana et al., 2017). CCSEM-EDX 

identified a unique sulfur-rich particle type not observed by ATOFMS; this is consistent with 

previous ATOFMS studies, including an Arctic summer ship-based study (Sierau et al., 2014), 

that attributed a “missing” ATOFMS particle type to relatively pure ammonium sulfate or ocean- 

derived organic particles that scatter visible radiation, but are not ionized by 266 nm radiation 

(Wenzel et al., 2003; Spencer et al., 2008). CCSEM-EDX analysis identified these “missing” 

particles as sulfur particles, which comprised ~10 – 30% of the 0.13 – 1 µm particle number 

fraction during Arctic Ocean air mass influence, and ~10 – 20% of the 0.13 – 0.3 µm particle 

number fraction during Prudhoe Bay air mass influence (Figure 5.6). Accounting for these sulfur 

particles would reduce the reported ATOFMS fractions by ~5 – 15% for Arctic Ocean air mass 

influence, and ~5 – 10% for Prudhoe Bay air mass influence. Minor contributions were observed 

from biomass burning and mineral dust particles for Arctic Ocean (14 ± 4% and 14 ± 3%, 

respectively, by number) and Prudhoe Bay (10 ± 11% and 4 ± 7%, respectively, by number) 

influenced air masses (Figure 5.5). Wildfire smoke from on-going central Alaskan wildfires did 

not influence the site during the study based on air mass origin; therefore, biomass burning 

particles were likely from local residential heating or beach bonfires commonly seen around 

Utqiaġvik. The dirt roads and beaches near the field site are the likely source of the observed 

mineral dust. Both dust and biomass burning contributions were greatest when the wind was 

coming from Utqiaġvik.  

5.3.2.1 Chemical Characterization of Aerosols during Arctic Ocean Air Mass Influence 

 Based on HYSPLIT backward air mass trajectories, periods of Arctic Ocean air mass 

influence occurred between September 8 – 12, 14 – 22 and 26 – 30. Fresh SSA contributed 80 – 

100%, by number, to the measured 1 – 4 µm, as measured by CCSEM-EDX (Figure 5.6), 

consistent with previous Utqiaġvik measurements which demonstrated that SSA comprises 

approximately 70% of the summertime Arctic supermicron (1 – 10 µm) particle mass (Quinn et 

al., 2002). Approximately 20% of 0.13 – 0.4 µm and 40 – 70% of 0.4 – 1  µm particles, by 

number, were identified as fresh SSA, as determined by CCSEM-EDX, and in agreement with 

the measured ATOFMS number fraction of 63 ± 5% for 0.2 – 1.5 µm particles (Figure 5.5). 

Prominent chloride peaks, including Cl- [m/z -35,37], NaCl2
- [m/z -93,95] and Na2Cl+ [m/z 81,83] 
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(Ault et al., 2014; Gard et al., 1998), were present in the ATOFMS SSA mass spectra. The 

majority of the identified supermicron SSA (>99%, by number) also showed little evidence of 

atmospheric processing through addition of nitrogen or sulfur, identified as nitrate and sulfate by 

ATOFMS (Figure 5.4), in part due to local SSA production. Minimal chloride depletion was 

observed for supermicron SSA particles during Arctic Ocean influence, with an average Cl/Na 

mole ratio of 0.99 for 1 – 4 µm (15% depletion) (Table 1 and Figure C.4), compared to the 

seawater Cl/Na ratio of 1.16 (Keene et al., 1986). Supermicron SSA particles also had low S/Na 

and N/Na mole ratios (0.15 and >0.1, respectively), indicating low contributions from sulfate and 

Figure 5.6. Size and chemical composition of individual particles measured by CCSEM-EDX 
during influence by (A) Arctic Ocean (2,869  particles analyzed) and (B) Prudhoe Bay (1,997 
particles analyzed) air masses. For Arctic Ocean influenced periods, the following 8 h 
samples were analyzed: September 8, 2015 (00:00–08:00, 08:00 – 16:00), September 9, 2015 
(00:00–08:00), September 15, 2015 (00:00–08:00). For Prudhoe Bay influenced periods, the 
following 8 h samples were analyzed: September 23, 2015 (00:00–08:00, 08:00–16:00). All 
times are in AKDT. A histogram of the number of particles analyzed in each bin can be found 
in the Supplemental Information (Figure C.6). 
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nitrate on the particles. In fact, the S/Na mole ratio of 0.15 for supermicron SSA is near the ratio 

expected of seawater (0.121) (Keene et al., 1986), indicating that very little atmospheric 

processing occurred, consistent with local SSA production. Comparatively, submicron (0.13 – 1 

µm) SSA had a lower Cl/Na mole ratio (0.81, 30% depletion), as well as higher S/Na and N/Na 

mole ratios (0.36 and 0.27, respectively), indicating increased atmospheric processing (Williams 

et al., 2002; Gong et al., 2002; Laskin et al., 2002; Hopkins et al., 2008). As residence times for 

submicron particles are longer compared to supermicron particles, submicron SSA can be 

transported further, providing longer periods of atmospheric processing and leading to the 

observed increases in sulfate and nitrate, coincident with chloride depletion.  

  OC particles contributed 27%, by number, to 0.13 – 1 µm particles with minimal size 

dependence (Figure 5.6). OC contributed ~10%, by number, from 1 – 2 µm particles, with no OC 

particles measured between 2 and 4 µm. For the submicron OC particles, 94%, by number, were 

internally mixed with sulfur with an average atomic composition of 11% during Arctic Ocean 

influence (Table 5.1). Sulfur was identified as sulfate using ATOFMS spectral markers (Figure 

5.4). The Arctic Ocean has previously been shown to be a significant source of biogenic sulfur in 

the form of dimethyl sulfide (DMS) (Ferek et al., 1995). DMS oxidizes in the atmosphere to 

form methanesulfonic acid (MSA), previously observed in Arctic aerosols (e.g. Sharma et al., 

2012; Geng et al., 2010; Tjernström et al., 2014; Quinn et al., 2009; Quinn et al., 2007).  

 

 

SSA Projected 

Area Diameter 

Sulfate 

(Number Fraction) 

Nitrate 

(Number Fraction) 

Chloride 

(Number Fraction) 

S/Na  N/Na Cl/Na 

Arctic Ocean 

0.13  – 1 µm 0.77 0.33 0.81 0.36 0.27 0.81 

1 – 4 µm 0.97 0.22 0.99 0.15 <0.1 0.99 

Prudhoe Bay 

0.13  – 1 µm 0.86 0.40 0.87 0.53 0.54 0.67 

1 – 4 µm 0.90 0.43 0.87 0.32 0.76 0.55 

Table 5.1. Submicron and supermicron CCSEM-EDX number fractions and mole ratios for 
sulfate, nitrate, and chloride within individual SSA particles (SSA and partially aged SSA 
classes combined) during Arctic Ocean and Prudhoe Bay air masses. S, N, and Cl were 
confirmed as sulfate, nitrate, and chloride by ATOFMS. 
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5.3.2.2 Chemical Characterization of Transported Prudhoe Bay Aerosols 

  For air masses influenced by Prudhoe Bay emissions, increased number fractions of soot, 

OC, and partially aged SSA particles were measured, with increased soot and OC expected based 

on previous estimates of soot (1.9 kt) and OC (2.0 kt) emissions from 2004 US Arctic oil and gas 

extraction activities, primarily at Prudhoe Bay (Peters et al., 2011). ATOFMS analyses identified 

32 ± 18%, by number, of 0.2 – 1.5 µm particles as OC (Figure 5.5). CCSEM-EDX identified OC 

particles to comprise 60%, by number, of 0.13 – 0.3 µm particles, with contributions decreasing 

to 10%, by number, for 0.8 – 1 µm particles and 5%, by number, for supermicron (1 – 2 µm) 

particles (Figure 5.6). ATOFMS identified hydrocarbon markers within the OC particles (e.g. 

C2H3
+ [m/z 27], C3H2

+ [m/z 37], C4H2
+ [m/z 50]), similar to those detected in previous studies of 

vehicle combustion (Toner et al., 2008). The presence of oxidized OC was also identified 

(C2H3O+ [m/z 43]) in these OC particles, suggesting secondary organic aerosol formation (Qin et 

al., 2012). However, as particle growth was not observed during Prudhoe Bay air mass influence 

(Section 5.3.1), it is likely that SOA contributions to particle mass were minor. Ammonium 

signal (NH4
+ [m/z 18]) was also detected in the OC particles. Sulfur and nitrogen were identified 

in 60% and 28%, by number, respectively, of OC particles between 0.13 – 1 µm, confirmed as 

sulfate (HSO4
- [m/z -97]) and nitrate (NO3

- [m/z -62]), respectively, by ATOFMS (Figure 5.5.4) 

(Pratt and Prather, 2009). Internally mixed sulfate and nitrate have been shown to increase the 

hygroscopicity of organic particles and therefore enhance their CCN activity (Petters and 

Kreidenweis, 2007; Wang et al., 2010).  

Similar number fractions of fine mode soot particles were observed by CCSEM-EDX 

during both Prudhoe Bay and Arctic Ocean periods (5 – 10% and 5 – 20%, by number, across 

0.13 – 1 µm, respectively) (Figure 5.5.6). Soot was also identified by ATOFMS during Prudhoe 

Bay periods by Cn
+ clusters (C+ [m/z 12], C2

+ [m/z 24], C3
+ [m/z 36], etc.). Elevated black carbon 

mass concentrations (up to 0.27 µg/m3) were also measured by the aethalometer during the 

Prudhoe Bay air mass observed on August 25 (Figure C.5). Soot particles are primarily emitted 

through diesel combustion from heavy duty vehicles (Spencer et al., 2006) and ships (Ault et al., 

2009). However, the majority of soot is expected to be less than 100 nm in diameter and 

therefore not chemically characterized in this study. During the 2012 ACCESS campaign off the 

coast of Norway, Roiger et al. (2015) observed increased soot mass concentrations <80 nm in 
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diameter while sampling near oil and gas extraction facilities, consistent with the observed 

elevated ultrafine particle number concentrations in the present study when under Prudhoe Bay 

air mass influence (Figure 5.2 and 5.3). 

Since the air mass trajectory from Prudhoe Bay to Utqiaġvik crosses the Beaufort Sea, 

SSA particles were still a major contributor, making up over 90% of supermicron (1 – 4 µm) 

particles by number. However, unlike the Arctic Ocean air mass influence, ~60%, by number, of 

the supermicron SSA was classified as partially aged SSA. This is over three times the fraction 

compared to Arctic Ocean air masses (16%) due to atmospheric processing during 21 ± 7 hour 

transit over land before reaching Utqiaġvik. SSA shows 43% chloride depletion in the SSA EDX 

spectra (Cl/Na mole ratio of 0.66 compared to 1.16 in seawater (Keene et al., 1986)) (Table 5.1); 

ATOFMS chloride peak intensities (NaCl2
- [m/z -93,95], Cl- [m/z -35,37]) are lower than during 

the Arctic Ocean influence for the SSA particles. Sulfur, identified as sulfate (SO3
-
 [m/z -80]) in 

ATOFMS spectra (Pratt and Prather, 2009), was internally mixed with 86%, by number, of SSA 

(Table 5.1). For these particles, the S/Na mole ratio of the submicron (0.13 – 1 µm) SSA during 

Prudhoe Bay influence (0.53) is higher than expected from seawater (0.121), indicating 

contributions of secondary sulfate (Keene et al., 1986). Nitrogen, identified as nitrate (NO2
-[m/z -

46] and NO3
-[m/z -62]) by ATOFMS (Liu et al., 2003), was observed in 40%, by number, of the 

SSA particles by CCSEM-EDX. Similar to S/Na mole ratios, submicron (0.13 – 1 µm) SSA 

N/Na ratios were substantially higher during Prudhoe Bay influence (0.54) compared to Arctic 

Ocean influenced SSA (0.27). In addition to longer atmospheric residence time for submicron 

particles leading to increased submicron atmospheric processing (Williams et al., 2002; Gong et 

al., 2002), models have found that secondary species such as sulfate and nitrate preferentially 

accumulate on submicron particles (Bassett and Seinfeld, 1984). These SSA particles were likely 

transported from the Arctic Ocean surrounding Prudhoe Bay, and underwent chloride 

displacement during transport due to multiphase reactions with N- and S- containing trace gases 

from precursor Prudhoe Bay combustion emissions (SO2 and NOx) leading to nitrate (Hara et al., 

1999) and sulfate (Hara et al., 2003) formation. A previous ATOFMS study during the 

summertime in the high Arctic Ocean detected similar partially aged SSA particles containing 

nitrate and sulfate with low intensity chloride markers (Sierau et al., 2014). 

5.4. Conclusions.  
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 The chemical composition of individual atmospheric particles transported to Utqiaġvik, 

Alaska from the Arctic Ocean and Prudhoe Bay were measured from August 21 to September 

30, 2015. During periods of Arctic Ocean influence, fresh SSA was a major contributor to both 

submicron (~20%, by number, from 0.13 – 0.4 µm, 40 – 70% between 0.4 – 1 µm) and 

supermicron (80 – 100%, by number, from 1 – 4 µm) particles with only 30% chloride depletion 

(average Cl/Na mole ratio of 0.81) for all submicron SSA and 15% chloride depletion (average 

Cl/Na mole ratio of 0.99) for all supermicron SSA. Submicron OC particles contributed an 

average of 27%, by number, from 0.13 – 1 µm with a minimum of 10%, by number, from 0.13 – 

0.2 µm and were likely from a marine biogenic source. With complete summertime sea ice loss 

expected by 2050 (Wang and Overland, 2015; Overland and Wang, 2013), increasing aerosol 

and trace gas emissions from the open Arctic Ocean are expected (Browse et al., 2013; Struthers 

et al., 2011). 

Increased total particle number concentrations (920 ± 4 particles cm-3) and a smaller 

particle size mode of 27 ± 4 nm were observed during periods of Prudhoe Bay air mass 

influence, in comparison to Arctic Ocean air masses (130 ± 1 particles cm-3, 76 ± 40 nm, 

respectively), due to transportation of ultrafine combustion particles from the Prudhoe Bay oil 

fields. Though not observed in the present study, these transported particles have the potential to 

grow (Kolesar et al., 2017) and serve as CCN, which would have a large impact on the low CCN 

concentrations currently in the Arctic (Mauritsen et al., 2011). During these periods, increased 

number fractions of partially aged SSA (28 ± 1%, by number, of particles 0.13 – 4 µm) and OC 

(60%, by number, of 0.13 – 0.3 µm particles with a minimum of 10%, by number, of 0.8 – 1 µm 

particles) were observed by CCSEM-EDX, with evidence of sulfate and nitrate internally mixed 

with SSA and OC particles due to heterogeneous reactions and gas-particle partitioning, 

respectively, during transport. Increased particle aging has been shown previously to increase the 

CCN activity of combustion particles (Furutani et al., 2008; Petzold et al., 2005). Therefore, 

increasing trace gas and aerosol emissions due to Arctic oil and gas extraction activities will 

contribute to further Arctic climate change (Law and Stohl, 2007).  
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6.1. Introduction 

With Arctic surface temperatures increasing at nearly twice the global average (IPCC, 2013; 

Screen and Simmonds, 2010) and sea ice extent rapidly declining (Overland and Wang, 2013; 

Swart et al., 2015; Wang and Overland, 2015), the Arctic has become more accessible to oil and 

gas extraction infrastructure development (Allison and Bassett, 2015; Harsem et al., 2015). 30% 

of the world’s undiscovered gas and 13% of the undiscovered oil are located in the Arctic 

(Gautier et al., 2009). In 2016, Alaska sold new leases for over 2,400 km2 of land for oil and gas 

extraction on the North Slope of Alaska and in the Beaufort Sea; this was second largest sale 

since 1998 (Mack and Bluemink, 2016). Similar expansions are currently occurring elsewhere in 

the Arctic, particularly in Russia and Norway, where much of the undiscovered oil is thought to 

be located (Gautier et al., 2009). 

Oil and gas extraction activities emit particulate matter (PM) (Law and Stohl, 2007; Peters et 

al., 2011), which has negative effects on air quality, climate, and human health (Pöschl, 2005). 

Depending on chemical composition, atmospheric particles can scatter or absorb incoming solar 

radiation, act as cloud condensation and ice nuclei, and alter the surface albedo of snow 

(Jacobson, 2004), all of which impact climate (IPCC, 2013). Peters et al. (2011) estimated that 

47 kt of PM (15 kt black carbon, BC, 16 kt organic carbon, OC) emitted from Arctic oil and gas 

extraction activities in 2004. In addition, significant emissions of SO2 (150 kt), NOx (NO + NO2, 

160 kt), and non-methane volatile organic compounds (VOCs, 120 kt) were also emitted (Peters 

et al., 2011), and these trace gases can undergo oxidation, contribution to secondary aerosol 
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formation (Pöschl, 2005). Notably, local sources of BC within the Arctic are simulated to have as 

much as three times the impact on Arctic climate compared to transported sources of BC 

(Flanner, 2013). Further, Bond et al. (2013) found that BC is under-predicted by models by an 

average factor of 2.5 in the Arctic. Therefore, Law and Stohl (2007) stated the need for further 

measurements of soot in the Arctic to clarify the importance of various sources.  

Few studies have examined emissions from Arctic oil and gas extraction (Brock et al., 2011; 

Brooks et al., 1997; Creamean et al., 2017; Gunsch et al., 2017; Jaffe et al., 1995; Maahn et al., 

2017; Roiger et al., 2015; Stohl et al., 2013). The Arctic Climate Change, Economy, and Society 

(ACCESS) field campaign in the Norwegian Arctic identified increased NOx, SO2, and BC in 

plumes from local extraction facilities (Roiger et al., 2015). Increased BC, NOx, SO2, CO2, and 

CH4 have previously been measured during both ground and aircraft-based campaigns within the 

Prudhoe Bay oil fields (Brock et al., 2011; Brooks et al., 1997; Creamean et al., 2017; Jaffe et al., 

1995; Maahn et al., 2017). Recent flight campaigns by Maahn et al. (2017) and Creamean et al. 

(2017) measured enhanced cloud condensation nuclei (CCN) concentration above Oliktok Point, 

within the Prudhoe Bay oil fields. Gas flaring within Arctic oil fields, in particular, is a direct 

source of NOx and BC (Fawole et al., 2016; Li et al., 2016), contributing an estimated 42% of the 

annual surface BC levels in the Arctic (Stohl et al., 2013).  

Atmospheric particle mixing state defines particle properties, such as optical properties 

(scattering/absorption), hygroscopicity, toxicity, and chemical reactivity (Moffet and Prather, 

2009; Pöschl, 2005). For example, Sharma et al. (2013) stated that a limited understanding of BC 

mixing state has led to uncertainties about the climate impacts of BC in the Arctic. Single 

particle mass spectrometry can be used to identify the chemical composition and mixing state of 

individual particles using mass spectral “chemical fingerprints” unique to different sources (Pratt 

et al., 2009b; Pratt and Prather, 2012). To investigate the sources, chemical composition, and 

chemical mixing state of aerosols from oil and gas extraction activities within the Prudhoe Bay 

oil fields, an on-line aerosol time-of-flight mass spectrometer (ATOFMS) was used to measure 

individual particle size and chemical composition in real-time at Oliktok Point, Alaska during 

August and September 2016. These observations represent the first online aerosol chemical 

composition measurements of oil and gas extraction emissions in the Alaskan Arctic.  
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6.2. Methods 

6.2.1. Field Site and Instrumentation.  

 From August 22 – September 17, 2016, atmospheric measurements were conducted at the 

Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF3) located at Oliktok Point, 

Alaska (70°29’41.4” N, 149°53’10.9” W). The surrounding Prudhoe Bay oil fields, located both 

on-shore and off-shore total over 14,000 km2 of land (Figure 6.1, http://dog.dnr.alaska.gov). The 

Beaufort Sea is located ~0.5 km to the north, northwest, and northeast, as well as ~1 km to the 

east. Meteorological data, including wind speed, wind direction, relative humidity, and 

Figure 6.1. Map of Prudhoe Bay oil fields and images of local sources near AMF3 field site, 
as indicated by a yellow star. The map background was provided by ArcGIS 10.3.1 with the 
World Imagery basemap (Sources: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, 
CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community). Oil field 
extent obtained from http://dog.dnr.alaska.gov. Photo Credit: Matthew Gunsch. 
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temperature, were obtained from a Waisala WXT520 weather transmitter at a height of ~10 m. 

Radiation measurements were collected by the “Sky Radiation System”, a collection of 

radiometers. Carbon dioxide (CO2) levels were measured by a cavity ringdown spectrometer 

(model G2301, Picarro) from a height of ~10 m. 

Within the ARM AMF3, air was sampled at a height of 5.4 m through a PM10 teflon-

coated aluminum cyclone (URG Corporation) at a flow rate of 40 L min-1. Downstream, a 

stainless steel cylindrical manifold split the flow into dedicated, foam-insulated copper sampling 

lines for each of the following instruments. An aerosol time-of-flight mass spectrometer 

(ATOFMS) measured the size and chemical composition of individual 0.07 – 1.6 µm particles 

(vacuum aerodynamic diameter) in real time (Section 6.2.2). Black carbon (BC) mass 

concentrations were measured by a seven wavelength aethalometer (model AE42, Magee 

Scientific). Aerosol particle size distributions (13 - 746 nm mobility diameter and 0.5 – 20 µm 

aerodynamic diameter) were measured using a scanning mobility particle sizer (SMPS, model 

3082, TSI, Inc.) and an aerodynamic particle sizer (APS, model 3321, TSI, Inc.), respectively. 

Using the method of Khlystov et al. (2004), the SMPS and APS size distributions were combined 

into a single continuous particle size distribution from 0.013 – 2.5 µm (aerodynamic diameter), 

assuming a shape factor of 1 and density of 1.5 g cm-3. 

 

6.2.2. ATOFMS.  

 An ATOFMS, based on the design of Pratt et al. (2009b), measured the size and chemical 

composition of 32,880 individual aerosol particles (0.07 – 1.6 µm, vacuum aerodynamic 

diameter) in real-time. Briefly, particles were focused through an aerodynamic lens system and 

entered the sizing region as a narrow, collimated beam. Particle diameter, calibrated using 

polystyrene latex spheres (Polysciences, Inc.) of known diameter (0.09 – 2 µm) and density (1 g 

cm-3), was calculated using the time each particle took to traverse two continuous wave lasers 

(50 mW 405 nm and 50 mW 488 nm, Coherent Technol.). The particles then entered a dual-

polarity reflectron time-of-flight mass spectrometer (Tofwerk) and were individually desorbed 

and ionized by a 266 nm Nd:YAG pulsed laser (Centurion, Quantel, Inc.), operating at 0.8 – 1.2 

mJ, resulting in positive and negative ion mass spectra. Prior to ATOFMS analysis, particles 

were dried in-line through two silica gel diffusion driers; however, negative ion mass spectra 

were collected for only 63% of particles, by number, due to the accumulation of water that 
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suppressed negative ion formation (Neubauer et al., 1997), a phenomenon commonly observed 

in other marine environments (Spencer et al., 2008). 

Individual particle mass 

spectra were imported and analyzed 

in FATES, a custom single particle 

mass spectrometer analysis toolkit 

for MATLAB (MathWorks) (Sultana 

et al., 2017). Individual particle mass 

spectra were clustered based on the 

presence and intensity of ion peaks 

using an ART-2a neural network 

algorithm with a vigilance factor of 

0.8 and a learning rate of 0.05 for 20 

iterations (Song et al., 1999). The 

resulting clusters were grouped into 

eight unique clusters, each 

representing an individual particle 

type, based on the most likely m/z 

assignments, according to ion ratios 

and spectral identification from 

previous laboratory and field 

campaigns (Pratt and Prather, 2009). 

Using the method of Qin et al. 

(2006), ATOFMS particle numbers 

were scaled using the SMPS and 

APS data (converted to aerodynamic 

diameter, as described in Section 

6.2.1.) to obtain chemically-resolved 

number and mass concentrations. A 

density of 1.4 g/cm3 was assumed for 

organic carbon (OC), soot, OC-

Figure 6.2. Average individual particle ATOFMS 
mass spectra for major particles types observed: (A) 
sea spray aerosol (SSA), (B) soot, (C) aged soot, (D) 
organic carbon (OC)-amine-sulfate, (E) OC. 
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amine-sulfate, aged soot, and incineration particles; a density of 2.1 g/cm3 was used for mineral 

dust, and a density of 1.5 g/cm3 was applied for biomass burning (BB) and sea spray aerosol 

(SSA) (Moffet et al., 2008; Qin et al., 2012; Spencer et al., 2007).  

 

6.3. Results and Discussion 

6.3.1. Single Particle Chemical Characterization.  

 From August 22 – September 17, 2016, eight unique individual particle types were identified 

by ATOFMS: sea spray aerosol (SSA), organic carbon (OC), soot, aged soot, organic carbon-

amine-sulfate (OC-amine-sulfate), biomass burning (BB), mineral dust and incineration particles 

(Figures 6.2 and D.1). BB, dust, and incineration particles each contributed 8%, 3%, and 1% of 

the 0.07 – 1.6 µm particle number concentrations, respectively; therefore, analysis here focuses 

on the characteristics and contributions of the most abundant particle types: OC, soot, aged soot, 

OC-amine-sulfate, and SSA. Mass spectra of the minor particle types are shown and described in 

the supplemental information (Figure D.1). SSA was characterized by m/z 23 (Na+) with minor 

ion peaks at m/z 39 (K+), 40 (Ca+), 56 (CaO+), 57 (CaOH+), and 81, 83 (Na2Cl+), as well as m/z -

35, -37 (Cl-), and -93, -95 (NaCl2
-) (Prather et al., 2013). Individual OC particles were identified 

by characteristic organic carbon ion peaks at m/z 27 (C2H3
+), 37 (C3H+), and 43 (C2H3O+) (Qin et 

al., 2012; Silva and Prather, 2000; Spencer et al., 2006); negative ion mass were not observed 

due to ion suppression from the accumulation of water (Neubauer et al., 1997) during 

atmospheric transport.  

 OC-amine-sulfate particles were characterized by organic carbon (m/z 27, C2H3
+) and sulfate 

(m/z -97, HSO4
-) ion markers, as well as unique contributions from diethylamine (DEA, m/z 58, 

73, C2H5NHCH2
+, C3H7NHCH2

+), trimethylamine (TMA, m/z 59, N(CH3)3
+), triethylamine 

(TEA, m/z 86, 101, (C2H5)2NCH2
+, (C2H5)3N+), and triethylamine-oxide (TEAO, m/z 118, 

C2H5)3NOH+) (Angelino et al., 2001). The OC-amine-sulfate particle mass spectra also included 

sulfuric acid cluster ions (m/z -195, H2SO4HSO4
-), indicative of particle acidity (Pratt et al., 

2009a), which could aid in the formation of aminium salts (Pratt et al., 2009a). While the 

presence of TMA can be associated with biogenic marine emissions (Köllner et al., 2017; Willis 

et al., 2016) the observed particles in the present study also have intense peaks corresponding to 

ethylamines, which are not associated with biogenic sources but instead with anthropogenic 

sources, including vehicular combustion and industrial processes (Angelino et al., 2001; Ge et 
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al., 2011; Huang et al., 2012). The OC-amine-sulfate mass spectral signature was consistent 

throughout the study, suggesting a single source for these amines. Ethylamines are commonly 

used in many oil and gas drilling processes as corrosion inhibitors, drilling fluid additives, and 

within solutions used to treat sour (high sulfur content) natural gas (Kadnar, 1999; Patel et al., 

2007; Tam et al., 1990). These processes are currently used within Prudhoe Bay to treat sour gas, 

and will continue to be used as the Prudhoe Bay oil fields becomes more sour over time (Fingas, 

2010). Therefore, these OC-amine-sulfate particles are most likely from natural gas extraction 

and treatment activities within the Prudhoe Bay oil fields. 

 Soot particle mass spectra featured both positive and negative carbon cluster ions (Cn
+/-) 

(Toner et al., 2008; Toner et al., 2006), with phosphate (m/z -79, PO3
-), likely originating from 

diesel generators and heavy duty vehicles, due to phosphate-based additives in lubricating oils 

used for diesel engines (Spencer et al., 2006). Aged soot particles, also likely from diesel 

combustion, were identified by carbon cluster ions (Cn
+/-), as well as hydrocarbon peaks (m/z 27, 

C2H3
+, and 43, C2H3O+), sulfate (m/z -97, HSO4

-), and sulfuric acid (m/z -195, H2SO4HSO4
-) 

(Moffet and Prather, 2009; Pratt et al., 2009a), The soot and aged soot average single particle 

mass spectra were compared to ATOFMS mass spectra previously collected during diesel source 

studies (Toner et al., 2008); A higher calculated dot product indicates greater similarity between 

the ambient and source particle mass spectra (dot product of 1 = identical), whereas a lower dot 

product indicates less similarity (dot product of 0 = no similarity) (Pratt and Prather, 2009). Both 

soot and aged soot showed a high degree of similarity (dot products of 0.71 and 0.45 for fresh 

and aged soot, respectively) compared to individual diesel particle mass spectra (Toner et al., 

2008). Aged soot has a lower dot product due to the accumulation of secondary species, 

including sulfate (m/z -97, HSO4
-) and oxidized organic carbon (m/z 43, C2H3O+), which reduces 

the similarity compared to a freshly emitted particle (Pratt and Prather, 2009). It should be noted 

that fresh soot also has minor contributions from sulfate (Toner et al., 2008). If the secondary 

species were removed from the aged soot particles, the resulting mass spectra are expected to be 

identical to those of the fresh soot, resulting in an elevated dot product (Pratt and Prather, 2009). 

Comparing each of the carbonaceous particle types (OC and OC-amine-sulfate) to mass spectra 

from gasoline-powered combustion aerosol emissions (Toner et al., 2008) resulted in dot 

products less than 0.01, further confirming the lack of gasoline combustion activities within the 

oil field. Therefore, it is likely that the soot is from diesel combustion, and the aged soot particles 
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originated from diesel combustion and gained secondary aerosol mass during transport across the 

oil field.  

  

6.3.2. Oil Field Plume Characterization. Over the course of the study the field site was 

continually influenced by oil and gas extraction emissions from all directions (Figure 6.1). 

Frequently, the site was impacted by direct emission plumes, defined by elevated BC mass 

concentrations (greater than 0.2 µg/m3) as measured by the aethalometer and/or CO2 mole ratios 

(greater than 397 ppm). Both black carbon and CO2, at these levels, are indicative of 

anthropogenic combustion from within the oil fields (Brooks et al., 1997; Jaffe et al., 1995). 

Plumes impacted the field site for 29% of the time between August 22 and September 17, 2016, 

with the remainder of the time classified as oil field background air mass periods, discussed in 

Section 6.3.3. 

Within plume periods, elevated PM2.5 aerosol number and mass concentrations were 

observed (average 1400 particles cm-3 and 2.6 µg/m3). These increases in particle number and 

mass were driven mainly by the significant increase in sub-100 nm particles (average particle 

number mode of 50 nm, Figure 6.3 and D.4.), attributed to fresh combustion emissions (Wallace 

and Hobbs, 2006). A Kolmogorov-Smirnov goodness-of-fit statistical test shows that above 200 

nm, the aerosol number distributions during plume and oil field background air mass periods 

Figure 6.3. Median aerosol size-resolved number concentrations (13 - 746 nm mobility 
diameter, Dm) and 25th/75th percentiles, measured by SMPS, during (A) direct plume and (B) 
oil field background air mass periods at Oliktok Point, AK. 
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were statistically similar (σ = 0.05). 

While it is expected that during 

plumes particles will have 

increased condensed secondary 

species, these do not add enough 

mass to lead to a diameter change. 

This further indicates that the 

plumes are primarily adding 

ultrafine combustion particles to 

the oil field background aerosol 

distribution (Section 6.3.3).  

From August 22 – 

September 17, 2016, 15,682 

individual particles (0.07 – 1.6 µm) 

were chemically characterized by 

ATOFMS during direct emission 

plumes (Figure 6.4). During the 

maximum number concentration 

observed on August 27, ~80% of 

the 0.07 – 1.6 µm particles, by 

number, corresponded to fresh and 

aged soot (Figure 6.6); this was a 

relatively stagnant period with 

wind (3 m/s) shifting from the northerly ocean to the oil extraction facilities to the 

south/southwest (Figure D.3). Also on this day, heavy machinery was used to move an oil rig on 

the nearby road to the east over the course of 12 h during the day of August 27 and provided a 

significant local source of soot from diesel combustion. The 0.07 – 1.6 µm aerosol mass 

concentrations reached a maximum of ~5 µg/m3 on August 29 due to significant contributions 

from SSA (1.6 µg/m3) (Figure 6.6) produced from oceanic wave-breaking during a period of 

elevated wind speed (~10 m/s) with air arriving from the open ocean ~0.5 km to the north of the 

field site (Figure D.3). 

Figure 6.4. Size-resolved number fractions of ATOFMS 
individual particle types (0.07 – 1.6 µm), with 0.05 µm 
resolution bins shown between 0.25 – 1.4 µm and 0.1 
µm resolution shown for < 0.25 µm and > 1.4 µm during 
(A) direct plume and (B) oil field background air mass 
periods at Oliktok Point, AK. Particle types include sea 
spray aerosol (SSA), organic carbon (OC)-amine-
sulfate, organic carbon (OC), soot, aged soot, biomass 
burning (BB), incineration, and dust. 
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Overall, the number 

concentrations were dominated 

by soot (38% fresh soot, 18% 

aged soot, by number) and 

organic carbon (11% OC, 21% 

OC-amine-sulfate, by number) 

particles from oil and gas 

extraction activities (Figures 6.5 

and 6.6) involving diesel and 

natural gas combustion. Fresh 

soot particles were primarily less 

than 200 nm, and accounted for 

40%, by number, of the 70 – 200 

nm particles during both plume 

and oil field background periods 

(Figure 6.4). OC-amine-sulfate 

particles were primarily detected 

with diameters less than 700 nm 

and contributed ~60% of the particles, by number, between 300-500 nm during plumes (Figure 

6.4). Increased average mass of soot (0.07 µg/m3), aged soot (0.11 µg/m3), OC (0.18 µg/m3) and 

OC-amine-sulfate (0.26 µg/m3) particles were also observed (Figure 6.5). PM2.5 BC mass 

concentrations (aethalometer) averaged 0.39 ± 0.04 µg/m3 (95% confidence interval) during 

plumes (with brief, extreme spikes in BC mass concentrations up to a maximum ~8 µg/m3 on 

August 28), indicating that an average of ~0.2 µg/m3 of soot was below the size cut (0.07 µm) of 

the A-ATOFMS during plume influence, further supporting the contribution of combustion 

emissions to the elevated ultrafine particle concentration. 

During plumes, sulfate (HSO4
-, m/z -97) was internally mixed with 97% of aged soot and 

91% of OC-amine-sulfate particles, by number. Only 29% of the fresh soot particles, by number, 

contained sulfate, consistent with local emissions. In addition, ~60% of aged soot, ~50% of OC-

amine-sulfate, and ~10% of OC particles, by number, were internally mixed with oxidized 

organic carbon (m/z 43, C2H3O+) a marker of secondary organic aerosol (Qin et al., 2012), during 

Figure 6.5. Chemically resolved average (A) number and 
(B) mass concentrations for 0.07 – 1.6  µm particles, 
measured by ATOFMS, during oil field background and 
direct plume air mass influence periods at Oliktok Point, 
AK. 
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plumes. Soot and aged soot particles internally mixed with OC and sulfate may have increased 

light absorption characteristics (e.g. Jacobson, 2001; Moffet et al., 2008) that could impact Arctic 

warming (Flanner, 2013); however, the extent of the impact of these coatings on soot absorption 

properties is not clear (e.g. Cappa et al., 2012; Healy et al., 2015). Notably, soot particles 

internally mixed with nitrate and sulfate have been shown to have increased CCN activity (Bond 

et al., 2013).  

Even within the plumes, SSA accounted for a significant portion (0.25 µg/m3) of the total 

mass and contributed ~40%, by number, to the 0.8 – 1.6 µm particles (Figure 6.4). The SSA 

mass concentration was similar during background periods (0.19 µg/m3, Section 6.3.3), with the 

local open water surrounding the field site from 230° - 20° episodically influencing both plume 

and background periods based on local winds. In order to investigate possible differences in SSA 

particle mass spectra during plume and oil field background periods, the average dual-polarity 

SSA spectrum from the plumes was subtracted from the average SSA mass spectra from the oil 

field background periods (Figure 6.7). This subtraction plot depicts increased intensity in sodium 

Figure 6.6. (A) Black carbon (BC) mass concentrations, CO2 mole ratios, and 3 h time 
resolution chemically-resolved (B) number and (C) mass concentrations (0.07 – 1.6 µm), 
based on ATOFMS measurements. 
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nitrate (m/z -131, NaNO2NO3
- and -147, Na(NO3)2

-) and sodium sulfate (m/z -119, NaSO4
- and 

+165, Na3SO4
+) ion peaks in the SSA particles present during plumes, as well as increased 

intensity in the nitrate (m/z -46, NO2
-, and -62, NO3

-) and sulfate (m/z -80, SO2
-) ion markers, all 

indicative of atmospheric multi-phase processing of SSA (Ault et al., 2014; Gard et al., 1998). 

Consistent with this, during plume periods greater number fractions of SSA particles contained 

nitrate (77%, by number) and sulfate (40%, by number), both indicative of chloride 

displacement, due to multiphase reactions involving precursor combustion emission trace gases 

(SO2 and NOx) and their oxidation products (Gard et al., 1998; Hara et al., 1999; Hara et al., 

2003). Note that m/z -80 is used to identify sulfate instead of m/z -97 due to an interference with 

NaCl2 at m/z -97 (Qin et al., 2012).  

 

6.3.3. Oil Field Background Aerosol Characterization.  

 During oil field background air mass periods, when direct plume emissions were not 

observed, winds primarily arrived from the north/northeast, the direction of the prevailing winds 

(Figure D.3). During these periods, average PM2.5 number and concentrations were 307 particles 

cm-3 and 1.2 µg/m3, respectively, with a particle number mode of 105 nm (Figure 6.3). The oil 

field background particle concentrations are higher than those observed during August – 

September at other Arctic locations, including Station Nord, Greenland (227 particles cm-3, 

Nguyen et al., 2016), Tiksi, Russia (222 particles cm-3, Asmi et al., 2016), Utqiaġvik, AK (190 

particles cm-3 when under Arctic Ocean influence, Gunsch et al., 2017), and the central Arctic 

Ocean (90 - 210 particles cm-3, Heintzenberg et al., 2015). PM2.5 BC measurements 

(aethalometer) recorded an average mass concentration of 0.089 ± 0.002 µg/m3 (95% confidence 

interval), nearly double the 0.05 µg/m3 cut-off that is typically used when classifying clean 

marine environments (Gantt and Meskhidze, 2013). These data support that the “background” 

periods are more representative of regional Arctic oil field conditions, with the extent of nearby 

oil fields over 14,000 km2 wide (Figure 6.1), than a “clean” Arctic background. 

During oil field background periods, ATOFMS sampled 17,198 particles between 0.07 

and 1.6 µm. The oil field background periods were primarily characterized by soot (soot and 

aged soot) and organic carbon (OC and OC-amine-sulfate) particles, by number (Figure 6.5), due 

to the regional influence from oil and gas extraction activities surrounding the field site. Sulfate 

and oxidized OC were internally mixed with 95% and 56% of the measured aged soot particles, 
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by number, and  89% and 50% of OC-amine-sulfate particles, by number, respectively. In 

addition, 12% of the fresh soot, by number, was internally mixed with sulfate. The number 

percentages of particles internally mixed with sulfate and oxidized OC  were similar to the plume 

periods, further indicating that the field site was constantly under the influence of oil and gas 

extraction emissions. 

During oil field background periods, 46%, of 0.07 – 1.6 µm particle mass was comprised 

of SSA (0.19 µg/m3) due to the close proximity (0.5 km) of the site to open ocean. Markers of 

fresh SSA, including intense NaxCly ion clusters at m/z 81, 83 (Na2Cl+), m/z 58, 60 (NaCl-), m/z -

93, -95 (NaCl2
-), and m/z -151, -153, -155, -157 (Na2Cl3

-) as well as intense chloride peaks at m/z 

-35, -37 (Cl-), are consistent with local SSA production (Figure 6.7). Some of these ion markers 

were also present in aged SSA, indicating that complete chloride displacement has not occurred, 

similar to previous observation in Utqiaġvik, AK during Prudhoe Bay influence (Gunsch et al., 

2017). As shown in in Figure 6.7, the NaxCly ion peaks were more intense in oil field background 

SSA particles compared to plume period SSA particles, indicative of less atmospheric aging. 

During the oil field background periods, 45% and 16% of the SSA, by number, were internally 

mixed with nitrate and sulfate, respectively, from chloride displacement (Ault et al., 2014; Gard 

et al., 1998; Hara et al., 1999; Hara et al., 2003).  

Figure 6.7. ATOFMS mass spectral subtraction plot of average individual SSA particle mass 
spectra during oil field background minus the corresponding direct plume air mass periods. 
Positive values show higher intensity m/z peaks during oil field background conditions, and 
negative values indicate greater intensities during direct plume periods.  
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6.3.4. Observed Aerosol Particle Growth.  

  A unique period of aerosol growth was observed between August 24 – 27 during an oil 

field background period(Figure D.2); this period was not included in the previously discussed 

background averages. Two individual events were observed, one from August 24 06:00 – August 

25 20:00 AKDT and a second from August 26 06:00 – August 27 00:00.  Wind direction did not 

shift during individual growth periods, suggesting that the observed aerosol growth was not 

associated with dilution in a shifting plume. During both events, winds were relatively stagnant 

(~4 m/s), with increased solar radiation (132 W/m2) and temperature (9°C) compared to the 

study average (69 W/m2 and 3°C, respectively). The events both had starting diameters ~20 nm 

and ending diameters ~50 nm, with growth rates of 0.8 nm/h and 1.6 nm/h, respectively. Both of 

these growth rates are lower than the average growth rate observed by Kolesar et al. (2017)  

during Prudhoe Bay influence (2.5 ± 2.7 nm/h), however this may be impacted by the limited 

sample size of the current study compared to six years of analysis by Kolesar et al. (2017)  Both 

growth events occurred during condensation sink minima (~2 x 10-2 s-1), compared to an average 

of 2 x 10-1 s-1 for the rest of the study (Figure D.5); these values were calculated using the 

methods of Dal Maso et al. (2002) using particle number size distributions. While this 

condensation sink is orders of magnitude higher than previously observed during aerosol growth 

in clean Arctic environments (2 x 10-3 s-1; Kolesar et al., 2017), stagnant winds combined with 

elevated oxidants and condensable material from the surrounding oil and gas extraction activities 

likely contributed to the observed aerosol growth. Condensation sinks of ~2 x 10-2 s-1 were also 

observed between September 5 and September 10; however, elevated wind speeds during this 

period (~10 m/s) likely hindered aerosol growth from occurring. Notably, the number fraction of 

0.07 – 1.6 µm OC-amine-sulfate particles increased as these events progressed, beginning at 

<10% and reaching a maximum of 68% at 11:00 AKDT on August 26, similar to previous 

observations of amine contributions to fine particles during ultrafine growth at a remote site in 

northern California (Creamean et al., 2011). Previous studies have found that amines contribute 

to new particle formation and growth (Almeida et al., 2013; Smith et al., 2010; Tao et al., 2016), 

with greater contributions expected in colder climates (Chen and Finlayson-Pitts, 2016).  
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6.4. Atmospheric Implications 

 Here we report the first single particle chemical characterization of atmospheric aerosols in 

the Prudhoe Bay oil fields, the third largest oil field in North America (EIA, 2015). Throughout 

the study, combustion emission plumes originating from nearby oil and gas extraction facilities 

were characterized, and at no time was the site not influenced by oil field emissions. The vast 

majority of particles observed within direct plumes (~90% of the number concentration) were 

ultrafine particles (sub-100 nm in diameter), attributed to fresh combustion. Plumes primarily 

consisted of soot and organic carbon particles, by both number and mass, as expected based on 

models of emissions by Peters et al. (2011), with >90% of these particles internally mixed with 

sulfate, attributed to SO2 emissions from diesel and natural gas combustion processes within the 

oil field. The presence of sulfate and oxidized organic carbon in soot particles may increase 

absorption characteristics of the particles (e.g. Chung and Seinfeld, 2005; Jacobson, 2001; Knox 

et al., 2009; Liu et al., 2015; Moffet and Prather, 2009), though the extent is unclear. In addition, 

soot aging increases CCN activity (Bond et al., 2013). With on-going expansion of Arctic oil and 

gas extraction activities, these impacts will likely continue increasing. Aminium sulfate salts 

likely contributed to observed particle growth during oil field background air mass influence, and 

may explain the preferential aerosol growth observed by Kolesar et al. (2017) at Utqiaġvik, AK 

during Prudhoe Bay influenced air masses, compared to clean Arctic Ocean air masses. With the 

use of ethylamines expected to increase on the North Slope of Alaska due to planned liquefied 

natural gas pipelines (Ruester and Neumann, 2008) and carbon capture efforts (Rao and Rubin, 

2002; Rochelle, 2009), the likely contribution of these compounds to new particle formation and 

growth should be considered in evaluating the climate impacts of the oil and gas extraction 

activities.  
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Chapter 7.  

Conclusions and Future Directions 

 

7.1. Conclusions 

  This dissertation describes the construction of a aerosol time-of-flight mass spectrometer 

(ATOFMS) as well as the chemical characterization of aerosol populations during three unique 

field campaigns in rural environments impacted by climate change. An updated aircraft aerosol 

time-of-flight mass spectrometer (A-ATOFMS) first was constructed with reduced weight (~23 

kg less), power consumption (~600 W less) and an expanded size range (down to 70 nm).  

During 2014, we partook in a small campaign at the University of Michigan Biological Station, 

where we chemically characterized the aerosol population while under the influence of long-

range transported pollutants from Canadian wildfires and regional urban areas, finding major 

contributions from heavily aged biomass burning particles coated with SOA. During 2015, the 

newly built aircraft-capable aerosol time-of-flight mass spectrometer (A-ATOFMS) and a 

particle impactor for off-line SEM-EDX analysis were deployed to Utqiaġvik, AK in order to 

investigate the impacts on a remote aerosol population from transported Arctic oil and gas 

extraction emissions from Prudhoe Bay, located hundreds of kilometers to the east. During 

Prudhoe Bay air masses, the A-ATOFMS combined with off-line SEM-EDX chemically 

characterized increased combustion emissions (organic carbon, soot) as well as aged SSA. This 

was compared to the clean Arctic Ocean air masses, consisting primarily of fresh SSA. During 

2016, we took the A-ATOFMS into the Prudhoe Bay oilfields to investigate contributions nearby 

to these oil and gas extraction sources within both direct plumes and the overall oil field 

background population. During plumes, the A-ATOFMS chemically characterized increased soot 

and organic carbon, including a unique amine-containing organic carbon attributed to natural gas 

purification processes. The oil field background was also characterized and had these same 

anthropogenic influences, in stark contrast to the typical clean Arctic background. 

  Chapter 2 detailed the design and construction of the A-ATOFMS, based on the previous 

version of the A-ATOFMS described by of Pratt et al. (2009). The newest A-ATOFMS 
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underwent a near complete electronic overhaul, with updated turbomolecular and scroll pumps, 

pressure gauges, lasers, timing circuit, and computer. This led to instrument weight reduction 

and increased performance. Notably, due to using lower wavelength lasers and an internally 

black anodized particle sizing region, the lower limit of particle characterization has improved to 

70 nm. As the number concentration mode for ambient aerosols is less than 100 nm (Seinfeld 

and Pandis, 2016), the ability to chemically characterize these smaller particles will lead to a 

more representative characterization of the aerosol population. In addition, due to the upgraded 

computer and 100 Hz 266 nm DI laser, the theoretical maximum spectral acquisition rate 

doubled from 30 Hz to 67 Hz, providing increased data acquisition capability, particularly in 

polluted environments where ambient particle concentration may be elevated or within a fast-

moving aircraft. This newly built A-ATOFMS has already been deployed on two field 

campaigns to northern Alaska and used in many laboratory studies, with many more planned for 

the future. 

  Chapter 3 detailed single particle chemical characterization efforts of long-range 

transported Canadian wildfire smoke on northern Michigan using the TSI 3800 ATOFMS, an 

earlier commercial version of our A-ATOFMS discussed in Chapter 2. Summer of 2014 was one 

of the most active burning seasons for Canada in the past 20 years with a total of 10,643 km2 of 

land burned (CIFFC,	2017). This smoke was transported to our field site in northern Michigan, 

where we classified ~90%, by number, of the 0.5 – 2.0 µm particles as aged biomass burning 

particles, internally mixed with sulfate and oxidized organics. These particles were likely 

primarily SOA by mass, as 90% of the non-refractory PM1 mass was identified as organics by 

aerosol mass spectrometry. In the United States, biomass burning is the largest combustion 

contributor by mass of SOA (Jathar et al., 2014). As OC is currently underpredicted in the 

midwest United States (Napelenok et al., 2013; Spak and Holloway, 2009), it is likely much of 

the missing mass is from these SOA contributions. As Canadian wildfires are expected to 

increase in intensity and frequency due to climate change (Gillett et al., 2004; Knorr et al., 2016; 

Liu et al., 2010; Veira et al., 2016), contributions from SOA from biomass burning are likely to 

continue increasing in the future. 

  Chapter 4 discussed particle growth events and how they were influenced by both 

regional and transported air masses during the summer 2014 northern Michigan field campaign. 

Particle growth was observed during three unique air mass classifications: urban-influence, 
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wildfire-influence, and regional-influence. Growth events during urban influenced air masses 

occurred during the daytime, and a combination of elevated oxidants and solar radiation likely 

led to OH oxidation of BVOCs and production of condensable organics. Wildfire-influenced 

growth events only occurred during the nighttime. Increased NOx from the wildfires likely led to 

NO3 oxidation of SO2 and BVOCs, particularly monoterpenes, and subsequent particle growth. 

Finally, two multi-day growth events occurred during stagnant air masses, likely influenced by 

regional BVOC oxidation. Particles analyzed by TEM-EDX during all growth events contained 

sulfur, oxygen, and carbon, consistent with H2SO4 and organics contributing to the observed 

particle growth. 

  Chapter 5 discussed results of our field campaign near Utqiaġvik, AK, where we used A-

ATOFMS and CCSEM-EDX to chemically characterize the clean Arctic background aerosol 

population and influences from the Prudhoe Bay oil fields, located hundreds of kilometers to the 

southeast. During Prudhoe Bay air masses, particle number concentrations were nearly 10 times 

the level of the clean Arctic background and the particle mode decreased from 76 nm down to 27 

nm, likely due to the contribution of transported combustion particles. In addition, SSA had 

higher internal mixtures with sulfate and nitrate due to chloride depletion during atmospheric 

processing. Increased number fractions of organic carbon particles, internally mixed mixtures 

with sulfate and nitrate, were also observed. During the clean Arctic background, SSA was 

identified as the major contributor to both submicron and supermicron particles, and showed 

minimal chloride depletion. Particle aging has been previously shown to increase CCN activities 

of certain particle types (Furutani et al., 2008), and these combustion particles are likely to 

contribute to the on-going Arctic warming and lead to a further decrease in sea ice extent. 

  Chapter 6 detailed the results of our second field campaign to Alaska, using the A-

ATOFMS within the Prudhoe Bay oil fields. The field site was influenced by direct plumes from 

nearby point sources. Background  air masses periods were unique as they differed from the 

traditional “clean” Arctic background previously measured (Chapter 5), due to the 360 degree 

influence from both on-shore and off-shore oil and gas extraction emissions. During plumes, 

PM2.5 number and mass concentration were ~4 and ~2 times higher than background oil field 

conditions. The majority (90%)  of these particles were less than 100 nm in diameter and were 

attributed to fresh combustion, similar to the transported particles from the Prudhoe Bay oil 

fields detailed in Chapter 5. During both plumes and oil field background periods, the majority 
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of particles were chemically characterized as soot, aged soot, or organic carbon. A unique OC 

particle type consisting primarily of amines was also measured during these periods, attributed to 

solutions used in natural gas production processes (Kadnar, 1999; Patel et al., 2007; Tam et al., 

1990). These measurements are also the first reported single particle chemical characterization 

conducted within the Prudhoe Bay oilfields. 

 

7.2. Future Directions 

  While the A-ATOFMS has been fully constructed, characterized, and successfully 

operated in the field, improvements can still be made to the instrument. Notably, as mentioned in 

Chapter 2, our updated timing circuit was built with additional output channels with the ability to 

output the waveforms of the scattered laser collected by the PMT during particle sizing. This 

waveform can be used to calculate chemically-resolved single particle measurements of density 

and refractive index (Moffet and Prather, 2005; Moffet et al., 2008). In addition, further software 

improvements, specifically accurately timing the trigger to collect this scattered light waveform  

need to be completed before this additional feature can be fully implemented within the 

instrument. 

The results of the field campaigns detailed in Chapters 3-6 have led to further questions 

that can be investigated. For example, most of the organic carbon particles measured at UMBS 

and described in Chapter 3 had markers for SOA but also potassium, commonly used to identify 

biomass burning. It is likely that these OC particles were highly aged biomass burning particles 

coated with a large mass of SOA, however in order to confirm this we would need to identify the 

particle core. Recently, a thermodenuder based on the design of Huffman et al. (2008) was 

constructed in the Pratt Lab, and this thermodenuder could be used to investigate semi-volatile 

and non-volatile aerosol components of these particles. ,If we were to return to UMBS and 

measure a similar air mass using the thermodenuder, we could volatilize the SOA and reveal the 

non-volatile particle core, similarly to the study by Pratt and Prather (2009) in an urban 

environment. We’d expect the SOA to volatize and the markers to no longer appear in the 

spectra, with just the expected non-volatile biomass burning particle mass spectral “fingerprint” 

remaining (Pratt and Prather, 2009). 

One of the limitations of the A-ATOFMS is the inability to chemically characterize pure 

sulfate particles, as these particles do not absorb the 266 nm radiation used for particle 
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desorption and ionization. This has been a well known ATOFMS limitation and is not unique to 

our updated A-ATOFMS (e.g. Sierau et al., 2014; Wenzel et al., 2003). During our field 

campaign to Utqiaġvik, AK described in Chapter 5, CCSEM-EDX detected a sulfur particle type 

that made up ~10 – 30% of the particle number fraction, varying by size (0.1 – 4 µm projected 

area diameter). The A-ATOFMS could scatter these particles but could not ionize them well due 

to the limitations of the 266 nm laser; a few very weak negative spectra showed a single sulfate 

peak at m/z -97 (HSO4
-). However, if the A-ATOFMS was fit with a lower wavelength laser, it 

may be possible to detect these sulfur particles in future studies. Ideally, the A-ATOFMS would 

need a 193 nm excimer laser installed to be able to characterize these sulfate particles, either 

replacing the 266 nm laser or installed in parallel with some mechanism to switch between the 

two lasers. A downside to using a 193 nm excimer laser would be increased organic ion 

fragmentation, limiting the chemical information gained. Recently, Quantel Inc. began 

manufacturing a 213 nm Ultra CFR laser, similar to the design of the laser used on the original 

A-ATOFMS but at a lower wavelength. This would be easier to retrofit onto the current A-

ATOFMS than an eximer laser, and would result in less fragmentation than the 193 nm laser. 

Using a 213 nm laser would require new optics to transmit the beam, therefore the laser could 

not simply be installed in place of the 266 nm laser. Ideally, the 213 nm laser would be installed 

next to the 266 nm laser, and aligned to a unique laser path. The ionization energy of the 213 nm 

laser is only 5.83 eV, ~25% higher than 266 nm (4.66 eV), but still less than the 193 nm laser 

(6.42 eV). Accounting for two-photon ionization, the ionization energy of 266 nm (9.32 eV total) 

and 213 nm (11.66 eV total) would still be less than the ionization energy required for sulfuric 

acid (12.4 eV) (Snow and Thomas, 1990). However, previous studies have shown that coating 

sulfate-rich particles with small amounts UV-absorbing compounds, such as organics, can 

increase ablation efficiency (Kane and Johnston, 2001). Therefore, if sulfate-rich compounds 

were internally mixed with even small amounts of UV-absorbing compounds, it may be possible 

to successfully ionize them with the 213 nm laser.  

Finally, during the Prudhoe Bay campaign described in Chapter 6, many days were 

foggy, suggesting the potential for aqueous-phase reactions. Previous single particle mass 

spectrometer studies have identified hydroxymethanesulfonate (HMS), which appears at m/z -

111 (HOCH2SO3
-), as a marker for fog processing (e.g. Dall'Osto et al., 2009; Rehbein et al., 

2011; Whiteaker and Prather, 2003). Preliminary data analysis shows many periods throughout 
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the study with high particle counts and particle number fractions containing HMS, particularly 

during periods of on-going fog. Work is on-going within our lab to further characterize the fog 

processing within this dataset, using not only our single particle data, but also other data from 

instruments within the ARM AMF3 and AOS, both operating throughout our field campaign.  
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Appendix A. 

Ubiquitous Influence of Wildfire Emissions and Secondary Organic Aerosol 

on Summertime Atmospheric Aerosol in the Forested Great Lakes Region 

Supplemental Information 
 
A.1.Supporting Measurements 

 Meteorological data (Figure A.1.), including wind direction, wind speed, relative humidity, and 

temperature, were collected by a Vaisala WXT510 weather sensor located at the top of the 

PROPHET tower. Variations in meteorological conditions throughout the study, and average 

meteorological conditions during each period of influence, are discussed in the main text. In 

order to determine the origin of the influential air masses (Figure A.2.), backward air mass 

trajectories were calculated using the NOAA Hybrid Single Particle Lagrangian Integrated 

Trajectory (HYSPLIT) Model (Stein et al., 2015). A final altitude of 500 m AGL was used for 

the field site, with each trajectory modeling the proceeding 72 h. During each of the three 

influence air mass locations, median, was well as 25th and 75th percentile aerosol number and 

size distributions were calculated based on SMPS measurements (Figure A.3.). 
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Figure A.1. Meteorological conditions measured from a height of ~30 m at the UMBS 
PROPHET Tower.   
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Figure A.2. Representative 72 h HYSPLIT back trajectories with a final altitude of 500 m for the 
four air mass influences, with markers indicating 6 h intervals. Trajectory start times were: 
Wildfire #1: 7/14/2014 07:00 EDT, Regional Background: 7/17/2014 07:00 EDT, Urban:  
7/21/2014 07:00 EDT, Wildfire #2: 7/24/14 07:00 EDT. Colors correspond to the air mass of 
influence indicated in Figure 3.3.  
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Figure A.3. Median and 25th/75th percentiles of particle number and mobility diameter 
distributions during the three time periods of interest (described in the main text) as measured by 
SMPS: (A) Background, (B) Wildfire, and (C) Urban. 
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Appendix B. 

Particle Growth in an Isoprene-Rich Forest: Influences of Urban, Wildfire, 

and Biogenic Precursors Supplemental Information 
 

 

B.1. SMPS Correction Factor 

From July 11-22, 2014, both an SMPS 3938 and SMPS 3936 were present at the field 

site. The SMPS 3938 sampled above the canopy (~ 34 m) and the SMPS 3936 sampled at ground 

level (~5 m) (Figure S1). In order to directly compare the number concentrations reported by 

both instruments, both instruments sampled from the same inlet at ground level (~5 m) for ~6 h 

on July 10, 2014. These data were then averaged for the duration of the sampling period for each 

individual size bin for each instrument. A ratio was then made between the two instruments, 

resulting in a correction factor (Figure S2) to apply to the SMPS 3936, as it had, on average, 

undercounted the number concentration. This corrected number concentration was used for the 

analysis present in this paper. 

 

B.2. Additional Factors Contributing to Particle Growth 

 In general, growth events than began at a smaller particle size had an increased growth rate 

compared to those beginning at larger sizes (Figure S3). A linear fit of particle starting diameter 

versus particle growth shows a weak inverse correlation with an R2 of 0.37, however a trend can 

still be observed. In addition, daytime growth events were typically observed during periods of 

increased solar radiation (Figure S4) and generally during increased transported NO2 (Figure S5) 

indicative of photochemical reactions occurring under the influence of transported urban 

emissions, discussed further in the main text (Section 3.1). 

 

B.3. Meteorological Conditions 

Meteorological	data	(Figure	S6)	were	obtained	from	the	AmeriFlux	tower	at	UMBS,	

located	100	m	northeast	of	the	PROPHET	tower.	Temperature	and	relative	humidity	were	
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collected	by	a	Rotronic	HPO-43	probe.	Wind	speed	and	wind	direction	were	measured	by	a	

Campbell	 Scientific	 CSAT3	 sonic	 anemometer.	 Total	 solar	 radiation	 (400-1100	 nm)	 was	

measured	 by	 a	 LI-COR	 pyranometer	 (LI-200)	 located	 on	 a	 Great	 Lake	Observing	 System	

buoy	on	Douglas	Lake,	4	km	northeast	of	PROPHET.	  

 

B.4. Wildfire Contributions to Particle Growth 

 Throughout particle growth events observed during the nighttime, the field site was under the 

influence of transported wildfire air masses from northwestern Canada (Section 3.2, main text). 

Using NOAA HMS smoke products, direct wildfire influence was observed (Figure 5, S7, with 

the remaining provided in Gunsch et al. (2017)). In addition, particle growth observed in 

Kanawade et al. (2011) also likely occurred during wildfire influence, and NOAA HMS smoke 

product maps are provided for these days in Figure S8. 

 

B.5. Bi-modal Growth During Forested/Stagnant (Multiday) Events 

 During event #1 occurring during stagnant conditions (Section 3.3, main text) on June 25, a 

second mode appeared in the evening at 25 nm and continued to growth until the morning on 

June 26 (Figure S9). Due to the substantial growth observed from this second mode, this was 

classified as event #2.  
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Figure B.1. Comparison of above canopy (34 m) and below canopy (3 m) corrected particle size 
distributions measured by the two SMPS instruments. 
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Figure B.2. Average correction factor applied to the SMPS 3936 to allow direct comparison with 
the SMPS 3938.  
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Figure B.3. Particle starting diameter mode compared to growth rate for all 14 particle growth 
events. 
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Figure B.4. Average incident solar radiation for daytime event (green) and non-event periods 
(black). Error bars depict the 95% confidence interval for each point. Anomalous data from June 
29 11:00 – 13:00 EDT are not included due to a brief but intense rainstorm with heavy cloud 
coverage. 
  



 150 

 
Figure B.5. Tropospheric column NO2 from TEMIS OMI on June 29, July 2, July 5, July 16, and 
July 26. Field site is indicated by a yellow star.  
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Figure B.6. Meteorological conditions for the duration of the UMBS field campaign. Wind 
speed, wind direction, and relative humidity were collected from the Ameriflux tower at a height 
of 46 m located 100 m northeast of PROPHET. 
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Figure B.7. NOAA HMS smoke maps for three nighttime growth events on (A) June 25, (B) 
July 7, and (C) July 9, with the remaining nighttime growth event smoke maps provided by 
Gunsch et al., 2017. Smoke coverage is categorized as heavy (red), medium (yellow), and light 
(green). UMBS is marked on each map by a white star. Map imagery were provided by ArcGIS 
10.3.1 with World Imagery basemap (Sources: Esri, DigitalGlobe, GeoEye, Earthstar 
Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User 
Community).  
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Figure B.8. NOAA HMS smoke maps for two nighttime growth events, described by Kanawade 
et al, (2011), on (A) July 16, 2009 and (B) August 2, 2009. Smoke coverage is categorized as 
heavy (red), medium (yellow), and light (green).  UMBS is marked on each map by a star. Map 
imagery was provided by ArcGIS 10.3.1 with World Imagery basemap (Sources: Esri, 
DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, 
IGN, and the GIS User Community). 
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Figure B.9. Time-resolved aerosol size distribution for Event #1 and #2. 
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Appendix C. 

Contributions of Transported Prudhoe Bay Oil Field Emissions to the Aerosol 

Population in Utqiaġvik, Alaska Supplemental Information 
 

 

C.1. Particle Type Classification 

 SSA was characterized by an intense peak at m/z 23, corresponding to Na+, and less intense 

peaks at m/z 39 (K+), 81 (Na2Cl+), -35/37 (Cl-) and -93/95 (Na2Cl-) (Ault et al., 2013). Spectra 

that also contained intense markers for nitrate (m/z -46, -62) or sulfate (m/z -64, -80) was sub-

classified as aged SSA. Organic carbon (OC) was characterized by intense peaks at m/z 37 

(C3H+) and 27 (C2H3
+) and are attributed to combustion (Toner et al., 2008). A sub-classification 

of OC was characterized by an intense peak at m/z 59 (N(CH3)3
+), which is characteristic of the 

presence of trimethylamine (TMA) (Rehbein et al., 2011) and has been detected previously in the 

Arctic (Willis et al., 2016). Rehbein et al. (2011) found that TMA was exclusively found during 

high relative humidity or fog events when gas phase TMA partitioned onto the particles or fog 

droplets. Relative humidity was high throughout the duration of the study (average of 91%), thus 

partitioning of TMA to the particle-phase is likely to occur. Due to the small number of TMA-

containing particles, both OC particle types were grouped into a single OC class. Soot particles 

were characterized by elemental carbon Cn
+ fragment peaks, observed at m/z 12[C+], 24[C2

+], 

36[C3
+], 48[C4

+], etc. that are typical of incomplete combustion (Toner et al., 2008). Biomass 

burning (BB) particles were characterized by an intense peak at m/z 39 (K+) and m/z -97 (HSO4
-) 

with less intense peaks at m/z 43 (C3H2O+), 27 (C2H3
+) and 12 (C+) (Pratt et al., 2011). Dust was 

present in two different forms: calcium-rich and iron-rich. Calcium-rich dust (Ca-Dust) was 

characterized by an intense peak at m/z 40 (Ca+) with less intense peaks at m/z 23 (Na+), 24 

(Mg+) and 56/57 (CaOH+/CaOH2
+). Iron-rich dust (Fe-dust) was characterized by intense peaks 

at m/z 54/56 (Fe+). All dust particle types were combined into a single cluster, as the majority 
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likely originated from the nearby beaches, dirt roads and soil. Average spectra for each particle 

type are shown in Figure 2. 

 Particle types were identified based on observed morphology from SEM as well as 

composition and atomic percentages calculated from the EDX spectra. These classes are based 

on prior SEM-EDX studies, which established EDX spectra for fresh and aged SSA (Ault et al., 

2013; Hara et al., 2003), organic carbon aerosol (Laskin et al., 2006; Moffet et al., 2010), soot 

(Jiang et al., 2011), biomass burning aerosol (Li et al., 2003; Pósfai et al., 2003), and mineral 

dust (Coz et al., 2009; Sobanska et al., 2003). Fresh SSA was characterized by large amounts Na 

and Cl, with Na/Mg and Na/Cl ratios close to those found in seawater. Aged SSA was 

characterized by Na and S and/or N > Cl, indicative of chlorine displacement by heterogeneous 

reactions (Laskin et al., 2003; Laskin et al., 2002). OC particles were round and contained large 

amounts of C and O with the majority also containing small fractions of S and/or N (Moffet et 

al., 2010). Soot was primarily carbon in composition and had a chain-like agglomerate 

morphology (Quennehen et al., 2012; Weinbruch et al., 2012). Dust particles were characterized 

by large fractions of Al and Si, in addition to trace metals such as Fe (Coz et al., 2009; Sobanska 

et al., 2003). Some fly ash particles, primarily aluminum and silicon oxides, may also be present 

in this class, but due to similarities in chemical composition between fly ash and dust 

accompanied by low abundance, fly ash and dust will be considered together. Minor 

contributions from BB were also identified, characterized by large amounts of K and Cl but little 

Na (Pósfai et al., 2003). A sulfur-rich particle type was identified by greater amounts of S as 

compared to C and O. This is likely the “missing” particle type unable to be characterized by the 

ATOFMS in this study, as well as the previous ATOFMS study by Sierau et al. (2014). Wenzel 

et al. (2003) previously attributed scattered, but not ionized particles by ATOFMS, as relatively 

pure ammonium sulfate particles.  
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Figure C.1. Wind rose from August 21–September 30, 2015 measured at the NOAA Barrow 
Observatory. Wind speed is binned by 2 m/s, and wind direction is binned by 20 degrees, with 
the radial axes representing the fraction of the study under those wind conditions. 
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Figure C.2. Aerosol size-resolved number concentrations (mobility diameter) measured by the 
SMPS from August 21-September 20, 2015. Identified air mass source regions, determined 
based on wind direction and backward air mass trajectories, are labeled and divided by white 
lines in the time series. Periods lacking data are indicated in gray. The total particle (0.013 – 746 
nm)   number concentration is also shown. 
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Figure C.3. Median, as well as 25th and 75th percentile, particle size distributions during Prudhoe 
Bay and Arctic Ocean influenced air masses from August 21–September 20, 2015.  
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Figure C.4. S/Na, N/Na, Cl/Na mole ratios of individual SSA (top) and fraction of OC particles 
(bottom) containing S, N, and/or Cl, measured by CCSEM-EDX for Arctic Ocean and Prudhoe 
Bay influenced air masses. Size bins with less than 25 particles are not displayed. 
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Appendix D. 

Diesel and Natural Gas Combustion Contributions to Atmospheric  Aerosols 
in an Arctic Oil Field Supplemental Information 

 

D.1.Particle Type Classification 

 Biomass burning (BB) particles were characterized by an intense peak at m/z 39 (K+), with 

less intense peaks at m/z 27 (C2H3
+), 37 (C3H+), 51 (C4H3

+), and 73 (C6H+) (Pratt et al., 2010). 

BB particles did not contain any negatives, likely due to the accumulation of water during 

transport (Neubauer et al., 1997), which indicates a non-local source. A potassium chloride-rich 

particle type, classified as incineration, was also identified by an intense m/z 39 (K+), with less 

intense peaks at m/z 63, 65 (Cu+) and m/z 113, 115, 117 (K2Cl+/-), as well as nitrate identified at 

m/z -46 (NO2
-) and -62 (NO3

-). This particle type was attributed to a local incinerator located to 

the north, as these particles were only present during brief periods when air was coming directly 

from this location; the mass spectra are similar to previously reported fly ash and incineration 

particles (Moffet et al., 2008; Spencer et al., 2008), and was therefore classified as an 

incineration particle type. Mineral dust was identified by strong Fe+ (m/z 56), Ca+ (m/z 40), and 

Na+ (m/z 23) peaks and is attributed to lofting from nearby dirt roads and beaches surrounding 

the site.  
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Figure D.1. Average A-ATOFMS mass spectra for particles types observed: (A) biomass 
burning, (B) incineration, and (C) mineral dust. 
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Figure D.2. SMPS size distribution (14 – 740 nm) during two particle growth events that 
occurred from August 24 06:00 – August 25 20:00 AKDT and August 26 06:00 – August 27 
00:00. OC-Amine-Sulfate number fraction is plotted as a dotted white line for comparison. 
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Figure D.3. Meteorological conditions at the Oliktok Point field site collected from a height of 
10 m. 
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Figure D.4. Median aerosol size-resolved number concentrations (0.746 – 718 μm aerodynamic 
diameter) and 25th/75th percentiles, measured by APS, during (A) direct plume and (B) oil field 
background air mass periods at Oliktok Point, AK. 
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Figure D.5. Condensation sink, calculated using the combined SMPS and APS particle size 
number distribution, for the duration of the study. Periods of particle growth are highlighted in 
yellow.  
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