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Abbreviations Table 

ALL Acute lymphoblastic leukemia 

DFCI Dana-Farber Cancer Institute 

DFCI 05-001 Dana-Farber Cancer Institute ALL Consortium Protocol 05-001 

CCSG Children’s Cancer Study Group 

SEER Surveillance Epidemiology and End Results Program 

TRT Treatment-related toxicities 

CTCAE 3.0 Common Terminology Criteria for Adverse Events Version 3.0 

CR Complete remission 

ON Osteonecrosis 

SNPs Single nucleotide polymorphisms 

EFS Event-free survival 

OS Overall survival 

TS Thymidylate synthase  

PCR Polymerase chain reaction 

Abstract  

Purpose: This study compared the relative incidence of treatment-related toxicities and the 

event-free and overall survival between Hispanic and non-Hispanic children undergoing 

therapy for acute lymphoblastic leukemia (ALL) on Dana-Farber Cancer Institute ALL 

Consortium protocol 05-001. 

Patients and Methods: Secondary analysis of prospectively collected data from a phase III 

multi-center study in children and adolescents, 1 – 18 years with previously untreated ALL.   

Results: Between 2005 and 2011, 794 eligible patients enrolled on DFCI 05-001, 730 of 

whom were included in this analysis (19% [N=150] Hispanic, 73% [N=580] non-Hispanic). 

Hispanic patients were more likely to be ≥10 years of age (32% vs. 24%, p=0.045) at 

diagnosis. Toxicity analyses revealed that Hispanic patients had significantly lower 
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cumulative incidence of bone fracture (p<0.001) and osteonecrosis (p=0.047). In 

multivariable risk regression, the risk of osteonecrosis was significantly lower in Hispanic 

patients ≥10 years (HR 0.23; p=0.006). Hispanic patients had significantly lower 5-year 

event-free survival (EFS) (79.4%; 95% CI: 71.6% to 85.2%) and overall survival (OS) 

(89.2%; 95%CI: 82.7%-93.4%) than non-Hispanic patients (EFS: 87.5%; 95%CI: 84.5%-

90.0%, p=0.004. OS: 92.7%; 95%CI: 90.2%-94.6%), (p=0.006). Exploratory analyses 

revealed differences between Hispanic and non-Hispanic patients in the frequency of 

common variants in genes related to toxicity or ALL outcome. 

Conclusion: Hispanic children treated for ALL on DFCI 05-001 had fewer bone-related 

toxicities and inferior survival than non-Hispanic patients. While disease biology is one 

explanatory variable for outcome disparities, these findings suggest that biologic and non-

biologic mechanisms affecting drug delivery and exposure in this population may be 

important contributing factors as well. 
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Introduction 

Despite overall cure rates near 90% in childhood acute lymphoblastic leukemia 

(ALL), survival in Hispanic children and adolescents remains inferior to survival in non-

Hispanic patients.1-4 These disparities are particularly striking in light of dramatic 

improvements in survival for all children with leukemia over the past three decades.5,6 In a 

large retrospective analysis from 12 Children’s Cancer Study Group (CCSG) ALL trials 

(1983-1995), 5-year event-free survival (EFS) was significantly lower in Hispanic children 

(65.9% ± 1.5%) when compared with 5-year EFS in white (72.8% ± 0.6%) and Asian children 

(75.1% ± 3.5%), (p<0.001).7 More recent studies, including a Surveillance Epidemiology and 

End Results (SEER) investigation of survival trends in ALL (1995-2012), have revealed a 

persistent survival difference (5-15 percentage points) between Hispanic and non-Hispanic 

children.1 The reasons for reduced survival in Hispanic children with ALL in North America 

are multifactorial and likely include both biologic and non-biologic factors, such as 

differences in the frequency of high-risk leukemia subtypes, host pharmacogenomics, 

reduced access-to-care, and non-adherence to oral chemotherapy.8  

Differences in survival outcomes between Hispanic and non-Hispanic patients with 

ALL have been described. 1,9-11 Fewer studies have investigated whether the incidence of 

TRT during ALL therapy varies by self-reported ethnicity, and none have described both 

survival and TRT in the same cohort. 9,12,13 The development of serious TRTs may result in 

an inability to tolerate full-dose chemotherapy, and the consequent interruptions in planned 

therapy (treatment delays, dose reductions) could theoretically contribute to increased risk of 

relapse.  Conversely, development of very few TRTs might indicate lower overall drug 

exposure, either due to genetic polymorphisms affecting drug metabolism or to non-biologic 

factors, such as chemotherapy non-adherence.   We conducted an analysis of TRTs and 

survival in Hispanic and non-Hispanic children and adolescents undergoing treatment for 
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newly diagnosed ALL on the Dana-Farber Cancer Institute ALL Consortium protocol 05-001 

(DFCI 05-001).14 We sought to compare the relative incidence of TRTs, EFS and overall 

survival (OS) between these two patient cohorts. Because common genetic variants are 

associated with risk of TRT,15,16 we also explored whether the prevalence of these 

polymorphisms in our patient population differed by ethnicity.  

Methods 

Patients and eligibility criteria 

 Children and adolescents aged 1-18 years with newly diagnosed ALL were enrolled 

on DFCI 05-001 at 11 sites in Canada and the United States, including Puerto Rico. Patients 

whose ethnicity was documented at the time of study enrollment were eligible for inclusion in 

this analysis. The Institutional Review Board of each participating institution approved the 

original treatment protocol and informed consent was obtained from each patient's guardian. 

All enrolled patients with known ethnicity (Hispanic and non-Hispanic) were included in the 

induction toxicity analysis.  Patients with a documented complete remission (CR), final risk 

group, and treatment assignment were included in post-induction treatment analyses. For 

the investigation of targeted genetic variants, patients who met the above criteria and who 

also had genomic DNA available for analysis were included.  

Ethnicity designation 

 Patient ethnicity (Hispanic or non-Hispanic) was documented at the time of study 

enrollment by a clinical research associate and was based on patient/parent report and/or 

patient’s country of origin, as was the standard during the period in which the clinical trial 

was conducted.17 Ethnicity designation was guided by the national standards for the 

classification of federal data on race and ethnicity as defined by the Office of Management 
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and Budget (OMB) Statistical Policy Directive No. 15.18 Patients were categorized as 

underweight, normal, overweight and obese based on body mass index (BMI). For outcome 

analyses, patients were categorized as obese, (BMI ≥ the 95th percentile for age and sex) vs. 

not obese (BMI <95th percentile).  

Therapy 

 Details of the DFCI 05-001 treatment regimen have been previously published.14 In 

brief, all patients underwent multi-agent remission induction followed by risk-adapted post-

induction therapy based on final risk group assignment. Final risk group was based on age, 

presenting leukocyte count, immunophenotype, presence or absence of leukemia in the 

cerebrospinal fluid at diagnosis, leukemia-associated cytogenetic abnormalities, and end-

induction levels of minimal residual disease (MRD). All patients were scheduled to receive 

24 months of post-induction treatment. Patients were eligible to participate in a randomized 

comparison of intramuscular native E.coli L-asparaginase and intravenous pegaspargase 

during post-induction treatment. Patients who declined to participate, and those enrolled 

onto the trial after the randomized comparison had met its target accrual, were directly 

assigned to receive native E.coli L-asparaginase.  

Toxicity assessment 

 Treatment-related toxicities were defined using Common Terminology Criteria for 

Adverse Events (CTCAE) Version 3.0 and included: bone fracture (all grades), grade 2 or 

worse osteonecrosis (ON), grade 3 or worse infection (bacterial, fungal, viral and/or 

pneumocystis pneumonia), and grade 2 or worse asparaginase-associated toxicities (allergy, 

pancreatitis, thrombosis or bleeding).14 A diagnosis of bone fracture or ON required both 

clinical symptoms and radiographic confirmation. Study staff at each participating institution 

prospectively collected TRT data at the time of CR, every three months subsequently until 
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treatment completion, and annually thereafter. 

Analysis of genetic variants 

We conducted a secondary analysis of genomic data that were gathered for a 

separate correlative study looking at toxicities in the same study population. In this study, 

toxicities were not analyzed by ethnicity. Genomic DNA was isolated from peripheral blood 

collected after patients achieved CR. Nineteen candidate genetic variants were selected for 

investigation through a non-exhaustive literature review, with the following criteria: (1) 

variants present in genes related to pathways presumed to be relevant to TRT; (2) variants 

known to be associated with altered function of the gene product; and (3) variants with a 

population prevalence of at least 10%.15,16 Single nucleotide polymorphisms (SNPs) were 

detected using polymerase chain reaction (PCR)-based allelic discrimination assays (Life 

Technologies, Grand Island, NY). The number of 28-bp repeats in the 5’ untranslated region 

of the thymidylate synthase (TS) gene was determined by PCR-product length analysis, as 

previously described.15 

Statistical methods 

Toxicity rates during induction and post-induction therapy were compared between 

groups with the Fisher’s exact test. In patients who were assigned a final risk group after 

achieving CR, ON and bone fracture with follow-up information were analyzed within age 

subgroups (<10 years vs. ≥10 years). The cumulative incidences of ON and fracture were 

estimated with the cuminc utility in the ‘cmprsk’ package in R and were tested using the Gray 

test, with relapse and death in remission identified as competing risks. Time-to-event was 

calculated as the time (years) from remission date to the date of first event.  If the bone 

event occurred in induction, it was considered an event at time 0. The cumulative incidence 

was also modeled in univariate and multivariable analyses using competing risks regression. 
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Multivariable models were adjusted for sex, asparaginase randomization, and final risk 

group. The grouping used in modeling for final risk group classification varied by age due to 

the protocol definition of age >10 as high risk.14  

Overall survival and EFS were estimated with the Kaplan-Meier method and were 

compared between groups with the log rank test. Overall survival was defined as the time 

from registration to death from any cause. Event-free survival was defined as the time from 

registration to the first event of relapse, death, or second malignancy. Induction events, 

including death and/or failure to achieve CR, were considered events at time 0. Cox 

proportional hazards models were used to model OS and EFS by group univariately and 

were adjusted in multivariable analyses for diagnostic age, immunophenotype, WBC, 

obesity, and sex. In patients receiving a single full dose of IV pegaspargase, a Wilcoxon rank 

sum test was used to compare the serum asparaginase activity (SAA) between Hispanic and 

non-Hispanic patients at days 4, 11, 18, and 25 during induction.  

The association between ethnicity group and SNPs were analyzed with the Fisher’s 

exact test. A false discovery rate (FDR), using the method of Benjamini and Hochberg19, was 

used to adjust for multiple comparisons. Comparisons padjusted<0.05 were considered 

significant. Additionally, an exploratory analysis was conducted to assess the univariate 

association between SNPs and toxicity (overall infection, pancreatitis, thrombosis, and 

allergy) within ethnicity group. The relationship between EFS and SNPs within these groups 

was also explored.  

Results 

Patient characteristics 

Between 2005 and 2011, 794 eligible children and adolescents (ages 1 – 18 years) 
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enrolled on DFCI 05-001, 730 of whom had ethnicity documented (150 [19%] Hispanic, 580 

[73%] non-Hispanic).  When compared with non-Hispanic children, a higher percentage of 

Hispanic patients were ≥10 years at the time of diagnosis (32% vs. 24%, p=0.045). A higher 

percentage of Hispanic patients were obese (20% vs. 12%, p=0.024). There was no 

significant difference in the presence or absence of the following leukemia-associated 

cytogenetic characteristics: high hyperdiploidy (51-65 chromosomes), BCR-ABL1, KMT2A 

(MLL)-rearrangement, hypodiploidy, and iAMP21 by ethnicity (Table 1).  Hispanic patients 

were significantly less likely to have the ETV6-RUNX1 fusion (p=0.018). Presenting 

leukocyte count, immunophenotype, National Cancer Institute (NCI) risk group, final DFCI 

risk group, or assigned randomized treatment arm (Table 1) did not significantly differ by 

ethnicity.  

Treatment-related toxicities 

Infection: The overall rate of infection during the induction treatment phase was not 

significantly different between Hispanic and non-Hispanic patients (25% vs. 29%, p=0.36).  

Hispanic patients trended toward having fewer bacterial infections than non-Hispanic 

patients (19% vs. 27%), but this difference was not statistically significant (p=0.07) (Table 2).  

Post-induction infections were documented in 31% of Hispanic patients and in 32% of non-

Hispanic patients (p=0.92) (Table 2).      

Asparaginase-associated toxicities: The overall incidence of post-induction 

asparaginase-associated toxicities including allergy, pancreatitis and thrombosis, was not 

significantly different between Hispanic and non-Hispanic patients (Table 2). The rate of ON 

and fracture during post induction therapy was lower in Hispanic patients (p=0.013 and 

<0.0001 respectively) (Table 2). 

Serum asparaginase activity (SAA): At least one induction SAA level was available in 
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318 patients. During remission induction, when all patients received a single dose of 

pegasapargase, we did not observe differences between Hispanic and non-Hispanic patients 

in median SAA levels at 4, 11, 18, and 25 days after the dose (Supplemental Figure S1).  

Osteonecrosis: Overall, the incidence of ON differed by age (p<0.0001) with patients 

≥10 years having more events. In patients ≥10 years of age, Hispanic ethnicity was 

associated with a significantly lower cumulative incidence of ON (hazard ratio, HR [95% 

confidence interval] 0.28 [0.10-0.76]; p=0.013; Fig. 1A). This result remained significant in 

multivariable modeling (p=0.006; Table 3). In patients <10 years of age there was no 

statistically significant difference in the rate of ON between Hispanic and non-Hispanic 

patients (0.61 [0.18-2.02], p=0.41, Fig. 1B).   Additionally, in competing risks regression 

there was no detectable difference in cumulative incidence of ON by obesity for each age 

group (Table 3). Analysis of SNPs revealed no significant difference between Hispanic and 

non-Hispanic patients in the frequency of the TS polymorphism, which we have previously 

shown is associated with risk of bone toxicity in this patient population.20,21 

Fracture: In patients ≥10 years of age, there was no significant difference fracture 

incidence between Hispanic and non-Hispanic patients (HR 0.63 [0.31-1.28], p=0.20 Fig. 

1C). In children <10 years, cumulative incidence of fracture was significantly lower in the 

Hispanic group (0.24 [0.10-0.54], p=0.0006; Fig.1D). This remained significant in 

multivariable modeling (p=0.0003; Table 3). In competing risks regression there was no 

detectable difference in cumulative incidence of fracture by obesity for each age group 

(Table 3).  

Survival 

The median follow-up time for those still alive was 6.12 years. Five-year OS was 

significantly lower in Hispanic patients (89.2% [82.7%-93.4%]) vs. non-Hispanic patients 
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(92.7 [90.2%-94.6%]), (p=0.006; Figure 2A). Five-year EFS was also significantly lower in 

Hispanic patients (79.4% [71.6%-85.2%]) vs. non-Hispanic patients (87.5% [84.5%-90.0%]), 

(p=0.004; Figure 2B). While both cohorts had nearly identical CR rates (94-95%), a higher 

percentage of Hispanic vs. non-Hispanic (13% vs. 9%) patients experienced disease relapse 

(Supplemental Table S1). There were no detectable differences in the site of relapse 

between groups (Supplemental Table S2). Of the B-ALL patients with a documented CR, 

there was no statistically significant difference in the proportion of patients with high end-

induction MRD (defined as ≥10-3): Hispanic (11%) vs. non-Hispanic (9%), p=0.55.  

Additionally, there was no difference in incidence of treatment-related mortality or in 

incidence of second malignant neoplasm between Hispanic and non-Hispanic patients.  

Ethnicity retained significance in multivariable Cox modeling for EFS (p=0.030) when 

adjusting for age, WBC, sex, immunophenotype and obesity, and marginal significance 

(p=0.07) in multivariable modeling for OS when adjusting for the same variables. In the 

multivariable models, obesity was significantly associated with OS (p=0.012) but EFS 

(p=0.27) (Table 4). 

Polymorphisms 

Genotyping data were available for 587 patients with ethnicity information, 574 of 

who received a final risk group classification (116 [20%] Hispanic, 458 [80%] non-Hispanic).  

After noting a difference in bone toxicity between Hispanic and non-Hispanic patients, we 

tested whether there was also a significant difference in the prevalence of a polymorphism in 

thymidylate synthase (TS) known to be associated with bone toxicity.16 In addition we tested 

whether there were disparities associated with ethnicity for 18 other TRT-related 

polymorphisms previously assessed in this cohort.15 Hispanic and non-Hispanic patients 

differed significantly in the proportion with the target genotype of four polymorphic genes: 

MTHFR A1298C (rs1801131; padjusted=0.001), SLCO2A1 (padjusted=0.003), IL1B 
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(padjusted=0.003), and TCN2 (padjusted=0.002) (Supplementary Table S3). Of these four 

polymorphisms, only TCN2 was associated with both TRT and disease outcome. In Hispanic 

patients, having (vs. not having) the target TCN2 genotype was associated with increased 

risk of induction infection (32% vs. 11%, p=0.010). In the Hispanic cohort, the TCN2 

polymorphism was univariately associated with EFS within the Hispanic patient cohort.  In 

multivariable modeling, TCN2 was marginally associated with EFS (HR=3.15, p=0.047) 

(Supplemental Table S4).  

Discussion 

This analysis of TRTs and survival from DFCI ALL 05-001 demonstrated that overall, 

Hispanic patients had lower rates of ON and fracture as well as reduced EFS and OS 

relative to non-Hispanic patients. The observation of both reduced toxicity and decreased 

survival in the Hispanic cohort suggests that host and/or environmental factors, rather than 

differences in leukemia biology alone, likely contributed to these outcomes.  

In our Hispanic cohort, the lower incidence of skeletal toxicity is suggestive of 

reduced exposure to dexamethasone, which may be related to variations in medication 

adherence or to variations in disease biology or host pharmacogenomics. A potential 

mechanism of reduced dexamethasone exposure is oral chemotherapy adherence. 

Chemotherapy agents that need to be orally administered at home, including 

mercaptopurine and corticosteroid, are important components of the treatment regimen for 

children and adolescents with ALL.17,22 In a 2012 report from the Children’s Oncology Group 

(COG), Bhatia and colleagues found that patients who were <95% adherent to 

mercaptopurine during maintenance therapy had a 2.5-fold higher risk of relapse than those 

who were ≥ 95% adherent.23 Further analyses revealed that Hispanic ethnicity, adolescent 

age ≥12 years and low socioeconomic status were all associated with lower adherence.23 Of 
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interest, the in patients with high adherence, Hispanic ethnicity was still associated with 

higher relapse rate. This further emphasizes the possibility that differential findings between 

Hispanic and non-Hispanic patients are likely driven in large part by biologic differences 

between groups, rather than only by differences in adherence.  In 2012, Kawedia, et al. 

reported that dexamethasone clearance may be higher in patients with anti-asparaginase 

antibodies.  In that study, the increased clearance and/or the presence of the antibodies 

were associated with a higher risk of relapse.24 Although we did not prospectively assess 

asparaginase antibodies on the 05-001 study, we serially measured SAA in patients during 

treatment,25 and demonstrated no differences in SAA between Hispanic and non-Hispanic 

patients, indicating similar exposure to this agent by ethnic group.  

Having identified reduced rates of ON in Hispanic patients, we were particularly 

interested in whether there were differences between cohorts in the frequency of an 

enhancer-repeat genotype (2R/2R) polymorphism in the TS gene.16,26 Our analysis did not 

identify a difference in prevalence of the 2R/2R TS polymorphism between Hispanic and 

non-Hispanic patients suggesting that either untested germline genetic factors or other 

variables beyond genetic polymorphisms may have contributed to differences in skeletal 

toxicities.27-29 The incidence of ON was significantly different between Hispanic and non-

Hispanic patients in the older (≥10 years of age) patients, and the incidence of fracture was 

significantly different between Hispanic patients and non-Hispanic patients, in the younger 

(<10 years of age) group. The association between older age and ON in ALL patients has 

been well-documented, as has the association between fracture and younger age.30,31 To 

our knowledge, no published study has identified a clear explanation for this phenomenon.  

Possible mechanisms may include hormonal interactions related to older age, timing of 

skeletal development, and unidentified genetic predispositions. Further, while obesity is a 

known predictor of reduced bone mineral density in children without leukemia,32 it was not 
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significantly predictive of either fracture or ON in our patient cohort and would not explain 

difference by age.  

While host genetic variations likely play an important role in determining drug 

pharmacokinetics and pharmacodynamics, somatic abnormalities in leukemia cells are 

critical determinants of response and resistance to therapy as well. Differences in the 

frequency of prognostically significant subtypes of ALL between Hispanic and non-Hispanic 

patients have been described, some of which could explain some of the outcome differences 

we observed.11,33 For example, we observed a significantly lower incidence of the favorable 

ETV6-RUNX1 (TEL/AML1) fusion, in our Hispanic cohort, which may have contributed to a 

higher risk of relapse.34  

We15,16 and others20,35-40  have previously described associations between functional 

genetic polymorphisms and TRT or survival among children with leukemia and the 

prevalence of some of these polymorphisms is known to differ between ethnic 

groups.11,20,33,41-43 In exploratory analyses, we targeted a small subset of polymorphisms that 

were relatively common (population prevalence of at least 10%) and that could potentially 

impact either TRT or survival.  We observed significant differences between Hispanic and 

non-Hispanic patients in the prevalence of four of the 19 polymorphisms analyzed 

(Supplemental Table 3) however, the clinical import of these germline genetic differences 

remains unclear.  The TCN2 rs1801198 polymorphism was more prevalent in Hispanic 

patients and was associated with inferior EFS within that cohort.  This polymorphism was 

also associated with increased risk of induction infection in the whole study population, but 

there was no significant difference in infection rates between Hispanic and non-Hispanic 

patients; in fact, Hispanic patients tended to have fewer bacterial infections overall.  

This study has some important limitations. First, the analysis of genetic 
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polymorphisms was not prospectively designed or powered to detect associations between 

all polymorphisms and uncommon outcomes. Additionally, we did not analyze incidence of 

poor prognostic indicators, including BCR-ABL1-like subtype and deletions of the Ikaros 

(IKZF1) gene, both of which have been reported to be more common in Hispanic patients.36-

38,41 These two features, which are frequently observed together, are independently 

associated with adverse outcomes in children with ALL. Thus, the inferior EFS and OS that 

we observed in Hispanic patients may be due to overrepresentation of these unfavorable 

biologic features within this population.44  While these alterations may have contributed to 

survival differences by ethnicity, they would not explain the difference in TRTs. 

Also, there was not a standard approach to designating patient ethnicity at the time of 

study enrollment. Hispanic ethnicity as a single broad category does not delineate between 

different Hispanic/Latino groups (e.g. Cuban, Mexican, Puerto Rican, South or Central 

American, Spanish), each of which are known to have unique biologic and non-biologic 

factors associated with disease outcome.45  Because of sample size limitations we did not 

analyze outcomes by combined race/ethnicity.  We acknowledge there are more objective 

ways of classifying patients’ ethnicity, for example by using genome-wide ancestry 

estimates. These methods, while precise in their characterization of genetic and biologic 

variation, are limited in their ability to account for sociocultural influences.45-48 For future 

studies, we will define both race and ethnicity using patient report, and will define genetic or 

biogeographical ancestry using modern genomic techniques.33,44 Comparing self-reported 

ethnicity to genetic ancestry will be an important part of investigating whether biology, 

sociocultural influences, or both, are contributing to observed outcome differences between 

ethnically distinct populations.49  

Conclusion 
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Hispanic children and adolescents enrolled on the DFCI 05-001 had significantly 

lower rates of skeletal toxicities as well as significantly lower EFS and OS compared to non-

Hispanic patients. Hispanic patients were more frequently obese than non-Hispanic patients 

and obesity was associated with inferior OS, it did not explain differences in ON, fracture or 

EFS by ethnicity. It is likely that the mechanisms behind our observations are a combination 

of biogeographical variables (i.e. inherited host genetic factors), gene-environment 

interactions, and sociocultural variables (i.e. early childhood exposures, baseline nutrition, 

health beliefs).50-52  

Other studies have compared self-defined ethnicity to genetic ancestry in childhood 

ALL, and have explored how these groups associate with relapse and adverse events.53 Our 

combined analyses of disease outcomes and toxicity in a homogeneously treated patient 

population suggests that factors beyond genomics are involved. Considering the observation 

of both reduced toxicities and inferior survival in the Hispanic cohort, the possibility of sub-

optimal drug exposure in these patients likely deserves further inquiry. Thus, while 

differences in both host and leukemia biology are prognostically important, future studies will 

focus on host pharmacogenomics, detailed analyses of nutrition status and obesity trends,54 

inter-patient differences in biomarkers of drug exposure, frequency of drug interruptions for 

toxicity, and oral chemotherapy adherence.  

 

  



 

    

 

This article is protected by copyright. All rights reserved. 

 

17 

Conflict of Interest Statement: L.B.S. has served on advisory boards for Sigma-Tau 

Pharmaceuticals and JAZZ Pharmaceuticals. All other authors declare no competing 

financial interests. 

 

 

Presented in abstract form at the 56th American Society of Hematology Annual Meeting and 

Exposition, December 5–8, 2015, Orlando, FL, USA. 

 

This work was supported in part by funding from the National Institutes of Health (R25 

CA094061) (J.M.K.) and the St. Baldrick's Foundation (Supportive Care Research Award) 

(P.D.C.). Clinical trial information for DFCI 05-001: ClinicalTrials.gov, number NCT00400946 

 

Acknowledgements: We thank the patients, families, physicians, nurses, research 

coordinators, and all others who participated in the data collection associated with this work.  

Thank you to the Dana-Farber Cancer Institute ALL Consortium for its contribution to this 

work.  

The patients described in this report were enrolled at the following Dana-Farber Cancer 

Institute (DFCI) Acute Lymphoblastic Leukemia Consortium sites: DFCI/Boston Children’s 

Hospital (Boston, MA), Columbia University Medical Center, Morgan Stanley Children’s 

Hospital of New York-Presbyterian (New York, NY), Hospital Sainte Justine (Montreal, QC, 

Canada), Le Centre Hospitalier de L’Universite Laval (Quebec City, QC, Canada), McMaster 

Children’s Hospital (Hamilton, ON, Canada), San Jorge Children’s Hospital (San Juan, PR), 

University of Rochester Medical Center (Rochester, NY), Hospital Ste. Justine (Montreal, 

Quebec, Canada), Hasbro Children’s Hospital (Providence, RI), Inova/Fairfax Hospital for 

Children, (Falls Church, VA). 

 

Author Contributions:  

Concept and design: Justine M. Kahn, Peter D. Cole, Traci M. Blonquist, Kristen E. 

Stevenson, Lewis B. Silverman and Kara M. Kelly.  

Provision of study materials or patients: Lewis B. Silverman, Uma H. Athale, Peter D. Cole, 

Luis A. Clavell, Kara M. Kelly, Caroline Laverdiere, Jean-Marie Leclerc, Bruno Michon, 

Marshall A. Schorin, Jennifer J.G. Welch.  

Collection and assembly of data: Justine M. Kahn, Peter D. Cole, Traci M. Blonquist, Kristen 

E. Stevenson, Lewis B. Silverman and Kara M. Kelly.  

Data analysis and interpretation: Justine M. Kahn, Peter D. Cole, Traci M. Blonquist, Kristen 

E. Stevenson, Zhezhen Jin, Donna S. Neuberg, Sergio Barrera, Randy Davila, Emily 

Roberts, Stephen E. Sallan, Lewis B. Silverman and Kara M. Kelly.  

http://clinicaltrials.gov/
http://clinicaltrials.gov/show/NCT00400946


 

    

 

This article is protected by copyright. All rights reserved. 

 

18 

Manuscript writing: All authors 

Final approval of manuscript: All authors 

 

 

 

 

References 

1. Kahn JM, Keegan TH, Tao L, Abrahao R, Bleyer A, Viny AD. Racial disparities in the 

survival of American children, adolescents, and young adults with acute lymphoblastic 

leukemia, acute myelogenous leukemia, and Hodgkin lymphoma. Cancer. 

2016;122(17):2723-2730. 

2. Abrahao R, Lichtensztajn DY, Ribeiro RC, et al. Racial/ethnic and socioeconomic 

disparities in survival among children with acute lymphoblastic leukemia in California, 1988-

2011: A population-based observational study. Pediatr Blood Cancer. 2015;62(10):1819-

1825. 

3. Acharya S, Hsieh S, Shinohara ET, DeWees T, Frangoul H, Perkins SM. Effects of 

Race/Ethnicity and Socioeconomic Status on Outcome in Childhood Acute Lymphoblastic 

Leukemia. J Pediatr Hematol Oncol. 2016;38(5):350-354. 

4. Goggins WB, Lo FF. Racial and ethnic disparities in survival of US children with 

acute lymphoblastic leukemia: evidence from the SEER database 1988-2008. Cancer 

Causes Control. 2012;23(5):737-743. 

5. Hunger SP, Lu X, Devidas M, et al. Improved survival for children and adolescents 

with acute lymphoblastic leukemia between 1990 and 2005: a report from the children's 

oncology group. J Clin Oncol. 2012;30(14):1663-1669. 

6. Kadan-Lottick NS, Ness KK, Bhatia S, Gurney JG. Survival variability by race and 

ethnicity in childhood acute lymphoblastic leukemia. JAMA. 2003;290(15):2008-2014. 

7. Bhatia S, Sather HN, Heerema NA, Trigg ME, Gaynon PS, Robison LL. Racial and 

ethnic differences in survival of children with acute lymphoblastic leukemia. Blood. 

2002;100(6):1957-1964. 

8. Bhatia S. Disparities in cancer outcomes: lessons learned from children with cancer. 

Pediatr Blood Cancer. 2011;56(6):994-1002. 

9. Karol SE, Mattano LA, Jr., Yang W, et al. Genetic risk factors for the development of 

osteonecrosis in children under age 10 treated for acute lymphoblastic leukemia. Blood. 

2016;127(5):558-564. 



 

    

 

This article is protected by copyright. All rights reserved. 

 

19 

10. Drachtman RA, Masterson M, Shenkerman A, Vijayanathan V, Cole PD. Long-term 

outcomes for children with acute lymphoblastic leukemia (ALL) treated on The Cancer 

Institute of New Jersey ALL trial (CINJALL). Leuk Lymphoma. 2016;57(10):2275-2280. 

11. Harvey RC, Mullighan CG, Chen IM, et al. Rearrangement of CRLF2 is associated 

with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor 

outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood. 2010;115(26):5312-

5321. 

12. Relling MV, Ramsey LB. Pharmacogenomics of acute lymphoid leukemia: new 

insights into treatment toxicity and efficacy. Hematology Am Soc Hematol Educ Program. 

2013;2013:126-130. 

13. Karol SE, Yang W, Van Driest SL, et al. Genetics of glucocorticoid-associated 

osteonecrosis in children with acute lymphoblastic leukemia. Blood. 2015;126(15):1770-

1776. 

14. Place AE, Stevenson KE, Vrooman LM, et al. Intravenous pegylated asparaginase 

versus intramuscular native Escherichia colil-asparaginase in newly diagnosed childhood 

acute lymphoblastic leukaemia (DFCI 05-001): a randomised, open-label phase 3 trial. 

Lancet Oncol. 2015;16(16):1677-1690. 

15. Cole PD, Finkelstein Y, Stevenson KE, et al. Polymorphisms in Genes Related to 

Oxidative Stress Are Associated With Inferior Cognitive Function After Therapy for 

Childhood Acute Lymphoblastic Leukemia. J Clin Oncol. 2015;33(19):2205-2211. 

16. Finkelstein Y, Blonquist TM, Vijayanathan V, et al. A thymidylate synthase 

polymorphism is associated with increased risk for bone toxicity among children treated for 

acute lymphoblastic leukemia. Pediatr Blood Cancer. 2016. 

17. Bhatia S, Landier W, Hageman L, et al. 6MP adherence in a multiracial cohort of 

children with acute lymphoblastic leukemia: a Children's Oncology Group study. Blood. 

2014;124(15):2345-2353. 

18. Friedman DJ, Cohen BB, Averbach AR, Norton JM. Race/ethnicity and OMB 

Directive 15: implications for state public health practice. Am J Public Health. 

2000;90(11):1714-1719. 

19. Benjamini Y, Cohen R. Weighted false discovery rate controlling procedures for 

clinical trials. Biostatistics. 2016. 

20. Drachtman RA, Masterson M, Shenkerman A, Vijayanathan V, Cole PD. Long-term 

outcomes for children with acute lymphoblastic leukemia (ALL) treated on The Cancer 

Institute of New Jersey ALL trial (CINJALL). Leuk Lymphoma. 2016:1-6. 

21. Finkelstein Y BT, Vijayanathan V, Stevenson KE, Neuberg DS, Silverman LB, 

Vrooman LM, Sallan SE, Cole PD. A Thymidylate Synthase Polymorphism is Associated 

with Increased Risk for Bone Toxicity Among Children Treated for Acute Lymphoblastic 



 

    

 

This article is protected by copyright. All rights reserved. 

 

20 

Leukemia. Pediatric Blood and Cancer. 2016. 

22. Koren G, Ferrazini G, Sulh H, et al. Systemic exposure to mercaptopurine as a 

prognostic factor in acute lymphocytic leukemia in children. N Engl J Med. 1990;323(1):17-

21. 

23. Bhatia S, Landier W, Shangguan M, et al. Nonadherence to oral mercaptopurine and 

risk of relapse in Hispanic and non-Hispanic white children with acute lymphoblastic 

leukemia: a report from the children's oncology group. J Clin Oncol. 2012;30(17):2094-2101. 

24. Kawedia JD, Liu C, Pei D, et al. Dexamethasone exposure and asparaginase 

antibodies affect relapse risk in acute lymphoblastic leukemia. Blood. 2012;119(7):1658-

1664. 

25. Place AE, Stevenson KE, Vrooman LM, et al. Intravenous pegylated asparaginase 

versus intramuscular native Escherichia coli L-asparaginase in newly diagnosed childhood 

acute lymphoblastic leukaemia (DFCI 05-001): a randomised, open-label phase 3 trial. 

Lancet Oncol. 2015;16(16):1677-1690. 

26. Relling MV, Yang W, Das S, et al. Pharmacogenetic risk factors for osteonecrosis of 

the hip among children with leukemia. J Clin Oncol. 2004;22(19):3930-3936. 

27. Kunstreich M, Kummer S, Laws HJ, Borkhardt A, Kuhlen M. Osteonecrosis in 

children with acute lymphoblastic leukemia. Haematologica. 2016;101(11):1295-1305. 

28. Niinimaki RA, Harila-Saari AH, Jartti AE, et al. Osteonecrosis in children treated for 

lymphoma or solid tumors. J Pediatr Hematol Oncol. 2008;30(11):798-802. 

29. Niinimaki RA, Harila-Saari AH, Jartti AE, et al. High body mass index increases the 

risk for osteonecrosis in children with acute lymphoblastic leukemia. J Clin Oncol. 

2007;25(12):1498-1504. 

30. Sala A, Mattano LA, Jr., Barr RD. Osteonecrosis in children and adolescents with 

cancer - an adverse effect of systemic therapy. Eur J Cancer. 2007;43(4):683-689. 

31. Mattano LA, Jr., Sather HN, Trigg ME, Nachman JB. Osteonecrosis as a 

complication of treating acute lymphoblastic leukemia in children: a report from the 

Children's Cancer Group. J Clin Oncol. 2000;18(18):3262-3272. 

32. Rocher E, Chappard C, Jaffre C, Benhamou CL, Courteix D. Bone mineral density in 

prepubertal obese and control children: relation to body weight, lean mass, and fat mass. J 

Bone Miner Metab. 2008;26(1):73-78. 

33. Yang JJ, Cheng C, Devidas M, et al. Ancestry and pharmacogenomics of relapse in 

acute lymphoblastic leukemia. Nat Genet. 2011;43(3):237-241. 

34. Bhojwani D, Pei D, Sandlund JT, et al. ETV6-RUNX1-positive childhood acute 

lymphoblastic leukemia: improved outcome with contemporary therapy. Leukemia. 



 

    

 

This article is protected by copyright. All rights reserved. 

 

21 

2012;26(2):265-270. 

35. Karol SE, Mattano LA, Jr., Yang W, et al. Genetic risk factors for the development of 

osteonecrosis in children under age 10 treated for acute lymphoblastic leukemia. Blood. 

2015. 

36. Gharbi H, Ben Hassine I, Soltani I, et al. Association of genetic variation in IKZF1, 

ARID5B, CDKN2A, and CEBPE with the risk of acute lymphoblastic leukemia in Tunisian 

children and their contribution to racial differences in leukemia incidence. Pediatr Hematol 

Oncol. 2016;33(3):157-167. 

37. Boer JM, van der Veer A, Rizopoulos D, et al. Prognostic value of rare IKZF1 

deletion in childhood B-cell precursor acute lymphoblastic leukemia: an international 

collaborative study. Leukemia. 2016;30(1):32-38. 

38. Clappier E, Grardel N, Bakkus M, et al. IKZF1 deletion is an independent prognostic 

marker in childhood B-cell precursor acute lymphoblastic leukemia, and distinguishes 

patients benefiting from pulses during maintenance therapy: results of the EORTC Children's 

Leukemia Group study 58951. Leukemia. 2015;29(11):2154-2161. 

39. Kaluzna E, Strauss E, Zajac-Spychala O, et al. Functional variants of gene encoding 

folate metabolizing enzyme and methotrexate-related toxicity in children with acute 

lymphoblastic leukemia. Eur J Pharmacol. 2015;769:93-99. 

40. Vujkovic M, Kershenbaum A, Wray L, et al. Associations between genetic variants in 

folate and drug metabolizing pathways and relapse risk in pediatric acute lymphoid leukemia 

on CCG-1952. Leuk Res Rep. 2015;4(2):47-50. 

41. Harris MM B, TM, Athale U, Clavell LA, Cole PD, Kelly KM, Laverdiere C, Leclerc JM, 

Michon B, Schorin MA, Welch JJG, Neuberg DS, Sallan SE, Silverman LB. Ikaros Gene 

Deletion Significantly Predicts Relapse in Pediatric B-ALL Patients with Low End-Induction 

Minimal Residual Disease. . Blood Vol. 126.23 2015: 2613. 

42. Xu H, Cheng C, Devidas M, et al. ARID5B genetic polymorphisms contribute to racial 

disparities in the incidence and treatment outcome of childhood acute lymphoblastic 

leukemia. J Clin Oncol. 2012;30(7):751-757. 

43. Moriyama T, Yang YL, Nishii R, et al. Novel variants in NUDT15 and thiopurine 

intolerance in children with acute lymphoblastic leukemia from diverse ancestry. Blood. 

2017;130(10):1209-1212. 

44. Karol SE, Larsen E, Cheng C, et al. Genetics of ancestry-specific risk for relapse in 

acute lymphoblastic leukemia. Leukemia. 2017. 

45. Mersha TB, Abebe T. Self-reported race/ethnicity in the age of genomic research: its 

potential impact on understanding health disparities. Hum Genomics. 2015;9:1. 

46. Banda Y, Kvale MN, Hoffmann TJ, et al. Characterizing Race/Ethnicity and Genetic 



 

    

 

This article is protected by copyright. All rights reserved. 

 

22 

Ancestry for 100,000 Subjects in the Genetic Epidemiology Research on Adult Health and 

Aging (GERA) Cohort. Genetics. 2015;200(4):1285-1295. 

47. Lim JY, Bhatia S, Robison LL, Yang JJ. Genomics of racial and ethnic disparities in 

childhood acute lymphoblastic leukemia. Cancer. 2014;120(7):955-962. 

48. Pui CH, Boyett JM, Hancock ML, Pratt CB, Meyer WH, Crist WM. Outcome of 

treatment for childhood cancer in black as compared with white children. The St Jude 

Children's Research Hospital experience, 1962 through 1992. JAMA. 1995;273(8):633-637. 

49. Perez A. Acculturation, Health Literacy, and Illness Perceptions of Hypertension 

among Hispanic Adults. J Transcult Nurs. 2014. 

50. Landier W, Hughes CB, Calvillo ER, et al. A grounded theory of the process of 

adherence to oral chemotherapy in Hispanic and caucasian children and adolescents with 

acute lymphoblastic leukemia. J Pediatr Oncol Nurs. 2011;28(4):203-223. 

51. Perez AD, Hirschman C. The Changing Racial and Ethnic Composition of the US 

Population: Emerging American Identities. Popul Dev Rev. 2009;35(1):1-51. 

52. Klimentidis YC, Miller GF, Shriver MD. Genetic admixture, self-reported ethnicity, 

self-estimated admixture, and skin pigmentation among Hispanics and Native Americans. 

Am J Phys Anthropol. 2009;138(4):375-383. 

53. Salari K, Burchard EG. Latino populations: a unique opportunity for epidemiological 

research of asthma. Paediatr Perinat Epidemiol. 2007;21 Suppl 3:15-22. 

54. Ladas EJ, Orjuela M, Stevenson K, et al. Dietary intake and childhood leukemia: The 

Diet and Acute Lymphoblastic Leukemia Treatment (DALLT) cohort study. Nutrition. 

2016;32(10):1103-1109 e1101. 

 

 

  



 

    

 

This article is protected by copyright. All rights reserved. 

 

23 

Figure legends:  

FIGURE 1: Probability of Osteonecrosis and Probability of Fracture by Age at Diagnosis 

(<10y vs. ≥10y) in Hispanic and Non-Hispanic Patients: Skeletal toxicity data are shown for 

(A) Osteonecrosis in patients ≥10 years of age (B) Osteonecrosis in patients <10 years of 

age (C) Bone fracture in patients ≥10 years of age, and (D) Bone fracture in patients <10 

years of age.  

 

FIGURE 2: Overall Survival and Event-Free Survival by Ethnicity: (A) Overall survival in 

Hispanic vs. non-Hispanic patients (B) Event-free survival in Hispanic vs. non-Hispanic 

patients. 
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Supplemental Tables and Figure Legends 

Supplemental Table S1: Events in Hispanic and non-Hispanic patients.  

Both Hispanic and non-Hispanic patients had nearly identical complete remission (CR) rates 

(94-95%), however, a higher percentage of Hispanic vs. non-Hispanic (13% vs. 9%) patients 

experienced disease relapse.  

 

Supplemental Table S2: Distribution of sites of relapse by ethnicity. There was no significant 

difference in sites of relapse between Hispanic and non-Hispanic patients. 

 

Supplemental Table S3: Target polymorphisms by ethnicity.  

Hispanic and non-Hispanic patients differed significantly in the proportion with the target 

genotype of four polymorphic genes: MTHFR A1298C (rs1801131; padjusted=0.001), 
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SLCO2A1 (padjusted=0.003), IL1B (padjusted=0.003), and TCN2 (padjusted=0.002). 

 

Supplemental Table S4: Analyses of polymorphisms vs. disease-free survival (DFS) and 

event-free survival (EFS) in Hispanic and non-Hispanic patients with nominal p-values, 

overall and by ethnicity.  

In the Hispanic cohort, the TCN2 polymorphism was univariately associated with EFS within 

the Hispanic patient cohort.  In multivariable modeling, TCN2 was marginally associated with 

EFS (HR=3.15, p=0.05). 

 

Supplemental Figure S1: Median (IQR) Serum Asparaginase Activity levels in Hispanic and 

Non-Hispanic Patients: During remission induction, when all patients received a single dose 

of pegasapargase, median serum asparaginase activity (SAA) was measured 4 (D4), 11 

(D11), 18 (D18), and 25 (D25) days after the dose.  At least one induction SAA level was 

available in 318 patients. At D4, n=289, D11, n=318, D18 n=271, and D25 n=274.  We did 

not observed differences between Hispanic and non-Hispanic patients in median SAA levels 

4, 11, 18, and 25 days after a dose. 
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TABLE 1 Demographic and clinical characteristics of study participants on DFCI 05-001 

 Entire Cohort 

(With Ethnicity) 

Ethnicity  

Hispanic Non-Hispanic  

No. % No. % No. % p-value 

Cohort size 730 100 150 100 580 100 - 

Age, years       0.045 

     <10  545 75 102 68 443 76  

     ≥10  185 25 48 32 137 24  

White blood cell count (cells/μL)       0.57 

     <50,000 578 79 116 77 462 80  

     ≥50,000 152 21 34 23 118 20  

NCI risk group       0.19 

     Standard risk  445 61 84 56 361 62  

     High risk  285 39 66 44 219 38  

Immunophenotype       0.58 

     T-cell 89 12 16 11 73 13  

     B-cell 641 88 134 89 507 87  

Sex       0.52 

     Female 325 45 63 42 262 45  

     Male 405 55 87 58 318 55  

Body mass index (n=729)       0.053 

     Underweight 47 6 10 7 37 6  

     Normal 468 64 83 55 385 66  

     Overweight 112 15 26 17 86 15  

     Obese 102 14 30 20 72 12  

Cytogenetics
* 

       

     ETV6-RUNX1 136 17 18 12 118 20 0.018 

     High Hyperdiploidy  184 25 45 30 139 24 0.14 
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     (51-65 chromosomes) 

     Ph+ (BCR-ABL-1) 19 3 4 3 15 3 1.00 

     KMT2A(MLL)-rearrangement 12 2 1 1 11 2 0.48 

     Hypodiploidy 10 1 1 1 9 2 0.70 

     iAMP21 12 2 1 1 11 2 0.48 

Achieved complete remission 695 95 141 94 554 96 0.36 

Final DFCI risk group
+
       0.81 

     Standard risk 370 54 71 51 299 54  

     High risk 242 35 54 39 188 34  

     Very high risk 62 9 12 9 50 9  

     Ph+ 16 2 3 2 13 2  

Asparaginase therapy
+
       0.75 

    Directly Assigned to IM E. Coli 267 39 52 37 215 39  

    Randomized to IM E. Coli 205 30 40 29 165 30  

    Randomized IV pegaspargase 218 32 48 34 170 31  

 

Abbreviations: NCI: National Cancer Institute; B-cell: B-cell acute lymphoblastic leukemia; T-cell: T-cell acute 

lymphoblastic leukemia; Ph+: Philadelphia chromosome positive ALL; iAMP21: Intrachromosomal amplification 

of chromosome 21; IM E.Coli: Intramuscular E. Coli asparaginase; IV Peg: IV pegaspargase;  

*n=12 not screened for cytogenetics including ETV6-RUNX1, high hyperdiploidy, KMT2A (MLL)-

rearrangement, hypodiploidy, and iAMP21 

+ Achieved a complete remission and assigned a post induction asparaginase group   

NCI risk group: Standard risk (WBC<50,000 and Age <10 years), High Risk (WBC≥50,000 or Age ≥10 years) 
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TABLE 2 Treatment-related toxicities by ethnicity during induction and post-induction therapy 

 

 

 

Induction Toxicity  

 

 

Entire Cohort 

 

Ethnicity 
 

Hispanic Non-Hispanic  

p-value No. % No. % No. % 

All 730 - 150 - 580 - - 

Infection 203 28 37 25 166 29 0.36 

     Bacterial 183 25 29 19 154 27 0.07 

     Fungal 30 4 8 5 22 4 0.36 

     Viral 5 <1 1 1 4 1 1.00 

     Opportunistic 3 <1 1 1 2 0 - 

Asparaginase toxicity 47 6 10 7 37 6 0.85 

     Pancreatitis 17 2 6 4 11 2 0.13 

     Allergy 10 1 2 1 8 1 1.00 

     Thrombosis 20 3 2 1 18 3 0.40 

Bone Event 3 <1 3 1 0 0 - 

     Bone Fracture 3 <1 3 1 0 0 - 

     Osteonecrosis 0 <1 0 0 0 0 - 

 

Post-Induction Toxicity 

 

 

Entire Cohort 

 

Ethnicity 
 

Hispanic Non-Hispanic  

p-value No. % No. % No. % 

All 690 - 140 - 550 - - 

Infection 220 32 44 31 176 32 0.92 

     Bacterial 158 23 30 21 128 23 0.74 

     Fungal 17 2 2 1 15 3 0.55 

     Viral 59 9 17 12 42 8 0.09 
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     Opportunistic 21 3 1 1 20 4 0.10 

Asparaginase toxicity 183 27 40 29 143 26 0.59 

     Pancreatitis 75 11 20 14 55 10 0.17 

     Allergy 63 9 14 10 49 9 0.74 

     Thrombosis 72 10 11 8 61 11 0.35 

Bone Event* 163 24 15 11 148 27 <0.0001 

     Bone Fracture 131 19 11 8 120 22 <0.0001 

     Osteonecrosis 54 8 4 3 50 9 0.013 

* Only includes bone toxicity on therapy 

TABLE 3 Competing risks regression for skeletal toxicities by age subgroup and asparaginase treatment arm 

     

Bone Fracture 

  

Osteonecrosis 

 Univariate Multivariable Univariate     Multivariable 

Hazard 

Ratio 

[95%CI] 

p-

value 

Hazard  

Ratio 

[95%CI] 

p-value 

Hazard  

Ratio 

[95%CI] 

p-value 

Hazard 

Ratio 

[95%CI] 

p-value 

Age <10 Years  

Hispanic vs. 

Non-Hispanic 

0.24 

[0.10-0.54] 

0.000

6 

0.23 

[0.10-0.51] 
0.0003 

0.61 

[0.18-2.02] 
0.41 

0.59 

[0.18-1.95] 
0.39 
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Female vs.  

Male 

1.25 

[0.86-1.81] 
0.25 

1.25 

[0.86-1.82] 
0.23 

0.35 

[0.14-0.88] 
0.025 

0.34 

[0.13-0.84] 
0.020 

Post induction ASP   

     Direct 

assignment  

     vs. Not 

0.96 

[0.65-1.42] 
0.86 

0.97 

[0.61-1.52] 
0.88 

1.92 

[0.87-4.22] 
0.11 

1.79 

[0.68-4.69] 
0.23 

     IM E. Coli vs. Not 
1.09 

[0.73-1.63] 
0.67 

1.03 

[0.64-1.67] 
0.90 

0.58 

[0.22-1.56] 
0.28 

0.90 

[0.27-3.01] 
0.86 

SR vs. Not 
0.95 

[0.63-1.42] 
0.80 

0.96 

[0.64-1.43] 
0.83 

1.64 

[0.62-4.35] 
0.32 

1.79 

[0.68-4.71] 
0.24 

Obese vs. Not 
1.18 

[0.69-2.03] 
0.55 

1.42 

[0.82-2.47] 
0.21 

0.56 

[0.13-2.4] 
0.43 ⱡ ⱡ 

Age ≥10 years  

Hispanic vs.  

Non-Hispanic 

0.63 

[0.31-1.28] 
0.20 

0.62 

[0.31-1.27] 
0.19 

0.28 

[0.10-0.76] 
0.013 

0.23 

[0.08-0.66] 
0.006 

Female vs.  

Male 

0.99 

[0.55-1.79] 
0.98 

0.91 

[0.51-1.64] 
0.76 

0.61 

[0.31-1.22] 
0.16 

0.49 

[0.25-0.97] 
0.042 

Post induction ASP   

     Direct 

Assignment 

     vs. not 

0.72 

[0.37-1.42] 
0.35 

0.80 

[0.37-1.73] 
0.57 

0.34 

[0.14-0.81] 
0.015 

0.32 

[0.12-0.82] 
0.020 

     IM E. Coli vs.  

     Not 

1.53 

[0.85-2.73] 
0.15 

1.38 

[0.70-2.71] 
0.35 

1.66 

[0.88-3.11] 
0.12 

1.14 

[0.59-2.20] 
0.70 

VHR vs. Not 
0.77 

[0.28-2.14] 
0.62 

0.75 

[0.27-2.07] 
0.58 

0.41 

[0.10-1.72] 
0.22 ⱡ ⱡ 

Obese vs. not 
1.21 

[0.56-2.60] 
0.63 

1.31 

[0.60-2.83] 
0.50 

0.42 

[0.13-1.39] 
0.16 ⱡ ⱡ 

 

Abbreviations: Direct assignment: Directly assigned to receive native E. Coli asparaginase IM E.Coli: Intramuscular E. 
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TABLE 4 Cox proportional hazards univariate and multivariable models of overall survival (OS) 

and event-free survival (EFS) by ethnicity. BMI group was re-grouped to obese vs. not obese to 

account for overlap between obesity and overweight categories. No differences were seen with 

EFS. Adjusting for other variables, obesity remains significant and ethnicity is marginally 

significant. 

 Univariate Multivariable 

Hazard Ratio 

[95% CI] 

p-value Hazard Ratio 

 [95% CI] 

p-value 

Overall Survival (OS) 

 

Hispanic vs. non-Hispanic 2.06 

[1.21-3.52] 

0.008 1.67 

[0.95-2.89] 

0.07 

   Age ≥10y vs. <10y 1.62 

[0.96-2.72] 

0.07 1.41 

[0.82-2.42] 

0.21 

   WBC ≥50K vs. <50K 3.26 

[1.97-5.38] 

<0.0001 3.61 

[2.13-6.12] 

<0.0001 

   Female vs. male 0.84 

[0.51-1.40] 

0.51 0.95 

[0.57-1.60] 

0.85 

   B-ALL vs. T-ALL 1.07 

[0.49-2.35] 

0.87 2.03 

[0.88-4.65] 

0.09 

Obese vs. not obese 2.37 

[1.34-4.20] 

0.003 2.10 

[1.18-3.76] 

0.012 

Event-Free Survival (EFS) 

 

 Hispanic vs. non-Hispanic 1.82 

[1.19-2.77] 

0.005 1.61 

[1.05-2.49] 

0.030 

   Age ≥10 vs. <10y 1.65 

[1.10-2.46] 

0.015 1.45 

[0.96-2.20] 

0.08 

   WBC ≥50K vs. <50K 2.44 

[1.64-3.63] 

<0.0001 2.52 

[1.64-3.85] 

<0.0001 

   Female vs. male 0.87 

[0.59-1.28] 

0.48 0.96 

[0.65-1.44] 

0.85 

   B-ALL vs. T-ALL 0.84 

[0.48-1.47] 

0.53 1.38 

[0.75-2.53] 

0.30 

Obese vs. not obese 1.46 

[0.89-2.41] 

0.13 1.33 

[0.80-2.20] 

0.27 

Abbreviations: WBC: White blood cell count; B-ALL: B-cell acute lymphoblastic leukemia; T-ALL: T-cell 

acute lymphoblastic leukemia 

 

 

Coli asparaginase; SR: Standard risk; VHR: Very high risk; ASP: asparaginase 

ⱡ Due to the small number of bone events (n<4) not considered in multivariable modeling  


