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Abstract
Examination of angler-caught piscivore stomachs revealed that Lake Trout Salvelinus namaycush, Chinook

Salmon Oncorhynchus tshawytscha, and Walleyes Sander vitreus altered their diets in response to unprecedented
declines in Lake Huron’s main-basin prey fish community. Diets varied by predator species, season, and location
but were nearly always dominated numerically by some combination of Alewife Alosa pseudoharengus, Rainbow
Smelt Osmerus mordax, Emerald Shiner Notropis atherinoides, Round Goby Neogobius melanostomus, or terrestrial
insects. Rainbow Trout Oncorhynchus mykiss (steelhead), Coho Salmon Oncorhynchus kisutch, and Atlantic Salmon
Salmo salar had varied diets that reflected higher contributions of insects. Compared with an earlier (1983–1986)
examination of angler-caught predator fishes from Lake Huron, the contemporary results showed an increase in
consumption of nontraditional prey (including conspecifics), use of smaller prey, and an increase in insects in the
diet, suggesting that piscivores were faced with chronic prey limitation during this study. The management of all
piscivores in Lake Huron will likely require consideration of the pervasive effects of changes in food webs,
especially if prey fish remain at low levels.

Freshwater piscivores have the ability to alter prey behavior

(Werner and Hall 1988), structure prey communities (Zaret

and Paine 1973; Mittlebach et al. 1995), and alter production

via top-down effects (Carpenter and Kitchell 1988). Piscivore

effects have been especially strong in the Laurentian Great

Lakes, where fisheries managers introduced nonnative Pacific

salmon Oncorhynchus spp. during the 1960s to control Ale-

wives Alosa pseudoharengus and consume Rainbow Smelt

Osmerus mordax (Kocik and Jones 1999; Tanner and Tody

2002), both nonnative planktivores (Aron and Smith 1971).

Alewives had proliferated to nuisance levels in Lakes Huron

and Michigan after the near extirpation of native predators

(Smith 1970; Brown 1972). The Pacific salmon introduction

was also concurrent with efforts to restore native Lake Trout

Salvelinus namaycush via stocking (Hansen 1999).

The introduction of Pacific salmon created a novel predator–

prey system. Originally, the native prey fish community in Lake

Huron supported Lake Trout, Walleyes Sander vitreus, and Bur-

bot Lota lota as the main predators. Prey consisted of seven spe-

cies of deepwater Ciscoes Coregonus spp., Sculpins Cottus spp.,
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Deepwater Sculpins Myoxocephalus thompsonii (Eshenroder

and Burnham-Curtis 1999) and smaller numbers of Lake White-

fish Coregonus clupeaformis, Round Whitefish Prosopium

cylindraceum, Ninespine Sticklebacks Pungitius pungitius,

Trout-perch Percopsis omiscomaycus, Spottail Shiners Notropis

hudsonius, Emerald Shiners Notropis atherinoides, Lake Chub

Coeusius plumbeus, White Suckers Catostomus commersonii,

and Longnose Suckers Catostomus catostomus (Spangler and

Collins 1992; Ebener et al. 1995; Roseman et al. 2009). Native

species were still present (although likely in reduced numbers

in the presence of Alewives; Bunnell et al. 2006) but were

nearly absent in piscivore diets (Diana 1990). Pacific salmon

and Lake Trout preyed almost exclusively on Alewives or

Rainbow Smelt (Diana 1990).

The predator–prey system continued to support a popular

sport fishery (Kocik and Jones 1999) that achieved Alewife

suppression (Madenjian et al. 2002), but subsequent ecosys-

tem-wide changes disrupted existing food webs. Although the

mechanisms are not well understood, invasion by zebra and

quagga mussels Dreissena spp. beginning circa 1990 may

have shunted energy or nutrients away from native species

(Hecky et al. 2004; McNickle et al. 2006); their proliferation

was followed temporally by prey fish community collapse

(Riley et al. 2008; Roseman and Riley 2009), increased water

clarity and macrophytes (Fahnenstiel et al. 1995; Budd et al.

2001), loss of large macroinvertebrates (Nalepa et al. 2007),

and shifts in zooplankton community composition (Barbiero

et al. 2009; Bunnell et al. 2011). There was also a concurrent

invasion by Round Goby Neogobius melanostomus (Jude and

DeBoe 1996; Schaeffer et al. 2005).

The most striking change, however, was the near col-

lapse of Alewives during 2002–2004, which entailed an

87% reduction in both abundance and biomass (Riley et al.

2008; Roseman and Riley 2009); this was associated tem-

porally with decreased Chinook Salmon abundance (John-

son and Gonder 2013). Following the Alewife collapse,

prey fish biomass was reduced substantially and remained

low through 2013 (Riley et al. 2014). This created a prey

community comprised of smaller-sized and less-abundant

Rainbow Smelt, Round Goby, and native species (Riley

et al. 2014) that was supporting lower numbers of stocked

Pacific salmon and a growing number of wild Pacific

salmon, Lake Trout, and Walleyes.

The changes to the Lake Huron fish community

occurred at an unprecedented pace with the collapse of the

prey community between 2002 and 2004, and there was

great concern as to whether the forage base was large

enough to meet the food requirements of the piscivores. A

previous study (Diana 1990) used angler-caught fish

(1983–1986) to characterize predator diets prior to the

food web shift of the 2000s. We replicated this work by

examining the diets of angler-caught piscivores collected

in western Lake Huron (Michigan waters; Figure 1) during

2009–2011 to assess predator responses to changes in the

prey base and compared those results with those of

Diana (1990).

METHODS

Stomachs were obtained from fish harvested by recreational

anglers on Lake Huron during May–October, 2009, 2010, and

2011. Most samples were provided by anglers from the off-

shore troll fishery (trolling is an angling method in which lines

baited with lures are drawn through the water by boat). We

occasionally collected stomachs directly from anglers at fish-

ing tournaments and from high-traffic fish cleaning stations

near marinas. During 2010 and 2011, many fishing clubs orga-

nized collections via their tournaments. We also received

assistance from Michigan Department of Natural Resources

creel survey clerks, who collected samples from anglers during

their interviews as part of state-run creel surveys.

Whole stomachs and viscera were excised from harvested

fish at the time of capture or cleaning, and each intact stomach

was placed in a plastic bag and frozen along with a preprinted

label on which anglers recorded the predator species, capture

date, total length, and fishing location (nearest port). Frozen

stomachs were periodically collected from anglers directly or

from centralized freezer locations (often at marinas),

FIGURE 1. Map of Lake Huron showing the statistical districts used to cate-

gorize sample collection locations.
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transported to the laboratory, thawed, and examined. Samples

were excluded if multiple stomachs were bagged together, if

species or length data were missing, or if the capture location

could not be determined. Because capture locations varied, we

aggregated samples by ascribing them to the management dis-

trict from which the fish were captured (Figures 1, 2). This

provided the highest degree of spatial certainty, maintained

sample size for analysis of temporal and spatial differences,

and allowed us to include samples for which the capture loca-

tion was described broadly (usually the port of trip origin).

All fish prey were identified to the lowest practical taxo-

nomic level, usually species. Partially digested prey were iden-

tified using a variety of digestion-resistant characteristics

(Elliot et al. 1996), and we found that even highly digested

prey could be identified via cleithra (Traynor et al. 2010). The

total length (TL), standard length (SL), or backbone length

(BB) of each intact prey fish was measured (mm), depending

on the state of digestion. We estimated weight at capture for

fish prey using published total length–weight relationships,

with total length being either measured directly or predicted

from standard or intact backbone lengths (e.g., Knight et al.

1984; Schneider 2000). For some prey species not reported in

prior studies, we derived length–weight relationships using

archived data from U.S. Geological Survey (USGS) long-term

trawl surveys. No SL–TL or BB–TL relationships existed for

some rare prey species. In those cases, we assumed ratios of

1.2 (TL/SL) or 1.5 (TL/BB) to estimate the total length at cap-

ture based on relationships from Knight et al. (1984).

Invertebrates were always identified to at least order but in

some cases to family or genus. Initially, invertebrates were

counted (2009), but their dietary prevalence led us to measure

the wet weights (g) of each type directly (2010–2011) after

they were sorted to taxonomic group and blotted dry. For the

2009 data, counts were converted to wet weights using pub-

lished values (Wilmer and Unwin 1981) or archived data from

USGS long-term benthic surveys. Earthworms Lumbricus ter-

restris found in Walleyes were excluded due to their preva-

lence as bait.

We enumerated the contents of individual stomachs using

both the frequency of occurrence and the percent contribution

of each prey type to total diet weight. Almost all predators

consumed a mixed diet that included both invertebrates and

fish whose weights differed by several orders of magnitude;

hence, we compared dietary differences among predators by

comparing differences in the weights of each prey group

among predators using analysis of variance (ANOVA), after

first normalizing the weight measurements with a log transfor-

mation and adding a small coefficient (0.003) to account for

cases in which identifiable prey were present but too digested

for us to obtain their weight. In cases in which ANOVA indi-

cated significant differences among independent variables

(P � 0.05), we examined among-treatment differences using

Tukey–Kramer tests (SAS Institute 2011). To simplify the

analyses for comparison with those of Diana (1990), we also

FIGURE 2. Spatial and temporal distributions of 6,713 piscivorous fish cap-

tured in Lake Huron, 2009–2011 (top panel: spatial distribution of species;

middle panel: temporal distribution of species; bottom panel: temporal distri-

bution by statistical district). Species abbreviations are as follows: LAT D
Lake Trout, WAE D Walleye, CHS D Chinook Salmon, RTR D Rainbow

Trout, COH D Coho Salmon, PINK D Pink Salmon, and ATL D Atlantic

Salmon. Northern Pike, Splake, and Brook Trout are not shown due to their

small sample sizes; months and districts with sample sizes of fewer than five

fish are not visible.
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pooled prey into the following classes: Alewives, Rainbow

Smelt, salmonids, Round Goby, Yellow Perch, other fish spe-

cies, and invertebrates. We also estimated stomach fullness

(Hyslop 1980) as a way to compare ration size among preda-

tors of different sizes. Ration size was calculated by dividing

the wet weight of the prey in stomachs (measured directly for

invertebrates and estimated at capture for fish prey) by the

predator weight predicted from length–weight relationships.

We compared our results directly with those of Diana (1990),

who collected 1,833 angler-caught salmonids during 1983–

1986. Comparisons were limited to species common to both

studies. As no Atlantic Salmon Salmo salar or Walleyes were

reported by that study, we excluded those species.Where numer-

ical data were available from the 1983–1986 study, we per-

formed statistical comparisons using chi-square tests; where no

numerical data were available, we made only qualitative

comparisons.

RESULTS

Anglers provided 6,935 stomachs during 2009–2011, for

which 6,713 had complete information on capture and food

presence or absence. Lake Trout, Walleyes, and Chinook

Salmon were the most common species sampled, with smaller

numbers of steelhead (anadromous Rainbow Trout), Coho

Salmon, Pink Salmon, and Atlantic Salmon (Table 1). Brown

Trout, Northern Pike, Splake, and Brook Trout were rare (N <

50) and were excluded from most analyses.

The proportion of stomachs containing food varied among

species. At least 62% of Rainbow Trout, Coho Salmon, Pink

Salmon, and Atlantic Salmon contained food, with Atlantic

Salmon having the highest frequency of food presence (74%).

About half (51%) of Lake Trout stomachs contained food, but

that was true for only 41% of Chinook Salmon. Walleyes had

the lowest food presence (28%), possibly because most were

captured in Saginaw Bay where warm water temperatures may

have supported faster digestion. Several anglers reported

observing regurgitation by hooked Walleyes just prior to land-

ing. The proportions of full and empty stomachs varied little

among years (Table 1).

Of the 6,713 fish with complete information, 6,666 had stom-

achs that were both intact and preserved enough to process. Of

these, 2,909 (43.6%) provided 12,720 distinct observations of

prey categorized as individual fish or pooled invertebrate types.

Therewere 617 unidentifiable prey (4.9%), whichwere excluded

from further analysis. The proportion of prey excluded varied

from 3% to 5% among species, but higher numbers of Pink

Salmon (8.3%) andWalleyes (17.1%) were excluded.

The spatial and temporal distributions of the collections

were not uniform because the fishery changed seasonally.

Anglers generally began fishing southern Lake Huron in April

and moved north as the spring and summer progressed. About

6% of the fish were obtained from southern Lake Huron.

Catches during May and June were dominated by Lake Trout

and Walleyes, while most Rainbow Trout and Chinook

Salmon were collected during July–September, with the

majority being obtained from northern Lake Huron (statistical

districts MH-1 and MH-2; Figure 2). Slightly over 80% of

Walleyes were collected from the MH-4 district, which

encompasses Saginaw Bay. The temporal differences in Wall-

eye sample sizes were minimal because Walleyes were har-

vested during most months.

TABLE 1. Sample sizes for predators collected by anglers from Lake Huron, 2009–2011. Species are listed in order of abundance; F D fed (i.e., contained

prey), E D empty stomach.

Year

2009 2010 2011

Species F E F E F E Percent with food Total

Lake Trout 379 469 480 400 255 205 50.9 2,188

Walleye 150 398 310 911 178 318 28.1 2,265

Chinook Salmon Oncorhynchus tshawytscha 135 244 196 263 239 308 41.1 1,385

Rainbow Trout O. mykiss 70 17 188 65 90 48 72.8 478

Coho Salmon O. kisutch 16 7 44 25 21 16 62.7 129

Pink Salmon O. gorbuscha 4 4 61 29 11 5 66.6 114

Atlantic Salmon 38 8 29 14 7 4 74.0 100

Brown Trout Salmo trutta 3 1 6 8 18 6 42

Northern Pike Esox lucius 2 4 6

Splakea 1 3 1 5

Brook Trout 1 1

Annual percent 40.9 59.1 43.4 56.6 47.4 52.6 43.7

Total 797 1,153 1,318 1,716 819 910 6,713

aBrook Trout Salvelinus fontinalis £ Lake Trout.
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Anglers nearly always collected fish larger than the mini-

mum length limits. Length frequency distributions were trun-

cated by the minimum legal harvest lengths, which were

381 mm for Walleye and Lake Trout and 254 mm for Pacific

salmonids (Michigan DNR 2014). For all years combined,

94% of the predators sampled ranged from 400 to 800 mm TL

(Figure 3).

Frequency of Occurrence

Stomach samples contained 29 species of fish (Table 2) and 6

general groups of invertebrates: dreissenid mussels, aquatic

insects (the nymphs or adults of mayflies, caddis flies, and

midges), opossum shrimp, crayfish, terrestrial insects (multiple

orders, but often beetles or ants), and spinywater fleas. However,

diets nearly always had some combination of Alewives, Rain-

bow Smelt, Emerald Shiners, Round Goby, or terrestrial insects

(Figures 4, 5). The most common prey of Lake Trout in our

study was Round Goby, followed by Rainbow Smelt. About 5%

of stomachs contained other salmonids, predominantly as a

result of cannibalism. Lake Trout also consumed 14 prey types

that were rarely or never eaten by other predators, but most rep-

resented single occurrences. Chinook Salmon consumed pre-

dominantly Rainbow Smelt and lower numbers of Alewives,

sticklebacks, and Round Goby. About 21% of their stomachs

contained spiny water fleas that likely represented volitional

consumption (Jacobs et al. 2013). Terrestrial insects constituted

the bulk of Rainbow Trout diets, and Alewives, Rainbow Smelt,

and Ninespine Sticklebacks were the most frequently observed

fish prey. Coho Salmon consumed primarily Emerald Shiners

and Rainbow Smelt, and insects comprised about 15% of their

diet. The only common fish prey in Pink Salmon diets was Rain-

bow Smelt; they also consumed terrestrial insects (13.9%) and

had the highest incidence of spiny water fleas. Atlantic Salmon

differed from other salmonids in that they more frequently con-

sumed sticklebacks (21.4% of stomachs). In contrast to salmo-

nids, Walleyes consumed primarily Yellow Perch, Emerald

Shiners, and Round Goby; numerically, these three species com-

prised about 71% of their prey.

Dietary Mass

For fish prey, the percent contribution to total dietary mass

was positively correlated with frequency of occurrence (r2 D
0.73, P < 0.05), although wet weight contributions varied

among predators. The proportion by weight of Lake Trout

diets was dominated by Rainbow Smelt and Round Goby,

which contributed about 69% of total dietary wet weight

(Table 3; Figure 5). Alewives contributed 6.8%, which was

less than Bloater (8.6%) or other salmonids (>9.0%). Other

fish species contributed no more than about 1% by weight,

often because they represented single or few (<5) captures. In

contrast, Alewives (62%) and Rainbow Smelt (26%) contrib-

uted the largest prey mass to Chinook Salmon, while no other

species exceeded a 4% contribution. Insects were the largest

proportion of dietary mass consumed by Rainbow Trout

(50.9%), followed by Alewives (13.5%) and Rainbow Smelt

(7.5%). Coho Salmon consumed a greater proportion of

Emerald Shiners than any other predator (25.9%), and they

had the second highest proportion of terrestrial insects

(25.9%). Pink Salmon consumed the highest proportion by

weight of spiny water fleas (6.9%) and also consumed an

appreciable quantity of terrestrial insects (16.2%), but Rain-

bow Smelt were their most important prey from a dietary

mass perspective (57.5%). Rainbow Smelt comprised the

largest proportion of prey consumed by Atlantic Salmon

(30.1%), but their diets were distinct in that they were the

only species that consumed sticklebacks (20.2%) and scul-

pins (6.8%) to any degree. Insects and crustaceans com-

prised slightly over 9% of their diet. Walleye diets

contained Round Goby, Emerald Shiner, and Yellow Perch.

Walleye stomachs contained significantly less invertebrate

mass, likely because they consumed small chironomid lar-

vae only occasionally (Figures 4, 5).

Ration Size

We observed minor differences in ration size among species.

Chinook Salmon and Coho Salmon had significantly higher

ration sizes than Walleyes, Atlantic Salmon, and Pink Salmon

(Tukey-Kramer test: P< 0.05), while the ration size of Rainbow

Trout was lower than those of other species (Figure 6). Ration

FIGURE 3. Length frequency distributions of angler-caught Chinook

Salmon, Lake Trout, Rainbow Trout, and Walleyes from Lake Huron, 2009–

2011.

FISH COMMUNITY CHANGES IN LAKE HURON 1423



TABLE 2. Frequency of occurrence of prey consumed by Lake Huron predators collected by anglers, 2009–2011 (all years pooled). Species abbreviations are

as follows: LAT D Lake Trout, WAE DWalleyes, CHS D Chinook Salmon, RTR D Rainbow Trout, COH D Coho Salmon, PIN D Pink Salmon, ATL D Atlan-

tic Salmon. Northern Pike, Splake, and Brook Trout are not shown due to their small sample sizes.

Predator species

Prey species LAT CHS RTR COH PIN ATL WAE

Sea Lamprey Petromyzon marinus <1.0

Alewife 2.3 14.8 8.0 2.2 4.2 5.1 <1.0

Gizzard Shad Dorosoma cepedianum 3.0

Rainbow Smelt 28.7 42.2 17.1 19.3 33.3 17.3 3.6

Channel Catfish Ictalurus punctatus <1.0

American Eel Anguilla rostrata <1.0

Burbot <1.0

Threespine Stickleback <1.0 <1.0 1.4 12.2

Gasterosteus aculeatus

Ninespine Stickleback 3.0 5.6 4.3 4.3 1.4 9.2

Trout-perch <1.0 <1.0

White PerchMorone americana <1.0 <1.0

White BassMorone chrysops <1.0 <1.0

Lake Whitefish <1.0

Bloater Coregonus hoyi 3.3 1.3 1.0 1.1 1.0 <1.0

Unidentified salmonid 1.3 1.2 <1.0 2.2 1.4 1.0

Chinook Salmon <1.0 <1.0 <1.0 1.1 1.4 1.0

Lake Trout 2.0 <1.0 5.1 <1.0

Coho Salmon <1.0 <1.0 2.1

Unidentified suckers (Catostomidae) <1.0

Longnose Sucker Catostomus catostomus <1.0

Unidentified minnows (Cyprinidae) <1.0 <1.0 1.1 1.0 1.0

Silver ChubMacrhybopsis storeriana <1.0

Emerald Shiner 5.4 1.3 2.4 28.0 2.8 7.1 22.2

Spottail Shiner 1.1

Creek Chub Semotilus atromaculatus <1.0 1.0

Rock Bass Ambloplites rupestris <1.0 <1.0

Smallmouth BassMicropterus dolomieu <1.0 1.0

Yellow Perch Perca flavescens <1.0 <1.0 4.3 20.5

Unidentified sculpins (Cottidae) <1.0 <1.0 <1.0

Mottled Sculpin Cottus bairdii <1.0 1.0

Slimy Sculpin Cottus cognatus <1.0 <1.0 1.0

Deepwater Sculpin <1.0 1.1 1.0

Round Goby 44.0 5.1 6.8 9.7 12.2 28.1

Mussels Dreissena spp. <1.0

Aquatic insectsa 5.1 1.1 1.4 4.1 2.7

Opossum shrimpMysis diluviana <1.0 1.4

Crayfish (Decapoda) <1.0 1.0

Terrestrial insectsb 3.0 5.1 40.3 15.0 13.9 16.0 2.5

Midges (Chironomidae) 2.0 10.8

Spiny water flea Bythotrephes longimanus 1.0 20.6 8.9 5.4 37.5 2.0 <1.0

aAdult life stages, predominantly mayflies (Ephemeroptera) and caddis flies (Trichoptera).
bMultiple orders, including beetles (Coleoptera), ants (Hymenoptera), and butterflies (Lepidoptera).
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size differed among years for Chinook Salmon, Lake Trout, and

Walleyes (the three species for which sample sizes were ade-

quate for among-year comparisons). We observed substantive

among-year variation in ration size as well as among individual

prey groups (among-year differences in the contribution of par-

ticular prey types to total dietary mass) for all three species for

which we had adequate sample sizes. For Lake Trout, mean

ration size was significantly different among all study years,

being highest during 2011 due to an increase in the dietary

weight of Alewives and reductions in the dietary weights of

Round Goby, Rainbow Smelt, and salmonids (Tukey-Kramer

test: P< 0.05; Figure 6). Chinook Salmon diets followed a simi-

lar pattern, but the significantly higher mean prey weight during

2011 was associated with an increase in Alewives combined

with reductions in both Rainbow Smelt and other species (P <

0.05). The mean ration in Walleye stomachs increased signifi-

cantly during 2011 and was associated with higher dietary pro-

portions of Yellow Perch (P< 0.05).

We found little evidence of size selectivity. There was no

relationship between prey total length and predator length for

Lake Trout or Walleyes (separate regressions; P � 0.05). There

was a positive relationship for Chinook Salmon (r2 D 0.12; P<

0.05) but the regression explained little of the variability, likely

because even large fish consumed prey less than 100 mmTL.

The prey size distributions during 2009–2011suggest that

large prey were extremely rare. Only 98 (1.1%) of the 8,961

measurable fish prey that we found in stomachs exceeded

150 mm TL at capture (Figures 7, 8) and about half did not

exceed 50 mm. Species composition differed among prey

size-classes. Below 150 mm TL, diets were generally domi-

nated by Rainbow Smelt or Round Goby, but the large

(>150 mm TL) prey items found in stomachs were predomi-

nantly salmonids, Alewives, and other fish species that tended

to be numerically rare in diets.

DISCUSSION

Most piscivores in Lake Huron have altered their diets since

the 1990 study, each in a slightly different way. Based on the

samples we examined, Lake Trout now consume Round Goby,

Rainbow Smelt, and other fish in approximately equal propor-

tions, whereas Diana (1990) observed roughly equal propor-

tions of Alewives and Rainbow Smelt. Rainbow Trout, Coho

Salmon, Pink Salmon, and Atlantic Salmon consumed both

invertebrates and a variety of fish prey. Walleyes consumed

Yellow Perch, Emerald Shiners, and Round Goby. In contrast,

Chinook Salmon diets appear to have varied little. Diana

(1990) observed that they consumed Rainbow Smelt and

FIGURE 4. Percent contribution by mass of different prey groups to pisci-

vore diets collected from Lake Huron during 2009–2011 (all samples pooled

within species). See Figure 2 for species abbreviations and additional details.

FIGURE 5. Year-to-year variation in diets of Lake Trout, Chinook Salmon,

and Walleyes with grouped prey categories, Lake Huron, 2009–2011 (all sam-

ples pooled within species).
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Alewives almost exclusively; we found that those two species

occurred in 57% of Chinook Salmon stomachs and represented

about 88% of dietary mass. For salmonids, large prey seemed

especially rare. The large (>150-mm) prey size-classes

observed in Diana’s (1990) study were absent (most fish sub-

sisting on small prey), and we found little evidence of

relationships between predator size and prey size. The large

prey items in diet samples were Alewives (which were rare

except during 2011) or atypical prey species such as adult Bur-

bot, Channel Catfish, and other salmonids. We found little evi-

dence that piscivores were able to compensate for reduced size

by consuming more individuals. Following the prey

TABLE 3. Percent by weight of prey consumed by Lake Huron predators collected by anglers, 2009–2011 (all years pooled). See Table 2 for species abbrevia-

tions and additional details.

Predator species

Prey species LAT CHS RTR COH PIN ATL WAE

Sea Lamprey <1.0

Alewife 6.8 62.2 13.5 15.1 9.5 5.1 <1.0

Gizzard Shad 4.4

Rainbow Smelt 36.1 26.0 7.5 10.6 57.5 30.1 5.3

Channel Catfish <1.0

American Eel <1.0

Burbot <1.0

Threespine Stickleback <1.0 <1.0 <1.0 4.3

Ninespine Stickleback <1.0 2.5 2.7 1.0 1.4 15.9

Trout-perch <1.0 < 1.0

White Perch <1.0 1.5

White Bass <1.0 < 1.0

Lake Whitefish <1.0

Bloater 8.6 4.0 <1.0 <1.0 <1.0 <1.0

Unidentified salmonids 1.1 <1.0 <1.0 6.5 1.32

Chinook Salmon 1.8 <1.0 <1.0 <1.0 <1.0

Lake Trout 6.4 <1.0 4.6 1.8

Coho Salmon <1.0 <1.0 <1.0

Unidentified suckers <1.0

Longnose Sucker <1.0

Unidentified minnows <1.0 <1.0 <1.0 <1.0

Silver Chub <1.0

Emerald Shiner <1.0 <1.0 <1.0 25.9 1.8 6.1 7.5

Spottail Shiner 3.1

Creek Chub <1.0 1.2

Rock Bass <1.0 1.8

Smallmouth Bass <1.0 <1.0

Yellow Perch <1.0 <1.0 1.4 52.0

Unidentified sculpins <1.0 <1.0 3.4

Mottled Sculpin <1.0 5.1

Slimy Sculpin <1.0 <1.0

Deepwater Sculpin <1.0 <1.0 1.7

Round Goby 33.2 1.0 14.4 14.9 15.7 20.5

Mussels <1.0

Aquatic insects 3.6 <1.0 <1.0 2.2 <1.0

Opossum shrimp <1.0 <1.0

Crayfish <1.0 1.8

Terrestrial insects 1.2 1.4 47.3 25.9 16.2 5.2 <1.0

Midges 1.8

Spiny water flea <1.0 <1.0 <1.0 <1.0 6.9 <1.0 <1.0
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community collapse in 2003, prey abundance has remained

low and dominated by small (<150-mm) Rainbow Smelt,

Bloaters, and Round Goby (Riley et al. 2014).

Chinook Salmon have been regarded as obligate pelagic

predators, and our data reinforce this. Lake Huron Chinook

Salmon relied heavily on Rainbow Smelt both in the 1980s

(Diana 1990) and during 2009–2011, and they did not change

their foraging strategy, as has been seen in other studies (Stew-

art et al. 1981; Jude et al. 1987; Warner et al. 2008; Savitz

2009). This failure to alter their strategy occurred despite the

near absence of Alewives compared with the years prior to

2004 and lower Rainbow Smelt biomass compared with the

1980s (Riley et al. 2014). Other studies of Chinook Salmon

diets in the Great Lakes have found a strong preference for

Alewives, selection against Rainbow Smelt and Bloaters, and

failure to alter foraging with changes in prey abundance

(Diana 1990; Jacobs et al. 2013). Great Lakes Chinook

Salmon have been observed to forage on Bloaters when Ale-

wives are scarce (Rybicki and Clapp 1996), but Bloaters only

represented 4% of dietary wet weight during 2009–2011 and

were consumed no more frequently than other salmonids.

Lake Trout diets during 2009–2011 differed from those

found by most other recent studies. During 1983–1986, Lake

Huron Lake Trout had a greater prevalence of Alewives in

FIGURE 6. Mean ration size (percent of body weight) of predators in Lake Huron, 2009–2011. Panel (A) shows the ration sizes for seven predator species

(Northern Pike, Splake, and Brook Trout are not shown due to their small sample sizes). Panels (B)–(D) show annual estimates of ration size for Lake Trout,

Chinook Salmon, and Walleyes. The error bars indicate the 95% confidence intervals. See Figure 2 for species abbreviations.
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their diets than Chinook Salmon, and the only other species

commonly consumed was Rainbow Smelt (Diana 1990). Like-

wise, other more recent studies in Lakes Michigan and Huron

have found heavy reliance on Alewives with secondary preda-

tion on Rainbow Smelt (Madenjian et al. 2006, 2010; Jacobs

et al. 2010). In contrast, Lake Ontario Lake Trout likely

replaced Rainbow Smelt with Round Goby between 1992 and

2008 (Mills et al. 2003; Rush et al. 2012). In our study, Rain-

bow Smelt were still important but Round Goby was 50%

more important numerically and of equal importance by

weight. Surprisingly, salmonids were encountered in about 5%

of Lake Trout and comprised almost 10% of dietary mass; we

FIGURE 7. Comparison of species composition, number of prey in stomachs, and size distributions of Alewives and Rainbow Smelt in predator stomachs

between samples taken during 2009–2011 and those obtained during 1983–1986 (Diana 1990). See Figure 2 for species abbreviations.
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also observed a wide range of other fish prey not observed in

previous studies.

The Walleye diets in our study differed from those in other

studies in the Great Lakes, which found a preference for soft-

rayed fishes, particularly clupeids and shiners (Parsons 1971;

Knight et al. 1984; Hartman and Margraf 1992, 1993). How-

ever, those studies were undertaken under conditions in which

prey biomass was high or Walleye populations were low;

Walleyes consumed spiny-rayed fishes only at times of low

prey abundance (Knight and Vondracek 1992). Our study

found that Yellow Perch made up a higher proportion of the

dietary weight for Walleyes, which is consistent with low prey

abundance. The walleye diets in our study also differed from

those collected from Saginaw Bay during 1986–1988; at that

time, Walleyes consumed predominantly clupeids and shiners

and Yellow Perch were rare in their diets (Schaeffer 1994).

Comparisons of the diets of Atlantic Salmon, Coho Salmon,

Pink Salmon, and Rainbow Trout between our study and other

studies in the Great Lakes were limited because those species

have generally been a small proportion of angler catches rela-

tive to Chinook Salmon and Lake Trout. But in prior studies

of angler-caught fish diets all four species were dominated by

Alewives or Rainbow Smelt, although Coho Salmon and Rain-

bow Trout had low numbers of invertebrates present (Diana

1990; Savitz 2009). Rand et al. (1993) found high dietary pro-

portions of insects in Rainbow Trout, but predominantly in

age-1 and age-2 fish that were likely smaller than those sam-

pled in our study. Our results differed from those of prior stud-

ies in that those four species now consume substantial

numbers of invertebrates (primarily terrestrial insects); the fre-

quency of invertebrates ranged from about 5% (Atlantic

Salmon) to 47% (Rainbow Trout) of diets, with most inverte-

brate biomass coming from terrestrial insects. The dietary

composition of prey fish also differed. Although all salmonids

consumed Alewives or Rainbow Smelt if those species were

available, we observed that other species, such as Emerald

Shiners and sticklebacks, are now of greater importance, espe-

cially for Coho Salmon and Atlantic Salmon.

Among-species comparisons of ration size were inconsis-

tent with other independent field observations, but this was

likely an artifact of dietary differences rather than among-spe-

cies differences in consumption. In particular, Chinook

Salmon had a higher ration size than most other species, yet

Chinook Salmon growth was poor under the feeding condi-

tions present during 2009–2011 (Johnson and Gonder 2013).

Ration size was calculated only from fish that had eaten mea-

surable amounts of food, and Chinook Salmon had a higher

frequency of empty stomachs than all other species but Wal-

leyes. Thus, ration size likely did not reflect overall consump-

tion. Among-year differences in ration size likely did reflect

changes in prey abundance, especially during 2011, but most

mean ration size estimates were less than 0.5%, which was

lower than the 0.5–1.3% observed in Lake Michigan Lake

Trout feeding predominantly on Alewives during 1994–1995

(Madenjian et al. 1998), when larger and preferred prey were

likely more abundant. Overall, low mean ration size estimates

are consistent with our hypothesis that prey availability was

low via a combination of reduced prey biomass and lower

availability of large (>150-mm) prey, but comparisons among

species revealed little.

Our study relied entirely on angler-caught fish that we

assumed were representative of the population. This

FIGURE 8. Prey size distributions in predator stomachs, Lake Huron, 2009–

2011. Panel (A) shows the size distribution of 8,961 measured prey fish, panel

(B) the species composition of prey size-classes. The sample sizes of the dif-

ferent size-classes are given in parentheses in the top panel but apply to both

panels.
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assumption may have been violated because angling could be

selective for actively foraging fish over a narrow depth range;

traditionally, most anglers have fished by trolling near the ther-

mocline with lures trailed behind downriggers (Diana 1990).

However, comparisons between fishery-independent and fish-

ery-dependent samples have been inconsistent. Hagar (1984)

found lower prey diversity in angled fish, Brandt (1986) found

higher diversity, and Jacobs et al. (2013) found no substantive

dietary differences between angled and gill-net-captured

Chinook Salmon. That bias, if present, might alter our esti-

mates of dietary contributions among prey types or among-

predator differences in diet composition, but it would not

change our conclusion that prey availability has changed sub-

stantially from earlier studies due to the greater importance of

invertebrates and prey species other than Alewives and Rain-

bow Smelt that were formerly rare in or absent from diets

(Diana 1990).

Temporal differences in fishing regulations may also have

influenced our results. We compared diets and prey size during

1983–1986 with those observed during 2009–2011. During

1984–1986 the Lake Trout fishery closed on August 15, but

during 2009–2011 it remained open until October. Thus, our

comparisons included fish from unequal temporal windows.

This is unlikely to have affected our conclusion that Lake

Trout have become benthic predators for two reasons: (1) in

both studies most fish were taken prior to August and (2) the

temporal dietary differences likely arose from long-term

changes between sampling periods rather than from seasonal

changes within the sampling periods. In our study Lake Trout

consumed Round Goby, which were not detected in the Great

Lakes prior to 1991 (Jude et al. 1992) and which did not

become widespread in Lake Huron until the late 1990s

(Schaeffer et al. 2005). Thus, they were not present during

Diana’s (1990) 1983–1986 study.

Angling regulations and seasonal trends influenced the

sizes and locations of fish collected by anglers. All salmon

were subject to a 254-mm minimum size limit and all Wal-

leyes to a 381-mm minimum size limit; Lake Trout were

subject to different limits depending on location (a 381-mm

minimum size limit in statistical districts MH-3, -4, and -5;

a 559-mm minimum size limit in statistical district MH-2;

and a slot length limit with a 685-mm maximum [but with a

trophy exception of one fish exceeding 813 mm] in statisti-

cal district MH-1); thus, our observations were confined to

larger legal fish and did not extend to smaller size-groups.

Furthermore, salmonids migrate north seasonally. The fish-

ery begins in southern ports during May and progresses

northward as spring and summer advance (Adlerstein et al.

2007). Thus, our seasonal and spatial comparisons were

confounded and most of our salmonid observations repre-

sented summer captures from northern Lake Huron. How-

ever, this would be unlikely to influence our conclusion that

diets had changed because Diana (1990) noted the same

pattern.

Although Chinook Salmon are generalist predators in their

native habitat, they appear to resist altering their foraging pat-

tern in response to changes in prey availability, leading Jacobs

et al. (2013) to describe them as having a dietary dependence

on Alewives. Our study supports their view of extreme Ale-

wife dependence, as Chinook Salmon continued to rely on

them despite a 95% reduction in Alewife biomass in Lake

Huron during 1994–2007 (Roseman and Riley 2009), which

was far more severe than the declines reported for Lake Michi-

gan (which strained the predator–prey relationship there;

Jacobs et al. 2013). Rainbow Smelt were also consumed but

their biomass has declined as well, and even the availability of

that alternative prey did not enable Chinook Salmon to thrive

because both their growth and abundance have declined

recently (Johnson and Gonder 2013). Conversely, other pisci-

vores showed evidence of dietary plasticity that likely contrib-

uted to their ability to thrive or at least persist.

The piscivores in Lake Huron likely suffered reductions in

prey size in addition to those in prey biomass. The unavailabil-

ity of large prey may hinder fish from maintaining growth

(Diana 1987; Mason et al. 1998), and this may have been

exacerbated in Lake Huron because few prey >150 mm were

available. Alewives have also undergone reductions in energy

density that likely required predators to eat more of them to

sustain caloric intake (Jacobs et al. 2013). The loss of large

prey may have exacerbated recent growth declines in Lake

Trout, Chinook Salmon, and Walleyes (He et al. 2008; Fielder

and Baker 2004).

All piscivores consumed some salmonids and Lake Trout

were especially cannibalistic. Overall, salmonids were as

important in Lake Trout diets as Alewives. This result was

influenced strongly by a single sampling event during 2009,

when anglers participating in a fishing tournament targeted

their effort at an offshore reef that had received a stocking sev-

eral days prior to the tournament; angler intent was to target

the adult Lake Trout that had aggregated there subsequent to

the stocking event. Nearly all of the Lake Trout in that sample

had cannibalized recently stocked conspecifics, and some prey

items were pristine enough for us to observe fin clips designat-

ing them as being of hatchery origin. However, we also

observed predation or cannibalism at other sites in each year

of the study. Our data suggest that poststocking predation is a

substantial source of mortality for juvenile salmonids and may

underlie an apparent recent decrease in the survival and har-

vest return of stocked salmonids.

Another significant change in predator diets from earlier

studies was the increase in the number and biomass of inverte-

brates eaten. They dominated Rainbow Trout diets, and all sal-

monids consumed them to some degree. In some cases

hundreds of insects were consumed by an individual, and we

often observed pollen mixed with the insect carcasses, which

suggests surface feeding. This likely occurred near thermal

bars where “scum lines” of insects and wind-borne debris

accumulate (Aultman and Haynes 1993). These areas are
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especially attractive to Rainbow Trout (Aultman and Haynes

1993), where they consume terrestrial insects (Brandt 1986).

Our study was similar to those by Brandt (1986) and Rand

et al. (1993) in that we also observed feeding on terrestrial

insects (primarily ants and beetles) but differed in that the

insect consumption in our study occurred later in the summer

and by larger fish. Insects may represent an unrecognized ter-

restrial subsidy that could support higher predator biomass

than would be predicted by previous food web models (Francis

and Schindler 2009). However, the single whole-system study

that we found suggests that insect subsidies in lakes represent

only a small fraction of nutrient inputs (Mehner et al. 2005).

High insect abundance in diets could also have been an artifact

of anglers’ concentrating their effort in relatively small areas

of Lake Huron where insect fall occurred; scum lines are likely

targeted by anglers because they represent the only visible sur-

face feature in open water and most anglers are aware of their

ability to concentrate Rainbow Trout. Nevertheless, the high

consumption of insects appears to be a relatively recent phe-

nomenon because most prior studies found few or no inverte-

brates in diets, especially for larger fish. The role of insect

subsidies remains to be explored, but it could be important

under current conditions.

Our results suggest that the piscivores we examined during

2009–2011 experienced chronic prey limitation. It is difficult

to imagine how piscivore biomass could be enhanced under

current conditions, and maintaining a large or thriving

Chinook Salmon fishery in Lake Huron may be problematic in

the absence of Alewives. In contrast, management strategies

for other salmonids and Walleyes may be more successful

because those species appear to be better able to take advan-

tage of the existing prey base. The problem of cannibalism or

predation on juvenile salmonids remains; thus, managers may

also need to consider strategies to reduce the vulnerability of

stocked fish. These may include multiple approaches, such as

rearing to larger sizes, acclimation, selection of stocking sites

that minimize predation, and the use of pulse-stocking to over-

whelm predator response. Additionally, Walleye predation on

Yellow Perch may be severe enough to limit Yellow Perch

recruitment (Hartman and Margraf 1993; Fielder and Thomas

2014). The management of all piscivores in Lake Huron will

likely require consideration of the pervasive effects of food

web changes, especially if Alewives remain scarce.
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