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Abstract.—Traditionally, fish habitat requirements have been described from local-scale environmental

variables. However, recent studies have shown that studying landscape-scale processes improves our

understanding of what drives species assemblages and distribution patterns across the landscape. Our goal was

to learn more about constraints on the distribution of Michigan stream fish by examining landscape-scale

habitat variables. We used classification trees and landscape-scale habitat variables to create and validate

presence–absence models and relative abundance models for Michigan stream fishes. We developed 93

presence–absence models that on average were 72% correct in making predictions for an independent data set,

and we developed 46 relative abundance models that were 76% correct in making predictions for independent

data. The models were used to create statewide predictive distribution and abundance maps that have the

potential to be used for a variety of conservation and scientific purposes.

Environmental complexity and species interactions

make it difficult to learn the exact abiotic habitat

constraints on a population. Researchers commonly use

statistical models for this by searching for patterns

between species occurrences or abundances and the

environmental characteristics of sampled locations.

These models are used for two important purposes:

(1) to formulate and test hypotheses about the factors

and processes that exert important effects on organisms

and (2) to make predictions of species distributions and

abundances for use in management and conservation

decisions.

Traditionally, fish habitat requirements have been

described from site- or local-scale environmental

variables (Fausch et al. 1988). Habitat variables

measured at this scale are useful to managers because

small-scale habitat can be manipulated (Fausch et al.

1988; Vaughan and Ormerod 2003). Local-scale

variables, such as cover and substrate, are measured

on short river reaches and affect food, refuge habitat,

spawning habitat, and ultimately fish abundance. Three

well-known modeling approaches—the U.S. habitat

suitability index, river invertebrate prediction and

classification system, and Australian rivers assessment

scheme—are based on local-scale environmental

variables (Seelbach et al. 2002).

Modeling at a site-scale level is generally expensive,

and in some cases it is impossible to measure site

attributes everywhere within a study region (Seelbach

et al. 2002). Beyond this practical concern, an

important tenet of ecology states that ‘‘different

processes are likely to be important on different

scales’’(Levin 1992); researchers may be completely

unaware of important large-scale processes that impact

fish if only site-scale habitat data are studied (Wiley et

al. 1997; Fausch et al. 2002; Allan 2004).

In the past 15 years, the advent of powerful

geographical information systems (GIS) tools has

made it possible to study spatial variation in fish

distributions and abundance from a larger landscape

perspective and to incorporate habitat attributes

measured at larger spatial scales. Modeling based on

GIS uses a variety of large-scale, map-based variables
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(e.g., geology and climate) that influence an aquatic

system’s hydrological and thermal characteristics

(Wiley et al. 1997). Modeling at this scale often

incorporates land use patterns as well, because they

influence amounts and rates at which sediment,

pollutants, and water are delivered to the system

(Schlosser 1991).

Fish species are clearly influenced by processes that

operate on larger spatial scales and slower temporal

scales than those measured locally (Richards et al.

1996; Leftwich et al. 1997; Rathert et al. 1999; Allan

2004). Although fish are responding mechanistically to

what is happening in their immediate surroundings,

those local-scale factors are directly caused by the

larger landscape. For example, although stream

temperature is measured at a specific location, it is

controlled by a combination of local- and landscape-

scale processes (Wehrly et al. 2003, 2006). Also, a

stream’s hydrologic flow regime, which is crucial for

fish communities, is driven by factors measured at a

catchment scale (Poff et al. 1997).

Models based on landscape-scale processes are

becoming more common. Wiley et al. (1997) produced

trout population density models using only landscape-

scale variables, whereas Zorn et al. (1998) used

catchment area and low-flow yield as key variables in

predicting fish assemblages in Michigan. Zorn et al.

(2004) also used landscape-scale variables with

multiple linear regression to predict fish assemblages.

Close associations have also been recognized between

fish assemblages and hydrologic variability, watershed

size, gradient, and percent forest cover (Poff and Allan

1995; Maret et al. 1997).

In addition to providing understanding into process-

es that drive the fish distributions, there are many other

reasons to develop models that study the relationship of

landscape-scale environmental variables and fish

populations. Such models provide insight to how

aquatic ecological systems function, predict potential

population sites, and identify areas for population

restoration (Fausch et al. 1988; Maret et al. 1997;

Wiley et al. 1997; Olden 2001; Olden and Jackson

2002). This is especially important for Michigan stream

fish communities. Michigan possesses a diverse array

of streams ranging from nationally renowned trout

fisheries to diverse warmwater and coolwater commu-

nities that support recreational angling for a variety of

game species. In addition, maintaining the diversity of

nongame stream fishes is an important conservation

goal. Both fisheries managers and nongame biologists

need further understanding of the processes that

regulate stream fish communities within the state.

However, accumulation of broad knowledge about

Michigan stream communities has been hindered

because although historical fish data are plentiful, a

relatively small percentage of stream reaches has been

sampled.

In this study, our goal was to learn more about large-

scale factors that influence the distribution of Michigan

stream fish. To do this, we used landscape-scale habitat

variables and three sources of data on Michigan fish

distributions to create and validate models that

predicted presence–absence (PA) and relative abun-

dance (RA) of Michigan fishes. Specific objectives

were to (1) build classification tree models for

Michigan stream fish, (2) assess each model for

validity using an independent data set, (3) describe

the general structure and behavior of the models, (4)

understand patterns in model error and model limita-

tions, and (5) use the models to describe relationships

between fish communities and landscape-scale habitat

variables.

Methods

Habitat variables.—Data for predictor variables

used in this study were obtained through the combined

efforts of the Great Lakes Aquatic Gap Analysis

Program (GLGAP; GLSC 2006) and the Classification

and Impairment Assessment of Upper Midwest Rivers

(CIAUMR; Brenden et al. 2006; UM 2006). These

groups have established a high-resolution, GIS-linked

database containing characteristics of Michigan’s

rivers. The database was referenced to a group of

ArcGIS line coverages (Environmental Systems Re-

search Institute [ESRI], Inc., Redlands, California) in

which each river was divided into interconfluence

reaches. Line coverages were based on the U.S.

Geological Survey’s National Hydrography Dataset

(USGS 2006) at the 1:100,000 scale but were updated

to provide more accurate representation of Michigan

rivers (Brenden et al. 2006). The database describes

31,817 Michigan stream reaches (86,983 km of stream

length) and includes information on a wide variety of

landscape-scale environmental variables for each

stream reach, such as soil permeability, land cover,

stream position, bedrock and surficial geology, mod-

eled water temperature, climate data, modeled exceed-

ence flows, and modeled phosphorus (Brenden et al.

2006).

The database contained approximately 320 variables

for each stream reach; we chose to combine some and

remove others, resulting in a list of 23 variables that we

hypothesized to have the most direct mechanistic

relationships to fish distributions (Table 1). Reducing

the number of predictors was essential for reducing

collinearity between variables, improving model inter-

pretability, and reducing probability of spurious

correlations. Not all correlated variables were removed;
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for example, it was important to retain the different

types of land use and land cover because these

variables are important for managers as examples of

landscape-scale variables that can be manipulated.

Choosing these variables was a key step in the

modeling process, and our decision was based on past

work on Michigan fish (Zorn et al. 2004) as well as

preliminary classification trees in which we included

all possible variables. The variables that we retained

and their importance for fish distribution and abun-

dance are discussed in the next several paragraphs.

Water temperature has important effects on growth

and survival of fish and affects dissolved oxygen levels

(Smale and Rabeni 1995; Wehrly et al. 2003, 2006;

Bailey and Alanara 2006; Rand et al. 2006). Because

water temperature data were not available for every

stream reach, a temperature model was developed to

make predictions of mean July stream temperature. In

addition to water temperature, we also used mean

annual air temperature, which reasonably approximates

groundwater temperature and thus water temperature

during base flow conditions.

Of the different types of land use data available, we

used percent of forest, wetlands, agriculture, and

urbanization on two scales: a 120-m (60 m on each

side of the stream) riparian network stream buffer for

the stream reach of interest and all streams upstream,

and the total catchment area (km2) of the stream reach.

The riparian area of a stream is an important indicator

of erosion control, pollution filtering capacity, shading,

and woody debris potential, whereas land use of the

entire catchment area has important effects on water

chemistry and stream hydrology (Wang et al. 1997,

2003; Snyder et al. 2003).

Surficial geology has impacts on water chemistry and

hydrology (Bent 1971). We obtained surficial geology

data from 1:250,000-scale maps. We calculated the area

consisting of coarse-textured geological configurations

(outwash, coarse textured end moraine and till,

lacustrine sand and gravel, dune sand) for the watershed

TABLE 1.—List of habitat and land use stressor variables used in the creation of presence–absence and relative abundance

models for predicting distributions of Michigan stream fishes. The descriptive statistics summarize the entire Michigan stream

population as described by the database constructed by the Gap Analysis Program and the Classification and Impairment

Assessment of Upper Midwest Rivers.

Variable code Variable description Minimum Maximum Mean SD

Temperature

WATER_TEMP Water temperature (8C), predicted July mean 12.3 26.2 19.5 3.0
WT_MAAT Mean annual air temperature (8C) 3.7 9.8 7.3 1.7

Position in catchment

CATCHAREA Area of the watershed (km2) 0.72 14,103.5 721.0 1,680.6

Connectivity

UP_POND Distance (m) upstream to closest pond �5 acres 0 57,566.4 8,948.0 10,580.0
DOWN_POND Distance (m) downstream to closest pond �10 acres

or one of the Great Lakes 0 195,470.1 29,732.2 35,989.0
LINKDCATCH Distance (m) from downstream reach with �10%

catchment area than target reach 0 58,851.0 2,871.0 7,115.2
DOWN_LENGTH Distance (m) from downstream end of reach

to one of the Great Lakes 0 130,093.1 31,886.8 31,417.6

Geology and hydrology

WT_FINE Fine-grain surficial geology (% of watershed) 0 1 0.11 0.22
WT_COARSE Coarse-grain surficial geology (% of watershed) 0 1 0.65 0.36
TEN_YIELD 10% exceedence flow yield (m3/s/km2) 0.0075 0.0416 0.0186 0.0037
NINETY_YIELD 90% exceedence flow yield (m3/s/km2) 0.0001 0.0264 0.0039 0.0031
GRADIENT Channel gradient 0 0.0288 0.0026 0.0038
TEN_POWER High-flow-based specific power (m3/s/km2) 0 0.0073 0.0005 0.0008
NINETY_POWER Summer-flow-based specific power (m3/s/km2) 0 0.0021 0.0001 0.0002

Land use

WT_FOREST Forest land cover (% of watershed) 0.02 0.95 0.41 0.24
WT_WETLAND Wetland land cover (% of watershed) 0 0.56 0.15 0.08
WT_AGR Agricultural land use (% of watershed) 0 0.95 0.28 0.25
WT_URBAN Urban land use (% of watershed) 0 0.64 0.05 0.07
RT_FOREST Forest land cover (% of riparian network) 0.02 0.90 0.28 0.16
RT_WETLAND Wetland land cover (% of riparian network) 0.01 0.94 0.37 0.17
RT_AGR Agricultural land use (% of riparian network) 0 0.94 0.17 0.20
RT_URBAN Urban land use (% of riparian network) 0 0.56 0.04 0.06

Water quality

TOTAL_P_PPM Total phosphorus, predicted (mg/L) 0.01 0.25 0.05 0.04
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of each stream reach and divided this area by total

watershed area to produce the percent of coarse surficial

geology in the watershed. This was also done with fine-

textured surficial configurations (fine-textured till, fine-

textured end-moraine, and lacustrine clay and silt).

Several habitat variables were built from GIS-

obtained information to serve as surrogates for site-

scale habitat features that are important in shaping fish

communities (Table 1). The 90% exceedence flow

yield (exceedence flow/catchment area), which indi-

cates the relative contribution of groundwater, served

as a replacement for velocity at base flow; specific

stream power at 90% exceedence flow (10 3 90%
exceedence flow 3 gradient/catchment area) can

indicate a stream’s substrate (e.g., a high stream power

indicates scouring of fine sediment from the channel

bed). The 10% exceedence flow is a measure of a

stream’s peak flow that can limit recruitment and

abundance of the fish population, and specific stream

power at 10% exceedence flow is a measure of the

stream’s maximum erosive force and sediment trans-

port capability. All flow estimates were standardized as

yields by dividing values by catchment area.

Phosphorus is an essential nutrient that can limit

productivity in aquatic systems (Vanni 1987; Vanni et

al. 1997; Zorn et al. 2003). Because total phosphorus

measurements were not available for every Michigan

stream reach, we predicted it using a multiple

regression equation based on 1985–1992 Michigan

Rivers Inventory (MRI) phosphorus measurements and

the other variables in Table 1:

logeðtotal PÞ ¼ �6:996

þ ðpercent of agriculture in watershed

3 1:497Þ
þ ½logeðstream power at

90% exceedence flowÞ
3�0:222�

þ ð10% exceedence flow yield

3 59:977Þ;

where N ¼ 172, P , 0.001, and adjusted R2 ¼ 0.54

(Seelbach and Wiley 1997).

There were several measured connectivity variables

that take advantage of the stream connection properties

inherent to NHD (Brenden et al. 2006). Variables built

from these analyses include distance from the stream to

one of the Great Lakes and distance from the stream to

upstream and downstream lakes and ponds. Streams

reaches that were disconnected from the Great Lakes

by dams or waterfalls were noted. We expected these

variables to be important for lake fish species that

migrate into streams for certain portions of their life

cycle (e.g., Chinook salmon Oncorhynchus tshawyt-

scha) or fish that live in both lakes and rivers (e.g.,

most centrarchids). Also, the variable LINKDCATCH

was created to measure the distance from the stream

reach of interest to the closest downstream reach in a

stream with a 10% greater catchment area than that of

the stream of interest. This distance might prove useful

for explaining occurrences of large-river fish in small

tributaries or small-stream fish in nearby larger rivers.

Fish distribution.—We used three fish databases to

create and validate the models. The MRI data set

contains fish samples obtained during the 1980s and

1990s. The samples cover the geographic extent of

Michigan but do have a bias against larger, non-

wadeable rivers and Upper Peninsula rivers (Seelbach

and Wiley 1997). We compiled fish counts (1980–2002)

from the Fish Collection System (FCS) of the Michigan

Department of Natural Resources’ Fisheries Division.

These records were collected with a wide variety of

catch techniques, including electrofishing, rotenone,

and seining. Given the poor catch efficiency of seining

methods, we only recorded the presence of fish caught

by seining and did not consider missing species as

absent. We also used the Michigan Fish Atlas created by

the University of Michigan’s Museum of Zoology

(Bailey et al. 2000). This database has Michigan fish

occurrence records that date back to the mid-19th

century. However, to match the time frame of the MRI

and FCS data, we only used data from collections made

during 1980–2000. These records were also collected

with a wide variety of catch techniques and provide

good spatial coverage of the state.

For all three data sets, we deleted replicate samples

so that a stream reach was represented by only one

sampling effort. When different samples for the same

reach disagreed on species presence or abundance, we

kept the observation that indicated presence or higher

abundance. This method assumed that the stream reach

has the potential to hold the higher amount of fish and

that lower fish counts were due to disturbance

unrelated to the habitat factors.

Presence–absence modeling procedure.—In a pre-

vious study, we modeled brook trout Salvelinus
fontinalis with several different analytical techniques

and determined that a classification tree method was

successful for modeling with landscape-scale data

(Steen et al. 2006). An explanation of classification

trees has been provided by previous authors (Breiman

et al. 1984; Bell 1999; De’ath and Fabricius 2000;

Vayssieres et al. 2000; De’ath 2002; Holland et al.

2005; Taverna et al. 2005; Baker et al. 2006; Usio et al.

2006).

We decided to use classification trees to develop the

models for all common species of Michigan stream

fish. We created a species-specific PA classification
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TABLE 2.—List of Michigan fish species that were modeled

to determine distributions based on presence–absence (PA)

and relative abundance (RA). Numbers refer to each species

occurrence in the PA and RA training data (Michigan Rivers

Inventory [MRI]; numbers with asterisks are from MRI and

Michigan Fish Atlas). Species with insufficient data for

modeling are not listed.

Species PA RA

Amiidae

Bowfin Amia calva 77*

Aphredoderidae

Pirate perch Aphredoderus sayanus 32 24

Antherinopsidae

Brook silverside Labidesthes sicculus 58*

Catostomidae

Quillback Carpiodes cyprinus 72*
Longnose sucker Catostomus catostomus 41
White sucker Catostomus commersonii 375 277
Creek chubsucker Erimyzon oblongus 39
Lake chubsucker Erimyzon sucetta 57*
Northern hog sucker Hypentelium nigricans 182 109
Spotted sucker Minytrema melanops 67*
Silver redhorse Moxostoma anisurum 31 34
River redhorse Moxostoma carinatum 25*
Black redhorse Moxostoma duquesnei 36
Golden redhorse Moxostoma erythrurum 111 82
Shorthead redhorse Moxostoma macrolepidotum 56 24
Greater redhorse Moxostoma valenciennesi 35 38

Centrarchidae

Rock bass Ambloplites rupestris 243 161
Green sunfish Lepomis cyanellus 200 128
Pumpkinseed Lepomis gibbosus 197 124
Warmouth Lepomis gulosus 97*
Orangespotted sunfish Lepomis humilis 61*
Bluegill Lepomis macrochirus 284 99
Longear sunfish Lepomis peltastes 40
Smallmouth bass Micropterus dolomieu 157 89
Largemouth bass Micropterus salmoides 180 96
White crappie Pomoxis annularis 29*
Black crappie Pomoxis nigromaculatus 85 110

Cobitidae

Oriental weatherfish Misgurnus anguillicaudatus 29*

Cottidae

Mottled sculpin Cottus bairdii 83 172
Slimy sculpin Cottus cognatus 60 61

Cyprinidae

Central stoneroller Campostoma anomalum 87 72
Redside dace Clinostomus elongatus 45*
Lake chub Couesius plumbeus 43*
Spotfin shiner Cyprinella spiloptera 68 39
Common carp Cyprinus carpio 150 76
Brassy minnow Hybognathus hankinsoni 77*
Striped shiner Luxilus chrysocephalus 71*
Common shiner Luxilus cornutus 263 203
Redfin shiner Lythrurus umbratilis 71* 37
Northern pearl dace Margariscus margarita 91
Hornyhead chub Nocomis biguttatus 142 92
River chub Nocomis micropogon 41
Golden shiner Notemigonus crysoleucas 46 32
Emerald shiner Notropis atherinoides 38*
Blacknose shiner Notropis heterolepis 58
Rosyface shiner Notropis rubellus 59 50
Sand shiner Notropis stramineus 39
Mimic shiner Notropis volucellus 31

TABLE 2.—Continued.

Species PA RA

Northern redbelly dace Phoxinus eos 51

Finescale dace Phoxinus neogaeus 37*

Bluntnose minnow Pimephales notatus 235 177

Fathead minnow Pimephales promelas 49

Longnose dace Rhinicthys cataractae 74 69

Western blacknose dace R. obtusus 202 144

Creek chub Semotilus atromaculatus 332 243

Esocidae

Redfin pickerel Esox americanus 81 28

Northern pike Esox lucius 168 182

Muskellunge Esox masquinongy 73*

Fundulidae

Banded killifish Fundulus diaphanous 57*

Blackstripe topminnow F. notatus 48*

Gadidae

Burbot Lota lota 54

Gasterosteidae

Brook stickleback Culea inconstans 81 63

Ictaluridae

Black bullhead Ameiurus melas 74 55

Yellow bullhead Ameiurus natalis 135 78

Brown bullhead Ameiurus nebulosus 74* 34

Channel catfish Ictalurus punctatus 51 26

Stonecat Noturus flavus 118 76

Tadpole madtom Noturus gyrinus 35 44

Lepisosteidae

Longnose gar Lepisosteus osseus 25*

Moronidae

White perch Morone americana 32*

White bass Morone chrysops 30*

Percidae

Eastern sand darter Ammocrypta pellucida 30*

Greenside darter Etheostoma blennioides 35

Rainbow darter Etheostoma caeruleum 151 95

Iowa darter Etheostoma exile 133*

Least darter Etheostoma microperca 83*

Johnny darter Etheostoma nigrum 289 208

Yellow perch Perca flavescens 101 65

Northern logperch Percina caprodes 92 69

Blackside darter Percina maculata 212 156

Walleye Sander vitreus 53

Petromyzontidae

Chestnut lamprey Ichthyomyzon castaneus 37

Northern brook lamprey Ichthyomyzon fossor 63

Silver lamprey Ichthyomyzon unicuspis 29*

American brook lamprey Lampetra appendix 53

Sea lamprey Petromyzon marinus 131

Sciaenidae

Freshwater drum Aplodinotus grunniens 50*

Salmonidae

Coho salmon Oncorhynchus kisutch 37*
Rainbow trout O. mykiss 128 109
Chinook salmon O. tshawytscha 45*
Brown trout Salmo trutta 196 159
Brook trout Salvelinus fontinalis 186 165

Umbridae

Central mudminnow Umbra limi 259 179
Number of species 93 46
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tree model for each of the 93 fish species that had more

than 25 occurrences in our training data set (Table 2).

We used the MRI data set as our training data set

because it had higher sample sizes for most of the

nongame fishes than did the FCS data set, which we

used as our testing data. For 11 species, either the

number of occurrences in the FCS data were low (,3)

or the identifications of the fish were suspect. For these

species, we withheld 20% of the MRI data from

training to serve as a test data set (Table 3). We used

the Michigan Fish Atlas data (Bailey et al. 2000) as a

supplemental training database; if the MRI data did not

contain at least 25 species occurrences, we added

Michigan Fish Atlas data to the MRI data for model

training purposes.

After the training data for a given species were

pruned down through the procedures above, they were

entered into Classification and Regression Trees

version 5.0 (Steinberg and Colla 1997). This program

produced a series of differently sized classification

trees, each with a different misclassification rate for

both the training data and an independent data set

created from cross validation of the training data. Next,

we selected the tree that minimized error in both the

training and cross validation data sets. If a tree was

greater than seven terminal nodes but had a lower error

rate than a smaller tree, we selected the smaller tree

despite its higher error rate. We believed that as the

number of terminal nodes increased beyond seven,

interpretation of a tree would become more difficult

and such trees would contain more spurious variable

splits. This decision represents our desire to have trees

that are accurate yet easy to interpret. Certainly, this is

not an objective decision, but it reflects our judgment

and preference.

Using this tree as a starting point, we determined

whether the variable splits in the tree could possess

ecological meaning. Splits that lacked ecological

meaning were those created at an unreasonable value

(e.g., the most common spurious split was a percent

land use split of ,1%). Because it was unlikely that

these values had any significance for fish distribution,

we removed these variables from the analysis and

recreated the tree to develop a better model. If there

were no spurious variable splits, we accepted the tree

as the final PA model. Figure 1 gives an example of a

final PA model for the brown bullhead.

The FCS test data set was applied to the final model

to get a benchmark of the model’s accuracy by

estimating the percentage of observations predicted

correctly. In addition, we calculated the true skill

statistic (TSS) for the FCS data. The TSS and its

predecessor, Cohen’s kappa, are relatively new ways to

measure the accuracy of PA models and address the

problem reported by Fielding and Bell (1997) of

inflated accuracy ratings for rare species. The TSS is a

PA assessment score that accounts for errors and

success via random guessing; it ranges from �1 to 1,

where 1 indicates perfect prediction and values of�1 to

0 indicate that prediction success is worse than the

success attained by random guessing (Allouche et al.

2006). However, we primarily examined the percent-

age accuracy rating rather than TSS because percent

accuracy is more intuitive than TSS and creates more

interesting and more easily understood results. In

addition, results indicated that TSS consistently

underestimated the value of models with a large

discrepancy between the number of observations

indicating presence and the number indicating absence.

Presence–absence model error.—We identified sites

from the FCS test data set that had misclassified fish

predictions—in other words, sites where predicted PA

did not match the observation. These types of errors are

usually described as false positive (predicted present

when observed absent) and false negative (predicted

absent when observed present). For example, when a

FCS sampling site had 10 false positive errors, this

meant that 10 fish species were predicted to be present

in the stream but were not observed there.

We examined the correlation matrix of false positive

and false negative errors for a site and the habitat

values for the stream reach where the sampling site was

located. We did this to determine whether there were

any patterns between model error and the habitat

variables; such patterns can indicate whether streams

with particular habitat tend to have more- or less-

accurate models. To prevent the models that performed

poorly from interfering with these results, we only

looked at PA models with a TSS value greater than 0

and an accuracy of at least 60% (in both absence and

presence) in making predictions for the test data set.

Relative abundance modeling procedure.—For the

RA models, we selected MRI data obtained from two-

pass electrofishing depletion samples and converted the

fish counts to estimated catch per hectare. The FCS

data set and Michigan Fish Atlas data set were not used

in RA modeling.

We built the RA models on an individual species

basis. For each species with 25 or more occurrences in

the MRI data, we divided fish density estimates into

three logarithmic-scale categories: low (1–10 fish/ha),

medium (11–100 fish/ha), and high (.100 fish/ha). We

also tried dividing density estimates into categories by

equal interval and by natural breaks. However, the

models performed the same or worse using these

category breaks, so for simplicity we used the

logarithmic scale, so that each fish species had the

same abundance categories.
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TABLE 3.—Sample size and percent correct agreement between predicted presence–absence (PA) values and observed values

in a test data set for each PA model used to predict Michigan stream fish distributions. The list is sorted by the average of

accuracy for percent present and percent absent (average accuracy); average accuracy does not consider differences in number

between percent present and percent absent. The true skill statistic (TSS) for each PA model is also shown.

Species

Present Absent
Average
accuracy TSSNumber Percent Number Percent

Black redhorse 12 91.7 788 94.9 93.3 0.21
White perch 27 100.0 781 81.3 90.7 0.16
Channel catfish 54 81.5 760 98.0 89.8 0.73
Greenside dartera 8 100.0 72 79.2 89.6 0.35
Greater redhorse 13 84.6 801 93.3 89.0 0.17
Redfin shiner 21 95.2 803 82.6 88.9 0.12
Golden redhorse 47 83.0 780 94.0 88.5 0.44
Silver redhorse 11 81.8 802 94.3 88.1 0.16
White bass 19 94.7 793 79.3 87.0 0.10
Rosyface shinera 15 100.0 84 71.4 85.7 0.38
Lake chub 3 100.0 803 70.0 85.0 0.01
Chinook salmon 60 88.3 786 80.2 84.3 0.24
Spotfin shiner 49 75.5 781 92.8 84.2 0.38
Mimic shiner 17 88.2 786 78.2 83.2 0.08
Blackstripe topminnowa 12 91.7 104 74.0 82.8 0.28
Walleye 149 71.8 698 93.0 82.4 0.63
Sea lamprey 4 100.0 801 64.7 82.3 0.01
River chub 24 70.8 800 93.0 81.9 0.22
Common carp 156 84.6 723 76.1 80.4 0.39
Emerald shiner 24 70.8 796 89.7 80.3 0.16
Tadpole madtom 22 72.7 802 87.4 80.1 0.13
Sand shiner 22 72.7 785 86.6 79.7 0.12
Black crappie 85 72.9 751 86.0 79.5 0.34
Stonecat 81 66.7 758 92.1 79.4 0.44
Yellow bullhead 97 78.4 745 78.9 78.6 0.29
Pirate perch 26 76.9 780 79.7 78.3 0.10
Slimy sculpin 28 85.7 775 70.3 78.0 0.09
Spotted sucker 12 91.7 801 63.8 77.7 0.03
Brook trout 504 75.6 586 79.7 77.7 0.55
Shorthead redhorse 30 63.3 781 90.0 76.7 0.18
Mottled sculpina 15 80.0 51 72.5 76.3 0.39
White crappie 12 75.0 789 76.4 75.7 0.04
Brook silverside 7 85.7 787 65.6 75.7 0.02
Central stoneroller 105 73.3 731 77.2 75.2 0.27
Muskellunge 53 84.9 739 64.4 74.7 0.13
Rock bass 302 73.8 663 75.4 74.6 0.44
Northern pike 251 61.8 667 87.4 74.6 0.51
Coho salmon 75 72.0 763 76.0 74.0 0.19
Longnose sucker 7 85.7 802 62.2 74.0 0.02
River redhorse 3 66.7 788 81.2 74.0 0.01
Fathead minnow 37 83.8 777 63.4 73.6 0.09
Smallmouth bass 185 61.6 721 85.0 73.3 0.41
Longnose gar 11 63.6 800 83.0 73.3 0.04
Quillback 180 61.1 794 84.9 73.0 0.38
Chestnut lamprey 5 60.0 802 85.8 72.9 0.02
Redfin pickerel 101 66.3 694 78.7 72.5 0.25
Northern logperch 104 63.5 746 80.6 72.1 0.25
Longnose dace 134 67.2 717 76.7 72.0 0.28
Brassy minnow 5 80.0 801 63.5 71.8 0.01
Green sunfish 357 77.0 592 66.4 71.7 0.41
Striped shinera 18 61.1 101 81.8 71.5 0.30
Yellow perch 221 61.9 650 80.2 71.0 0.38
Northern hog sucker 99 68.7 699 73.2 70.9 0.21
Finescale dacea 10 60.0 104 81.7 70.9 0.19
Largemouth bass 275 61.1 630 80.5 70.8 0.40
Creek chub 401 75.1 398 64.6 69.8 0.40
Bluntnose minnow 235 70.6 685 68.9 69.8 0.31
Common shiner 353 68.3 621 71.0 69.7 0.37
Brook stickleback 117 75.2 718 63.9 69.6 0.19
Oriental weatherfisha 8 75.0 103 64.1 69.6 0.11
Orangespotted sunfisha 15 66.7 106 70.8 68.7 0.18
Rainbow trout 363 67.8 783 68.3 68.0 0.32
Johnny darter 271 72.7 519 63.2 67.9 0.32
Warmouth 22 72.7 776 63.1 67.9 0.04
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To build the trees, we followed the same steps used

in the PA models, except that we used three density

categories instead of PA categories. Because the only

density data available were from the MRI data set, we

withheld 20% of the MRI sample for model validation.

Several fish had greater than 25 samples but too few

fish in a category to allow for withholding of a 20%
validation sample (e.g., 2 observations in the low

density category, 4 in medium, and 30 in high). In

these cases, we used the 10-fold cross validation

procedure of Steinberg and Colla (1997) to assess

model performance. In this cross validation process,

one-tenth of the data is held back, and the rest of the

data is used to create the tree; error estimates are made

for the withheld data. This is repeated until all the data

have been withheld and tested, and the final testing

accuracy is determined from the combination of all

data subsamples.

If an RA model had an accuracy worse than random

(i.e., ,33.3% for any category) when applied to the

test data or when used in cross validation, we created a

two-category classification tree for that species. For

such models, we dropped the medium density category

so that the species was only predicted at a low and high

RA. This also involved dropping the training data for

the medium category and making the assumption that

in the real world, fish density does not fall within this

range. This resulted in models that were simpler and

more removed from reality than the three-category

models, but we think this was necessary to build RA

models with good accuracy levels for these species.

Model analysis and predictions.—The most impor-

tant variables predicting PA or RA for all species were

determined by counting the number of times each

variable occurred in the model set. We then more

closely examined how the top-five variables were split

in the trees to determine whether any overall patterns

were caused by these variables. To prevent the poorly

performing models from interfering with these results,

we only looked at PA models or two-category RA

models that had at least 60% accuracy in one or both

categories (absence or presence; low or high density)

when applied to the test data set. To include a PA

model in the analysis, we also required the model to

have a TSS greater than 0.

For every species, we applied the PA model to

every stream reach in Michigan. For species with an

RA model, we applied the model to every stream in

which the species was predicted as present, and we

combined the two models to produce predictions with

TABLE 3.—Continued.

Species

Present Absent
Average
accuracy TSSNumber Percent Number Percent

Rainbow darter 98 60.2 693 75.6 67.9 0.19
Black bullhead 78 65.4 762 70.1 67.8 0.13
Pumpkinseed 116 66.4 676 69.1 67.7 0.19
Brown trout 711 70.0 531 65.3 67.7 0.35
Hornyhead chub 137 73.7 737 61.3 67.5 0.19
Iowa darter 10 70.0 800 62.3 66.1 0.02
Brown bullhead 33 60.6 777 71.6 66.1 0.06
Redside dace 5 60.0 803 71.9 65.9 0.01
Northern redbelly dace 46 69.6 763 61.9 65.7 0.07
Burbot 98 53.0 752 77.7 65.4 0.16
Lake chubsucker 5 60.0 786 70.4 65.2 0.01
Central mudminnow 481 69.0 514 61.1 65.1 0.30
Blackside darter 259 60.2 669 69.7 65.0 0.25
Golden shiner 18 61.1 775 68.1 64.6 0.03
Bluegill 284 60.2 641 68.6 64.4 0.25
White sucker 761 66.8 379 60.7 63.7 0.25
Least darter 5 60.0 785 64.1 62.0 0.01
Bowfin 24 62.5 782 61.5 62.0 0.03
Silver lampreya 10 60.0 90 63.3 61.7 0.09
Banded killifish 14 71.4 105 51.4 61.4 0.09
Longear sunfish 8 50.0 783 71.6 60.8 0.01
Northern pearl dace 16 62.5 795 52.6 57.5 0.01
Western blacknose dace 464 85.6 514 24.1 54.9 0.15
Northern brook lamprey 19 31.6 796 77.6 54.6 0.01
American brook lamprey 8 25.0 799 84.0 54.5 0.01
Creek chubsucker 14 14.3 781 84.6 49.5 0.00
Freshwater drum 33 36.4 781 62.5 49.5 0.00
Eastern sand darter 8 37.5 106 59.4 48.5 �0.01
Blacknose shiner 17 17.6 796 56.9 37.3 �0.02

a Of the MRI data, 20% was withheld to serve as a test data set.
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three or four categories: fish absence, low RA,

medium RA (when available), and high RA. The

predictions were joined to the updated 1:100,000-scale

NHD in the GIS to produce a statewide distribution

map for each fish.

Results

Presence–Absence Models

We developed PA models for 93 Michigan stream

fish (Table 2). Despite the addition of the Michigan

Fish Atlas data, we did not have enough data (,25

occurrences) to create PA models for 52 of the 145 fish

species found in Michigan (Bailey and Smith 2002).

However, although 18 of these species are found in

streams, 34 are primarily or exclusively lake species

and our samples did not include lakes.

Each PA model had two measurements of percent

accuracy in making predictions for the test data:

percent correctly predicted presences and percent

correctly predicted absences. The mean of these two

scores provided an accuracy measurement (hereafter,

average accuracy) that we used to compare individual

species models.

For all 93 PA models combined, we predicted 72%

of the test data observations correctly; 44% of the

models had an average accuracy of 65–75%, including

FIGURE 1.—Classification tree of a presence–absence model used for predicting the distribution of brown bullheads in

Michigan streams. Variable codes are described in Table 1. An observation less than or equal to the split value (given in each

box) is sent to the lower left node; otherwise, it goes to the lower right node. The terminal node indicates the final classification

of the observation. Terminal nodes 2 and 6 indicate how the classification tree dealt with uneven sample sizes for presence and

absence; even though they had more absence observations than presence observations, these nodes were classified as indicating

presence because they contained the majority of the presence observations from the previous variable split.
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models for the rock bass, northern pike, smallmouth

bass, and yellow perch (Table 3; Figure 2). Four

species models (creek chubsucker, freshwater drum,

eastern sand darter, and blacknose shiner) had

predictions that were worse than random (average

accuracy , 50%). However, 21% of PA models had an

average accuracy greater than 80%, including models

for the greenside darter, redfin shiner, and white perch.

Fish species associated with big, slow rivers were

modeled particularly well. Models for four redhorse

species (black, greater, golden, and silver redhorses)

had an average accuracy greater than 88%, and models

for two others were nearly as accurate (river redhorse:

74.0%; shorthead redhorse: 76.7%). The channel

catfish model had an average accuracy of 89.8%, and

the common carp model had an average accuracy of

80.4%. Although coldwater species were not modeled

as accurately as the redhorse species, brook trout, slimy

sculpin, mottled sculpin, Chinook salmon, and coho

salmon models all had average accuracies of about

75%.

We recorded the frequency of each habitat variable

included in PA models with an average accuracy

greater than 60% and a TSS greater than 0. The two

variables that appeared most often were water

temperature (in 45 of the 82 models) and catchment

area (44 models; Table 4). Other frequently occurring

variables included air temperature, predicted total

phosphorus, and the 10% exceedence flow yield. All

land use variables included in the models occurred with

approximately the same frequency, although land use

measured on the larger watershed scale occurred

slightly more frequently (on average, in 14 of the 82

models) than land use measured on the riparian scale

(11 models).

We examined the PA models to see if there were any

patterns associated with the variable splits of the five

most frequently occurring variables. Patterns in the

variable splits indicate whether these important vari-

ables have consistent effects on the fish. The pattern

was quite clear for water temperature; in 39 of the 45

models containing water temperature, an increase in

water temperature resulted in fish presence. Not

surprisingly, coldwater species were associated with

five of the other six models. Brook trout, brown trout,

rainbow trout, mottled sculpin, and slimy sculpin were

predicted to be absent when the temperature was above

19.98C on average. An increase in temperature resulted

in absence of pirate perch also, but the split value was

quite high (238C), so this species should not be

grouped with the others. Models of coolwater species

(e.g., muskellunge, brook stickleback, and brassy

minnow) did not have consistent water temperature

patterns.

A catchment area increase resulted in a prediction of

presence in 39 of the 44 models containing this

FIGURE 2.—Histograms showing the percentage of Michigan stream fish models that fell within certain ranges of average

accuracy level: (A) 93 presence–absence (PA) models and (B) 46 relative abundance (RA) models.
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variable; a phosphorus increase resulted in a presence

prediction for 18 of the 24 models that included this

variable. The results for air temperature and 10%

exceedence flow yield were ambiguous; neither

presence nor absence predictions predominated when

the variable value increased.

We looked at the correlation matrix between the

absolute number of errors (i.e., not percentage error)

made at a site in the testing data and the habitat

variables for the stream. For false negative errors, the

highest correlation was rather small (10% exceedence

flow yield: r ¼ 0.17). However, the number of false

positive errors made at a site was correlated with

several habitat variables. The strongest correlation was

between number of false positive errors and water

temperature (r ¼ 0.66), indicating that as temperature

increased, more species were predicted to be in streams

where they were not observed. Similarly, catchment

area (r ¼ 0.35) and agriculture (percent agricultural

land use in riparian network: r ¼ 0.43; percent

agricultural land cover in watershed: r ¼ 0.50) were

also positively correlated with the number of false

positive errors at a site. On the other hand, percent of

forest in the riparian zone (r¼�0.58) and watershed (r

¼�0.57) were negatively correlated to number of false

positive errors, indicating that as percent forest

increased, fewer errors were made for a stream.

Relative Abundance Models

We created 46 RA models; 10 models had three

abundance levels and 36 models had two abundance

levels. We did not have enough data to create RA

models for 47 of the species with PA models. Similar

to the PA models, the RA models predicted some

species very well (e.g., brook stickleback and pump-

kinseed), but other species were not modeled much

more accurately than random guessing (e.g., rainbow

darter and rosyface shiner; Tables 5, 6; Figure 2).

Overall, the accuracy of the RA models, especially the

two-category models, exceeded our expectations. The

average three-category model predicted low abundanc-

es correctly 71.8% of the time, medium abundances

58.5% of the time, and high abundances 79.4% of the

time (Table 5). On average, the two-level model

predicted low abundances 80.2% of the time and high

abundances 76.9% of the time (Table 6).

We recorded the frequency at which each habitat

variable occurred in the more accurate RA models (i.e.,

all three-level models and two-category models with

.60% accuracy for both categories; Table 4).

Catchment area was the most important (41.9% of

models), followed by predicted total phosphorus

(32.6%) and percentage of coarse surficial geology in

the watershed (27.9%). Although water temperature

was in about 50% of the PA models and air

TABLE 4.—Number of times each habitat variable (defined in Table 1) was included in 82 Michigan stream fish presence–

absence (PA) models with accuracy greater than 60% and the number of times each habitat variable was included in the 43

relative abundance (RA) models with accuracy greater than 60%.

PA models RA models

Variable code Number Percent Variable code Number Percent

WATER_TEMP 45 54.9 CATCHAREA 18 41.9
CATCHAREA 44 53.7 TOTAL_P__PPM 14 32.6
WT_MAAT 26 31.7 WT_COARSE 12 27.9
TOTAL_P_PPM 24 29.3 NINETY_YIELD 11 25.6
TEN_YIELD 22 26.8 LINKDCATCH 10 23.3
WT_FOREST 17 20.7 GRADIENT 9 20.9
WT_COARSE 15 18.3 WT_MAAT 9 20.9
UP_POND 15 18.3 WATER_TEMP 8 18.6
TEN_POWER 15 18.3 RT_AGR 7 16.3
NINETY_YIELD 14 17.1 WT_WETLAND 7 16.3
RT_AGR 13 15.9 RT_WETLAND 7 16.3
WT_WETLAND 13 15.9 TEN_YIELD 6 14.0
WT_AGR 13 15.9 NINETY_POWER 6 14.0
WT_URBAN 12 14.6 RT_FOREST 6 14.0
RT_FOREST 12 14.6 UP_POND 6 14.0
RT_WETLAND 11 13.4 DOWN_POND 4 9.3
NINETY_POWER 10 12.2 WT_FINE 4 9.3
DOWN_POND 8 9.8 TEN_POWER 4 9.3
RT_URBAN 8 9.8 RT_URBAN 4 9.3
WT_FINE 7 8.5 WT_FOREST 3 7.0
GRADIENT 7 8.5 DOWN_LENGTH 3 7.0
LINKDCATCH 6 7.3 WT_AGR 2 4.7
DOWN_LENGTH 6 7.3 WT_URBAN 1 2.3
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temperature was in about 30%, these two variables

were only in 8 (18.6%) and 9 (20.9%), respectively, of

the 43 RA models. Interestingly, both gradient and

downstream link moved from the bottom of the PA list

to near the top of the RA list (Table 4).

We looked for patterns in the RA trees by examining

splits of the most frequent variables. Although the

effect of catchment area and gradient were ambiguous,

a decrease in LINKDCATCH resulted in greater fish

abundance in 9 of the 10 RA models that included this

variable, and an increase in total predicted phosphorus

was associated with an increase in fish abundance for

12 of the 14 relevant RA models. Also, an increase in

the coarse surficial geology variable resulted in lower

abundance for 10 of 12 RA models, and an increase in

90% exceedence flow yield resulted in lower abun-

dance for all 11 relevant RA models.

Distribution Maps

Using the predictions generated from the models, we

created either PA or absence–RA statewide distribution

maps. We give an example of a map that combines the

PA and RA models to classify rock bass as absent,

present in low abundance, or present in high abundance

within each Michigan stream (Figure 3). In this

example, rock bass are predicted to be at low densities

throughout the larger rivers of the Upper Peninsula and

northern Lower Peninsula. The highest density of rock

bass is predicted for the south-central portion of the

Lower Peninsula throughout the upper portions of the

Saginaw, Grand, Kalamazoo, and St. Joseph River

watersheds. These predictions were tested against both

PA independent data and a 20% validation sample that

was withheld from the abundance training data (Figure

3).

All species maps are available upon request to the

corresponding author. Also available are interactive

TABLE 5.—Sample size (N) and percent correct agreement (PC) between predicted relative abundance (RA) category and

observed values in a test data set for each three-category RA model. The list is sorted by the average PC for low-, medium-, and

high-density categories. The average does not consider differences in N among categories.

Species

Low Medium High
Average

PCN PC N PC N PC

Brook stickleback 6 66.6 5 100.0 5 80.0 82.2
Northern pike 21 85.7 20 60.0 5 100.0 81.9
Brown bullheada 19 79.0 11 63.6 4 100.0 80.9
Central stoneroller 8 87.5 5 60.0 5 80.0 75.8
Longnose dace 9 77.8 3 66.7 5 60.0 68.2
Black crappiea 68 66.2 47 55.3 5 80.0 67.2
Greater redhorsea 15 53.3 20 35.0 3 100.0 62.8
Tadpole madtoma 9 66.7 19 52.6 26 68.8 62.7
Redfin shinera 12 75.0 21 33.3 4 75.0 61.1
Silver redhorsea 20 60.0 12 58.3 2 50.0 56.1

a The species was tested with a cross validation procedure rather than a 20% validation set withheld

from the original data (Steinberg and Colla 1997).

TABLE 6.—Sample size (N) and percent correct agreement

(PC) between predicted relative abundance (RA) category and

observed values in a test data set for each two-category RA

model. The list is sorted by the average PC for low- and high-

density categories. The average does not consider differences

in N between categories.

Species

Low High
Average

PCN PC N PC

Channel catfish 4 100.0 3 100.0 100.0
Golden shiner 6 100.0 2 100.0 100.0
Pirate perch 2 100.0 4 100.0 100.0
Common carp 10 80.0 9 100.0 90.0
Pumpkinseed 18 94.4 13 84.6 89.5
Rock bass 14 100.0 26 76.9 88.5
Stonecat 6 100.0 13 76.9 88.5
Shorthead redhorse 4 75.0 3 100.0 87.5
Slimy sculpin 8 87.5 7 85.7 86.6
Bluntnose minnow 11 90.9 33 81.8 86.4
Yellow bullhead 10 80.0 9 88.9 84.5
Black bullhead 8 87.5 5 80.0 83.8
Grass pickerel 5 100.0 3 66.7 83.3
Golden redhorse 6 83.3 14 78.6 81.0
Blackside darter 16 81.3 24 79.2 80.3
Spotfin shiner 4 100.0 5 60.0 80.0
Northern hog sucker 11 90.9 16 68.8 79.8
Green sunfish 14 78.6 18 77.8 78.2
Largemouth bass 17 70.6 7 85.7 78.1
Western blacknose dace 19 89.5 17 64.7 77.1
Bluegill 15 73.3 10 80.0 76.7
Hornyhead chub 9 66.7 14 85.7 76.2
White sucker 32 75.0 37 75.7 75.4
Rainbow trout 14 71.4 13 76.9 74.2
Brook trout 17 64.7 24 83.3 74.0
Smallmouth bass 12 75.0 10 70.0 72.5
Mottled sculpin 24 75.0 19 68.4 71.7
Yellow perch 12 66.7 4 75.0 70.8
Central mudminnow 22 77.2 23 60.8 69.0
Northern logperch 10 80.0 7 57.1 68.6
Johnny darter 21 71.4 32 65.6 68.5
Common shiner 15 60.0 36 72.2 66.1
Brown trout 19 63.2 21 66.7 64.9
Creek chub 27 63.0 33 60.1 61.6
Rainbow darter 13 53.8 11 63.3 58.6
Rosyface shiner 5 60.0 8 50.0 55.0
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maps that run in the free downloadable program,

ArcReader (ESRI). This program allows a user to query

specific streams in the GIS to obtain observed and

predicted fish information and the habitat variables

used in the models.

Discussion
Habitat Variable Choice

We created PA models for 93 fish species typically

found in Michigan streams, and we developed RA

models for 46 of the 93 species. Of every 10

predictions, about 7 were accurate for the PA models,

about 6 were accurate for the three-category RA

models, and about 8 were accurate for the two-category

RA models. This suggests that landscape-scale factors

alone can be used to predict overall occurrence and

abundance of most fish species in Michigan rivers

when site-specific data are not available.

Optimally, we would be able to create models based

on both landscape- and local-scale variables (Wiley et

al. 1997). Habitat conditions at the site scale (e.g.,

channel morphology, substrate, and cover conditions)

can have very strong effects on localized fish

abundance patterns in streams. Because many of our

landscape-scale variables affect local-scale mecha-

nisms, we indirectly modeled some aspects of local-

scale control. However, without direct measurement of

local-scale variables, we were unable to capture all of

the variation in these variables. Also, because the fish

data were based on a single sample from each stream, it

was impossible to detect how temporal variation could

change species presence and abundance (Wiley et al.

1997). Additionally, research has shown that biological

variables like competition are important for determin-

ing species occurrence and abundance (Larson and

Moore 1985; Flecker and Townsend 1994; Stoks and

McPeek 2003). For these reasons, we did not expect

model accuracies much higher than those obtained with

this model set, and errors in our predictions were

expected.

FIGURE 3.—(A) Map of rock bass distribution in Michigan that combines predictions from presence–absence (PA) and relative

abundance (RA) models; (B) map of PA data that were used to test the prediction accuracy of the combined model (presence¼
73.8% correct, absence¼ 75.4% correct); and (C) map of RA data (two categories) that were used to test the combined model

(low abundance¼ 100% correct, high abundance¼ 76.9% correct). If the PA model predicted that a species was absent from a

stream reach, then the final prediction was ‘‘absent,’’ regardless of the RA model result. Political boundaries are from ArcGIS

base layers (Environmental Systems Research Institute, Inc., Redlands, California); stream data are from the U.S. Geological

Survey’s National Hydrography Dataset (1:100,000 scale).
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FIGURE 3.—Continued.
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However, using local-scale variables to build models

like those in this study would be impossible; that is,

obtaining small-scale data throughout an area as large

as Michigan would require prohibitive amounts of time

and money. Given that research in landscape ecology

has indicated that large-scale variables are as or more

important for fish distribution than small-scale vari-

ables and often correlate strongly with small-scale

variables, we believe our use of large-scale variables

was justified and was the best approach for meeting the

goals of the study (Schlosser 1991; Wiley et al. 1997;

Fausch et al. 2002; Allan 2004).

Presence–Absence Model Summary

With about 70% prediction accuracy against a test

data set, the PA models performed very well overall.

Large-river fish, such as redhorses and channel catfish,

were modeled accurately, indicating that large-scale

processes determine their distribution. Coldwater

species presence and absence were also predicted well.

Centrarchids were typically modeled with moderate

accuracy (;65–75%), indicating that landscape-scale

habitat and characteristics were important; however,

there are other factors determining their distribution

that we were not able to detect with these models. For

example, including temporal variation in fish popula-

tions would probably have increased model accuracy.

We found notable variation in model accuracy

between different species, and some models performed

either barely better or worse than random predictions.

There are a variety of ways to explain why some fish

were modeled poorly. Misidentification of fish during

the data collection phase could have played a role in

poor model performance, because some of the less-

accurate models were built on fish species that are

difficult to identify quickly in the field (e.g., silver,

northern brook, and American brook lampreys). It is

possible that the stream habitat data were not causally

linked to the distribution of the lake species that were

found in rivers, resulting in poor predictions for some

of these species (e.g., burbot and freshwater drum).

Some species were found virtually everywhere (e.g.,

white sucker and blacknose dace), and so the models

were not able to distinguish between streams in which

the fish were present and those in which they were

absent. Unfortunately, the presence and absence of

many rare species were also predicted poorly (e.g.,

blacknose shiner, creek chubsucker, and eastern sand

darter); these rare species were historically widespread

but their current distributions are much narrower due to

pollution and siltation (Trautman 1981; Roberts et al.

2005). Although the predictive models for rare species

did not accurately identify the current distributions, the

models may be useful for indicating the potential

distributions of these species.

Zorn et al. (1998) used low-flow yield (an index of

water temperature) and catchment area as primary

ordination axes in separating clusters of fish assem-

blages and explained that these two variables can

reliably be used to determine which species may reside

in a particular stream section. Unsurprisingly, the two

most important variables in our PA models were also

water temperature and catchment area. Numerous other

studies have found water temperature to be key in the

classification of fish (Fausch et al. 1988; Matthews and

Robison 1988; Lyons 1992; Hinz and Wiley 1997;

Zorn et al. 2002; Wehrly et al. 2003; Steen et al. 2006),

and there is also a long history of studies on how

stream changes depend on the stream’s position in the

catchment (Hawkes 1975; Vannote et al. 1980; Wiley

et al. 1990; Smith and Kraft 2005).

Many of our GIS-based habitat variables served as

surrogates for site-scale habitat variables. These

variables require a conceptual leap from site-based to

landscape-based modeling, and their importance in the

models emphasizes the linkages between the two scales

of data. Catchment area is one such variable; it is a

measure of the amount of land draining to the stream

and therefore is convenient for indicating a stream’s

approximate discharge, width, depth, and gradient

(Vannote et al. 1980). These stream characteristics

are highly correlated with site-scale habitat values,

such as velocity, channel substrate, and dissolved

nutrients (Vannote et al. 1980; Wiley et al. 1990; Rahel

and Hubert 1991; Lyons 1996). Based on our models,

many Michigan fish species seemed to preferentially

occupy streams with larger catchment areas, indicating

that larger streams with low gradient, high discharge,

and warm summer water temperatures tended to favor

the greatest number of species. Larger streams also

have greater habitat complexity, providing space for a

variety of fish species with different habitat require-

ments. The importance of catchment area has also been

seen in previous work on fish classification and

ordination (Zorn et al. 2002).

Stream yield and specific power variables are GIS-

derived surrogates for stream discharge, stream veloc-

ity, substrate, erosive force, and sediment transport

capability. On average, these variables were contained

within about 18% of the models; thus, although they

are not integral to every model, they still have

important effects. For example, the models predicted

correctly that black crappies, bowfins, northern pike,

and black bullheads would be absent from streams with

high stream power, indicating a preference for low-

velocity, lentic conditions. Bluegills were present in

streams with a low 10% yield; this species avoids
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streams with high peak flows. Slimy sculpin were often

absent from streams with a low 90% yield, showing a

tendency toward occupation of groundwater-driven

streams with consistent flow rather than flashy, runoff-

driven streams.

The connectivity variables (e.g., distance from one

of the Great Lakes, a pond, or a larger river) were

included in only in about 10% of the models; however,

these variables were very important in the modeling of

several species. For coho salmon and Chinook salmon

models, the first split in the classification tree was the

variable describing distance from the Great Lakes.

Both models indicated that these species are very

unlikely to be found more than 122 km from one of the

Great Lakes. Removing this variable from either model

resulted in predictions that were only slightly better

than random guessing; therefore, this variable was

integral for successful prediction.

The distance from the stream to the closest of the

Great Lakes also indicated whether a stream was

disconnected from the Great Lakes due to a dam or

waterfall. While this aspect of the variable was

unimportant (and unexpectedly so) in the coho salmon

and Chinook salmon models, it was important in the

rainbow trout model. The rainbow trout model

indicated that it was unlikely, though not impossible,

for this species to be found in a stream above a dam or

waterfall. This result was entirely logical given the life

history of migrating steelhead (anadromous rainbow

trout; because of uncertainty in the sampling database,

no distinction was made between steelhead and

rainbow trout during model development).

Distance from a pond or lake and distance from a

large river were also key variables for several species.

For example, largemouth bass, smallmouth bass, and

yellow perch were more likely to be found at sites that

were within 20, 8, and 6 km, respectively, of a pond or

lake. The bowfin model predicted that this species

would be found within 150 m of a stream’s confluence

with a larger river (i.e., one with a catchment area at

least 10% greater than that of the stream). This variable

was also important for brown bullheads (21 km) and

longnose suckers (23 km). Once again, it was entirely

logical that the models included these variables,

because these species are typically found in lakes or

slow-moving backwaters but also live in stream

environments.

Presence–Absence Error Analysis

In our PA models, false positive errors occurred

more frequently than false negative errors by a ratio of

8:1. False negatives are typically seen as more severe

than false positives (McKenna et al. 2006); a false

negative is more likely to be caused by an error in the

model rather than by a failure to detect a given species

during sampling. In addition, false negative errors have

a severe impact on conservation work based on models.

For example, if a rare species is predicted to be absent

from some streams in which it actually exists, those

streams might not be given the level of protection

needed to conserve the species.

When distribution models are used for conservation

work, false positive errors tend to be safer errors. If we

do not know whether a species is present in a stream, it

is safer to assume that the fish is present (i.e., erring in

favor of conservation). In contrast to false negative

errors, a false positive error does not necessarily

indicate a flaw in the model, but rather indicates

insufficient sampling, incorrect identification, or the

potential for a fish to live in the stream (McKenna et al.

2006).

False positive errors may also have been caused by

quality discrepancies between the training and testing

data. Overall, we had a higher degree of confidence in

the fish identification accuracy and catch efficiency of

the MRI training data. As a result, the FCS test data

probably had a higher proportion of (1) fish that were

improperly identified and (2) errors due to fish that

were considered absent but should have been caught

during sampling. The end result of this discrepancy

was a higher number of false presence errors when the

models were used to make predictions about test data.

In other words, the model may have correctly said that

the fish should have been present in a certain stream,

but the FCS data may not have been comprehensive

enough to show that the species was there. Therefore,

the number of false presence errors in the test data may

be inflated and may underestimate the accuracy of the

models, especially for hard-to-identify species.

To check this hypothesis, we compared the average

false presence error rate for game fish, which are easily

identified (brook trout, brown trout, smallmouth bass,

largemouth bass, Chinook salmon, coho salmon,

walleye, and yellow perch), against the average false

presence error rate for the modeled cyprinids (chubs,

daces, and minnows), which are typically harder to

identify. The average false presence error rate was

19.2% for game fish and 27.2% for cyprinids. The

difference between the two was not as large as we had

anticipated (independent t-test: t ¼�1.5, df ¼ 26, P ¼
0.16), so this species categorization method probably

does not fully explain the abundance of false presence

predictions. However, it is possible that the discrepan-

cy between the data sets could account for some of the

false presence errors.

Several of our habitat predictor variables were

correlated to the number of false positive errors made

at a stream reach. Water temperature was most strongly
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correlated with false positive errors. As temperature

increased, models tended to overestimate the number of

species in a stream. Because warmwater streams have a

higher diversity of species, sampling efforts probably

missed some of the species in these streams, which

would cause false positive errors in test data. Another

cause of these errors may be the bias introduced into

the models through the disproportionate amount of

coldwater versus warmwater stream samples in our

training data; predictions for coldwater streams would

be more accurate since such streams contributed more

data to model development.

Relative Abundance Model Summary

When using abundance categories in modeling,

delineation of category boundaries is a difficult

problem and usually results in incorrect predictions

for observations that do not clearly belong to one

category. Due to this, we were only able to create 10

species models that had test data accuracy better than

that of random guessing (every abundance category

�33.3%). To develop RA models for the other species,

we removed the middle density category to obtain a

clear distinction between the high and low categories.

Of the 46 RA models created, 10 had three

categories of predicted abundance (low, medium, and

high) and 36 had two categories (low and high).

Interestingly, two-category models performed well and

were typically more accurate than the PA models in

making predictions for the test data. This implies a

greater stream habitat difference between low- and

high-abundance streams than between presence and

absence streams. For example, a fish is considered

present in a stream whether 1 individual or 1,000

individuals are captured. The PA classification tree will

have difficulty in distinguishing between a marginal

stream containing one individual and a stream where

the species is truly absent, resulting in misclassified

observations. On the other hand, when abundance

categories (e.g., 1 fish ¼ low; 1,000 fish ¼ high) are

used instead of presence, the classification tree is able

to separate them with greater accuracy because there

are greater habitat differences between these streams

than between the marginal stream and the stream from

which the species is absent.

Although most of the common species in Michigan

were modeled for RA, the low number of species

modeled means that the RA results may not apply to all

Michigan fish. Water temperature was an unimportant

variable for most of the RA models and was more

important for determining PA of a species. Zorn et al.

(2004) observed the same phenomenon with temper-

ature when developing landscape-based multiple re-

gression models. Gradient, coarse surficial geology,

and 90% exceedence flow were more important in the

RA models than in the PA models. Increases in these

variables were associated with decreases in abundance

for several species that are known to prefer streams

with low slope and more variable flows (e.g., black

bullhead, bluntnose minnow, largemouth bass, white

sucker, and yellow perch). Given that these flow

characteristics were correlated with water temperature,

their importance may explain the apparent unimpor-

tance of water temperature; the exclusion of tempera-

ture from the RA classification trees may have occurred

because the variation in the data was already captured.

In the PA models, probability of presence increased

with increasing total predicted phosphorus; similarly,

the RA models showed that abundance increased with

increasing phosphorus. This is a logical result (though

its frequency in the models is somewhat surprising)

because phosphorus can cause a bottom-up effect,

increasing productivity in every trophic level (Vanni

1987; Vanni et al. 1997). High phosphorus levels are

rare in Michigan streams and therefore were not

modeled; high levels cause eutrophication and anoxic

conditions, which would effectively alter a fish

population. For this reason, the fish PA and RA results

cannot be extrapolated beyond the phosphorus range in

our data.

Other General Model Limitations

Overall, these models performed well in predicting

PA and RA, but their limitations should be recognized.

Users of these models should be aware of these issues,

and researchers constructing similar models in the

future will minimize model error by addressing these

problems.

Data quality is always an issue when dealing with

large data sets. Brenden et al. (2006) addressed specific

limitations in the NHD and the quality of GIS-derived

environmental variables. In short, because some of

these variables were obtained from low-resolution

maps (e.g., surficial geology, 1:250,000 scale), they

do not have the desired accuracy as would be obtained

from the NHD with a resolution of 1:100,000. In our

models, coarse surficial geology occurred relatively

often (18.3% of PA models, 27.9% of RA models), and

it is possible that the scaling issue increased our model

error slightly.

We used several habitat variables that were built

from models and then predicted across the state to

produce a value for each stream reach (e.g., water

temperature, total phosphorus, and flow variables).

Because these habitat models contained error, it is

logical to expect the error to trickle down to species

models, thus decreasing model accuracy. This problem

is also known as propagation of error. As these habitat
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models are improved in the future, the fish predictions

will become more accurate.

The fish data were of good quality overall, but the

fish were sampled over a long period, by different

people, and for different purposes, so it was impossible

to determine which samples were poorly counted or

implemented. The samplers may have misidentified or

failed to catch some fish, particularly those that are

hard to identify, rare, or small. Training a model on

flawed data can confound the training process and

produce a species model that is inaccurate, especially if

the predictor variables are correlated with the likeli-

hood of failing to detect a species in a survey.

Although this issue is indeed a problem, to minimize

this error we included as many sites of absence as

possible in the training data for each species. By

pooling sites where a species was absent, we obtained

replicate information on the probability of absence as

indexed by the data. Since a fish could potentially be

missed at any particular site, we attempted to include

several sites with the same type of habitat where the

fish would not be missed. This process may not

produce absolute truth for every site, but the overall

distribution should be correct. The errors in the training

data are reflected in the accuracy measurements; the

models are not perfect but should be good enough for

the use for which they were intended.

A major problem throughout this study was the

difficulty in developing statewide abundance predic-

tions. We tried several methods (regression, regression

trees, and classification trees with different category

boundaries), but none performed to our satisfaction. In

our final product, we were only able to produce

accurate models by excluding data points so that a clear

distinction could be made between high- and low-

abundance streams. Although this procedure did

produce models that were accurate in determining high

versus low abundance, the culling of data is not to be

taken lightly. However, given the choice of having no

RA model or having working RA models with some

problems, the latter is the right decision because these

models have a place in a management and conservation

context.

Model Application

The models in this study were developed primarily

for two large conservation projects, the GLGAP and

CIAUMR. The GLGAP will use these models and

similar models from New York and Wisconsin to

identify fish diversity hot spots (i.e., targets for

conservation or restoration work). The CIAUMR will

employ the models and algal and macroinvertebrate

models to provide regional assessment of stream

condition (Brenden et al. 2006).

The models have utility that go beyond the scope of

these projects. Models built at a landscape scale are

decision-making tools that can be used in a variety of

management and conservation applications. When a

scientist has little information and needs a starting

point or confirmation of an idea, these models excel in

providing baseline data. However, they should not be

used to justify management decisions without outside

confirmation of the results (e.g., additional sampling).

Fisheries managers could use these models and

associated data in a variety of ways. At the most basic

level, these models predict the amount and location of

habitat that is suitable for each fish in Michigan.

Inventory information is a vital component to fisheries

management and species conservation, and the mod-

eling described here is a good way to apply this data on

a large geographic scale.

For some species, a manager can rule out the

presence of a fish based on a single factor. We found

that trout species were unlikely to be found in streams

with mean July water temperatures exceeding a

particular value (19.48C for brook trout, 20.28C for

brown trout, and 19.68C for rainbow trout). This

information in combination with the ability to access

water temperature in GIS would be very useful to

managers deciding whether to manage marginal

streams for trout.

Managers can use the models as aids in their fish

sampling and stream assessment work. The models can

be used to identify candidate high-quality reference

streams and low-quality impaired sites. Of course, it

would be necessary to confirm this exploratory work

with site visits and additional sampling.

The models can be used identify streams that should

be sampled for rare species or species of concern. Other

than looking at streams where a species has been found

in the past, it is difficult to determine which additional

streams could be part of that species’ distribution.

These predictive models provide tested explanations

for why a species inhabits one stream and not another.

These models have the potential to be used in

various decision-making processes with the goal of

protecting watersheds or influencing political deci-

sions. For example, the models can be used to build

‘‘what-if’’ scenarios that predict future fish distributions

as influenced by climate change or land use change

(e.g., urban sprawl or deforestation). They can also be

used to identify streams that have a good restoration

potential. For example, one could predict whether

adding a forest buffer strip would have (1) a positive

effect on the fish community of a stream or (2) little

effect because the stream’s overall potential is low

regardless of land use management.
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