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RAPID COMMUNICATION

Monocyte urokinase expression: modulation by interleukins
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Abstract: This study delineates the regulatory effect of

interleukin-! (IL-i) and interleukin-2 (IL-2) on mono-
cyte plasminogen activator (PA) activity. Mononuclear
phagocytes regulate net PA activity by modulating the ex-

pression of urokinase-type PA (uPA) and a specific plas-
minogen activator inhibitor, PAI-2. To understand the

regulation of mononuclear phagocyte PA activity, it is im-

portant to compare the expression of uPA and PAI-2. In
this study, we determined the relative abundance of

secreted PA and PA inhibitor activity in human mono-

cyte-conditioned medium after stimulation with human

recombinant IL-i or IL-2. In agreement with our previ-

ous description of tumor necrosis factor-a and interferon-

‘y stimulation of mononuclear phagocytes, we found no
detectable PA activity in conditioned medium. Both IL-i
and IL-2 had dose-dependent effects, significantly up-

regulating PA inhibitor activity in monocyte-conditioned
medium (up to 11-fold). To further investigate the mech-

anism underlying this effect, Northern blot analysis was

done to measure steady-state mRNA for uPA and PAI-2.
Consistent with the increase in secreted PA inhibitor ac-
tivity, we found that both IL-i and IL-2 significantly in-

creased steady-state mRNA for PAI-2. In addition, how-

ever, both IL-i and IL-2 increased steady-state mRNA for

uPA. IL-i appears to increase mRNA for uPA to a greater
extent than does IL-2. We conclude that IL-i and IL-2
modulate monocyte proteolytic activity by increasing ex-

pression of uPA and PAI-2 with a resultant predominance

of PAI-2. We further conclude that cytokine-specific regu-
lation of plasminogen activity is achieved partly by vary-

ing the proportionate expression of uPA and PAI-2.
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The formation of plasmin by plasminogen activators is cru-

cial for the orderly generation and resolution of inflamma-

tion [1-4]. Local plasminogen activation by urokinase-type
plasminogen activator (uPA) is a mechanism by which

inflammatory leukocytes degrade extraeellular matrix and

traverse tissue planes. The generation of plasmin is impor-

tant in tissue remodeling, as it degrades fibrin matrix and ac-
tivates elastases and collagenases [5-8]. uPA itself is

chemotactic for neutrophils and mitogenie for lymphocytes
[9, 10]. Furthermore, it is likely the uPA modulates the

release and activity of inflammatory cytokines. Thus, the ex-

pression of PA activity is intimately involved in the course of

the inflammatory response by directing inflammatory cell

trafficking, matrix remodeling, and cytokine-mediated cell-

to-cell signaling. There is substantial evidence that disor-
dered plasmin generation is instrumental in the generation
of acute and chronic lung injury [11-14]. Therefore, it is es-

sential that we understand how cells regulate PA activity in

the context of inflammation. We previously demonstrated

that the inflammatory cytokines tumor necrosis factor (TNF)

and interferon (IFN) modulate the expression of PA activity
through the coordinated expression of uPA and plasminogen

activator inhibitor PAI-2 [15]. In this study, we extend this

investigation to the regulation of monocyte PA activity by

interleukins I and 2 (IL-i and IL-2), mediators that figure

importantly in the early propagation of inflammatory and

immune signals. Among other effects, IL-l enhances pro-

duction of IL-2 and IL-2 receptor in antigen-stimulated

T cells, up-regulates granulocyte-macrophage colony-stimu-

lating factor synthesis in bronchial epithelial cells, and in-

creases expression of adhesion molecules on the surface of

endothelial cells. IL-2 also has multiple effects, including en-

hanced T cell expression of class II major histocompatibility
antigens, proliferation, and lymphokine secretion [16, 17].

For this study, plasminogen was prepared from outdated

human plasma by lysine-Sepharose affinity chromatography

(Pharmacia Chemicals, Piscataway, NJ) [18]. Plasminogen

preparations were rendered free of active plasmin by treat-

ment with phenylmethylsulfonyl fluoride (1 mM) for 16 h at

25#{176}C, followed by extensive dialysis in 0.05 M phosphate
buffer, pH 7.5. The human PAI-2 eDNA, generously pro-

vided by Andrew C. Webb (Department of Biological Sci-

ences, Wellesley College, Wellesley, MA), was the subeloned

internal PstI-DraI fragment of the pcD-1214 clone in

pGEM-2 (Promega, Madison, WI), inserted between the
PstI and SinaI sites in the polylinker [19]. Human urokinase

eDNA was obtained from the Japanese Center Resources
Bank-Gene, National Institute of Health, Tokyo [20]. This is

a near-full-length clone inserted in the PstI-PvuII site of peD.

Human recombinant IL-I and IL-2 were purchased from

Genzyme, Boston, MA. Culture medium and additives were

found to contain less than 0.1 endotoxin unit/mi, as deter-

mined by a Limulus amebocyte lysate assay (Sigma, St.

Louis, MO).

Human peripheral blood monocytes were purified from

buffy coats, provided by the American Red Cross (Detroit,

MI), by density gradient eentrifugation [15]. Cell number
was determined by counting in a hemocytometer and viabil-

ity was assessed by trypan blue exclusion. Differential cell

counts were determined by examining Giemsa-stained cyto-

centrifuge samples. Mononuclear cells were resuspended at

2 x 106 cells/ml in complete medium consisting of RPMI
1640 supplemented with penicillin (100 U/ml), streptomycin

(100 �g/ml), gentamicin (100 �eg/ml), L-glutamine (2 mM),

and 0.1% human serum albumin (American Red Cross),
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and the monocytes were purified by adherence in 16-mm

plastic dishes (Corning, Corning, NY) at 5 x 106 cells/well

(approximately 2 x 106 monocytes) for 2 h in humidified air

containing 5% CO2 at 37#{176}C. Nonadherent cells were re-
moved by washing with RPMI 1640 at 37#{176}C.

Adherent monocytes were cultured in the medium above

with various doses of IL-i and IL-2. The conditioned media

were then removed and the PA and PA inhibitor activities de-

termined by esterolytic assays. As an internal quality control

for each experiment, monocytes were cultured in parallel
wells with 10 ng/ml phorbol myristate acetate (PMA) to en-

sure that there was the expected increase in PA inhibitor ac-

tivity [21]. On occasion, cells were refractory to PMA and

were considered to be either endogenously activated or in-

jured during purification. Data derived from these cell

preparations were not used.

Plasminogen activator activity was measured with the

esterolytie assay of Coleman and Green [22], with minor

adaptations for use in 96-well plates as previously described
[15]. Briefly, samples were mixed with an optimal amount of

plasminogen in buffer containing glycine, bovine serum al-

bumin, Tris, and Triton and incubated at 37#{176}Cfor 30 mm.

The plasmin generated by this step was then quantified by

the addition of a synthetic plasmin substrate and a color

reagent. After 30 mm at 37#{176}C,optical absorbanee was read

at 414 nm with a multiehannel spectrophotometer (Flow

Labs, McLean, VA). After subtracting control values of wells

lacking test samples, PA activity was determined from a

standard curve generated with commercially prepared uro-

kinase (Calbiochem) and expressed in milliPloug units

(mPU).
By modifying the esterolytic assay, we can measure either

PA or PA inhibitor activity in conditioned media [4]. To

measure PA inhibitor activity, serial dilutions of the test sam-

ples were coincubated with 2 mPU of urokinase and the

residual PA activity was measured in standard fashion. PA

inhibitor activity was calculated from a plot of the sample
concentration (reciprocal of the dilution factor) versus

residual PA activity and expressed as PA inhibitor units/ml

(1 PAl unit = 1 mPU PA inhibited). Endogenous PA activity

was included with the exogenous 2 mPU when calculating

PA inhibition.

For mRNA analysis, human monocytes were purified
from mononuclear cells by adherence to 60-mm plastic tissue

culture dishes (Corning). The adherent monocytes (8 x 106

monocytes/dish) were incubated for 4 h in medium in the

presence and absence of IL-i (250 U/mI) and IL-2 (100

U/mi). The medium was then removed and the monocytes

lysed directly in the culture dish by repeated pipet aspiration
in 4.23 M guanidine isothiocyanate (IBI, New Haven, CT),

0.5% sarcosyl, 25 mM citric acid, and 0.72% 2-mercapto-

ethanol. The RNA was purified by phenol-chloroform ex-

traction and precipitation at - 20#{176}Cin isopropanol and Na

acetate [23]. The RNA pellet was suspended in RNAse-free

water and the concentration determined by spectroscopy at

260 nm.

The RNA was size fractionated eleetrophoretically on 1%

agarose gels containing 3.5 iiM formaldehyde and 20 pg/ml

ethidium bromide [24]. Visualization of ribosomal bands

under ultraviolet (UV) light provided internal size markers

for each lane and also confirmed that RNA loading was

equal among lanes. The RNA was transferred to Hybond

nylon filters (Amersham, Arlington Heights, IL) according

to the method of Southern and fixed by exposure to UV light

[24]. The eDNA of interest was labeled with [32P]dCTP

(Amersham) by random priming, achieving specific activi-

ties of approximately 5 x 10� cpm4tg DNA [25]. The nylon
filters were then hybridized with 2 x l0� cpm of [32P]cDNA

for 18 h at 65#{176}C, followed by serial washes of increasing

stringency, the final wash consisting of 0.1 x standard saline

citrate, 0.1% sodium dodecyl sulfate at 68#{176}C[24]. The filters

were then developed by autoradiography, using Kodak

XAR-5 X-Omat AR film at -70#{176}C(Eastman Kodak,

Rochester, NY).

Comparisons between groups were performed using a

paired Student’s t-test to compensate for interdonor variabil-

ity in the levels of PA inhibitor activities expressed under

control conditions [26]. The data were log transformed to

ensure equivalent variances between groups. Data are ex-
pressed as mean ± SEM.

Adherent cell preparations were routinely more than 94%

monocytes and greater than 95% viable. After incubation in

serum-free medium for 24 h, even at the highest concentra-

tions of IL-i (500 U/ml) and IL-2 (500 U/ml), cells were rou-

tinely greater than 90% viable.
To determine the effects of IL-i on PA and PA inhibitor

expression, conditioned media were assayed after incubation

for 24 h with 0-500 U/mi human recombinant IL-i. There
was no detectable PA activity in monoeyte-conditioned

media under either control or IL-i-stimulated conditions.

Fig. 1. PA inhibitor activities of IL-I- or

IL-2-stimulated monocytes. Both IL-I and

IL-2 induced a dose-related increase in PA

inhibitor activities. One PA inhibitor activity

unit is equal to inhibitor sufficient to inhibit

1 milliPloug unit of PA activity. IL-I:

‘P < .05, ‘P < .01. IL-2: ‘P < .05,
‘P < .001.
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mRNA more than does IL-2. In the IL-I circumstance, PA

inhibitor activity would be expected to be offset by the

presence of PA. This offers a potential explanation for the

greater PA inhibitor activity observed when monocytes are

simulated with IL-2 compared to IL-i. We recently reported
that stimulation with TNF increases uPA mRNA in mono-

nuclear phagocytes to a greater extent than stimulation with

IFN but does not increase secretion of uPA protein propor-

tionately [15]. It is of considerable interest that we see a simi-

lar pattern of regulation using IL-i and IL-2, another

monokine-lymphokine pair. Further work is needed to deter-
mine whether the mechanisms regulating monocyte PA ac-

tivity differ depending on whether the modulatory signals

are of an autocrine or paracrine nature.

In summary, we have demonstrated that IL-I and IL-2

modulate the expression of monocyte proteolytic activity by

enhancing secreted-phase PA inhibitor activity and by in-
creasing steady-state mRNA for uPA and PAI-2 in an

interleukin-specific manner. By determining the precise

mechanism by which mononuclear phagocytes regulate pro-

teolytic activity in response to immunologic mediators, it

will be possible to better characterize the interactions be-

tween the fibrinolytic system and cytokine networks during

inflammation.

Fig. 2. Effects of IL-I and IL-2 on normal human monocytes. Northern blot

analysis shows that stimulation with either IL-I or IL-2 increases mRNA for

PAI-2 and uPA.

Conditioned media of control monocytes, however, con-
tained a small amount of PA inhibitor activity (12.75 ± 4.43

PAl units/mI). IL-I induced a dose-dependent increase in PA

inhibitor activity that reached a maximum at 250 U/ml

(113.33 ± 40.19 PAl units/ml; P < .01) (Fig. 1).

Monocytes were stimulated with 0-500 U/mi human

recombinant IL-2 for 24 h to determine the effects on
secreted PA and PA inhibitor activities. There was no detec-

table PA activity in monocyte-conditioned media under

either control or IL-2-stimulated conditions. IL-2 produced

a dose-dependent increase in PA inhibitor activity that

reached a statistical maximum at 100 U/mI compared to con-

trol (236.01 ± 82.73 compared to control, 20.83 ± 7.58;
P < .001) (Fig. 1).

Because both IL-l and IL-2 induced an abundant increase

in PA inhibitor activity, effects on PA activity may have been

obscured by excess inhibitor in conditioned media. There-
fore, to further evaluate for modulation of PA activity by in-

terleukins, we evaluated levels of steady-state mRNA for

uPA and PAI-2 by Northern blotting. Monocytes were in-

cubated with optimal concentrations of IL-i (250 U/mi) or

IL-2 (100 U/ml) for 6 h prior to lysis and RNA extraction

as detailed earlier. The same filters, stripped and reprobed,

were used for determination for both uPA and PAI-2. In

keeping with the observed increases in PA inhibitor activity,

both IL-i and IL-2 increased mRNA for PAI-2. IL-i and

IL-2 also increased uPA mRNA, compared to controls

(Fig. 2). It is most likely that either the excess PA inhibitor

in monocyte-conditioned media irreversibly inactivates
secreted uPA or that the uPA secreted in response to IL-i or

IL-2 is entirely bound to uPA cell surface receptors and is

therefore not present in conditioned media. These data do

not exclude the possibility that an alteration in intracellular

protein processing may result in a block of uPA protein ex-

pression. IL-i and IL-2 appear to induce similar increases in
PAI-2 mRNA. IL-i, however, appears to increase uPA
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