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Abstract: Alveolar macrophages acquire lcr-hydroxylase

activity in inflammation, and thereby metabolize 25
hydroxyvitamin D3 (25 D3) to the active metabolite,

lct,25-dihydroxyvitamin D3 (1,25 D3, calcitriol). Cal-

citriol is a potent differentiation agent that modulates

mononuclear phagocyte activation and effector functions.

The mediators that induce macrophage lcr-hydroxylase

activity are not well delineated. Furthermore, it is un-

clear whether calcitriol is a product only of terminally
differentiated macrophages or whether less mature mono-

nuclear phagocytes can produce it as well. The ability of

newly recruited monocytes to produce calcitriol as an

autocrine differentiation agent is particularly important
in inflammation, as it may substantially expand the func-

tional repertoire of these cells. To assess the effects of cyto-
kines on lcr-hydroxylase activity, blood monocytes were
cultured in the presence and absence of human recom-

binant tumor necrosis factor a (TNF-cr), interferon-y
(IFN-’y), and interleukins 1 and 2 and then incubated

with 25 D3 substrate. The conditioned media were as-

sayed for calcitriol by high-performance liquid chroma-

tography and competitive receptor binding assay. No de-
tectable calcitriol was produced by unstimulated

monocytes. However, all the cytokines markedly in-

creased monocyte calcitriol production (range 133-151
pg/mg protein; in all cases P < .001). We then deter-

mined whether calcitriol production was suppressed by
preincubation with either dexamethasone or the putative
uremia toxin guanidinosuccinic acid (GSA). Dexametha-

sone pretreatment significantly inhibited subsequent

cytokine-induced calcitriol production by monocytes, as

did GSA (average 69 and 63% of control, respectively).
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INTRODUCTION

Disordered vitamin D metabolism is a systemic complication

of granulomatous lung diseases. In both sarcoidosis and

tuberculosis, hypercalcemia has been shown to be associated

with elevated levels of la,25-dihydroxyvitamin D3 (1,25 D3),

calcitriol, the most active metabolite of vitamin D [1]. The

best recognized pathway for lcr-hydroxylation of 25 D3
occurs in the kidney via the microsomal enzyme icr-

hydroxylase [1]. However, it has been shown that alveolar

macrophages from patients with sarcoidosis spontaneously

generate 1,25 D3 in vitro [2]. This is in distinct contrast to

alveolar macrophages obtained from normal individuals [3].

The extrarenal production of 1,25 D3 in granulomatous

inflammation is of sufficient magnitude to be clinically im-

portant, as shown by studies finding elevated blood levels of

1,25 D3 and hypercalcemia in patients with concomitant

Mycobacterium tuberculosis infection and end-stage renal dis-

ease. In these patients, the renal contribution to serum cal-

citriol levels is negligible. Appropriate antituberculous ther-

apy returned serum calcitriol values to normal, suggesting

that elevated levels of calcitriol were due to the presence of

active granulomatous disease [4]. Similar abnormalities in

calcium metabolism have been described in anephric sar-

coidosis patients [5]. Collectively, these data support the

hypothesis that macrophages acquire 1 a -hydroxylase ac-

tivity in granulomatous inflammation.

The generation of 1,25 D3 in the inflammatory milieu is

likely to have considerable importance beyond effects on cal-

cium metabolism. For example, calcitriol is a potent matura-

tion agent in vitro and is commonly used to differentiate cell

lines [6, 7]. Furthermore, calcitriol induces in vitro differen-

tiation of normal blood monocytes, which, when incubated

in the presence of calcitriol, take on the phenotype of alveo-

lar macrophages and, with more prolonged incubation, of

multinucleated giant cells [8].

We have previously demonstrated that calcitriol has

significant regulatory effects on mononuclear phagocyte pro-

teolytic activity and serves as a priming agent that enhances

subsequent responses to inflammatory agonists [9]. Similar

priming effects of calcitriol have been described for mono-

cyte/macrophage hydrogen peroxide release [10, 11]. Cal-

citriol has also been demonstrated to be a potent modulator

of monokine and lymphokine gene expression [12, 13]. Cal-

citriol receptors have been described in alveolar lymphocytes

from patients with granulomatous lung diseases [14]. Collec-

tively, these data strongly support the hypothesis that cal-

citriol is important in autocrine stimulation and regulation

of intercellular crosstalk within inflammatory sites.

The regulatory signals in the inflammatory milieu that

trigger the expression of lcr-hydroxylase activity by mono-

nuclear phagocytes are not well understood. Furthermore, it
is not clear whether lcr-hydroxylase activity is acquired dur-

ing the process of maturation and is therefore expressed only
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by terminally differentiated macrophages, or whether it can

be expressed by less mature cells as well. The ability of

peripheral blood monocytes to produce calcitriol is of partic-
ular importance, as calcitriol could then serve as an auto-

crine differentiating agent for newly recruited cells in inflam-

matory foci.

In this study, we sought to determine whether normal hu-

man monocytes could be stimulated to produced calcitriol by

exposure to the inflammatory cytokines likely to be present

in granulomatous inflammation. We then investigated whether

the regulation of mononuclear phagocyte lcr-hydroxylase ac-

tivity was similar to or different from the regulation of renal

cell lcr-hydroxylase activity. We did this through the use of

two previously described inhibitors of renal cell lcr-hydrox-

ylase, dexamethasone and the uremia toxin guanidinosuc-
cinic acid (GSA) [15, 16]. These inhibitors were especially

pertinent to this work because our observations could be

relevant to two clinical situations in which host defenses

against M. tuberculosis are known to be impaired, in patients

undergoing treatment with corticosteroids and in those with

renal failure [17].

MATERIALS AND METHODS

Cell culture

Isolation of monocytes

Human peripheral blood monocytes were purified from

buffy coats provided by the American Red Cross, Detroit,

MI. Buffy coats were diluted 1:1 with 5 mM EDTA normal

saline and purified by density gradient centrifugation

through Lymphoprep (Nycomed AS, Oslo, Norway). After

washing with RPMI 1640 (Gibco, Grand Island, NY), cell
number was determined by counting in a hemocytometer

and viability assessed by trypan blue exclusion. Differential

cell counts were determined by examining Giemsa-stained

cytocentrifuge samples. The mononuclear cells were re-

suspended in serum-free medium consisting of RPMI 1640

supplemented with penicillin (100 U/ml), streptomycin
(100 p.g/ml), gentamicin (100 p.g/ml), L-glutamine (2 mM),

and 1% (w/v) human serum albumin, and the monocytes

were purified by adherence in 35-mm plastic dishes (Corn-

ing, Corning, NY) at 2 x 10� cells/well (approximately

8 x 106 monocytes) for 1 h in humidified air containing 5%

CO2 at 37#{176}C. Nonadherent cells were removed by washing
with RPMI 1640 at 37#{176}C,and adherent cells were prein-

cubated in serum-free medium in the presence and absence

of dexamethasone (10� M) or GSA (100 p.g/ml) for 24 h in

humidified air containing 5% CO2 at 37#{176}C.

Stimulation of monocytes

Monocytes were cultured in the presence and absence of

tumor necrosis factor a (TNF-cr, 500 U/mi), interferon-”y

(IFN-y, 1000 U/ml), interleukin-1 (IL-i, 100 U/ml), and

interleukin-2 (IL-2, 250 U/mi) for 24 h in serum-free

medium. All cytokines were human recombinant products

supplied by Genzyme, Boston, MA. Culture media and

cytokines were found to contain less than 0.02 endotoxin

units/ml, as determined by a Limulus amebocyte lysate assay

(Sigma, St Louis, MO).

Measurement of 1a-hydroxylase activity

Calcitriol production by monocytes was measured using es-

tablished methods [18]. Following a 24-h culture with cyto-

kines, without replacing the medium, 25 D3 (10 p.M) was

added to the cell culture and the monocytes were incubated

for 10 mm at 37#{176}C.The reaction was stopped by placing the

culture plates on ice and brief ( < 10 s) treatment with an

equal volume of ice-cold water. The resulting dilute condi-

tioned medium was rapidly removed and stored at - 20#{176}C.

For measurement of calcitriol, the frozen samples were

thawed and vortexed. A small volume (10 p.l) was removed for

protein measurement [19]. To 1 ml of the sample 1000-2000

cpm of [3H]calcitriol was added to monitor procedural recov-

ery. One milliliter of acetonitrile was added to deproteinize
the specimen. The sample was vortexed for 10 mm and cen-

trifuged at 1000g for 10 mm. The supernatant was removed,

combined with one volume of 0.4 M K2HPO4 (pH 10.4),

vortexed, and centrifuged at 1000g for 10 mm. The sample

was then applied to a C18 silica preparative column (Waters,

Milford, MA). The vitamin D metabolites were eluted with
5 ml of double-distilled water, 5 ml of 70% methanol, and

5 ml of acetonitrile. The acetonitrile fraction containing the

hydroxylated vitamin D metabolites was collected, dried,

and reconstituted in 500 p.1 of HPLC solvent consisting of

88% hexane, 10% isopropanol, and 2% methanol (solvent

system A). The sample was then applied to a S-p.m silica ana-

lytical column (Alltech 605 SI, Deerfield, IL) using a Waters

HPLC system at a flow rate of 4 ml/min with the mobile

phase described above. The fraction containing calcitriol, as

calibrated by cold calcitriol standard, was collected.

The HPLC-purified sample was dried and reconstituted

in 100 p.1 of ethanol. A portion of the sample (25 p.l) was

counted to estimate procedural losses. Calcitriol recovery

averaged 50%. The remainder (2S-p.l samples in duplicate)

was used for quantitative measurement of calcitriol using a

calcitriol receptor assay according to the method of Rein-

hardt and Hollis [20, 21]. In other cell systems, this method

has been shown to separate calcitriol from other vitamin D

metabolites including 19-nor, i0-keto-25 (OH)D3 (19-nor

metabolite) [22-24]. Briefly, the samples were combined

with calf thymus calcitriol receptor and incubated in a

shaking water bath at 25#{176}C. Approximately 5000 cpm of

[3H]calcitriol was added. After appropriate incubation, the

samples were iced and dextran-coated charcoal was added to
remove unbound activity. The samples were vortexed and

iced for 15 mm, the charcoal pelleted by centrifugation, and

the supernatants decanted into scintillation vials for count-

ing. For each assay, we generated a standard curve using

known amounts of calcitriol and determined nonspecific

binding by adding a 100-fold excess ofcold calcitriol (specific

binding = total - nonspecific binding). The calcitriol con-

tent of the samples was determined from the standard curve.

The intraassay coefficients ofvariation are 5.4% for low con-

trol (20 pg/ml) and 4.7% for high control (100 pg/ml), with

a detection limit of 5 pg/ml. The interassay coefficients of

variation are 7% for low control and 4.1% for high control.
To further exclude any potential contribution of the 19-nor

metabolite, the described dilute conditioned medium sam-

pies were purified by a second HPLC solvent system known

to separate calcitriol completely from the 19-nor metabolite,

in addition to purification by solvent system A (samples were

divided and run in parallel on the two systems) [23]. The

second solvent system (B) consisted of 93 % dichloromethane

and 7% isopropanol. Calcitriol from the appropriate frac-

tions was then quantitated by calcitriol receptor binding as

described earlier. The amount of calcitriol detected was com-

pared for the two solvent systems for each sample.

Statistics

For all experiments, comparisons between groups were per-

formed using an unpaired Student’s t-test [25]. All data are



TABLE 1. Exclusion of 19-nor Metabolite by Comparison of

Alternative HPLC Solvent Systemsa

aSamples were divided and purified in parallel by two HPLC solvent sys-

tems; calcitriol was then quantitated by receptor binding as detailed in

methods. Solvent system A consists of88% hexane, 10% isopropanol, and

2% methanol; solvent system B consists of 93% dichloromethane and 7%

isopropanol (widely separates calcitriol from the 19-nor metabolite).
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Fig. 1. Calcitriol production by peripheral blood monocytes. Incubation

with human recombinant IFN (1000 U/mi), TNF (500 U/mi), IL-i

(100 U/mi), or IL-2 (250 U/mI) induced monocyte la-hydroxylase and con-

version of 25 D3 to 1,25 D3. Calcitriol levels are measured in conditioned

medium and expressed in pg/mg protein ± SEM. P < .001; n = 8 donors.

Gyctko ci a!. Cytokines induce monocyte calcitriol production

expressed as mean ± SEM. Number (n) = number of

donors, each donor contributing monocytes for one ex-

periment.

RESULTS

Cell culture

Buffy coat mononuclear cells consisted of approximately

40% monocytes, and adherent cell preparations were rou-

tinely >94% monocytes and >95% viable by trypan blue

exclusion. Cells, with or without dexamethasone or GSA

pretreatment, in the presence or absence of cytokines, were

routinely >90% viable at the conclusion of the incubation

period. Cell viability was again assessed after the icr-

hydroxylation reaction was stopped, immediately after

removal of diluted conditioned medium, and was essentially

unchanged.

Effects of cytokines of production of 1,25 D3 by
monocytes

After incubation in the presence and absence of inflamma-

tory cytokines, 25 D3 substrate was added to the monocyte

cultures. After 10 mm the reaction was stopped and diluted

medium was removed and assayed for calcitriol content as

detailed in Materials and Methods. No calcitriol was de-

tected in medium alone or when ethanol (25 D3 diluent)

alone was added to cells (data not shown). No detectable cal-

citriol was produced by monocytes under control conditions.

All the cytokines tested significantly increased production of

calcitriol by monocytes. IFN increased production of cal-

citriol to 133.16 ± 8.62 pg/mg protein, TNF to 143.43 ±

5.69, IL-i to 150.61 ± 5.52, and IL-2 to 144.01 ± 8.57 (in all

cases P < .001, n = 8 donors; Fig. 1). The data, expressed

in terms of total calcitriol per culture well, are control, no de-

tectable calcitriol; IFN, 45.09 ± 3.68 pg/well; TNF, 46.98 ±

2.98; IL-i, 53.93 ± 4.78; IL-2, 47.43 ± 5.58 (in all cases
P < .001; range 112-135 pM). There were no statistically

significant differences among the cytokines in the level of cal-

citriol synthesis they induced. Lysing the monocytes in con-

200

Sample number

Calcitriol levels (pg/mg protein)

Solvent system A Solvent system B

2

8
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95.9

64.6

90.6

125.4

73.9

147.1

ditioned medium prior to assay increased the average protein

content from 302.8 ± 3.3 to 636.8 ± 7.8 p.g/ml conditioned

medium but did not significantly alter the amount of cal-

citriol per milligram of protein. We conclude from these data

that unstimulated monocytes do not express lcr-hydroxylase

activity but respond to inflammatory cytokines by up-

regulating lcr-hydroxylase and synthesizing calcitriol from

exogenous 25 D3 substrate. Furthermore, the calcitriol

produced is released in significant amounts into the extracel-

lular environment, where it is available for paracrine inter-

actions.

Documentation of authentic calcitriol and exclusion of
the 19-nor, 1O-keto-25 (OH) D3 metabolite

Investigators have reported that phagocytic cells have the

capacity to convert 25 D3 to 19-nor, iO-keto-25 (OH) D3

(19-nor metabolite), a minor metabolite that comigrates with

authentic calcitriol on some HPLC systems [23, 26]. Al-

though contribution of the 19-nor metabolite should be es-

sentially eliminated in our system by the receptor binding
assay (calcitriol has a binding affinity for the calcitriol recep-

tor approximately 600 times that of the 19-nor metabolite),

we sought to determine definitively whether the 19-nor

metabolite could be contributing to our calcitriol measure-

ment [27]. We therefore divided aliquots of the previously

described dilute monocyte-conditioned medium into two

portions and assayed them in parallel on the two HPLC sol-

vent systems detailed in Materials and Methods. Solvent sys-

tem B was specifically chosen because it completely separates

authentic calcitriol from the 19-nor metabolite [23]. The ap-

propriate HPLC fractions were collected and calcitriol was

quantitated by receptor binding assay. If the 19-nor metabo-
lite comigrated with authentic calcitriol with solvent system

A and contributed to the receptor binding assay measure-

ment ofcalcitriol, less calcitriol would be measured by recep-
tor binding assay when the sample was purified by HPLC

system B (which effectively removes the 19-nor metabolite
from the calcitriol fraction). In each case, the amount of cal-

citriol quantitated by receptor binding was within assay

variability when purification by HPLC solvent system A was

compared with purification by HPLC solvent system B

(Table 1). Therefore, we can conclude that the 19-nor

metabolite is not significant in our system. We were not sur-

prised by this finding because the 19-nor metabolite is an ox-
idative product usually produced after prolonged culture
with 25 D3 substrate; our culture conditions limited ex-

posure to the substrate to only 10 mm.
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Fig. 3. GSA suppression of cytokine-induced caicitriol production by

peripheral blood monocytes. Preincubation with GSA (100 �g/ml) sup-

presses subsequent cytokine-induced calcitriol production. Cytokine doses

used were IFN (1000 U/mi), TNF (500 U/mI), IL-i (100 U/mI), or IL-2

(250 U/mI). Calcitriol levels are measured in conditioned medium and ex-

pressed in pg/mg protein ± SEM. Cytokine alone compared to GSA incu-

bation followed by cytokine stimulation; *j:* < .001, **p < .005; n = 4

donors.
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Fig. 2. Dexamethasone suppression of cytokine-induced calcitriol produc-

tion by peripheral blood monocytes. Preincubation with dexamethasone

(l0-� M) suppresses subsequent cytokine-induced calcitriol production.

Cytokine doses used were IFN (1000 U/mi), TNF (500 U/mI), IL-i

(100 U/ml), or IL-2 (250 U/mI). Calcitriol levels are measured in condi-

tioned medium and expressed in pg/mg protein ± SEM. Cytokine alone

compared to dexamethasone incubation followed by cytokine stimulation;
< .001, P < .015; n = 10 donors.
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Effects of dexamethasone preincubation on monocyte
calcitriol production

Whereas all the inflammatory cytokines tested induced simi-

lar calcitriol production, we sought to determine whether

cytokine up-regulation of icr-hydroxylase activity could be

suppressed and whether cytokines varied in their ability to

overcome suppressive effects. We chose dexamethasone as a

suppressive agent for several reasons. Glucocorticoids are
widely used clinically for the treatment of sarcoidosis; hyper-

calcemia is considered a traditional indication for the initia-

tion of such therapy [28]. It has been shown that in hypercal-

cemic sarcoidosis patients, circulating levels of calcitriol are

elevated, and after the initiation of glucocorticoid therapy

calcitriol levels fall rapidly, followed by a decrease in serum
calcium levels [29]. This suggests that glucocorticoids sup-

press the lcr-hydroxylase activity of granuloma-associated

macrophages. Furthermore, dexamethasone is a known sup-

pressor of lcr-hydroxylase activity. Dexamethasone, in con-

centrations similar to those reported here, has been shown to

suppress calcitriol production by kidney cells in vitro to ap-

proximately 60% of control levels [15].

Following preincubation with dexamethasone (107 M) un-

stimulated monocytes produced no detectable calcitriol.

Dexamethasone pretreatment significantly inhibited sub-

sequent cytokine-induced calcitriol production by mono-

cytes. Dexamethasone inhibited the response to IFN to 66%
of the level seen without dexamethasone pretreatment (IFN

alone compared to dexamethasone followed by IFN,

P < .001). Likewise, the TNF response was inhibited to 71%

(P < .001), the IL-i response to 62% (P < .001), and the

IL-2 response to 77% (P < .O1S, n = 10 donors; Fig. 2). We

can conclude, therefore, that dexamethasone suppresses
cytokine-induced calcitriol production by monocytes. Fur-

thermore, it appears that the effect of dexamethasone sup-

pression is similar among the cytokines tested. This level of

suppression is also similar to that seen in kidney cell cultures

in vitro [15].

Effects of GSA preincubation on monocyte calcitriol
production

To further delineate the regulation ofcalcitriol production by

monocytes, we next sought to determine whether the uremia

toxin GSA, a potent inhibitor of renal tubule cell icr-

hydroxylase activity, would also inhibit monocyte caicitriol

production [16]. The concentration of GSA used for these

studies, 100 p.g/ml, exceeds the average concentration of

GSA in the sera of hemodialysis patients in whom GSA is

thought to be the major inhibitor of renal tubule icr-

hydroxylase activity [30]. GSA pretreatment significantly in-

hibited subsequent cytokine-induced calcitriol production by
monocytes. GSA inhibited the response to IFN to 55% of the

level seen without GSA pretreatment (IFN alone compared

to GSA followed by IFN, P < .001). Similarly, the TNF

response was inhibited to 66% (P < .001), the IL-I response

to 63% (P < .001), and the IL-2 response to 66% (P < .005,
n = 4 donors; Fig. 3). We conclude, therefore, that GSA

suppresses cytokine-induced monocyte la-hydroxylase ac-

tivity. By comparison, we performed similar experiments

* using confluent cultures of murine kidney cells. In these ex-

periments, 40 p.g/ml GSA suppressed calcitriol production to

approximately 50% of control levels (data not shown).

DISCUSSION

Peripheral blood monocytes are recruited to sites of inflam-

mation, where they differentiate and become activated [31,

32]. Despite extensive investigation, the precise signals that

IFN TNF ILl 1L2 modulate these changes remain unclear [33]. We propose

that the elaboration of calcitriol is an autocrine mechanism

by which mononuclear phagocytes regulate differentiation

and activation in response to inflammatory mediators. If this

is true, the expression of ler-hydroxylase activity and the

production of calcitriol would not be regulated solely by ter-

minally differentiated macrophages, but these would be ex-
pressed by newly recruited monocytes as they are exposed to

the inflammatory milieu. It is further likely that the cyto-
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kines generated in granulomatous inflammation would play

a key regulatory role in initiating this activity.

The results of the current study support this paradigm.

Monocytes did not produce any detectable calcitriol under

unstimulated conditions. However, when they were stimu-

lated with TNF, IFN, IL-i, or IL-2, significant amounts of

calcitriol were produced rapidly from exogenously added

25 D3 substrate. The relatively high concentration of cal-

citriol in the conditioned medium of stimulated monocytes

argues against a sequestered intracellular pool of this

metabolite and instead places it extracellularly, in a propi-

tious site for its paracrine effects on neighboring T cells as

well as on monocyte/macrophages.

Prior work has demonstrated that pulmonary macro-

phages from patients with granulomatous inflammation ex-

press lcr-hydroxylase activity [2, 3]. Other investigators have

extended this observation by showing that normal alveolar

and culture-derived macrophages can produce calcitriol

under some conditions of stimulation [34-37]. The present

study, together with these observations, supports the

hypothesis that icr-hydroxylase activity is a monocyte/mac-

rophage effector function that can be modulated by inflam-

matory mediators in vitro and is active during granuloma-

tous inflammation in vivo.

Much is known about the effects of calcitriol on inflamma-

tory cells. Calcitriol is a potent differentiating agent [1, 38].

This has been well demonstrated in cell lines, most notably

in U937 cells and HL6O cells, as well as other cells of mono-

nuclear phagocyte lineage [39-41]. For example, incubation

of U937 cells with calcitriol (i0h1_10�0 M) induces an in-

crease in Fc receptors, OKM1 binding, cr-naphthyl esterase

staining, phagocytosis, and antibody-dependent cellular

cytotoxicity, while decreasing proliferation; these changes

are typical of a more mature cell [42, 43]. Calcitriol also

effects differentiation of normal cells of mononuclear phago-

cyte lineage. Incubation of normal human monocytes with

calcitriol (i08 M) in the absence of serum promotes differen-

tiation to the macrophage phenotype, as assessed by release

of interleukin-6 and TNF as well as secretion of lysozyme

and fibronectin [38]. Prolonged incubation of monocytes in

the presence of calcitriol (108 M) and 10% serum gives rise

to large, epithelioid, multinucleated giant cells with long sur-

vival times ( > 3 months) that are similar to cells seen in

granulomata in vivo [8]. These observations indicate that

calcitriol affects the entire spectrum of mononuclear phago-

cyte differentiation, from monocyte to macrophage to the
classic phenotype of granulomatous inflammation, the mul-

tinucleated giant cell. The current study highlights the im-

portance of these mechanisms in the context of inflammation

by demonstrating that undifferentiated, cytokine-stimulated

monocytes produce calcitriol, thereby directing differentia-

tion in an autocrine fashion.

Calcitriol also has immune modulating effects on mono-

nuclear phagocytes. Monocytes treated with calcitriol release

increase amounts of prostaglandin E2, IL-i, and hydrogen

peroxide [10, 44]. Of interest is the priming effect of cal-

citriol. Preincubation with calcitriol markedly enhances lipo-

polysaccharide-induced mononuclear phagocyte IL-i and
TNF production as well as phorbol myristate acetate

(PMA)-induced hydrogen peroxide production [ii, 13, 45].

This implies that, in addition to its direct effects, calcitriol

serves to sensitize mononuclear phagocytes to subsequent

inflammatory signals. Along these lines, we have reported a

role for calcitriol in the regulation of mononuclear phagocyte
proteolytic activity. Incubation with calcitriol alone enhances

mononuclear phagocyte plasminogen activator activity.

However, preincubation with calcitriol markedly enhances

PMA-induced expression of plasminogen activator inhibitor

activity [46]. Thus, the priming effect of calcitriol may ex-

pand significantly the repertoire of cellular responses to
inflammatory signaling. In contrast to the enhancement of

mononuclear phagocyte function seen after the addition of

calcitriol, vitamin D-deficient animals have markedly im-

paired macrophage function, including defective antitumor

activities, decreased migratory responses to inflammatory

stimuli, and decreased phagocytosis [47, 48].
The generation of calcitriol at inflammatory sites may be

of particular benefit in the defense against tuberculosis. In

vitro studies demonstrated that calcitrioi substantially in-

creased intracellular killing ofM. tuberculosis by macrophages

and is synergistic with pyrazinamide [44, 49, 50]. It is in-

triguing that several subpopulations recognized to be at in-

creased risk for the development of clinical tuberculosis

(patients with renal failure, the elderly, the malnourished,

etc.) are also known to have altered vitamin D metabolism

or frank vitamin D deficiency [17, 51]. In support ofthis con-

nection, a study of elderly vitamin D-deficient patients

demonstrated a lack of hypersensitivity to purified protein

derivative that was reconstituted by vitamin D repletion [52].

To further investigate mononuclear phagocyte lcr-hydrox-

ylase regulation, we preincubated the cells in either dexa-

methasone or GSA before cytokine stimulation. These two

agents were chosen because of their well-documented inhibi-

tory effects on renal cell icr-hydroxylase and because they

may be key factors in two groups of patients who have in-

creased susceptibility to tuberculosis - renal failure patients

and those receiving high doses ofcorticosteroids [17]. We saw

significant inhibition of cytokine-induced calcitriol produc-

tion when monocytes were preincubated with either dexa-

methasone or GSA. Therefore, qualitatively, regulation of

mononuclear phagocyte lcr-hydroxylase activity is similar to

that seen by renal cells. Dexamethasone is similar in the

magnitude of its suppressive effects on either renal cell or

stimulated monocyte calcitriol production [15]. GSA may be
a more potent inhibitor of renal cell calcitriol production

(50% inhibition) than monocyte calcitriol production (ap-

proximately 63% of control). Therefore, it appears that the

regulation ofmonocyte ia-hydroxylase activity may differ in

some respects from renal cell regulation, and further study

is needed.
In summary, we have demonstrated that peripheral blood

monocytes acquire lcr-hydroxylase activity and produce cal-

citriol on exposure to inflammatory cytokines. Furthermore,

this activity can be suppressed by corticosteroids or uremia

toxin. The production of calcitriol, therefore, is a mono-

nuclear phagocyte function that is mediated by signals
present in the inflammatory milieu. Cytokine-induced icr-

hydroxylase activity is subject to modification by therapeutic

agents (corticosteroids) and underlying metabolic conditions

(uremia). It is likely that the elaboration of calcitriol by

newly recruited monocytes contributes significantly to the

differentiation and activation of these cells in sites of

granulomatous inflammation.
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