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Key Points: 30 

About 40% of the selected events in the near-tail region display a phenomenon of 31 

equatorial plasma pressure decrease 32 

 33 

An enhanced equatorial convection with speed of ~ 20 km/s is observed in our cases 34 

during the substorm growth phase 35 

 36 

Statistical studies for the distributions of Peq properties and electron pressure 37 

variations are performed 38 

 39 

  40 
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Abstract. We investigate the plasma sheet pressure variations in the near Earth 41 

magnetotail (Radius distance, R, from 7.5 RE to 12 RE and Magnetic Local Time, MLT, 42 

from 18:00 to 06:00) during substorm growth phase with Time History of Events and 43 

Macroscale Interactions during Substorms (THEMIS) observations. It is found that, 44 

during the substorm growth phase, about 39.4% (76/193) of the selected events 45 

display a phenomenon of equatorial plasma pressure (Peq) decrease. The occurrence 46 

rates of Peq decrease cases are higher in the dawn (04:00 to 06:00) and dusk (18:00 to 47 

20:00) flanks (> 50%) than in the midnight region (20:00 to 04:00, < 40%). The mean 48 

values of the maximum percentages of Peq decrease during the substorm growth 49 

phases are larger in the dawn and dusk flanks (~ - 20%) than in the midnight region 50 

(~ > - 16%). The mean value of Peq increase percentages at the end of substorm 51 

growth phase is the highest (~ 40%) in the pre-midnight MLT bin (22:00 to 00:00) 52 

and is almost unchanged in the dawn and dusk flanks. Further investigations show 53 

that 13.0% of the events have more than 10% of Peq decrease at the end of substorm 54 

growth phase comparing to the value before the growth phase, and ~ 28.0% of the 55 

events have small changes (< 10%), and ~ 59.0% events have a 10% increase. This 56 

study also reveals the importance of electron pressure (Pe) in the variation of Peq in 57 

the substorm growth phase. The Pe variations often account for more than 50% of the 58 

Peq changes, and the ratios of Pe to ion pressure often display large variations (~ 50%). 59 

Among the investigated events, during the growth phase, an enhanced equatorial 60 

plasma convection flow is observed, which diverges in the midnight tail region and 61 

propagates azimuthally towards the dayside magnetosphere with velocity of ~ 20 62 

km/s. It is proposed that the Peq decreases in the near Earth plasma sheet during the 63 

substorm growth phase may be due to the transport of closed magnetic flux towards 64 

the dayside magnetosphere driven by dayside magnetopause reconnection. Both solar 65 

wind and ionospheric conductivity effects may influence the distributions of 66 

occurrence rates for Peq decrease events and the Peq increase percentages in the 67 

investigated region. 68 

  69 
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1. Introduction 70 

It is widely accepted that substorm growth phase starts with a southward turning of 71 

the interplanetary magnetic field (IMF) near the dayside magnetopause, ends with the 72 

onset of magnetic field dipolarization in the near-tail. Its typical duration is ~ 30 73 

minutes to ~ 2 hours [e.g., McPherron et al., 1973; Russell and McPherron, 1973; 74 

Baker et al., 1996; Li et al., 2013]. Southward IMF leads to the initiation of dayside 75 

magnetopause reconnection and transport of amount of magnetic flux from dayside 76 

magnetosphere to the magnetotail [Dungey, 1961]. The subsequent flaring of 77 

magnetotail as the lobes expand to accommodate the added flux increases the solar 78 

wind ram pressure on the magnetopause, which must be balanced by the increase of 79 

lobe magnetic pressure [e.g., McPherron et al., 1973; Russell and McPherron, 1973]. 80 

And, in turn, the plasma sheet pressure is expected to increase to balance the 81 

enhanced lobe pressure [Nagai et al., 1997; Wang et al., 2004; Kistler et al., 2006; 82 

Forsyth et al., 2014]. Substorm growth phase is thus accompanied by many distinct 83 

features, such as the thinning of plasma sheet, increasing of the cross-tail current 84 

density, and enhanced convection in the equatorial magnetosphere. These features 85 

have been widely reported and discussed in both observations [McPherron, 1970, 86 

1973; Russell and McPherron, 1973; Petrukovich et al., 1999; Asano et al., 2003] and 87 

empirical models [Wang et al., 2013; Yue et al., 2015]. However, there are also 88 

studies showing that the pressure increases were not evident during the growth phase 89 

of many substorm events [e.g., Kistler et al., 1993; Snekvik et al., 2012]. Thus, how is 90 

the plasma sheet pressure varied during the substorm growth phase is still not well 91 

understood and requires further investigations. 92 

 93 

The average ion temperature (Ti) in the plasma sheet can be several times (~ 5 – 10) 94 

higher than the electron temperature (Te) [e.g., Slavin et al., 1985; Baumjohann et al., 95 

1989], and the ratio of Ti / Te varies with solar wind and geomagnetic conditions 96 

[Wang et al., 2012; Grigorenko et al., 2016]. In many of the previous studies, electron 97 

pressure was often neglected [e.g. Kistler et al. 2006; Forsyth et al., 2014], or 98 
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assumed to be a small proportion to the ion pressure (14%) [e.g., Petrukovich et al., 99 

1999; Snekvik et al., 2012], in the calculation of total plasma sheet pressure. Although 100 

there were studies considered the contribution of measured electron pressure to the 101 

total plasma sheet pressure [e.g., Artemyev et al., 2016], it remains unclear how the Ti 102 

/ Te changes during the substorm growth phase. Thus, reliable in situ electron 103 

measurements are needed when precisely calculating the total plasma sheet pressure. 104 

 105 

Recently, midnight magnetic flux depletion (MFD) in the near-Earth magnetotail 106 

during substorm growth phase has been studied in three-dimensional mesoscale 107 

magnetohydrodynamics (MHD) simulations [Hsieh and Otto, 2014, 2015; Otto et al., 108 

2015]. In the simulation, MFD was generated by the equatorial convection across the 109 

closed field lines, which was suggested to be driven by the dayside magnetopause 110 

reconnection [e.g., Coroniti and Kennel, 1973; Kan, 1990]. The equatorial convection 111 

in the simulation converged in the dayside magnetopause region and diverged in the 112 

midnight tail region. This convection was suggested to be along the contour of 113 

constant flux tube entropy, which corresponded to the region of R (Radius distance) 114 

from 8 RE to 15 RE [Otto et al., 2015]. Hsieh and Otto [2014, 2015] further pointed 115 

out that MFD process could play an important role in the formation of thin current 116 

sheet in the near-Earth magnetotail region during substorm growth phase. The 117 

simulation works by Hsieh and Otto [2014, 2015] implied that MFD might be more 118 

intense than magnetic flux loading process in the near-Earth plasma sheet, which 119 

should have an impact on the evolution of plasma sheet pressure. However, these 120 

results were in theoretical or simulation context, and need to be tested and verified by 121 

in situ observations. 122 

 123 

This paper aims to get better understanding of the plasma pressure variations in the 124 

near-tail plasma sheet with Time History of Events and Macroscale Interactions 125 

during Substorms (THEMIS) observations [Angelopoulos, 2008]. THEMIS consists 126 

of five identical probes carrying a series of similar instruments with highly elliptical 127 
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orbits around the Earth. The probes provide plasma measurements for both ions and 128 

electrons. The apogees of THA, THD and THE were at ~ 12 RE during most of their 129 

tail seasons from 2008 to 2015, except that THA apogee was at ~ 10 RE during 2008 130 

tail season. Spacecraft with equatorial orbits would have more chances to stay in the 131 

central plasma sheet and benefit this investigation. In this study, we present detailed 132 

observations of pressure variations during substorm growth phase in the near-Earth 133 

tail plasma sheet. We find that plasma pressure in the equatorial plane does not always 134 

increase during the time of growth phase but decrease sometimes. Further sunward 135 

convection is seen to be enhanced, and electron pressure could make a significant 136 

contribution to the equatorial plasma pressure, especially at the late growth phase. The 137 

potential mechanisms for the variation of the plasma pressure in the growth phase are 138 

also discussed. 139 

 140 

2. Observations for equatorial plasma pressure variations 141 

 142 

This study employs data from the identical instruments onboard the THEMIS probes. 143 

Specifically, magnetic field data from the Fluxgate Magnetometer (FGM) [Auster et 144 

al., 2008], the combined ion data from Electrostatic Analyzer (ESA) [McFadden et al., 145 

2008] and the Solid State Telescope (SST), and the electron data from ESA. The 146 

magnetic field and particle data used are all spin-resolution (3 s). NASA/GSFC’s 147 

OMNI data set through OMNIWeb, which is shifted to the Earth’s bow shock nose 148 

[King and Papitashvili, 2005], is the source of solar wind conditions for the substorm 149 

growth phases examined in this study. We employ the SuperMAG provided SML 150 

auroral index, which is similar to AL [Gjerloev, 2012]. All quantities in this work are 151 

in Geocentric Solar Magnetospheric (GSM) coordinate system unless further notice. 152 

 153 

2.1. Case study 154 

 155 

We first introduce a substorm case on 5 April 2009. Figure 1 displays the overview of 156 
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solar wind conditions and geomagnetic field perturbation from 0830 UT to 0930 UT. 157 

The solar wind data contain a clear IMF southward turning at ~ 0848 UT (marked by 158 

the first vertical dashed line) with the preceding IMF northward more than one hour 159 

(Figure 1c). The solar wind energy flux (ε) transported into the magnetosphere 160 

[Perreault and Akasofu, 1978] shows an enhancement in the period of southward IMF 161 

(Figure 1e). SuperMAG SML index [Gjerloev, 2012] was generally smaller than -50 162 

nT during the same period, but decreased sharply from ~ -30 nT to ~ -230 nT at ~ 163 

0917 UT (Figure 1f) indicating the initiation of substorm expansion phase. The onset 164 

of the expansion phase was identified to be at ~ 0917 UT based on the criteria from 165 

Newell and Gjerloev [2011] (the second vertical dashed line). These features show 166 

that the time interval from ~ 0848 UT to ~ 0917 UT was the growth phase of this 167 

substorm event. IMF was southward during the entire growth phase and turned 168 

northward ~ 10 minutes after the beginning of substorm expansion phase. During the 169 

growth phase, the variation of solar wind dynamic pressure was smooth and small (~ 170 

0.3 nPa, Figure 1d), which should not be able to drive large perturbation in the 171 

magnetosphere. 172 

 173 

Plasma and magnetic field measurements from THD in the near-tail region (~ - 11 RE) 174 

for this event are shown in Figure 2. The first vertical dashed line corresponds to the 175 

first vertical line (southward turning of IMF) in Figure 1, marking the beginning of 176 

the growth phase. The second vertical dashed line marks the time of the high speed 177 

plasma flow arrival, followed by substorm dipolarization detected by THD. During 178 

the entire growth phase, THD was located in the central plasma sheet with |Bx| < 10 179 

nT (Figure 2g), Ti > 2 keV (Figure 2b), ni > 0.3 cm-3 (Figure 2d), and plasma 𝛽𝛽 > 5 180 

(ratio between thermal pressure and magnetic pressure, not shown). The differential 181 

energy fluxes for ions (Figure 2a) and electrons (Figure 2e) were mostly distributed in 182 

the region higher than ~ 1 keV, which further confirms that THD was located in the 183 

central plasma sheet. It was about 6 minutes after the IMF southward turning (~ 0854 184 

UT) when THD observed a smooth decrease in Bz. The decrease in Bz (from ~ 6 nT to 185 
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~ 3 nT) is a natural consequence of plasma sheet thinning process, which was 186 

accompanied by the increase of |Bx| (from ~ 0 nT to ~ 8 nT, Figure 2g). Meanwhile, 187 

THD observed an increase in ni (from ~ 0.30 cm-3 to ~ 0.55 cm-3, Figure 2d), a 188 

decrease in Ti (from ~ 5.5 keV to ~ 3 keV, Figure 2b), and a decrease in Te (from ~ 1.9 189 

keV to ~ 0.6 keV, Figure 2f). It needs to be noted that the off-diagonal components for 190 

ion and electron temperature tensors are much smaller than the diagonal components 191 

(xx, yy, and zz components shown in Figures 2b and 2f). In this case, the diagonal 192 

components for ions (Tixx (black), Tiyy (green), Tizz (red), Figure 2b) and electrons 193 

(Texx (black), Teyy (green), Tezz (red), Figure 2f) overlap indicating that Ti and Te may 194 

be treated as scalar quantities. 195 

 196 

Figure 3 shows the pressure variations measured by THD in the event. The four 197 

panels show the magnetic pressure of Bx and By components (Pbxy, Figure 3a), the 198 

electron zz component pressure (Pezz, Figure 3b), the ion zz component pressure (Pizz, 199 

Figure 3c), and the plasma pressure in the equatorial plane (i.e., equatorial plasma 200 

pressure, Peq, Figure 3d). The first and last vertical dashed lines correspond to the two 201 

lines in Figure 2. The middle vertical dashed line indicates the time of minimum Peq. 202 

Because THD was not always located near the magnetic equator during the substorm 203 

growth phase, Peq was obtained from the vertical pressure balance condition [e.g., 204 

Xing et al., 2009, 2011; Yao et al., 2012]. The derivation starts from 205 

∇ ∙ 𝑃𝑃 = 𝐽𝐽 × 𝐵𝐵�⃑  (1) 

, where 𝑃𝑃 is the thermal pressure tensor (including both ion, 𝑃𝑃𝑖𝑖, and electron, 𝑃𝑃𝑒𝑒), 𝐽𝐽 206 

the current density, and 𝐵𝐵�⃑  the magnetic field. Considering Ampere’s Law, 207 

∇ × 𝐵𝐵�⃑ = 𝜇𝜇0𝐽𝐽 (2) 

, and assuming that the weak dawn-dusk asymmetry of the magnetic field, i.e., 208 

𝜕𝜕 𝜕𝜕𝑦⁄ ~0, we can integrate the force balance equation vertically from the equatorial 209 

plane, and gives 210 
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𝑃𝑃𝑒𝑒𝑒𝑒 = 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 +
�𝐵𝐵𝑥𝑥2 + 𝐵𝐵𝑦𝑦2�

2𝜇𝜇0
−

1
𝜇𝜇0
�

𝜕𝜕𝐵𝐵𝑧𝑧
𝜕𝜕𝜕𝜕

𝐵𝐵𝑥𝑥𝑑𝑑𝑑𝑑
𝑧𝑧

0
 (3) 

, where Peq is the equatorial plasma pressure. Pizz and Pezz are the zz components of 211 

the locally measured ion and electron pressure tensors. Bx, By and Bz are the locally 212 

measured magnetic field x, y, and z components. The fourth term on the right hand 213 

side is the curvature force, which has been calculated in models [Xing et al., 2009] 214 

and observations [Xing et al., 2011]. The curvature force has proved to be much 215 

smaller than thermal pressure when the observing satellite was located in the central 216 

plasma sheet. Therefore, this term can be ignored by comparison to the other three 217 

terms [e.g., Xing et al., 2009, 2011]. During the entire growth phase for this substorm 218 

event, β at THD was always larger than 5. Thus, we have neglected the curvature 219 

force term in the calculation of Peq. THD observation shows that Pbxy was small 220 

during the growth phase, and increased from ~ 0 to ~ 0.025 nPa. Pezz also showed 221 

some variations with a decrease from ~ 0.14 nPa to ~ 0.08 nPa. Both Pizz and Peq 222 

decreased at the beginning of the growth phase but increased at a later time. The 223 

decrease of Peq was from ~ 0.41 nPa to ~ 0.325 nPa (~ 0.085 nPa, ~ 20.7 %), while 224 

the increase was from ~ 0.325 nPa to ~ 0.35 nPa (~ 0.085 nPa, ~ 7.7 %). The standard 225 

deviation of Peq variations prior to the substorm growth phase (from 0818 UT to 0848 226 

UT) was very small (~ 2.3%) compared to the Peq variations during the period of 227 

growth phase. Thus this event clearly shows that the equatorial plasma pressure in the 228 

near Earth plasma sheet could decrease during the substorm growth phase. 229 

 230 

2.2. Event Selections 231 

 232 

The case displayed in the previous section revealed a Peq decrease process preceding 233 

Peq increases in substorm growth phase. However, in addition to this case result, a 234 

statistical analysis to reveal the common features of Peq variations in the near-Earth 235 

tail region throughout the growth phase is clearly required. THA, THD and THE data 236 

during the tail seasons from 2007 and 2015 (including durations from December 1 237 
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2007 to April 30 2008, December 1 2008 to April 30 2009, March 1 2010 to May 31 238 

2010, March 1 2011 to June 30 2011, April 1 2012 to October 31 2012, June 1 2013 to 239 

September 30 2013, June 29 2014 to October 31 2014, and August 31 2015 to 240 

December 31 2015) were surveyed to search for the events of interest according to the 241 

following procedures. 242 

 243 

1). The first step is to select the IMF southward turning events based on one minute 244 

OMNI dataset. The preceding IMF before southward turning should be mostly (> 245 

85%) northward with an interval longer than 60 minutes, and the following IMF after 246 

southward turning should be mostly (> 85%) southward with an interval longer than 247 

30 minutes. The average value of Bz minus the standard deviation of Bz during the 60 248 

minutes period should be greater than zero for the preceding IMF, and the average 249 

value of Bz plus the standard deviation of Bz during the 30 minutes period should be 250 

smaller than zero for following IMF. In addition, the variation of solar wind dynamic 251 

pressure (Dp) should be small to exclude the influence from Dp changes on 252 

magnetotail dynamics. Here we use the criterion that the standard deviation of Dp 253 

during the 90 minutes (60 minutes preceding and 30 minutes following) is smaller 254 

than 30% of the average Dp. 255 

 256 

2) The second step is to further select the isolated substorm events from the IMF 257 

southward turning events. The SuperMAG SML index [Gjerloev, 2012] and substorm 258 

onset lists from Newell and Gjerloev [2011] and Forsyth et al. [2015] (a specified 259 

expansion phase threshold of 50%) are employed in the selection. The preceding 260 

period should be with average value of SML greater than – 100 nT in one hour, and 261 

there should be no substorm onsets listed by Newell and Gjerloev [2011] and Forsyth 262 

et al. [2015]. The minimum SML index after IMF southward turning should be 263 

smaller than – 150 nT in the following three hours. Substorm expansion phase is 264 

identified to begin with a rapid decrease of SML (dSML/dt < – 4 nT/min). 265 

 266 

This article is protected by copyright. All rights reserved.



11 
 

We refer to Li et al. [2013] for the selection of IMF southward turning events, and 267 

Juusola et al. [2011] and Li et al. [2013] for the selection of substorms and the 268 

beginning time of substorm expansion phase. Substorm growth phase is defined to be 269 

the period between IMF southward turning point and the first point satisfying 270 

dSML/dt < - 4 nT/min. If a probe detected a dipolarization in the plasma sheet after 271 

the IMF southward turning, but before the time satisfying dSML/dt < - 4 nT/min, the 272 

beginning of expansion phase is then defined to be the moment when spacecraft 273 

observed the dipolarization. Figures 2 and 3 show an event that THD detected 274 

dipolarization and flow bursts, which was defined as the beginning of substorm 275 

expansion phase. Nevertheless, in observations, spacecraft does not always detect the 276 

dipolarization and flow bursts at the substorm onset, especially when spacecraft is 277 

located in the near flank regions (Magnetic Local Times, MLTs from ~ 3:00 to 6:00 278 

and ~ 18:00 to 21:00). Figures 4a to 4f display one of this kind. The first vertical line 279 

indicates the beginning of substorm growth phase, i.e., southward turning of IMF, and 280 

the second vertical line indicates the first point satisfying dSML/dt < - 4 nT/min. This 281 

period is defined to be the substorm growth phase based on our criteria. The 282 

stretching (Bx increase) and flaring (By increase) of the magnetic field lines can be 283 

clearly observed (Figure 4f), while Bz decreases at first and then increases slightly. 284 

After the beginning of expansion phase, there is a clearly decrease in Peq, which is 285 

consistent with the signatures of substorm expansion phase. It can be seen that our 286 

criteria for the selection of substorm growth phase events also works well for the 287 

cases measured near the flanks. (Data Set DS01 in the supporting information shows 288 

the list of the growth phases, containing the start times and end times of the events) 289 

 290 

3). The last step is to exclude the influences from other effects. Probe should be 291 

located in the region with R > 7.5 RE (R = �𝑋𝑋𝐺𝐺𝐺𝐺𝐺𝐺2 + 𝑌𝑌𝐺𝐺𝐺𝐺𝐺𝐺2 ), as plasmapause position 292 

could reach to ~ 7.5 RE during quite period [Moldwin et al., 2002; Liu and Liu, 2014]. 293 

Besides, Probe is required to be located in the inner plasma sheet with 𝛽𝛽 > 0.5 during 294 

most of the time (> 85%) in growth phase. This aims to obtain accurate estimation of 295 
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Peq as introduced in Section 2.1. Furthermore, the events associated with 296 

multi-crossings of current sheet are excluded, such as, those accompanied with 297 

current sheet flapping waves. The current sheet flapping waves are believed to be 298 

generated by magnetic gradient instability [e.g., Sun et al., 2014; Korovinskiy et al., 299 

2015], which should be in association with pressure gradients. In addition, to avoid 300 

the influence from localized dipolarizations, we have also eliminated those events that 301 

observed dipolarization signatures (Bz increase) in one hour prior to the IMF 302 

southward turning. Finally, we exclude as well the cases that the plasma sheet with 303 

large disturbance prior to the substorm growth phase. For this purpose, we calculate 304 

the standard deviation for plasma sheet Peq in the period of half an hour prior to the 305 

growth phase (δPeq), which should be much smaller (< 5%) than the mean value of 306 

Peq in the same period. 307 

 308 

Following the whole procedure, a total of 193 cases are selected. There are many 309 

observations similar to the case shown in Section 2.1 with Peq decrease, and there are 310 

also many cases associated with clear Peq increase in the entire substorm growth phase 311 

analogous to the previous observations [e.g., Nagai et al., 1997; Wang et al., 2004; 312 

Kistler et al., 2006]. Figures 4g to 4l show an event with Peq increase during the entire 313 

growth phase. The two vertical dashed lines represent the beginning and end of the 314 

substorm growth phase. The plasma sheet thinning and magnetic field line stretching 315 

and flaring, including Bz decrease, Bx and By increase (Figure 4l), are clearly seen. For 316 

this case, the increase of Peq was from ~ 0.27 nPa to ~ 0.37 nPa (~ 37%, Figure 4k). In 317 

the following section, Peq variations during the substorm growth phase will be 318 

discussed in detail. 319 

 320 

2.3. Statistical Results 321 

 322 

Among the 193 cases selected, in 76 of them (~ 39.4%) certain amount of Peq 323 

decrease (hereafter call Peq decrease case) was observed. This study defines (Peqmin - 324 
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Peq0) / δPeq ≥ 3, where Peqmin is the minimum of Peq during the growth phase, Peq0 the 325 

Peq before the start of growth phase, and δPeq is the standard deviation of Peq in the 326 

period of half an hour prior to the substorm growth phase. The selection of Peqmin is 327 

based on one minute moving mean Peq data, where the decrease in Peq should be 328 

relatively steady. We determined from the differences between adjacent data points, 329 

which should be constantly negative in a period longer than five minutes before the 330 

data point of Peqmin. This near ~ 40% occurrence rate suggests that the Peq decrease 331 

phenomenon in the near-tail plasma sheet during the substorm growth phase is 332 

common. The distribution of 193 probe observations in XGSM-YGSM plane is shown in 333 

Figure 5. Blue circles represent the locations of Peq decrease cases, and red circles 334 

represent others. The black arrows in Figure 5a represent the averaged plasma flows 335 

in XGSM-YGSM plane (𝑉𝑉�⃑𝑥𝑥𝑥𝑥 = Vx𝑒𝑒𝑥𝑥+ Vy𝑒𝑒𝑦𝑦) , and the black arrows in Figure 5b indicate 336 

the differences between the flows in Figure 5a and the averaged plasma flows in half 337 

an hour prior to the growth phase. The statistical features on Peq variations for all the 338 

events will be further investigated in Figure 6. Here we discuss the plasma flow 339 

properties. 340 

 341 

In the midnight magnetic flux depletion (MFD) model, the closed magnetic flux tubes, 342 

which could be transported into dayside and balance the reconnection eroded 343 

magnetic flux, should hold the same entropy as the dayside magnetopause [Otto et al., 344 

2015; Hsieh and Otto, 2015]. The MFD region is estimated to be located in the 345 

near-Earth tail from around R = - 8 RE to - 15 RE [Otto et al., 2015]. In this study, we 346 

focus on the tail region between R = - 7.5 RE and R = - 12 RE. The equatorial plasma 347 

flows in our cases are mostly along the tangential directions of different R circles, 348 

which are very likely along the contours of constant flux tube entropy as shown in 349 

[Otto et al., 2015], and diverge in the near midnight tail region (Figure 5a). This 350 

convection divergence in the midnight tail is also similar to the velocity distributions 351 

shown in the MHD simulations [Otto et al., 2015; Hsieh and Otto, 2015]. This plasma 352 

convection flow provides strong evidence for the existence of equatorial convection 353 
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which is consistent with the picture of MFD. The plasma convection flow velocities 354 

are observed to be around 20 km/s. Figure 5b displays the plasma flow differences 355 

(∆𝑉𝑉�⃑𝑥𝑥𝑥𝑥) between the average plasma flows during substorm growth phase and the flows 356 

in half an hour prior to the substorm growth phase, which clearly shows the 357 

enhancements of around 10 km/s of plasma flows towards the dayside. 358 

 359 

To investigate the spatial distribution of the Peq variations, Figure 6 shows the 360 

statistical features on the 193 cases. Figure 6a shows the occurrence rates for Peq 361 

decrease cases in different Magnetic Local Time (MLT) bin. In this figure, each MLT 362 

bin includes two magnetic local hours to make sure each bin contains enough cases (> 363 

10). The occurrence rates of Peq decrease cases are ~ 50% for the dawn MLT bin 364 

(04:00 to 06:00), and ~ 80% for the dusk MLT bin (18:00 to 20:00), respectively, but 365 

are < 40% in the other four midnight MLT bins (20:00 to 22:00, 22:00 to 00:00, 00:00 366 

to 02:00, 02:00 to 04:00). This figure indicates that the Peq decrease cases are more 367 

often observed in the dawn and dusk flanks rather than midnight tail region. Figure 6b 368 

has investigated the distributions of percentages of Peq decrease along the MLT bins. 369 

We have calculated the ratios of Peq decrease ((Peqmin – Peq0) / Peq0) for each case. 370 

Determinations of Peqmin and Peq0 were introduced above. Cases that do not observe 371 

Peq decrease are excluded. The Peq decrease percentage distributions (Figure 6b) 372 

indicate that the mean percentages in dawn (04:00 to 06:00 and 02:00 to 04:00, ~ - 373 

20%) and dusk (18:00 to 20:00, ~ - 18%) MLT bins are smaller than the midnight 374 

MLT bins (> - 16%), indicating that the Peq decrease is more prominent in the dawn 375 

and dusk flanks than the midnight regions. We note the Peq decrease percentage 376 

distributions that include the cases do not observe Peq decrease (not shown) give the 377 

similar feature as Figure 6b, but with the mean percentages in each MLT bins larger (> 378 

- 15%). 379 

 380 

In Figure 6c, we have further investigated Peq increase ratios ((Peqend – Peq0) / Peq0) at 381 

the end of substorm growth phase, where Peqend is the Peq at the end of substorm 382 
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growth phase. Figure 6c shows that the mean ratios of Peq increase is the highest in 383 

the pre-midnight MLT bin (22:00 to 00:00, ~ 40%). And the mean of Peq increase 384 

ratios are decreasing towards the dawn and dusk flanks, with the average Peq almost 385 

unchanged (~ 0%) in the dawn and dusk flank MLT bins. Green circles in Figure 6c 386 

are the scatter of Peq increase ratios for the 193 cases. This scatter shows that in many 387 

cases Peq at the end of substorm growth phase could smaller than Peq0. To further 388 

evaluate this phenomenon, we have divided the cases into three groups. The first 389 

group contains events satisfying (Peqend - Peq0) / Peq0 < - 10%, the second group 390 

satisfying |(Peqend - Peq0) / Peq0| < 10%, and the third group (Peqend - Peq0) / Peq0 > 10%. 391 

There are 25 events (25/193, ~ 13.0%) in the first group, which means that Peq 392 

decreases more than 10% in ~ 13.0% of our events at the end of substorm growth 393 

phase comparing to the Peq at the beginning of substorm growth phase. There are 54 394 

events in the second group, indicating that in ~ 28.0% (54/193) of our events Peqend is 395 

similar to Peq0. The third group contains 114 events, indicating that ~ 59.0% of the 396 

events display large Peq increase at the end of substorm growth phase. 397 

 398 

We have further investigated the relationship between the three groups of events and 399 

the Peq decrease events. Twenty-four of the 25 events (~ 96%) in the first group are 400 

the Peq decrease events, 26 of the 54 events (~ 48.1%) in the second group are the Peq 401 

decrease events, and 26 of the 114 events (~ 22.8%) in the third group are the Peq 402 

decrease events. The events in the first group corresponding to more than 10% Peq 403 

decrease at the end of substorm growth phase are highly correlated with the Peq 404 

decrease events (~ 96%). And this percentage drops to ~ 22.8% in the third group. 405 

This clearly indicates that Peq decrease events more often correspond to Peq decrease 406 

at the end of substorm growth phase, but there are still some events corresponding to 407 

more than 10% of Peq increase at the end of substorm growth phase. 408 

 409 

3. Electron pressure contribution 410 

 411 
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In many previous studies, the contribution of Pe to the total pressure was neglected 412 

[e.g., Kistler et al., 2006; Forsyth et al., 2014] or assumed to be only a small portion 413 

(14%) of the Pi [e.g., Petrukovich et al., 1999; Snekvik et al., 2012] during substorm 414 

growth phase in the tail plasma sheet. However, the cases in Figures 3 and 4 showed 415 

that Pezz or Pbxy displayed large variations in the growth phase. In Figure 3, Pezz 416 

exhibited a decrease of ~ 0.06 nPa in the growth phase (Figure 3b), and Pbxy showed 417 

an increase of ~ 0.025 nPa (Figure 3a) at the same time, which were comparable with 418 

the increase of Pi (~ 0.04 nPa, Figure 3c). For the case in Figures 4g to 4l, Peq 419 

increment (~ 0.1 nPa, Figure 4k) was almost evenly contributed by Pizz (Figure 4j) 420 

and Pbxy (Figure 4h), but with Pezz (Figure 4i) being almost constant. In these two 421 

cases, because the variations of Pbxy were comparable to Pizz, the real contributions 422 

from Pezz and Pizz to Peq are not clear. Therefore, it is necessary to exclude the 423 

influence from Pbxy for the investigation of Pezz and Pizz contributions to Peq. We have 424 

set up the following criteria to further select events from the 193 cases: 425 

 426 

1). Pbxy ≤ Pezz / 5 during the entire substorm growth phase. 427 

 428 

2). Pezz changes (|∆Pezz|) should be at least five times larger than Pbxy changes (|∆Pbxy|) 429 

during the same time, i.e., |∆Pbxy| ≤ |∆Pezz| / 5. 430 

 431 

It has been shown that particle distribution functions can vary even in the central 432 

plasma sheet (β > 1), especially for electrons [Walsh et al., 2011]. The two criteria 433 

described above ensure the main contributors to the Peq are electron and ion thermal 434 

pressure, which helps to mitigate the influence of particle distribution variations in the 435 

plasma sheet. 436 

 437 

Among the 193 cases there are 19 cases satisfying the above constraints. Figure 7 438 

shows an example on 20 January 2008. In this case, substorm growth phase started at 439 

~ 0242 UT and ended at ~ 0305 UT. Pezz (> 0.1 nPa, Figure 7c) was generally 10 440 
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times larger than Pbxy (< 0.01 nPa, Figure 7b) during the entire growth phase period. 441 

Peq showed a decrease prior to the increase, similar to the case in Section 2.1. The 442 

decrease of Peq was from ~ 0.35 nPa to ~ 0.29 nPa (~ 17.1%, ∆Peq ~ 0.06 nPa), and 443 

increase was from ~ 0.29 nPa to ~ 0.33 nPa (~ 13.8%, ∆Peq ~ 0.04 nPa). During the 444 

Peq decrease stage (between the first and second vertical dashed lines), Pezz showed 445 

small variation (~ 0.01 nPa) with the ratios of Pezz to Pizz ranging from ~ 50% to ~ 446 

55%. In the Peq increase stage (between the second and third vertical dashed lines), 447 

Pezz showed an increase from ~ 0.105 nPa to ~ 0.155 nPa (∆Pezz ~ 0.05 nPa) which 448 

was comparable (~ 100%) with ∆Peq changes at the same time. ∆Pbxy (~ 0.003 nPa) 449 

was about an order smaller than ∆Pezz. Ratios of Pezz to Pizz increased from ~ 50% to ~ 450 

80% (30%, Figure 7f) at the meantime. The above observations reveal two important 451 

features. One is that Pezz variations can be comparable with that of Peq. The other is 452 

that the ratios of Pezz to Pizz can exhibit large variations. These features become 453 

prominent in the Peq increase stage, i.e., the late growth phase, for this case. 454 

 455 

Pressure variations for the selected 19 cases during substorm growth phase cases are 456 

summarized in Table 1. The ∆Pbxy (in nPa, fourth column), ∆Pezz (in nPa, fifth 457 

column), ∆Peq (in nPa, sixth column), ∆Pizz (in nPa, seventh column) and ∆(Pezz/Pizz) 458 

(eighth column) are the differences between the maxima and minima of each quantity 459 

during the entire substorm growth phase. The positive values mean that the quantities 460 

increase and negative values mean the quantities decrease. These multi-case results 461 

generally confirm the two features obtained from the case in Figure 7. Firstly, Pezz 462 

variations could frequently account for large portion of the Peq changes during the 463 

growth phase. From this table, it can be seen that ∆Pezz are generally comparable with 464 

or larger than ∆Peq, with the ratios of ∆Pezz to ∆Peq in most cases being larger than 50% 465 

(except events #4, #8, #16, and #18). Secondly, the ratios of the Pezz to Pizz display 466 

large variations. As shown in the eighth column, Pezz/Pizz show changes larger than 50% 467 

in about half of the events (9/19). This result indicates, firstly, the ratios between Pezz 468 

and Pizz are not constant; secondly, Pezz could be comparable with Pizz during 469 
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substorm growth phase in the plasma sheet. We note that Pezz exhibits large variations 470 

mainly in the late growth phase for most of the events. 471 

 472 

We have further investigated the 15 cases of large electron pressure contributions 473 

(with the ratios of ∆Pezz to ∆Peq larger than 50%) in the XGSM-YGSM plane (in Figure 8), 474 

which shows 10 of them were located in the dawnside of the magnetotail (YGSM < 0), 475 

and 5 of them located in the duskside (YGSM > 0). It seems that the events with large 476 

electron pressure contributions could be more frequently observed in the dawnside 477 

than duskside. But it needs to note that this distribution only includes 15 events. 478 

Further investigation with more events are needed to confirm this conclusion. The 479 

relationship between these 15 events and three groups for Peqend variations has been 480 

shown in the ninth column in Table 1. 10 of the 15 cases (~ 66.7%) are corresponding 481 

to the third group events, 3 events corresponding to the second group events (~ 482 

20.0%), and 2 events corresponding to the first group. The occurrence rates for each 483 

group events in the 15 cases are comparable with the percentage of the statistical 484 

result for all cases. This indicates that the occurrence of large electron pressure 485 

variations does not show obvious preferences in any groups. 486 

 487 

4. Conclusion and Discussion 488 

 489 

Our analyses of the THEMIS observations have revealed new features of the plasma 490 

pressure variations in the near-Earth tail region during the substorm growth phase, 491 

which are summarized below. 492 

 493 

1. It is quite common for Peq to decrease in the near-tail plasma sheet (i.e. R ~ 7.5 RE 494 

to ~ 12 RE) in the substorm growth phase. Such a decrease was detected in about 40% 495 

of our cases (~ 39.4%, 76/193). 496 

 497 

2. Near the magnetic equator enhanced azimuthal convection with speeds of ~ 20 498 
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km/s along the contours of constant flux tube entropy is observed during substorm 499 

growth phase. This flow diverges in the midnight region and converges at the flanks 500 

toward the dayside. 501 

 502 

3. The occurrence rate of Peq decrease cases is higher at the dawn and dusk flanks (> 503 

50%) than midnight (< 40%) tail region. Further, the mean Peq decrease percentage is 504 

larger at the dawn and dusk flanks (~ - 20%) than in the midnight region (~ > - 16%). 505 

 506 

4. The Peq increase percentage at the end of substorm growth phase is the highest in 507 

the pre-midnight MLT bin (~ 40% from 22:00 to 00:00), and the mean of Peqend almost 508 

does not change when compared to Peq0 in the dawn and dusk flank MLT bins. More 509 

detailed examination reveals that ~ 13.0% (25/193) of the events show a Peqend 510 

decrease of more than 10% of Peq0 ((Peqend - Peq0) / Peq0 < - 10%, the first group), ~ 511 

28.0% (54/193) display only a small change (|(Peqend - Peq0) / Peq0| < 10%, the second 512 

group), and for ~ 59.0% (114/193) of the events Peqend increases by more than 10% of 513 

Peq0 ((Peqend - Peq0) / Peq0 > 10%, the third group). 514 

 515 

5. The Peq decrease cases are highly correlated with the first group events, i.e., those 516 

with a Peqend decrease of more than 10% of Peq0, but there are still many Peq decrease 517 

cases with a Peqend increase of more than 10% of Peq0. And ~ 22.8% (26/114) of the 518 

events in third group exhibit Peq decreases. 519 

 520 

6. Finally, our study has revealed that Pezz variations frequently (~78.9%, 15/19) 521 

account for large portion (> 50 %) of the Peq changes, and the ratios of the Pezz to Pizz 522 

display large variations (~ 50%) with Pezz being comparable with Pizz in about half of 523 

the events (9/19). These Pezz variations occurred mainly in the late substorm growth 524 

phase. The distribution of events with large Pezz variations shows they are more 525 

frequently observed in the dawnside than duskside, and the occurrence of large 526 

electron pressure variations do not display obvious preferences in any groups. With 527 
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only 15 cases, these two conclusions certainly need further investigation. 528 

 529 

The transmission of enhanced electric fields associated with dayside magnetopause 530 

reconnection across the open field lines of the magnetotail has been extensively 531 

studied [e.g., McPherron et al., 1973; Russell and McPherron, 1973]. The enhanced 532 

electric field due to solar wind convection transports reconnected (i.e. “open”) 533 

magnetic flux from the dayside into lobes and has been believed to be responsible for 534 

an increase in total pressure in the plasma sheet [e.g., Wang et al., 2004; Kistler et al., 535 

2006; Forsyth et al., 2014; Yue et al., 2015]. However, it has also been suggested that 536 

this enhanced electric field will be reflected in the closed field line region of the 537 

near-tail through compression and rarefaction waves [Coroniti and Kennel, 1973; Kan, 538 

1990]. The net effect is the transport of closed magnetic flux in the near-Earth tail 539 

region to dayside magnetosphere creating a magnetic flux depletion (MFD) on the 540 

nightside [Hsieh and Otto, 2014, 2015; Otto et al., 2015]. Kan [1990] further 541 

proposed that the enhanced electric field across the closed field lines arriving at the 542 

near-tail plasma sheet could be earlier than across open field lines. The simulation 543 

works of Hsieh and Otto [2014,2015] considers the intensity of the two processes but 544 

not their time sequences.  545 

 546 

Given our results indicating that a Peq decrease in the plasma sheet is quite common, 547 

it is inferred that MFD may indeed take place at the investigated region (R ~ 7.5 RE to 548 

~ 12 RE) during the growth phase and that it could dominate the pressure balance in 549 

this region. Simulations have suggested that the transport of near-Earth magnetic flux 550 

from the nightside to the dayside should take place along contours of constant entropy 551 

[Otto et al., 2015]. An equatorial convection with speed of ~ 20 km/s is observed in 552 

our cases. These plasma flows are mostly azimuthal and the flow is away from local 553 

midnight toward the dawn and dusk flanks, which does indeed follow approximately 554 

the contours of constant flux tube entropy. We believe this plasma flow convection 555 

provides strong evidence for the existence of dayside convection supporting the MFD 556 
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pressure variation scenario. Accordingly, the Peq decrease growth phase phenomenon 557 

reported here constitutes evidence that the plasma sheet thinning in the near tail 558 

region is not be only due to the enhanced electric field across open field lines, but also 559 

across closed field lines. 560 

 561 

Our statistical analyses have shown that the occurrence rates for events with Peq 562 

decrease near the magnetic equator are higher in the dawn and dusk flanks (> 50%) 563 

than at midnight (< 40%). They have revealed that although ~ 59.0% of our events 564 

correspond to a Peqend increase, there are still events with Peqend almost unchanged (~ 565 

28.0%) or even decreasing (~ 13.0%) as compared to Peq0. We believe these results 566 

may provide an explanation for the previous conflicting results concerning plasma 567 

sheet pressure variations, i.e., some showing plasma sheet pressure increase during 568 

the substorm growth phase [e.g., Nagai et al., 1997; Wang et al., 2004; Kistler et al., 569 

2006; Forsyth et al., 2014], while others found little or no change [e.g., Kistler et al., 570 

1993; Snekvik et al., 2012]. We have found that the Peq increase percentage at the end 571 

of growth phase is the highest in the pre-midnight MLT bin (22:00 to 00:00). This 572 

location is in agreement with the statistical substorm onset locations at MLT ~ 21:00 573 

to ~ 01:00 [e.g., Liou et al., 2001; Frey et al., 2004]. Since the variations of Peq are 574 

suggested to be closely related to enhanced electric fields associated with dayside 575 

magnetopause reconnection transmitting through different paths, Peq variations in the 576 

tail plasma sheet should depend on the solar wind condition and ionospheric 577 

conductance distribution in the polar region [e.g., Kan, 1990; Lopez et al., 2014]. 578 

Simulation results have shown that plasma sheet evolution in the near-tail region 579 

should depend on the competition between the depletion of closed magnetic flux and 580 

addition of open flux, but with the open flux being added more uniformly to the 581 

magnetotail [Hsieh and Otto, 2015]. But there are also many studies showing that 582 

magnetic flux is often added non-uniformly to the tail due to IMF By influence [e.g., 583 

Liou and Newell, 2010; Østgaard et al., 2011]. Ionospheric conductivity has also been 584 

suggested to be affected by dipole tilt [e.g., Liou and Newell, 2010]. How all of these 585 
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processes influence this Peq evolution during substorm growth phase is a very 586 

complex problem that needs further investigation. 587 

 588 

Our results have shown that the Peq changes observed during substorm growth phase 589 

frequently contain large (> 50%) contributions from Pezz. This result and the finding of 590 

large variations in the ratios of Pezz to Pizz challenge the results of some previous 591 

studies and common assumptions about tail plasmas. Our results further indicate that 592 

understanding the role of electron properties is essential to understanding magnetotail 593 

pressure variations during substorm growth phase. In particular, the case studies 594 

presented here indicate that the variations in Pezz are frequently very important in the 595 

late growth phase. It is at this point that the plasma sheet thins to an ion inertial length 596 

or less. Under these conditions it is not surprising that electrons are often observed to 597 

be the main contributor to the enhanced current density [e.g., Mitchell et al., 1990; 598 

Asano et al., 2003]. For all of these reasons we think that variation in Pezz during 599 

substorm growth phase requires further investigation. 600 

 601 

 602 

  603 
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 752 
Figure 1. Overview of the solar wind and geomagnetic perturbations. (a) 753 

Interplanetary magnetic field (IMF) X component (Bx), (b) IMF By, (c) IMF Bz, (d) 754 

solar wind dynamic pressure (Dp), (e) energy input from the solar wind to the 755 

magnetosphere (𝜖𝜖) [Perreault and Akasofu, 1978], and (f) the SuperMAG SML 756 

indices (similar to AL) [Gjerloev, 2012]. The first vertical dashed line (black) 757 

indicates the southward turning of IMF, i.e., beginning of substorm growth phase. The 758 

second (red) vertical dashed line represents the onset of expansion phase based on the 759 

criteria from Newell and Gjerloev [2011]. 760 

 761 
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 764 

Figure 2. Overview of THD particle and magnetic field observations. (a) Energy 765 

spectrum for ion differential energy flux, (b) diagonal components of ion temperature 766 

tensor, Tixx (black), Tiyy (green) and Tizz (red), (c) ion velocity components, Vx (blue), 767 

Vy (green) and Vz (red), (d) ion density (ni), (e) Energy spectrum for electron 768 

differential energy flux, (f) diagonal components of electron temperature tensor, Texx 769 
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(black), Teyy (green) and Tezz (red), and (g) magnetic field components, Bx (blue), By 770 

(green) and Bz (red). Ions spectrum and moments are from the combination of ESA 771 

and SST measurements, while electrons are from ESA measurements. The first 772 

vertical dashed line corresponds to the beginning of substorm growth phase. The 773 

second vertical dashed line represents the beginning of substorm dipolarization. See 774 

text for detail descriptions. 775 
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 777 

Figure 3. Overview of pressure variations from THD observations. (a) Magnetic 778 

pressure of Bx and By components (Pbxy), (b) electron zz component pressure (Pezz), (c) 779 

ion zz component pressure (Pizz), and (d) the equatorial plasma pressure (Peq). Red 780 

lines in (c) and (d) are one minute moving means of the data. The first and last 781 

vertical dashed lines correspond to the beginning and end of substorm growth phase, 782 

respectively. The second vertical dashed line indicates the time of minimum Peq. 783 
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 785 
Figure 4. Left column: overview of a substorm growth phase event located in the near 786 

dawn flank region from THE. Right column: overview of an event with equatorial 787 

plasma pressure increase from THD. (a, g) IMF Bz, (b, h) Pbxy, (c, i) Pezz, (d, j) Pizz, (e, 788 

k) Peq, and (f, l) Bx (blue), By (green) and Bz (red). Red lines in (d), (e), (j) and (k) are 789 

one minute moving means of the data. The first and last vertical dashed lines in each 790 

event correspond to the beginning and end of substorm growth phases. 791 
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 793 
Figure 5. Statistical features of equatorial plasma pressure (Peq) and plasma flows for 794 

the 193 probes observations in the XGSM-YGSM plane. (a) Blue circles represent the 795 

probe locations for cases observed the phenomenon of Peq decrease during the 796 

substorm growth phase. Red circles represent the locations for other cases. Black 797 

arrows indicate the averaged plasma flows Vx and Vy components (Vx𝑒𝑒𝑥𝑥+ Vy𝑒𝑒𝑦𝑦) during 798 

the substorm growth phases. (b) is in the same format as (a), but with black arrows 799 

indicating the plasma flow differences (Δ𝑉𝑉�⃑𝑥𝑥𝑥𝑥) between flows in Figure 5a and the 800 

averaged plasma flows in half an hour prior to the start of each substorm growth 801 

phase case. 802 
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 805 
Figure 6. Statistical features on the equatorial plasma pressure (Peq) variations. (a) 806 

Occurrence rates for Peq decrease cases in different Magnetic Local Time (MLT) bins. 807 

(b) Distribution for the average ratios of Peq decrease ((Peqmin - Peq0) / Peq0) in each 808 

MLT bins. This figure includes the Peq decrease cases. Peqmin represents the minimum 809 

Peq during the growth phase, and Peq0 the Peq prior to growth phase. (c) Distribution 810 

for the average ratios of Peq increase at the end of substorm growth phase ((Peqend - 811 

Peq0) / Peq0) in each MLT bins. Peqend represents the Peq at the end of growth phase. 812 

Green circles are the scatter of ratios of the 193 cases. The two horizontal dashed lines 813 

represent the values of 0.1 and -0.1, respectively. 814 
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 817 
Figure 7. Overview of a substorm growth phase event from THD on 20 January 2008. 818 

(a) IMF Bz, (b) Pbxy, (c) Pezz, (d) Pizz, (e) Peq, (f) ratios between Pezz and Pizz, (g) 819 

energy spectrum for electron differential energy flux from ESA, and (h) Bx (blue), By 820 

(green), and Bz (red). Red lines in (d), (e) and (f) are 1 minute moving mean of the 821 

data. The first and last vertical dashed lines represent the beginning and end of this 822 

substorm growth phase, respectively, and the middle line indicates the time when Peq 823 

reaches the minima. 824 
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 826 

Figure 8. The distribution of the 15 cases of large electron pressure contributions 827 

(with the ratios of ∆Pezz to ∆Peq larger than 50%) in the XGSM-YGSM plane. Each circle 828 

indicates a single event. 829 
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Table 1. The list of substorm growth phase events for electron pressure variations a 
  

 

# date (UT) probe Pbxy changes 
(ΔPbxy, nPa) 

Pezz changes 
(ΔPezz, nPa) 

Peq changes 
(ΔPeq, nPa) 

Pizz changes 
(ΔPizz, nPa) 

Pezz/Pizz 
changes 

Groupb 

1 13 December 2007, 03:39 to 04:30 THD ~ 0.023 ~ 0.12 ~ 0.13 ~ -0.059 ~ 63.4% Third 
2 20 December 2007, 03:15 to 03:57 THD ~ 0.01 ~ -0.12 ~ -0.11 ~ -0.20 ~ 61.7% First 
3 23 December 2007, 09:30 to 10:09 THE ~ -0.0045 ~ 0.023 ~ 0.029 ~ -0.079 ~ 35.9% First 
4 20 January 2008, 02:42 to 03:05 THD ~ 0.005 ~ 0.045 ~ 0.23 ~ 0.14 ~ 55% NaN 
5 03 March 2008, 03:48 to 04:30 THA ~ 0.02 ~ 0.19 ~ 0.052 ~ -0.14 ~ 50% Third 
6 10 April 2008, 04:50 to 05:22 THD ~ -0.004 ~ 0.063 ~ -0.004 ~ 0.056 ~ -11.3% Second 
7 10 April 2008, 04:50 to 05:22 THE ~ -0.002 ~ 0.064 ~ 0.11 ~ 0.12 ~ 21% Third 
8 04 March 2009, 02:05 to 02:30 THE ~ 0.012 ~ 0.098 ~ 0.21 ~ 0.28 ~ 20% NaN 
9 14 April 2009, 06:30 to 08:05 THE ~ 0.007 ~ 0.037 ~ 0.045 ~ -0.065 ~ 33% Third 

10 28 March 2010, 15:03 to 16:16 THD ~ 0.031 ~ 0.18 ~ 0.19 ~ 0.036 ~ 96.8% Third 
11 13 March 2011, 16:08 to 17:08 THD ~ -0.005 ~ 0.092 ~ 0.082 ~ 0.21 ~ -20.2% Third 
12 13 March 2011, 16:08 to 17:08 THE ~ -0.004 ~ 0.084 ~ 0.14 ~ 0.20 ~ -23.4% Third 
13 17 March 2011, 17:59 to 19:29 THA ~ -0.004 ~ 0.10 ~ 0.12 ~ 0.30 ~ 87.0% Third 
14 3 May 2011, 16:50 to 17:18 THE ~ 0.006 ~ 0.04 ~ 0.028 ~ -0.036 ~ 66.4% Second 
15 15 August 2012, 19:19 to 21:05 THD ~ -0.007 ~ 0.11 ~ 0.17 ~ 0.20 ~ 51.7% Third 
16 7 October 2012, 17:03 to 18:37 THE ~ 0.009 ~ -0.052 ~ -0.13 ~ -0.18 ~ -16.7% NaN 
17 4 September 2014, 22:07 to 23:33 THE ~ 0.009 ~ 0.15 ~ 0.0038 ~ 0.044 ~ 77.4% Third 
18 25 September 2014, 18:22 to 18:53 THD ~ -0.01 ~ 0.06 ~ 0.15 ~ 0.16 ~ 37.1% NaN 
19 25 September 2014, 18:22 to 18:53 THE ~ 0.014 ~ 0.07 ~ 0.037 ~ 0.039 ~ 21.6% Second 

 

a. The events with |ΔPezz|/|ΔPbxy| ≥ 5, and Pezz/Pbxy ≥ 5 

b. Group is defined in section 2.3. 
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