

Supporting Information

Borazine-CF₃⁻ Adducts for Rapid, Room Temperature, and Broad Scope Trifluoromethylation

Jacob B. Geri, Michael M. Wade Wolfe, and Nathaniel K. Szymczak*

ange_201711316_sm_miscellaneous_information.pdf

Table of Contents

General Considerations	S2
Preparation of CF ₃ ⁻ Reagent Stock Solutions	S 3
Preparation of 2b	S 3
Reactions with Inorganic Electrophiles	S8
Reactions with Organic and Inorganic Chalcogens	S16
Nucleophilic Trifluoromethylation of Inorganic Compounds with LA-CF ₃ : Comparison between 2 and previously reported CF_3^- sources (1a-c)	S26
Rapid Electrophilic Trifluoromethylation of Thiols using 2	S30
Nucleophilic Trifluoromethylation of Organic Compounds with LA-CF ₃ ⁻ : Initial Condition Screening	\$35
Nucleophilic Trifluoromethylation of Organic Compounds with LA-CF ₃ ⁻ : Isolated Compounds and Characterization	837
1,2 Addition Reactions with C=O and C=N compounds	S38
Nucleophilic Aromatic Substitution	S59
Direct Nucleophilic Addition/Oxidation	S63
Geminal Bistrifluoromethylations	S80
Selective 2- or 4- C-H trifluoromethylation of Quinolines	S93
Comparison Between 2 and SiMe ₃ CF ₃ in Aromatic Trifluoromethylation	S107
Kinetic Measurements of CF ₃ Transfer and Decomposition	S109
References	S118

General Considerations:

Hexamethylborazine,^[1] 1-Chloro-1,3-dihydro-3,3-dimethyl-1,2-benziodoxole,^[2] 6-chloro-9tosyl-9*H*-purine,^[3] 2-fluoroquinoline,^[4] benzylpotassium,^[5] dimsyl potassium,^[6] dimsyl sodium,^[7] 2-nitro-5-phenylpyridine,^[8] Pd(TMEDA)(Tol)I,^[9] diphenoxy-chloro-triazine,^[10] and K(18-crown-6)(B₃N₃Me₆CF₃)(THF),^[11] K(BOCH₂CH₂N)₃CF₃,^[11] and N-tosylbenzaldimine^[12] were prepared according to literature procedures. DMSO, THF, and DMF were purified using a Glass Contour solvent purification system through percolation through a Cu catalyst, molecular sieves, and alumina and finally stored over activated molecular sieves for a minimum of 48 hours. All other reagents were used from commercial sources without further purification. Unless otherwise noted, all manipulations were performed under an inert nitrogen atmosphere.

NMR spectra were recorded on a Varian Vnmrs 700, Varian Vnmrs 500, or Varian MR400 spectrometer. ¹H, ¹³C, ¹⁹F, ¹¹B, and ³¹P shifts are reported in parts per million (ppm) relative to TMS, with the residual solvent peak used as an internal reference. ³¹P, ¹¹B, ⁷⁷Se, ¹²⁷Te, ²⁹Si, and ¹⁹F NMR spectra are referenced to fluorobenzene or, in specra lacking internal standard, on a unified scale, where the single primary reference is the frequency of the residual solvent peak in the ¹H NMR spectrum. Peaks not listed in the peak assignment correspond to residual solvent.^[13] Multiplicities are reported as follows: singlet (s), doublet (d), triplet (t), quartet (q), pentet (p), septet (sp), and multiplet (m). Mass spectra were obtained on an electrospray Agilent Q-TOF mass spectrometer or a Micromass AutoSpec Ultima Magnetic Sector Mass Spectrometer electron ionization mass spectrometer. NMR spectral assignments, hydrogen atoms are labeled with greek letters while carbon atoms are labeled with numbers. In spectra of *in-situ* reactions, HCF₃ and fluorobenzene (internal standard) appear at -78.52 and -113.15 ppm, respectively

Preparation of CF₃⁻ Reagent Stock Solutions

K(18-crown-6)(B₃N₃Me₆)CF₃(THF) in THF:

Hexamethylborazine (2.70 mmol, 0.443 g) and 18-crown-6 (2.70 mmol, 0.712 g) were dissolved in 11 mL THF in a 20 mL single-neck conical flask equipped with a large Teflon-coated magnetic stirbar. The vessel was then cooled to 0 °C for one hour with gentle stirring. Benzylpotassium (2.70 mmol, 0.350 g) was quickly added to this cold solution, and the initial deep red color of dissolved benzylpotassium quickly changed to light purple. The flask was then sealed with a belt-clamped septum. HCF₃ was added to the sealed vessel with a 60 mL syringe (3.3 mmol, 75 mL) and continuously stirred for 10 minutes. ¹⁹F NMR showed >99% yield of K(B₃N₃Me₆CF₃).

K(B₃N₃Me₆)CF₃ in DMSO:

Hexamethylborazine (2.70 mmol, 0.443 g) was suspended in 13 mL DMSO in a 20 mL singleneck conical flask equipped with a large Teflon-coated magnetic stirbar, which was then sealed with a belt-clamped septum. Dimsyl potassium (1.80 M, 2.70 mmol, 1.50 mL) was then rapidly added via syringe, and the mixture was stirred for 30 minutes at 2000 rpm, which afforded a homogeneous solution. HCF₃ was added to the sealed vessel with a 60 mL syringe (12.0 mmol, 297 mL) and continuously stirred for 10 minutes. ¹⁹F NMR showed >99% yield of K(BOCH₂CH₂N)₃CF₃. The $t_{1/2}$ of this solution (¹⁹F NMR, 25 °C): 17 days

K(BOCH₂CH₂N)₃CF₃ in DMSO:

Trisethyleneoxyborazine (10.5 mmol, 2.17 g) was suspended in 43 mL DMSO in a 100 mL singleneck round bottom flask equipped with a large Teflon-coated magnetic stirbar, which was then sealed with a belt-clamped septum. Dimsyl potassium (1.93 M, 10.0 mmol, 5.18 mL) was then rapidly added via syringe, and the mixture vigorously stirred for 30 minutes. HCF₃ was added to the sealed vessel with a 60 mL syringe (12.0 mmol, 297 mL) and continuously stirred for 10 minutes. ¹⁹F NMR showed 99% yield of K(BOCH₂CH₂N)₃CF₃ (based on KDMSO). The $t_{1/2}$ of this solution (¹⁹F NMR, 25 °C): >5 months

Preparation of 2b:

Hexamethylborazine (3.15 mmol, 0.518 g), 18-crown-6 (6.30 mmol, 1.668 g) and cesium fluoride (3.00 mmol, 0.455 g) were combined in 10 mL THF. The mixture was stirred at 0 °C for 50 minutes. SiMe₃CF₃ (3.6 mmol, 0.53 mL), cooled to 0 °C, was slowly added to the mixture and the reaction stirred for 1.5 hours. Volatiles were removed under vacuum, and the resulting solid dissolved in 10 mL of THF and filtered. The filtrate was layered with 115 mL of Et₂O, and allowed to stand for 3 days at -30 °C to afford large crystals. Solvent was decanted from the crystals, which

were then washed with pentane (5x 15 mL). The residual solvent was allowed to evaporate at ambient pressure for 90 minutes to afford crystalline **2b** (1.215g, 45%). A single crystal for structural analysis was prepared by layering Et₂O on a concentrated THF solution of **2b** at -30 °C. ¹H-NMR (DMSO-d₆): 3.49 (ω , 48H, s), 2.47 (α , 3H, s), 2.42 (ϵ , 6H, s), -0.05 (β , 6H, s), -0.38 (γ , 3H, s). ¹¹B-NMR: 32.94 (2B), -5.77 (1B). ¹⁹F-NMR: -64.50 (3F (dd, *J*_{11B-19F}: 56, 22)). HRMS (ES+): 191.0195 (M+: 191.0194). Anal. Calcd for C₃₁H₆₆B₃CsF₃N₃O₁₂: C, 41.59; H, 7.43; N, 4.69. Found: C, 41.09; H, 6.95; N, 4.46. Samples were aged for 30 days at either 25 °C, during which time greater than 80% of the sample decomposed, or at or -30 °C, during which no decomposition was observed. The samples were subjected to elemental analysis (Anal. Calcd for C₃₁H₆₆B₃CsF₃N₃O₁₂: C, 41.67; H, 7.62; N, 4.45), found (30 days at -30 °C): C, 41.42; H, 7.24; N, 4.66). Elemental analysis of the decomposed sample still closely matched the expected values for pure **2b**, indicating that HCF₃ gas is not a decomposition product.

Fig. S1. ¹H NMR Spectrum:

Fig. S4. X-Ray Crystal Structure:

Selected bond distances: B1-C1: 1.630 Å, B1-C2: 1.644 Å, B1-N1: 1.553 Å, B1-N2: 1.546 Å, N1-B2: 1.401 Å, N2-B3: 1.389 Å, N3-B2: 1.436 Å, N3-B3: 1.446 Å, C1-F1: 1.367 Å, C1-F2: 1.382 Å, C1-F3: 1.393 Å

Stability of 2b at 25 °C in Solid State

2b decomposes at a rate of 3.4% per day ($R^2 = 0.998$). Samples of pure solid (10-15 mg) were weighed into sealed vials and allowed to stand at 25°C for a desired amount of time. Mass percentage was determined by comparing the original mass of the sample to the number of moles of **2b** determined by dissolving the sample and integrating its resonance in the ¹⁹F NMR spectrum against 10.0 µL added fluorobenzene standard.

Stability of 2b at 25 °C in Solution

A 0.2 M sample of **2b** was prepared in an NMR tube and periodically monitored by ¹⁹F NMR spectroscopy at room temperature. Rate of decomposition: $0.00201 \text{ M/d R}^2 = 0.998$

Reactions with Inorganic Electrophiles

General Protocol:

To 0.100 mmol of substrate dissolved in 0.50 mL DMSO or THF was added 0.100 mmol K(18-crown-6)($B_3N_3Me_6$)CF₃ as a solution in matching solvent. Characterization of B(OMe)₃CF₃⁻ is provided for in our previous manuscript.^[11]

Fig. S5. Trifluoromethylation of Inorganic Compounds

Pd(TMEDA)(Tol)CF3

Experimental: Pd(TMEDA)(Tol)I (Tol=C₆H₄CH₃) (22.0 mg, 0.0500 mmol) was placed in an NMR tube and dissolved in 1.5 mL THF. K(18-crown-6)(B₃N₃Me₆CF₃)(THF) (0.250 mL 0.20 M stock in THF, 0.0500 mmol) was then added and the NMR tube and vigorously shaken. ¹⁹F NMR spectra were recorded 10 minutes after CF₃⁻ addition and the product peak integrated against 0.030 mmol fluorobenzene internal standard. The product conformed to literature spectra of Pd(TMEDA)(Ph). ¹⁹F NMR (literature (in CDCl₃): -21.14):^[9] -20.18 (3F, s). Yield: 98%.

Fig. S6. In-Situ ¹⁹F NMR Spectrum:

CuCF₃

Experimental: CuI (19.0 mg, 0.100 mmol) was placed in an NMR tube and dissolved in 0.50 mL DMSO. $K(B_3N_3Me_6CF_3)$ (0.50 mL 0.20 M stock in DMSO, 0.100 mmol) was then added and the NMR tube vigorously shaken. ¹⁹F NMR spectra were recorded 10 minutes after CF₃⁻ addition and the product peak integrated against 0.030 mmol fluorobenzene internal standard. The product conformed to literature spectra of CuCF₃, in which a Schlenk equilibrium is observed. ¹⁹F NMR (literature (in DMF): -28.8):^[14] -29.24 (63%, s), -26.43 (19%, s). Yield: 83%.

Trifluoromethylbiphenyl

Experimental: Biphenyl iodide (28.0 mg, 0.100 mmol) was added to the solution of CuCF₃ prepared and the NMR tube vigorously shaken. The mixture was heated to 80 °C for 12h. ¹⁹F NMR spectra were recorded and the product peak integrated against 0.030 mmol fluorobenzene internal standard. The product conformed to literature spectra of trifluoromethylbiphenyl. ¹⁹F NMR (literature (CDCl₃): -62.4):^[15] -61.07 (3F, s).Yield: 66%. HRMS (EI+): 222.0659 (M⁺: 222.0656)

Fig. S8. In-Situ ¹⁹F NMR Spectrum:

AgCF₃

Experimental: AgNO₃ (16.9 mg, 0.100 mmol) was placed in an NMR tube and dissolved in 0.50 mL DMSO. K(B₃N₃Me₆CF₃) (0.50 mL 0.20 M stock in DMSO, 0.10 mmol) was then added and the NMR tube vigorously shaken. ¹⁹F NMR spectra were recorded 10 minutes after CF₃⁻ addition and the product peak was integrated against 0.030 mmol fluorobenzene internal standard. The product conformed to literature spectra of AgCF₃. In literature reports of AgCF₃ compounds, the NMR shift varies between -20 and -30 and the coupling constant varies between 70 and 150 Hz depending on solvent and ancillary ligands.^[16] ¹⁹F NMR (literature in DMF): -23-26, $J_{109Ag-19F}$ = 100-125):^[17] -23.50 (3F, (d, $J_{109Ag-19F}$ = 91.7). Yield: 44%.

Au(iPr)CF3

Experimental: Au(iPr)Cl (iPr=1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) (31 mg, 0.050 mmol) was placed in an NMR tube and dissolved in 0.25 mL THF. K(18-crown-6)(B₃N₃Me₆CF₃)(THF) (0.250 mL 0.20 M stock in THF, 0.0500 mmol) was then added and the NMR tube and vigorously shaken. ¹⁹F NMR spectra were recorded 10 minutes after CF₃⁻ addition and the product peak integrated against 0.030 mmol fluorobenzene internal standard. The product conformed to literature spectra of Au(iPr)CF₃. ¹⁹F NMR (literature (in CD₂Cl₂): -28.4):^[18] -27.77 (3F, s). Yield: 15%.

Zn(TMEDA)(CF3)2

Experimental: ZnCl₂ (6.8 mg, 0.050 mmol) was placed in an NMR tube and dissolved in 0.5 mL THF. Tetramethylethylenediamine (TMEDA, 7.5 μ L, 0.050 mmol) was then added and the homogeneous solution was allowed to stand for 10 minutes. K(18-crown-6)(B₃N₃Me₆CF₃)(THF) (0.50 mL 0.20 M stock in THF, 0.10 mmol) was then added and the NMR tube vigorously shaken. ¹⁹F NMR spectra were recorded 10 minutes after CF₃⁻ addition and the product peak integrated against 0.030 mmol fluorobenzene internal standard. The product conformed to literature spectra of Zn(TMEDA)(CF₃)₂. ¹⁹F NMR (literature (in CDCl₃): -40.5):^[19] -40.0 (6F, s). Yield: 74%.

Fig. S11. In-Situ ¹⁹F NMR Spectrum:

SiMe₃CF₃

Experimental: Trimethylsilyl chloride (10.8 mg, 0.100 mmol) was placed in an NMR tube and dissolved in 0.50 mL THF. K(18-crown-6)($B_3N_3Me_6CF_3$)(THF) (0.50 mL 0.20 M stock in THF, 0.10 mmol) was then added and the NMR tube vigorously shaken. ¹⁹F NMR spectra were recorded 10 minutes after CF₃⁻ addition and the product peak integrated against 0.30 mmol fluorobenzene internal standard. The product conformed to literature spectra of SiMe₃CF₃. ¹⁹F NMR (literature (CDCl₃): -66.81):^[11] -66.52 (3F, s). Yield: 99%.

SnMe₃CF₃

Experimental: Trimethyltin chloride (19.9 mg, 0.100 mmol) was placed in an NMR tube and dissolved in 0.50 mL THF. K(18-crown-6)(B₃N₃Me₆CF₃)(THF) (0.50 mL 0.20 M stock in THF, 0.10 mmol) was then added and the NMR tube vigorously shaken. ¹⁹F NMR spectra were recorded 10 minutes after CF₃⁻ addition and the product peak integrated against 0.30 mmol fluorobenzene internal standard. The product conformed to literature spectra of SnMe₃CF₃. ¹⁹F NMR (literature (neat liquid): -49.1, $J_{119Sn-19F}$: 133):^[20] –50.33 (3F, s, (¹¹⁹Sn satellites: $J_{119Sn-19F}$: 136). Yield: 73%.

Fig. S13. In-Situ ¹⁹F NMR Spectrum:

PbMe₃CF₃

Experimental: Trimethyllead bromide (33.0 mg, 0.100 mmol) was placed in an NMR tube and dissolved in 0.50 mL THF. K(18-crown-6)($B_3N_3Me_6CF_3$)(THF) (0.50 mL 0.20 M stock in THF, 0.10 mmol) was then added and the NMR tube vigorously shaken. ¹⁹F NMR spectra were recorded 10 minutes after CF₃⁻ addition and the product peak integrated against 0.30 mmol fluorobenzene internal standard. The product conformed to literature spectra of PbMe₃CF₃. ¹⁹F NMR (literature (neat liquid): -43.9):^[21]–43.8 (3F, s). Yield: 99%.

KB(OMe)₃CF₃

Experimental: Trimethyl borate (11.2 μ L, 0.100 mmol) was placed in an NMR tube and dissolved in 0.50 mL DMSO. K(B₃N₃Me₆CF₃) (0.50 mL 0.20 M stock in DMSO, 0.10 mmol) was then added and the NMR tube was vigorously shaken. ¹⁹F NMR spectra were recorded 10 minutes after CF₃⁻ addition and the product peak integrated against 0.3 mmol fluorobenzene internal standard. The product was confirmed by comparison with an authentic sample prepared according to literature methods^[22] dissolved in DMSO-d₆ (¹⁹F-NMR: -65.41 (3F, dd, *J*_{11B-19F}: 49, 24)): -65.47 (3F, dd, *J*_{11B-19F}: 49, 24). Yield: 80%.

PPh₂CF₃

Experimental: Diphenylphosphine chloride (22.0 mg, 0.100 mmol) was placed in an NMR tube and dissolved in 0.50 mL THF. K(18-crown-6)(B₃N₃Me₆CF₃)(THF) (0.50 mL 0.20 M stock in THF, 0.10 mmol) was then added and the NMR tube vigorously shaken. After five minutes, colorless crystals had formed and the solution became yellow. ¹⁹F NMR spectra were recorded 10 minutes after CF₃⁻ addition and the product peak integrated against 0.11 mmol fluorobenzene internal standard. The product conformed to literature spectra of PPh₂CF₃. ¹⁹F NMR (literature (in CDCl₃): -55.3, $J_{31P-19F}$: 73):^[23] -55.13 (3F, (d, $J_{31P-19F}$: 73.2). Yield: 99%.

Fig. S16. In-Situ ¹⁹F NMR Spectrum:

Bi(CF₃)₂Cl

Experimental: Bismuth trichloride (10.5 mg, 0.033 mmol) was placed in an NMR tube and combined with 0.50 mL THF. K(18-crown-6)(B₃N₃Me₆CF₃)(THF) (0.50 mL 0.20 M stock in THF, 0.10 mmol) was then added and the NMR tube vigorously shaken. After five minutes, colorless crystals had formed along with a black precipitate. ¹⁹F NMR spectra were recorded 10 minutes after CF₃⁻ addition and the product peak integrated against 0.03 mmol fluorobenzene internal

standard. The product conformed to literature spectra of $Bi(CF_3)_2Cl$. ¹⁹F NMR (literature (in MeCN): -37.8):^[24] -37.26. Yield: 42%.

Fig. S17. In-Situ ¹⁹F NMR Spectrum:

Reactions with Organic and Inorganic Chalcogens

PhSCF₃

Experimental: Diphenyldisulfide (21.8 mg, 0.100 mmol) was placed in an NMR tube and dissolved in 0.50 mL DMSO. $K(B_3N_3Me_6CF_3)$ (0.50 mL 0.20 M stock in DMSO, 0.10 mmol) was then added and the NMR tube vigorously shaken. ¹⁹F NMR spectra were recorded 10 minutes after CF₃⁻ addition and the product peak integrated against 0.3 mmol fluorobenzene internal standard. The product conformed to literature spectra of PhSCF₃. ¹⁹F NMR (literature (in CDCl₃): -42.7):^[25] - 42.33. Yield: 79%.

Fig. S18. In-Situ ¹⁹F NMR Spectrum:

PhSeCF₃

Experimental: Diphenyldiselenide (31.2 mg, 0.100 mmol) was placed in an NMR tube and dissolved in 0.50 mL DMSO. $K(B_3N_3Me_6CF_3)$ (0.50 mL 0.20 M stock in DMSO, 0.10 mmol) was then added and the NMR tube vigorously shaken. ¹⁹F NMR spectra were recorded 10 minutes after

 CF_3^- addition and the product peak integrated against 0.30 mmol fluorobenzene internal standard. The product conformed to literature spectra of PhSeCF₃. ¹⁹F NMR (literature (in CDCl₃): -36.6):^[26] -36.21 (3F, s). Yield: 69%.

2-Naphthylmethyl trifluoromethyl sulfide:

Experimental: Finely powdered elemental sulfur (12.8 mg, 0.400 mmol) was stirred in 10 mL THF for one minute to give a light vellow suspension. With vigorous stirring, K(18-crown-6)(B₃N₃Me₆CF₃)(THF) (2.00 mL, 0.2 M in THF, 0.400 mmol) was added. The color immediately changed to light green, then after 30 seconds to a deep blue. After 20 minutes, the color disappeared to afford a homogeneous solution of K(18-crown-6)SCF₃, from which a 30 µL sample was removed for analysis by ¹⁹F NMR spectroscopy (92% K(18-crown-6)SCF₃ in-situ). Bromomethyl naphthalene (0.400 mmol, 88.4 mg) was then added to the stirred solution. The solution was stirred for 30 minutes, and again sampled and analyzed by ¹⁹F NMR spectroscopy (81% 2-Naphthylmethyl trifluoromethyl sulfide in-situ). The THF solvent was removed by rotary evaporation, and the reaction was quenched with 10 mL water and extracted with CH₂Cl₂ (5 x 2 mL), the CH_2Cl_2 extract was evaporated, and the crude solid was purified by flash silica chromatography. Chromatography conditions: 100% Hexane, 8 column volumes, 25 g SiO₂, flow rate 1 column volume per minute. 54.9 mg white solid (57% isolated). ¹H-NMR (CDCl₃): 7.86 (δ , 1H, (m, $J_{1H-1H}=7.1, 2$)), 7.85 (ϵ , 1H, m (overlap)), 7.83 (θ , 1H, m (overlap)), 7.80 (β , 1H, s), 7.52 $(\eta, 1H, (m, J_{1H-1H}=7.1, 2)), 7.51 (\zeta, 1H, (m, J_{1H-1H}=7.1, 2)), 7.47 (\gamma, 1H, (dd, J_{1H-1H}=8.4, 1.6)), 4.30$ $(\alpha, 2H, s)$. ¹³C-NMR: 133.28 (6), 132.85 (7), 132.34 (2), 130.64 (12, q, $J_{13C-19F}=307$), 128.79 (5), 127.92 (4), 127.77 (8), 127.74 (9), 126.51 (10), 126.49 (3), 126.37 (11), 34.58 (1, q, $J_{13C-19F}=2.3$). ¹⁹F-NMR: -45.19 (s). HRMS (EI+): 242.0380 (M⁺: 242.0377). Note: Use of superstoichiometric

sulfur severely reduces the yield of the reaction. The solubility of K(18-crown-6)SCF₃ appears to be between 0.04 and 0.06 moles/L in 25 °C THF.

Fig. S21. ¹H NMR Spectrum:

Fig. S22. ¹³C NMR Spectrum:

Fig. S24. ¹H-gCOSY Spectrum:

7.88 7.86 7.84 7.82 7.80 7.78 7.76 7.74 7.72 7.70 7.68 7.66 7.64 7.62 7.60 7.58 7.56 7.54 7.52 7.50 7.48 7.46 7.44 (ppm)

Fig. S25. ¹H-¹³C gHSQCAD Spectrum:

7.86 7.84 7.82 7.80 7.78 7.76 7.74 7.72 7.70 7.68 7.66 7.64 7.62 7.60 7.58 7.56 7.54 7.52 7.50 7.48 7.46 7.44 (ppm)

Fig. S26. ¹H-¹³C gHMBCAD Spectrum:

7.88 7.86 7.84 7.82 7.80 7.78 7.76 7.74 7.72 7.70 7.68 7.66 7.64 7.62 7.60 7.58 7.56 7.54 7.52 7.50 7.48 7.46 7.44 (ppm)

2-Naphthylmethyl trifluoromethyl selenide:

Experimental: 100 mesh grey elemental selenium (31.2 mg, 0.400 mmol) was stirred in 10 mL THF for one minute to give a light brown suspension. With vigorous stirring, K(18-crown-6)(B₃N₃Me₆CF₃)(THF) (2.00 mL, 0.2 M in THF, 0.400 mmol) was added. The color immediately changed to a slightly darker brown. After 20 minutes, the reaction was slightly turbid. The amount of K(18-crown-6)SeCF₃ in solution was assessed through removal of a 30 µL sample, analyzed by ¹⁹F NMR spectroscopy (61% K(18-crown-6)SeCF₃ *in-situ*). Bromomethyl naphthalene (88.4 mg, 0.400 mmol) was then added to the stirred solution. Within one minute a thick, white solid precipitated. The solution was stirred for 30 minutes, and again sampled and analyzed by ¹⁹F NMR spectroscopy (63% 2-naphthylmethyl trifluoromethyl selenide *in-situ*). The THF solvent was then removed by rotary evaporation, and the reaction was quenched with 10 mL water and extracted with CH₂Cl₂ (5 x 2 mL), the CH₂Cl₂ extract evaporated, and the crude solid was purified by flash silica chromatography. Chromatography conditions: 100% Hexane, 8 column volumes, 25 g SiO₂,

flow rate 1 column volume per minute. 61.2 mg white solid (64% isolated). ¹H-NMR (CDCl₃): 7.85 (δ , 1H, (m, overlap)), 7.83 (ϵ , 1H, m (overlap)), 7.82 (θ , 1H, m (overlap)), 7.80 (β , 1H, s), 7.51 (η , 1H, (m, overlap)), 7.50 (ζ , 1H, (m, overlap)), 7.47 (γ , 1H, (dd, $J_{1H-1H}=8.4, 1.8$)), 4.43 (α , 2H, s). ¹³C-NMR: 133.39 (6), 132.32 (7), 132.71 (2), 128.81 (5), 127.83 (4), 127.73 (8), 127.72 (9), 126.76 (10), 126.50 (3), 126.31 (11), 122.87 (12, q, $J_{13C-19F}=331$), 29.54 (1, q, $J_{13C-19F}=1.6$). ¹⁹F-NMR: -34.35 (s). ⁷⁷Se-NMR: 505.92 (q, $J_{77Se-19F}=13.5$). HRMS (EI+): 289.9821 (M⁺: 289.9822). Notes: Use of superstoichiometric selenium severely reduces the yield of the reaction.

Fig. S27. In-Situ ¹⁹F NMR Spectrum of K(18-crown-6)SeCF₃:

Fig. S29. ¹³C NMR Spectrum:

1000 900 800 700 600 500 400 300 200 100 0 -100 -200 -300 -400 -500 -600 -700 -800 -900 -1000 (ppm) Fig. S32. ¹H-gCOSY Spectrum:

2-Naphthylmethyl trifluoromethyl telluride:

Experimental: Elemental tellurium (51.0 mg, 0.400 mmol) was stirred in 10 mL THF for 10 minutes to give a suspension. With vigorous stirring, K(18-crown-6)(B₃N₃Me₆CF₃)(THF) (2.00 mL, 0.2 M in THF, 0.400 mmol) was added. The color immediately changed to a light purple. After 72 hours, the reaction was slightly turbid and deep purple in color. The amount of K(18-crown-6)TeCF₃ in solution was assessed through removal of a 30 µL sample, analyzed by ¹⁹F NMR spectroscopy (97% K(18-crown-6)TeCF₃ *in-situ*; ¹⁹F NMR: 2.06; ¹²⁵Te NMR: 207.48 ($J_{125Te-19F}$ =251.8). Bromomethyl naphthalene (88.4 mg, 0.400 mmol) was then added to the stirred solution. Within one minute a thick, white solid precipitated. The solution was stirred for 30 minutes, and again sampled and analyzed by ¹⁹F NMR spectroscopy (88% 2-naphthylmethyl trifluoromethyl selenide *in-situ*). The THF solvent was then removed by rotary evaporation, and the reaction was quenched with 10 mL water and extracted with CH₂Cl₂ (5 x 2 mL), the CH₂Cl₂ extract evaporated, and the crude solid was purified by flash silica chromatography.

Chromatography conditions: 100% Hexane, 8 column volumes, 25 g SiO₂, flow rate 1 column volume per minute. 80.1 mg white solid (59% isolated). ¹H-NMR (CDCl₃): 7.75 (4H, (m, overlap)), 7.45 (3H, m (overlap)), 4.69 (2H, s). ¹⁹F-NMR: -27.28 (s). MS (EI+): 340.1 (M⁺: 339.9719)

Fig. S34. In-Situ ¹²⁵Te NMR Spectrum of K(18-crown-6)TeCF₃:

450 400 350 300 250 200 150 100 50 0 (ppm) -50 -100 -150 -200 -250 -300 -350 -400 -45(

Nucleophilic Trifluoromethylation of Inorganic Compounds with LA-CF₃: Comparison between 2 and previously reported CF₃⁻ sources (1a-c)

Protocol for reactions with KB(OMe)₃CF₃:

To 0.100 mmol of substrate dissolved in 0.50 mL of THF was added 0.100 mmol KB(OMe)₃CF₃ as a solution in 0.50 mL THF. Yields were determined by ¹⁹F NMR integration against fluorobenzene internal standard after 10 minutes at room temperature.

Protocol for reactions with SiMe₃CF₃/KF/18-crown-6:

To 0.100 mmol of substrate dissolved in 0.50 mL of THF was added 0.100 mmol of a 1:1 mixture of SiMe₃CF₃/18-crown-6 as a solution in in 0.5 mL THF. 0.10 mmol KF was then added as a solid, and the mixture vigorously shaken for 10 minutes at room temperature. Yields were determined by ¹⁹F NMR integration against fluorobenzene internal standard.

Protocol for reactions with KDMF•CF3:

To 0.100 mmol of substrate dissolved in 0.50 mL DMF was added 0.100 mmol KDMF•CF₃ as a solution in 0.50 mL DMF. Both solutions were chilled to -40 °C prior to combination, and the reaction mixtures were then rapidly warmed to room temperature (<1 minute) and allowed to react for 10 minutes. Yields were determined by ¹⁹F NMR integration against fluorobenzene internal standard.

2 vs. previously reported CF₃⁻ reagents

Table: Reactivity of CF₃⁻ Sources with Inorganic Electrophiles

"CF₃-" <u>electrophile</u> 10 min, 0.1 M E-CF₃

			CF ₃ ⁻ Reagents		
Electrophile	Product	1	KB(OMe) ₃ CF ₃	TMSCF ₃ /F	KDMF•CF ₃
s	KS-CF3	92%	0.0%	0.0%	5.2%
Se	KSe–CF ₃	61%	0.0%	0.3%	86%
NCBr	Br-CF ₃	44%	0.3%	2.2%	0.3%
PPh ₂ Cl	PPh ₂ -CF ₃	99%	0.0%	0.0%	6.8%
BiCl ₃	Bi-(CF ₃) ₂ Cl	42%	0.0%	0.0%	0.0%
		80%		0.0%	0.0%
Me ₃ SiCl	Me ₃ Si—CF ₃	96%	0.2%		0%
Me ₃ SnCl	Me₃Sn−CF₃	73%	0.2%	47%	0%
Me ₃ PbBr	Me₃Pb−CF₃	99%	0.2%	32%	0%
Zn Cl	Zn CF ₃	74%	0.1%	0.0%	0.0%
Cul	Cu–CF ₃	83%	0.0%	0.0%	1.4%
AgNO ₃	Ag-CF ₃	44%	0.0%	7.8%	19%
DiPP N-Au-Cl DiPP	DIPP	15%	0.0%	0.0%	56%
	N Tol Pd CF ₃	98%	0.1%	2.1%	63%

* Conditions: 1: 25 °C, THF; KB(OMe)₃CF₃: 25 °C, THF; KDMF•CF₃: -40 °C to 25 °C, DMF

COMPETING REACTIVITY PATHWAYS WITH K[B(OMe)₃CF₃]

Reaction temperatures >60 °C

COMPETING REACTIVITY PATHWAYS WITH K[DMF•CF₃]

COMPETING REACTIVITY PATHWAYS WITH SIMe₃CF₃/KF

order of addition demands (slow) heterogeneous conditions

Rapid Electrophilic Trifluoromethylation of Thiols using 2

1-Trifluoromethylthio-β-D-glucose tetraacetate

Fig. S39. Reaction Scheme:

Step 1:

This procedure was reported in our manuscript describing the preparation of 2.^[11]

Hexamethylborazine (0.290 mmol, 47.7 mg) and 18-crown-6 (0.290 mmol, 76.6 mg) were dissolved in 1.5 mL THF in a 20 mL flask equipped with a Teflon-coated magnetic stirbar. The vessel was then allowed to cool to 0 °C in a glovebox cold-well for 30 minutes. Benzylpotassium (0.270 mmol, 35.2 mg) was then quickly added to this cold solution, and the initial deep red color of dissolved benzylpotassium quickly changed to a faint purple color. The homogeneous solution was stirred for 2 minutes, giving a homogeneous purple solution. The flask was then sealed with a tightly belt-clamped septum. Gaseous HCF₃ was added to the sealed vessel with a 30 mL syringe (0.32 mmol, 8.0 mL) and continuous efficient stirring. The colorless solution was stirred for 2 minutes, and brought to room temperature. 1 equivalent 1-chloro-3,3-dimethyl-1,3-dihydro-1 λ -benzo[d][1,2]iodaoxole (0.27 mmol, 80 mg) was then added to the reaction mixture, and stirred at room temperature for 10 minutes; in this time, a white precipitate appeared. A 60 μ L sample was removed for analysis by ¹⁹F and ¹H NMR; conversion to 1-trifluoromethyl-3,3-dimethyl-1,3-dihydro-1 λ -benzo[d][1,2]iodaoxole was 78%, while hexamethylborazine was regenerated (98%). The fluorine NMR spectra of the product matched literature spectra (¹⁹F-NMR (CDCl₃): -40.1).^[27]

Step 2:

The solvent was removed under vacuum (5 minutes), reconstituted in 1.5 mL acetonitrile, cooled to -30 °C (5 minutes), and a -30 °C solution of 1-thio-β-D-glucose tetraacetate (0.270 mmol, 100 mg) in 1.5 mL acetonitrile quickly added. The reaction was then immediately allowed to warm to room temperature and vigorously stirred for 10 minutes (synthesis time: 32 minutes). A 30 μ L sample was removed for analysis by ¹⁹F NMR spectroscopy, the reaction was opened to air, and the solvent was removed by rotary evaporation. The white solid was then suspended in 10 mL water, and the organic components extracted into dichloromethane (4 x 2 mL). The dichloromethane extract was then dried with magnesium sulfate, filtered, concentrated to 2 mL, and purified by flash chromatography. Chromatography conditions: 50 g SiO₂, 12%-100% ethyl acetate/hexanes over 10 column volumes, Rf: 0.58. The product is not UV active, so it was detected during elution by means of an attached evaporative light scattering detector (Biotage ELSD-A120; settings: nebulizer temperature: 40 °C, evaporation temperature: 60 °C, flow: 2.5). The fractions containing 1-trifluoromethylthio- β -D-glucose tetraacetate were combined and evaporated by rotary evaporation, then dried under high vacuum (50.4 mg, 43% combined yield from benzylpotassium). Time required for isolation: 90 minutes. ¹H-NMR (CDCl₃): 5.23 (1H, γ , (t, J_{1H-} $_{1H}$ =9.3)), 5.07 (1H, ε , (t, J_{1H-1H} =9.8)), 5.01 (1H, β , (t, J_{1H-1H} =9.7)), 4.96 (1H, α , (d, J_{1H-1H} =10.3)), 4.26 (1H, τ , (dd, $J_{1H-1H}=12.5$, 5.3)), 4.10 (1H, τ , (dd, $J_{1H-1H}=12.4$, 2.2)), 3.77 (1H, ζ , (ddd, $J_{1H-1H}=12.4$, 3.2)), 3.77 (1H, ζ , 3.2)), 3.77 (1H, \zeta, 3.2)), 3.2)), 3.77 (1H, \zeta, 3.2)), 3.2)), 3.2), 3.2)), 3.2), 3.2)), 3.2)), 3.2), 3.2)), 3.2), 3.2) 1H=10.1, 5.3, 2.3)). ¹³C-NMR: 170.49 (7), 169.90 (7), 169.25 (7), 129.33 (9, q, *J*_{13C-19F}=308), 81.43 (1, q, *J*_{13C-19F}=2.8), 76.24 (5), 73.32 (3), 69.22 (2), 67.76 (4), 61.67 (6), 20.56 (8), 20.47 (8), 20.44 (8). ¹⁹F-NMR: -40.08 (s). HRMS (ESI+): 450.1045 (M+NH4: 450.1040).

In-Situ Characterization:

Fig. S40. *In-situ* ¹⁹F NMR spectrum of 1-trifluoromethyl-3,3-dimethyl-1,3-dihydro-1λ-benzo[d][1,2]iodaoxole:

Fig. S41. *In-situ* ¹H NMR spectrum of Regenerated Hexamethylborazine:

Fig. S42. *In-situ* ¹⁹F NMR spectrum of 1-Trifluoromethylthio-β-D-glucose tetraacetate:

Characterization of isolated 1-trifluoromethylthio-β-D-glucose tetraacetate: Fig. S43. ¹H NMR Spectrum:

Fig. S46. ¹H-¹H gCOSY NMR Spectrum:

Fig. S47. ¹H-¹³C gHSQCAD NMR Spectrum:

Nucleophilic Trifluoromethylation of Organic Compounds with LA-CF₃: Initial Condition Screening

To 0.1 mmol of substrate dissolved in 0.50 mL DMSO or THF was added one of the above stock solutions of the HCF₃ derived CF_3^- reagent. NMR spectra were recorded at 30 minute, 1 hour, 5 hour, and 24 hour time points to monitor conversion to trifluoromethylated product through integration against a 0.030 mmol fluorobenzene internal standard. In cases where anionic addition products were observed, confirmation of product identity was made through GCMS.
Fig. S48. Optimization Table

Method A: 30m: 19% 5h: 21% 72h: 20% Method B: 30m: 58% 5h: 37% 24h: 6% 72h: 0% Method C: 30m: 19% 5h: 17% 24h: 5% 72h: 0% Method D: 30m: 3.5% 5h: 3.3% 24h: 1.7% 72h: 0%

Method A: 30m: 12% 5h: 12% 72h: 12% Method B: 30m: 2% 5h: 2% 24h: 2% 72h: 2% Method C: 30m: 0% 5h: 0% 24h: 0% 72h: 0% Method D: 30m: 0% 5h: 0% 24h: 0% 72h: 0%

Method A: 30m: 25% 5h: 29% 24h: 26% 72h: 25% Method B: 30m: 57% 5h: 0% 24h: 0% 72h : 0% Method C: 30m: 93% 5h: 92% 24h: 92% 72h: 79% Method D: 30m: 25% 5h: 72% 24h: 73% 72h: 73%

Method A: a) 30m: 5% 5h: 30% 72h: 83% b) 30m: 64% 5h: 52% 72h: 20% Method B: 30m: 0% 5h: 0% 24h: 0% 72h: 0% Method C: 30m: 0% 5h: 0% 24h: 0% 72h: 0% Method D: 30m: 0% 5h: 0% 24h: 0% 72h: 0%

Method A: 30m:92% 5h: 96% 24h: 98% 72h: 96% Method B: 30m: 16% 5h: 18% 24h: 18% 72h: 18% Method C: 6% 5h: 8% 24h: 8% 72h: 8% Method D: 30m: 0.7% 5h: 2.1% 24h: 5.0% 72h: 7.5%

Method A: a) 30m: 21% 5h: 30% 72h: 32% b) 30m: 21% 5h: 21% 72h: 31% Method B: 30m: 0.1% 5h: 0% 24h: 0% 72h: 0% Method C: 30m: 0% 5h: 0% 24h: 0% 72h: 0% Method D: 30m: 0% 5h: 0% 24h: 0% 72h: 0%

 $Ph \rightarrow Ph$

Method A: 30m: 75% 5h: 76% 72h: 77% Method B: 30m: 4.6% 5h: 2.0% 72h: 0.4% Method C: 30m: 9% 5h: 8% 24h: 7% 72h: 5% Method D: 30m: 10% 5h: 12% 24h: 12% 72h: 12%

 $\overset{O}{\longrightarrow} \overset{O}{\longrightarrow} \overset{O}{\longrightarrow} \overset{CF_3}{\longrightarrow} \overset{CF_3}{\longrightarrow} \overset{CF_3}{\longrightarrow} \overset{O}{\longrightarrow} \overset{CF_3}{\longrightarrow} \overset{O}{\longrightarrow} \overset{O}{\overset{O}{\longrightarrow} \overset{O}{\longrightarrow} \overset{O}{\longrightarrow} \overset{$

 $\begin{array}{l} \mbox{Method A: 30m: 100\% 5h: 100\% 24h: 100\% 72h: 100\% \\ \mbox{Method B: 30m: 92\% 5h: 100\% 24h: 87\% 72h: 90\% \\ \mbox{Method C: 30m: 100\% 5h: 100\% 24h: 130\% 72h: 130\% \\ \mbox{Method D: 30m: 76\% 5h: 119\% 24h: 133\% 72h: 130\% \\ \end{array}$

$$\mathbb{A}_{\mathcal{H}} \xrightarrow{\mathsf{O}}_{\mathcal{H}} \to \mathbb{A}_{\mathcal{H}} \xrightarrow{\mathsf{O}}_{\mathcal{H}} \xrightarrow{\mathsf{CF}_3}$$

Method A: 30m: 88% 5h: 86% 24h: 80% 72h: 78% Method B: 30m: 57% 5h: 32% 24h: 52% 72h: 53% Method C: 30m: 56% 5h: 59% 24h: 51% 72h: 42% Method D: 30m: 14% 5h: 56% 24h: 58% 72h: 59%

$$Ph \to Ph CF_3$$

Method A: 30m: 54% 5h: 58% 24h: 58% 72h: 53% Method B: 30m: 20% 5h: 25% 24h: 27% 72h: 27% Method C: 30m: 39% 5h: 35% 24h: 41% 72h: 41% Method D: 30m: 65% 5h: 37% 24h: 1% 72h: 0%

 $\underbrace{\overset{\mathsf{NTs}}{\underset{\mathsf{u}}{\overset{\mathsf{NTs}}{\overset{\mathsf{Ts}}{\overset{\mathsf{rs}}}{\overset{\mathsf{rs}}{\overset{\mathsf{rs}}}{\overset{\mathsf{rs}}{\overset{\mathsf{rs}}}{\overset{\mathsf{rs}}{\overset{\mathsf{rs}}}{\overset{\mathsf{rs}}{\overset{\mathsf{rs}}}}}}}}}}}}}}}}}}}}}}}}} } } \\{\overset{\mathsf{s}}}{\overset{\mathsf{s}}}}}}} \overset{\mathsf{s}}}{\overset{\mathsf{s}}}}} {\overset{\mathsf{s}}}}}} \\} \\\\{s}}} \\}} \overset{\mathsf{s}}}}{\overset{\mathsf{s}}}}}} \\\\{s}}} \\\\{s}}} \\}} \\\\}} \end{array}}}$

Method A: 30m: 99% 5h: 99% 72h: 99% Method B: 30m: 95% 5h: 91% 24h: 96% 72h: 93% Method C: 30m: 98% 5h: 100% 24h: 100% 72h: 98% Method D: 30m: 22% 5h: 63% 24h: 85% 72h: 90%

Method A: 30m: 30% 5h: 30% 72h: 30% Method B: 30m: 25% 5h: 20% 6h: 20% 72h: 19% Method C: 30m:15% 5h: 22% 6h: 17% 72h: 10% Method D: 30m:14% 5h: 21% 24h: 19% 72h: 20%

Method A: 30m: 100% 5h: 100% 24h: 101% 72h: 100% Method B: 30m: 72% 5h: 87% 24h: 89% 72h: 93% Method C: 30m: 39% 5h: 55% 24h: 61% 72h: 25% Method D: 30m: 2.6% 5h: 5.5% 24h: 6.1% 72h: 17%

$$Ph H \rightarrow Ph H$$

Method A: 30m: 85% 5h: 11% 24h: 0% 72h: 0% Method B: 30m: 80% 5h: 71% 24h: 77% 72h: 75% Method C: 30m: 95% 5h: 100% 24h: 100% 72h: 98% Method D: 30m: 26% 5h: 76% 24h: 77% 72h: 81%

$$H \rightarrow H^{CF_3}$$

١

Method A: 30m: 32% 5h: 28% 24h: 23% 72h: 20% Method B: 30m: 38% 5h: 0% 24h: 0% 72h: 0% Method C: 30m: 88% 5h: 88% 24h: 84% 72h: 62% Method D: 30m: 22% 5h: 51% 24h: 50% 72h: 49%

Method A: 30m: 98% 5h: 100% 24h: 100% 72h: 100% Method B: 30m: 65% 5h: 62% 24h: 46% 72h: 32% Method C: 30m: 50% 5h: 58% 24h: 61% 72h: 53% Method D: 30m: 9% 5h: 36% 24h: 54% 72h: 62%

Method A: 30m: 0% 5h: 0% 24h: 0% 72h: 0% Method B: 30m: 0% 5h: 0% 24h: 0% 72h: 0% Method C: 30m: 0% 5h: 0% 24h: 0% 72h: 0% Method D: 30m: 0% 5h: 0% 24h: 0% 72h: 0%

$$O_2N \rightarrow O_2N \rightarrow O_2N \rightarrow CF_3$$

Method A: 30m: 41% 5h: 48% 24h: 54% 72h: 58% Method B: 30m: 0.1% 5h: 0.7% 24h: 1.5% 72h: 1.5% Method C: 30m: 15% 5h: 19% 24h: 24% 72h: 27% Method D: 30m: 0.7% 5h: 2% 24h: 6% 72h: 9%

Fig. S49. Optimization Table Cont.

$$\operatorname{C}_{F}^{\operatorname{NO}_{2}} \rightarrow \operatorname{C}_{\operatorname{CF}_{3}}^{\operatorname{NO}_{2}}$$

Method A: 30m: 3.2% 5h: 10% 72h: 9% Method B: 30m: 0% 5h: 0% 24h: 0% 72h: 0% Method C: 30m: 0% 5h: 0% 24h: 0% 72h: 0% Method D: 30m: 0% 5h: 0% 24h: 0% 72h: 0%

Method A: 30m: 8.6% 5h: 8.6% 24h: 8.6% 72h: 7.6% Method B: 30m: 0% 5h: 0.1% 24h: 0.1% 72h: 0.2% Method C: 30m: 3.6% 5h: 5.9% 24h: 6.4% 72h: 6.4% Method D: 30m: 0.3% 5h: 0.8% 24h: 1.8% 72h: 2.8%

Method A: 30m: 87% 5h: 91% 24h: 79% 72h: 41% Method B: 30m: 61% 5h: 39% 24h: 0% 72h: 0% Method C: 30m: 44% 5h: 54% 24h: 0% 72h: 0% Method D: 30m: 0% 5h: 2% 24h: 6% 72h: 6.2%

Method A: a) 30m: 24% 5h: 29% 72h: 3% b) 30m: 18% 5h: 22% 72h: 15% Method B: a) 30m: 22% 5h: 24% 24h: 24% 72h: 23% b) 30m: 12% 5h: 13% 24h: 13% 72h: 13% Method C: a) 30m: 14% 5h: 36% 24h: 37% 72h: 37% Method D: a) 30m: 5% 5h: 12% 24h: 48% 72h: 24% b) 30m: 5% 5h: 15% 24h: 22% 72h: 24%

Method A: 30m: 0% 5h: 0% 24h: 0% 72h: 0% Method B: 30m: 0% 5h: 0% 24h: 0% 72h: 0% Method C: 30m: 0% 5h: 0% 24h: 0% 72h: 0% Method D: 30m: 0% 5h: 0% 24h: 0% 72h: 0%

Method A: 30m: 3.7% 5h: 3.7% 24h: 3.7% 72h: 3.7% Method B: 30m: 0% 5h: 0.5% 24h: 0.6% 72h: 0.6% Method C: 30m: 3.0% 5h: 5.1% 24h: 5.2% 72h: 5.4% Method D: 30m: 0.3% 5h: 0.6% 24h: 1.4% 72h: 2.1%

$$\begin{array}{c} \overset{H}{\underset{N \rightarrow N}{ }} \overset{N}{\underset{CI}{ }} \overset{H}{\underset{N \rightarrow N}{ }} \rightarrow \text{ No } CF_3 \text{ Transfer} \end{array}$$

Method A: 30m: 0% 5h: 0% 24h: 0% 72h: 0% Method B: 30m: 0% 5h: 0% 24h: 0% 72h: 0% Method C: 30m: 0% 5h: 0% 24h: 0% 72h: 0% Method D: 30m: 0% 5h: 0% 24h: 0% 72h: 0%

Method A: 30m: 0% 5h: 0% 24h: 0% 72h: 0% Method B: 30m: 0% 5h: 0% 24h: 0% 72h: 0% Method C: 30m: 0% 5h: 0% 24h: 0% 72h: 0% Method D: 30m: 0% 5h: 0% 24h: 0% 72h: 0%

Method A: 30m: 3% 5h: 4% 24h: 7% 72h: 10% Method B: 30m: 0% 5h: 0% 24h: 0% 72h: 0% Method C: 30m: 0% 5h: 0% 24h: 0% 72h: 0% Method D: 30m: 0% 5h: 0% 24h: 0% 72h: 0%

Method A: 30m: 22% 5h: 0% 24h: 0% 72h: 0% Method B: 30m: 69% 5h: 69% 24h: 31% 72h: 0% Method C: 30m: 58% 5h:79% 24h: 78% 72h: 56% Method D: 30m: 5% 5h:13% 24h: 26% 72h: 36%

Method A: 30m: 100% 5h: 98% 24h: 100% 72h: 95% Method B: 30m: 75% 5h: 70% 24h: 70% 72h:66% Method C: 30m: 59% 5h: 63% 24h: 62% 72h: 61% Method D: 30m: 16% 5h: 50% 24h: 56% 72h:46%

Method A: a) 30m: 50% 5h: 51% 72h: 47% b) 30m: 36% 5h: 24% 72h: 10% Method B: a) 30m: 61% 5h: 58% 24h: 58% 72h: 56% b) 30m: 21% 5h: 17% 24h: 12% 72h: 12% Method C: a) 30m: 47% 5h: 50% 24h: 50% 72h: 50% b) 30m: 17% 5h: 17% 24h: 17% 72h: 17% Method D: a) 30m: 6% 5h: 6% 24h: 5% 72h: 24% b) 30m: 11% 5h: 20% 24h: 24% 72h: 25%

Nucleophilic Trifluoromethylation of Organic Compounds with LA-CF₃: Isolated Compounds and Characterization

General Protocol:

An appropriate quantity of a 0.2 M stock solution of $K(LA-CF_3)$ was added to a 0.2 M solution of substrate in a 20 mL scintillation vial. The mixture was then stirred for the specified time (*vide infra*) then quenched by adding 15 mL of 5% aqueous HCl or saturated aqueous ammonium chloride. The product was then extracted into CH_2Cl_2 (5 x 3 mL CH_2Cl_2) and the organic phase dried with MgSO₄. The dried organic phase was then filtered, concentrated to 1 mL, then purified by silica chromatography using a Biotage Isolera automated flash chromatography apparatus. The collected fractions were concentrated by rotary evaporation and further dried under high vacuum to afford the pure products.

1,2 Addition Reactions with C=O and C=N compounds

1-Phenyl-1-trifluoromethylmethanol:

Substrate: Benzaldehyde. Conditions: Solvent: DMSO. LA: K(BOCH₂CH₂N)₃CF₃. 1.0 equivalents K(LA-CF₃) used. 0.40 mmol substrate. Reaction time: 1 hour. Quench: 5% HCl. Chromatography conditions: 100% CH₂Cl₂, 9 column volumes, 10g SiO₂, flow rate: 1 column volume per minute. 62 mg colorless oil, 88%. Due to the volatile nature of the product it could not be dried under high vacuum. ¹H-NMR (CDCl₃): 7.46 (β , 2H, m), 7.41 (α , γ , 3H, m), 4.98 (ϵ , 1H, (q, $J_{1H-19F}=6.7$)), 2.88 (ζ , 1H, s). ¹³C-NMR: 133.92, 129.53, 128.60, 127.41, 124.22 (q, $J_{13C-19F}=282$), 72.79 (q, $J_{13C-19F}=32$). ¹⁹F-NMR: -78.36 (d, $J_{19F-1H}=6.7$). HRMS (ESI-): 221.0435 (M+HCO₂: 221.0431).

Fig. S50. ¹H NMR Spectrum:

Methyl 4-(trifluoro-1-ethanol)benzoate

Substrate: Methyl 4-formyl benzoate. Conditions: Solvent: DMSO. LA: K(BOCH₂CH₂N)₃CF₃. 1.0 equivalents K(LA-CF₃) used. 0.40 mmol substrate. Reaction time: 1 hours. Quench: 5% HCl. Chromatography conditions: 0-100% hexane/ethyl acetate, 16 column volumes, 50 g SiO₂, flow rate 0.5 column volume per minute. 56 mg white solid, 60%. ¹H-NMR (CDCl₃): 8.00 (β , 2H, (d, $J_{1H-1H}=8.1$)), 7.54 (γ , 2H, (d, $J_{1H-1H}=7.9$)), 5.08 (ϵ , 1H, (q, $J_{1H-19F}=6.7$)), 3.89 (α , 3H, s), 3.72 (ζ , 1H, s). ¹³C-NMR: 167.00, 139.02, 130.83, 129.69, 127.51, 124.02 (q, $J_{13C-19F}=282$), 72.25 (q, $J_{13C-19F}=32$), 52.39. ¹⁹F-NMR: -78.18 (d, $J_{19F-1H}=6.7$). HRMS (ESI-): 235.0573 (M-H: 235.0577).

4-(Trifluoro-1-ethanol)benzonitrile

Substrate: 4-formyl-benzonitrile. Conditions: Solvent: DMSO. LA: K(BOCH₂CH₂N)₃CF₃. 1.0 equivalent K(LA-CF₃) used. 0.40 mmol substrate. Reaction time: 1 hours. Quench: 5% HCl. Chromatography conditions: 0-100% CH₂Cl₂/ethyl acetate, 8 column volumes, 10 g SiO₂, flow rate 1 column volume per minute. 39 mg white solid, 48%. ¹H-NMR (CDCl₃): 7.68 (β , 2H, (d, *J*_{1H-1H}=8.2)), 7.63 (α , 2H, (d, *J*_{1H-1H}=8.1)), 5.11 (γ , 1H, (p, *J*_{1H-19F}=6.2)), 3.44 (ϵ , 1H, (d, *J*_{1H-1H}=4.6))). ¹³C-NMR: 139.19, 132.28, 128.27, 123.78(q, *J*_{13C-19F}=282), 118.27, 112.94, 72.25 (q, *J*_{13C-19F}=32). ¹⁹F-NMR: -78.18 (d, *J*_{19F-1H}=6.4). HRMS (ESI-): 200.0322 (M-H: 200.0329).

1-(Anthracen-9-yl)-1,1-bistrifluoromethylcarbinol

Substrate: Anthracen-9-yl trifluoromethyl ketone. Conditions: Solvent: THF. LA: K(18-crown-6)(B₃N₃Me₆CF₃)(THF). 2.0 equivalents K(LA-CF₃) used. 0.40 mmol substrate. Reaction time: 1 hour. Quench: 5% HCl. Chromatography conditions: 0-100% hexane ethyl acetate, 16 column volumes, 25 g SiO₂, flow rate 1 column volume per minute. 120 mg yellow crystals, 87%. ¹H-NMR (CDCl₃): 9.02 (α , 1H, (d, *J*_{1H-1H}=9.3)), 8.55 (α , 1H, (d, *J*_{1H-1H}=9.3)), 8.51 (γ , 1H, s), 7.99 (β , 2H, (t, *J*_{1H-1H}=9.5)), 7.59 (β , 1H, (t, *J*_{1H-1H}=8.3)), 7.49 (α , β , 3H, m), 3.98 (ε , 1H, s). ¹³C-NMR: 134.06, 133.11, 132.46, 132.41, 131.38, 131.15, 129.39, 129.11, 127.34, 126.71, 125.98, 124.78, 124.61, 123.94(q, *J*_{13C-19F}=290), 121.94, 83.46(p, *J*_{13C-19F}=31). ¹⁹F-NMR: -69.31 (s). HRMS (ES+): 344.0630 (M+: 344.0636).

Fig. S60. ¹³C NMR Spectrum (¹H decoupled):

1-(Trans)-phenylethenyl-1-phenyl-trifluoromethylcarbinol

Substrate: Trans-chalcone. Conditions: Solvent: THF. LA: K(18-crown-6)(B₃N₃Me₆CF₃)(THF). 1.0 equivalents K(LA-CF₃) used. 0.80 mmol substrate. Reaction time: 10 minutes. Quench: 5% HCl. Chromatography conditions: 0-100% hexane ethyl acetate, 16 column volumes, 25 g SiO₂, flow rate 1 column volume per minute. 190 mg colorless oil, 84%. ¹H-NMR (CDCl₃): 7.69 (ß, 2H, (d, $J_{1H-1H}=7.7$)), 7.45 (ß, α , 5H, m), 7.38 (ß, 2 H, (t, $J_{1H-1H}=7.4$)), 7.33 (α , 1H, (t, $J_{1H-1H}=7.3$)), 6.91 (γ , 1H, (d, $J_{1H-1H}=16.1$)), 6.77 (γ , 1H, (d, $J_{1H-1H}=16.1$)), 2.79 (ε , 1H, s). ¹³C-NMR: 137.40, 135.51, 133.58, 128.84, 128.76, 128.67, 128.41, 126.95, 126.84, 126.46, 125.08(q, $J_{13C-19F}=286$), 77.34(q, $J_{13C-19F}=29$). ¹⁹F-NMR: -78.46 (s). HRMS (EI+): 278.0919(M+: 278.0918).

1-Phenylethynyl-1-phenyl-trifluoromethylcarbinol

Substrate: Diphenylpropynone. Conditions: Solvent: THF. LA: K(18-crown-6)(B₃N₃Me₆CF₃)(THF). 1.0 equivalents K(LA-CF₃) used. 0.40 mmol substrate. Reaction time: 16 hours. Quench: saturated NH₄Cl. Chromatography conditions: 0-30% hexane ethyl acetate, 16 column volumes, 50 g SiO₂, flow rate 1 column volume per minute. 45 mg orange oil, 42%. ¹H-NMR (CDCl₃): 7.83 (β , 2H, (d, $J_{1H-1H}=4.8$)), 7.56 (β , 2H, (d, $J_{1H-1H}=4.8$)), 7.46 (α , β , 3H, m), 7.42 (α , 1H, (p, $J_{1H-1H}=7.4$)), 7.37 (β , 2H, (t, $J_{1H-1H}=7.4$)), 3.15 (ϵ , 1H, s). ¹³C-NMR:135.26, 132.06, 129.55, 129.53, 128.47, 128.25, 127.19, 123.39(q, $J_{13C-19F}=286$), 120.93, 88.09, 84.40, 73.36(q, $J_{13C-19F}=33$). ¹⁹F-NMR: -80.29 (s). HRMS (ESI-): 275.0683(M-H: 275.0684).

Fig. S66. ¹H NMR Spectrum:

Fig. S67. ¹³C NMR Spectrum:

N-tosyl-1-trifluoromethyl-benzylamine

Substrate: N-tosylbenzaldimine. Conditions: Solvent: DMSO. LA: K(BOCH₂CH₂N)₃CF₃. 1.0 equivalent K(LA-CF₃) used. 0.40 mmol substrate. Reaction time: 1 hours. Quench: saturated NH₄Cl. Chromatography conditions: 0-100% hexane/CH₂Cl₂, then 0-100% CH₂Cl₂/ethyl acetate, 16 column volumes, 25 g SiO₂, flow rate 1 column volume per minute. 86 mg white solid, 65%. ¹H-NMR (CDCl₃): 7.60 (β , 2H, (d, *J*_{1H-1H}=8.2)), 7.18 (β , α , 7H, m), 6.16 (ϵ , 1H, (d, *J*_{1H-1H}=9.1)), 4.91 (γ , 1H, (p, *J*_{1H-19F}=7.7)), 2.34 (η , 3H, s). ¹³C-NMR: 143.74, 136.89, 131.79, 129.46, 129.19,

128.74, 127.76, 126.92, 123.89(q, $J_{13C-19F}=282$), 59.18(q, $J_{13C-19F}=32$), 21.43. ¹⁹F-NMR: -74.02 (d, $J_{19F-1H}=7.4$). HRMS (ESI-): 328.0624(M-H: 328.0625).

Fig. S69. ¹H NMR Spectrum:

1,1-bistrifluoromethyl-1-(4-phenyl)phenyl-methanol:

Substrate: Biphenyl-4-carbonyl chloride. Conditions: Solvent: THF. LA: K(18-crown-6)(B₃N₃Me₆CF₃)(THF). 2.2 equivalents K(LA-CF₃) used. 0.40 mmol substrate. Reaction time: 16 hours. Quench: 5% HCl. Chromatography conditions: 0-20% Hexane/Ethyl acetate, 8 column volumes, 25 g SiO₂, flow rate 1 column volume per minute. 107 mg white solid, 84%. ¹H-NMR (CDCl₃): 7.82 (ϵ , 2H, (d, $J_{1H-1H}=8.1$)), 7.71 (δ , 2H, (d, $J_{1H-1H}=8.2$)), 7.64 (γ , 2H, (d, $J_{1H-1H}=7.8$)), 7.49 (β , 2H, (t, $J_{1H-1H}=7.5$)), 7.41 (α , 1H, (t, $J_{1H-1H}=7.3$)), 3.38 (ζ , 1H, s). ¹³C-NMR:143.16, 139.88, 128.90, 128.06, 127.94, 127.30, 127.20, 126.94, 122.65(q, $J_{13C-19F}=288$), 77.18 (p, $J_{13C-19F}=30.3$) (overlap with CDCl₃). ¹⁹F-NMR: -75.58 (s). HRMS (ES+): 320.0636 (M-C₃H₇⁺: 320.0636).

Fig. S72. ¹H NMR Spectrum:

Fig. S74. ¹⁹F NMR Spectrum:

Fig. S76. ¹H- ¹³C gHSQCAD Spectrum:

Fig. S78. ¹⁹F- ¹³C gHSQCAD Spectrum:

Fig. S79. ¹⁹F-¹³C gHMBCAD Spectrum:

Trifluoromethyl-(4-phenyl)phenyl Ketone:

Substrate: Methyl biphenyl-4-carboxylate. Conditions: Solvent: THF. LA: K(18-crown-6)(B₃N₃Me₆CF₃)(THF). 1.0 equivalents K(LA-CF₃) used. 0.40 mmol substrate. Reaction time: 30 minutes. Quench: 5% HCl. Chromatography conditions: 0-100% Hexane/Ethyl acetate, 8 column volumes, 25 g SiO₂, flow rate 1 column volume per minute. 29 mg white solid, 29%. ¹H-NMR (CDCl₃): 8.17 (ϵ , 2H, (d, *J*_{1H-1H}=8.0)), 7.78 (δ , 2H, (d, *J*_{1H-1H}=8.4)), 7.66 (γ , 2H, (d, *J*_{1H-1H}=7.1)), 7.51 (β , 2H, (t, *J*_{1H-1H}=7.6)), 7.45 (α , 1H, (t, *J*_{1H-1H}=7.4)). ¹³C-NMR: 180.07 (q, *J*_{13C-19F}=35.0), 148.21, 139.11, 130.72, 129.11, 128.89, 128.56, 127.63, 127.34, 116.76 (q, *J*_{13C-19F}=291),. ¹⁹F-NMR: -71.35 (s). HRMS (ES+): 250.0611 (M⁺: 250.0605).

Triisopropylsilyl Hexafluoro-2-phenoxypropan-2-ol

Substrate: Diphenylcarbonate. Conditions: Solvent: THF. LA: K(18-crown-6)(B₃N₃Me₆CF₃)(THF). 2.0 equivalents K(LA-CF₃) used. 0.40 mmol substrate. Reaction time: 30 minutes. Quench: 2.0 equivalents triisopropylsilyl chloride were added, then the reaction stirred for 16 hours at 25 °C. The reaction mixture was then quenched with 10 mL water. Chromatography conditions: 100% Hexane, 4 column volumes, 100 g SiO₂, flow rate 0.5 column volume per minute; chromatography was repeated six times to remove triisopropylsilyl phenol. 102 mg colorless oil, 61%. Boiling point: 65 °C at 0.080 Torr. ¹H-NMR (CDCl₃): 7.32 (β, 2H, (t, $J_{1H-1H}=8.4$)), 7.19 (α , 3H, m), 1.14 (γ , 3H, m), 1.05 (ϵ , 18H, (d, $J_{1H-1H}=7.2$)). ¹³C-NMR:151.46, 129.07, 125.80, 123.58, 120.73(q, *J*_{13C-19F}=293), 95.20 (p, *J*_{13C-19F}=32.8), 17.43, 13.07. ¹⁹F-NMR: -76.97 (s). HRMS (ES+): 373.1061 (M-C₃H₇⁺: 373.1059).

Fig. S83. ¹H NMR Spectrum:

Phenyl trifluoroacetamide

Substrate: Phenyl isocyanate. Conditions: Solvent: THF. LA: K(18-crown-6)(B₃N₃Me₆CF₃)(THF). 1.0 equivalents K(LA-CF₃) used. 0.80 mmol substrate. Reaction time: 1 hour. Quench: 5% HCl. Chromatography conditions: 10-50% hexane/CH₂Cl₂, 8 column volumes, 25 g SiO₂, flow rate 1 column volume per minute. 91 mg white solid, 61%. ¹H-NMR (CDCl₃): 8.03 (ϵ , 1H, s), 7.54 (γ , 2H, (d, J_{1H-1H}=7.7)), 7.46 (β , 2H, (t, J_{1H-1H}=8.0), 7.23 (α , 1H, (t, J_{1H-1H}=7.4)). ¹³C-NMR: 154.87(q, J_{13C-19F}=37), 135.04, 129.33, 126.39, 120.56, 115.72(q, J_{13C-19F}=288). ¹⁹F-NMR: -75.80 (s). HRMS (ES+): 189.0401 (M+: 189.0401).

Fig. S86. ¹H NMR Spectrum:

Nucleophilic Aromatic Substitution

Perfluoro-p-xylene

Substrate: Perfluorotoluene. Conditions: Solvent: THF. LA: K(18-crown-6)(B₃N₃Me₆CF₃)(THF). 1.0 equivalents K(LA-CF₃) used. 0.10 mmol substrate. Reaction time: 10 min. Quench: water. Characterized *in-situ*; yield determined by ¹⁹F-NMR spectroscopy and integrated against 0.030 mmol fluorobenzene. The product spectrum closely matched the literature chemical shifts and ¹⁹F-¹⁹F coupling constants. Because of highly complex coupling, spin simulation in MestReNova was performed using the literature coupling constants to provide comparison with the experimental *in-situ* spectrum. (Literature ¹⁹F-NMR (solvent not specified): -57.6 ($J_{19F-19F}$ = 22.7 (α -(β/ζ), ω -(ϵ/γ)), 0.4 (α -(ϵ/γ), ω -(β/ζ)), -138.9 ($J_{19F-19F}$ =18.6 (β - ϵ , ζ - γ), 13.2 (β - γ , ζ - ϵ))).^[28] Chemical yield: 27%. *In-Situ* ¹⁹F-NMR: -56.46 (α , ω 6F, m), -139.38 (β , ϵ , γ , ζ , 4F, m)

*: Perfluorotoluene

Fig. S90. Superimposed Simulated (gray; from literature J-couplings) and Experimental (black; from *in-situ* generation of perfluoro-*p*-xylene) ¹⁹F NMR Spectra for -CF₃ and -F Peaks:

$$O_2N \longrightarrow CF_3$$

1-Trifluoromethyl-4-nitrobenzene

Substrate: 1,4-Dinitrobenzene. Conditions: Solvent: THF. LA: K(18-crown-6)(B₃N₃Me₆CF₃)(THF). 1.0 equivalents K(LA-CF₃) used. 0.40 mmol substrate. Reaction time: 2 hour. Quench: water. Chromatography conditions: 0-100% Hexane/CH₂Cl₂, 8 column volumes, 25 g SiO₂, flow rate 1 column volume per minute. 64 mg white solid, 42%. ¹H-NMR (CDCl₃): 8.34 (α , 2H, (d, J_{1H-1H}=8.4)), 7.84 (α , 2H, (d, J_{1H-1H}=8.5)). ¹³C-NMR: 150.00, 136.06 (q, J_{13C-19F}=33), 126.77 (q, J_{13C-19F}=3), 124.07, 122.94(q, J_{13C-19F}=273), 73.36(q, J_{13C-19F}=33). ¹⁹F-NMR: - 63.19 (s). HRMS (ES+): 191.0195 (M+: 191.0194).

5-Phenyl-2-Trifluoromethylpyridine:

Substrate: 5-Phenyl-2-nitropyridine. Conditions: Solvent: THF. LA: K(18-crown-6)(B₃N₃Me₆CF₃)(THF). 1.0 equivalents K(LA-CF₃) used. 0.40 mmol substrate. Reaction time: 2 hours. Quench: 10 mL water. Chromatography conditions: 0-30% Hexane/Ethyl acetate, 8 column volumes, 25 g SiO₂, flow rate 1 column volume per minute. 30 mg white solid, 33%. ¹H-NMR (CDCl₃): 8.94 (α , 1H, s), 8.04 (β , 1H, (d, $J_{1H-1H}=8.1$)), 7.76 (β , 1H, (d, $J_{1H-1H}=8.1$)), 7.60 (γ , 2H, (d, $J_{1H-1H}=8.1$)), 7.53 (δ , 2H, (t, $J_{1H-1H}=8.1$)), 7.46 (ϵ , 1H, (t, $J_{1H-1H}=6.8$)). ¹³C-NMR: 148.46, 146.77 (q, $J_{13C-19F}=34.7$), 139.48, 136.35, 135.48, 129.32, 129.00, 127.33, 121.69 (q, $J_{13C-19F}=273$), 120.43 (q, $J_{13C-19F}=2.7$). ¹⁹F-NMR: -71.38 (s). HRMS (ESI+): 224.0679 (M+H: 224.0682).

Fig. S94. ¹H NMR Spectrum:

Fig. S96. ¹⁹F NMR Spectrum:

Direct Nucleophilic Addition/Oxidation

6-Phenyl-(2-/4-)trifluoromethylpyrimidine:

6-Phenylpyrimidine (93.7 mg, 0.600 mmol) was dissolved in 3 mL THF. K(18-crown-6)(B₃N₃Me₆CF₃)(THF) (3.00 mL, 0.2 M in THF, 0.600 mmol) was then added. After 72 hours, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (135 mg, 0.600 mmol) was added and the mixture stirred for five minutes. NMR spectra showed a mixture of two trifluoromethylated products. The reaction mixture was quenched with water. The aqueous phase was extracted with CH₂Cl₂ (5 x 2 mL), the CH₂Cl₂ extract was dried and concentrated, and the crude oil was purifed by flash silica chromatography. Chromatography conditions: 0-40% Hexane/DCM, 12 column volumes, 25 g SiO₂, flow rate 1 column volume per minute. Chromatography afforded separated -2 and -4 substituted products. 6-Phenyl-2-trifluoromethylpyrimidine: 9.2 mg white solid, 7%. ¹H-NMR (CDCl₃): 8.91 (β , 1H, (d, $J_{1H-1H}=5.3$)), 8.17 (γ , 2H, (dd, $J_{1H-1H}=8.1$, 1.4)), 7.88 (α , 1H, (d, $J_{1H-1H}=5.3$) $_{1H}$ =5.3)), 7.57 (ϵ , 1H, m), 7.55 (δ , 2H, m) 13 C-NMR: 165.28, 158.30, 157.05 (q, $J_{13C-19F}$ =36.5), 135.04, 132.04, 129.22, 127.45, 119.63 (q, J_{13C-19F}=275), 118.23 ¹⁹F-NMR: -70.65 (s). HRMS (ESI+): 225.0635 (M+H: 225.0640). 6-Phenyl-4-trifluoromethylpyrimidine: 39.5 mg white solid, 29%. ¹H-NMR (CDCl₃): 9.39 (α , 1H, s), 8.15 (γ , 2H, (d, $J_{1H-1H}=6.9$)), 8.03 (β , 1H, s), 7.58 (ϵ , 1H, m), 7.55 (δ , 2H, m) ¹³C-NMR: 166.51, 159.40, 156.16 (q, $J_{13C-19F}=36.0$), 135.34, 132.10, 129.26, 127.40, 120.66 (q, J_{13C-19F}=275), 112.54 ¹⁹F-NMR: -73.70 (s). HRMS (ESI+): 225.0635 (M+H: 225.0640).

6-Phenyl-2-trifluoromethylpyrimidine:

Fig. S99. ¹⁹F NMR Spectrum:

Fig. S101. ¹H-¹³C gHSQCAD Spectrum:

Fig. S102. ¹H-¹³C gHMBCAD Spectrum:

6-Phenyl-4-trifluoromethylpyrimidine:

Fig. S104. ¹³C NMR Spectrum:

Fig. S106. ¹H-¹H gCOSY Spectrum:

Fig. S107. ¹H-¹³C gHSQCAD Spectrum:

4-Trifluoromethylquinazoline:

Quinazoline (78 mg, 0.600 mmol) was dissolved in 3 mL THF. K(18-crown-6)(B₃N₃Me₆CF₃)(THF) (3.00 mL, 0.2 M in THF, 0.600 mmol) was then added. After 1 hour, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (135 mg, 0.600 mmol) was added and the mixture stirred for one hour. NMR spectra showed a single product. The reaction mixture was quenched with water. The aqueous phase was extracted with CH₂Cl₂ (5 x 2 mL), the CH₂Cl₂ extract was dried and concentrated, and the crude oil was purifed by flash silica chromatography. Chromatography conditions: 0-20% Hexane/Ethyl Acetate, 16 column volumes, 25 g SiO₂, flow rate 1 column volume per minute. 4-Trifluoromethylquinazoline: 64.0 mg yellow oil, 53%. ¹H-NMR (CDCl₃): 9.44 (α , 1H, s), 8.25 (β , 1H, (d, J_{1H-1H}=8.5)), 8.18 (ϵ , 1H, (d, J_{1H-1H}=8.5)), 8.03 (δ , 1H, (t, J_{1H-1H}=7.7)). ¹³C-NMR: 154.57 (q, J_{13C-19F}=34.9), 153.50, 151.86, 134.88, 129.50, 129.40, 124.27 (q, J_{13C-19F}=2.7), 121.24 (q, J_{13C-19F}=277), 120.28¹⁹F-NMR: -64.55 (s). HRMS (ESI+): 199.0478 (M+H: 199.0483).
Fig. S109. ¹H NMR Spectrum:

Fig. S112. ¹H-¹H gCOSY Spectrum:

Fig. S113. ¹H-¹³C gHSQCAD Spectrum:

Fig. S114. ¹H-¹³C gHMBCAD Spectrum:

CI

4-Trifluoromethyl-5-bromo-2-chloro-pyrimidine:

5-Bromo-2-chloro-pyrimidine (154 mg, 0.800 mmol) was dissolved in 4 mL THF. K(18-crown-6)(B₃N₃Me₆CF₃)(THF) (4.00 mL, 0.2 M in THF, 0.800 mmol) was then added. After 5 minutes, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (135 mg, 0.600 mmol) was added and the mixture stirred for one hour. NMR spectra showed a single product. The reaction mixture was quenched with water. The aqueous phase was extracted with CH₂Cl₂ (5 x 2 mL), the CH₂Cl₂ extract was dried and concentrated, and the crude oil was purifed by flash silica chromatography. Chromatography conditions: 0-20% Hexane/DCM, 12 column volumes, 25 g SiO₂, flow rate 1 column volume per minute. 4-Trifluoromethyl-5-bromo-2-chloro-pyrimidine: 102.3 mg colorless oil, 49%. ¹H-NMR (CDCl₃): 8.94 (α , 1H, s). ¹³C-NMR: 164.56, 159.61, 155.21 (q, *J*_{13C-19F}=36.7), 119.28 (q, *J*_{13C-19F}=277), 115.35 ¹⁹F-NMR: -68.22 (s). HRMS (EI+): 259.8966 (M+: 259.8964).

Fig. S115. ¹H NMR Spectrum:

Fig. S118. ¹H-¹³C gHSQCAD Spectrum:

4-Trifluoromethyl-2-6-diphenyltriazine:

2-6-Diphenyltriazine^[29] (0.4 mg, 0.800 mmol) was dissolved in 2 mL THF. K(18-crown-6)(B₃N₃Me₆CF₃)(THF) (4.00 mL, 0.2 M in THF, 0.800 mmol) was then added. After 5 minutes, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (135 mg, 0.600 mmol) was added and the mixture stirred for one hour. NMR spectra showed a single product. The reaction mixture was quenched with water. The aqueous phase was extracted with CH₂Cl₂ (5 x 2 mL), the CH₂Cl₂ extract was dried and concentrated, and the crude oil was purifed by flash silica chromatography. Chromatography conditions: 2-15% Hexane/DCM, 8 column volumes, 25 g SiO₂, flow rate 1 column volume per minute. 4-Trifluoromethyl-5-bromo-2-chloro-pyrimidine: 52.5 mg white solid, 43%. ¹H-NMR (CDCl₃): 8.69 (α , 4H, (d, J_{1H-1H}=8.4)), 7.66 (γ , 2H, (t, J_{1H-1H}=7.3)), 7.58 (β ,

4H, (t, $J_{1H-1H}=7.7$)). ¹³C-NMR: 173.07, 165.19 (q, $J_{13C-19F}=37.7$), 134.43, 133.73, 129.41, 128.90, 119.07 (q, $J_{13C-19F}=277$) ¹⁹F-NMR: -72.28 (s). HRMS (ESI+): 302.0897 (M+H: 302.0905).

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 (ppm)

Geminal Bistrifluoromethylations

4,4-Bistrifluoromethyl-2-chloro-3-hydroquinazoline

Substrate: Dichloroquinazoline. Conditions: Solvent: THF. LA: K(18-crown-6)(B₃N₃Me₆CF₃)(THF). 1.5 equivalents K(LA-CF₃) used. 0.80 mmol substrate. Reaction time: 30 minutes. Quench: 10 mL 5% NaOH, then brought to pH 7 with glacial acetic acid. Chromatography conditions: 0-100% hexane/ethyl acetate, 16 column volumes, 25 g SiO₂, flow rate 1 column volume per minute.146 mg light yellow solid, 60%. ¹H-NMR (CDCl₃): 8.22 (η , 1H, s), 7.58 (α , 1H, (d, J_{1H-1H}=8.0)), 7.41 (ε , 1H, (t, J_{1H-1H}=7.7), 7.22 (β , 1H, (t, J_{1H-1H}=7.7)), 6.88 (ζ , 1H, (d, J_{1H-1H}=8.0)). ¹³C-NMR: 145.84 (3), 135.58 (4), 131.34 (6), 128.19 (8), 125.66 (7), 122.42(1, q, J_{13C-19F}=288), 115.09 (5), 108.67 (9), 73.36(2, p, J_{13C-19F}=29). ¹⁹F-NMR: -73.73 (s). HRMS (ESI+): 303.0114 (M+H: 303.0124).

The trifluoromethyl groups were assigned based on crosspeaks in 2D NMR experiments and a septet for carbon #2 in the ¹³C NMR spectrum. HSQC was used to identify the carbon atoms associated with hydrogen atoms α , β , ε , and ζ . ¹⁹F-¹³C HMBC was then used to identify one bond coupling with carbon 1, two bond coupling with carbon 2, four bond coupling with carbon 3, and four bond coupling with carbon 8. Carbon 3 was assigned based on its lack of long-range coupling with any protons and high shift. The positions of carbons 9 and 4 were assigned based on their long-range coupling with hydrogen atoms α , β , ε , and ζ . The position of carbon 8 was based on its proximity to the ¹⁹F group. Finally, the position of acidic hydrogen η and confirmation of the assignment was obtained through single-crystal X-Ray diffraction. A single crystal was obtained by allowing a concentrated solution of 4,4-Bistrifluoromethyl-2-chloro-3-hydroquinazoline in chloroform to slowly evaporate.

Fig. S124. ¹³C NMR Spectrum:

Fig. S126. ¹⁹F-¹³C Crisis2 HMBC Spectrum:

Fig. S127. ¹H-¹³C gHMBCAD Spectrum:

Fig. S129. ¹H- ¹H gCOSY Spectrum:

2,4-Phenoxy-6,6-bistrifluoromethyl-3-hydro-triazine

Substrate: 2,4-diphenoxy-6-chlorotriazine. Solvent: THF. Conditions: LA: K(18-crown-6)(B₃N₃Me₆CF₃)(THF). 2.0 equivalents K(LA-CF₃) used. 0.40 mmol substrate. Reaction time: 2 hour. Quench: water. Chromatography conditions: 0-50% Hexane/Ethyl acetate, 8 column volumes, 25 g SiO₂, flow rate 1 column volume per minute. 123 mg white solid, 76%. ¹H-NMR (DMSO-d₆): 12.36 (ϵ , 1H, s), 7.84 (β , 2H, (t, 4H, (t, *J*_{1H-1H}=7.8)), 7.27 (α , 2H, (t, *J*_{1H-1H}=7.3)), 7.21 (γ , 4H, (d, *J*_{1H-1H}=8.0)). ¹³C-NMR (DMSO-d₆): 155.74, 151.04, 130.12, 126.60, 122.09(q, *J*_{13C-19F}=288), 121.63, 81.02 (p, *J*_{13C-19F}=29.5). ¹⁹F-NMR: -79.44 (s). HRMS (ES+): 403.0759 (M+: 403.0755).

Fig. S130. ¹H NMR Spectrum:

S86

2,4-Phenoxy-6,6-bistrifluoromethyl-3-benzyl-triazine

Substrate: 2,4-diphenoxy-6-chlorotriazine. Conditions: Solvent: THF. LA: K(18-crown-6)(B₃N₃Me₆CF₃)(THF). 2.0 equivalents K(LA-CF₃) used. 0.40 mmol substrate. Reaction time: 30 minutes. Quench: 1 equiv. benzyl bromide was added under nitrogen, then the reaction stirred for 16 hours at 25 °C. The reaction mixture was then quenched with 10 mL water. Chromatography conditions: 0-100% Hexane/Ethyl acetate, 16 column volumes, 25 g SiO₂, flow rate 1 column volume per minute. 108 mg white solid, 55%. ¹H-NMR (CDCl₃): 7.37 (α , 10H, m), 7.24 (ϵ , 2H, (t, $J_{1H-1H}=7.4$)), 7.11 (γ , 3H, m), 5.21 (β , 2H, s). ¹³C-NMR: 153.07, 151.25, 136.53, 129.33, 128.92, 127.95, 126.86, 126.02, 121.59(q, $J_{13C-19F}=288$), 121.11, 78.83(p, $J_{13C-19F}=30.3$), 46.00. ¹⁹F-NMR: -80.41 (s). HRMS (ES+): 493.1229 (M+: 493.1225).

Fig. S133. ¹H NMR Spectrum:

Fig. S134. ¹³C NMR Spectrum:

Fig. S135. ¹⁹F NMR Spectrum:

1-benzyl-6-chloro-2-(phenylthio)-4,4-bis(trifluoromethyl)-1,4-dihydroquinazoline:

Substrate: Trichloroquinazoline. Experimental: Trichloroquinazoline (0.400 mmol, 93.4 mg) was combined with 2 equivalents K(18-crown-6)(B₃N₃Me₆CF₃)(THF) (0.800 mmol, 4.00 mL, 0.2M solution in THF) and stirred for 30 minutes at 25 °C. One equivalent benzyl bromide (0.400 mmol, 68.4 mg) was then added, and the mixture stirred at 70 °C for 24 hours. The reaction was then cooled to 25 °C, and 1 equivalent sodium thiophenolate (0.400 mmol, 52.8 mg) was added. The reaction was then heated to 70 °C and stirred for 24 hours. The THF solvent was then removed by rotary evaporation, and the crude solid purified by flash chromatography (conditions: 25g SiO₂ column, 0-50% CH₂Cl₂/Hexane over 16 column volumes at a flow rate of 1 column volume per minute) to afford 120 mg of white solid (60%). ¹H-NMR (CDCl₃): 7.55 (η , 2H, overlap), 7.54 (1H, α , overlap), 7.41 (5H, χ , τ , ζ , overlap), 7.34 (1H, σ , (t, $J_{1H-1H}=7.4$)), 7.28 (2H, ε , (d, $J_{1H-1H}=7.7$)), 7.24 (1H, (d(d), ($J_{1H-1H}=8.8, 2.1$))), 6.75 (1H, γ , (d, $J_{1H-1H}=9.0$)), 5.27 (2H, δ , s). ¹³C-NMR: 158.99, 136.80, 135.69, 134.95, 130.81, 129.48, 129.37, 129.21, 128.73, 128.08, 127.93, 125.76, 122.46 (q, $J_{13C-19F}=288$), 115.67, 113.23, 66.80(p, $J_{13C-19F}=28.7$), 50.36. ¹⁹F-NMR: -73.92 (s). HRMS (ESI+): 501.0619 (M+H: 501.0621). A single crystal was obtained for X-Ray diffraction by allowing a concentrated solution in chloroform to slowly evaporate.

Fig. S137. ¹³C NMR Spectrum:

Fig. S139. ¹H- ¹H gCOSY Spectrum:

Fig. S140. ¹H- ¹³C gHSQCAD Spectrum:

Fig. S141. ¹H- ¹³C gHMBCAD Spectrum:

Selective 2- or 4- C-H trifluoromethylation of Quinolines

4-Trifluoromethylquinoline:

Experimental: Quinoline (51.6 mg, 0.400 mmol) was dissolved in 2 mL THF along with $B(C_6F_5)_3$ (204 mg, 0.400 mmol). This was cooled to -30 °C, and combined with K(18-crown-6)(B₃N₃Me₆CF₃)(THF) (2.00 mL, 0.2 M in THF, 0.400 mmol) with stirring. The reaction was allowed to warm to room temperature over 30 minutes, NMR spectra recorded, and then 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (181 mg, 0.800 mmol) was added. *In-situ* NMR spectra showed conversion to the dearomatized *para*, rather than the *ortho*, intermediate in 93% selectivity. The reaction was stirred for 1 hour at room temperature, and the reaction mixture quenched with water. The aqueous phase was extracted with CH₂Cl₂ (5 x 2 mL), the CH₂Cl₂ extract was dried and concentrated, and the crude oil was purifed by flash silica chromatography. Chromatography conditions: 0-80% Hexane/Ethyl acetate, 16 column volumes, 50 g SiO₂, flow rate 1 column volume per minute. 50.2 mg colorless oil, 65%. ¹H-NMR (CDCl₃): 9.05 (β , 1H, (d,

 $J_{1H-1H}=4.2$)), 8.24 (γ, 1H, (d, $J_{1H-1H}=8.5$)), 8.17 (γ, 1H, (d, $J_{1H-1H}=8.5$)), 7.83 (ε, 1H, (t, $J_{1H-1H}=7.2$)), 7.72 (ε, α, 2H, m (overlap)). ¹³C-NMR: 149.53, 148.94, 134.28 (q, $J_{13C-19F}=31.8$), 130.41, 130.21, 128.32, 124.03 (q, $J_{13C-19F}=2.2$), 123.40 (q, $J_{13C-19F}=274.7$), 122.95, 117.93 (q, $J_{13C-19F}=5.3$). ¹⁹F-NMR: -61.46 (s). HRMS (ESI+): 198.0523 (M+H: 198.0525).

Fig. S142. In-Situ 19F NMR Spectrum of Ortho and Para Dearomatized Intermediates

Fig. S145. ¹⁹F NMR Spectrum:

2-Trifluoromethylquinoline:

Experimental: Quinoline (51.6 mg, 0.400 mmol) was dissolved in 2 mL THF along with BF₃ (204 mg, 0.400 mmol). This was cooled to -30 °C, and combined with K(18-crown-6)(B₃N₃Me₆CF₃)(THF) (2.00 mL, 0.2 M in THF, 0.400 mmol) with stirring. The reaction was allowed to warm to room temperature over 30 minutes, and then 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (181 mg, 0.800 mmol) was added. *In-situ* NMR spectra showed conversion to the dearomatized *ortho*, rather than the *para*, intermediate in 85% selectivity. The reaction was stirred for 1 hour at room temperature, and the reaction mixture was quenched with water. The aqueous phase was extracted with CH₂Cl₂ (5 x 2 mL), the CH₂Cl₂ extract dried and concentrated, and the crude oil purifed by flash silica chromatography. Chromatography conditions: 0-80% Hexane/Ethyl acetate, 16 column volumes, 50 g SiO₂, flow rate 1 column volume per minute. 21.6 mg white solid, 27%. ¹H-NMR (CDCl₃): 8.36 (α , 1H, (d, *J*_{1H-1H}=8.5)), 8.24 (α , 1H, (d, *J*_{1H-1H}=8.5)), 7.91 (B, 1H, (d, *J*_{1H-1H}=8.2)), 7.82 (γ , 1H, (t, *J*_{1H-1H}=7.6)). ¹³C-NMR: 147.89 (q, *J*_{13C-19F}=34.6), 147.14, 138.10, 130.79, 130.08, 128.83, 128.57, 127.66, 121.55 (q, *J*_{13C-19F}=275), 116.75. ¹⁹F-NMR: -67.13 (s). HRMS (ESI+): 198.0522 (M+H⁺: 198.0525).

Fig. S146. In-Situ 19F NMR Spectrum of Ortho and Para Dearomatized Intermediates

Fig. S149. ¹⁹F NMR Spectrum:

4-(Cinnamylthio)-2,7-bis(trifluoromethyl)quinoline:

Experimental: 4-(thio)-7-trifluoromethylquinoline (229 mg, 1.00 mmol) was dissolved in 10 mL THF and combined with KOtBu (112 mg, 1.00 mmol). After stirring for 5 minutes, cinnamyl bromide was added (197 mg, 1.00 mmol). After five additional minutes, the reaction solvent was evaporated, 10 mL water added, and the product extracted with CH₂Cl₂ (5 x 2 mL). The CH₂Cl₂ extract was then dried and concentrated, and the crude oil purifed by flash silica chromatography. Chromatography conditions: 5-40% Hexane/Ethyl Acetate, 16 column volumes, 100 g SiO₂, flow rate 1 column volume per minute. 280 mg white solid, 81%. ¹H-NMR (CD₃OD): 8.75 (δ , 1H, (d, *J*_{1H-1H}=4.9)), 8.37 (γ , 1H, (d, *J*_{1H-1H}=8.8)), 8.27 (β , 1H, s), 7.81 (π , 1H, (d, *J*_{1H-1H}=8.8)), 7.63 (α , 1H, (d, *J*_{1H-1H}=4.9)), 7.38 (ν , 2H, (d, *J*_{1H-1H}=7.7)), 7.28 (ξ , 2H, (t, *J*_{1H-1H}=7.3)), 7.21 (ζ , 1H, (t *J*_{1H-1H}=7.4)), 6.77 (μ , 1H, (d, *J*_{1H-1H}=15.7)), 6.40 (τ , 1H, (dt, *J*_{1H-1H}=15.7, 7.0)), 4.09 (ϵ , 2H, (d, *J*_{1H-1H}=7.0)). ¹⁹F-NMR: -63.11 (2, s), -67.98 (1, s). HRMS (ESI+): 346.0872 (M+H⁺: 346.0877).

Fig. S150. ¹H NMR Spectrum:

Fig. S152. ¹⁹F NMR Spectrum:

Fig. S154. ¹H-¹³C gHSQCAD Spectrum:

4-(Cinnamylthio)-2,7-bis(trifluoromethyl)quinoline:

Experimental: 4-(Cinnamylthio)-2,7-bis(trifluoromethyl)quinoline (204 mg, 0.600 mmol) was dissolved in 0.75 mL THF along with BF₃ (74 µL, 0.600 mmol). This was cooled to -30 °C, and combined with K(18-crown-6)(B₃N₃Me₆CF₃)(THF) (3.00 mL, 0.2 M in THF, 0.600 mmol) with stirring. The reaction was allowed to warm to room temperature over 10 minutes, and then 2,3dichloro-5,6-dicyano-1,4-benzoquinone (181 mg, 0.800 mmol) was added. After 10 minutes, the solvent was evaporated and the reaction quenched with 5% NaOH solution in water. The aqueous phase was extracted with CH₂Cl₂ (5 x 2 mL), the CH₂Cl₂ extract dried and concentrated, and the crude oil purifed by flash silica chromatography. Chromatography conditions: 0-20% Hexane/DCM, 12 column volumes, 25 g SiO₂, flow rate 1 column volume per minute. 91.9 mg white solid, 37%. ¹H-NMR (CDCl₃): 8.50 (β , 1H, s), 8.29 (γ , 1H, (d, $J_{1H-1H}=8.8$)), 7.82 (π , 1H, (d, $J_{1H-1H}=8.8)$, 7.65 (α , 1H, s), 7.36 (ν , 2H, (d, $J_{1H-1H}=7.5)$), 7.32 (ξ , 2H, (t, $J_{1H-1H}=7.6)$), 7.27 (ζ , 1H, $(t J_{1H-1H}=7.6)), 6.79 (\mu, 1H, (d, J_{1H-1H}=15.7)), 6.28 (\tau, 1H, (dt, J_{1H-1H}=15.5, 7.1)), 4.04 (\epsilon, 2H, (d, J_{1H-1H}=15.5, 7.1))$ $J_{1H-1H}=7.0$)). ¹³C-NMR: 150.86, 148.22 (q, $J_{13C-19F}=34.7$), 145.49, 135.77, 135.59, 132.79 (q, $J_{13C-19F}=34.7$) $_{19F}=33.1$), 128.63 (m), 128.61 (m), 128.53 (m), 128.46 (m), 126.62, 124.92 (d, $J_{13C-19F}=24.9$), 123.85 (d, $J_{13C-19F}=22$), 123.43 (q, $J_{13C-19F}=273$), 121.40, 121.23 (q, $J_{13C-19F}=276$), 113.18 (q, J_{13C-19F}=276), _{19F}=35.2), 34.36.¹⁹F-NMR: -63.11 (2, s), -67.98 (1, s). HRMS (ESI+): 414.0742 $(M+H^+)$ 414.0751).

Fig. S156. ¹H NMR Spectrum:

Fig. S157. ¹³C NMR Spectrum:

Fig. S159. ¹H-¹H gCOSY Spectrum:

Fig. S160. ¹H-¹³C gHSQCAD Spectrum:

Fig. S161. ¹H-¹³C gHMBCAD Spectrum:

Comparison Between 2 and SiMe₃CF₃ in Aromatic Trifluoromethylation

Optimization of Activator and Solvent for 1a

	(NMe ₄)(F)	(NBu ₄)(SiPh ₃ F ₂)	KOAc	Cs ₂ CO ₃	K ₂ CO ₃	KO ^t Bu	none
Tol	6.6%	38%	0%	0%	0%	0.8%	0%
THF	19%	53%	0.4%	1.2%	0.4%	1.0%	0%
DMF	20%	60%	55%	30%	32%	6.8%	0.6%
DCM	0.3%	3.2%	0%	0%	0%	0.3%	0%

A stock solution of 1,4-dinitrobenzene (1.0 M) containing (0.1 M) hexamethylbenzene as internal standard were prepared. This was used to prepare 1 mL (0.1 M) reaction mixtures, which were charged with 0.1 mmol of activator and stirred in a 8 mL scintillation vial. SiMe₃CF₃ (17.72 μ L, 0.120 mmol) was added, and the mixture stirred for 1 hour. Yield was determined by GC (FID). A reaction with **2** in place of SiMe₃CF₃/activator in THF afforded 58% chemical yield.

Control Reactions for 1b

2 Trifluoromethylation of Quinoline Using 1b

Quinoline (11.82 μ L, 0.10 mmol) was dissolved in 1.0 mL of THF and BF₃•OEt₂ (12.34 μ L, 0.10 mmol) added in an 20 mL scintillation vial charged with a small magnetic stirbar and chilled to - 30 °C. One equiv. SiMe₃CF₃ was added as a -30 °C solution (0.12 mL, 1.0 M THF) to the reaction mixture. Solid (NBu₄)(SiPh₃F₂) (53.5 mg, 0.10 mmol) was added and the vial was shaken and kept at -30 °C for 5 minutes. The vial was then warmed to 25 °C and stirred with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (22.7 mg, 0.10 mmol) for 1 hour. Chemical yield (58%) was determined by integration of the product peak against fluorobenzene as internal standard in the ¹⁹F
NMR spectrum. When $(NBu_4)(SiPh_3F_2)$ was added before $SiMe_3CF_3$, 1% chemical yield was observed. A reaction with **2** in place of $SiMe_3CF_3$ afforded 32% chemical yield.

2 Trifluoromethylation of 2,4,6 Trichloro Quinalozine Using 1b

2,4,6 trichloroquinazoline (11.5 mg, 0.05 mmol) was dissolved in 1 mL of THF along with (14.78 μ L, 0.10 mmol) of SiMe₃CF₃. (NBu₄)(SiPh₃F₂) (54.1 mg, 0.10 mmol) was added to the reaction mixture, which was vigorously shaken until homogeneous. Fluorobenzene internal standard was then added and the reaction mixture transferred to an NMR tube for ¹⁹F NMR analysis. The product was formed in quantitative chemical yield. When SiMe₃CF₃ was added last, the reaction provided 84% chemical yield. A reaction with **2** in place of SiMe₃CF₃ also affords quantitative chemical yield.

2 Trifluoromethylation of 4-Phenyl Benzoyl Chloride Using 1b

4-Phenyl benzoyl chloride (9.1 mg, 0.05 mmol) was dissolved in 1 mL of THF along with (NBu₄)(SiPh₃F₂) (53.7 mg, 0.10 mmol) at 25 °C in an 8 mL scintillation vial. SiMe₃CF₃ (14.78 μ L, 0.10 mmol) was added. The reaction mixture was shaken until homogeneous, charged with fluorobenzene as internal standard and transferred to an NMR tube for ¹⁹F NMR analysis. 45% chemical yield. Adding (NBu₄)(SiPh₃F₂) last provided 40% chemical yield. Using reagent **2**, the *isolated* yield was 84% (see above).

Kinetic Measurements of CF₃ Transfer and Decomposition:

General Protocol:

2 (dispensed as a -78 °C 0.2 M stock solution in THF) was added to a solution of electrophile at -78 °C in a glovebox cold well to give desired concentrations of **2** and electrophile. A 0.7 mL sample of this reaction mixture was then transferred into a -78 °C NMR tube, and the tube rapidly (<30 s) transferred to a -78 °C dry ice acetone bath outside the glovebox. The NMR samples were then inserted into an NMR spectrometer probe held at the desired reaction temperature, and the reaction progress monitored by ¹⁹F NMR spectroscopy (spectra were taken at the rate of 1 spectrum per minute to provide kinetic traces. d1 = 2.5 s, pw = 2.958 µs, aq = 602.931 ms; interpulse delay: 3.1 s). For determination of reactant order, initial rates were measured through a linear fit of the first 30 minutes of the reaction, or of data encompassing the first 15% of reaction progress, whichever was shorter. In all other cases, reaction profiles were obtained through at least 75% reaction progress. Concentrations were calculated by integration against a known concentration of fluorobenzene internal standard.

Example Linear Fit

0.025 M 2 with 0.025 M 7 at -10 °C in THF. Rate: -0.00283 mM/s for consumption of **2**; $R^2 = 0.999$.

Order in 2 for CF₃⁻ transfer to 7-8

0.04 M of 7-8 THF, -10 °C

2 (M)	0.16 M	0.08 M	0.04 M	0.02 M	0.01 M
7 (rate)	1.8(3)*10 ⁻²	1.0(1)*10 ⁻²	5.2(7)*10 ⁻³	3.0(3)*10 ⁻³	1.5(2)*10 ⁻³
8 (rate)	1.9(3)*10 ⁻²	1.0(2)*10 ⁻²	5.8(1)*10 ⁻³	3.5(6)*10 ⁻³	1.8(1)*10 ⁻³

Reaction rates with uncertainty in mM/s for 0.04 M of electrophile with varying equivalents of 2

0.025 M 2 (0.00625 M, 0.0125 M, 0.025 M, 0.05 M, 1 M) 7, slope 0.06 following 2 decomposition

0.025 M 2 (0.00625 M, 0.0125 M, 0.025 M, 0.05 M, 1 M) 8 slope 0.09 following 8 consumption

Order in 7-8 for CF3⁻ transfer from 2

	7-8		
0.025 M of 2	THF, -10 °C		

E (M)	0.1 M	0.05 M	0.025 M	0.0125 M	0.00625 M
7 (rate)	4(1)*10 ⁻³	3.1(5)*10 ⁻³	3.1(4)*10 ⁻³	2.9(4)*10 ⁻³	3.2(5)*10 ⁻³
8 (rate)	4.0(3)*10 ⁻³	4.01(7)*10 ⁻³	3.8(1)*10 ⁻³	3.6(4)*10 ⁻³	3.10(3)*10 ⁻³

Reaction rates with uncertainty in mM/s for 0.025 M of **2** with varying equivalents of electrophile (electrophile=E)

0.04 M 7 (0.01 M, 0.02 M, 0.04M, 0.08 M, 0.16 M) 2, slope 0.89 following 2 decomposition

0.04 M 8 (0.01 M, 0.02 M, 0.04M, 0.08 M, 0.16 M) 2 slope 0.83 following 8 consumption

Eyring Plot for 7

Table of k Values (s⁻¹) for Eyring Analysis

Temperature	-40 °C	-10 °C	0 °C	10 °C
k (s ⁻¹)	8.3*10 ⁻⁷	1.5(3)*10 ⁻⁴	8(2)*10 ⁻⁴	4.2 (7)*10 ⁻³

Linear fit parameters:

Slope: -11700(479); Intercept: 30(1)

Enthalpy of activation: 23.3(9) kCal/mol; Entropy of activation: 12(3) eu.

Kinetic Traces for Thermal Decomposition of 2, 2a, and 2b at 60 °C

2a was prepared in-situ by addition of one equiv. 18-crown-6 to solutions of 2.

Kinetic Traces for Thermal Decomposition of 2, 2a, and 2b at 60 °C

CF3⁻ transfer to 7 from 2, 2b, and 2b activated with K⁺ at 10 °C

0.1 M **2** and 0.1 M **7**, 10 °C. One equiv. $KB(C_6F_5)_4$ (K⁺) was added last as a THF solution at -78 °C to activate **2b** prior to kinetic measurements at 10 °C in **2b & 1K**⁺ and 5 equiv. added in **2b & 5K**⁺.

References

- a) J. Bonham, R. S. Drago, B. F. Spielvogel, J. A. Phillips, C. R. Payet, in *Inorganic Syntheses*, John Wiley & Sons, Inc., 2007, pp. 8-12; b) J. H. Smalley, S. F. Stafiej, *Journal of the American Chemical Society* 1959, 81, 582-586.
- [2] V. Matoušek, E. Pietrasiak, R. Schwenk, A. Togni, *The Journal of Organic Chemistry* **2013**, 78, 6763-6768.
- [3] Z. Demir, E. B. Guven, S. Ozbey, C. Kazak, R. C. Atalay, M. Tuncbilek, *European Journal of Medicinal Chemistry* **2015**, *89*, 701-720.
- [4] G. Cianchetta, J. Popovici-Muller, R. Zahler, S. Cao, X. Wang, Z. Ye, Google Patents, 2015.
- [5] P. J. Bailey, R. A. Coxall, C. M. Dick, S. Fabre, L. C. Henderson, C. Herber, S. T. Liddle, D. Loroño-González, A. Parkin, S. Parsons, *Chemistry – A European Journal* 2003, 9, 4820-4828.
- [6] C. A. Brown, *The Journal of Organic Chemistry* **1974**, *39*, 3913-3918.
- [7] E. J. Corey, M. Chaykovsky, *Journal of the American Chemical Society* **1962**, *84*, 866-867.
- [8] M. L. N. Rao, R. J. Dhanorkar, *European Journal of Organic Chemistry* **2014**, 2014, 5214-5228.
- [9] N. D. Ball, J. B. Gary, Y. Ye, M. S. Sanford, *Journal of the American Chemical Society* **2011**, *133*, 7577-7584.
- [10] M. M. Rothmann, S. Haneder, E. Da Como, C. Lennartz, C. Schildknecht, P. Strohriegl, *Chemistry of Materials* **2010**, *22*, 2403-2410.
- [11] J. B. S. Geri, N. K., Journal of the American Chemical Society 2017
- [12] E. Gómez-Bengoa, M. Maestro, A. Mielgo, I. Otazo, C. Palomo, I. Velilla, *Chemistry A European Journal* **2010**, *16*, 5333-5342.
- [13] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics* 2010, 29, 2176-2179.
- [14] D. M. Wiemers, D. J. Burton, *Journal of the American Chemical Society* 1986, *108*, 832-834.
- [15] X. Li, J. Zhao, L. Zhang, M. Hu, L. Wang, J. Hu, Organic Letters 2015, 17, 298-301.
- [16] a) K. J. Klabunde, *Journal of Fluorine Chemistry* 1976, 7, 95-100; b) D. Naumann, W. Wessel, J. Hahn, W. Tyrra, *Journal of Organometallic Chemistry* 1997, 547, 79-88; c) M. A. Guerra, T. R. Bierschenk, R. J. Lagow, *Journal of Organometallic Chemistry* 1986, 307, C58-C62.
- [17] P. Ivashkin, G. Lemonnier, J. Cousin, V. Grégoire, D. Labar, P. Jubault, X. Pannecoucke, *Chemistry A European Journal* **2014**, *20*, 9514-9518.
- [18] M. Blaya, D. Bautista, J. Gil-Rubio, J. Vicente, *Organometallics* **2014**, *33*, 6358-6368.
- [19] K. Aikawa, Y. Nakamura, Y. Yokota, W. Toya, K. Mikami, *Chemistry A European Journal* **2015**, *21*, 96-100.
- [20] R. Eujen, N. Jahn, U. Thurmann, *Journal of Organometallic Chemistry* **1994**, *465*, 153-160.
- [21] R. Eujen, A. Patorra, *Journal of Organometallic Chemistry* **1992**, *438*, 57-75.
- [22] T. Knauber, F. Arikan, G.-V. Röschenthaler, L. J. Gooßen, *Chemistry A European Journal* **2011**, *17*, 2689-2697.
- [23] P. Panne, D. Naumann, B. Hoge, *Journal of Fluorine Chemistry* 2001, 112, 283-286.

- [24] D. Naumann, W. Tyrra, *Journal of Organometallic Chemistry* **1987**, *334*, 323-328.
- [25] N. M. Betterley, P. Surawatanawong, S. Prabpai, P. Kongsaeree, C. Kuhakarn, M. Pohmakotr, V. Reutrakul, *Organic Letters* **2013**, *15*, 5666-5669.
- [26] C. Pooput, W. R. Dolbier, M. Médebielle, *The Journal of Organic Chemistry* **2006**, *71*, 3564-3568.
- [27] P. Eisenberger, S. Gischig, A. Togni, *Chemistry A European Journal* **2006**, *12*, 2579-2586.
- [28] F. A. M. Ayanbadejo, *Spectrochimica Acta Part A: Molecular Spectroscopy* **1969**, *25*, 1009-1015.
- [29] P. Wessig, J. Schwarz, Monatshefte für Chemie / Chemical Monthly 1995, 126, 99-102.