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In this article we address problems with recently proposed methods for examin- 
ing construct validity and we introduce alternatives. With respect to the first- 
order confirmatory factor analysis model, shortcomings in the application of the 
method to multitrait-multimethod data are considered. The correlated unique- 
ness model is then presented as an alternative when ill-defined solutions arise in 
first-order confirmatory factor analyses or when method and trait variance are 
confounded. Procedures are then developed for investigating important hypothe- 
ses in the application of the direct product model. These procedures were not 
considered in previous treatments. Finally, panel models are shown to be adapt- 
able to certain investigations of construct validity. 

Measurement error is frequently recognized as a problem by many  researchers 
because it can have serious confounding influences on empirical research (e.g., 
Cote & Buckley, 1987; Peter, 1981). R a n d o m  error  tends to at tenuate the 
observed correlations among  variables and may  yield misleading conclusions. 
Systematic error such as method variance may also bias results by inflating the 
observed correlations among  variables measured with the c o m m o n  method. It  
is thus important  to validate measures prior to theory testing. Such construct  
validation can be done with mul t i t ra i t -mul t imethod ( M T M M )  matrices 
(Campbell & Fiske, 1959). 
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Bagozzi and Yi (1991) examined three alternative procedures for analyzing 
MTMM matrices: the classic Campbell and Fiske (1959) procedure, the con- 
ventional first-order confirmatory factor analysis (CFA) model (e.g., Cote & 
Buckley, 1987; J6reskog, 1981; Widaman, 1985), and the direct product (DP) 
model (e.g., Browne, 1984; Lastovicka, Murry, & Joachimsthaler, 1990; 
Wothke & Browne, 1990). The latter two procedures were offered as alterna- 
tives to the classic approach which has serious limitations. 

This article begins with a critique of the conventional CFA model as applied 
to MTMM matrices and introduces an alternative (i.e., the correlated unique- 
ness model) which overcomes problems encountered by Bagozzi and Yi (1991). 
Next, hypotheses not considered by Bagozzi and Yi (1991), but important to 
the assessment of construct validity, are developed for the DP model. Proce- 
dures for testing these hypotheses are then illustrated. A more flexible and less 
cumbersome software package is used than that employed by Bagozzi and Yi 
(1991). Finally, a new approach to construct validity is described that applies 
to cases where as few as two traits are measured either by two or more methods 
or by two or more indicators per trait from a single method. The analysis of 
MTMMs by structural equation procedures, in contrast, requires either (a) 
three traits and three methods, (b) four traits and two methods, or (c) two traits 
and four methods for the achievement of identification in the general case. 

FIRST-ORDER CFA 

Background 

To understand the limitations of  the first-order CFA model, it is useful to 
begin with the criteria proposed by Campbell and Fiske (1959). Campbell and 
Fiske argued that construct validity can be ascertained by examining conver- 
gent validity and discriminant validity. Convergent validity is the degree to 
which multiple attempts to measure the same concept are in agreement. Mea- 
sures of the same trait, no matter how derived, should be highly correlated if 
they validly measure a common construct. Discriminant validity is the degree 
to which measures of  different concepts are distinct. That is, if two or more 
concepts are unique, valid measures of each should not covary too highly. 

Convergent validity obtains, according to their criteria, when the mono- 
trait-heteromethod coefficients are statistically significant and sufficiently 
large. The monotrai t-heteromethod coefficients represent correlations be- 
tween measures of  the same trait by different methods and are sometimes 
termed validity coefficients. Establishment of convergent validity provides 
evidence that multiple measures of  a construct obtained by multiple methods 
potentially indicate the same underlying construct (Peter, 1981). If the mono- 
trait-heteromethod correlations were nonsignificant or too low in magnitude, 
there is little basis to argue that the measures tap the same construct, and 
consideration of  discriminant validity is not warranted. 
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However, if convergent validity is demonstrated, this only provides minimal 
evidence for the construct validity of measures of a construct. It is possible that 
the measures also reflect other constructs and are not unique. Campbell and 
Fiske (1959) therefore recommended that discriminant validity also be assessed 
and proposed three criteria to do so. The first stipulates that the monotrai t -  
heteromethod coefficients should be higher than their corresponding hetero- 
trait-heteromethod coefficients. In other words, efforts to measure the same 
trait by different methods should yield higher correlations than efforts to 
measure different traits by different methods. 

A second discriminant validity criterion specifies that the monotrai t -  
heteromethod coefficients should be higher than their corresponding hetero- 
t ra i t -monomethod coefficients. Efforts to measure the same construct by 
different methods should produce higher correlations than efforts to measure 
different constructs by the same method. The final criterion for discriminant 
validity is that the pattern of correlations among traits should be the same in 
the monomethod and heteromethod blocks. When this criterion holds, correla- 
tions among traits will be independent of methods. But when it fails, trait 
correlations will be differentially impacted by methods. 

Campbell and Fiske (1959) hoped that their procedure would provide a 
disentangling of trait and method effects. However, the assumptions of their 
approach are so restrictive, and the information provided so limited, as to 
make its use treacherous (Peter, 1981; Widaman, 1985). The key assump- 
tions are the following: Traits and methods are assumed uncorrelated, 
methods affect all traits equally, methods are orthogonal, and measures are 
assumed equally reliable (Campbell & Fiske, 1959; Schmitt & Stults, 1986). 
Information not supplied by the approach, but essential to the interpreta- 
tion of construct validity, includes statistical tests of the comparisons just 
noted and the amount of variation in measures due to traits, methods, and 
error. 

First-Order Trait-Method Model 

It was against this backdrop that researchers offered the first-order CFA model 
(Cote & Buckley, 1987; Widaman, 1985). The hope was that valid insights 
would be provided into the amounts of measure variance due to traits, meth- 
ods, and error, and the degree to which convergent and discriminant validity 
are achieved. Bagozzi and Yi (1991) adapted Widaman's (1985) perspective in 
their article. 

The CFA model does exhibit a number of advantages over the Campbell 
and Fiske (1959) procedure. It allows methods to correlate freely and affect 
measures to different degrees. It provides various measures of fit for an overall 
model, as well as estimates and tests of significance of  convergent and discrimi- 
nant validity. It gives a partitioning of variance into trait, method, and error 
components (Cote & Buckley, 1987). And by placing restrictions on the covari- 
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ances among traits or among methods, it even permits estimation of t rai t -  
method correlations (Kumar & Dillon, 1992). 

Nevertheless, it is important to understand the limitations of  the CFA 
model. One assumption inherent in the model is that the error terms contain 
both specific and error variance (see Anderson, 1985). The consequences of  this 
are especially important when the reliabilities of  different scales vary, because 
"such differences will distort inferred relations among the scales, the factor 
loadings on the latent method and trait factors, relations among the latent 
factors, and summary statistics that are based on these parameter estimates" 
(Marsh & Hocevar, 1988, p. 108). Kumar and Dillon (1990) proposed a model 
which overcomes this drawback of the standard CFA model by separating 
specific and error variance (see also Anderson, 1985). In the general case, their 
model requires three or more items from each of three or more methods on 
each of  three or more traits and thus demands at least three times as many 
measures as the traditional MTMM analysis. Another characteristic making 
the model proposed by Kumar and Dillon (1990) limited in practical utility is 
the likelihood that attempts to apply the model will result in overfitting. So 
many parameters are fit to this model that failures to converge and improper 
solutions will occur frequently. In this article, focus is placed on the more 
common MTMM context where each of  three or more traits is indicated by 
three or more methods. 

A little-known limitation of the first-order CFA model is that the partition- 
ing of variance into trait and method components does not, in general, yield 
method-free and trait-free interpretations (Kumar & Dillon, 1992). This is 
because the individual factor loadings take different values corresponding to 
the distinct t rai t -method pairings. For example, factor loadings concerning a 
trait vary across methods, and the corresponding variation cannot be at- 
tributed solely to the trait factor. Because each factor loading is specific to the 
particular t rai t -method combination, the associated variation is not really 
trait free or method free. 

In general, the CFA model cannot disentangle the source of  variation when 
the sources are highly correlated. If  the correlations among traits and the 
correlations among methods approach zero, the variance due to traits will be 
reflected in the trait loadings and the variance due to methods will be reflected 
in the method loadings. However, as the correlations increase, trait and 
method variance will be confounded. For example, a general trait factor may 
underlie traits so that traits are highly correlated and that substantial variance 
in measures is primarily due to traits, while methods are relatively distinct. In 
such circumstances, application of the first-order CFA model can misleadingly 
yield highly correlated methods accounting for much variation in measures 
(Marsh, 1989). However, a good fitting first-order CFA model in this case 
should not be believed because the apparent method effects are really con- 
founded with trait effects from a general trait factor. In such cases, correlations 
among method factors represent the convergence of the general trait factor 
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across methods, rather than true relationships among methods. Because most 
applications of  the MTMM analysis involve substantially correlated traits 
and/or  methods, the interpretation of the results from a first-order CFA is 
likely to be misleading in practice. 

Yet another problem with the traditional first-order CFA model is the all 
too frequent occurrence of  ill-defined solutions (Wothke, 1984, 1987). Ill- 
defined solutions include: 

underidentified or empirically underidentified models . . . .  failures in the conver- 
gence of the iterative procedure used to estimate parameters, parameter estimates 
that are outside their permissible range of values (e.g., negative variance esti- 
mates called Heywood cases), or standard errors of parameter estimates that are 
excessively large. (Marsh, 1989, p. 339) 

In the analyses reported by Bagozzi and Yi (1991), for example, all solutions 
included either negative error variances (albeit nonsignificant), correlations 
greater than 1, or method factor loadings opposite in sign to that predicted by 
theory. Findings such as these bring into question the interpretation of  the 
first-order CFA model as a proper representation of  some MTMM data. 

CORRELATED UNIQUENESS MODEL 

As a remedy to the ill-defined solution problem, Marsh (1989) proposed a new 
model which he termed the correlated uniqueness (CU) model. Figure 1 pre- 
sents the CU model for the three-trait, three-method case. Trait factors are 
represented identically to that found in the first-order CFA model, but instead 
of method factors, all uniquenesses corresponding to measures derived from 
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The correlated unique-  FIGURE 1 
ness model. Method I Method 2 Method 3 
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the same method are allowed to correlate freely. Whereas the first-order CFA 
model assumes that each method factor is unidimensional and follows a con- 
generic-like structure, the CU model represents the effects of methods as 
correlations among pairs of error terms. The CU model reduces considerably 
the possibility for ill-defined solutions. Marsh and Bailey (1991) compared the 
general CFA model and the CU model by analyzing 255 MTMM matrices 
constructed from real data (Study 1) and 180 MTMM matrices from simulated 
data (Study 2). The CU model converged to proper solutions for 99% in Study 
1 and for 96% in Study 2, whereas the general CFA model showed only 24% 
and 22%, respectively. Even when both models converged to proper solutions, 
parameter estimates from the CU model were more accurate and precise than 
those from the general CFA model. 

The CU model also allows for tests of convergent and discriminant validity. 
Specifically, trait factor loadings can be scrutinized for assessing convergent 
validity (i.e., the agreement among measures of the same trait by different 
methods), because the trait factor loading reflects the degree to which the 
observed measure is determined by the trait factor. Also, the trait correlations 
can be examined for assessing discriminant validity. 

Furthermore, unlike the first-order CFA model, the CU model does not 
suffer from the potential ambiguity in interpreting the correlated method 
factors. It has been noted that the first-order CFA model could produce 
ostensibly correlated method factors which in fact reflect general trait effects 
across methods instead of  true method effects (Marsh, 1989). In contrast, 
correlated uniquenesses representing method effects in the CU model would 
not be affected by trait variance across methods, because they are allowed only 
within each method, not across methods. Thus, the substantive interpretation 
of  method factors can be less ambiguous under the CU model than under the 
first-order CFA model. 

To illustrate and make comparisons to the findings noted in Bagozzi and Yi 
(1991), the CU model was applied to the same data sets examined by Bagozzi 
and Yi (i.e., Arora, 1982; Foxman, Tansuhaj, & Ekstrom, 1989; Menezes & 
Elbert, 1979; Seymour & Lessne, 1984). All analyses were performed with EQS 
(Bentler, 1989). The first thing to note is that, based on the chi-square good- 
ness-of-fit criterion, all CU models except that for the data in Seymour and 
Lessne (1984), fit satisfactorily: Z2(15) = 21.70, p ~ .12 (Arora, 1982); Z2(15) 
= 16.25,p = .37 (Foxman et al., 1989); Z2(15) = 14.02,p = .52 (Menezes & 
Elbert, 1979); Z2(15) = 27.51, p ~ .02 (Seymour & Lessne, 1984). t Table 1 
summarize the results of the parameter estimates for the CU model. It can be 

lit is possible to examine other criteria related to goodness-of-fit such as so-called "practical 
relevance" indices. But this is not done in this article for purposes of simplicity and because use 
of such indices does not change the points made and the conclusions drawn therefrom in this 
article. 



TABLE 1 
Parameter Estimates for Correlated Uniqueness Models 

Factor Correlated Factor 
Method- Trait Loadings Uniqueness Correlations 

Arora (1982) 
Semantic Differential 

Situational .84 (.08) .21 (.06) 
involvement (SI) 
Enduring .90 (.08) .09 (.04) .18 (.04) 
involvement (El) 
Response .69 (.09) .16 (.06) .12 (.05).53 (.10) 
involvement (RI) 

Likert 
Situational .76 (.08) .49 (.09) 
involvement (SI) 
Enduring .84 (.08) .09 (.05) .27 (.05) 
involvement (El) 
Response .72 (.09) .35 (.07) .10 (.05).52 (.10) 
involvement (RI) 

Stapel 
Situational .81 (.09) .36 (.08) 
involvement (SI) 
Enduring .94 (.08) -.01 (.04) .13 (.04) 
involvement (EI) 
Response .86 (.09) .01 (.05) .10 (.04).25 (.09) 
involvement (RI) 

Foxman et al. (1989) 
Father 

Suggest price range .36 (.10) .88 (.11) 
(SPR) 
Shop with parents .15 (.10) .36 (.08) .98 (.11) 
(SP) 
Suggest stores (SS) .21 (.10) .31 (.08) .49 (.09) .96 (.ll) 

Mother 
Suggest price range .51 (.12) .74 (.13) 
(SPR) 
Shop with parents .66 (.15) .02 (.10) .57 (.18) 
(sa) 
Suggest stores (SS) .56 (.15) .18 (.09) .19 (.12).68 (.16) 

Child 
Suggest price range .68 (.13) .53 (.16) 
(SPR) 
Shop with parents .55 (.13) .18 (.12) .70 (.14) 
(SP) 
Suggest stores (SS) .52 (.14) .22 (.10) .33 (.11).73 (.15) 

Menezes & Elbert 
(1979) 

Likert 
Appearance (A) .85 (.05) .28 (.04) 
Products (P) .85 (.05) .08 (.03) .27 (.04) 
Prices (Pr) .90 (.05) .07 (.02) .04 (.02).18 (.03) 

1.00 

.34 (.10) 1.00 

.21 (.12) .36 (.10) 1.00 

1.00 

.78 (.12) 1.00 

.64 (.12) .73 (.11) 1.00 

1.00 
.76 (.03) 1.00 
.46 (.06) .49 (.06) 1.00 
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TABLE 1 (Continued) 

Factor Correlated Factor 
Method- Trait Loadings Uniqueness Correlations 

Semantic Differential 
Appearance (A) .92 (.05) .16 (.03) 
Products (P) .84 (.05) .05 (.02) .30 (.04) 
Prices (Pr) .88 (.05) .00 (.02) .06 (.02).20 (.03) 

Stapel 
Appearance (A) .81 (.05) .35 (.04) 
Products (P) .84 (.05) .08 (.03) .30 (.04) 
Prices (Pr) .88 (.05) .00 (.02) .03 (.02).24 (.03) 

Seymour & Lessne 
(1984) 

Likert 
Involvement (I) .83 (.09) .30 (.06) 
Power (P) .95 (.08) -.01 (.03) .10 (.03) 
Interpersonal Need .82 (.09) .04 (.04) -.01 (.03).32 (.07) 
(IN) 

Mixed Scales 
Involvement (I) .83 (.09) .37 (.07) 
Power (P) .96 (.08) -.12 (.03) .14 (.03) 
Interpersonal Need .85 (.09) .19 (.05) -.12 (.03).30 (.07) 
(IN) 

Graphic Rating 
Involvement (I) .95 (.08) .12 (.06) 
Power (P) .92 (.08) .06 (.03) .19 (.04) 
Interpersonal Need .50 (.10) -.07 (.05) -.02 (.04).73 (.12) 
(IN) 

1.00 
.20 (.11) 1.00 
.73 (.06) .61 (.08) 1.00 

Note. Standard errors in parentheses. 

seen that, in contrast to the findings reported by Bagozzi and Yi (1991) for the 
CFA model, no ill-defined solutions exist. 

I t  is informative to examine the pa ramete r  est imates for  each set o f  data.  
The trait  factor  loadings for  the da ta  o f  Aro ra  (1982) are generally quite high, 
revealing considerable var ia t ion due to traits. These results indicate achieve- 
ment  of  s trong convergent  validity. Trai t  correlat ions are nonsignificant to 
low, point ing to achievement  o f  discriminant validity. Six of  nine correlated 
uniquenesses are significant but  are relatively low in magni tude,  except for  
si tuational and response involvement  measured by Likert  scales. The differen- 
tially correlated un iquenesses - - some  significant, some nons ign i f i can t - - show 
that  method  effects are present, but  that  the assumpt ion  o f  unidimensional  
effects made  by the C F A  model  is untenable.  

In the analyses of  the F o x m a n  et al. (1989) data,  the trait  factor  loadings are 
rather  low for  the father  factor  and mediocre for  the mothe r  and  child factors,  
thus showing that  var ia t ion due to traits is small. Six of  nine uniqueness 
correlations are significant. O f  these, the three associated with the father  factor  
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generally have large values. Again the assumption of  unidimensional method 
factors does not hold. The correlations among traits are all lower than unity 
but quite high, suggesting achievement of weak discriminant validity. 

For  the data in Menezes and Elbert (1979), trait factor loadings are very 
high (ranging between .81 and .92), pointing to strong convergence among 
measures. Although six of nine correlated uniquenesses reach significance, they 
are generally low in magnitude (ranging from .04 to .08), suggesting rather 
weak method effects. Here, too, the assumption of  unidimensional method 
factors is not met. Finally, traits are moderately to highly correlated. 

The overall fit of  the CU model was poor for the data in Seymour and 
Lessne (1984), suggesting that the CU model might be inappropriate. Thus, 
caution is in order for interpreting the related findings. Trait variance is gener- 
ally high, except for interpersonal need measured with the graphic rating 
method where the variance is 25%. The correlation between involvement and 
power is low (r = .20), but the correlations are rather high between involve- 
ment and interpersonal need (r = .73), and between power and interpersonal 
need (r = .61). Only four of  nine correlated uniquenesses are significant. 
However, among those obtained by the mixed scales, two are negative and 
significant, whereas the third is positive and significant. As there is no apparent 
theoretical reason to expect these conflicting findings, it is likely that the 
correlated uniquenesses constitute "wastebasket parameters" (Browne, 1984, 
p. 7) in that they enhance the overall fit of  the model but do so at the expense 
of  providing no substantive interpretation. 

In sum, the CU model overcomes three drawbacks with the first-order CFA 
model: (a) the tendency to yield ill-defined solutions, (b) confounding of 
method variance with trait variance (when this is due to common trait varia- 
tion across methods and traits are highly correlated), and (c) the false belief 
that variation can be partitioned into trait-free and method-free components. 

Nevertheless, the CU model has limitations of its own. First, the model 
implicitly assumes that the effects of  one method are uncorrelated with those 
of  others. 2 The appropriateness of  the CU model would thus depend on the 
plausibility of  this assumption. The CU model would be most appropriate 
when maximally different methods are employed, which is desirable for assess- 
ing validity (Campbell & Fiske, 1959). When this assumption is not met, 
however, the CU model may be inappropriate, which should be indicated by 
the poor fit of  the model. 

Second, the error terms in the model still confound random error with 
measure specificity and make it difficult to distinguish trait variance from trait 
plus method variance (e.g., Bagozzi, Yi, & Phillips, 1991). The inclusion of  
separate correlated uniquenesses for each pair of measures from a common 

2A CFA model with uncorrelated methods is a special case of the CU model in which the 
effects of each method are assumed to be unidimensional. 
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method overcomes the restrictive assumption that methods have unidimen- 
sional effects. But in so doing, parsimony is lost and the interpretation of each 
correlated uniqueness is made difficult. When a unidimensional method factor 
is found to hold, it is frequently reasonable to interpret its effects as systematic 
error due to the method. However, when some correlated uniquenesses are 
significant, others nonsignificant, or when some are positive and others nega- 
tive, it may be difficult to explain the source of  the differing patterns of 
influence. Despite these limitations, the CU model does provide information 
on convergent and discriminant validity, and thus can be useful in the analysis 
of  construct validity where the classic Campbell and Fiske (1959) criteria and 
the first-order CFA model fail to apply. 

THE DP MODEL 

The DP model postulates that the effects of methods and traits are multiplica- 
tive, rather than additive. By reanalyzing four data sets from consumer re- 
search, Bagozzi and Yi (1991) found that application of  the DP model gave 
adequate fit in two of four cases. However, their findings are inconclusive 
because their procedure has some limitations. The following critique and 
extension of  the use of  the DP model is conducted in this regard. 

Two shortcomings of  the application of the DP model by Bagozzi and Yi 
(1991) are the following. First, Bagozzi and Yi (1991) used LISREL (J6reskog 
& S6rbom, 1989) to carry out their DP model analyses. 3 Although LISREL 
can be used in this regard, it is quite cumbersome to employ because it requires 
an extensive reparameterization of the DP model to accommodate multiplica- 
tive effects and other peculiarities of the model. For  example, there are 27 
latent variables alone for the model with three traits and three methods. 
Likewise, it is not possible to simultaneously estimate trait and method corre- 
lations or to impose equality constraints on parameter estimates under a 
LISREL specification. Second, and more important, Bagozzi and Yi (1991) 
limited their examination of the DP model to overall tests of significance and 
visual inspections of the disattenuated trait and method correlation matrices 
to ascertain convergent and discriminant validity. Tests of specific hypotheses 
regarding trait and method effects and more formal tests of construct validity 
are desirable. 

In the analyses to follow, the M U T M U M  program (Browne, 1991) was 

3The DP model can also be parameterized and estimated by using the EQS program. In 
illustrating the estimation of the DP model via EQS, Bentler, Poon, and Lee (1988) showed that 
the LISREL results agreed with the EQS solutions. However, the EQS approach is not consid- 
ered further because it suffers from the same problems facing the LISREL approach. 
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used to investigate the DP model for each of the data sets just noted. 4 The 
M U T M U M  program is less cumbersome than LISREL, provides standard 
errors for both trait and method correlations (a particular LISREL run only 
computes standard errors for trait or method correlations and must be repa- 
rameterized and run twice to yield these estimates), and accommodates con- 
straints on both trait and method correlation matrices. M U T M U M  can be 
used to advantage to test important pattern hypotheses neglected by Bagozzi 
and Yi (1991), as developed next. 

The M U T M U M  program was applied to the four data sets just described, 
giving the following results for goodness-of-fit indices: Z2(25) = 52.38, p < 
.005 (Arora, 1982); Z2(25) = 30.04, p = .22 (Foxman et al., 1989); X2(25) = 
29.80, p = .23 (Menezes & Elbert, 1979); ~2(25) = 79.97, p < .001 (Seymour 
& Lessne, 1984). These differ somewhat from those reported by Bagozzi and 
Yi (1991), which were based on LISREL. The differences are apparently due 
to empirical underidentification problems in the LISREL analyses (Bagozzi & 
Yi, 1991, p. 435). No such problems arose in the M U T M U M  analyses. This 
points to still another potential advantage of  the use of  MUTMUM,  although 
little is known about the sensitivity of  LISREL to empirical underidentifica- 
tion problems when the DP model is investigated. 

Table 2 presents the parameter estimates for the DP model analyses. It is 
interesting to apply Browne's (1984) criteria for convergent and discriminant 
validity to these results. The criterion for convergent validity is satisfied when 
all method correlations are large. As shown in Table 2, this criterion holds for 
all data sets, except for Foxman et al. (1989) where two method correlations 
are rather small (rM~M2 = .31 and rMIM3 = .18) and therefore bring into 
question the achievement of convergent validity. 

The first criterion for discriminant validity states that the correlations 
among traits should be lower than 1 in absolute terms. All four data sets meet 
this requirement. The second criterion for discriminant Validity stipulates that 
every method correlation should be greater than all trait correlations. Table 2 
reveals that this criterion is met for all data sets, except for Foxman et al. 
(1989) where, in fact, all methods are correlated at levels lower than all trait 
correlations. The first criterion for discriminant validity will be satisfied when- 
ever the DP model satisfactorily fits the data. By this requirement, the data in 
Foxman et al. (1989) and Menezes and Elbert (1979) satisfy the criterion, 
whereas the data in Arora (1982) and Seymour and Lessne (1984) do not. In 
sum, it might be concluded that convergent and discriminant validity are not 
achieved for the data in Foxman et al. (1989), but are achieved for the data in 

4The MUTMUM program is available from Michael W. Browne, Department of Psychol- 
ogy, Ohio State University, Columbus, OH 43210. The program has also been employed to 
carry out analyses in consumer research (e.g., Lastovicka et al., 1990). 



TABLE 2 
Findings for the Direct Product Model 

Study Measures Communalities Error 

Trait Correlations Method Correlations 

T 1 SE T 2 SE T 3 MI SE M 2 SE M 3 

Arora (1982) 

Foxman et al. (1989) 

(TIMI) .99 .01 
(T2MI) 1.00 .00 
(T3MI) .99 .01 
(TIM 2) 1.00 .00 
(T2M2) 1.00 .00 
(T3M2) 1.00 .00 
(T]M3) .84 .16 
(T2M3) 1.00 .00 
(TAM3) .89 .11 
(TiMl) .77 .23 
(TEM1) .81 .19 
(T3MI) .79 .21 
(TIM2) .71 .29 
(T2M 9 .75 .25 
(T3M2) .73 .27 
(T 1M3) .82 .18 
(T2M3) .85 .15 
(T3M3) .83 .17 

1 1 
.33 .06 1 .68 .04 1 
.49.06 .39.06 1 .82 .03 .75.03 1 

1 1 
.63 .10 1 .31 .09 1 
.63 .10 .79 .09 1 .18 .08 .53 .09 1 



TABLE 2 (Continued) 

Study Measures Communalities Error 

Trait Correlations Method Correlations 

T 1 S E  T 2 SE  T 3 g I S E  M 2 S E  M 3 

Menezes & Elbert (1979) 

Seymour & Lessne (1984) 

(TIM1) .92 .08 
(T2M1) .91 .09 
(T3MI) .94 .06 
(TIM2) .92 .08 
(T2M2) .90 .10 
(T3M2) .94 .06 
(TIM3) .88 .12 
(T2M3) .86 .14 
(T3M3) .92 .08 
(TIM]) .96 .04 
(T2M1) .96 .04 
(T3M1) .80 .20 
(TIME) .98 .02 
(T2M2) .98 .02 
(T3M 2) .89 . l l  
(TlM3) .87 .13 
(T2M3) .86 .14 
(T3M3) .54 .46 

1 1 

.77 .03 1 .90.02 1 

.44.05 .48 .05 1 .89 .02 .90.02 1 

1 

- .07.09 1 

.78 .05 .30.09 

1 
.83 .03 1 

1 .00 .95 .03 

Note. TiM j refers to the appropriate trait-method pairing. 

O1 
ol 
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Menezes and Elbert (1979) on the basis of the DP model results. No conclu- 
sions can be drawn for construct validity for the other data sets on the basis 
of the DP model findings. 

Note that construct validity was assessed based on the visual inspection of  
estimates. It is desirable to examine specific hypotheses concerning construct 
validity, reliability, trait effects, and method effects more formally (Bagozzi & 
Yi, 1992). Table 3 presents the results for certain hypotheses of  interest, where 
only the data in Menezes and Elbert (1979) are investigated for illustrative 
purposes. The first set of comparisons in the table focuses on the equivalence 
of traits and tests whether each trait correlation is lower than 1 in an absolute 
sense. This provides a formal test of  the first discriminant validity criterion. A 
comparison of  the model hypothesizing that all traits are perfectly correlated 
(i.e., Pm = P,32 = Pt3t = 1) to the baseline DP model shows that one must 
reject this hypothesis--z~(5) = 625.98,p < .001. Indeed as shown in Table 
2, each trait correlation is significantly lower than 1. 

The bottom of Table 3 shows the results for tests of  whether two or more 
methods are equivalent. These tests are not related to construct validity per se, 
but are useful for discovering redundancy in methods. For  example, a re- 
searcher in the early stages of a program of research might wish to discover 
which methods from a set used in a pretest are distinct in order to avoid 
unnecessary duplication in a subsequent study. Comparison of  the hypothesis 
that all methods are perfectly correlated (i.e., OM21 = PM32 = PM31 = 1) to the 
baseline DP model shows that the hypothesis of  equivalent methods should be 

TABLE 3 
Tests of Hypotheses of the Direct Product Model for the Data of Menezes & EIbert (1979) 

Model ~2 Goodness-of-Fit ~2 Difference Test 

Baseline 
All traits equivalent 

Pt21 = Pt32 = Pt31 = 1 
Traits  1 and 2 equivalent 

P/21 = 1 
Traits 2 and 3 equivalent 

Pt32 = 1 
Traits 1 and 3 equivalent 

Pt31 = 1 
All methods  equivalent 

Pro21 = Pro32 = Prn31 = 1 
Methods  1 and 2 equivalent 

Pro21 = 1 
Methods  2 and 3 equivalent 

Pro32 = 1 
Methods  1 and 3 equivalent 

Pro31 = 1 

~2(25) = 29.80, p = .23 

Z2(30) = 655.78, p < .001 
~2(28) = 182.93, p < .001 

?~z(28) = 498.77, p < .001 

~z(28) = 539.83, p < .001 

p2(30) = 86.31, p < .001 

Z2(28) = 61.90, p < .001 
X2(28) = 58.48,p < .001 

Z2(28) = 64.45, p < .001 

Z~(5) = 625.98, p < .001 
Z~(3) = 153.13, p < .001 

Z~(3) = 468.97,p  < .001 

X~(3) = 510.03,p < .001 

Z~(5) = 56.51,p  < .001 

Z~(3) = 32.10, p < .001 
~ ( 3 )  28.68,p  < .001 

Z~(3) = 34.65, p < .001 
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rejected--z2(5) = 56.51, p < .001. The remaining comparisons reveal that, 
in fact, each pair of methods is significantly correlated at a level lower than 1. 

A number of other hypotheses might also be examined (Bagozzi & Yi, 
1992). For instance, a researcher might wish to discover which traits among a 
set under scrutiny are orthogonal in order to choose promising candidates for 
a future test where traits will enter as independent variables in a regression 
analysis. This can be investigated by comparing a model with trait correlations 
constrained to be zero to the baseline DP model. Formal comparisons could 
be made as well between trait and method correlations to see whether the latter 
are greater than the former as is required by the second discriminant validity 
criterion. This can be examined with tests imposing inequality constraints but 
was not done herein because the significance levels derived do not strictly 
apply. A proper test could be developed, if desired, based on asymptotic 
distributions with the analysis of  moment structures. Further, tests of the 
orthogonality of  methods might be of interest in some circumstances and can 
be pursued with a similar strategy to that just outlined for tests of  the ortho- 
gonality of traits. Finally, it is possible to test whether the communality of each 
trait remains constant across methods. This can be done by comparing the 
baseline model to a model fixing the diagonal matrix of  errors corresponding 
to methods to unity. 

It can be noted that the DP model did not fit the Arora (1982) data, whereas 
the CU model did fit. This result suggests that the effects of  methods and traits 
might be additive, as opposed to multiplicative, for the Arora data. However, 
the goodness of  fit cannot be used as the sole criterion in selecting a model. For 
example, the data in Foxman et al. (1989) and Menezes and Elbert (1979) fit 
both models well. These results indicate that alternative models can fit the 
same MTMM data. In such cases, it is meaningful to ask if any theoretical or 
methodological reasons can be brought to bear for deciding between the two 
models for the two data sets at hand. 

In fact, there is reason to believe that traits and methods interact according 
to the DP model structure for the data in Foxman et al. (1989) and Menezes 
and Elbert (1979). An intuitive description of the DP model proceeds as 
follows. The DP model posits a functional interaction between the true level 
of trait correlation and the magnitude of  method effects. Traits and methods 
interact in the sense that sharing a method exaggerates the correlations be- 
tween highly correlated traits relative to traits that are less correlated. That is, 
not all relationships are equally exaggerated by sharing a method, but relation- 
ships that are large enough to get noticed are more likely to be inflated 
(Campbell & O'Connell, 1967). 

In Foxman et al. (1989), three members of  each family in the sample 
(father, mother, child) provided estimates of  the child's purchasing influence 
in three areas: suggesting a price range, going shopping with parents when 
looking for a product for family use, and suggesting stores. Each member 
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might have an implicit theory (expectations) about the relationships of cer- 
tain traits, which will lead to a member-specific (method) bias. In this case, 
the stronger the true associations between traits are, the more likely they are 
to be noticed and exaggerated, thus producing an interaction between traits 
and methods. 

Likewise in Menezes and Elbert (1979), business students were asked to 
use similar scales (Likert, semantic differential, and Stapel scales) to rate 
retail store image on appearance, products, and price. As these three image 
characteristics naturally tend to covary in  the market place and therefore 
lead to an expectation of  highly correlated traits, an assumption likely to be 
held by respondents as well, it is anticipated that the stronger the true cor- 
relations among traits, the greater the exaggeration by respondents. This, 
too, is consistent with a multiplicative trai t -method pattern. In sum, the 
data in Foxman et al. (1989) and Menezes and Elbert (1979) are more con- 
sistent with a multiplicative interpretation of  trait and method interactions 
than additive effects. 

CONSTRUCT VALIDATION 
BY USE OF PANEL MODELS 

Two drawbacks with the CFA and CU models are the following. First, the 
smallest combinations of  traits and methods needed to implement these models 
are either: (a) three traits and three methods, (b) four traits and two methods, 
or (c) two traits and four methods. It is possible to use fewer traits and /or  
methods, but this requires the imposition of restrictions on the parameter 
space which may not be valid or reasonable in typical data collection contexts. 
Hence, the CFA and CU models can be difficult to implement in practice. 
Second, in both models, random error is confounded with specific error 
(Bagozzi et al., 1991). The CU model shares this drawback as well. This can 
result in biased estimates of reliability and convergent validity and underesti- 
mate or obscure method effects. 

An alternative way to examine construct validity in certain situations is by 
use of panel models. To show this, Figure 2 represents a two-period model for 
two constructs, q~ and ~2, measured by three and two indicators, respectively. 
This model provides the following information. The temporal stabilities of  rh 
and r12 are shown by 1331 and 1342, respectively, which reflect corrections for 
random and specific errors, as developed next. Discriminant validity between 
measures of rh and r12 can be assessed by inspection of 421 and 443. The former 
is the correlation between the two latent variables measured at Time 1; the 
latter is the partial covariation between the two latent variables measured at 
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FIGUFIE 2 Structural equation models for examining reliability, construct validity, and 
stability of measures of two constructs. 

T i m e  2 (i.e., the cova r i a t i on  after  par t ia l l ing  o u t  va r i ance  due  to dependence  
o n  the same measures  at  t ime 1). 5 Th e  es t imates  for  ~21 a n d  ~a3 also reflect 
cor rec t ions  for  r a n d o m  a n d  specific errors.  

The  ach ievement  o f  conve rgen t  val id i ty  is impl ied  when  the overall  fit o f  the  
m o d e l  s h o w n  in  F igure  2 ho lds  a n d  the fac tor  load ings  are high a n d  significant.  
T o  show how the  mo d e l  provides  separa te  es t imates  for  r a n d o m  a n d  specific 
errors,  one  can  wri te  the  m e a s u r e m e n t  e q u a t i o n s  for  the first measu re  o f  q 1 a t  
b o t h  po in t s  in  t ime as follows: 

yll ---- ~ll YIt 1) -I- El l 

Y21 = ~,21 VII 2) + 821, 

5It is possible to modify the panel model shown in Figure 2 to include the cross-lagged 
influences of ~t at Time 1 on q2 at Time 2 and ~2 at Time 1 on q~ at Time 2. Because this is 
straightforward and does not alter the general conclusions developed, nothing more is said about 
the cross-lagged path effects. The researcher should check for such possibilities in applications 
of such panel models as discussed herein. For the data in Table 5, the goodness-of-fit for the 
panel model of Figure 2, with the additional specification of 13~2 and 134~ free, gave ~2(27) = 20.40. 
Compared to the baseline model, this yields g2(2) = 2.50,p < .25 and thus the hypothesis that 
1~32 = 1341 = 0 can not be rejected. The estimates for the cross-lagged paths were 1332 = - .17(.20) 
and 1341 = .27 (.19). 
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where y .  and y:~ are the observed scores obtained by the same measure at 
Times 1 and 2, respectively. Rewriting these equations to express separate 
effects for random error and specific variance on the measures gives 

Yll ~" ~ l l  1"1t 1) + Spl + ell 

Y21 ---- ~'21 1]~ 2) + Spl + e21, 

where sp~ is the specific error and the e ,  and e21 are the random error compo- 
nents of YI~ and y:t, respectively. Because the same measure (item) is used 
repeatedly across time, each measure might have systematic influence on the 
observed scores. This might occur because a measure has a specific meaning 
other than the underlying trait or there are memory effects. In such cases, it is 
necessary to postulate measure-specific method factors by allowing correlated 
errors for the same measures (S6rbom, 1975). But Figure 2 implies that Var 
(Spm)= Cov (ell, e2~) = 0e6e~. That is, specific variance can be obtained by 
serially correlated errors. 

It should be pointed out that the reliability of each measure of rh can be 
estimated as 1 - Var (e,j), and the composite reliabilities can be computed as 
functions of these. Unlike the reliabilities of  measures under the CFA, CU, and 
DP models, which are based on e,~ the reliabilities for the panel model in 
Figure 2 are true reliabilities. Reliabilities computed under the CFA, CU and 
DP models will generally underestimate the true reliabilities because the error 
terms of measures will contain both random and specific components. 

As an illustration, the panel model shown in Figure 2 was applied to the 
data from a panel study of consumer attitudes toward using coupons (see 
Bagozzi, Baumgartner, & Yi, 1992). Female staff members at a major univer- 
sity participated in the study; the sample size was 151. Three measures of 
attitudes and two of subjective norms were selected from two consecutive 
points in time (i.e., 1 week). The attitude toward using coupons for shopping 
in the supermarket was assessed with three semantic differential scales: pleas- 
ant/unpleasant, good/bad, and favorable/unfavorable. Subjective norms 
were measured with two items: "Most people who are important to me think 
I definitely should/definitely should not use coupons for shopping in the 
supermarket during the coming week," and "Most  people who are important 
to me probably consider my use of  coupons to be wise/foolish. ''6 

Before presenting the results for the panel model, it is informative to exam- 
ine the measurement models separately for Times 1 and 2. Figure 3 shows the 
contemporaneous measurement model, and the findings are contained in Table 
4. The chi-square values demonstrate satisfactory fits at Time 1, X:(4) = 4.68, 
p = .32, and Time 2, X:(4) = 2.63, p = .62. These results imply that the 
measures of attitudes and subjective norms converge on separate, unidimen- 

6Further information on the panel data can be obtained from the authors on request. 
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FIGURE 3 Contemporaneous 
measurement model for two 
constructs. 

~2 

+ 

~4 
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sional factors. Indeed, the factor loadings are high and significant in each case. 
To test whether the correlation between factors is significantly lower than 1, 
the fit of  the model of  Figure 3 must be compared to the fit of  the model with 
phi fixed at unity. At Time 1, Z2(1) = 9.95, p < .001; at Time 2, Z2(1) = 
29.56, p < .001. Thus, the hypothesis can be rejected that the factors are 
perfectly correlated. However, the factor correlations are rather large (q~ = .86, 
SE = .05, at Time 1; q~ = .75, SE = .06, at Time 2). Error variances are low 
to moderately high. The composite reliabilities are high for both attitudes and 
subjective norms at both points in time. All reliabilities based on the contem- 
poraneous model, however, are likely to be lower than the true reliabilities 
because the error terms are likely to contain specific variance (cf. Anderson, 
1985). Comparisons are made with reliabilities computed from the panel mod- 
els where specific variance is estimated and used to assess reliability. 

The panel model of Figure 2 was applied to the data. The model fits well: 
X2(26) = 22.16, p = .68. Table 5 presents the parameter estimates where it can 
be seen that factor loadings are high and significant. These results indicate 
achievement of convergent validity. In addition, error variances are low to 
moderately high. Also shown in the table are estimates of specific variance that 
are uniqtle and different from the variance explained by traits. Although low 
in value, all specific variances are significant. 

Given that the panel model in Figure 2 is satisfactory, it is desirable to test 
whether the factor loadings are equal across time. Equal factor loadings imply 
that the reliabilities of measures are identical across time. If the null hypothesis 
of  equal across-time factor loadings is rejected, the measures are not equally 
reliable across time and the estimated stability of the constructs (as reflected 
by B31 and B42 in Figure 2) would be affected by both true stability of  constructs 
and changes in reliability. If  the null hypothesis cannot be rejected, the stability 
of the measures can be interpreted in an unambiguous way. The test, which 
must be performed on the covariance matrices (Cudek, 1989), is conducted as 
follows. Equality constraints are first imposed on the factor loadings for each 



TABLE 4 
Findings for Contemporaneous Measurement Models (See Figure 3) 

Goodness- Factor 
of- Factor Correl- Error 
Fit Loadings ation Variances 

z 2 d f  p 

Individual 

Reliability 

Aact SE S N  SE d? SE Aact SE S N  SE Aact S N  

Composite 

Aact S N  

Time 1 4.68 4 .32 

Time 2 2.63 4 .62 

.75 .07 .86 .05 .43 .06 

.82 .07 .33 .06 

.73 .08 .47 .07 
.69 .08 .52 .07 
.90 .07 .19 .07 

.86 .07 .75 .06 .27 .04 

.87 .07 .24 .04 

.86 .07 .26 .04 
.75 .08 .44 .08 
.85 .08 .27 .08 

.56 

.67 

.53 
.48 
.81 

.74 

.76 

.74 
.56 
.72 

.81 .78 

.90 .78 

Note. Aact = attitude; SN = subjective norm. 



TABLE 5 
Estimates for Measurement Parameters in Panel Model (See Figure 2) 

Measures 

Factor Loadings 

Time 1 Time 2 

Aact SE  S N  SE  Aact SE  S N  SE  

Error Variances 

Specific Variance SE Time 1 SE Time 2 S E  

Attitude 
Aact 1 
Aact 2 
Aact 3 

Subjective norm 
SN1 
SN2 

.77 .07 

.78 .07 

.75 .07 

.70 .12 

.88 .12 

.86 .07 

.88 .07 

.85 .07 

.09 .04 .45 .06 .26 .04 

.12 .04 .34 .05 .23 .04 

.11 .04 .45 .06 .27 .04 

.71 .12 .17 .05 .53 .07 .49 .07 

.90 .12 . 1 0  .05 .22 .06 .19 .07 

¢,,o 



164 BAGOZZI AND YI 

respective pair of measures, one pair at a time, to arrive at chi-square values 
for the models hypothesizing invariance of measurement instruments over 
time. Next, each of the goodness-of-fit values so obtained is compared to the 
chi-square value for the model with factor loadings unconstrained. The differ- 
ences in chi-square values with one degree of freedom provide tests of  the 
equality of factor loadings over time. 

The chi-square difference tests indicate that the factor loadings for mea- 
sures of  attitudes and for measures of  subjective norms are equal over time. 
For example, the restricted model with the invariance constraint for the first 
measure of  attitudes (i.e., ~,~1 = ~.21) gives the following fit: Z2(27) = 22.80, 
p = .70, and the chi-square differences is not significant, Z2(1) = .64, p > 
.45. In fact, all the chi-square differences are not significant (all ps > .45), 
suggesting that the measures are equally reliable across time. Therefore, es- 
timates of  stability and tests of hypotheses can be interpreted in an unam- 
biguous way. 

Before presenting the results for discriminant validity, residual covari- 
ances, and stability, it is interesting to compare estimates of reliability be- 
tween contemporaneous and panel models. For  example, the reliability of  
Subjective Norm 1 at Time 1 is .48 for contemporaneous models and .64 
for panel models. It is found that the reliabilities generally increased quite a 
bit from contemporaneous models to panel models; the average reliability 
estimate is .66 for contemporaneous models and .78 for panel models. This 
is a consequence of the estimates in the panel model, taking into account 
measure specificity. 

Now that a satisfactory goodness-of-fit of  the panel model has been estab- 
lished and convergent validity and factorial invariance demonstrated, it is 
meaningful to examine discriminant validity between the measures of  attitudes 
and subjective norms (Figure 2). The standardized correlations among factors 
are very high: ~tld = .90 and ~tad = .70. The residual covariance between 
attitudes (11 t 2)) and subjective norms (rl ~2)) at Time 2 is very small and in fact 
is nonsignificant: .05(.04). This suggests that for the data at hand no omitted 
variables exist, and the standardized residual variances can be interpreted as 
the amount of variance unexplained in attitudes and subjective norms. If  the 
residual covariance had been significant, the explained variance would have to 
be interpreted as pseudo R 2 values. The explained variances in attitudes and 
subjective norms are R E = .66 and R 2 = .83, respectively. 

Finally, it is interesting to examine the stability of attitudes and subjective 
norms. The stability coefficients are quite high: 13~tl d = .81 and 13~ d = .91. It 
should be pointed out that the stability coefficients have been corrected for 
random and specific errors. When measure specificity is not taken into account 
in panel models, stability coefficients will be inflated by an amount propor- 
tional to the stability of the specific components in the measures. For  compari- 
son, the stability coefficients were estimated for the panel model of  Figure 2 
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where no provisions were made for measure specificity. This gives 13~tl d = .85 
and 13~ d = .97. Thus, a failure to model measure specificity does indeed result 
in inflated stability coefficients. For  the particular data at hand, the inflation 
is relatively minor and does not affect substantive conclusions. However, in 
data sets with higher levels of measure specificity, failure to account for such 
systematic biases can affect substantive conclusions. A hypothesis of  interest 
in some studies might be a formal test of  the equality of the stability coefficients 
between constructs (i.e., 133, = ~42). The goodness-of-fit for the model with this 
constraint was, Zz(30) = 23.01, p ~ .82. Comparing this to the baseline model 
gives, Z 2 (1) = . 11, p > .74. Therefore the hypothesis of  equal stability cannot 
be rejected. 

DISCUSSION 

It is premature to give rigid guidelines for conducting construct validation 
research. The conceptual criteria for construct validity are complex and in need 
of further development. The procedures used for analyzing MTMM matrices 
are in a state of  flux and require better integration. Nevertheless, to the extent 
that convergent and discriminant validity are useful operationalizations of 
important aspects of construct validity, it is crucial to evaluate the procedures 
currently used in consumer research. 

This article began with the premise that the procedures introduced by 
Bagozzi and Yi (1991) have several shortcomings. The first-order CFA 
model is often overparameterized and typically produces ill-defined solu- 
tions (Marsh & Bailey, 1991; Wothke, 1987). However, unlike the DP 
model, it is one of the few procedures giving unique estimates of trait, 
method, and error components. Therefore, if a researcher wants to test an 
underlying model additive in trait, method, and error components, and to 
obtain parameter estimates showing the relative contributions, the CFA 
model is a viable alternative. 

If ill-defined solutions result for the first-order CFA model, a likely occur- 
rence, and if one is confident that an additive structure characterizes the 
underlying model, one can try the CU model in which method effects are 
represented as correlated uniquenesses. If  the CU model is found acceptable, 
this might suggest that the correlated uniquenesses associated with each 
method cannot be explained in terms of  a single method factor. 

One important advantage of the CU model is that it seldom leads to 
ill-defined solutions that plague MTMM studies. In the analyses of  the four 
data sets reported by Bagozzi and Yi (1991), all CFA results included some 
ill-defined solutions. However, when the CU model was used to analyze the 
same data, no ill-defined solutions occurred (see also Marsh & Bailey, 1991). 
This result may happen because the CU model does not make the restrictive 
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assumption of congeneric-like method effects. In addition, the CU model 
provides a more accurate interpretation of  trait and method effects by eliminat- 
ing the possibility that the so-called method factors actually reflect a general 
trait effect instead of, or in addition to, method effects (Marsh, 1989). 7 It  also 
gives information on convergent and discriminant validity. On the other hand, 
the major  drawbacks of the CU model are that methods are assumed to be 
uncorrelated, that the interpretation of  correlated uniquenesses can be ambig- 
uous, that contributions of  specific method effects are not estimated, and that, 
like the CFA model, random and specific errors are confounded. 

I f  the CU model yields ill-defined solutions, or if the researcher has reason 
to believe that the data reflect multiplicative trait and method components with 
additive uniquenesses, the DP model can be applied. I f  one desires a global 
assessment of  convergent and discriminant validity according to the logic 
implied by Campbell and Fiske's (1959) original criteria, the DP model is the 
only currently available procedure for doing this. 

This article developed several useful hypotheses for the DP model not 
considered by Bagozzi and Yi (1991), and illustrated formal procedures for 
testing these hypotheses. For example, one can test whether two particular 
trait factors are equivalent or orthogonal. Although Bagozzi and Yi (1991) 
used omnibus tests for examining construct validity, they failed to offer tests 
of specific hypotheses regarding construct validity as well as individual traits 
and methods. This study also used a program more flexible, accurate, and 
easier to use than that employed by Bagozzi and Yi (1991). The program 
provides estimates and their standard errors for both method and trait correla- 
tions, allows constraints on the parameter space to avoid ill-defined solutions, 
and reduces empirical underidentification problems. Nevertheless, the DP 
model is not without limitations. For  example, validity as represented in the 
method correlation matrix is difficult to interpret (especially as the correlations 
approach unity). 

Other limitations can be mentioned with the CFA, CU, and DP models. 
First, these models cannot be implemented when the number of  traits and 
methods is too low. For example, when two traits are investigated with two 
methods, neither the CFA nor the CU model can be used for construct valida- 

7An example can be found in the MTMM data from Van Tuinen and Ramanaiah (1979). An 
application of the CFA model showed very highly correlated methods (98, .92, and.85), whereas 
the CU model showed that methods were distinct and that method effects were negligible. Thus, 
this example illustrates that an application of the CFA model could misleadingly yield highly 
correlated methods as a result of the convergence of a general trait factor across methods. In 
such cases, the CFA model often underestimates the correlations among traits. For the data in 
Van Tuinen and Ramanaiah (1979), the CFA model yielded correlations among traits ranging 
from - .32 to .26, which was contrary to expectations. The CU model, in contrast, revealed more 
theoretically consistent correlations ranging from. 19 to .81. For further results and discussion 
on this issue, see Bagozzi (1993). 
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tion, thus making their use rather limited in practice. Second, random error is 
confounded with specific error in the CFA, CU, and DP models. This problem 
is potentially serious because it may result in biased estimates of reliability, 
convergent validity, and method effects. 

In such circumstances, panel models may be used to examine construct 
validity. Panel models can simultaneously assess the temporal stability and 
reliability of constructs, while correcting for the separate influences of ran- 
dom and specific errors. This article has illustrated that when measure spec- 
ificity is not taken into account, factor loadings and reliability coefficients 
are underestimated. Failure to model measure specificity results in overesti- 
mated stability coefficients. To the extent that measure specificity is substan- 
tial or the number of  available traits and methods is small, panel models 
can be useful for making valid conclusions about construct validity and reli- 
ability. 

A drawback with panel models is that they do not explicitly model 
method variance. However, one could model various types of method vari- 
ance by modifying the model. For  example, it is possible to hypothesize 
that all the responses are affected by sharing a common method of  measure- 
ment (e.g., self-report). By introducing one method factor common to all 
measures, one can write the measurement equations for the first measure of 
111 as  follows: 

Yll = ~11 "qt l) "1- ~13 JIM + Ell 

Y21 = Lzl lqt  2) + ~231]M + e21, 

where rl,,~ is the method factor shared by all measures. 
Alternatively, it is possible to posit effects of  multiple methods for each trait 

over time. For  instance, each item may have its own systematic influence on 
the individual responses, as occurs when an item has a specific meaning other 
than the construct of interest. In such cases, it is necessary to postulate a 
method factor for each type of item (i.e., all traits measured with the same item 
at different waves are hypothesized to share method variance). It is thus 
possible to decompose an observed score into three components: (a) the latent 
variable common to all items (common factor), (b) the item-specific method 
factor (specific factor), and (c) the random measurement error (Raffalovich & 
Bohrnstedt, 1987). 

Yll = ~11 q t  1) + ~131]MI + ~;11 

Y21 = k21 q t 2) "]- ~23qM1 "{- ~21, 

where multiple method factors (e.g., qul ,  q~2, ~ 3 )  are allowed. 
In estimating panel mgdels with multiple method factors, one should con- 

sider identification of  the parameters. In general, for all parameters to be 
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identified one must have three or more indicators at three or more waves 
(Raffalovich & Bohrnstedt, 1987). When the number of  indicators (I) or the 
number of  periods (P) is smaller than 3, some constraints should be imposed 
to achieve identification. For  example, if one has three or more measures at 
only two time periods, one must impose I independent constraints on the 
factor loadings, error variances, or factor correlations. 

In sum, there may not be a single best model under all conditions for 
analyzing M T M M  data. Rather, one should examine the appropriateness of  
alternative models in each situation. One can begin with the CFA model 
because of  its desirable features and parsimonious structure. When the model 
yields ill-defined solutions, or when method factors are unlikely to be unidi- 
mensional, one can apply the CU model. I f  the CU model still yields ill-defined 
solutions, or if method effects are likely to be multiplicative, one can try the DP 
model and examine several hypotheses proposed in this article concerning 
construct validity. When the number of  traits and methods is small and /or  the 
uniqueness of  each scale (or measure) is substantial, however, the panel model 
should be useful. 

Although the four models are distinct in terms of  functional forms, selection 
of  a particular model may not be so clear. The fits of  some models may be 
empirically indistinguishable. For  example, the DP model is sometimes indis- 
tinguishable in fit from the CFA model (Bagozzi & Yi, 1991; Kumar  & Dillon, 
1992). 8 Furthermore, selection of a model should not be based solely on 
empirical considerations. One should also bring in theoretical and methodolo- 
gical considerations when deciding among the alternative approaches. In this 
regard, this article has presented the underlying assumptions, as well as 
strengths and weaknesses, of  each model and examined how these models can 
be used in construct validation. A researcher should explicitly consider the 
nature of  the assumptions underlying each model, examine the plausibility of  
these assumptions, select the most appropriate one in the given situation, and 
describe these assumptions clearly to the reader. 
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8Kumar and Dillon (1992) noted that both the DP model and the covariance component 
analysis (CCA) model (Wothke, 1987) can also fit the same data. The CCA model can be used 
to analyze MTMM data in special instances and is discussed further in Kumar and Dillon 
(1992), where problems with its specification are considered. Because the CCA model has been 
thoroughly evaluated by Kumar and Dillon (1992), and at the same time is less viable than the 
other procedures, nothing more is said about it in this article~ 
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