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Abstract: 

Sensitive, single volume detections of multiple diabetes antibodies can provide 

immunoprofiling and early screening of at-risk patients. To advance the state of the art 

suspension assays for diabetes antibodies, porous hydrogel droplets were leveraged in 

microfluidic serpentine arrays to enhance reagent transport. This spatially multiplexed assay 

was applied to the detection of antibodies against insulin, glutamic acid decarboxylase, and 

insulinoma associated protein 2. Optimization of assay protocol resulted in a shortened assay 

time of 2 hours, with better than 20 pg/mL detection limits across all three antibodies. 

Specificity and cross-reactivity tests showed negligible background, non-specific antibody-

antigen, and non-specific antibody-antibody bindings. Multiplexed detections were able to 

measure within 15% of target concentrations from low to high ranges. The technique enabled 

quantifications of as little as 8000 molecules in each 500-µm droplet in a single volume, 
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multiplexed assay format, a breakthrough necessary for the adoption of diabetes panels for 

clinical screening and monitoring in the future. 
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1. Introduction: 

The role and function of the rising levels of autoantibodies in Type I diabetes (T1D) is of 

great interest to the disease pathogenesis. Detection of diabetes autoantibodies enables 

clinical diagnosis of T1D,
[1-10]

 and sensitive detections have the potential to provide 

predictive and screening values.
[10-13] 

Autoantibodies against insulin, glutamic acid 

decarboxylase (GAD), and insulinoma associated protein-2 (IA -2) are well-established in 

T1D panels, and thus are targeted in multiplexed detections.
[14, 15]

 The presence of IA-2 

antibodies in clinical T1D ranges from 54-75%.
[16]

 Additionally, 66% of newly diagnosed 

patients test positive for insulin autoantibody
[17]

. Testing for a panel of aforementioned 

antibodies using sensitive detections can identify better than 85% of disease presentation or 

future T1D development with 98% specificity.
[18]

 Moreover, T1D accounts for more than 

80% of diabetes in young children.
[19]

 Unsettlingly, development of T1D in children is 

especially acute, with afflicted children showing severe symptoms, very high blood glucose, 

marked glycosuria, and ketonuria.
[20, 21]

 Incidentally, the rise of autoantibodies manifest very 

early, with transients observable before one year of age, Figure 1A, providing a strong 

marker for clinical diagnosis and screening for T1D.
[22]

 For these young patients, earlier 

diagnosis or even predictive screening may mean critical disease management before 

manifestation of life-threatening symptoms. Current understanding of these diabetes 

autoantibodies points to a potential neoantigen immunogenicity,
[23-26]

 where stress-modified 

protein synthesis leads to new epitopes on autoantigens that enhance their bindings to 
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antibodies
[27-31]

 or elicit cell-mediated immune responses.
[32-36]

 Thus, sensitive detection of 

insulin, GAD, and IA-2 autoantibodies can serve as a powerful diabetes panel to monitor 

T1D disease progression, as well as investigate the mechanisms of beta cell autoimmune 

dysfunctions.  

The standard detection methods for diabetes autoantibodies include radioimmunoassays 

(RIAs) and enzyme-link immunosorbent assays (ELISAs). Serum RIA and ELISA protocols 

uses semi-quantitative titrations with varying sensitivities, which may not be useful for early 

or new-onset diabetics.
[37]

 In practice, RIA is time consuming and labor intensive, while 

ELISA requires multiple sample preparations to provide multiplexed detection of 

autoantibodies. 
[1, 5]

 Moreover, there is a need for a uniform method of quantitative detections 

of all three antibodies in a single volume. For example, serum autoantibody levels can be 

measured in dilution titers (e.g. Juvenile Diabetes Foundation units), RIA percentage, or in 

enzymatic U/mL, with various cut off definitions for positive detections.
[1, 5, 15, 38]

 As a 

comparison, normal serum levels of all three autoantibodies are nominally regarded as 0.02 

nM (e.g. 2.4 ng/mL for insulin IgG) or lower by the World Health Organization and Mayo 

Clinic Interpretive Handbook
[39]

. Nevertheless, the cut-offs established by the various 

methods represent the diagnostic levels of T1D, whereas early screening would call for 

greater sensitivity to detect earlier transients. 

Towards improving diabetes autoantibody detections, advances have been made via 

multiplexed microarrays
[15]

 and electrochemiluminescence (ECL) assays.
[14, 40-41]

 Diabetes 

microarrays enabled single serum preparation for a multiplexed antibody detection panel, 

while ECL assays pushed the quantitative autoantibody detections below 10
-11

 mole/L 

(ng/mL) range, respectively. However, these separate improvements to autoantibody 
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detections have not yet offered a combined sensitivity and multiplexing in a single volume 

assay.  

 

 

Figure 1. Quantitative microfluidic droplet array for diabetes detection panel. A) The 

rise and change of diabetes autoantibodies vary in individuals, and can be observed as early 

as 1 year of age, demonstrating the need for sensitive detection of multiple autoantibodies. B) 

We engineered a microfluidic array that generated individual porous droplets with detection 

chemistries optimized for the insulin, GAD, and IA-2 antibody detections. These “smart 

microgels” were then spatially arrayed in designated traps within the serpentine channels. 

This spatial multiplexing was achieved by flow switching of unwanted droplets to a waste 

channel, and redirecting droplets back towards the traps when the correct detection chemistry 

is generated. C) The serpentine microchannels allowed trapped droplets to be perfused by 

assay reagents. Buffer perfusion after UV curing allowed the porogen molecules (yellow 

stripes) to be washed away, creating a porous hydrogel droplet. Target antibodies (blue) and 

reporter antibodies (green) were then subsequently introduced into the microchannels, 
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completing the immunoassay protocol. D) The result of spatial multiplexing was an array of 

droplets targeting individual diabetes antibodies, illustrated on top by the generation of 

multicolored droplets using food dyes. In the actual assay on bottom, only a single reporter 

wavelength was required, providing fluorescence intensities that varied at each spatial 

position per its respective antibody detection. 

We addressed these needs for the diabetes detection panel by creating an enhanced 

suspension assays multiplexed in microfluidic channels. Standard suspensions assays based 

on polystyrene beads, hydrogels, multi-colored Luminex beads, Ilumina’s VeraCode 

particles, and novel plasmonic mulptilexed substrates share advantages of flexible probe 

chemistry, inert surfaces, radial diffusion, smaller sample size, and lower costs.
[15, 42-47]

 Our 

group has further advanced the suspension assay technology by creating porous polyethylene 

glycol (PEG) hydrogel—“smart microgels”—to enhance the diffusion of biomolecules within 

the droplets, an improvement to the microscaled substrate that defines suspension assays.
[48-

50]
 In that previous work, we have demonstrated that the porosity generated by 20 kDa PEG 

optimized the diffusion of 250 kDa FITC-dextran into the hydrogel. This is larger than the 65 

kDa antibodies used in this multiplexed assay, ensuring analyte access through the droplet 

volume. Furthermore, these microgels are arranged in a microfluidic serpentine array for 

multiplexing.
[51]

 The microfluidic flow pushes the soluble reagents closer to the substrate 

surface, which is otherwise shielded by the boundary layers in bulk flows. These porosity and 

microfluidic advantages enhance the reagent transport and turnover throughout the whole 

droplet volume, enabling pg/mL protein detections with shortened assay time of less than 2 

hours in previous works.
[50, 51]

  Here, we leveraged our smart microgels further for 

multiplexed detection of diabetes antibodies, aided by the microfluidic enhancement of 

analyte transport (Figure S1). The multiplexed diabetes panel was optimized with 

recombinant proteins and antibodies to push the performance envelop of detections, towards 
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serum measurements in the future. The result is a quantitative, faster, and single sample 

multiplexed detection panel for insulin, GAD, and IA2 antibodies. Finally, the platform can 

be easily adapted for future antibodies such as zinc transporter 8.
[52-54]

 Potential clinical 

applications of this detection panel may enable detailed immune profiling in T1D, and pave 

the way for a robust tool for early screening.  

 

2. Results and Discussion 

2.1. Sequential Arraying of Enhanced Droplets for Multiplexed Detection 

Smart microgel optimizations were leveraged for the detection of diabetes antibodies by 

immobilizing capture antigens instead of capture antibodies. Detection chemistry, including 

diacrylated antigens in polyethylene diacrylate hydrogels and PEG porogen, were loaded into 

a microfluidic cross-junction, Figure 1B. Flow from this aqueous phase was then pinched by 

mineral oil at the junction, creating an instability that ejects 500 µm droplets at a predictable 

frequency.
[50]

 Droplets then flowed down the serpentine channels and occupied individual 

trap sites one after another. However, in order to generate multiplexed detections for insulin, 

GAD, and IA-2 antibodies in a single channel, droplets with different capture molecules were 

generated and sequentially trapped. This was achieved by directing the unwanted droplets 

towards a waste channel, then switching the flow towards the serpentine traps once desired 

droplets were generated, Figure 1B. Upon trapping, the droplets were UV cured to 

immobilize the capture antigens and solidify the hydrogel for washing in TBST (Tris-

buffered Saline and Tween 20) to remove porogens, Figure 1C. With porosity-enhanced 

mass transport, unreacted porogen was thoroughly removed after 4.5 hours of microfluidic 

perfusion, compared to the 24 hours of incubation needed for bulk preparations.
[50]

 The 

resultant array, Figure 1D, represented a spatially multiplexed diabetes detection panel, 
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without issues associated with spectral overlapping or computational imaging algorithms for 

shape-coded techniques. After formation of the multiplexed smart microgels, the array was 

then ready to be assayed by flowing target antibodies, reporter antibodies, and washing steps, 

optimized in the following section. 

 

 

2.2 Optimization of Reporter Incubation Time and Dilution Factor 

The detections of all three antibodies shared a common reporter, FITC-labeled IgG, whose 

incubation time and dilution factor were optimized using the insulin antibody detection. The 

fluorescence readout from the detection was quantified by the maximum droplet intensity 

divided by the background intensity, as illustrated by the line scan in Figure 2A. Using this 

quantification, reporter readout plateaued after 40 minutes of incubation, Figure 2B. 

Furthermore, the reporter dilution showed lowered background and useful signal up to 1024 

X dilution, which dramatically reduced the usage of reporter reagents, Figure 2C. Based on 

these results, all subsequent experiments were carried out with 40 minutes of reporter 

incubation at 1024 X dilution. We anticipate the lower background from reporter dilution 

may help reduce non-specific signals when moving to serum-based detections in the future. 

 

Figure 2. Reporter optimization. A) All fluorescence measurements were quantified by the 

ratio of maximum center intensity normalized by the background intensity, as seen by the line 
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scan across a typical droplet. B) Fluorescence ratio of the reporter plateaued after 40 minutes 

of reporter incubation. C) While fluorescence ratio flattened after 256 times reporter dilution, 

the noise continued to drop. We selected the reporter dilution of 1024 times to reduce reagent 

consumption and minimize the background intensity, which would provide smaller standard 

deviations for more sensitive detections. 

 

2.3. Optimization of Capture Antigens Concentration in PEGDA 

After reporter optimization, the capture antigen concentration corresponding to each target 

antibody was optimized. All antigen optimizations were incubated with 1000 pg/mL target 

antibodies. Figure 3A illustrates the insulin capture antigen optimization, where the 

fluorescence ratio plateaued above a concentration of 200 pg/mL. GAD antigen optimization 

is shown in Figure 3B, where the fluorescence ratio showed a plateau above 500 pg/mL. 

Similarly, Figure 3C shows that IA-2 concentration in PEGDA plateaus above 500 pg/mL. 

Optimization of antigen immobilization illustrated the differences of the binding epitopes 

between each antigen-antibody pair.
[23-36]

 The subsequent experiments were run at their 

respective optimized antigen concentrations.  
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Figure 3. Diabetes panel optimization. A) Insulin antibody detection was optimized with 

200 pg/mL capture antigen immobilization, 40 minutes of analyte incubation, and a 

detectivity curve with a detection limit of 19.6 pg/mL. B) GAD antibody detection was 

optimized with a 500 pg/mL capture antigen immobilization, 40 minutes of analyte 

incubation, and a detectivity curve with a detection limit of  18.7 pg/mL. C) IA-2 antibody 

detection was optimized with a 500 pg/mL capture antigen immoblization, 60 minutes of 

analyte incubation, and a detectivity curve with a detection limit of 12.7 pg/mL. All capture 

antigen and analyte incubation optimizations were completed in triplicates. All detectivity 

curves were completed with 5 replicate runs.  Error bars denote standard deviations.  

2.4. Optimization of Target Antibodies Incubation Time 
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Next, we considered the kinetics of antibody-antigen binding within the smart microgels by 

optimizing the target antibody incubation times. Smart microgels immobilized with 

aforementioned antigen concentrations were incubated for various durations with their 

respective antibodies. The fluorescence ratio for insulin detection improved up to 40 minutes 

of target antibody incubation and plateaued thereafter, Figure 3A. The same was seen for 

GAD antibody with a plateau after 40 minutes, Figure 3B. IA-2 and its antibody showed a 

different kinetics, as optimal incubation did not occur until after 60 minutes, Figure 3C. We 

should also note that IA-2 antibody is sensitive to buffer conditions, where glycine additives 

would increase non-specific binding to the PEG hydrogel. Based on these optimizations, the 

longest incubation time was 60 minutes for the IA-2 antibody, which we adopted for all 

subsequent singleplexed and multiplexed detections.  

2.5. Characterizing the Limits of Antibody Detections 

The assay protocol described above was optimized at 1000 pg/mL for respective diabetes 

antibodies. We subsequently tested the detectivity below this concentration to characterize 

the detection limits for each antibody. Concentrations of 50, 100, 200, 500, and 1000 pg/mL 

were assayed in five runs for each antibody, with error bars denoting standard deviations 

between each assay run at the particular concentration, Figure 3. The detection limit was 

defined to be the concentration at which the signal rises three times the standard deviations of 

the zeroth concentration. Using this definition, the insulin antibody detection limit was found 

to be 19.6 pg/mL, Figure 3A. The GAD antibody detection limit was found to be 18.7 

pg/mL, Figure 3B. And the IA-2 antibody detection limit was found to be 12.7 pg/mL, 

Figure 3C. Since the detection limit is a function of the background fluorescence and slope 

of the detectivity curve, minimization of reporter antibody contributed to these enhanced 

detection limits, Figure 2C. 
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2.6. Characterization of Assay Specificity 

To investigate whether other protein components in serum could potentially affect the 

fluorescence ratio, antigen immobilized microgel droplets were incubated with phosphate 

buffered saline (PBS), 0.1% bovine serum albumin (BSA) and their respective antibodies at 

1000 pg/mL, Figure 4. Antibody detections yielded fluorescence ratios higher than 2, 

whereas PBS and BSA yielded background levels of 1.5 or lower. More importantly, errors 

bars showed significant differences between specific and background detections with 

p<0.0001. One reason for the low background without blocking is the bioinert nature of PEG 

hydrogel against non-specific antibody binding.  The result indicated that proteins other than 

targeted diabetes antibodies had minimum contributions towards the fluorescent signal, and 

also demonstrated that antigen functionalization without additional blocking is sufficient for 

smart microgel specificity.  
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Figure 4. Assay specificity. Non-specific binding to BSA resulted in fluorescence ratios on 

par with PBS background. Specific antibody detections resulted in a ratio around 2 versus 1.5 

of background. Moreover, significant differences between detections and background yielded 

a p<0.0001.   

 

2.7. Characterization of Singleplex and Duplex Cross-reactivity 

One major difficulty in assaying multiple antibodies within one sample assay volume is the 

cross-reactivity among the target antibodies and non-target proteins. First, microgel droplets 

of all target antigens were incubated with each target antibody one at a time at 1000 pg/mL to 

evaluate antigen-antibody cross-reactivity, Figure 5. For reference, background fluorescence 

ratios for each antigen (zero antibody concentrations) were typically below 1.5, as seen from 
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their detectivity curves. In comparison, the on-target antigen-antibody detections, e.g. insulin 

to insulin antibody, yielded a ratio close to 2, significantly higher than the background 

(p<0.0001, complete comparisons in Table S1). After analysis of singleplex cross-reactivity, 

combinations of two antibodies each at 1000 pg/mL were assayed, Figure 6. As singleplex 

cross-reactivity showed negligible nonspecific bindings between antibody and capture 

antigens, this duplex assay tested the possibility of unintended antibody to antibody 

interactions. Again, the on-target pairs yielded fluorescence ratios close to 2, while miss-

matched backgrounds remained below 1.5. For example, the GAD to insulin+GAD 

antibodies fluorescence ratio was significantly higher than that of the IA-2 mismatched with 

insulin+GAD antibodies (p<0.0001, 2D plots and complete statistics in Figure S2 and Table 

S1). 

 

Figure 5. Singleplex cross-reactivity. A) Cross-reactivity between target (blue) and non-

target (orange) antibodies one at a time tested non-specific antibody-antigen interactions. B) 

This test showed that non-specific antibody-antigen reactions yielded fluorescence ratios 

similar to that of background at ~1.5. 
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Figure 6. Duplex cross-reactivity. A) Cross-reactivity between combinations of antibodies 

pairs tested non-specific antibody-antibody interactions. B) This test showed that non-

specific antibody-antibody reactions did not affect the on-target antibody-antigen detections.  

 

2.8. Muliplexed Detection and Quantitative Protein Recovery 

After confirming negligible cross-reactivities at elevated antibody concentrations, we 

demonstrated multiplexed detections of insulin, GAD, and IA-2 antibody concentrations and 

their quantifications simultaneously. Three concentrations of 50, 200, and 500 pg/mL were 

assayed for each target antibody in multiplexed droplets. Triplicates were run for each 

condition. However, since the detections were multiplexed, the entire assay took a total of 

just 9 runs. The measured concentrations were within 15% of the designated values, Table 1.    

 

Table 1. Multiplexed protein detections with target concentrations of 50, 200, and 500 

pg/mL for all three antibodies simultaneously.  

Target concentration (pg/mL)  Retrieved concentration (pg/mL) 

Insulin Ab GAD Ab IA-2 Ab  Insulin Ab GAD Ab IA-2 Ab 
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50 50 50  48±11.4 45±7.1 51.8±9.8 

200 200 200  204±22.8 201.4±17.8 203.3±26.3 

500 500 500  494.9±41.7 521.28±26.24 520±39.5 

 

3. Discussion 

The diabetes detection panel presented here achieved detection limits better than 20 pg/mL 

for all three target antibodies optimized. For reference, the recombinant antibodies used in 

this detection panel weighed less than 65 kDa, which means around just 8 to 30 thousand 

molecules were detected in each 500 µm droplet. This level of detection is orders of 

magnitude below serum levels of insulin, GAD, and IA-2 autoantibodies in non-diabetic 

patients, nominally at 2.4 ng/mL. However, that threshold for T1D diagnosis does not 

account for the low level transients before the rise of antibody levels in serum, which can be 

present in patients as young as one year of age.
[22]

 With a sensitive, multiplexed detection 

panel, at-risk patients and siblings or family members of diabetics can receive early screening 

and frequent monitoring for the development of diabetes, before any hyperglycemia has 

manifested.  

One major benefit of the smart microgel antibody detection is its inert hydrogel chemistry, 

which eliminates the need for blocking and reduces the assembly time for each assay. Next, 

the spatial multiplexing eliminates the possibility of spectral overlapping or complex shape 

coded imaging. Furthermore, the length for target incubation, reporter incubation, and two 

buffer washing times totaled 2 hours—an accelerated protocol that is difficult to achieve by 

current antibody or RIA assays. Since the protein reagents are suspended in hydrogel 

substrates, their native conformation and binding kinetics can be preserved.
[55-57]

 Moreover, 
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enhanced hydrogel based substrates may demonstrate better storage capabilities
[58-60]

, 

enabling pre-generated, pre-packaged diabetes detection panels for wider distribution and 

assay adaptation. Additionally, newly identified neoantigens
[23-36]

 and ZnT8
[52-54]

 can be 

rapidly added in a future multiplexed version of the diabetes panel, to enable clinical 

investigations of their predicative and screening values
[4-7]

, plus potential disease 

mechanisms. Lastly, available hydrogel functionalities can also enable immobilization of 

short peptides, nucleotides, aptamer, reverse transcription amplification, or cell encapsulates 

to create novel detection schemes or beta cell stimulations
[61-66]

, all of which can benefit from 

the enhanced hydrogel kinetics and multiplexing presented in this work. Coupled with the 

microfluidic serpentine’s ability to manipulate soluble concentrations, the smart microgel 

platform provides a highly useful in vitro tool to study diabetes mechanisms.  

 

4. Conclusion 

We have achieved a multiplexed detection panel for diabetes antibodies targeting insulin, 

GAD, and IA-2. The assay can be prepared in 4.5 hours prior to running the assay, with a 

total assay time of just 2 hours for all three parameters in a single sample. For all target 

antibodies, a detection limit better than 20 pg/mL was achieved, representing the detection of 

only 8 to 30k molecules in each microgel droplet. Singleplex and multiplex detections 

showed negligible cross-reactivity. Multiplexed detections were within 15% of the target 

concentrations. The serpentine microfluidic achieved a spatial multiplexing of the microgels 

that avoided issues associated with spectral or imaging based techniques. The resultant 

detection panel has the potential to improve diabetes detection as well as investigate 

immunogenic mechanisms in diabetes. 

5. Experimental Section 
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Reagents preparations: Yeast host recombinant human insulin, recombinant protein GAD 2, 

anti-GAD65 (mouse anti-human), and recombinant IA-2 proteins were procured from Sigma-

Aldrich. Mouse anti-human anti-insulin, anti-IA2 antibodies (mouse anti-human), and goat 

anti-mouse FITC labeled IgG were procured from Millipore. Poly(ethylene) glycol diacrylate 

(PEGDA) (Mn ∼ 6000), poly(ethylene glycol) (PEG) (Mn∼20,000), photo-initiator (2-

hydroxy-4′-(2-hydroxyethoxy)-2 methylpropionphenone), phosphate buffer saline (PBS), and 

albumin from bovine serum (BSA) were procured from Sigma-Aldrich. Acrylate poly 

(ethylene) glycol succinimidyl carboxymethyl MW 5000 (ACRL-PEG-SCM-5000) was 

obtained from Laysan Bio Inc. (Arab, AL). 

To immobilize the antigens within the microgel, the antigens were incubated with 1.25 mg of 

ACRL-PEG-SCM-5000 in PBS at room temperature for 3 hours prior to use and discarded 

afterwards. The pre-polymer solution consisting of 100 μl of 8% (w/v) of PEG6000DA, 2% 

(w/v) photo initiator, 10% (w/v) PEG 20K, and acrylated antigen was then loaded in the 

microfluidics for droplet generation. 

 

Droplet generation: The pre-polymer solution was introduced at 1 µL/min, and mineral oil 

was introduced at 15 µL/min to generate the droplets at the microfluidic cross-junction. 

When one of the generated droplets was flown in to the serpentine pockets, its trapping 

blocks the cross-serpentine flow and redirects the next droplet towards the following pocket 

sequentially. After trapping, droplets were exposed to ultraviolet light for crosslinking for 5 

minutes (UVP CL-1000 UV Oven, 365nm). Then, BSA buffer was flown in at 30 µL/min to 

continuously wash the droplet for 30 minutes to prevent PDMS protein absorption. Lastly, 

PBS was flown in at 30 µL/min to continuously wash the droplets for 4 hours to remove the 

unreacted reagents and PEG porogens, thus creating the porous microgel.  
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Assay protocol: For multiplexed detection, different pre-polymers containing different 

acrylated antigens were loaded in the microfluidic tubing (Tygon tubing 1/16” ID) separated 

by mineral oil plugs. The pre-polymers were then delivered into the microfluidics using a 

syringe pump to generate droplets. After generating and trapping droplets with the first pre-

polymer reagent, subsequent unwanted droplets were redirected to the waste channel. Then, 

the waste channel was closed to allow droplets with the second pre-polymer containing the 

next acrylated antigen to be flown in and trapped in the next serpentine trap. The process 

continues until all three pre-polymers containing the three different capture antigens were 

trapped in designated spots. These smart microgel droplets were then UV-cured and washed 

as described above.  

To run the multiplexed assays, smart micorgels were incubated with appropriate antibodies at 

20 µL/min flow rate for 60 minutes. Then, they were washed with TBST at 30 µL/min for 15 

minutes and subsequently incubated with the reporter antibody at 30 µL/min for 40 minutes. 

Following this, droplets were washed again with TBST for 5 minutes and then imaged under 

the fluorescence microscopy. 

 

Fluorescence data and statistical analysis: After all the reactions between antigens, 

antibodies and reporter antibody were completed, the smart microgel droplets were imaged 

under fluorescence microscopy for readout. The ratio of maximum center droplet intensity 

over background intensity were calculated using ImageJ to provide a normalized intensity 

value. The noise of the data is then the standard deviations of the normalized values. All 

optimization and cross-reactivity were done in triplicates, while the detection curve was done 

with five repeated runs. To generate the statistics, detections were compared to background 

by individual-samples t-test. The p-values (double sided) were provided for interpretation, 

Table S1. 
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Summary: 

 

To advance the state of the art suspension assays for diabetes antibodies, porous hydrogel 

droplets were leveraged in microfluidic serpentine arrays to enhance the detection of 

antibodies against insulin, GAD, and IA-2. The technique enabled sensitive detections in a 

single volume, multiplexed format, a breakthrough necessary for the adoption of the assay for 

clinical screening and monitoring in the future. 
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