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INTRODUCTION 

Optimization models have provided power- 
ful tools of analysis in the fields compre- 
hended by the words "management science"; 
they have been used successfully in wide 
classes of problems arising in industry, the 
physical sciences, and in governmental ac- 
tivities. An IBM publication recently listed 
20 pages of applications, with an average of 
43 citations per page, which varied from 
archaeology, anthropology, and avionics, 
through medicine and nuclear physics, to 
water pollution control in public utilities. 

Since fisheries management and other re- 
newable resource management problems have 
much in common with management problems 
found outside these fields, it is reasonable to 
infer that optimization models will find in- 
creasing applications in the former fields. 
Indeed, several interesting studies in environ- 
mental quality management have been pub- 
lished within the last four years which make 
use of optimization models. One of these, 
examined in detail below, is a water pollution 
study which uses a linear programming model 
to approximate a differential equation system 
describing the water quality of streams in 
terms of dissolved oxygen profile. 

It thus seems appropriate to examine what 
optimization models are, to assess the present 
"state of the arts" with respect to them, and 
to consider the advantages and disadvantages 
that we have learned they have--oftentimes 
"the hard way." This paper also presents a 
bibliography of items selected so as to indi- 
cate beginning, intermediate, and advanced 
level works on optimization as well as selected 
papers in applications. When reference is 
made to an item in the bibliography, the 
name of the author or authors will be indi- 
cated, followed by the date of the corre- 
sponding entry. 

• This paper was given at the Centennial Meeting 
of the American Fisheries Society, New York City, 
September 14, 1970. 

OPTIMIZATION MODELS 

An optimization model is one in which 
there is a function of decision variables which 

is to be optimized (i.e., either maximized or 
minimized). The decision variables may or 
may not be subject to constraints; if the 
former, the model is one of constrained opti- 
mization and we call the latter an uncon- 

strained optimization model. Most optimiza- 
tion problems in the management sciences 
have constraints in them so that constrained 

optimization models have undergone exten- 
sive development in the last 20 years? 

The function to be optimized is called an 
objective function. If the objective function 
is linear and each of the constraints is a linear 

equality or inequality, then the model is one 
of linear optimization, most frequently re- 
ferred to as linear programming (Dantzig, 
1963; Gass, 1964; Hadley, 1962; Spivey, 
1963; Spivey and Thrall, 1970). An exam- 
ple of such a model is: 

(1) minimize Z: elx1 q- ... q- CnXn 

subject to 
aHx• q- . . . q- a•nXn = hi 

(2) 

aplxl q- . . . q- apnXn = bp 

(3) xj => 0 (j = 1,...,n), 

where the cj, aij, and bi are assumed to be 
known constants and p and n are any positive 
integers. The xj's are the decision variables 
and (2) and (3) express the constraints on 
the variables. 

If at least one of the variables in the ob- 
jective function (1) is nonlinear or if at 
least one of the constraints (2) or (3) has a 

2 The theoretical distinction between unconstrained 
and constrained optimization is not sharp; many 
contrained problems are best solved by transforming 
them into unconstrained problems in higher dimen- 
sional spaces. 
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decision variable that is nonlinear (for exam- 
ple, if we should have x21) the model becomes 
one of nonlinear optimization or of nonlinear 
programming (Boot, 1964; Hadley, 1962; 
Wilde and Beightler, 1968). Moreover, if at 
least one of the variables in (1), (2), or (3) 
is a function of time, the model is then one 
of dynamic programming (see Wagner, 1969; 
Hadley, 1962). 

Sometimes an optimization model is de- 
veloped in which the values of some of the 
variables must be chosen in one time period 
and then choices for still other variables are 

subsequently made which depend on the deci- 
sions made earlier as well as other factors. 

These are multistage decision models and are 
regarded by some writers as special cases 
of dynamic programming (Dantzig, 1955; 
Spivey, 1968). 

It should surprise no one that our ability 
to solve linear optimization problems is great. 
General theorems and solution procedures are 
known and in the management sciences linear 
optimization problems in which the number 
p of constraints is as large as 1,000 to 2,000 
and the number n of decision variables is as 

large as 3,000 to 4,000 are fairly common 
and are solved routinely on large scale com- 
puters. Problems have been solved in which 
p and n are as large as 30,000 and 3,000,000 
respectively. However, models of this kind 
can be solved only if they possess special 
properties which permit them to be broken 
down or decomposed into a sequence of 
smaller problems which can be solved. 

Our ability to manipulate and solve non- 
linear optimization problems is limited. Non- 
linear problems which are most readily solved 
are those for which linear approximations can 
be effectively utilized. In contrast to linear 
optimization problems, a nonlinear optimiza- 
tion problem may be regarded as a "large" 
one computationally if there are 12 decision 
variables and 10 constraints. Fairly simple 
nonlinear problems have been developed for 
which an optimal solution is known to exist 
but which cannot be solved at all given the 
present state of our knowledge (dynamic pro- 
gramming problems oftentimes are nonlinear 
and solution procedures are available only 
for certain special classes of problems). 

Sometimes an optimization problem will 
give rise to a model like (1), (2) and (3) 
above but which will have, in addition, a re- 
striction that one or more of the decision 

variables be an integer. For example, we may 
have a model in which the decision variables 

xj represent the decision to invest or not to 
invest in a given water resources development 
project. Thus xj takes on the integer values 
of 0 and 1 only--we either do not or we do 
undertake the project. A model giving us 
fractional values for xj is clearly inappropri- 
ate, nor do we "get out of the box" by 
"rounding" such a solution to the "nearest" 
integer, since such an integer is either 0 or 
1! An interesting example of such a decision 
model is found in Spruill (1970). This class 
of problems is called, quite naturally, integer 
programming; it turns out that these prob- 
lems are nonlinear too, so our ability to deal 
with models of this class is limited. Research 

in integer programming is very active, how- 
ever, and there is a considerable literature 
(see Balinski, 1965). 

We indicated earlier that the aij's, the c•'s 
and bi's are assumed to be known constants 
in the linear optimization model (1)-(3). 
Since in most applications of optimization 
models we do not really know the values of 
these "givens" exactly as the theory requires, 
we are led to inquire into the effects upon an 
optimal solution and the optimal value of the 
objective function (1) caused by changes in 
these givens. In many models, changing the 
givens corresponds to examining the effect 
of bad data, since the alternate values of the 
givens can be regarded as alternate data 
points. 

It is perhaps the most significant feature of 
linear optimization models that not only can 
one quickly assess the nature of changes in 
givens, one can study the effeyAs of continu- 
ous changes in them over ranf•es of values and 
one can calculate alternate optimal solutions 
where they are indicated. Letting the givens 
(the ai•'s, hi's, and c•'s) vary is called para- 
metric programming because the givens then 
become parameters (Dantzig, 1963; Spivey 
and Thrall, 1970). 

Parametric programming procedures can 
be used to determine the givens to which the 
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model is sensitive and those to which it is 

insensitive. When a model contains a large 
number of variables, it is very useful to know 
that the model is relatively insensitive to cer- 
tain givens. Among other things this indi- 
cates to the model builder the elements of 

the model that he should gather more data 
about and the elements that for the time being 
can be ignored. Moreover, the sensitivity 
studies made possible by parametric pro- 
gramming can be used as a basis for model 
refinement and development. One tries to 
model the sensitive elements more effectively 
and reduces or eliminates altogether the role 
played by the elements to which the model 
has "low sensitivity." 

AN ILLUSTRATIVE EXAMPLE 3 

A major problem in water pollution control 
is the release of organic wastes into streams. 
These wastes, called bio-degradable wastes, 
serve as food for many organisms in the 
streams, which in turn utilize dissolved oxy- 
gen. As organisms multiply, the dissolved 
oxygen may be depleted below a minimum 
level necessary to support a reasonable eco- 
logical balance in the streams. 

If there exists only a single source of pollu- 
tion on a stream, the amount of waste that 
can be released without violating the stream 
quality standard (measured in terms of dis- 
solved oxygen) can be determined by meth- 
ods known to sanitary engineers. The prob- 
lem becomes more complex, however, when 
there are two or more sources of pollution, 
since the wastes can mix to pollute areas 
downstream from both points. 

The capacity of a stream to assimilate bio- 
degradable wastes (and to this extent purity 
itself) is determined by such factors as stream 
flow, stream temperature, the waste concen- 
tration measured in terms of its biochemical 

oxygen demand, the dissolved oxygen con- 
centration, and the physical and biological 
properties of the stream that affect settling 
rates, as well as other factors. 

We develop a model that can be applied 
to a variety of river basins with minimal alter- 

s This is a simplified discussion of concepts ap- 
pearing in Loucks, ReVelle, and Lynn (1970). 

ation of the basic model. The latter is thus 

developed in modular form such that any 
river system can be examined by providing 
the appropriate number of modules or sections 
with the corresponding features modelled ap- 
propriately. The model we develop can be 
used to determine the least cost combination 

of waste water treatment facilities required 
in order to meet any set of dissolved oxygen 
standards. Furthermore, by means of para- 
metric programming we can explore the sen- 
sitivity of the system cost to various dissolved 
oxygen control policies as well as the sen- 
sitivity of the model to changes in a variety 
of other factors. 

Let 

xj = number of gallons of organic wastes 
entering the stream in section or 
module j, j = 1 .... ,n; 

Rj = total number of gallons of organic 
wastes generated in section j, 

Cj = cost of removing one gallon of waste 
in section j. 

For each section j of the stream the waste 
removal cost is given by Cj (Rj - x•), so that 
the objective of minimizing the total waste 
removal cost per unit of time over all n sec- 
tions of the stream can be represented as 

(4) minimize z = :• Cs(R•-xj). 

The water quality index ws in any section is 
a measure of oxygen level, quantity of pol- 
lutants, etc., for the section, and can be ex- 
pressed as 

(5) wj = w• ø + k•x• 
where 

wj ø---- water quality index at Beginning of 
section j, 

kj = rate of index change in section j per 
gallon of pollutant. 

For any section j there is a maximum allow- 
able value for the water quality index set by 
governmental authorities, denoted by Wj TM. 

Thus, for any j we have 

(6) wj =< wj TM. 
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FIGURE 1.--Schematic diagram of water flow. 

To insure satisfactory assimilation of solid 
wastes we must have, as a result of extensive 
studies by sanitary engineers, 

(7) xj <.9Rj (j = 1,...,n), 

and various technological requirements place 
a lower bound on each x• of the following 
kind: 

(8) xl • .1R• (j = 1,..., n). 

Thus for any n sections of a stream the 
linear programming model has the objective 
function (4) and the constraints (5), (6), 
(7) and (8). 

For a specific nmnerical example of this 
model, suppose we have a stream with a total 
of five sections and pollution sources (Fig. 1). 
The quality indices at the beginning of sec- 
tions (1), (2) and (4) are zero, indicating 
no pollution at the beginning of these sec- 
tions; the indices at the beginning of sections 
(3) and (5) are equal to the sum of the in- 
dices of the sections merging at these points 
respectively. Hence pollution can enter sec- 
tions 3 and 5 depending upon conditions oc- 
curring in the tributary sections. 

Suppose further that sanitary engineers 
have studied the five sections of the stream 

and that the following data are available: 

Rj ( in 
pounds Cj (in 

Section j of BOD) dollars) kj wj m•'x 
1 i0,000 $1.00 .1 900 
2 2,000 1.50 .2 800 
3 4,000 4.00 .2 300 
4 6,000 1.00 .2 200 
5 3,000 8.00 .3 700 

The optimization model is then: 

(9) minimize z = 59,000 - 1.Ox• - 1.5x2 
- 4.0xa - 1.0x4 - 8.0x5 

where z is the total cost of waste 

unit of time, subject to 
removal per 

x• --<_ 9,000 
x• _>- 1,000 

x2 • 1,800 
x2 • 200 

(10) xa --<_ 3,600 
xa • 400 

x4 --<_ 1,000 
x4 • 600 

xs --< 2,700 
x5 • 300 

.lx• + .2x2 + .2xa -<_ 300 

.lx• + .2x2 + .2xa + .2x4 + .3x5 • 700 
x• >= 0 for all j. 

The problem (9) and (10) is a special case 
of the problem (1), (2), (3) introduced 
above and is a linear programming model. 

A few comments on how the constraints 

(10) were developed from the information 
above may be helpful. From the constraints 
(7) and (8) we have, when j = 1, 

x• -<_ .9R• = .9(10,000) = 9,000 
and 

x• _>- .1R• = .1 (10,000) = 1,000. 

For the third constraint from the last in (10), 
we utilize the information provided in the 
diagram above as well as the numerical data. 
From the former we see that w• ø, = 0, w2 ø = 
0, wa ø = wt + w2, where from (5) we have 

wl = wl ø q- .lxl: .lxl, 
w2 = w2 ø q- .2xl = .2x2, 

so that 

wa ø: w• q- w2: .1x• q- .2x2. 

Finally, from the constraint (6) and informa- 
tion in the table we have 

wa ø =< wa ...... 300 

and the constraint becomes 

.lx• + .2x2 < 300 

as desired. A similar argument will indicate 
the form of the next to last inequality in (10). 

Solving the problem (9) and (10) results 
in an optimal solution in which 

xt = 1,000 X 4: 600 
x2: 200 x5: 1,200 
xa = 400 minimum cost = $45,900. 
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This means that we would obtain a minimum 

system cost of $45,900 by having 1,000 gal- 
lons of organic waste entering section 1; 200 
entering in section 2; 400 gallons in section 
3; 600 gallons in section 4; and 1,200 gallons 
in section 5. 

If we introduced parameters into this model 
we could examine the effects of changing 
the Rs figures, changing the constants 
changing the costs C.i, and changing the maxi- 
mum allowable standards ws ..... . Thus, a wide 
range of alternative engineering possibilities 
could be examined as well as a wide range 
of alternative control decisions by govern- 
mental authorities. 

ItANDLING GOALS IN OPTIMIZATION MODELS 

The objective function in an optimization 
model can represent the goals in the problems 
and the numbers c s represents the weights 
that are to be associated with the corre- 

.,,ponding decision variables. 
We can, through parametric programming, 

regard these weights as variable; we can 
change them and study the effects upon 
optimal solutions. We can also examine 
"trade-offs" between goals by this approach 
if we can suitably model or specify the goals. 

An example is provided by goal program- 
ming (Spivey and Tamura, 1970) in which 
one begins with a linear econometric model 
in reduced form 

(11) y• = Rx+ s, 

where 

y• is an n by 1 vector of goal or target 
variables prescribed by a policy maker, 

x is an m by 1 vector of instrument vari- 
ables, 

R is an n by m (real) matrix of impact 
multipliers, 

s is an n by 1 vector of constant or ad- 
ditive terms. 

The coefficients of system (11) can be, and 
oftentimes are, estimated from data. An ex- 
ample of a system of constraints which was 
developed from regression studies is given 
by Van Dyne, (1966). 

A goal programming model can be de- 
veloped with the traditional simultaneous 

equation system (11) as a base in the fol- 
lowing way (this is taken from Spivey and 
Tamura, 1970). 

We reformulate (11) as 

(12) y•-s= Rx-Iz + + Iz- 
X, Z+• Z- • 0• 

where R is given in (11), I is an n by n 
identity matrix, and z + and z- are n by 1 
(unknown) deviation or discrepancy vectors. 
The i tn components z? of z + and zi- of z- 
measure the deviation upwards and down- 
wards, respectively, of feasible yi values from 
the corresponding goal values y•i; in other 
words, the i tn constraint of (12) can be 
written 

(13) yi• - si: Rix- zi+ -4- zi - (i=l ..... n), 

where Ri denotes the i th row vector of the 
matrix R and si the i tn component of the 
vector s. 

If the policy maker can find a feasible in- 
strument vector x for which both z? and z•- 
in (13) are zero, then the goal y? can be 
attained exactly. On the other hand, if there 
is no feasible vector x for which zi + = zi- = 
0 in (13) he cannot attain the prespecified 
goal y?. He can, however, find a feasible x 
that will allow him to come "as close as possi- 
ble" to y•. The model of goal programming 
then is 

(14) minimize G = uTz + + vTz - 

subject to 

(15) y•-s= Rx-Iz + + Iz- 
X• Z+• Z- •'• 0• 

where 

I is an n by n identity matrix, 
u •, v • are nonnegative vectors representing 

weighting factors, 
z +, z- are deviation vectors. 

It turns out that there are exactly three possi- 
bilities in an optimal solution to this problem: 

(i) zi += zi-=O, 
(ii) zi +>0, zi-=O, 

(iii) zi +=O, zi->O. 

Case (i) means that a solution has been found 
which permits the i th goal yi '• to be attained 
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FIGURE 2.--Overview oœ optimization models. 

exactly, and cases (ii) and (iii) indicate that 
a deviation, upwards and downwards respec- 
tively, must be accepted by the decision maker 
using the model. 

Moreover, if a policy maker desires to at- 
tain a given goal y•* more than others he can 
attach larger weights m and v• to the corre- 
sponding deviations zf and zf, respectively. 
If he would accept an overattainment of 
but cannot tolerate any underattainment, he 
could set u• = O, but would make v• large 
enough to prevent zZ from assuming a posi- 
tive value in an optimal solution. 

Not only can we discover how close we can 
approach the prescribed goals yi*, by using 
parametric programming on this optimization 
model we can parameterize the weight- 
ing vectors u T and v 'v to investigate how 
closely some goals yi* can be approached 
while holding other goal attainment levels 
fixed. We can also parameterize the goal 
vector y* itself. 

SOME EXTENSIONS 

In some problems it is not satisfactory 
from an applied point of view to vary the 
given data parametrically; it may be more 
appealing to regard the given as a random 
variable having a known probability distri- 
bution or density function. When at least 
one of the ai•'s, the bi's, or the cj's is a random 
variable, then the model (1), (2), and (3) 
becomes one of stochastic programming 
(Dantzig, 1963, Chap. 25; Dantzig, 1955; 
Spivey, 1968). 

This type of optimization model has dis- 
closed analytical complexities of two basic 
types: the choice and treatment of optimiza- 
tion criteria and the time at which the ran- 

dom elements are to be observed and a de- 

cision is to be made. For example, if some bi 
is a random variable, then the value of the 
objective function becomes a random variable 
as well. It is then meaningless to speak o• 
minimizing or maximizing z. We must in- 
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stead adopt a criterion such as minimizing 
the expected value of z or minimizing the 
variance of z around some specified value. 
Moreover, if z is linear as in (1) but there 
are random elements in the problem and we 
choose to minimize the expected value of z, 
then it has been shown that the expected 
value of z need not be linear in the decision 

variables xi (a simple example appears in 
Dantzig, 1955). 

Although stochastic programming models 
are natural and appealing, there is little as 
yet that is operational and most of the work 
going on in the field can be regarded as basic 
research of the kind that precedes operational 
results by perhaps several years at least. 

Figure 2 presents a schematic representa- 
tion of optimization models of the kind we 
have been discussing and it can be regarded 
as a visual summary of the many remarks 
made above. 

PROBLEMS IN USING AND INTERPRETING 

OPTIMIZATION MODELS 

In order to develop an optimization model, 
one must choose a mathematical representa- 
tion for the objective function. In order to 
do this in a given application it is necessary 
to know or to be able to agree upon what 
it is that "one wants to do." Specifically, one 
must know how the decision variables xi are 
related (whether they are additive as in the 
linear case or multiplicative as in the non- 
linear case, etc.) and what numerical weight 
each variable is to be assigned. It is often 
very difficult for practical persons to supply 
the analyst with sufficiently meaningful in- 
formation to enable the latter to develop a 
suitable objective function. The practical 
man often does not wish to specify which 
variable is the "more important"--which 
should receive a large weight in the objective 
function. Many times the difficulty of the 
analyst is the reverse of this: the practical 
man specifies so many different variables to 
optimize and so many conditions to be satis- 
fied that it is impossible to find a feasible 
solution. Again the value of parametrics in 
linear models manifests itself: the analyst can 
vary weights parametrically and engage in a 
dialog with the practical man which enables 

the latter to investigate the implications of 
assigning different weights in a model. In 
this way a model can be used as a learning 
device by the decision maker. 

On the other hand, one of the chief benefits 
of mathematical models is that they force 
applied persons to think through a problem 
carefully. The realization that some decision 
makers have great difficulty in clearly speci- 
fying objectives in a problem often has side 
benefits that are as great as those in the use 
of a model itself. 

DATA PROBLEMS IN OPTIMIZATION MODELS 

Large optimization models generate. a great 
demand for data; this is particularly true of 
linear models. Although we can easily solve 
models having 1,000 constraints and 3,000 
variables, this does not mean that problems 
of this size are easily dealt with. If a prob- 
lem has a constraint matrix of 1,000 by 3,000, 
then there are 3,000,000 data entries in this 
matrix and so there must bean effective 

information retrieval system which generates 
the required input data as well as efficient 
procedures for analyzing the output of these 
models. In many industrial applications it 
has been found that the cost of information 

inputs for optimization models exceeds. by a 
factor of 20 the cost of solving the model 
when the relevant data are available. 

CONCLUSION 

I conclude this paper by emphasizing that 
the more successful our models and analytical 
tools become, the greater is the need for el- 

F•GURE &--Interaction tween data handling and 
model building. 
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feefive management of information at various 
points in the model building process. Actu- 
ally, the models discussed in this paper, al- 
though powerful, are but one aspect of a 
collection of activities extending from formu- 
lation to analysis and decision as is suggested 
by the diagram shown in Figure 3. Success- 
ful model building requires that all these 
activities be carried out effectively. 
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