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Abstract
We related fish species patterns and landscape-scale environmental data from 216 Michigan lakes to identify

repeatable types of fish assemblages, identify environmental factors related to assemblage types, and classify fish
assemblages in unsampled lakes. Multivariate regression tree modeling of fish species abundances identified six
assemblage types that were explained by degree-days during the ice-free period, lake surface area, and mean lake
surface temperature. Warmwater species dominated southern lakes, while coolwater and coldwater species had higher
abundances in northern lakes. Coolwater species were present in large southern lakes, whereas warmwater species
were excluded from northern lakes that had low mean surface temperatures or low degree-days. These results suggest
that patterns of lake fish assemblages are shaped by differences in climate as well as lake-specific differences in surface
temperature regimes and in vertical availability of coldwater and coolwater habitats. Because we related fish patterns
to readily available landscape-level data, our approach can be used to characterize fish assemblages in all lakes across
broad geographic extents.

Inland lakes exhibit a wide range of morphological, chem-
ical, and biological characteristics. This diversity provides
tremendous recreational opportunities and other ecosystem ser-
vices (Wilson and Carpenter 1999), especially in lake-rich re-
gions. The diversity and abundance of lakes also present a
number of challenges to resource managers and policy mak-
ers charged with overseeing these waters. First, the abundance
of lakes in many regions limits annual sampling to only a frac-
tion of water bodies, yet the entire population of lakes must be
managed. Second, the range of physicochemical and biological
characteristics among lakes in a region complicates the assess-
ment of ecological status because the expected condition of
individual lakes is typically unknown (Søndergaard et al. 2005).
Finally, the diversity of lake types makes it difficult to predict
how an individual lake will respond to changes in habitat, land-
scape development, or regulations. Because of these challenges,
a lake classification system that simplifies the myriad of lakes
into a limited number of ecologically meaningful types is highly
desirable (Tonn et al. 1983).
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The development of a lake classification can provide several
benefits, such as a simplified description of fishery resources that
can improve communication and understanding among man-
agers, policymakers, and the public. Lake classification can also
be used as a sampling framework for monitoring that can help
managers make more efficient use of limited personnel and
improve precision of assessment statistics (Dolman 1990). In
addition, lake classification can provide an expectation of eco-
logical condition that can account for sources of natural variation
among lakes and can be used to objectively assess the status of
individual waters (Wang et al. 2010). Finally, lake classification
can help guide management and policy decisions by providing
information on how similar lakes will respond to management
actions (Vehanen and Aspi 1996) and environmental perturba-
tions (Mehner et al. 2005).

A number of lake classifications have been proposed based on
a variety of physical, chemical, and biological variables (Leach
and Herron 1992; Schupp 1992; Emmons et al. 1999; Gassner
et al. 2005; Søndergaard et al. 2005). Tonn et al. (1983), however,
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advocated for development of lake classifications that use fish
assemblage structure, arguing that this approach would bring a
much-needed ecological basis to fisheries management. In this
classification approach, lakes are grouped together based on
similarity in the fish species they support. Lake classes are then
related to environmental variables so that factors influential in
maintaining distinct fish assemblages can be identified and class
membership of lakes lacking fish data can be determined. The
current fish-based lake classifications (Johnson et al. 1977; Har-
vey 1978, 1981; Schneider 1981; Tonn et al. 1983; Marshall and
Ryan 1987; Dolman 1990) primarily have used in-lake environ-
mental variables, such as lake morphology and water chemistry,
to determine class membership. A limitation of this approach
is that only those lakes that have been the focus of physical and
chemical surveys can be classified, leaving class membership of
unsampled waters unknown. The development of a lake classifi-
cation based upon spatially extensive data that could be obtained
from geographical information systems (GIS) would provide
a cost-effective method to classify every lake across broad
regions. Spatially extensive information is readily available and
can include landscape-scale data that characterize climate, geol-
ogy, and land cover, as well as local information that describes
lake area, fetch, and elevation. Spatially extensive data can also
be derived from models that predict variables within a lake from
landscape characteristics (Shuter et al. 1983; Hakanson 1996).

Although spatially extensive data have been used to classify
stream fish assemblages (Brenden et al. 2008), we are unaware
of other studies that have developed similar classifications for
lake fish assemblages. Lake fish assemblages are structured by
variables operating at both local and regional scales (Jackson and
Harvey 1989; Tonn 1990; Hinch et al. 1991; Jackson et al. 2001;
van Zyll de Jong et al. 2005; Bertolo and Magnan 2006; Wang
et al. 2010). Consequently, spatially extensive data may prove

useful in predicting lake fish assemblage structure, especially
when lakes are viewed across broad regions.

The goal of this study was to develop a fisheries classifica-
tion that could be used to classify every lake across a state or
multistate region. Our specific objectives were to (1) identify
lake types based on fish species assemblages, (2) identify envi-
ronmental variables from spatially extensive data sets that could
be used to characterize these lake types, and (3) determine class
membership of over 6,500 Michigan lakes with a surface area
of 4 ha or greater.

METHODS
Environmental data.—For this analysis, we used readily

available spatial data to quantify the characteristics of all 4-ha
or larger lakes in Michigan. To begin, we selected polygons rep-
resenting natural and manmade lakes from the 1:24,000-scale
National Hydrography Dataset by using GIS (ESRI 2002). We
included manmade lakes in our analysis because many lakes in
Michigan are maintained by lake-level control structures and
contain fish assemblages that are similar to those of natural
lakes. Catchment boundaries were delineated for all lakes by
using GIS algorithms to identify runoff directions based on a
30-m-resolution digital elevation model and to restrict the out-
most catchment boundaries by using a 12-digit hydrological
unit or aggregated hydrological units that were developed by
the Michigan Department of Environmental Quality.

We calculated several measures of lake network position,
morphometry, connectivity, and lake thermal regime (Table 1)
because of their demonstrated importance in structuring lake
fish assemblages. Measures of network position included (1)
lake order, which was calculated as the stream order (Strahler
1957) of the largest tributary flowing into each lake; (2) the total

TABLE 1. Summary of characteristics for the 216 lakes used to classify fish assemblages in Michigan. Total phosphorus and chlorophyll-a values are epilimnetic
concentrations measured during summer stratification. All variables except total phosphorus, chlorophyll a, and mean depth were considered in the classification
analysis.

Variable Minimum Median Mean Maximum

Total phosphorus (µg/L) 0.0 14.0 17.8 120.0
Chlorophyll a (µg/L) 0.0 3.0 4.9 70.8
Mean depth (m) 0.5 4.5 5.1 22.7
Lake order 0 2 5.2 99
Number of lakes upstream 0 0 10.4 270
Number of lakes downstream 0 1 2.2 17
Catchment area (ha) 1 1,073 13,778 592,226
Catchment area : lake area ratio 0.04 8.4 55.7 1,362.3
Lake elevation (m) 176.7 262.7 283.6 520.7
Catchment slope 0.0 1.3 1.6 5.4
Surface area (ha) 4 94 303 4,374
Shoreline development index 1.1 1.9 2.2 8.8
Mean temperature (◦C) 13.4 15.8 15.7 17.5
Degree-days 2,982 3,979 3,962 5,015
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number of lakes in the tributary catchment of each lake; (3) the
total number of lakes downstream between each lake and the
Great Lakes (all rivers in Michigan flow into the Great Lakes);
(4) catchment area; (5) catchment area : lake area ratio; and
(6) lake elevation and catchment slopes, which were calculated
based on the digital elevation model. Catchments were defined
as the land area where surface water drains directly into lakes. In
the case of lakes with tributary inputs, catchments included land
area where surface water drains into rivers and then into lakes.
Measures of lake morphometry included shoreline development
index (D = L/[2 × {πA}0.5], where L = perimeter and A =
lake area). Hydrologic connectivity of all lakes was identified
based on both perennial and intermittent connecting streams.
Inline lakes were defined as having both inflows and outflows,
headwater lakes were defined as having only outflows, and dis-
connected lakes were defined as having no inflows or outflows.
Seasonal thermal regime of each lake was modeled as a trun-
cated sine function by using equations from Shuter et al. (1983)
for calculating maximum surface water temperature, duration
of the ice-free period, and mean water temperature during the
ice-free period. These temperature variables were modeled for
all Michigan lakes as functions of mean annual air temperature,
lake fetch, and depth (J. E. Breck, unpublished data). When
depth was not available for a lake, an equation from Shuter et al.
(1983) was used to calculate summer thermocline depth from
fetch. We calculated degree-days (from a base of 0◦C) as the
product of the duration of the ice-free period and mean water
temperature during the ice-free period. Water temperature dur-
ing ice cover, which was used in the calculation of mean water
temperature during the ice-free period, was modeled as a con-
stant that depended on fetch (Kalff 2002). Temperature models
developed for Michigan lakes had a root mean square error of
1.8◦C, and temperature estimates were assumed to accurately
reflect the differences in thermal regimes among lakes.

Fish assemblage data.—Fish data in this study were collected
as a part of the Inland Lakes Status and Trends Program of the
Michigan Department of Natural Resources (MDNR). Lakes
with a surface area of 4 ha or greater were selected by means
of a stratified random design that used fisheries management
unit and lake size as strata. This sampling framework is used by
MDNR to collect information from lakes that are representative
of the population of lakes in the region. Fish sampling occurred
from May to July by using standardized sampling methods. To
minimize the effects of seasonal differences in catch rates, a
sampling window of approximately 4 weeks began in southern
Michigan when lake temperatures warmed to 14◦C and pro-
gressed northward as lakes reached this temperature threshold.
Information on sampling and gears is detailed by Wehrly et al.
(2012). Fish in each lake were sampled by using a combina-
tion of three types of gear: trap nets (2.5- and 3.8-cm stretch
mesh) in the littoral zone, boat electrofishing in the littoral
zone, and experimental gill nets in deeper waters. Gill nets were
38 m in length and were made up of five 7.6-m panels of 3.8-,
5.1-, 6.4-, 7.6-, and 10.2-cm stretch mesh. Trap nets were set

FIGURE 1. Locations of 216 Michigan lakes that were used to develop a lake
classification based on fish assemblages.

in less than 3 m of water with the lead perpendicular to shore.
Boat electrofishing was conducted at night with two netters on
board. Gill nets were set overnight on the bottom in random
locations at depths greater than 3 m. Minimum netting effort
per lake varied across the range of lake sizes (4 ha to >2,000
ha); trap-netting effort ranged from three nets for three nights to
eight nets for four nights, and gillnetting effort ranged from two
nets for two nights to six nets for four nights. Minimum sam-
pling effort for electrofishing involved three 10-min transects
across all lake sizes. Data were available for 216 lakes sam-
pled from 2002 to 2009 (Figure 1). Lakes were sampled only
once during the period of study. These lakes represented a broad
range of productivity, morphology, temperature, and hydrology
(Table 1).

In total, 85 fish species were collected across the study lakes.
Based on preliminary analyses, we determined that identifying
fish assemblages and predictor variables was not influenced by
stocked populations of walleyes Sander vitreus and coldwater
species or by species that were less common (<50% occur-
rence). For our final classification analysis, we included stocked
populations and excluded species that were captured in less than
5% of the lakes. We chose this cutoff because all major game
fishes were found in more than 5% of the study lakes and because
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it simplified our data analyses and interpretation by eliminating
42 species, the majority (78%) of which occurred in fewer than
six lakes.

Coldwater fishes were found throughout the state but were
poorly sampled by all gear types. As a result, in our database
no single coldwater species was well represented across the
study area. To better characterize lakes containing coldwater
habitat, we computed a coldwater species metric by pooling
the number of individuals caught in each gear type for the fol-
lowing nine species: brook trout Salvelinus fontinalis, brown
trout Salmo trutta, burbot Lota lota, cisco Coregonus artedi,
lake trout Salvelinus namaycush, lake whitefish Coregonus clu-
peaformis, mottled sculpin Cottus bairdii, rainbow trout On-
corhynchus mykiss, and rainbow smelt Osmerus mordax. Given
the difficulty in capturing coldwater species, we assumed that
our coldwater metric was an indicator of coldwater habitat but
probably underestimated the relative abundance of coldwater
species. In our analyses, the distribution of the coldwater metric
was treated similar to the distribution of an individual species,
and hereafter we refer to the coldwater metric as “coldwater
species.”

For each species and gear type, catch per unit effort (CPUE)
was computed as the total number of captured individuals of
each species divided by the amount of fishing effort. Effort
for trap nets and gill nets was the number of lifts; effort for
electrofishing was the number of minutes for which electroshock
was applied. Data for CPUE were rescaled from 0 to 1 by
using the Hellinger transformation (Legendre and Gallagher
2001). The Hellinger transformation maintains the Euclidean
distance or similarity in species abundance among lakes, which
is critical for multivariate analyses of community data (Legendre
and Gallagher 2001).

Data analysis.—We evaluated whether species assemblages
differed by sampling gear by using a multiresponse permutation
procedure (MRPP) in PC-ORD software (McCune and Mef-
ford 2006). The MRPP is a nonparametric test that evaluates
two or more groups of observations and is robust to departures
from parametric assumptions (McCune et al. 2002). We per-
formed the MRPP on a rank-transformed distance matrix by
using the Sorensen coefficient of similarity distance, and items
were weighted by n/�(n).

We used multivariate regression trees (MRTs) to classify
lakes based on their fish assemblages and to identify environ-
mental predictors of each class. Multivariate regression trees
were well-suited for this analysis because they provide a quan-
titative method for splitting data into groups, defining groups
based on environmental variables, and predicting group mem-
bership of lakes that are described only by environmental data.
We also chose MRTs because they can accommodate both con-
tinuous and categorical data, are robust to collinearity, and can
handle nonlinear relationships between variables and high-order
interactions (De’ath and Fabricus 2000; De’ath 2002). The MRT
analysis is a form of constrained clustering that groups lakes
together by repeatedly splitting the data set to minimize dissim-

ilarity in species assemblages among sites within a group. Each
split of the data is defined by a rule determined from the envi-
ronmental variable that minimizes the sum of squared Euclidean
distances within each group. Once an initial split is made, each
of the resulting groups is split again and all of the environmental
variables are evaluated to determine rules for subsequent splits.
The output from this analysis is a branched diagram or tree with
each split represented by two nodes. Unsplit or terminal nodes
are referred to as “leaves” and represent groups, or in this case,
lake types. The splitting process is repeated until it produces a
complex tree that fits the data very well but has poor predic-
tive ability. A final, more simplified tree must be selected that
balances model fit and predictive ability. In this study, MRT
analysis was used to identify lake classes from the Hellinger-
transformed species abundance matrix and to identify predictors
of these classes from the 12 spatially extensive environmental
variables (one categorical variable describing hydrologic con-
nectivity and 11 continuous variables listed in Table 1). We
used a cross-validation test (n = 10) to select the most complex
tree within one SE of the best predictive tree (Breiman et al.
1984). We compared our MRT solution with the solutions ob-
tained from unconstrained clustering to determine whether there
was unexplained variance that could be attributed to other en-
vironmental factors not considered in this study (De’ath 2002).
Unconstrained cluster solutions were calculated for two to six
clusters by using complete linkage hierarchical clustering. Clus-
ters were refined by using k-means clustering to minimize the
within-cluster sums of squares. All MRT analyses were per-
formed with R version 2.9.1 (R Development Core Team 2010)
and the mvpart library (De’ath 2002).

Indicator species analysis (ISA) was used to determine fish
species characteristic of each lake class resulting from the MRT
(De’ath 2002). Indicator species scores were calculated as the
product of a species’ frequency of occurrence and relative abun-
dance within each lake class (Dufrêne and Legendre 1997).
Species with high ISA scores within a lake class were consid-
ered good indicators of that class. Monte Carlo randomizations
(n = 1,000) were used to determine whether ISA scores were
statistically significant (McCune et al. 2002). Indicator species
scores and randomization tests were calculated by using PC-
ORD (McCune and Mefford 2006).

We used leave-out-one cross validation (Efron and Gong
1983) to evaluate the ability of the MRT model to assign an
unclassified lake to its appropriate class. We chose this method
because it provides unbiased estimates of model performance
(Efron and Gong 1983; Dolman 1990; Olden et al. 2002) and
because further subsetting of our data would result in relatively
few observations (<30) for most classes. Because MRT can be
sensitive to the number of observations (Hastie et al. 2001), we
included all observations in model development to produce the
most robust lake classification possible. To calculate unbiased
error rates, we left out one observation, fitted an MRT model
to the remaining observations, and then used the resultant MRT
model to classify the excluded observation. Overall error rate
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was calculated as the percentage of lakes that were correctly
classified into their original species association.

To determine class membership for all 4-ha and larger lakes
in Michigan, we predicted fish assemblages for over 6,500 un-
sampled lakes based on the environmental rules defined in our
MRT model. We then characterized the landscape pattern of
different lake types by summarizing the numbers and surface
areas of lakes within each class and mapping their locations.

RESULTS
Forty-three fish species occurred in at least 5% of the study

lakes (Table 2). Differences in catch composition were evident
across gear types. The highest number of species was captured
by electrofishing (43 species) followed by trap nets (40 species)
and gill nets (27 species). Electrofishing tended to better capture
small-bodied species (e.g., minnows and darters) and smaller
size-groups of other species (e.g., black basses Micropterus spp.
and sunfishes). Trap nets tended to capture larger black basses
and sunfishes as well as benthic species (e.g., suckers and cat-
fishes). Gill-net catches were very different from the other gear
types’ catches and tended to best represent coldwater species,
white suckers, yellow perch, and larger predators, such as north-
ern pike and walleyes. Results from the MRPP analysis indicated
that assemblage structure across the three gear types was sig-
nificantly different (test statistic t = −159.5, P < 0.001). The
differences in assemblage structure between electrofishing and
trap-netting (t = −87.2, P < 0.001) was relatively low com-
pared with differences between gillnetting and electrofishing
(t = −124.0, P < 0.001) or between gillnetting and trap-netting
(t = −124.8, P < 0.001). Based on these differences in catch
composition among sampling methods, we combined catch data
from the three sampling gear types of each lake to provide a
more complete picture of fish assemblage structure. Hellinger-
transformed CPUE data for each species were averaged across
gear types to compute a single measure of relative abundance
for each species at each site.

The final MRT (i.e., within 1 SE of the best predictive tree)
was made up of six leaves that were explained by lake thermal
regime and surface area (Figure 2). The MRT analysis cre-
ated the first split based on whether degree-days were relatively
high (≥3,916 degree-days) or low (<3,916 degree-days). In
lakes having more degree-days, species assemblage differences
occurred at a surface area threshold of 177 ha, thus forming
lake classes 1 and 2 (Figure 2). Bluegills, largemouth bass,
and other warmwater species were significantly associated with
lakes smaller than 177 ha (Table 3). The yellow perch was the
only coolwater species that was common in lake class 1, but
this species tended to occur in relatively low abundance. Lakes
having more degree-days and a surface area of 177 ha or greater
were also characterized by a predominance of warmwater
species, but indicator species tended to be larger-bodied fishes
(e.g., bowfin, longnose gar, and channel catfish) and smaller-
bodied fishes (e.g., brook silverside, sand shiner, and logperch;

FIGURE 2. Multivariate regression tree output, showing the six lake classes
based on fish assemblages and abiotic thresholds (n = number of lakes in each
class).

Table 3). Yellow perch and larger-bodied coolwater species (e.g.,
smallmouth bass and walleye) were common in lake class 2
but tended to occur in relatively low abundance. Lakes having
fewer than 3,916 degree-days were split based on a mean sur-
face temperature of 14.7◦C (Figure 2). Fish assemblages in lakes
with temperatures less than 14.7◦C were dominated by coolwa-
ter centrarchids (smallmouth bass and rock bass) and percids
(walleye and yellow perch) and by coldwater species. Warmwa-
ter species (e.g., largemouth bass and bluegill) rarely occurred
in lakes belonging to lake class 3. Lakes with a mean surface
temperature of 14.7◦C or higher were characterized by a mix-
ture of coolwater and warmwater species and were subsequently
split based on a surface area of 53 ha (Figure 2). Although no
significant indicator species were found in lakes smaller than 53
ha, warmwater species (e.g., largemouth bass and bluegill) and
coolwater species (e.g., yellow perch and white sucker) were
typically associated with lake class 4 (Table 3). Lakes with a
surface area of 53 ha or greater were split based on degree-days,
thus forming lake classes 5 and 6 (Figure 2). Fish assemblages
in lakes having 3,486 degree-days or more were dominated
by a group of species that were tolerant of low-oxygen condi-
tions, including the brown bullhead, yellow bullhead, bluntnose
minnow, northern pike, and yellow perch. A mix of coolwater
and warmwater-tolerant centrarchids as well as white suckers,
golden shiners, and walleyes were also associated with lakes in
class 5. White suckers were significantly associated with lakes
having less than 3,486 degree-days, and other coolwater species
(e.g., walleye, yellow perch, and northern pike) were typically
found in lake class 6 (Table 3). Warmwater species (e.g., bluegill
and largemouth bass) were common in lakes belonging to class
6, but those species occurred in relatively low abundance.

The final MRT explained 25% of the variation in species
assemblage structure. A comparison of the MRT solution with
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TABLE 2. Percent occurrence of fish species captured by individual gear types (and for all gear types combined) in the 216 Michigan study lakes. Only fish
species occurring in at least 5% of lakes are shown; see Methods for a list of species that were included in the coldwater species metric.

Gear type

Species Code Electrofishing Gill net Trap net Combined

Lepisosteidae
Spotted gar Lepisosteus oculatus SPG 1.9 0.9 5.6 5.6
Longnose gar Lepisosteus osseus LNG 10.2 5.1 16.7 19.9

Amiidae
Bowfin Amia calva BOW 19.9 6.0 38.9 38.9

Cyprinidae
Spotfin shiner Cyprinella spiloptera SFS 5.1 0.5 5.6
Common carp Cyprinus carpio CAR 15.7 7.9 25.0 28.7
Common shiner Luxilus cornutus CSH 15.7 2.3 17.6
Golden shiner Notemigonus crysoleucas GOS 30.6 9.3 25.5 43.5
Blackchin shiner Notropis heterodon BCS 6.0 1.4 6.5
Blacknose shiner Notropis heterolepis BNS 11.1 0.5 11.6
Spottail shiner Notropis hudsonius STS 17.1 2.3 17.1
Sand shiner Notropis stramineus SAS 14.4 0.9 15.3
Mimic shiner Notropis volucellus MIS 7.9 0.9 8.3
Bluntnose minnow Pimephales notatus BNM 47.2 3.7 48.6
Creek chub Semotilus atromaculatus CRC 2.8 2.8 5.6

Catostomidae
White sucker Catostomus commersonii CWS 39.4 53.2 60.2 69.4
Lake chubsucker Erimyzon sucetta LCS 7.4 0.9 6.5 9.7
Golden redhorse Moxostoma erythrurum GOR 4.2 3.2 3.2 6.5
Shorthead redhorse Moxostoma macrolepidotum SHR 2.3 2.8 5.1 5.1

Ictaluridae
Black bullhead Ameiurus melas BLB 6.9 6.0 22.2 25.0
Yellow bullhead Ameiurus natalis YLB 30.6 20.8 50.0 53.2
Brown bullhead Ameiurus nebulosus BRB 38.4 21.3 69.0 71.3
Channel catfish Ictalurus punctatus CCF 2.3 6.5 10.2 12.0

Esocidae
Northern pike Esox lucius NOP 37.0 81.0 81.0 87.5
Muskellunge Esox masquinongy MUS 2.3 3.2 7.9 8.8
Redfin pickerel Esox americanus GRP 13.9 1.9 14.4

Umbridae
Central mudminnow Umbra limi MUD 17.1 17.1

Fundulidae
Banded killifish Fundulus diaphanus BKF 5.6 5.6

Atherinopsidae
Brook silverside Labidesthes sicculus BSS 19.0 19.0

Centrarchidae
Rock bass Ambloplites rupestris RKB 67.1 45.4 78.2 78.7
Green sunfish Lepomis cyanellus GSF 15.3 2.3 15.3 25.5
Pumpkinseed Lepomis gibbosus PSF 82.4 25.9 90.3 92.1
Warmouth Lepomis gulosus WAR 21.8 13.9 23.6 26.4
Bluegill Lepomis macrochirus BLG 82.4 50.9 87.0 88.9
Redear sunfish Lepomis microlophus RSF 7.4 2.3 10.6 10.6
Smallmouth bass Micropterus dolomieu SMB 44.9 20.4 47.7 52.8
Largemouth bass Micropterus salmoides LMB 84.7 49.5 81.5 87.5
Black crappie Pomoxis nigromaculatus BCR 34.7 42.1 71.8 73.1

Percidae
Iowa darter Etheostoma exile IOD 15.7 0.9 15.7
Johnny darter Etheostoma nigrum JOD 12.5 0.5 12.5
Yellow perch Perca flavescens YEP 94.4 78.2 66.2 98.6
Logperch Percina caprodes LOG 20.4 0.5 20.8
Walleye Sander vitreus WAE 38.4 45.8 57.4 63.0
Coldwater species CW 4.2 20.8 13.0 26.9
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TABLE 3. Characteristic fish species of the six lake classes identified in multivariate regression tree analysis (species codes are defined in Table 2). Assemblage
membership was based on above-average indicator scores within each lake class. Species are listed in order of prominence in each lake class; species listed in the
same row had identical indicator species scores. Species with significant indicator scores are shown in bold italics.

Lake class

1 2 3 4 5 6

WAR BOW SMB LMB BRB, YLB CWS
YLB LNG WAE YEP BNM WAE
BLG CAR RKB BLG NOP, PSF YEP
LMB CCF CWS PSF RKB NOP
BCR BLG, LMB YEP CWS LMB, YEP PSF
PSF BCR, BSS, RKB CW CW BLG BCR, BRB, CSH, RKB
BOW SAS, LOG CSH, NOP NOP, SMB CWS SMB, GOS
NOP BRB, PSF, YLB PSF GSF BCR BLG
BSS, CAR, GRP, GSF, SPG NOP STS GOS GOS, WAE BNM
BRB SMB, YEP BCR BNM, RKB SMB LMB, LOG
LCS WAE BRB, MUD, WAE
YEP

the solutions derived from unconstrained clustering showed that
unconstrained clustering accounted for an average of 16% more
of the variation in assemblage structure across the two to six
clusters evaluated. These results indicate the existence of addi-
tional variation in assemblage structure that is not accounted for
by the environmental variables considered in our study.

Lake classes (Figure 3) did not differ significantly in summer
total phosphorus concentration (Kruskal–Wallis test: χ2 = 7.6,
P = 0.18) but differed in mean depth (χ2 = 24.3, P < 0.01),
surface area (χ2 = 135.7, P < 0.01), mean temperature (χ2 =
113.9, P < 0.01), and degree-days (χ2 = 171.1, P < 0.01).
Lakes in classes 2 and 3 tended to be larger and deeper than
lakes in other classes. Lakes belonging to lake classes 1 and 4
tended to be relatively small, and lakes in classes 5 and 6 were
intermediate in surface area. Despite this pattern in surface area,
lakes in class 1 had a relatively high mean depth and lakes in
class 6 had the lowest mean depth of any category. Mean depth
was similar between lake classes 4 and 5. Mean temperature
was highest in class 1 lakes, lowest in class 3 lakes, and similar
among the remaining lake classes. Degree-days in lake classes
1 and 2 were much higher than those in other lake classes,
thereby reflecting the first split in the regression tree. Degree-
days in lake class 5 were intermediate, and degree-days were
relatively similar among the remaining lake types.

Overall predictive ability of the MRT model was 68% based
on leave-out-one cross validation. Predicted membership for
all 4-ha and larger lakes revealed variation in the numbers,
surface area, and distribution across Michigan (Table 4; Figure
4). In terms of numbers, Michigan was dominated by class 1
lakes (59%). These lakes were primarily distributed across the
southern portion of the Lower Peninsula and in the coastal areas
of northern Michigan, where the ice-free period is relatively
long because of the moderating effects of the Great Lakes.

Because class 1 lakes were relatively small (Figure 3), they only
represented one-quarter of the total lake surface area in Michi-
gan (i.e., calculated based on the 6,544 inland lakes with surface
area ≥4 ha). The other abundant lake type was class 4 (33%),
which was found across Michigan’s Upper Peninsula and the
northern portion of the Lower Peninsula. Because lakes in class
4 were also relatively small (Figure 3), they represented less
than 10% of the lake surface area in the state. Lakes in classes
2 and 3 were relatively less abundant, but because of the large
size of these lakes (Figure 3), each class comprised 22% of the
state’s lake surface area. Class 2 lakes were distributed across
the Lower Peninsula, while class 3 lakes primarily were found
in northern Michigan and were concentrated in the western por-
tion of the Upper Peninsula. Lakes in classes 5 and 6 were also
relatively rare; because of their smaller sizes, these lake classes
represented 14% and 8%, respectively, of the lake surface area
in Michigan. Lakes belonging to classes 5 and 6 were found in
the northern Lower Peninsula and across the Upper Peninsula.

DISCUSSION
We identified six fish assemblage types that can be used to

classify Michigan lakes. Our study represents the most compre-
hensive analysis of fish assemblages for north temperate lakes in
North America. Our study lakes included a wide range of habi-
tat types and are distributed across a large geographic region.
In contrast, most of the previous studies that have classified
fish assemblages in north temperate lakes were focused on a
relatively low number of lakes that were primarily small, had
relatively few species, and in some cases contained no large-
bodied piscivorous species (e.g., northern pike or black basses;
Harvey 1978, 1981; Tonn and Magnuson 1982; Tonn et al. 1983;
Robinson and Tonn 1989). As a result, a common assemblage
identified in these prior studies consists of small-bodied species,
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FIGURE 3. Box-and-whisker plots of nutrient, morphological, and thermal
characteristics of the six lake classes identified in multivariate regression tree
analysis (horizontal line within each box = median; ends of box = 25th and
75th percentiles; ends of whiskers = minimum and maximum values).

such as cyprinids, that are susceptible to predation but dominate
lakes from which piscivores are absent. The lake types found
in small north temperate lakes are poorly represented in our
classification. However, our goal was to develop a classification
for use in fisheries management. Most of the fisheries manage-
ment effort is placed on 4-ha and larger lakes because smaller
lakes have a limited ability to support exploitable populations
of piscivores, such as walleyes, northern pike, largemouth bass,
and smallmouth bass. Our classification complements previous
classifications and together with these existing classifications
represents a more complete picture of lake fish assemblages in
north temperate lakes of North America.

Our results indicate that the variation in climate across Michi-
gan plays an important role in controlling distribution and abun-
dance of lake fishes. Mehner et al. (2007) found that latitude was

TABLE 4. Distribution of 6,544 Michigan lakes (with surface area ≥4 ha)
across lake classes summarized by number and surface area of lakes.

Number Surface area (ha)

Lake class Total Percent Total Percent

1 3,849 59 200,216 25
2 128 2 177,008 22
3 88 1 181,164 22
4 2,165 33 75,582 9
5 187 3 114,861 14
6 127 2 60,009 8

related to fish assemblage structure in European lakes within the
Central Plains ecoregion. They hypothesized that latitude was
important in their analysis because it reflected a temperature
gradient created by the climatic differences (mean annual air
temperature = 6.2–9.7◦C) across their study region. In Michi-
gan, mean annual air temperature varies from 2◦C in the Upper
Peninsula to 11◦C in the Lower Peninsula, which results in
considerable among-lake variation in degree-days during the
ice-free period. Not surprisingly, degree-days had the most in-
fluential effect in separating fish assemblages of southern and
northern lakes. Although warmwater and coolwater species are
found in lakes throughout the state, warmwater species (e.g.,
bluegill, black crappie, and largemouth bass) tend to domi-
nate the southern lakes, whereas coolwater species (e.g., yellow
perch, walleye, rock bass, white sucker, and northern pike) typ-
ically occur in higher abundance in the northern lakes. These
patterns probably arise because many northern Michigan lakes
have short growing seasons and long winters that limit growth
and survival of warmwater species (Post et al. 1998), whereas
many southern Michigan lakes have extended periods in sum-
mer during which the thermal optima of coolwater species are
exceeded, thus limiting growth and survival, and also have short
winters, which limit the egg development of coolwater species
(Hokanson 1977).

Mean temperature in the epilimnion was important for sep-
arating assemblage types in our lake classification. This pat-
tern represents a more local influence of water temperature in
comparison with the regional influence of climate. In northern
Michigan, large lakes with relatively cool surface temperatures
(class 3) appear to be less suitable for warmwater fishes, such as
the bluegill, black crappie, and largemouth bass; instead, these
lakes are dominated by coolwater species, such as the white
sucker, rock bass, smallmouth bass, walleye, and yellow perch.
Coldwater species are also abundant in class 3 lakes, probably
because of the greater volume of coldwater habitat present in
these large, deep lakes. Lakes in class 3 tend to have greater
surface areas and therefore greater depths, greater volumes, and
smaller surface area : volume ratios than do lakes in other classes
(Figure 3). Consequently, large, deep lakes have greater thermal
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FIGURE 4. All 4-ha and larger lakes in Michigan (N = 6,544 lakes), classified by potential fish assemblage. See Figure 2 for definition of the six lake classes.

inertia, are more buffered against direct solar insolation, and do
not get as warm as smaller, shallower lakes.

We also found that surface area was an important predictor of
lake fish assemblages. Surface area is correlated with many as-
pects of lake morphology, and the importance of lake area to fish

assemblage structure has been well documented (Johnson et al.
1977; Harvey 1978; Tonn and Magnuson 1982; Marshall and
Ryan 1987; Jackson and Harvey 1993; Magnuson et al. 1998;
Diekmann et al. 2005; van Zyll de Jong et al. 2005; Bertolo
and Magnan 2006; Mehner et al. 2007). The diversity of depths,
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TABLE 5. Description of temperature characteristics, morphology, fish species, and distribution of the six classes of Michigan inland lakes.

Class Description

1 High degree-days, high mean temperature, small surface area, and intermediate depth; indicator species are
warmwater centrarchids, yellow bullhead, grass pickerel, spotted gar, and lake chubsucker; these lakes are found
primarily in the Lower Peninsula.

2 High degree-days, high mean temperature, large surface area, and deep; indicator species are the bowfin, longnose
gar, common carp, channel catfish, brook silverside, sand shiner, and logperch; these lakes are found primarily in
the Lower Peninsula.

3 Low degree-days, low mean temperature, large surface area, and deep; indicator species are coolwater centrarchids,
percids, coldwater species, and the common shiner; these lakes are concentrated in the western Upper Peninsula,
with limited distribution in the northern Lower Peninsula.

4 Low degree-days, intermediate mean temperature, small surface area, and intermediate depth; associated species
include a mixture of warmwater centrarchids and coolwater species, such as the yellow perch and white sucker;
these lakes are very common in the Upper Peninsula and northern Lower Peninsula.

5 Intermediate degree-days, intermediate mean temperature, intermediate surface area, and intermediate depth;
indicator species are the brown bullhead, bluntnose minnow, and other species tolerant of low oxygen
concentrations; these lakes are found in the Upper Peninsula and northern Lower Peninsula.

6 Low degree-days, intermediate mean temperature, intermediate surface area, and shallow; the indicator species is the
white sucker, but percids and northern pike are also common; these lakes are found primarily in the Upper
Peninsula.

temperatures, and littoral habitats typically found in larger lakes
may promote the existence of species that cannot persist in
smaller, more homogeneous lakes (Jackson et al. 2001). For ex-
ample, larger lakes tend to be deeper and are more likely to strat-
ify, thereby providing coolwater habitat (Figure 3) for species
such as the walleye. Similar to Jackson and Harvey (1993), we
found a higher abundance of warmwater species (e.g., bluegill
and largemouth bass) in smaller lakes (classes 1 and 4) and a
higher abundance of coolwater fishes in larger lakes (classes 2,
5, and 6). This pattern suggests that a difference in availability
of coolwater habitat between large and small lakes is the mech-
anism linking surface area to fish assemblage patterns. Lake
size can also mediate the role of anoxia in structuring fish as-
semblages (Tonn and Magnuson 1982). Smaller lakes are more
susceptible to oxygen depletion and can become unsuitable for
species that are intolerant of low-oxygen conditions (Magnuson
et al. 1998; Stefan et al. 2001). Bluegills and largemouth bass
are intolerant of low-oxygen conditions (Jackson and Harvey
1993), and their prominence in smaller lakes (classes 1 and 4)
suggests that winterkill was not a dominant driver of assemblage
structure across the range of lake sizes considered in this study.

The amount of variation explained by our MRT solu-
tion (25%) and the additional variation (16%) explained by
unconstrained clustering suggest that other factors are also im-
portant in structuring lake fish assemblages. A number of fac-
tors, including species interactions (Robinson and Tonn 1989;
Olive et al. 2005), extinction–colonization dynamics (Magnuson
et al. 1998), isolation (Olden et al. 2001), productivity (Jeppesen
et al. 2000), anoxia (Stefan et al. 2001), and shoreline develop-
ment (Jennings et al. 1999), can influence lake fish assemblages.
Additional research is needed to determine the relative influence

of these factors on fish assemblages in Michigan lakes. How-
ever, the importance of these factors may only be evident when
lakes are viewed across smaller spatial scales. Given the hi-
erarchical nature of aquatic ecosystems (Tonn 1990) and the
pervasive role of temperature in determining habitat suitability,
we suggest that the evaluation of additional mechanisms should
take into account the lake classes we have identified.

In contrast to most lake classifications, our classification was
based on spatially extensive variables that were readily avail-
able or that could be predicted from landscape-level data. Our
approach can thus be used to predict species assemblages in un-
sampled lakes and thereby classify all lakes across large spatial
extents. By classifying all lakes in the state, we were able to de-
scribe the number and spatial location of lakes in each class and
thereby provide a more complete characterization of Michigan’s
fishery resources. Fisheries management typically occurs on a
species-by-species and lake-by-lake basis (Tonn et al. 1983).
Our classification provides information about entire fish assem-
blages and can facilitate development of statewide management
and monitoring programs based on lake types and their avail-
ability. For example, management of walleyes and coldwater
species could be focused on lakes in class 3, thereby reducing
the likelihood of inappropriate stockings in less-suitable lake
classes. Using the classification, managers can make defensible
decisions and communicate to the public the ecological reasons
that underlie management plans. Monitoring efforts could be al-
located equally across the six lake classes or could be allocated
in proportion to the number or surface area of lakes within each
class. Because lake fish assemblages are strongly influenced by
lake thermal regime, our approach could be useful in suggesting
potential consequences of climate change (Stefan et al. 2001).
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Finally, when linked with other types of data, our classification
can be used by managers to determine the value of specific lake
types and the environmental threats (Wang et al. 2010) to those
lake types. This information can be used to prioritize manage-
ment efforts across all available lake fisheries in the state by
identifying the highest-value lake classes that are most at risk
from environmental change.

Our classification could be applied to other north temperate
lakes, especially those in Wisconsin, Minnesota, and Ontario,
where the regional fish fauna is similar. A fruitful area of re-
search would be to investigate whether fish assemblages in other
north temperate lakes follow patterns similar to those observed
in Michigan. If successful, the application of our lake classi-
fication across multiple states and provinces would provide a
framework for conducting broad-scale comparative studies and
for developing regional conservation and management strate-
gies.
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