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Table S1. The ratio of the unit flow (Qunit) to total flow (Qg) for various normalized trapping 
gap size. The row shift fraction (ε) of the trap array is 1/3. 

Normalized trapping gap 
(s* = s/h) 

Qunit / Qg η = (Qunit/Qg)/ε 

0.1 0.2488 0.7464 

0.2 0.3226 0.9678 

0.3 0.3233 0.9699 

0.4 0.3306 0.9918 

0.5 0.3333 0.9999 



  

2 
 

 

 
Figure S1. The dimension of the asymmetric trap array. 
 
 
Table S2. Length and coordinates of the variables of Figure S1. 

Variables Coordinate [x , y] 

Lv [µm] 2*[Round up (s + p1(y) – p5(y) + 40) by 5] 

p1 [50-(g-h)/2*tan(15o) , s] 

p2 [54-(g-h)/2*tan(15o) , s] 

p3 [50+(g-h)/2*(1-tan(15o)) , s+(g-h)/2*tan(15o)] 

p4 [50+(g-h)/2 , s+(g-h)/2*(1+tan(15o))-4] 

p5 [50+(g-h)/2 , s+(g-h)/2*(1+tan(15o))] 

p6 [46+(g-h)/2 , s+(g-h)/2*(1+tan(15o))] 

p7 [50 , s+(g-h)/2] 

p8 [50-(g-h)/2*tan(15o) , s+4] 
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Figure S2. Modified mass balance relationship when Qs ≤ Qunit ≤ 2Qs at larger trapping gap 
size. Since the rightmost boundary streamline, br, of the capturing stream is outside the inter-
trapping blocks gap (h), Qbr is equal to zero. 
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Figure S3. The lateral shift of the particle into the capturing stream at different trapping gap 
sizes (0.1≤s*≤0.5) 
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Supplementary Note S1. Oscillation amplitude for the one-way particle transport 

In principle, the oscillation amplitude, λ, needs to be greater than two vertical periods 

of asymmetric traps for one-way particle transport to occur. The amplitude of the fluid 

oscillation should be large enough to provide the possibility of capture during reverse flow 

(Figure S4a). Although the minimum amplitude for one-way particle transport varies with 

particle diameter, a convenient way to determine the amplitude is to have the amplitude 

greater than two vertical periods, i.e., the distance of 2/ε rows, of asymmetric traps (Figure 

S4b). Since the particles are captured while passing across a single period (1/ε rows of traps), 

and taking into account that no collisions occur in the region where the array changes the 

direction of the row shift, any amplitude greater than 2/ε rows can assure positive net 

displacement during one fluid oscillation. It is worthwhile to note that the alternating sign of 

the array shift angle at every vertical period of the traps was made in consideration of actual 

experiments (Supplementary NoteS3 and Figure S10). 
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Figure S4. The amplitude (λ) of fluid oscillation should be greater than two vertical periods, 
the distance of 2/ε rows, of asymmetric traps. (a) Too small amplitude (red arrows) does not 
provide a chance of capture during reverse flow. On the other hand, long amplitudes (green 
arrows) can make positive net displacement. (b) Any amplitude greater than the distance of 
2/ε rows can provide positive net displacement. 
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Figure S5. Phase diagrams at different row shift fractions (ε = 1/5, 1/4, 1/3, and 1/2). The 
black dots in the graphs are the intersections between the boundary streamlines of the 
capturing stream and the lateral locations of the particle center in reverse flow at five 
normalized trapping gap sizes (s* = 0.1, 0.2, 0.3, 0.4, and 0.5). The green area between the 
black dots becomes the diameter range for the lateral shift into the capturing stream in the 
reverse flow. It should be noted that the line between the calculated points was interpolated 
based on the trend of the diameter range at two trapping gap sizes (Supplementary Note S2). 
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Supplementary Note S2. The interpolation process for the trap-particle interaction 

phase diagram 

First, we calculated the diameter range for the lateral shift into the capturing stream in 

reverse flow at various normalized trapping gaps (s* = 0.1, 0.2, 0.3, 0.4, and 0.5 at ε = 1/3) 

(Figure S6a). Next, we connected the calculated points of two neighboring trapping gaps, and 

we adjusted and smoothed the line shape based on our conjecture (Figure S6b). In Figure S6b, 

we circled the region of the conjecture. The conjecture reflects two phenomena: 1) the 

diameter range of the capturing (or the non-capturing) region gradually disappears if the 

diameter range of the capturing region (or the non-capturing region)  is not present at the 

neighboring trapping gap, and 2) sudden changes of the slope of the line present the change of 

the intersection point to calculate the diameter range. The regions I, II, IV, V, and VII are the 

examples of the first phenomenon, and the other regions, III and VI, were depicted based on 

the latter one. In more detail, in region I, as the trapping gap decreases from 0.1 to 0.0, the 

diameter range at the trapping gap of 0.1 must shrink and disappear because smaller trapping 

gap will reduce the width of the capturing stream (i.e. the distance between bl and br in Figure 

S6c). Likewise, in the region II, the diameter range should disappear as the trapping gap 

decreases from 0.1 to 0.0. However, the diameter range in the region II should also be 

gradually reduced, and this region vanishes as the trapping gap increases to 0.2 because the 

capturing of the particle at the 3rd row disappears at the trapping gap of 0.2 (Figure S6c). This 

disappearance of the capturing can be attributed to the lateral shift of the capturing stream due 

to the increase in the vertical spacing of the traps. And, region IV came from the the non-

capturing diameter range between two capturing diameter range at the trapping gap of 0.2. 

That non-capturing diameter range does not exist at the trapping gap of 0.1 and 0.3, so that 

region IV becomes sharply pointed to both directions of the trapping gap of 0.2. 
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The two islands, the capturing region (II) and the non-capturing region (IV), are non-

significant in the practical use of the one-way particle transport. The capturing region (II) is 

below d*
asymm, which means the particles in the region are supposed to have symmetric 

passage or symmetric capturing interaction that cannot show one-way particle transport 

(Figure S6d). For the non-capturing region (IV), the diameter range of the region is from 

0.646 to 0.654, which is about 0.01 in d*. Considering its small size, the non-capturing region 

(IV) would hardly prevent the particles from capturing unless the particles are very small 

compared to the inter-trapping blocks gap (i.e. particle diameter <1% of the inter-trapping 

blocks gap). 
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Figure S6. The interpolation for the trap-particle interaction phase diagram. (a) A raw graph 
of the diameter range (shown as green dashed lines) of the particles laterally shifted into the 
capturing stream at different trapping gaps (s* = 0.1, 0.2, 0.3, 0.4, and 0.5). The diameter 
range was calculated from Figure S3. (b) The graph of the diameter range after the 
interpolation and smoothening. The calculated points of the neighboring trapping gaps were 
connected at first, and the slope of the connected line was further adjusted and smoothed 
based on our conjecture. The circled regions from I to VII present the conjected regions. The 
region I, II, IV, V, and VII were interpolated such that the diameter range of the capturing (or 
the non-capturing region) gradually disappears if the diameter range of the capturing region 
(or the non-capturing region)  is not present at the next trapping gap. And, the sudden changes 
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of the slope of the lines in the region III and VI reflected the change of the intersection point 
at the edge of the diameter range. (c) The simplified version of Figure S3 to explain the region 
I, II and IV in more detail. (d) The region for the one-way particle transport after the critical 
diameters for the four conditions are applied. The capturing region (II) disappeared because it 
is below d*

asymm. The diameter range of the non-capturing island in the region IV is from 
0.646 to 0.654, which is about 0.01 in d*. Considering its small size, the non-capturing region 
(IV) would hardly prevent the particles from capturing unless the particles are very small 
compared to the inter-trapping blocks gap (i.e. particle diameter <1% of the inter-trapping 
blocks gap). 
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Figure S7. Experimental validation of the theoretical results. Theoretical prediction and 
experimentally validated trap-particle interaction dynamics in the arrays of row shift fraction 
(ε) of 1/3. The regions shaded in green are supposed to show one-way particle transport 
according to the theoretical results. Symbols: green triangles (  ) = one-way particle 
transport, inverted closed red triangles (  ) = trap skipping by bump mode, inverted open 
triangles (  ) = trap skipping by zig-zag mode , closed circles (  ) = symmetric capturing, 
and open circles ( ) = symmetric passage. 
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Figure S8. (a) Velocity plot of the Finite Element Method simulation results. Flat inlet and 
outlet profiles ensure average vertical velocity across the asymmetric trap array. The flow rate 
of each gap was calculated by averaging the flow rates obtained at five different locations in 
the central region of the array. The array dimension shown here is ε = 1/3, g* = 1.5, and s* = 
0.3. (b) The regions of the velocity profile integration. Each two-dimensional volumetric flow 
rate was obtained via the mathematical integration of each flow profile along the dashed line 
shown above at each gap. For example, Qs, the volumetric flow rate through the trapping gap, 
s (here, either sright or sleft), was calculated by integrating the x-component of the velocity 
profile along sright. This integration introduces some error because it ignores the contribution 
of the y-component of the flow profile to the flow rate. However, the difference between 2Qs 
+ Qh and Qg was found to be very small (<1% of Qg), which assures the error can be ignored. 
The difference between the flow rates at sleft and sright was also found to be small (~3% of Qs). 
We also checked the effect of the no-slip condition on the balance between Qss at sleft and sright, 
which we found that the difference between the two is insignificant (1% of Qs). This small 
difference can be attributed to the large fluidic resistance of the trapping gap, s, compared to 
the resistance of the inter-trapping blocks gap, h. Since most of the fluid passes through h, the 
boundary conditions applied to the channel sidewall cause no significant difference between 
two Qss of the asymmetric trap. 
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Figure S9. Device diagram. The device consists of three layers including a bottom fluidic 
channel, a top control channel, and a thin PDMS membrane separating the two channels. 
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Supplementary Note S3. Alternating the sign of row shift angle 

Taking into account the experimental implementation of one-way particle transport, 

the sign of the row shift angle should be alternated to prevent undesired particle concentration 

at the region near the channel sidewall (Figure S10). Large particles show bump mode 

transport, a type of particle transport following the direction of the row shift by capitalizing 

on the particle collision at every row of the trap array. Bump mode transport causes the area 

near the sidewall of the array that has only a single sign of the row shift angle to become 

crowded with particles. This unwanted particle concentration increases the probability of 

channel clogging and may cause errors in the operation of one-way particle transport. 

Alternating the sign of the row shift angle can minimize the particle crowding by guiding the 

particles to the opposite direction before they reach the sidewall area. 

To keep the conditions for one-way particle transport unchanged, the sign of the row 

shift angle has to remain constant for at least 1/ε rows of the array. Although this design 

doubles the flow periodicity of the array from 1/ε rows to 2/ε rows, the conditions about the 

physical collision and the lateral shift into the capturing stream are viable in 1/ε rows so that 

the amplitude of 2/ε rows achieves one-way particle transport. By placing one row of traps at 

the inlet of the array and adding 1/ε rows of the traps with alternating signs of the row shift 

angle, an array with the sign of the row shift angle fixed for 1/ε trap rows can be designed. 
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Figure S10. Undesired local particle concentration (left) in the area near the right channel 
sidewall can be avoided by alternating the sign of the row shift angle from +α to –α, or vice 
versa (right). The array was designed to have a fixed sign of the row shift angle for a single 
vertical period (1/ε rows) of the traps. This design allows the results of the d*

col and the lateral 
shift into the capturing stream to remain valid while alternating the sign of the row shift angle. 
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Movie S1. One-Way Particle Transport 

 
Figure S11. Schematic diagram of one-way particle transport 
 

Movie S2. Symmetric Capturing 

 
Figure S12. Schematic diagram of symmetric capturing 
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Movie S3. Symmetric Passage 

 
Figure S13. Schematic diagram of symmetric passage 
 

Movie S4. Trap Skipping (Zig-zag mode transport) 

 
Figure S14. Schematic diagram of trap skipping in zig-zag mode 
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Movie S5. Trap Skipping (Bump mode transport) 

 
Figure S15. Schematic diagram of trap skipping in bump mode 
 

Movie S6. Clogging and Releasing 

 

*All of the movies are ten times slower than real time. 

 

 


