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Influenza vaccination is recommended as the best way to protect against
influenza infection and illness. Due to seasonal changes in influenza virus types
and subtypes, a new vaccine must be produced, and vaccine effectiveness (VE)
must be estimated, annually. Since 2010, influenza vaccination has been rec-
ommended universally in the United States, making randomized clinical trials
unethical. Recent studies have used a monitored household cohort study design
to determine separate VE estimates against influenza transmission from the
household and community. We developed a probability model and accompa-
nying maximum likelihood procedure to estimate vaccine-related protection
against transmission of influenza from the household and the community. Using
agent-based stochastic simulations, we validated that we can obtain maximum
likelihood estimates of transmission parameters and VE close to their true
values. Sensitivity analyses to examine the effect of deviations from our assump-
tions were conducted. We used our method to estimate transmission parameters
and VE from data from a monitored household study in Michigan during the
2012-2013 influenza season and were able to detect a significant protective effect
of influenza vaccination against community-acquired transmission.
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1 INTRODUCTION

Influenza vaccination is recommended every season due to changes in influenza virus types, subtypes, and phenotypes
from one season to the next. The variation in the influenza virus requires the production of a new vaccine each season;
thus, vaccine effectiveness (VE) must be estimated each year.1 The concept of VE is based on comparing the probability
of illness of a vaccinated person to that of an unvaccinated person, ie, it measures the benefit of vaccination for a single
individual. Vaccine effectiveness is defined as 1 minus the risk ratio, where risk is defined as the probability of becoming
infected and ill throughout the influenza season. In this work, we use the term “vaccine effectiveness” rather than “vaccine
efficacy” because the former is estimated using observational studies, while the latter is estimated from a randomized trial.

Placebo-controlled randomized clinical trials can no longer be used to assess influenza VE in the United States due
to the recommendation that all individuals older than 6 months be vaccinated.2 As a result, observational studies have
been increasingly used to assess the benefit of influenza vaccination. Most commonly, observational studies on unrelated
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individuals have been used to estimate VE against influenza illness requiring outpatient medical care.3-6 The household
unit has been shown to play an important role in the transmission of influenza.7,8 Additionally, household data has been
shown to provide more robust estimates of VE than data consisting of unrelated individuals9; thus, recent VE studies have
used a monitored household (MH) cohort design.6,10,11

In a MH study, entire households are enrolled and closely monitored over the course of the study period. Whenever a
participant has an acute respiratory illness (ARI), he/she has to report to study personnel who arrange for a swab to be
taken and tested for influenza infection. Despite being expensive and logistically complex, MH studies are attractive to
assess influenza VE because they allow for the observation of time of influenza disease and vaccination as well as allow for
the estimation of VE against community- and household-acquired influenza.6,10 An additional advantage of an MH study
is that it allows for the examination of symptomatic influenza of any severity regardless of whether participants sought
medical care.3,6,10 Other commonly used study designs (ordinary cohort, in which independent individuals are followed
rather than households, case-control, and test-negative12,13) are only able to capture individuals infected with influenza
who seek medical care. These studies are prone to bias as many people infected with influenza may not seek medical care,
and those who seek medical care might not represent the entire population.

Statistical methods have been developed to estimate influenza VE from household data, first from final data in
which influenza infection was assessed after the season by serological testing14-16 and more recently from time-to-event
data.6,9,10,17,18 Longini and Koopman14 developed a probability model and maximum likelihood procedure for the separate
estimation of influenza transmission parameters in the household and community from final count data. Haber et al15

extended this model to assess the impact of risk factors on influenza transmission. It has been shown that the use of
time-to-event data produces VE estimates with smaller bias compared to estimates produced using final data.9 Halloran
et al17 developed a framework to estimate VE from time-to-event household data using the secondary attack rate but did
not account for community transmission. Davis and Haber9 incorporated temporal information into VE estimates using
survival models as a method to estimate influenza transmission probabilities from community and household contacts.
Neither of these approaches allow for the estimation of source-specific VE, which is the focus of this work. Ohmit et al10

estimate source-specific VE using the Cox proportional hazards model but make assumptions about the source of infection
based on viral type/subtype and the timing of infection, as infection source cannot be directly observed.

We present a probability model and accompanying maximum likelihood procedure to first estimate source-specific
transmission parameters and then to estimate vaccine-related protection against transmission of influenza from the
household and from the community from time-to-event household data. Our approach does not require the source of
infection to be known and incorporates temporal information into VE estimates. Additionally, our model allows vaccina-
tion to occur during the study and does not assume household VE is equal to community VE, thus providing a framework
to estimate VE against influenza infection separately from each source. However, for interpretability, VE needs to be esti-
mated assuming all vaccinated individuals are vaccinated over the entire study period. To assess VE, we use symptomatic
influenza, defined as laboratory-confirmed infection with the influenza virus that develops into an ARI, as our outcome
of interest. We perform a simulation study to evaluate our model and then apply our model to data from the House-
hold Influenza Vaccine Effectiveness (HIVE) study. The HIVE study has been established in Ann Arbor, Missouri as an
ongoing, longitudinal MH cohort to better characterize the impact of households on influenza transmission.10,18,19

2 METHODS

We consider a population composed of households of varying sizes as in a MH study. There are potentially 2 different
sources of influenza exposure: (1) exposure to other infected household members and (2) exposure to infected individuals
in the larger community. We define the study period as a single influenza season.

We make several important model assumptions: (1) Each member of the study population belongs to a household.
(2) Persons are only classified by their household membership (ie, there are no other stratifying variables or covariates).
(3) Each person makes daily contacts with each member of their household and with randomly selected community
contacts. (4) There is random mixing within the household and among community members. (5) A person can only
be infected once during the study. Thus, once a person is infected with influenza he/she is removed from the at-risk
population for the remainder of the study. (6) Asymptomatic influenza cases—persons infected with influenza but do not
develop an ARI—have a very small probability of transmitting influenza to others (and therefore, are not accounted for in
our model). (7) The per-contact transmission probabilities within a household and among the community for vaccinees
and non-vaccinees remain constant throughout the study. (8) The vaccine provides reduction in transmission probability
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(leaky vaccine model20,21) and only affects susceptibility to influenza. (9) The length of the latent and infectious periods
are constant and known.

2.1 Probability model
In real data, it is difficult to ascertain the source of infection for each individual. Recent studies have attributed the source
of infection to a household member if the influenza type and subtype are the same, and the secondary case was identified
within a short time period from the index case.6,10,11,18 However, it is not possible to actually observe source of infection
(except in challenge studies) thus, it is important to develop a probability model that can be used when source of infection
is unknown.

Below, we present a probability model for estimating VE for household- and community-acquired influenza. To accom-
plish this, we first estimate influenza transmission parameters within the household and in the community using
a maximum likelihood procedure. Then, using these transmission parameter estimates, we estimate source-specific
influenza VE. Table 1 defines the parameters used in the model.

Consider a susceptible person i on day d. Let Yid denote the infection status for that person, where

Yid =

{ 0 person i susceptible by the end of day d,
1 person i made an infectious contact on day d,
2 person i made an infectious contact before day d.

Let vid denote her/his vaccination status (vid = 0, 1 for unvaccinated and vaccinated, respectively). We define 𝛽vid as
the daily transmission probability to that person from a single household contact; similarly, we define 𝛾vid as the daily
transmission probability of infection from the community to that person when everyone else is infectious. Since vid can
only take on the values 0,1 for any person on any day, we have 4 transmission parameters: 𝛽0, 𝛽1, 𝛾0, 𝛾1.

We assume that the latent period, the time between an individual getting infected and becoming infectious, begins on
the day after the infectious contact was made. An infected person becomes infectious L+1 days after making an infectious
contact and remains infectious for I days, where L and I are the length of the latent and infectious periods, respectively.
For example, if an infectious contact is made on day 1 then, the latent period lasts 2 days (days 2 and 3) and the infectious
period lasts 4 days (days 4-7). After the duration of the infectious period, the person recovers and remains immune for the
rest of the study. It is usually assumed that the day of becoming infectious is the day of onset of symptoms, ie, the length of
the incubation period equals the length of the latent period. During our estimation process, we observe the first day of the
infectious period and determine the day of the infectious contact by subtracting L+1. We let p(d) denote the prevalence of
influenza infection on day d, defined as the proportion of the population who is infectious,22 and let mid be the number of
infectious persons in the household of person i on day d. When determining the probability that a person is infected from
community contacts on day d, we multiply 𝛾vid by the proportion of infectious individuals in the population that day, p(d).

Let 𝜋ijd = P(Yid = j|Yi(d−1) = 0) denote the conditional probability that person i has infection status j on day d, given
that she/he was susceptible on the previous day, j = 0, 1, 2. Let 𝜓ijd = P(Yid = j) denote the unconditional probability that

TABLE 1 Model parameters

Parameter Definition

i Index over people, where i = 1, … ,N
j Index of infection status on a given day: (0 = escaped infection (susceptible), 1 = made an infectious contact on this day,

2 = made an infection contact before this day).
vid Vaccination status of person i on day d, also denoted as v (0 = unvaccinated, 1 = vaccinated)
𝛽v Daily transmission probability from an infectious household member to a susceptible with vaccination status v = 0, 1
𝛾v Daily transmission probability from infectious community contacts to a susceptible with vaccination status v = 0, 1
mid The number of infectious persons in the household of person i on day d
p(d) The prevalence of influenza infection on day d
𝜋ijd Conditional probability that person i has infection status j on day d given that he/she was susceptible on the previous day
𝜓 ijd Unconditional probability that person i has infection status j on day d
𝜆iH Probability that person i was infected from a household contact by the end of the study
𝜆iC Probability that person i was infected from a community contact by the end of the study
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person i has infection status j on day d, j = 0, 1, 2. All of the probabilities involving individual persons are conditioned on
the vaccination history of individual i, Vi = (Vi1, … ,ViD), i = 1, … ,N.

The conditional probabilities 𝜋ijd can be written as follows:

𝜋i0d = P(Yid = 0|Yi(d−1) = 0) = (1 − 𝛽vid)
mid(1 − 𝛾vid · p(d)),

𝜋i1d = P(Yid = 1|Yi(d−1) = 0) = 1 −
[
(1 − 𝛽vid)

mid(1 − 𝛾vid · p(d))
]
,

𝜋i2d = P(Yid = 2|Yi(d−1) = 0) = 0,

where, given person i was susceptible on day d − 1, 𝜋i0d is the probability of person i escaping infection on day d, 𝜋i1d is
the probability of person i becoming infected on day d, and 𝜋i2d is the probability that person i was infected on a previous
day. Under assumption (5), 𝜋i2d = 0.

The unconditional probability of person i having infection status j (j = 0, 1) on day d is defined as

𝜓ijd = P(Yid = j) = P(Yid = j|Yi(d−1) = 0) · P(Yi(d−1) = 0) + P(Yid = j|Yi(d−1) > 0) · P(Yi(d−1) > 0).

By assumption (5), P(Yid = j|Yi(d−1) > 0) = 0; thus,

P(Yid = j) = P(Yid = j|Yi(d−1) = 0) · P(Yi(d−1) = 0)
= 𝜋ijd · 𝜓i0(d−1).

For example, the probability that person i, who was effectively vaccinated on day 2 gets infected on day 3 is

P(Yi3 = 1) = 𝜋i13 · 𝜓i02,

= 𝜋i13 · 𝜋i02 · 𝜋i01,

=
{

1 −
[
(1 − 𝛽1)mi3(1 − 𝛾1 · p(3))

]} {
(1 − 𝛽1)mi2(1 − 𝛾1 · p(2))

}{
(1 − 𝛽0)mi1(1 − 𝛾0 · p(1))

}
,

where the value of vid changes from 0 to 1 on day 2.

2.2 Maximum likelihood procedure
Each person's contribution to the likelihood function depends on whether or not he/she became infected during the study
and on the day of infection, if infected. If person i got infected on day d then his/her contribution to the likelihood function
is Li = 𝜓 i1d. If person i did not become infected by the last day of the study D, Li = 𝜓 i0D, the probability of escaping
infection throughout the study. The overall likelihood is L(𝛽0, 𝛽1, 𝛾0, 𝛾1|data) =

∏N
i=1 Li, where N is the number of study

participants. We assume that persons are (conditionally) independent because our probabilities condition on the daily
number of infected persons in the household and the daily prevalences of infection in the community. Finally, maximum
likelihood estimates (MLEs) of the transmission parameters, 𝛽0, 𝛽1, 𝛾̂0, 𝛾̂1, are obtained by maximizing L(𝛽0, 𝛽1, 𝛾0, 𝛾1|data).
Likelihood optimization was performed using a limited-memory modification of the Broyden-Fletcher-Goldfarb-Shanno
quasi-Newton method23 with a lower bound of 0 and an upper bound of 1 using the R function optim.24 Standard errors
(SEs) of transmission parameter estimates were obtained from the Hessian matrix from the maximization procedure,
empirically from simulations by taking the standard deviation of all simulation estimates and by parametric bootstrap.
Using the transmission parameter MLEs, we can estimate the distribution of Yid for every (i, d) by plugging the parameter
estimates into the equations for 𝜋ijd and 𝜓 ijd.

We estimate VE using a 2-step process. First, we estimate the transmission probabilities from the likelihood function
in which a person's actual day of vaccination, before or during the study, is used. Second, using the estimated transmis-
sion probabilities from step 1, we estimate VE by comparing the probability of becoming infected during the entire study
between persons who became effectively vaccinated prior to the study and persons who remained unvaccinated through-
out the study. In this way, the estimates of VE do not depend on the times of vaccination. For each person i, we added
to the population 2 dummy persons: person Ai who was effectively vaccinated before the onset of the study and person
Bi who remained unvaccinated throughout the study. These dummy persons make the same contacts with real persons
(but not with other dummy persons) that correspond with the contacts of person i. They can become infected, but they
are unable to infect others. Therefore, the dummy persons do not affect the infection probabilities of the real persons
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(ie, they do not modify the vaccine's indirect effects). The vaccination status of all real persons remained unchanged for
the purpose of estimating VE. We define 𝜆iH and 𝜆iC as the probability that person i is infected from a household (H) or
community (C) contact during the study, respectively. The MLEs of 𝜆iH and 𝜆iC are obtained by substituting the MLEs
of our transmission parameters for the true parameters (see Supporting Information for details). Due to the very small
probability of coinfection, we do not include the probability of being coinfected in estimates of VE.

We denote the seasonal VEs against household transmission, community transmission, and overall transmission by
VEH, VEC, and VEO, respectively. The estimates of VE are

V̂EH = 1 −

∑N

i=1
𝜆̂AiH∑N

i=1
𝜆̂BiH

,

V̂EC = 1 −

∑N

i=1
𝜆̂AiC∑N

i=1
𝜆̂AiC

,

V̂EO = 1 −

∑N

i=1
(𝜆̂AiH + 𝜆̂AiC)∑N

i=1
(𝜆̂BiH + 𝜆̂BiC)

.

Standard errors for VE estimates were obtained empirically and by parametric bootstrap.

2.3 Simulations
To assess the performance of our method and the accuracy of our maximum likelihood estimates, we developed a stochas-
tic agent-based simulation program to simulate an influenza outbreak in a population with households. One simulation
corresponded to 1 outbreak. Each simulation featured a susceptible population of 1000 individuals with 10 initially
infected individuals. Each individual was assigned to a household. Households varied in size from 1 to 12 members. The
proportion of households of each size were based on DeKalb County, Georgia census data.25 The influenza season lasted
3 months. It was assumed that each person made 10 daily community contacts (under the assumption of random mixing)
and made daily contact with each person in their household. Two vaccination scenarios were assessed: (1) All vaccina-
tions occurred prior to the study period, and (2) vaccinations occurred prior to the study (25%), during the first month
(15%) and during the second month (10%). In each vaccination scenario, 50% of the population were vaccinated. A person
was considered effectively vaccinated 14 days after the receipt of the influenza vaccine. The following parameter values
were used as the daily transmission probability from an infectious person to a susceptible person with vaccination status
v (v=0, unvaccinated, v=1, vaccinated): 𝛼0 = 0.04 (𝛾0 = 𝛼0 · 10 = 0.40), 𝛼1 = 0.01 (𝛾1 = 𝛼1 · 10 = 0.1), 𝛽0 = 0.15, and
𝛽1 = 0.075.

The MLEs and SEs of the transmission parameters were calculated for each simulation. The MLEs of the transmission
parameters were used to estimate household VE, community VE, and overall VE. True VE was calculated using the true
transmission parameter values under each vaccination scenario. For each simulation scheme, the bias of the VE estimates
was assessed. Bias was defined as the true VE subtracted from the estimated VE. Two hundred outbreak simulations were
performed and 50 bootstrap simulations were performed for each outbreak simulation. Source specific VE, SE, and 95%
confidence intervals (CIs) were estimated for each simulation. The same assumptions we made for our model (see Section
2) were used for the simulation program. The latent period was set to 2 days and the infectious period was set to 4 days.26

2.4 Sensitivity analyses
Sensitivity analyses were performed to assess the bias of VE estimates using the maximum likelihood procedure when
several model assumptions were relaxed. Each sensitivity analysis was conducted independently. In the first sensitivity
analysis, we relaxed assumption (10) (the latent and infectious periods fixed and known) and allowed the latent and
infectious periods to follow a distribution. We assessed bias under 2 different scenarios: (1) The mean latent and infectious
periods were correctly specified, and (2) the mean latent and infectious periods were incorrectly specified. For scenario
(1), the latent period was 1, 2, or 3 days with probabilities 0.25, 0.5, and 0.25, respectively. The infectious period was 3, 4,
5, or 6 days with probabilities 0.3, 0.5, 0.1, and 0.1, respectively. The mean latent and infectious periods were 2 and 4 days,
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respectively. For scenario (2), the latent period was 1, 2, or 3 days with probabilities 0.1, 0.1, and 0.8, respectively with a
mean of 2.7 days. The infectious period was 3, 4, 5, or 6 days with probabilities 0.05, 0.1, 0.65, and 0.2, respectively with a
mean of 5 days. The specified mean latent and infectious periods, used for the derivation of the MLEs, were 2 and 4 days,
respectively. In the second sensitivity analysis, we assessed the bias of VE estimates when the prevalence in the cohort
was allowed to differ from the prevalence in the overall population. An overall population of households, comprised of
2000 individuals, was simulated, from which households were selected to make up the study cohort of 1000 individuals.
Households in the cohort were assumed to be a random sample of the households in the overall population. The MLEs,
SEs, and 95% CIs were calculated for each simulation.

2.5 A real-life example
Our maximum likelihood approach was applied to a dataset from the HIVE study in Michigan during the 2012-2013
influenza season designed to estimate household and community VE. The study population consisted of 321 households
with a total sample size of 1426 members followed from October 2012 to May 2013. Households ranged in size from
4 to 10 members. Only households with at least 4 persons including at least 2 children were included in the study. At
the onset of influenza-like symptoms, participants were instructed to contact study personnel, so a respiratory specimen
could be collected. Specimens were tested for the presence of influenza virus by reverse transcription–polymerase chain
reaction.6,10,18,19 Influenza infection was identified by reverse transcription–polymerase chain reaction in 111 individuals
with influenza-like illness. Five individuals were infected with influenza twice,10 but only the first influenza infection was
considered for our analysis. Index cases were assumed to be infected from the community, and a household-acquired case
was defined by transmission link to an index case within the household if both cases were caused by the same influenza
type/subtype/lineage and if illness onset in the secondary case occurred 1 to 7 days after illness onset in the index case.
Vaccination status was determined as previously described using a combination of medical records and state registry data.
Adults and children aged 9 to 17 years old were considered effectively vaccinated 14 days after the receipt of the vaccine.
Children under the age of 9 years old were considered effectively vaccinated 14 days after receipt of the second dose of
the vaccine.10

Influenza transmission parameters for vaccinated and unvaccinated individuals and VE against household- and
community-acquired transmission of influenza were estimated using our maximum likelihood approach. To avoid unde-
fined values during maximum likelihood estimation due to a prevalence of zero within the cohort, values of 0 were
changed to 1∕1426 (the total size of the cohort). Fifty parametric bootstrap simulations were performed to obtain SE esti-
mates and 95% CIs for transmission parameter and VE estimates. Simulations were performed using information from
the study data, such as, transmission parameter estimates, proportion of households of each size and proportion of indi-
viduals vaccinated. Model adequacy was assessed by comparing the mean number of cases per household size from 200
simulated outbreaks to the observed frequencies of cases per household size in the data. All simulations and analyses
were performed in R 3.2.2.24

3 RESULTS

3.1 Simulations
Mean transmission parameter and SE estimates from 200 simulations are shown in Table 2. When all vaccinations
occurred prior to the study, our maximum likelihood procedure produced the following estimates: 𝛽0 = 0.153 (95% CI,
0.129-0.177), 𝛽1 = 0.078 (95% CI, 0.064-0.092), 𝛾̂0 = 0.429 (95% CI, 0.380-0.478), 𝛾̂1 = 0.118 (95% CI, 0.092-0.142). When
vaccinations occurred prior to and during the study, 𝛽0 = 0.156 (95% CI, 0.132-0.180), 𝛽1 = 0.078 (95% CI, 0.060-0.096),
𝛾̂0 = 0.425 (95% CI, 0.382-0.468), 𝛾̂1 = 0.118 (95% CI, 0.093-0.143). Transmission estimates were similar between the 2
vaccination scenarios. All transmission parameter estimates were close to the true values (𝛽0 = 0.15, 𝛽1 = 0.075, 𝛾0 = 0.4,
𝛾1 = 0.10). The greatest bias observed was in the estimate of 𝛾0 when vaccinations occurred prior to and during the study
(Bias = 0.031 corresponding to a relative bias of 7.75%); however, the estimates of 𝛾1 suffered from relative biases of 16%
and 17% in vaccination scenarios (1) and (2), respectively (Table 2). The SE estimates were calculated empirically, using
the Hessian matrix from the maximum likelihood procedure and from 50 parametric bootstraps. All 3 SE estimation
methods produced similarly small SE estimates (Table 2).
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TABLE 2 Household and community transmission parameter estimates by vaccination status from 200 simulated influenza outbreaks

Scenario Value 𝛽0 𝛽1 𝛾0 𝛾1

True 0.150 0.075 0.400 0.100
Estimate 0.153 (0.129, 0.177) 0.078 (0.064, 0.092) 0.429 (0.380, 0.478) 0.118 (0.092, 0.142)

All vaccinations Bias 0.003 0.003 0.029 0.018
(50%) occurred SE (Empirical) 0.012 0.007 0.025 0.011
prior to the study SE (Hessian) 0.013 0.007 0.026 0.011

SE (Bootstrap) 0.014 0.007 0.027 0.012
Vaccinations Estimate (95% CI) 0.156 (0.132, 0.180) 0.078 (0.060, 0.096) 0.425 (0.382, 0.468) 0.118 (0.093, 0.143)
occurred prior Bias 0.006 0.003 0.025 0.018
to the study SE (Empirical) 0.012 0.009 0.022 0.013
(25%), in month SE (Hessian) 0.012 0.008 0.023 0.014
1 (15%), and in SE (Bootstrap) 0.012 0.009 0.022 0.015
month 2 (10%)

Abbreviation: CI, confidence interval. Transmission parameters (𝛽0-household, unvaccinated; 𝛽1-household, vaccinated; 𝛾0-community, unvaccinated; and
𝛾1-community, vaccinated) and standard errors (SEs). Standard errors were calculated empirically, using the Hessian matrix from the maximization procedure
and by parametric bootstrap.

TABLE 3 Maximum likelihood vaccine effectiveness (VE) estimates against influenza infection in the household, community, and overall
from 200 simulated influenza outbreaks

Scenario Value VEMLH VEMLC VEMLO

True 0.477 0.746 0.607
All vaccinations (50%) Estimate (95% CI) 0.467 (0.354, 0.580) 0.721 (0.662, 0.779) 0.601 (0.544, 0.659)
occurred prior to the Bias -0.010 -0.025 -0.006
study SE (Empirical) 0.056 0.030 0.030

SE (Bootstrap) 0.064 0.034 0.030
Coverage Probability 0.960 0.920 0.960

Vaccinations occurred True 0.470 0.745 0.605
prior to the study (25%), Estimate (95% CI) 0.469 (0.339, 0.600) 0.717 (0.645, 0.789) 0.602 (0.540, 0.664)
in month 1 (15%), and Bias -0.001 -0.028 -0.003
in month 2 (10%) SE (Empirical) 0.067 0.037 0.032

SE (Bootstrap) 0.069 0.038 0.033
Coverage Probability 0.960 0.950 0.970

Household VE (VEMLH), community VE (VEMLC), overall VE (VEMLO), and standard errors (SEs). Standard errors were calculated empirically and by parametric
bootstrap.

Mean VE and SE estimates from 200 simulations are shown in Table 3. When all vaccinations occurred prior to the
study, our maximum likelihood procedure produced the following estimates: V̂EMLH = 0.478 (95% CI, 0.358-0.598),
V̂EMLC = 0.724 (95% CI, 0.659-0.789), and V̂EMLO = 0.607 (95% CI, 0.546-0.668). When vaccinations occurred prior to
and during the study, V̂EMLH = 0.453 (95% CI, 0.314-0.592), V̂EMLC = 0.719 (95% CI, 0.652-0.786), and V̂EMLO = 0.602
(95% CI, 0.535-0.669). The greatest bias was observed in the estimate of VE against community-acquired influenza when
all vaccinations occurred prior to the study, Bias = −0.024 (corresponding to a relative bias of 3.2%). The SEs of the VE
estimates were calculated empirically and via parametric bootstrap. Empirical SEs were very similar to bootstrap SEs.
Vaccine effectiveness against household-acquired influenza consistently had the highest SE, while VE estimates against
community-acquired and overall influenza were very similar. When vaccinations occurred during the study, the empiri-
cal SEs were slightly larger for all VE estimates than when all vaccinations occurred prior to the study. For all estimates of
VE, we observed coverage probabilities of or greater than 95% with the exception of community VE when all vaccinations
occurred prior to the study (Table 3).

3.2 Sensitivity analyses
Table 4 shows the results of the sensitivity analyses performed when the assumption that the latent and infectious periods
are fixed and known was relaxed. When the mean length of the latent and infectious periods were correctly specified and



AINSLIE ET AL. 977

TABLE 4 Estimates of vaccine effectiveness (VE) when the latent and infectious periods are not constant from 200 simulated influenza
outbreaks

Mean length
of latent and
infectious
periods Scenario Value VEMLH VEMLC VEMLO

L̄ = 2, Ī = 4 True 0.477 0.747 0.607
All vaccinations (50%) Estimate (95% CI) 0.474 (0.349, 0.599) 0.703 (0.635, 0.770) 0.602 (0.546, 0.657)
occurred prior to the Bias −0.003 −0.044 −0.005
study SE (Empirical) 0.064 0.035 0.028

SE (Bootstrap) 0.074 0.031 0.032
True 0.471 0.745 0.606

Vaccinations occurred Estimate (95% CI) 0.470 (0.327, 0.612) 0.699 (0.630, 0.768) 0.600 (0.531, 0.669)
prior to the study (25%), Bias −0.001 −0.046 −0.006
in month 1 (15%), and SE (Empirical) 0.073 0.035 0.035
in month 2 (10%) SE (Bootstrap) 0.070 0.034 0.033

L̄ = 2.7, Ī = 5 True 0.469 0.745 0.605
All vaccinations (50%) Estimate (95% CI) 0.440 (0.303, 0.577) 0.679 (0.617, 0.740) 0.589 (0.542, 0.636)
occurred prior to the study Bias −0.029 −0.066 −0.016

SE (Empirical) 0.070 0.031 0.024
SE (Bootstrap) 0.074 0.028 0.027
True 0.462 0.743 0.604

Vaccinations occurred prior to Estimate (95% CI) 0.442 (0.298, 0.559) 0.657 (0.584, 0.720) 0.575 (0.525, 0.623)
the study (25%), in month 1 (15%), Bias −0.020 −0.086 −0.029
and in month 2 (10%) SE (Empirical) 0.067 0.035 0.026

SE (Bootstrap) 0.075 0.033 0.030

Abbreviation: CI, confidence interval. Bias of VE estimates were calculated allowing the latent and infectious periods to follow a distribution. VEMLH, VEMLC,
and VEMLO denote VE estimates using the maximum likelihood approach against household, community, and overall transmission, respectively. We considered
2 situations. First, the mean length of the latent (L̄) and infectious (Ī) periods were L̄ = 2 and Ī = 4 (ie, they were correctly specified). Second, L̄ = 2.7 and Ī = 5
(ie, they were misspecified). In both situations, during the estimation procedure, it was assumed that L = 2 and I = 4. The VE estimates were obtained from 200
simulations under 2 different vaccination scenarios. The SEs were calculated empirically and by parametric bootstrap.

all vaccinations occurred prior to the study, V̂EMLH = 0.474 (95% CI, 0.348-0.599), V̂EMLC = 0.703 (95% CI, 0.635-0.770),
and V̂EMLO = 0.602 (95% CI, 0.546-0.657). When vaccinations occurred prior to and during the study, V̂EMLH = 0.470 (95%
CI, 0.327-0.612), V̂EMLC = 0.699 (95% CI, 0.630-0.768), and V̂EMLO = 0.600 (95% CI, 0.531-0.669). When the mean length
of the latent and infectious periods were misspecified and all vaccinations occurred prior to the study, V̂EMLH = 0.440
(95% CI, 0.303-0.577), V̂EMLC = 0.679 (95% CI, 0.617-0.740), and V̂EMLO = 0.589 (95% CI, 0.541-0.636). When vaccinations
occurred prior to and during the study, V̂EMLH = 0.442 (95% CI, 0.311-0.573), V̂EMLC = 0.657 (95% CI, 0.588-0.726), and
V̂EMLO = 0.575 (95% CI, 0.524-0.626) (Table 4).

When the latent and infectious periods were allowed to follow a distribution, VE estimates were underestimated. When
the mean latent and infectious periods were correctly specified, the largest bias was observed in estimates of VE against
community transmission with a relative bias of 6%. Larger bias was observed in all VE estimates when the mean length of
the latent and infectious periods were misspecified with the largest bias (corresponding to a relative bias >11%) observed
in estimates of VE against community transmission when vaccination occurred prior to and during the study. Estimates
of SE were similar when the mean latent and infectious periods were correctly specified and misspecified. Estimates of
VEMLH had the largest SE, and the SE of VEMLC and VEMLO were similar (Table 4).

Table 5 shows the results of the sensitivity analysis when the cohort was selected from a simulated overall population.
This simulation scenario allowed the prevalence of influenza infection in the cohort to differ from the prevalence in the
overall population. When all vaccinations occurred prior to the study, V̂EMLH = 0.480 (95% CI, 0.344-0.615), V̂EMLC =
0.727 (95% CI, 0.662-0.791), and V̂EMLO = 0.614 (95% CI, 0.551-0.677). When vaccinations occurred prior to and during
the study, V̂EMLH = 0.469 (95% CI, 0.334-0.604), V̂EMLC = 0.722 (95% CI, 0.648-0.796), and V̂EMLO = 0.607 (95% CI,
0.544-0.671) (Table 5). The biases of VE estimates when the cohort was selected from a larger overall population were
very similar to the original simulations in which only the cohort was simulated (Tables 5 and 3, respectively).
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TABLE 5 Vaccine effectiveness (VE) estimates from a random sample drawn from a larger population from
200 simulated influenza outbreaks

Scenario Value VEMLH VEMLC VEMLO

True 0.476 0.746 0.605
All vaccinations (50%) Estimate 0.480 (0.344, 0.615) 0.727 (0.662, 0.791) 0.614 (0.551, 0.677)
occurred prior to the Bias 0.004 −0.019 0.009
study SE (Empirical) 0.069 0.033 0.032

SE (Bootstrap) 0.065 0.032 0.030
True 0.469 0.745 0.604

Vaccinations occurred Estimate 0.469 (0.334, 0.604) 0.722 (0.648, 0.796) 0.607 (0.544, 0.671)
prior to the study (25%), Bias 0.000 −0.023 0.003
in month 1 (15%), and SE (Empirical) 0.069 0.038 0.032
in month 2 (10%) SE (Bootstrap) 0.070 0.037 0.032

Bias of VE from a sample population randomly selected from a larger population. VEMLH, VEMLC, and VEMLO denote VE estimates
using the maximum likelihood approach against household, community, and overall transmission, respectively. True VE was
calculated from the overall population. Vaccine effectiveness estimates were obtained from 200 simulations performed under
two different vaccination scenarios. Standard errors (SEs) were calculated empirically and by parametric bootstrap.

TABLE 6 Transmission parameter estimates from the Household Influenza Vaccine Effectiveness study

Value 𝛽0 𝛽1 𝛾0 𝛾1

Estimate (95% CI) 0.013 (0.008, 0.019) 0.013 (0.005, 0.021) 0.202 (0.159, 0.245) 0.143 (0.081, 0.187)
SE (Hessian) 0.003 0.003 0.032 0.026
SE (Bootstrap) 0.003 0.004 0.022 0.027

Abbreviations: CI, confidence interval; SE, standard error. Maximum likelihood transmission parameter estimates for the
Household Influenza Vaccine Effectiveness study (2012-2013). Transmission parameters were defined as follows: 𝛽0-household,
unvaccinated; 𝛽1-household, vaccinated; 𝛾0-community, unvaccinated; and 𝛾1-community, vaccinated.

3.3 A real-life example
Estimates of transmission parameters from the HIVE study are shown in Table 6. The daily transmission probability
from an infectious household contact to an unvaccinated susceptible is 0.013 (95% CI, 0.008-0.019) and to a vaccinated
susceptible is 0.013 (95% CI, 0.005-0.021). The transmission rate from all daily infectious community contacts to an unvac-
cinated susceptible is 0.202 (95% CI, 0.159-0.245) and to a vaccinated susceptible is 0.134 (95% CI, 0.081-0.187) (Table 6). A
transmission rate of 0.202 (0.134) means that, on average, 20.2% (13.4%) of unvaccinated (vaccinated) persons who make
contacts with infectious persons on a given day will become infected. The lower estimated transmission rate in the com-
munity to vaccinated individuals compared to unvaccinated individuals suggests that there is at least a small protective
effect of vaccination against community-acquired influenza infection. The SE estimates were obtained using the Hes-
sian matrix from the maximum likelihood procedure and using parametric bootstrap. The bootstrap SE estimates were
similar to the Hessian matrix SE estimates (Table 6). Our simulated frequencies of cases per household size (Table A1)
were a good match to the observed frequencies (Table A2) suggesting that our model captures the dependency between
household size and attack rate.

Estimates of household, community, and overall VEs are presented in Table 7. The VE point estimates indicated
significant protection against community-acquired influenza infection (0.336, 95% CI, 0.066-0.606), and nonsignificant
protection against household-acquired (0.052, 95% CI, −0.754-0.858) and overall (0.250, 95% CI, −0.019-0.519) influenza
infection (Table 7).

We compared our VE estimates to results found by Ohmit et al10 using unadjusted and adjusted hazard rate ratios
(Table 8). The adjusted models adjusted for age in months and documentation of high-risk health status.10 Our point
estimate of VE against household-acquired influenza was substantially lower (by more than 0.25) than the estimates
found by Ohmit et al.10 Our point estimate of VE against community-acquired influenza infection was slightly higher
than the estimates in the original paper, and we were able to detect a significant protective effect of vaccination against
overall influenza infection across all study participants. The original paper did not detect a significant protective effect
of the vaccine from any source using either the unadjusted or adjusted model (Table 8). We estimated overall VE lower
than both the unadjusted and adjusted estimates. Our method produced 95% CIs that were slightly wider for household
VE but narrower than those reported in the original study for community and overall VE.
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TABLE 7 Maximum likelihood estimates of vaccine effectiveness (VE) and confidence
intervals (CI) from the Household Influenza Vaccine Effectiveness study

Value VEMLH VEMLC VEMLO

Estimate (95% CI) 0.052 (−0.754, 0.858) 0.336 (0.066, 0.606) 0.250 (−0.019, 0.519)
SE 0.411 0.138 0.137

Abbreviation: SE, standard error. Maximum likelihood VE estimates and 95% confidence intervals for the House-
hold Influenza Vaccine Effectiveness study (2012-2013). VEMLH, VEMLC, and VEMLO denote VE estimates using
the maximum likelihood approach against household, community, and overall transmission, respectively.

TABLE 8 Vaccine effectiveness (VE) estimates based on hazard rate ratios
and confidence intervals from the Household Influenza Vaccine Effectiveness
study reported by Ohmit et al10

Model VEH VEC VEO

Unadjusted 0.31 (−0.73, 0.73) 0.27 (−0.13, 0.54) 0.30 (−0.09, 0.55)
Adjusted 0.37 (−0.73, 0.77) 0.30 (−0.09, 0.55) 0.43 (−0.18, 0.72)

VE point estimates and 95% confidence intervals from Ohmit et al. using both the unad-
justed and adjusted hazard rate ratio. The adjusted models adjusted for age in months
and documentation of high-risk health status.10VEH, VEC, and VEO denote VE estimates
against household, community, and overall transmission, respectively.

4 DISCUSSION

We have presented a probability model and accompanying maximum likelihood procedure to estimate VE against
household- and community-acquired influenza infection from MH studies. Our method first estimates source-specific
transmission parameters that characterize the daily probability of infection. We use these transmission parameters to esti-
mate the probability of influenza infection throughout the study and estimate VE against transmission of influenza from
the household and from the community. Previous methods that estimate source-specific VE use final count data that do
not take into account the time of infection.14,15,21 Our approach improves upon these methods by incorporating time to
event data, which allows for variation in influenza prevalence and timing of vaccination to be incorporated into estimates
of VE. We used a stochastic agent-based simulation program to evaluate the bias and precision of our estimates.

Under our model assumptions, our method estimated the transmission parameters and VE close to the truth for 2 differ-
ent vaccination scenarios (Tables 2 and 3). Transmission parameter estimates were very similar regardless of vaccination
scenario. The SEs were calculated empirically, using the Hessian matrix, and using a parametric bootstrap procedure.
In all scenarios, bootstrap SEs were close to empirical SEs indicating that the bootstrap procedure performs well and is
appropriate for the estimation of SE when analyzing real data (when estimation of SE empirically is not possible). Cov-
erage probabilities of greater than or equal to 95% for all estimates of VE suggest that our method performs well. For
estimates of VE against community-acquired influenza when all vaccinations occurred prior to the study, the coverage
probability was slightly lower (92%) suggesting that our method produces CIs that are too narrow for this estimate.

We developed a similar likelihood method under the assumptions that the source of infection (household or commu-
nity) is known. We found that the estimates and their standard deviations were similar to those we obtained without this
assumption. Hence, we conclude that knowing the source of infections does not substantially improve the VE estimates.

Results from our sensitivity analyses suggest that our maximum likelihood approach provided estimates of source spe-
cific VE with small bias and SE when the length of the latent and infectious periods are not constant and the mean is
correctly specified. When the mean length of the latent and infectious periods were misspecified, our results suggest that
caution should be used when using the maximum likelihood procedure to estimate community-acquired influenza when
vaccination occurs during the study, as the estimates may be moderately biased if the mean lengths of the latent and infec-
tious periods are misspecified. However, the misspecification of the mean length of the latent and infectious periods had
little impact on SE of VE estimates.

Allowing the prevalence of influenza infection to differ in a randomly sampled cohort compared to the overall pop-
ulation had little impact on the bias of source-specific VE estimates (Table 5) indicating that the maximum likelihood
approach is robust to differences in the prevalence of influenza between the study cohort and overall population.
To investigate the bias of VE estimates when the sample population is a small fraction the overall population, we
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performed an additional sensitivity analysis in which we simulated an overall population of 10 100 people with a sam-
ple population of 1000 people (results not shown). We saw no change in the amount of bias when the cohort was
a smaller fraction of the overall population. Under the assumption that the cohort is a random sample of the over-
all population, we would expect the results to be similar regardless of the size of the overall population relative to
the cohort.

It is well known that not all individuals infected with influenza develop an ARI.26 However, little is known about the
proportion of asymptomatic individuals in a given influenza season. One study estimated that approximately 67% of
individuals infected with influenza develop symptoms,26 while other studies have estimated that as few as 23%27 or as many
as 84%28 of influenza-infected individuals develop symptoms. Despite the lack of symptoms, asymptomatic individuals
are still infectious however, less so than symptomatic individuals.26 Little is known about the relative infectiousness of
asymptomatic individuals compared to symptomatic individuals. While asymptomatic individuals are considered less
infectious because they are not shedding as much virus as symptomatic individuals,29 asymptomatic may make more
contacts while infectious than their symptomatic counterparts because they do not realize they are infected. Due to the
many unknowns surrounding asymptomatic influenza infections, we did not include asymptomatic individuals in our
sensitivity analyses. It will be important in future work to assess the impact of asymptomatic individuals in the population
on VE estimates.

We applied our method to data from the HIVE study during the 2012-2013 influenza season10 (Table 7). Our VE point
estimates for household and overall influenza infection were lower than the point estimates found in the original study
(Table 8) using unadjusted and adjusted hazard rate ratios. This difference in point estimates is likely due to the fact
that our method does not require source of infection to be known, and in the case of the adjusted estimates, does not
control for potential confounders, such as health status and age. Our estimate of community VE was similar to the
original estimates, but we were able to detect a significant protective effect of vaccination against community-acquired
influenza infection across all study participants (Table 7). Ohmit et al10 found no significant protective effect of vaccination
for overall, household- and community-acquired influenza infection across all study participants using the hazard rate
ratio (Table 8).

Our probability model makes many simplifying assumptions about influenza disease progression. In future work, we
plan to relax some of our model assumptions to more realistically model the influenza disease process. First, we would
like to allow for strata within the population, particularly age groups. Previous research indicates that transmission of
influenza is different from child to child, child to adult, adult to child, and adult to adult.30 Additionally, age has been
identified as an important risk factor associated with influenza transmission in which children and the elderly are more
susceptible to infection than young adults. Very young children and older adults are also more susceptible to complications
from infection. The addition of strata requires additional assumptions about the contact patterns of individuals in the
same stratum and between strata. Previous studies have found that contacts made by children and adolescents are more
assortative than other age groups. The same study found that individuals aged 55 years and older had the least assortative
contact patterns.31 We plan to extend our method to incorporate these additional contact patterns. We also plan to use
stratification to reduce confounding bias.

Second, we plan to extend our probability model for the all-or-none protection vaccination model in which a propor-
tion of vaccinated individuals are completely protected from infection and the remaining vaccinated individuals are not
protected at all.20,21

Finally, we plan to analyze data from different influenza seasons and different settings to better determine the effective-
ness of influenza vaccination against household transmission compared to community transmission. One study during
the 2010-2011 influenza season found that VE against household and community transmission were different.11 How-
ever, more recent studies have not observed this difference in VE against household- and community-acquired influenza
infection.6,10 Further research is required to elucidate the impact of contact dynamics within populations of households
on influenza VE; however, our model and maximum likelihood procedure provide a framework to begin distinguishing
influenza VE from different sources of infection.
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