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Supplementary S1

Details of asymptotic metaUSAT p-value computation

Without loss of generality let us assume a single study with K traits. Recall the meta-

MANOVA and the SSU test statistics:

TmetaMANOVA = Z ′R̂
−1
Z

a∼ χ2
K

TSSU = Z ′Z
approx∼ aχ2

d + b

For metaUSAT, we first consider the weighted statistic Tω = ωTmetaMANOVA+(1−ω)TSSU,

where ω ∈ [0, 1] is the weight. Both metaMANOVA and SSU are special cases of the class

of statistics Tω. Under H0, for a given weight ω, Tω is approximately a linear combination

of chi-squared distributions. The computation of p-value pω of the test statistic Tω does

not require independence of the statistics TmetaMANOVA and TSSU. A detailed explanation

of the determination of pω is provided below.

Observe that, for a given weight ω, one can write

Tω = ωTmetaMANOVA + (1− ω)TSSU = Z ′
(
ωR̂

−1
+ (1− ω)IK

)
Z

where IK is the identity matrix of order K and the vector of univariate scores Z has

mean 0, estimated variance Cov(Z) = R̂, and has an asymptotic K-variate normal
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distribution. Denote Aω = ωR̂
−1

+ (1− ω)IK . Let P be a K ×K orthonormal matrix

that converts Bω = Cov(Z)1/2AωCov(Z)1/2 = ωIK + (1 − ω)Cov(Z) to the diagonal

form Γω = diag(λ1, ...λK), where λ1 ≥ 0, ..., λK ≥ 0 (see Liu et al., 2009; Ray et al.,

2016, for example). Essentially, λ1, ..., λK are the non-negative eigen values of Bω, i.e.,

Γω = PBωP
′. The weighted statistic Tω can, then, be expressed as a non-negative

quadratic form:

Tω = Z ′AωZ = V ′ΓωV =
K∑
j=1

λjχ
2
hj

(δj) (S1)

where V = PCov(Z)−1/2Z
a∼ N(0, IK), and hj = 1, δj = 0 for all j = 1, 2, ..., K. For

a given ω ∈ [0, 1], the p-value pω of the statistic Tω can, thus, be calculated numerically

by Davies (1980) algorithm or by moment-matching using Liu et al. (2009) algorithm.

Both of these algorithms are implemented in the R package CompQuadForm (Duchesne

and de Micheaux, 2010). Particularly, Liu et al. (2009) approximates the upper tail

probability as

pω = P (Tω > tω) ≈ P
(
χ2
l (δ) > t∗ωσχ + µχ

)
(S2)

where tω is the observed value of Tω statistic, t∗ω = (tω − E(Tω))/
√

Var(Tω), µχ =

E (χ2
l (δ)) = l + δ, σχ =

√
Var (χ2

l (δ)) =
√

2(l + 2δ). The parameters δ and l are chosen

such that the skewness of Tω and χ2
l (δ) are same and the difference between the kurtoses

of Tω and χ2
l (δ) is minimized. Lee et al. (2012) modified the Liu et al.’s algorithm to

match the kurtosis instead of skewness. We used Davies’ algorithm implemented in R

function davies() from CompQuadForm.

A priori the choice of weight ω is not known. We propose our unified test metaUSAT:

TmetaUSAT = min
0≤ω≤1

pω

Thus, metaUSAT is not exactly the best weighted combination of metaMANOVA and

SSU but is the minimum of the p-values of the different weighted combinations. For
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practical implementations of metaUSAT, we use a grid of 11 ω values: {ω1 = 0, ω2 =

0.1, ..., ω10 = 0.9, ω11 = 1}. A finer grid of ω values does not make any meaningful

difference in metaUSAT’s p-value.

To find the p-value of our metaUSAT test statistic, we need the null distribution,

which does not have a closed-form. We propose an approximate p-value calculation using

a one-dimensional numerical integration, similar to what Ray et al. (2016) proposed for

USAT. This makes metaUSAT suitable for application on a GWAS scale. Observe that

the p-value of statistic TmetaUSAT is

pmetaUSAT = P (TmetaUSAT ≤ tmetaUSAT) = 1− P (TmetaUSAT ≥ tmetaUSAT)

= 1− P
(

min
ω
pω ≥ tmetaUSAT

)
= 1− P

(
1−min

ω
pω < 1− tmetaUSAT

)
= 1− P

(
max
ω

(1− pω) < 1− tmetaUSAT

)
= 1− P ({1− pω1 < 1− tmetaUSAT}, . . . , {1− pω11 < 1− tmetaUSAT})

= 1− P
(
{(1− pω1)

th quantile < (1− tmetaUSAT)th quantile}, . . . ,

{(1− pω11)
th quantile < (1− tmetaUSAT)th quantile}

)
= 1− P (Tω1 < qmin(ω1), ..., Tω11 < qmin(ω11))

= 1− P
(
TSSU < min

ω

qmin(ω)− ωTmetaMANOVA

1− ω

)
= 1−

∫
FTSSU|TmetaMANOVA

(
δω(x)|x

)
fTmetaMANOVA

(x)dx

where tmetaUSAT is the observed value of metaUSAT test statistic for a given dataset,

qmin(ωb) is the (1− tmetaUSAT)-th percentile of the distribution of Tωb
for a given ω = ωb,

FTSSU|TmetaMANOVA
(.|x) is the conditional cdf of SSU statistic given metaMANOVA statistic,

fTmetaMANOVA
(.) is the pdf of metaMANOVA test statistic, and δω(x) = minω∈{ω1,...,ω11}

qmin(ω)−ωx
1−ω .

The evaluation of qmin(ω) for a given ω can be done numerically using Liu et al. (2009)’s

algorithm or Lee et al. (2012)’s modified Liu algorithm. Wu and Pankow (2016) showed

that both these methods can poorly approximate tail probabilities when it comes to

significance level of the order of 10−6. So, Wu et al. (2016) proposed minimizing the

standardized (J − 1)-th and J-th moment differences. Wu et al. found that J = 12 can
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accurately compute small tail probabilities under the null hypothesis while J = 6 is a

suitable choice for approximating tail probabilities under the alternative. The cost of

higher accuracy for these methods is time. To balance accuracy and computation time,

we use a combination of two algorithms. When tmetaUSAT > 10−4 (scenario where we

expect relatively large tail probability), we use Liu et al.’s method while for the other,

we use Wu et al.’s algorithm with J = 6.

Recall that TSSU and TmetaMANOVA are two quadratic forms (QF), which are not

independently distributed. The exact joint distribution of TSSU and TmetaMANOVA is

too complicated to compute (Khatri, 1980; Khatri et al., 1977). Our literature search

did not yield any computationally feasible method for approximating the distribution

FTSSU|TmetaMANOVA
(.|TmetaMANOVA = x) required to calculate pmetaUSAT. In such a scenario,

a simple and straightforward approximation seems to be the assumption of independence

and thereby we get the approximate p-value

pmetaUSAT ≈ 1−
∫ ∞
0

FTSSU
(
δω(x)|x

)
fTmetaMANOVA

(x)dx

where FTSSU(.) is the cdf of SSU test statistic. As demonstrated by metaUSAT type I

error analysis, this approximation works well for low error levels. However, at very strin-

gent error levels, this approximation, combined with numerical approximation involved in

the afore-mentioned algorithms for evaluating integrals, can slightly inflate metaUSAT’s

type I error. In this context, it is worth noting that we have not assumed TSSU and

TmetaMANOVA to be independent throughout. For example, the information on their de-

pendence has been incorporated in the calculation of pω (p-value of weighted statistic

Tω). The independence assumption has been made only in the last step of metaUSAT

p-value calculation.
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Supplementary S2

Details of empirical metaUSAT p-value calculation

In our type I error analysis, we observe slightly inflated type I errors for all methods (Table

1) except SHom. We note that type I error of metaUSAT is worst at α = 5 × 10−7. For

real data, this can be a concern for SNPs that only metaUSAT detects as significant by

a narrow margin with respect to the significance threshold. For example, in our analysis

of the combined METSIM and T2D-GENES datasets, metaUSAT exclusively reports 4

significant SNPs (of which 3 are independent) that metaMANOVA fails to find (Table

4). To alleviate any concern that these metaUSAT findings may be a consequence of

inflated type I error at the stringent genome-wide threshold, we describe here a Monte

Carlo simulation based approach for estimating empirical p-values of metaUSAT.

Without loss of generality, we explain the method for a single study with K traits,

which can be straightforwardly extended to multiple studies. Observe that the vector

of univariate summary statistics Z has an asymptotic multivariate normal distribution

under the null: Z
a∼ NK(0,R). Firstly, we draw B independent samples of vector Z

under the null. Denote the b-th sample (a vector) as Zb = (Z1,b, . . . , ZK,b)
′, b = 1, 2, ..., B.

Note that the null distribution of Z is not variant-specific. Hence, we need to draw these

B samples only once and use them for any number of variants/SNPs for a given study.

If the sample sizes for the traits vary in the original dataset, we recommend weighting

the summary statistics by sample size (as explained in the main text). Consequently,

we need to pre-multiply and post-multiply the covariance matrix R by the diagonal

weight matrix W = diag{√n1, ...,
√
nK}, where nk is the sample size for the k-th trait,

k = 1, 2, ..., K. Let the weighted covariance matrix be Rw, and the weighted samples be

Zw
1 , ...,Z

w
b , ...,Z

w
B.

Secondly, for the b-th sample, we calculate only the metaUSAT statistic: TmetaUSAT,b =

minω∈{0,0.1,...,0.9,1} pω,b, where pω,b is the p-value of Tω,b = ωZw′

b (Rw)−1Zw
b +(1−ω)Zw′

b Zw
b

for a given choice of ω ∈ {0, 0.1, 0.2, ..., 0.8, 0.9, 1}. Finally, if the metaUSAT statistic for

the test of association of a particular variant/SNP in the original dataset is TmetaUSAT,

5



then the empirical p-value of metaUSAT for this variant/SNP is calculated as

pempmetaUSAT =
1 +

∑B
b=1 I

(
|TmetaUSAT,b| < |TmetaUSAT|

)
1 +B

where I(.) is the indicator function.

For computing empirical metaUSAT p-values for the 3 independent SNPs detected

solely by metaUSAT from the combined METSIM and T2D-GENES studies (Table 4), we

chose B = 8.5× 109 (the asymptotic metaUSAT p-values are > 10−9). For the stringent

genome-wide threshold 5 × 10−8, we observe a p-value inflation (defined as the ratio of

empirical p-value to asymptotic p-value) of the order of 1.5× to 3× − something we also

observed for error level α = 5× 10−7 in our simulation study (Table 1). It looks like we

need not calculate empirical metaUSAT p-values for all variants to alleviate concerns of

inflated association signals; instead we can just focus on the handful of variants that have

p-values just crossing the chosen threshold.
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Supplementary S3

Simulation Experiments: Additional Details, Figures & Tables

Calculation of empirical power based on corrected critical value. To compute

corrected critical threshold for each method at significance level α, we generated 105 null

replicates and obtained univariate summary statistics. Using these null summary statis-

tics, we also obtain 105 null statistics for each of SHom, SHet, minP, aSPU, metaMANOVA

and metaUSAT methods. For a given method, these null statistics give the empirical null

distribution of the test statistic. Specifically, for SHom, SHet and metaMANOVA, the

(1− α)-th sample quantile is calculated from the 105 null statistics. Empirical power at

level α is calculated as the proportion of non-null datasets with test statistics exceeding

the (1 − α)-th sample quantile. On the other hand, for minP, aSPU and metaUSAT

(methods with p-value type test statistics), the α-th sample quantile is calculated from

the 105 null statistics. Empirical power at level α is, then, calculated as the proportion

of non-null datasets with test statistics that could not exceed the α-th sample quantile.
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(c) Trait correlation structure: Simulation 2
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(d) Trait correlation structure: Simulation 3

Figure S1: (a) The correlation matrix of the 4 lipid traits from METSIM Study. This correlation ma-
trix Rmetsim is used to simulate 4 correlated traits in Simulations 2 and 3. (b) Estimated
correlation matrix of the lipid traits from the METSIM and the T2D-GENES studies. The
non-zero correlations between studies are induced by overlapping samples. (c) The estimat-
ed correlation matrix for Simulation 2 with two independent studies. (d) The estimated
correlation matrix for Simulation 3 (two studies with overlapping samples), which is similar
to the correlation structure 1(b) of the METSIM and T2D-GENES studies.
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Figure S2: Simulation 1: Nominal power curves of SHom, SHet, metaMANOVA, metaUSAT, minP and
aSPU at significance level α = 10−4 when an AR1(ρ) correlation structure of the traits is
considered. Power estimates are based on 1, 000 datasets with 1, 000 unrelated samples.
Each sample has K = 5 or 10 traits with correlation parameter ρ = 0.2, 0.4 or 0.6.
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Table S1: Simulation 2: Type I error estimates at various levels α. This table lists the type I error
estimates divided by the significance level α. The ideal value for any cell is 1. Estimates are
based on 107 null datasets. Each dataset consists of two independent studies having sample
size 1, 000. Estimates for aSPU are not provided since it is computationally very intensive
for 107 datasets.

Method α
10−2 10−3 10−4 10−5 2.5× 10−6

SHom 1.02 1.03 1.08 1.19 1.48
SHet 1.04 1.13 1.32 1.62 2.16
minP 1.04 1.10 1.15 1.37 1.44

metaMANOVA 1.03 1.08 1.14 1.30 1.32
metaUSAT 0.89 1.00 1.21 1.42 1.48

Table S2: Simulation 3: Type I error estimates at various levels α. This table lists the type I error
estimates divided by the significance level α. The ideal value for any cell is 1. Estimates are
based on 107 null datasets. Each dataset consists of two studies having sample size 1, 000,
where 200 individuals are common to both studies. Estimates for aSPU are not provided
since it is computationally very intensive for 107 datasets.

Method α
10−2 10−3 10−4 10−5 2.5× 10−6

SHom 1.03 1.11 1.16 1.15 1.32
SHet 1.09 1.22 1.49 1.71 1.64
minP 1.03 1.09 1.14 1.30 1.49

metaMANOVA 1.07 1.16 1.22 1.15 1.20
metaUSAT 0.96 1.11 1.40 1.58 2.04
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Supplementary S4

Additional Simulation Experiment I: Misspecified R

In this experiment, we aim to study the effects of misspecified estimates of R on

the type I error behavior of all the summary statistic based tests discussed in the main

manuscript (except aSPU). We believe that validity of test statistics directly incorporating

R will be heavily affected while test statistics that indirectly incorporate R only through

the null distribution will be much less affected. We assume 5 continuous traits for a single

study (Simulation 1). In particular, each study has n = 1, 000 unrelated individuals,

each measured for K = 5 traits and a bi-allelic SNP with MAF 0.2 at Hardy-Weinberg

Equilibrium. We use a multivariate normal model with exchangeable correlation R(ρ)

with pairwise correlation ρ ∈ {0.2, 0.4, 0.6}. Since we are focusing on type I error behavior

of tests, the genetic effects are 0 for all 5 traits. We simulate 107 such datasets/replicates.

To implement metaUSAT and the other tests, we need to estimate the trait correlation

matrix R. In order to study the effects of misspecified R, we simulate an extreme scenario:

104 non-null datasets where the SNP is associated with all 5 traits. We assumed that h%

of the total trait variance is explained by the SNP, where we varied h ∈ {0.5, 5, 10}. Using

the univariate summary statistics for these 104 non-null SNPs, we calculated the sample

covariance matrix R̂ and used it as the estimate for R. This estimate is subsequently used

in the test statistics for metaUSAT and the other tests to analyze the 107 null datasets

described earlier. Table S3 shows ratio of type I error estimates from misspecified R

estimated from SNPs with h > 0 to those estimated from null SNPs with h = 0 (the

correct way of estimating R).

Table S3 shows us that the extent to which misspecification of R affects the validity of

summary-statistic-based multivariate tests depends on the strength of association of the

non-null SNPs used to estimate R as well as on the test statistic. In particular, we observe

that the type I error estimates for metaUSAT and minP are largely unaffected (when type

I error estimates for non-zero h are compared against h = 0). metaMANOVA and SHet

have inflated type I errors, where the degree of inflation increases with the strength of

association (of SNPs used to estimate R). On the other hand, SHom is increasingly
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conservative (i.e., deflated type I error) with increasing strength of association of the

non-null SNPs used to estimate R.

In this context, it is important to note that our conclusion is based on a limited

simulation study, where we varied only a single parameter (the proportion of trait variance

explained by the SNP for all traits). It is beyond the scope of this paper to explore the

effect of misspecification of R in any more detail. For traits that are not highly polygenic,

we expect most SNPs in a GWAS to have no effect on any trait under study, and hence

the possibility of misspecification of R (and its ramification) seems negligible for variants

that are not rare. For more polygenic traits, we expect validity of metaUSAT and minP

to be mostly unaffected compared to other existing tests.

Additional Simulation Experiment II: Binary traits

Apart from continuous traits, we also simulated binary traits for two independent

studies (Simulation 2) and for two studies with shared individuals (Simulation 3). In

both scenarios, we first simulate continuous traits as before and then convert them to

binary traits using a chosen threshold described below.

First, we consider two independent studies of 3, 000 independent individuals. We

increased the sample size compared to Simulation 2 with continuous traits to have mean-

ingful power differences between methods when analyzing binary traits. Each individual

has measurements on a single SNP with MAF 0.1 and 4 traits inspired by the METSIM

lipids data on total cholesterol (TC), high-density lipoprotein (HDL), low-density lipopro-

tein (LDL) and triglycerides (TG). We use the trait correlation matrix Rmetsim (Figure

S1(a)) to simulate 4 traits using the model described in Simulation 1. We consider 5

association scenarios: (i) only TC is associated, (ii) TC and LDL are associated, (iii) TC,

LDL and TG are associated, (iv) all 4 traits are associated, and (v) none of the traits

is associated. As before, the SNP explains 0.5% of the trait variance when associated.

We assume TC, LDL and TG have negative genetic effects while HDL has positive effect

when associated. We simulate two study types: “homogeneous” and “heterogeneous”.

For “homogeneous” studies, the association pattern of the traits is same across both s-
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tudies. For “heterogeneous” studies, we assume association scenarios (i)-(iv) in the first

study while the traits are not associated (scenario (v)) in the second study. We converted

these traits to binary traits as follows: for trait 1, we picked a cutoff corresponding to

its 50th quantile; if the continuous trait value exceeds this cutoff, the binary trait value

is 1, otherwise 0. Similarly, for traits 2, 3 and 4, we chose cutoffs corresponding to 60th,

70th and 80th quantiles respectively. We analyze each binary trait in each study using

generalized linear model and obtain the summary statistics. Thus, for the given SNP

and a given replication, we have 4 summary statistics (corresponding to 4 binary traits)

from each of the 2 studies. As before, we consider 1, 000 replications (non-null datasets)

for computing statistical powers.

Next, we consider two studies of 3, 000 independent individuals out of which 600

individuals are common to both studies. We keep everything the same as in the afore-

mentioned scenario (two independent studies with binary traits) except that the two

studies now have 600 overlapping individuals. For “homogeneous” studies, we assume

the association pattern is same across the two studies. For “heterogeneous” studies,

excluding the overlap, we assume the association scenarios (i)-(iv) in one study while

the traits are not associated (scenario (v)) in the other study. For individuals common

to both studies, we assume scenario (v). As before we convert the continuous traits to

binary traits, analyze each trait from each study individually using generalized linear

model (logistic model) to obtain summary statistics. 1, 000 such replicates are considered

for computing statistical powers.
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Table S4: Simulation 2 (binary traits): Comparison of empirical powers (based on corrected critical
values) for two independent studies at level α = 10−4 when the traits are binary. Power is
estimated based on 104 non-null datasets. For a given association scenario, the method with
highest power is bold-faced and the method with lowest power is italicized.

Study No. of traits Meta-analysis method
type associated SHom SHet minP aSPU metaMANOVA metaUSAT

1 0.000 0.718 0.203 0.074 0.916 0.848
Homogeneous 2 0.030 0.486 0.271 0.463 0.500 0.526

3 0.735 0.795 0.345 0.889 0.763 0.822
4 0.011 0.967 0.443 0.937 0.956 0.960
1 0.000 0.213 0.104 0.020 0.360 0.235

Heterogeneous 2 0.002 0.073 0.148 0.088 0.097 0.100
3 0.050 0.179 0.185 0.211 0.196 0.247
4 0.001 0.482 0.261 0.389 0.472 0.475

Table S5: Simulation 3 (binary traits): Comparison of empirical powers (based on corrected critical
values) for two studies with overlapping samples at level α = 10−4 when the traits are
binary. Power is estimated based on 104 non-null datasets. For a given association scenario,
the method with highest power is bold-faced and the method with lowest power is italicized.

Study No. of traits Meta-analysis method
type associated SHom SHet minP aSPU metaMANOVA metaUSAT

1 0.000 0.520 0.188 0.091 0.800 0.726
Homogeneous 2 0.018 0.263 0.258 0.458 0.313 0.465

3 0.586 0.577 0.340 0.813 0.575 0.772
4 0.009 0.895 0.422 0.930 0.875 0.934
1 0.000 0.059 0.030 0.006 0.111 0.073

Heterogeneous 2 0.000 0.015 0.043 0.025 0.027 0.027
3 0.009 0.041 0.061 0.062 0.061 0.071
4 0.000 0.158 0.088 0.135 0.177 0.176
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Supplementary S5

METSIM Study: Additional Figures and Tables

Table S6: METSIM Study: Joint meta-analysis of all lipid traits. This table lists the SNPs detected by
both metaMANOVA and metaUSAT. Only the independent SNPs (pairwise distance > 500
kb and r2 < 0.1) are listed. Genome-wide p-value threshold of 5 × 10−8 has been used to
declare significance. The known association results are based on previously reported GWAS
associations within 500 kb of and r2 > 0.7 with any of these SNPs from the NHGRI GWAS
catalog and our in-house GWAS catalog.

p-value
chr position rsID meta- meta- Known association result

USAT MANOVA
1 55085141 rs17395160 2.4× 10−10 1.6× 10−10 LIPO-fractions, Lipids
1 55224773 rs116816976 7.4× 10−14 1.3× 10−13 LIPO-fractions, Lipids
1 55505647 rs11591147 2.3× 10−33 3.7× 10−32 Lipids
1 55518467 rs2495477 5.4× 10−14 7.3× 10−14 LIPO-fractions, Lipids
1 55538552 rs10493176 3.1× 10−10 2.0× 10−10 LIPO-fractions, Lipids
1 55953290 rs2649629 9.5× 10−9 5.9× 10−9 APOA1B, LIPO-fractions, Lipids
1 62980607 rs10889337 5.2× 10−9 3.3× 10−9 Lipids
2 21225281 rs1042034 3.0× 10−8 1.8× 10−8 Amino Acids, LIPO-fractions, Lipids
2 21277922 rs6548010 1.3× 10−12 1.0× 10−10 APOA1B, LIPO-fractions, Lipids
2 27730940 rs1260326 5.1× 10−14 6.6× 10−14 Amino Acids, LIPO-fractions, Lipids
8 19816934 rs301 4.1× 10−10 2.7× 10−10 Lipids
8 126484526 rs2954026 4.8× 10−12 1.1× 10−11 Lipids
11 116648917 rs964184 2.2× 10−21 1.2× 10−20 Cardiovascular endpoints, Lipids
15 58678512 rs10468017 7.3× 10−34 1.2× 10−32 APOA1B, LIPO-fractions, Lipids
15 58723675 rs1800588 4.2× 10−29 4.4× 10−28 APOA1B, LIPO-fractions, Lipids
15 58855748 rs113298164 9.9× 10−9 6.2× 10−9 Lipids
16 56988044 rs173539 8.3× 10−60 1.6× 10−57 APOA1B, LIPO-fractions, Lipids
16 56992017 rs6499863 5.4× 10−9 3.4× 10−9 APOA1B, LIPO-fractions, Lipids
16 57006590 rs7499892 8.0× 10−38 1.9× 10−36 APOA1B, Lipids
16 57017319 rs1800777 1.9× 10−8 1.2× 10−8 APOA1B, LIPO-fractions, Lipids
19 10396336 rs3093032 5.1× 10−9 8.0× 10−9 Height
19 11202306 rs6511720 1.6× 10−29 1.8× 10−28 Lipids
19 19379549 rs58542926 3.8× 10−14 4.0× 10−12 Lipids, T2D
19 45242173 rs1531517 7.9× 10−10 5.1× 10−10 APOA1B, LIPO-fractions, Lipids
19 45373565 rs395908 2.3× 10−13 5.1× 10−13 Lipids
19 45395266 rs157580 4.5× 10−13 1.0× 10−12 APOA1B, LIPO-fractions, Lipids
19 45410002 rs769449 6.6× 10−14 1.1× 10−13 APOA1B, Fatty acids, LIPO-fractions
19 45412079 rs7412 3.0× 10−76 2.7× 10−73 APOA1B, LIPO-fractions, Lipids

‘LIPO-fractions’ stands for ‘lipoprotein fractions’.
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Supplementary S6

METSIM + T2D-GENES Studies: Additional Figures and Tables
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(a) Most significant p-value among univariate trait p-values
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(b) metaMANOVA p-values
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(c) metaUSAT p-values

Figure S3: METSIM+T2D-GENES Studies: Manhattan Plots. In figure (a), − log10(pmin) is plotted,
where for a given SNP, pmin is the minimum of p-values across all 4 lipids traits and across
both studies. In figures (b) and (c), − log10(pmetaMANOVA) and − log10(pmetaUSAT) are
plotted respectively, where all 4 lipid traits from both studies are jointly meta-analyzed. Red
solid line corresponds to GWAS threshold for significance. Bonferroni adjusted threshold is
used for the univariate analysis.
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Table S7: T2D-GENES + METSIM Studies: Meta-analysis of Total Cholesterol (TC). This table lists
the SNPs detected by both metaMANOVA and metaUSAT. Only the independent SNPs
(pairwise distance > 500 kb and r2 < 0.1) are listed. Genome-wide p-value threshold of
5 × 10−8 has been used to declare significance. The known association results are based on
previously reported GWAS associations within 500 kb of and r2 > 0.7 with any of these
SNPs from the NHGRI GWAS catalog and our in-house GWAS catalog.

p-value
chr position rsID meta- meta- Known association result

USAT MANOVA
1 55505647 rs11591147 1.4× 10−20 1.2× 10−19 Cardiovascular endpoints, LIPO-fractions, Lipids
1 55518467 rs2495477 4.1× 10−15 6.4× 10−14 Cardiovascular endpoints, LIPO-fractions, Lipids
1 55538552 rs10493176 1.8× 10−10 4.9× 10−10 Cardiovascular endpoints, LIPO-fractions, Lipids
2 21263900 rs1367117 3.3× 10−9 1.1× 10−8 Glycemic, Height, LIPO-fractions, Lipids, T2D
5 74651084 rs3846662 1.8× 10−8 1.1× 10−8 LIPO-fractions, Lipids
11 116662579 rs651821 1.2× 10−8 2.0× 10−8 APOA1B, LIPO-fractions, Lipids
19 11210912 rs2228671 9.6× 10−20 6.4× 10−19 Lipids
19 19379549 rs58542926 1.7× 10−12 2.3× 10−11 Lipids, T2D

‘LIPO-fractions’ stands for ‘lipoprotein fractions’.

Details of variants associated with TC found by both metaUSAT and metaMANOVA

(Table S7): rs11591147 (pmetaUSAT = 1.4 × 10−20), a missense variant on PCSK9 gene

in strongly associated with LDL (Willer et al., 2013) and is near known GWAS hit for

TC (Surakka et al., 2015). Two other variants on PCSK9 gene, rs2495477 (pmetaUSAT =

4.1 × 10−15) and rs10493176 (pmetaUSAT = 1.8 × 10−10), are near known GWAS hits for

cardiovascular endpoints (Kathiresan et al., 2009) and lipoprotein fractions (Kettunen

et al., 2012). rs1367117 (pmetaUSAT = 3.3 × 10−9), a missense variant on APOB gene, is

strongly associated with TC (Willer et al., 2013). rs3846662 (pmetaUSAT = 1.8 × 10−8),

a non coding transcript exon variant on HMGCR gene, and rs2228671 (pmetaUSAT =

9.6×10−20), a missense variant on LDLR gene, are associated with TC (Aulchenko et al.,

2009). rs651821 (pmetaUSAT = 1.2×10−8), a 5’-UTR variant on APOA5 gene, is associated

with lipid metabolism (Kettunen et al., 2012). Yet another SNP found to be associated

with TC is rs58542926 (pmetaUSAT = 1.7 × 10−12), a missense variant on CILP2 gene

(Surakka et al., 2015).
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Table S8: T2D-GENES + METSIM Studies: Meta-analysis of all 4 lipid traits. This table lists the
SNPs detected by both metaMANOVA and metaUSAT. Only the independent SNPs (pair-
wise distance > 500 kb and r2 < 0.1) are listed. Genome-wide p-value threshold of 5× 10−8

has been used to declare significance. The known association results are based on previously
reported GWAS associations within 500 kb of and r2 > 0.7 with any of these SNPs from the
NHGRI GWAS catalog and our in-house GWAS catalog.

p-value
chr position rsID/exmID meta- meta- Known association result

USAT MANOVA
1 55505647 rs11591147 1.7× 10−36 5.0× 10−34 Cardiovascular endpoints, LIPO-fractions, Lipids
1 55518467 rs2495477 5.5× 10−15 2.9× 10−13 Cardiovascular endpoints, LIPO-fractions, Lipids
1 55538552 rs10493176 4.6× 10−11 5.6× 10−10 Cardiovascular endpoints, LIPO-fractions, Lipids
2 27730940 rs1260326 5.7× 10−17 5.9× 10−16 Glycemic, Height, LIPO-fractions, Lipids, T2D
8 19819724 rs328 3.1× 10−8 2.9× 10−8 LIPO-fractions, Lipids
11 61570783 rs174547 3.7× 10−9 2.4× 10−9 Glycemic, LIPO-fractions, Lipids
11 116655600 rs35120633 2.8× 10−8 2.2× 10−8 APOA1B, LIPO-fractions, Lipids
11 116662579 rs651821 7.7× 10−18 9.1× 10−17 APOA1B, LIPO-fractions, Lipids
15 58723675 rs1800588 6.4× 10−30 6.1× 10−28 APOA1B, Fatty acids, LIPO-fractions, Lipids
16 56995236 rs1800775 9.2× 10−41 5.8× 10−38 APOA1B, LIPO-fractions, Lipids
16 57015091 rs5880 1.3× 10−13 1.0× 10−12 APOA1B, LIPO-fractions, Lipids
19 11210912 rs2228671 4.5× 10−26 2.2× 10−24 Lipids
19 19379549 rs58542926 7.2× 10−15 3.4× 10−10 Lipids, T2D

‘LIPO-fractions’ stands for ‘lipoprotein fractions’.

Details of variants associated with lipids found by metaUSAT alone (Table 4): rs2483205

(pmetaUSAT = 2.5× 10−8) is strongly associated with LDL and TC in the GLGC data. It

is near many known GWAS hits, which are associated with lipids (Surakka et al., 2015),

lipoprotein fractions (Kettunen et al., 2012), cardiovascular endpoints (Kathiresan et al.,

2009). The second SNP rs1367117, a missense variant on APOB gene (pmetaUSAT =

1.5 × 10−9), is strongly associated with 3 out 4 lipids traits (HDL, TC and TG) in the

GLGC data (Willer et al., 2013), and is well-known for its association with lipids (Surakka

et al., 2015; Teslovich et al., 2010). Lastly, the SNP rs2304130, a splice region variant on

ZNF101 gene (pmetaUSAT = 1.5× 10−9), is very strongly associated with all 4 lipid traits

in the GLGC data and is well known for its association with lipids (Kristiansson et al.,

2012). Observe that pmetaMANOVA for these SNPs are quite weak.
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