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Abstract17

Frozen and unfrozen surfaces exhibit different longwave surface emissivities with18

different spectral characteristics (Feldman et al. [2014]; Huang et al. [2016]), and out-19

going longwave radiation and cooling rates are reduced for unfrozen scenes relative to20

frozen ones. Here, physically-realistic modeling of spectrally-resolved surface emis-21

sivity throughout the coupled model components of the Community Earth System Model22

(CESM) is advanced, and implications for model high-latitude biases and feedbacks23

are evaluated. It is shown that despite a surface emissivity feedback amplitude that is, at24

most, a few percent of the surface albedo feedback amplitude, the inclusion of realistic,25

harmonized longwave, spectrally-resolved emissivity information in CESM1.2.2 reduces26

wintertime Arctic surface temperature biases from −7.2 ± 0.9 K to −1.1 ± 1.2 K, relative27

to observations. The bias reduction is most pronounced in the Arctic Ocean, a region for28

which Coupled Model Intercomparison Project version 5 (CMIP5) models (Taylor et al.29

[2012]) exhibits the largest mean wintertime cold bias (Flato et al. [2013]), suggesting that30

persistent polar temperature biases can be lessened by including this physically-based pro-31

cess across model components. The ice-emissivity feedback of CESM1.2.2 is evaluated32

under a warming scenario with a kernel-based approach, and it is found that emissivity33

radiative kernels exhibit water vapor and cloud-cover dependence, thereby varying spa-34

tially and decreasing in magnitude over the course of the scenario from secular changes in35

atmospheric thermodynamics and cloud patterns. Accounting for the temporally-varying36

radiative responses can yield diagnosed feedbacks that differ in sign from those obtained37

from conventional climatological feedback analysis methods.38

1 Introduction39

The IPCC Fifth Assessment Report found that both individual models and the multi-40

model average surface air temperatures across the poles were significantly colder than41

observed(Flato et al. [2013]). This bias is most pronounced in the Coupled Model Inter-42

comparison Project - Phase 5 (CMIP5) (Taylor et al. [2012]) multi-model distribution of43

Arctic Ocean wintertime surface air temperature (Flato et al. [2013]). This points to an44

underestimation of high-latitude warming by current climate models, which has profound45

implications both for the cryosphere and for lower latitudes (ACIA [2005]). This problem-46

atic situation should be rectified by identifying and fixing the sources of model error by47

including known physics and processes. There is growing awareness that the polar radia-48

tive energy balance is critically dependent on cloud cover and detailed cloud optical prop-49

erties but that these quantities are currently poorly constrained (Gettelman et al. [2010];50

Kay et al. [2012]; English et al. [2014]). In addition, deficiencies in our understanding of51

the polar radiative energy balance have been identified as contributing substantially to the52

under-estimation of polar climate change (Barton et al. [2014]).53

Much effort has been expended on understanding the role of ice-albedo feedback in54

describing these biases. Winton [2006] quantify the snow albedo feedback in relation to55

other feedbacks to determine its impact on Arctic amplification but found that the snow56

albedo feedback has a negligible influence. To constrain snow albedo feedback observa-57

tionally, Qu & Hall [2006] produce a model for the shortwave surface albedo kernel by58

developing an analytic model of the planetary albedo dependence on surface albedo. In59

a follow-up paper, the same authors derive physical models to describe the second factor60

in the snow albedo feedback expression: the sensitivity of snow albedo to to temperature61

change (Qu & Hall [2007]). Flanner et al. [2011] quantify the snow albedo feedback using62

radiative kernels (Soden et al. [2008]) and northern hemisphere satellite observations of63

albedo and surface temperature change between 1979 and 2008. In comparison to model64

projections of climatological feedbacks, they found that their observational estimate of65

the snow albedo feedback mean was more than twice the mean value from the Coupled66

Model Intercomparison Project version 3 (CMIP3) models (Meehl et al. [2007]). Colman67
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[2013] applied surface albedo radiative kernel techniques to CMIP3 models and regressed68

ice-albedo feedbacks to explore northern and southern hemisphere snow/sea ice feedback69

relationships across seasonal, interannual, decadal, and climatological timescales, find-70

ing statistically significant correlations between temporal scales only for northern hemi-71

sphere snow albedo feedback. In a similar study contemporaneous to Colman [2013], Qu72

& Hall [2014] also found that northern hemisphere snow albedo feedback exhibits strong73

correlations between seasonal and climatological scales in 25 CMIP5 models. In analyz-74

ing seasonal observational data records, Crook & Forster [2014] also found challenges in75

constraining climatological ice albedo feedback when considering both the northern and76

southern hemispheres. The average global all-sky surface albedo feedback reported in77

Flato et al. [2013], Colman [2013], and Qu & Hall [2014] is 0.26±0.16 W/m2/K, derived78

from model ensembles. A multi-model mean global clear-sky surface albedo feedback is79

close, 0.24±0.07 W/m2/K (Sanderson et al. [2010]).80

Despite the scientific focus on albedo feedbacks (Winton [2006]; Qu & Hall [2006];81

Qu & Hall [2007]; Qu & Hall [2014]; Flanner et al. [2011]; Colman [2013];Crook & Forster82

[2014]), the model biases relative to observations are most pronounced where there is lit-83

tle to no solar insolation (e.g., Arctic winter), so unless indirect wintertime processes re-84

sult from a poor implementation of model albedo outside of winter, other processes must85

be considered to explain this persistent issue. In polar regimes the radiative energy bal-86

ance is also highly sensitive to longwave emission. Recent work has shown that current87

climate models may be missing an important ’ice-emissivity’ feedback resulting from88

differential snow/ice and ocean surface emissivity in the far-infrared (FIR) wavelengths89

(Feldman et al. [2014]; Chen et al. [2014]; Huang et al. [2016]). Angularly-averaged spec-90

tral emissivity (hereafter referred to simply as "emissivity") is a scaling term affecting the91

Planck emission of longwave radiation from materials into air, normalized by the ideal92

blackbody emission at the same temperature. The emissivity of materials takes on values93

between 0 and 1, varies spectrally, and is dependent on photon dispersion relations in the94

longwave, as well as on the local surface radius of curvature. For example, spectral emis-95

sivity values of frozen water in the shape of a snow grain and of an ice-slab will differ.96

Global circulation models (GCMs) have conventionally treated emissivity as a broadband97

property, but such a simplification may not be appropriate given the recent theoretical up-98

dates to spectral emissivity for a number of land surface types that show spectral depen-99

dence (Feldman et al. [2014]; Chen et al. [2014]; Huang et al. [2016]).100

Feldman et al. [2014] discussed the potential for a positive feedback whereby lower101

far-infrared surface emissivity values for ocean being smaller than sea ice would lead to102

reduced cooling in the high latitudes as sea ice loss increases with climate change. The103

outgoing longwave radiation flux in high latitude and high altitude regions is particu-104

larly sensitive to spectral surface emissivity changes as the drier atmosphere in these re-105

gions is more transparent to far-infrared surface emission than in low- to mid-latitude106

atmospheres which have relatively higher total precipitable water. Therefore correcting107

the representation of radiative cooling over those regions with low precipitable water so108

that they exhibit a realistic characterization of surface emissivity in the models is espe-109

cially important. Chen et al. [2014] modeled far-infrared interactions between the sur-110

face and clouds, where the surface was assigned with snow surface spectral emissivity and111

ice cloud scattering was taken into account. In that study, the net upward far-infrared flux112

at the surface and top of the atmosphere are both reduced, for a high latitude and altitude113

region where cloud top heights are 2-5 km above the surface.114

These two aforementioned studies led to the development of a spectral surface115

emissivity database for weather and climate models, for which spectral emissivity is mod-116

eled for a number of surface types in the longwave from wavenumbers 0-2000 cm−1 in117

Huang et al. [2016]; complex indices of refraction of water and ice compiled for wave-118

lengths spanning the near ultra-violet to far-infrared (Hale & Querry [1973]; Warren &119

Brandt [2008]) are model inputs. Undisturbed water and ice emissivities are modeled with120
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Fresnel equations on a semi-infinite half-space and snow emissivities are derived by ap-121

proximating snow grains as spheres, where emissivity is equal to the absorption efficiency122

calculated from Mie theory with optical properties adjusted to account for diffracted elec-123

tromagnetic wave coherence effects when deposited snow grains are closely-packed (Mishchenko124

et al. [1994]). Spectral emissivity is dependent not only on complex indices of refraction,125

but on local curvature radii of longwave photon exittance as well, so spectral emissivity126

will evolve with snow grain size. Additionally, snow-grain size dependent spectral emis-127

sivities have been reported by Hori et al. [2006] and Chen et al. [2014]. Due to detector128

material cut-off responsivity, measurements of surface emissivity exist only for wavenum-129

bers higher than 650 cm−1 (λ < 15.4µm) (Hori et al. [2006]; Baldridge et al. [2009]),130

and Huang et al. [2016] show that modeled spectral emissivity curves compare well in131

this range, giving confidence to the computed emissivity values extending out to the far-132

infrared (wavenumbers < 650 cm−1).133

This emissivity database can be used as part of GCM longwave radiation routines.134

Building on this database, Huang et al. [2016] explored global and regional differences135

between radiant energy fields in off-line simulations of the atmospheric component of the136

Community Earth System Model (Hurrell et al. [2016]) with and without realistic surface137

emissivity. Huang et al. [2016] found that the global root-mean-squared (RMS) difference138

in outgoing longwave radiation (OLR) between the two simulations can be as large as 2.04139

W/m2 in a summer month under clear-sky conditions.140

However, to date, the effects of realistic, spectrally-resolved longwave surface emis-141

sivity on a transiently-forced, fully-coupled climate model have not been considered, so we142

can compare and contrast the results from including realistic surface emissivity in a model143

to the heretofore conventional model treatment of surface emissivity. In this paper, we will144

present the detailed modifications to CESM that we used to harmonize the treatment of145

non-unit, spectrally-resolved emissivity across all relevant model components, and then we146

will present an analysis of how the inclusion of realistic surface emissivity affects model147

polar biases. Finally, we present appropriate, computationally-efficient methods for diag-148

nosing a GCM’s ice-emissivity feedbacks and their temporal and spatial dependence, and149

discuss implications for the inclusion of realistic surface spectral emissivity modifications150

for other widely-used climate models besides CESM.151

2 Methods152

2.1 Emissivity specification in CESM153

In the release version of CESM1, the surface components of that code calculate the154

grey-body broadband longwave upwelling surface flux using broadband emissivity values155

ϵ . Specifically in the land component, grey-body broadband longwave upwelling surface156

flux F↑
sur f

= ϵσSBT4
ground, where σSB is the Stefan-Boltzmann constant, and Tground is157

the ground temperature. This longwave upwelling flux is passed from the surface compo-158

nents into the atmospheric component, where surface emissivity contribution to the flux159

is retained. To preserve this contribution, CESM1 adopts a convention whereby the sur-160

face flux in the atmospheric component at the surface boundary grid, (F↑
surf), is given by161

σT4
rad, but Trad is rederived by defining the radiative surface temperature of the model’s162

surface components as: Trad =
4
√

F↑
sur f

/(ϵσSB), where surface emissivity is simplified to163

ϵ = 1.0. The re-calculated radiative surface temperature, distinct from the surface tem-164

perature that other model components utilize, is used in the atmospheric component as a165

new temperature boundary condition for longwave flux calculations by way of the Planck166

function integrated over all wavelengths and angles. Consequently, calculation of up-167

ward radiative fluxes in the CESM1 release version atmospheric component amounts to168

a Planck curve spectral modulation of the grey-body longwave upwelling radiation of the169

surface components.170
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Longwave radiative fluxes are modeled by RRTMG_LW (Mlawer et al. [1997]), a171

rapid radiative transfer model for use in global circulation models. RRTMG_LW uses a172

correlated-k method with a reduced k-distribution set to calculate fluxes in global circula-173

tion models that is at least four orders of magnitude more computationally efficient than174

line-by-line methods. The longwave spectrum is discretized into sixteen contiguous bands175

that balance radiometric accuracy with computational efficiency, and Table 1 lists the 16176

discrete, contiguous spectral bands that the atmospheric component maintains for intra-177

atmospheric radiative transfer.178

2.2 Harmonizing emissivity across model components179

In this work, we modify CESM1 to establish a coherent and energy-conserving treat-180

ment of surface emissivity between all of the surface and atmospheric components of the181

model. While we use the spectral emissivity values described by Feldman et al. [2014] in182

both the atmospheric and surface interactions in CESM, the modifications we present here183

supersede those of Feldman et al. [2014], which explored the sensitivity of model prog-184

nostics to only emissivity modifications to the atmospheric component of CESM. We de-185

tail the steps to harmonize longwave upwelling flux between the surface and atmospheric186

components below.187

Selecting the medium-grained snow size emissivity curve and desert scene emis-188

sivity curve from Huang et al. [2016], we set the Planck-function-weighted broadband189

emissivity for frozen surfaces (sea and land ice) over a Ts range 250-273 K to the aver-190

age value 0.982 (deviation ±0.0002), the corresponding value for non-vegetated miner-191

alized land over Ts range 260-300 K is 0.926 (deviation ±0.001), and for ocean over Ts192

range 253-293 K is 0.908 (deviation ±0.001). The simulated spectral surface emissivity193

curves, Planck-function weighted broadband and original CESM1 broadband surface emis-194

sivity values are listed in Table 1. Theoretical predictions of longwave spectral emissivity195

beyond 15 µm for vegetation have not been undertaken at the time of this study due to196

the lack of coherent measurements and/or modeling of plant pigment indices of refrac-197

tion, leaf cell sizes and shapes both in its interior and epidermis, and the leaf macroscopic198

shape. Consequently, vegetation emissivity is left unaltered from the release version of199

CESM1, which is dependent on exposed leaf and stem area indices. Calculated in the land200

model, upwelling longwave fluxes emitted above the canopy in vegetated grid cells are201

preserved in the atmospheric model grid cells. Vegetated grid cells are identified in a bi-202

nary fashion, on the condition where the sum of leaf area and stem area indices > 0.05.203

Medium-grained snow spectral emissivity is chosen for frozen surfaces, on both land and204

sea-ice, inasmuch as sea-ice is only observed to be snow-free about one month per year205

[Warren et al. [1999]; Massom et al. [2001]; Webster et al. [2014]].206

In the release version of CESM1, the upward longwave surface flux is preserved in207

the atmospheric component (Community Atmosphere Model, version 5.3) by solving for208

surface radiative temperature as described above. While ϵ < 1.0 in the land and ice com-209

ponent in the release version of CESM1, ϵ is set to unity (ϵ = 1.0) in the atmospheric210

component, so any changes to the treatment of surface emissivity in the surface compo-211

nents of the model requires the re-derivation of surface temperatures in the atmospheric212

component to avoid a mismatch, and a lack of energy conservation, between the radiative213

temperature used in the atmospheric and land, ocean, and ice components of the model.214

However, surface temperatures in the land, ocean, and ice components are established215

from temperature models of sub-surface layered media, therefore the surface temperature216

re-derivation in the CESM1 release atmospheric model by applying the Stefan-Boltzmann217

law on longwave surface upwelling flux with surface emissivity set equal to 1.0 consti-218

tutes a distinctly different representation of surface temperature from sub-surface layered219

temperature models.220
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To rectify the mismatch between atmospheric and surface model component treat-221

ments of upwelling longwave radiation, we modify CESM1 such that we pass the non-222

radiative surface temperature calculated in the surface components to the atmospheric223

component via the coupler. Radiative surface fluxes (F↑
surf) are determined with the up-224

dated broadband Planck-weighted emissivity in surface components in CESM1 and are225

merged onto the atmospheric grid in the coupler before being passed to the atmospheric226

component. We perform this Planck weighting using 3-point Gauss-Legendre quadrature227

(Li [2000]).228

In our modified version of CESM1, the atmospheric component radiative temper-229

ature is set to the ground temperature reported by the land component for non-vegetated230

surfaces. Over ocean scenes, the sea-surface temperature from the ocean component is231

passed to the atmospheric component, and the atmospheric component receives proportionately-232

weighted ground and sea-surface temperatures for grid cells with partial land fraction. The233

longwave upward flux in vegetated grid cells takes into account longwave flux reflections234

between the canopy and ground. As such, the ground temperature in vegetated grid cells235

would not represent an appropriate lower boundary condition in the atmospheric model, as236

canopy reflections are not considered in the atmospheric model. Therefore, for grid cells237

of land/ocean overlap and vegetated surfaces, the radiative temperature in the atmospheric238

component is determined by : Trad =
4
√

F↑/σSB to preserve the upward flux determined in239

the surface module.240

In summary, we establish the effects of the updated spectral variations in surface241

emissivity in model surface components that currently only support grey-body surface242

emissivity by creating broadband surface emissivity values through Planck-function weight-243

ing. In the atmospheric component, which does support spectrally-varying surface emis-244

sivity, the surface upward longwave fluxes calculated in the surface components persist by245

setting the surface radiative temperature to the ground temperature from the land compo-246

nent and the sea-surface temperature from the ocean component, after which RRTMG_LW247

calculates upwelling band-by-band fluxes with spectrally-resolved emissivity based on the248

scene. Discrepancies in longwave surface upwelling fluxes emanating from the different249

expressions between the land and atmospheric components will be quantified to legitimize250

the approximation.251

2.3 Emissivity Radiative Response and Feedback252

2.3.1 Emissivity kernels253

Using our modified version of CESM1 to account for surface emissivity variations254

across model components realistically, we can then investigate, diagnose, and quantify255

the ice-emissivity feedbacks rigorously and compare them against other widely-reported256

feedback estimates of surface albedo. We can quantify the ice-emissivity feedback using a257

time-dependent radiative kernel method, whereby the temporal evolution of both the kernel258

and emissivity can be evaluated. The radiative kernel is an analytic expression of the par-259

tial derivative of the outgoing longwave radiation at the top of the atmosphere, taking into260

account its dependence on surface emissivity. The kernel can be calculated online during261

the integration of a global circulation model and accounts for changes in water vapor and262

cloud cover.263

The derivation of the kernel is as follows: the sensitivity of the outgoing longwave264

radiation to changes in surface emissivity is quantified by the partial derivative of broad-265

band outgoing longwave radiation (OLR) with respect to surface emissivity, and is given266

by:267

∂OLR
∂ϵ

(®r, t) =
∫ ∞

0
[B(ν, ®r,Ts(®r, t)) − F↓(ν, ®r, t)]Θ(ν, ®r, t)dν (1)268

where ϵ is emissivity, time t, and for latitude ϕ and longitude θ grid box location ®r =269

[ϕ, θ]. B(ν, ®r,Ts(®r, t)) is the black-body function for surface temperature Ts(®r, t), F↓(ν, ®r, t)270
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is the spectral downwelling flux from the atmosphere above the surface, and Θ(ν, ®r, t) is271

the flux transmittance from the surface to the top of the model. The sign convention for272

the emissivity kernel is positive for outgoing flux. Θ(ν, ®r, t) is dependent on the atmo-273

spheric state which is expected to evolve over CO2 forcing periods, and includes effects274

of water vapor and temperature profile. The emissivity kernel can be explicitly calculated275

within RRTMG_LW by taking advantage of calls to its subroutines. As such, the tempo-276

ral emissivity kernels for both clear-sky and all-sky can be calculated online along with277

CESM model runs, for each grid box and time point. The kernels broken down into its278

spectral components
[
∂OLR
∂ϵ

]
i
(®r, t) are given by Eqn. 1 with the integration limits νi and279

νi+1, the lower and upper wavenumber band limits of RRTMG_LW band i (1).280

We can use online analytical radiative kernel feedback methods similar to the nu-281

merically derived, offline radiative feedback kernel methods by Soden et al. [2008] and282

Shell et al. [2008], who use 3-hourly atmospheric state outputs over one model year to de-283

rive monthly-averaged four-dimensional (latitude, longitude, atmospheric level, and time)284

kernels for water vapor and lapse rate, and three-dimensional (latitude, longitude and285

time) surface albedo kernels using a base atmosphere from a selection of global circula-286

tion models (GCM). Soden et al. [2008] and Shell et al. [2008] produced these kernels for287

only one model year and applied the same kernels to monthly-averaged parameter pertur-288

bations derived over two time periods: 2000-2010 and 2100-2110, in a large number of289

GCM’s for model feedback intercomparison. In this work, surface emissivity kernels are290

calculated for each atmospheric model time-step (hourly) throughout the model run period291

(1850-2100), but output as monthly averages for each surface grid cell. Kernel evolution292

as a function of time and the linear convention proposed by Soden et al. [2008], Shell et al.293

[2008], and Armour et al. [2013] can be evaluated.294

However, the impact of non-unit surface emissivity, and changes thereof due to295

evolving states of the cryosphere, is strongly dependent on column-integrated atmospheric296

water vapor (Feldman et al. [2014]), and to account for this, surface emissivity kernels are297

calculated hourly for integrations spanning 1850-2100 and various emissions scenarios.298

We then use this information to produce monthly-averaged kernels for each grid box over299

the entire integration period, and we can use this detailed kernel calculation to evaluate300

kernel evolution as a function of time and test the linear convention proposed by Soden et301

al. [2008], Shell et al. [2008], and Armour et al. [2013].302

2.3.2 Emissivity kernels and radiative response303

The outgoing longwave radiation perturbation (δOLRϵ ) due to an emissivity per-304

turbation δϵ is the product of the kernel and δϵ , giving a emissivity radiative response305

(EmR(®r, t)):306

EmR(®r, t) = −δOLRϵ307

= − 1
A(R)

∫
R

16∑
i=1

[
∂OLR
∂ϵ

]
i

(®r, t)δϵi(®r, t)dA(r) (2)308

where i is spectral emissivity in band i, in location r at time t and t0, for t > t0, and A(r)309

is the area at location ®r in the region R. δϵi(®r, t) = [ϵi(®r, t) − ϵi(®r, t0)] for an emissivity310

change in band i between time t and t0. We adopt the sign convention in such a way that311

emissivity radiative response is positive for a negative change in emissivity whereby out-312

going radiation is reduced at time t from a reference value at time t0, for t > t0. That is,313

the induced radiative response due to emissivity change is positive for net incoming radia-314

tion.315

2.3.3 Conventional climatological emissivity feedback316

Following Wetherald & Manabe [1988], we can use conventional methods to quan-317

tify the feedback associated with changing surface emissivity, λϵ , by looking at the top-of-318
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model longwave radiative perturbation induced by radiative forcing. This is given by the319

following expression:320

λϵ = − 1
A(R)

∫
R

16∑
i=1

[
∂OLR
∂ϵ

]
i

(®r, t)δϵi(®r, t)
δT̄s(t)

dA(r) (3)321

= −δOLRϵ (®r, t)
δT̄s(t)

(4)322

where δT̄s(t) = T̄s(t) − T̄s(t0) is the global mean surface temperature change at time t,323

with respect to a reference climate model global mean surface temperature at time t0. The324

emissivity feedback component is the emissivity radiative response normalized by the325

global mean temperature change, and it therefore readily fits within the context of well-326

established climate feedback analyses.327

Based on the forward partial radiative perturbation (PRP) technique (Wetherald &328

Manabe [1988]), Soden et al. [2008] describe their radiative kernel technique as similar329

to the two-sided PRP technique (Colman & McAvaney [1997]), but the kernel technique330

explicitly isolates the climate variable of interest. Soden et al. [2008] showed that climate331

variable feedbacks are the product of kernels calculated from a reference climate state and332

climate variable perturbations occurring potentially decades later. Accordingly, the Soden333

et al. [2008] kernels are derived from a reference climate at time period t0, so the emissiv-334

ity feedback from Eqn. 3 is dependent on
[
∂OLR
∂ϵ

]
i
(®r, t0) and δϵi(®r, t) = ϵi(r, t) − ϵi(r, t0).335

The validity of this approach requires stationarity in
[
∂OLR
∂ϵ

]
i
(®r, t0) over the period over336

which the feedback analysis is performed, which is typically multiple decades.337

Under forced climate change scenarios, the atmospheric state and therefore
[
∂OLR
∂ϵ

]
i
(®r, t)338

at time t, can be expected to evolve away from
[
∂OLR
∂ϵ

]
i
(®r, t0), because water-vapor load-339

ing in the atmosphere follows thermodynamic constraints which modulate the strength of340

the emissivity feedback. Therefore, Eqn. 3 is a function of the climate state and should341

be time-dependent, such that λϵ depends on the kernel from the future forced atmosphere342 [
∂OLR
∂ϵ

]
i
(®r, t). The emissivity kernel, and in turn, the amplitude of the associated feed-343

back, are dependent on the kernel base state. Thus, we can evaluate temporal ice-emissivity344

kernels and feedback estimates using a conventional climate model feedback analysis frame-345

work for a forcing climate model run to test the stationarity assumption.346

Accordingly, the surface emissivity change over a multi-decadal climatic model run347

between t and t0 shall be noted as ∆ϵ rather than δϵ in Eqns. 2 and 3. We determine ∆ϵi348

in spectral band i for each grid box, year y and month m in time period t by differencing349

ϵi from the value reported over the same month and grid box over a 10-year average in the350

reference period t0351

∆ϵi(®r, t(m, y)) = ϵi(®r, t(m, y)) −
1
10

10∑
y=1
ϵi(®r, t0(m, y)) (5)352

2.3.4 Time-dependence of emissivity kernels353

While Soden et al. [2008] showed that one-year’s worth of kernel are adequate for354

multi-model ensemble feedback intercomparisons, they note that multi-year kernels could355

elucidate local feedback strengths, but multi-year numerical four-dimensional kernels are356

computationally expensive for multiple climate variables. However, since our surface emis-357

sivity kernel calculation has an analytic form, we can calculate these kernels online as part358

of the model runs to explicitly investigate regional atmospheric dynamics in the model359

over longer time-periods (decades) than were explored previously. As part of our analy-360

sis, we can therefore capture the outgoing longwave radiation perturbation at the top of361

the atmosphere due to surface emissivity changes, and the evolution of these effects over362

decadal climatological periods, as suggested by Armour et al. [2013].363
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In 2.3.3, the product of a time-dependent kernel with emissivity response and sur-364

face temperature occurring over a several decadal period intermixes the instantaneous at-365

mospheric state used for kernel calculation with the climatological change in emissivity366

and surface temperature. In an analysis scheme put forth by Armour et al. [2013], if the367

atmospheric state is known at each time step and grid box, then an instantaneous emis-368

sivity radiative response is considered as the product of the time-dependent kernel with369

a synchronous emissivity response. Adjustments to longwave radiation due exclusively to370

emissivity changes from seasonal cryospheric melt and freeze cycles can be directly in-371

ferred from Eqn. 2, with t in units of months and t0 referring to the month preceding t, so372

that for spectral band i, δϵi is explicitly373

δϵi(®r, t(m, y)) = ϵi(®r, t) − ϵi(®r, t0)374

= ϵi(®r, t(m, y)) − ϵi(®r, t(m − 1, y)). (6)375

for month m in year y. Inserting Eqn. 6 into Eqn. 2 then gives the instantaneous monthly376

outgoing longwave radiative emissivity response. The relative roles of the atmosphere and377

surface in controlling outgoing longwave radiation can be elucidated by differences in in-378

stantaneous monthly outgoing longwave radiative emissivity response between climatologi-379

cal eras separated by decades.380

2.4 CESM run configuration381

For this investigation, we use a fully-coupled CESM version 1 with Community At-382

mospheric Model version 5 with a nominal 2◦ × 2◦ horizontal grid and the default time383

steps for each model component. To test the new emissivity values implemented in the384

surface and atmospheric components, we created a control run with CESM1 run under un-385

forced conditions whereby the CO2 concentration is set to its nominal value circa 1850,386

and other anthropogenic greenhouse gases and aerosols remain fixed at their respective387

pre-industrial levels. The model is started at 1850 and runs for 155 years. Initially, the388

model’s top of the atmosphere net energy imbalance (net shortwave - net longwave flux)389

remained steady over a multidecadal run at approximately 1.2 W/m2. To reduce the net390

radiative imbalance to within 0.5-1.0 W/m2 so as to be consistent with estimates of the391

Earth’s actual radiative imbalance (Hansen et al. [2005]; Trenberth et al. [2009]), we de-392

creased the threshold for relative humidity for low stable clouds (CESM namelist variable393

cldfrc_rhminl) from the default value of 0.8875 to 0.8750. From this, the net radiative394

imbalance stabilized at 0.7±0.4 W/m2 over the 155 year run period, after a spin-up time395

of 10 years. This model tuning adjustment was consistent with published approaches pre-396

sented by Mauritsen et al. [2012] to reduce net radiative balance, and the tuning followed397

well-established tuning-parameter estimation methods (Jackson et al. [2008]). We call this398

model "1850CNTL".399

With interest in model transient sensitivity relevance to the Earth’s present climate400

(Winton [2006]), we also ran a forced simulation with historical CO2 concentrations, where401

atmospheric CO2 concentrations from 1850 to 1950 were scaled by the ratio of the con-402

centration derived from Siple Station ice core data in a given year to its concentration in403

1850 (Neftel et al. [1994]). Atmospheric CO2 between 1976 and 2005 was set by the an-404

nually averaged Mauna Loa Observatory data (NOAA ESRL Global Monitoring Division405

[2015]), and atmospheric CO2 between 1951 and 1975 was derived from a linear interpo-406

lation of the Siple Station and Mauna Loa datasets. Accordingly, the rate of increase of407

atmospheric CO2 from 1850-1950 is approximately 0.09% per year, and from 1951-1974,408

it is approximately 0.24 % per year, and from 1975-2005, it is approximately 0.50% per409

year. The threshold for relative humidity for low stable clouds was set equal to the value410

specified for the control case. The historical CO2 ramping case was run for 155 years as411

well for the time period 1850-2005. This model will be named "HISTCO2".412

In two additional cases, atmospheres defined by representative concentration path-413

ways defined by the Intergovernmental Panel on Climate Change (IPCC) were initiated to414
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evaluate the effect of surface emissivity on the 21st century climate. Again, the thresh-415

old for relative humidity for low stable clouds was set equal to the value specified for the416

1850CNTL case. We use the CESM1 fully-coupled component sets and the RCP 2.6 and417

RCP 8.5 forcings pathways, and start the runs referencing the 2005 HISTCO2 model, and418

integrate to 2100. These cases are simply named "RCP 2.6" and "RCP 8.5".419

2.5 CESM output data420

CESM model data values were averaged monthly for subsequent analysis. The radlw.f90421

and radiation.f90 code were modified to output clear-sky and all-sky spectral emissiv-422

ity kernels, as well as the modified spectral emissivity values on the atmospheric horizon-423

tal grid. Monthly averaged spectral emissivity kernel and emissivity maps in each of the424

16 bands were written to the CESM history files.425

3 Results426

3.1 Model Validation427

The modifications to the longwave physical representations in the model that are428

described above can potentially destabilize the model’s climate simulations, given the429

specific tunings of the release version. For 1850CNTL, we evaluated the stability of cli-430

matic model variables. Over the 155-year period, the net radiative imbalance was reported431

above at +0.7±0.4 W/m2, the mean surface temperature was 287.12±0.11 K with a rate of432

change of +1.6±2.1 ×10−4 K/year. The sea surface temperature mean was 285.71±0.06 K433

with a rate of change of +0.9±1.1 ×10−4 K/year. Flux differences between model compo-434

nents are expected given that surfaces fluxes are calculated in the land model using the435

Stefan-Boltzmann law along with Planck-averaged emissivity and surface fluxes in the436

atmospheric model are computed with an integration of Planck function using spectral437

emissivities. Inspection of the mean globally averaged longwave upwelling surface flux438

difference between the atmospheric model and land model is 1.3±0.1 × 10−2 W/m2, with439

a −5.3 ± 19.1 × 10−6 W/m2/year rate of change over the 155 year model run.440

Additionally, to benchmark our 1850 control climate against the CESM standard441

release, we compared the surface temperature evolution of 1850CNTL against the fully-442

coupled 1850 control run from the CESM Last Millenium Ensemble (CESM-LME, Otto-443

Bliesner et al. [2016]), which uses the same code version (CESM1 with CAM5.3) as the444

CESM Large Ensemble (CESM-LENS, Kay et al. [2015]), except that CESM-LME is445

specified on a 2◦ horizontal resolution grid for the atmosphere and land surface rather446

than the 1◦ for CESM-LENS. Mean surface temperature, deviation, and temperature rate447

of change over 1850-2005 are [287.12±0.11 K, +1.6×10−4 K/yr] and [287.16±0.43 K,448

+1.18×10−4 K/yr] for our 1850 control model and the CESM-LME 1850 fully coupled449

control model, respectively. The mean temperature difference of 0.04 K is within 10%450

of the temperature spread of 0.4 K due to internal variability in the CESM-LME mem-451

ber. The differences in these results are not statistically-significant, so we can say that our452

realistic surface emissivity modifications to CESM1 do not appreciably affect unforced453

simulations.454

3.1.1 Observational validation455

We are interested in confronting the results of our modified and unmodified versions456

of CESM with observations. The spectral surface emissivity treated model, designated457

"CESM-ϵ(ν)", is tested against the CESM-LME (Otto-Bliesner et al. [2016]), for agree-458

ment with historical (1979-2005) Arctic surface temperatures, as determined from ERA-459

Interim (Dee et al [2011]) skin temperature reanalysis.460
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Figure 1a shows a comparison of ERA-Interim skin temperatures in blue, HISTCO2461

case of CESM-ϵ(ν) in red, and CESM-LME in green over northern ocean latitudes from462

1979-2005. Over the 26-year period, the mean temporally and spatially-averaged surface463

temperature bias for CESM-ϵ(ν) improves over 20th historical forcing CESM-LME model464

by over 90%, from -4.4±2.7 K CESM-LME mean surface temperature bias to -0.4±1.6465

K CESM-ϵ(ν) mean surface temperature bias with respect to reanalysis data, as seen in466

the Figure 1b residual plots. Reanalysis skin temperatures exhibit warmer mean Arctic467

surface temperatures than the models during the wintertime with a larger winter cold bias468

in the CESM-LME 20th century model than CESM-ϵ(ν) (∆TLME
S = −7.2 ± 0.9 K versus469

∆T ϵ (ν)
S
= −1.1 ± 1.2 K in Figure 1c). Summertime model surface temperature biases to470

skin temperature reanalysis are ∆TLME
S = −1.1± 0.4 K and ∆T ϵ (ν)

S
= 0.0± 0.4 K, shown in471

Figure 1d.472

Mean Arctic surface temperature residuals are mapped for winter (Figures 2a and473

2b), and summer months (Figures 2d and 2e) over 1979-2005, where the CESM-LME474

surface temperature winter cold bias with respect to reanalysis data is most pronounced475

(Figure 2b). In Figure 2c, modeled surface temperature difference maps show that CESM-476

ϵ(ν) December-January-February mean over 1979-2005 Arctic ocean surface temperature477

is warmer than that of CESM-LME over areas of sea-ice. The cold bias pattern seen over478

northern Eurasia in CESM-LME (Figure 2b), associated with snow-cover bias in CESM1479

(Park et al. [2014]), persists in CESM-ϵ(ν) (Figure 2a). Surface temperature over land480

is largely unchanged between CESM-ϵ(ν) and CESM-LME because longwave surface481

upwelling radiation modeling over vegetated land grids in CESM-LME remained intact482

in CESM-ϵ(ν), as discussed in Section 2.2. The CESM-ϵ(ν) Arctic sea-ice decline is -483

5.9±1.2 %/decade over 1950-2005, while 10 member mean CESM-LME September sea-484

ice decline is -2.5±0.4 %/decade over the same period, from 60◦ to 90◦ North; we note485

that the uncertainty in CESM-ϵ(ν)’s sea-ice decline is much larger, being a single model486

realization. Indeed, Stroeve et al. [2007] determined a September Arctic sea-ice decline of487

-7.8±0.6 %/decade over 1953-2006 observational record, whereas the multi-model IPCC488

AR4 mean is -2.5±0.2 %/decade. Improvement of Arctic sea-ice trend estimates rela-489

tive to observations suggests that preserving and passing surface temperatures derived in490

the surface models into the atmospheric model along with implementing spectral emissiv-491

ity values in the atmospheric model and updated broadband surface emissivity in surface492

models (as discussed in 2.1) improves model performance for prognosing northern hemi-493

sphere sea-ice.494

However, in the southern hemisphere, there is not a marked improvement between495

CESM-ϵ(ν) and CESM-LME. The austral summer (January, February, March) sea-ice de-496

cline of −9.1 ± 3.7 %/decade and −7.1 ± 1.0 %/decade for CESM-ϵ(ν) and CESM-LME497

20th century forcing ensemble mean, respectively, are both inconsistent with observed498

satellite data record sea-ice extent growth of +0.95 ± 0.23 %/decade from 1979-2006499

(Comiso & Nishio [2008]). These findings indicate that some combination of poorly mod-500

eled cloud radiative effects (Lawson & Gettelman [2014]) and southern ocean dynamics501

need to be addressed before the impacts of surface emissivity can be properly considered.502

3.2 Emissivity and Kernels503

3.2.1 Kernels504

Global patterns of emissivity kernels are necessarily positive in sign and are in-505

versely related to maps of column water. Figures 3 and 4 show clear-sky and all-sky sea-506

sonal kernel maps, respectively, and reveal that the broadband kernels are strongest at high507

altitude regions, dry hot climates, and high latitudes, all of which exhibit low column wa-508

ter vapor (Feldman et al. [2014]). Positive trends in water vapor over high latitude oceans509

in the summer months induce kernel amplitude suppression and can be seen in seasonal510

all-sky kernel maps.511
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3.2.2 Surface emissivity evolution512

Figure 5 shows the change in surface emissivity for wavenumbers in the atmospheric513

window (820-980 cm−1, RRTMG_LW band 6) between 1850CNTL and the RCP8.5 runs514

at the end of the 21st Century. These maps show prominent reductions in surface emis-515

sivity (blue) at high latitudes in summer and fall seasons in the RCP8.5 run relative to516

the 1850CNTL run, and these reductions are collocated with increasing sea-ice melt. The517

maps also show increased emissivity (red) in mid- to high-latitude continental regions in518

winter and spring months, and we can attribute this result to increased greening of dry519

desert and high altitude continental regions in RCP8.5 as compared to 1850CNTL.520

These maps also show the concurrent effect of sea-ice loss and changing atmo-521

spheric water vapor and clouds. The summer and fall exhibit the largest emissivity de-522

crease over high-latitude oceans, which reduce emissivity kernel strength (Figures 3 and 4)523

and thereby outgoing longwave radiation at the top of the model. The inverse spatial cor-524

relation of emissivity change and transient kernel strength contributes to moderating the525

top-of-the-model emissivity feedback.526

3.2.3 Spectrally-resolved emissivity kernels527

Figure 6 shows the spectral variations in surface emissivity kernels and their rela-528

tive contribution to the broadband kernel, as a function of RRTMG_LW band numbers529

(1). In this figure, the top row shows the clear-sky and all-sky globally-averaged spectral530

kernel amplitudes, and the globally-averaged spectral emissivity change from 10 years’ of531

the 1850CNTL run is shown in the bottom row for RCP8.5 years 2090-2100. The spectral532

kernel shape over the RRTMG_LW bands is similar in all four CESM model runs, and the533

kernel amplitude in band 6 (820-980 cm−1), which corresponds to the mid-infrared atmo-534

spheric window, is the dominant contributor. The shape of the spectral emissivity change535

highlights the differences in spectral emissivity values used for ocean and snow. Except536

for Band 16 (2600-3250 cm−1), where ϵwater(ν) > ϵmedium-snow(ν) for 3000 < ν < 3250537

cm−1, the emissivity of medium-snow exceeds that of ocean. Even though band 6 is the538

dominant contributor to the kernel, this band shows the smallest difference between ocean539

and medium-snow. Each of the bands 7-9 (encompassing 980-1390 cm−1) exhibit com-540

parable emissivity radiative response magnitudes to band 6. Snow emissivity values are541

larger than water emissivity from 980-1390 cm−1 for the snow grain sizes measured by542

Hori et al. [2006]. Within band 6, the emissivity of coarse snow grain sizes (800 µm me-543

dian diameter) is lower than water, and consequently for this band, δϵi=6 would be positive544

under sea-ice loss.545

3.2.4 Kernel temporal evolution546

The temporal evolution of globally- and annually-averaged broadband clear-sky emis-547

sivity kernels for the four CESM runs are plotted as solid lines in Figure 7a , along with548

polynomial fits (dotted lines). The all-sky kernels are shown as ratios to clear-sky ker-549

nels in the same figure, as dashed lines, and are a little more than 50% of the clear-sky550

amplitude. Relative to the forced cases, the 1850CNTL kernels are temporally stable. Ker-551

nel amplitudes for CO2 forced atmospheres are not stationary in time nor are they linear,552

demonstrating that by the end of the 21st century, large biases could be introduced into553

quantifying feedback by applying the first year’s climate base state kernel. For the model554

specifications of this work, by the end of the 21st century the RCP8.5 scenario kernels555

are reduced by nearly 21% from 1850CNTL and reduced by approximately 17% from the556

present-day kernel ( HISTCO2 at year 2005).557

Figure 7b shows the globally- and annually-averaged climatological surface broad-558

band emissivity change with respect to 1850CNTL for each CESM model run. Abso-559

lute values are less than a percent, due to globally-averaged values of surface emissivity560
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changes occurring primarily in the cryosphere (which covers about 20% of Earth’s surface561

area), much like surface albedo. In the 1850 control climate, low fluctuations around zero562

exist for emissivity differences, which we attribute to sea-ice melt and freeze. Consider-563

ing that ocean emissivity is lower than that of this model’s designation of medium-grained564

snow in the strong kernel RRTMG_LW band 6, negative surface emissivity change values565

for all CO2 forcing cases is the result of a decreased frozen surface extent in the future.566

Over the last 10 years’ of each scenario period, monthly-averaged high-latitude broad-567

band kernel reductions relative to 1850CNTL are shown in Figure 8. HISTCO2 monthly568

kernel amplitude temporal shape over an annual period varies by less than 3% from 1850CNTL,569

however monthly kernel amplitudes for RCP2.6 and RCP8.5 can decrease by as much as570

10% in clear-sky cases, and almost 30% for all-sky cases in high latitudes. This indicates571

the problematic nature of implementing radiative kernels calculated from only one year’s572

atmospheric state in the course of analysis of the contribution of the ice-emissivity feed-573

backs over multiple decades. We also note that the seasonal variability in high-latitude574

kernels is highly asymmetric between the Arctic and the Antarctic. The seasonality that575

we find in the Arctic under clear-sky conditions is largely a function of the seasonality in576

atmospheric precipitable water vapor (Figures 9a & 9b). The all-sky seasonality is im-577

pacted by enhanced cloud fractional coverage (Figures 9c & 9d) associated with sea-ice578

loss, which has been consistently observed in CMIP3 and CMIP5 models (Karlsson et579

al. [2013]). In the Antarctic, however, the clear-sky kernel reduction is largely invariant580

through the seasons, except for the end of the century RCP8.5 case, where the southern581

winter warms.582

The monthly evolution of spectral kernels for high latitudes for the last 10 years’583

of the RCP 8.5 scenario is shown in Figure 10. Figures 10a and 10b show the monthly584

kernel amplitude for northern high latitude clear-sky and all-sky conditions, respectively,585

and are affected by the seasonality in water vapor (Figure9). The effects of ozone in the586

southern high latitudes can also be seen in bands 6 and 7, where rising O3 concentrations587

in the winter months decrease the kernel strength, and are shown in Figures 10c and 10d588

for clear- and all-sky conditions, respectively. RRTMG_LW bands 2 and 3, in the water-589

vapor rotational absorption feature shows the most pronounced seasonality due to the sea-590

sonality in column water-vapor.591

The climatological spectral surface emissivity change ∆ϵi(t) (Eqn. 5) relative to592

1850CNTL is plotted for each month in a ten-year average of years 2090-2100 of RCP 8.5593

in Figures 11a and 11b , at northern and southern high latitudes, respectively. The clima-594

tological surface emissivity change for the end of the century RCP 8.5 scenario is negative595

for all months and RRTMG_LW bands except springtime high northern latitudes band 16,596

where ocean emissivity is larger than medium-grained snow emissivity above 3000 cm−1.597

The climatological surface emissivity change is largest in the summer and early autumn598

in high northern latitudes, indicating increased thaw during the typical Arctic melt sea-599

son. The weak spectral surface emissivity change in the springtime indicates wintertime600

Arctic sea-ice coverage persistence (75% of pre-industrial) even at the end of the century601

in RCP8.5. In the southern high latitudes, the climatological spectral surface emissivity602

change is the most negative during the winter months, during which climatological surface603

temperature increase is also largest ( 60% relative to HISTCTL).604

Focusing on the last 10 years’ of the RCP 8.5 scenario, the average seasonal spectral605

surface emissivity change, δϵi(t) (Eqn. 6), contribution to the surface radiative response606

from month-to-month is seen in Figures 11c and 11d , again for northern and southern607

high latitudes respectively. Cryospheric phase changes can be observed in the seasonal cy-608

cle emissivity change between the northern and southern high latitudes, with freezing pe-609

riods producing positive δϵi(t) and negative δϵ(t) for melt periods. Atmospheric dynamics610

effects on phase changes are evident from structure in Figure 11c , where continental and611

ocean current spatial distribution in the Arctic impose complexity. In contrast, consistent612

transitions throughout the bands and months occur in the Antarctic (Figure 11d ), where613
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cryospheric changes are more established on sea-ice. Note that the δϵi(t) amplitudes deter-614

mined here are a product of the assigned spectral emissivity values for water and medium-615

grained snow, which is a simplification for seasonal emissivity values of frozen surfaces.616

Snow-cover on ice sheets will evolve from fine-grained deposition in the cold and windy617

months to coarse-grains as seasonal temperatures rise. While not a focus in this study,618

the foundation for surface emissivity feedback analysis incorporating seasonal snow grain-619

size dependent spectral emissivity has been built with this work.620

3.3 Emissivity feedbacks621

3.3.1 Conventional feedback analysis622

To put the emissivity feedback magnitude into the context of conventional climate623

feedback analysis, we first report the global emissivity feedback, λϵ , as one component624

of the total feedback parameter λ, as defined by Wetherald & Manabe [1988]. In this625

form, the emissivity radiative response relative to pre-industrial period is normalized by626

the global mean temperature change. Noting the surface emissivity kernel evolution due,627

largely, to water vapor dependence, we show the feedback on the 1850CNTL model by628

calculating surface emissivity kernels from the 1850CNTL, as well as referencing ∆ϵi(®r, t)629

with t0 as the 1850CNTL period.630

Zonally and temporally-averaged cryosphere emissivity feedbacks are shown in Fig-631

ure 12 with conventional feedback analysis. The globally-averaged surface temperature dif-632

ference ∆T̄S in each scenario was obtained by subtracting a 1850CNTL 10-year averaged633

monthly global mean surface temperature from monthly surface temperature of each sce-634

nario over a 10 year period, ending at the year appearing in the Figure 12 legend. In the635

four scenarios starting with present-day, the climatological emissivity response, ∆ϵi(®r, t)636

is determined by differencing ϵ at each spectral band, year, month and grid cell in these637

10 year periods with a 10-year averaged 1850CNTL spectral ϵ for each month and grid638

cell. Feedback analysis is only considered in a spatio-temporal grid point for which ∆T̄S639

is significant, that is, when ∆T̄S > σTS , where σTS is the surface temperature standard640

deviation over the 10-year period for a particular month. Therefore feedbacks are zonally641

and temporally averaged by the number of contributing non-zero grid values. Insignificant642

∆T̄S’s may occur for HISTCO2, but are generally avoided in the future CO2 forcing sce-643

narios. Grid cells for which CESM history field ICEFRAC or FRACSNO contained values644

> 0.0 for any monthly-averaged timepoint over the analysis period were considered to be645

members of the cryosphere. Feedbacks for HISTCO2 are much larger than the forced runs646

due to ∆T̄S values which are small and somewhat unstable compared to those of future647

forcing scenarios. Sea-ice emissivity global mean feedback amplitude is stable with in-648

creasing future CO2 forcing due to linear kernel strength scaling with rising global mean649

temperature, and mean zonal broadband ∆ϵ amounting to O(100) %. However, the spa-650

tial distribution of increasing feedback moves poleward, which is consistent with increased651

sea-ice melt at higher latitudes. Our diagnosed ice-emissivity feedbacks can then be com-652

pared to other well-known feedbacks, such as that due to surface albedo (Hall&Qu [2006];653

Winton [2006]; Flanner et al. [2011]; Crook & Forster [2014]; Armour et al. [2013]). We654

do note that the all-sky emissivity feedback is dependent on clouds, which will complicate655

the feedback analysis.656

Considering the nonlinearity of the emissivity kernels, we compare feedback cal-657

culations based on static kernels K(tref) (where tref is the reference time period) against658

those calculated with time-dependent/dynamic kernels K(t) to look at calculation biases659

with respect to agreement between methods. For each CO2 forced case, surface emissivity660

feedbacks are computed for increasing specification: from global, cryospheric, to sea-ice661

emissivity feedbacks; the latter two separated into northern and southern hemispheres (0◦662

to 90◦ latitude and -90◦ to 0◦ latitude). When comparing different reference periods in663

static kernel use (Figure 13a), in which both the static kernels and climatological emissiv-664
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ity change differ, the mean bias between surface emissivity feedback calculation methods665

is 1.16×10−3 W/m2/K. When comparing surface emissivity feedbacks calculated using666

static kernels against using time-dependent kernels (Figure 13b) for the same reference667

periodthe bias is almost twice as large at 1.95×10−3 W/m2/K. The use of time-dependent668

kernels in feedback calculations ( Figure 13c) the mean bias between different reference669

periods is reduced down to 8.01×10−4 W/m2/K (compare to Figure 13a). In the previous670

three cases, surface emissivity feedback was calculated in the conventional method, rela-671

tive to the global mean surface temperature change.672

We must also consider the appropriateness of using global mean surface temperature673

change for high-latitude feedbacks. While surface albedo feedback studies such as Bony674

et al. [2006], Sanderson et al. [2010], and Winton [2006] normalized the surface albedo675

radiative response with respect to global mean surface temperature change, Hall&Qu676

[2006], Flanner et al. [2011], Colman [2013] Crook & Forster [2014], and Qu & Hall677

[2014] have implemented regional surface temperature change in their formulation of sur-678

face albedo feedback to compare seasonal to climatological surface albedo feedback. By679

using zonal mean surface temperature change as ∆T̄S in Eqn. 3, we find minimal bias (-680

1.72×10−4 W/m2/K) when using time-dependent kernels, as shown in Figure 13d, where681

we compare pre-industrial and present-day kernel calculations. Indeed with the smallest682

bias, Figure 13d shows that the determination of the surface emissivity feedback should683

be based on the localized surface temperature change rather than the global surface tem-684

perature change, in order to provide a more physically mechanistic formulation of this685

feedback. The biases in Figures 13a-d are respectively then 43%, 72%, 29%, and 6% of686

the mean global sea-ice emissivity feedback calculated by time-dependent kernels with687

normalization with zonal mean surface temperature change. The largest bias occurs in the688

case comparing emissivity feedbacks calculated by static versus time-dependent radiation689

kernels normalized by climatological global mean temperature differences (Figure 13b),690

and smallest feedback bias exists when applying time-dependent kernels normalized by691

mean zonal temperature changes from different reference periods (Figure 13d).692

Directing attention to frozen and unfrozen water surfaces, for which theoretical long-693

wave emissivity values were derived by co-authors in Chen et al. [2014] and Huang et al.694

[2016], we list globally-averaged sea-ice emissivity feedback values derived from static695

kernels and time-dependent/dynamic kernels in Table 2. Surface emissivity feedback val-696

ues are also separated in the table by two methods of surface temperature change: the697

global mean surface temperature difference and zonal mean surface temperature differ-698

ence. Static surface emissivity kernels, surface emissivity change, and surface tempera-699

ture change are referenced to the 1850CNTL atmosphere. Parameter standard deviations700

over the 10-year periods are propagated into feedback uncertainties expressions for each701

of the four feedback calculation types. Focusing the discussion to future forcing scenar-702

ios, clear-sky sea-ice surface emissivity feedbacks determined with dynamic kernels are on703

the order of 90% of those determined with static kernels, and all-sky dynamic kernel sea-704

ice emissivity feedbacks are less than 60% of static kernel derived values. Normalizing705

by the zonal mean surface temperature difference, mechanistically more physical, reduces706

the sea-ice surface emissivity feedback values by roughly 50%, compared to normalization707

by the global mean surface temperature difference. As the most physical method in Ta-708

ble 2, time-dependent kernel feedback calculation with normalization by zonal mean sur-709

face temperatures produce clear-sky sea-ice emissivity feedback values that are less than710

50% of values when calculated with static kernels and with normalization by global mean711

surface temperature difference. For all-sky, time-dependent kernel, zonal mean surface712

temperature derived sea-ice emissivity feedback values are less than 30% of static kernel,713

global mean surface temperature feedback values.714

Surface emissivity feedbacks for CO2 forcing scenarios referenced to 1850CNTL715

and calculated with their respective time-dependent clear- and all-sky kernels are shown716

in Figure 14 for northern and southern hemispheric, and global means, for which mean717
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surface temperature change is calculated zonally. Northern hemisphere cryosphere in-718

cludes snow-covered land, and as vegetated areas become more exposed in the RCP 21st
719

century CO2 forcing scenario wintertime, surface emissivity feedbacks are negative for720

ϵveg > ϵsnow, yet increase with forcing strength. The southern hemisphere cryosphere sur-721

face emissivity feedbacks are due to changes in the distribution of sea-ice, as their values722

are equivalent to the sea-ice emissivity feedback; they are exclusively positive, denoting723

sea-ice melt in future scenarios compared to the reference period. Despite undergoing less724

sea-ice melt, southern hemisphere cryosphere/sea-ice emissivity feedbacks are larger in725

amplitude than northern hemisphere feedbacks due to the larger southern hemisphere sea-726

ice surface area. For both hemispheres, the sea-ice surface emissivity feedback is stable727

throughout the forcing scenarios as indicated by feedback calculations for the last 10-years728

of each scenario period. Driving this stability is that the time-dependent sea-ice emissivity729

radiative response is counterbalanced by zonally-averaged surface temperature change (eg.,730

Figure 13).731

3.3.2 Seasonal response analysis732

Time-dependent emissivity kernels allow us to discern the longwave radiative re-733

sponse of the climate to emissivity changes at time t by examining the emissivity radia-734

tive response over the seasonal cycle. Figure 15 plots 10-year averaged emissivity ker-735

nels, month-to-month emissivity change (δϵi=6), and emissivity radiative response for736

RRTMG_LW band 6 in each column; the top row for sea-ice dominant northern latitudes,737

and the bottom row for sea-ice dominant southern latitudes. We inspect the atmospheric738

dynamics, melt/freeze cycle, and emissivity radiative response in these high latitude re-739

gions as they evolve with increased CO2 forcing.740

At high northern latitudes, Figure 15a shows that, due to water vapor, emissivity741

kernels in winter-time allow more longwave radiation to escape the top of the atmosphere742

than summertime, for RRTMG_LW band 6. Despite a month-to-month emissivity change743

(δϵi=6) with an amplitude larger during melt than freeze periods in future CO2 forcing744

scenarios (Figure 15b ), the combination of seasonal atmospheric effects on the emissivity745

kernel and melt/freeze cycle produces a seasonal emissivity radiative response in Figure746

15c , which cumulatively over the year is negative in sign (Figure 16). Examination of747

contributing factors show that the Arctic emissivity kernel amplitude difference between748

warm and cold seasons becomes larger with increasing CO2 forcing scenarios, impacting749

the differential between summertime and wintertime emissivity radiative response. Month-750

to-month emissivity changes also evolve with increased CO2 forcing, with an earlier onset751

springtime melt. However, the winter-time refreeze (February/March) maximum produces752

a rebound effect that is as large as 84% of pre-industrial levels, even at the end of the753

21st century. Again, however, the seasonality of the emissivity kernels as shown in Figure754

16 stands in contrast to the annually-averaged emissivity radiative response.755

In the Antarctic, the seasonal emissivity kernel strength (Figure 15d ) is influenced756

by ozone concentration more than water vapor and therefore dips in the southern winter757

during increased ozone concentration and low water vapor. Thus, the RRTMG_LW band758

6 kernels have higher amplitude during the melt season where emissivity changes are neg-759

ative (Figure 15e ). Another feature of note is that for all cases, the southern atmosphere760

over the sea-ice dominant latitudes does not change significantly from the 1850CNTL at-761

mosphere, thereby larger amplitude emissivity changes in the future CO2 forcing scenarios762

impose a stronger impact than emissivity kernels in the emissivity radiative response (Fig-763

ure 15f ).764

The climatological evolution of seasonal emissivity radiative response (Eqn. 2) can765

be seen in Figure 16, where we plot 10-year zonal and annual averages of the seasonal766

emissivity response (annual average of plots such as Figs. 15c and 15f for each latitude).767

The emissivity radiative response at high northern latitudes shows increasing outgoing ra-768
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diation with CO2 forcing, given the seasonal atmospheric dynamics and surface emissivity769

change oscillation between positive and negative sign. In the southern ocean, the emissiv-770

ity radiative response in future CO2 forcing scenarios reduces, signifying positive clima-771

tological seasonal emissivity radiative response, given climatologically stable atmospheric772

dynamics over the southern ocean and modeled climatological decrease in frozen surfaces.773

Bear in mind that Antarctic sea-ice decline is simulated in the CESM models to be much774

faster than observations, as discussed in Section 3.1.1.775

Even though we do not make direct comparisons of seasonal with climatological776

emissivity feedback here, we note the relative sign of the emissivity radiative responses777

between the periods. The climatological sea-ice emissivity radiative response (use of Eqn.778

5 in Eqn. 2) is positive, given the climatological decrease in summertime frozen surfaces779

and emissivity values for frozen and non-frozen surfaces specified in this work. However,780

on short time scales, the seasonal sea-ice emissivity radiative response (Eqn. 6 in Eqn. 2),781

is about an order of magnitude less than the climatological emissivity radiative response782

and is consistently negative. Focusing on northern high latitudes, the climatologically ac-783

cumulated seasonal sea-ice emissivity radiative response remains negative. The northern784

high latitude emissivity radiative response is influenced by two components: first is the785

declining sea ice, and secondly, the climatologically evolving seasonal emissivity radiative786

kernels modulate the strength of the emissivity reduction during springtime/summertime787

melt, as shown in Figure 15a. In the southern high latitudes over sea ice, the climatologi-788

cal emissivity radiative response is driven by predominantly the surface emissivity differ-789

ences due to declining sea ice, as water vapor has less seasonal impact on the emissivity790

radiative kernel than in the northern atmosphere, and therefore the southern high latitude791

climatological emissivity radiative response is positive.792

4 Discussion and Conclusions793

We have investigated how the inclusion of realistic and consistent surface emissivity794

in both land-surface and atmospheric components of the CESM coupled-climate model af-795

fects a wide range of climate variables. We did this by replacing the broadband emissivity796

values in RRTMG_LW for water, medium-grained snow, and desert scenes. We find that797

this harmonized treatment of surface emissivity within CESM can be important for reduc-798

ing high-latitude temperature biases. We also find that short-term effects of atmospheric799

dynamics and spectral information need to be considered to understand radiative effects800

in higher detail, and are possible with radiative kernels computed for every grid and time801

point for the entire model integration period.802

We performed feedback analysis and found that sea-ice emissivity feedback is posi-803

tive in sign, which is driven by the differences in emissivity between frozen and unfrozen804

surfaces at wavenumbers less than 3000 cm−1. From this single mean state realization rep-805

resented by our transient model, we have quantified the global sea-ice emissivity feedback806

in an atmosphere at year 2100 in the RCP 8.5 scenario as +8.05 ± 0.15 × 10−3 W/m2/K807

for clear-sky and +2.62 ± 0.15 × 10−3 W/m2/K for all-sky, with uncertainties derived from808

propagation of Eqn. 3 variables’ 1-σ deviations over the analysis time period. The global809

clear-sky sea-ice emissivity feedback is a few percent of surface albedo feedback, and810

this relative amplitude is not unexpected, given that albedo change (tens of %) is much811

larger than emissivity change ( a few %), between snow and water. This feedback anal-812

ysis used spectrally-resolved kernels and revealed time-varying interactions between the813

bands. We can extend this analysis to diagnose the ice-emissivity feedback in other earth814

system models with offline calculations of spectral surface emissivity radiative kernels and815

spectral surface emissivity change for models with sea-ice fraction output.816

We also note that conventional climatological feedback calculations indicate that817

this sea-ice emissivity feedback is positive in sign, but that the radiative effects of the dif-818

ference in emissivity between frozen and unfrozen surfaces exhibit seasonal dependence.819
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Furthermore, this seasonality itself exhibits meridional asymmetry due to differences in820

sea-ice response to climate forcing between the Arctic and the Antarctic. In the Arctic,821

this seasonal, temporally higher order analysis exhibits increasing outgoing surface emis-822

sivity radiative response in a warming climate. While the sea-ice emissivity feedback and823

seasonal sea-ice emissivity radiative response amplitudes are a few percent of surface824

albedo feedbacks, the feedback analysis methods outlined in this work demonstrate that825

spatially and temporally localized feedback analysis can give insight into the mechanisms826

at work on those scales which differ in amplitude and sign from conventional climato-827

logical analyses. This is demonstrated in Section 3.3.2, where by executing seasonal sur-828

face emissivity response analysis with time-dependent kernels and time-dependent surface829

emissivity change, the northern high latitude climatological surface emissivity radiative re-830

sponse is negative while southern high latitude climatological surface emissivity radiative831

response is positive. In the presence of sea ice decline, the Arctic atmospheric dynam-832

ics develops in such a way that the climatological surface emissivity radiative response833

is negative, whereas the Antarctic atmospheric dynamics is rather static over the climato-834

logical forcing periods, giving way to positive climatological surface emissivity radiative835

response. Additionally, the sign between high latitude climatological surface emissivity836

radiative response analysis and conventional emissivity feedback analysis can differ if the837

latter case does not capture underlying driving feedback mechanisms present in a higher838

order domain.839

The inclusion of this realistic physics leads to improved agreement between CESM840

model results and Arctic surface temperatures and sea-ice trends. This reduction of persis-841

tent surface temperature biases suggests that modeling surface emissivity may be a con-842

tributing factor to cold-pole model biases, where radiative surface temperatures would843

constantly being rederived low in RRTMG_LW compared to surface components, when844

surface emissivity is set to 1.0 in the atmospheric component. To clarify, the CESM1 re-845

lease version calculates two distinct representations of the surface temperature: the surface846

temperature derived from sub-surface temperature profile models residing in surface model847

components, and the surface temperature calculated by the Stefan-Boltzmann law with848

surface emissivity set equal to 1.0. We tried to reconcile the disparate representation of849

surface temperature to ultimately harmonize the treatment of surface temperature and ra-850

diative fluxes. With spectral surface emissivity modeling as outlined in Section 2.2, more851

realistic calculated longwave upward and downward fluxes impact energy balance and sur-852

face temperature derivations in the surface components in the next time-step. Twenty-four853

atmospheric GCMs that participated in the CMIP5 (Taylor et al. [2012]) assume constant854

surface emissivity over the entire longwave spectrum, and so the modifications to CESM1855

presented here may be relevant for those models.856

There is still work to be done regarding ice-emissivity feedback analysis, however.857

First, in these simulations the downward longwave radiative flux still remains decoupled858

from the ocean model, though we should note that the influence of this decoupling on859

the results presented here is likely to be small because the longwave extinction coeffi-860

cient amplitude excludes longwave radiation from transmission beyond the first ocean layer861

(W. Large, National Center for Atmospheric Research, personal communication). Second,862

the treatment of spectral surface emissivity for vegetated surfaces is incomplete in that its863

variation based on plant species and far-infrared emissivity for any vegetated scenes is un-864

known. Third, the dependence of the ice-emissivity feedback on snow grain-size needs to865

be explored. We used the spectral emissivity curve for medium-grained snow, but several866

studies have noted a decrease in emissivity with snow grain-size that is spectrally-variable867

(Hori et al. [2006]; Huang et al. [2016]). Therefore, the sign of the seasonal surface emis-868

sivity radiative response and the climatological surface emissivity feedback could depend869

on the details of snow metamorphosis, which further motivates the need for realistic mod-870

eling of snow grain-size evolution both in the sea-ice and land components of coupled-871

climate models. Finally, a similar analysis to what is presented here for CESM will need872
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to be performed in other climate models to establish if surface-emissivity physics are im-873

portant for high-latitude feedbacks and bias reduction in the multi-model ensemble.874
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Table 1. RRTMG_LW Bands and Surface Emissivity values1057

RRTMG_LW Emissivity
Band Limits (cm−1) Snow Ocean Desert

1 10-350 0.9936 0.8488 0.9116
2 350-500 0.9883 0.8845 0.8866
3 500-630 0.9799 0.8874 0.9055
4 630-700 0.9717 0.899 0.9591
5 700-820 0.9643 0.9189 0.9605
6 820-980 0.982 0.9531 0.9376
7 980-1080 0.9862 0.9502 0.8783
8 1080-1180 0.9909 0.9447 0.9181
9 1180-1390 0.9812 0.9400 0.9780
10 1390-1480 0.9776 0.9362 0.9741
11 1480-1800 0.9771 0.9359 0.9705
12 1800-2080 0.9717 0.9374 0.9676
13 2080-2250 0.965 0.9349 0.9648
14 2250-2380 0.9636 0.9336 0.9648
15 2380-2600 0.9583 0.9316 0.9636
16 2600-3250 0.9391 0.9251 0.9613

Planck-averaged broadband 0.982 0.901 0.922
CESM1 broadband 0.970 1.000 0.960
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Table 2. Sea-ice emissivity globally-averaged feedbacks [W/m2/K]. See text for further details.1058

∆T̄S Sky Case Kernel
Static Time-dependent/Dynamic

Global Mean Clear HISTCO2 3.27×10−2 ± 1.49×100 3.05×10−2 ± 2.29×10−3

2×CO2, RCP 8.5 2065 1.75×10−2 ± 1.28×10−3 1.55×10−2 ± 3.46×10−4

RCP 2.6 2100 1.71×10−2 ± 1.31×10−3 1.52×10−2 ± 3.50×10−4

RCP 8.5 2100 1.67×10−2 ± 7.54×10−4 1.43×10−2 ± 1.95×10−4

All HISTCO2 1.50×10−2 ± 1.16×100 8.15×10−3 ± 1.63×10−3

2×CO2, RCP 8.5 2065 9.53×10−3 ± 1.28×10−3 5.44×10−3 ± 2.56×10−4

RCP 2.6 2100 9.22×10−3 ± 1.32×10−3 5.38×10−3 ± 2.53×10−4

RCP 8.5 2100 9.46×10−3 ± 7.70×10−4 4.79×10−3 ± 1.95×10−4

Zonal Mean Clear HISTCO2 8.49×10−3 ± 2.05×10−3 8.06×10−3 ± 1.92×10−3

2×CO2, RCP 8.5 2065 9.19×10−3 ± 3.47×10−4 8.19×10−3 ± 2.38×10−4

RCP 2.6 2100 9.03×10−3 ± 3.28×10−4 8.11×10−3 ± 2.32×10−4

RCP 8.5 2100 9.26×10−3 ± 2.40×10−4 8.05×10−3 ± 1.47×10−4

All HISTCO2 3.71×10−3 ± 2.01×10−1 2.32×10−3 ± 2.01×10−1

2×CO2, RCP 8.5 2065 4.55×10−3 ± 3.77×10−4 2.77×10−3 ± 2.39×10−4

RCP 2.6 2100 4.44×10−3 ± 6.99×10−4 2.75×10−3 ± 3.92×10−4

RCP 8.5 2100 4.82×10−3 ± 2.74×10−4 2.62×10−3 ± 1.52×10−4
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Figure 1. Focusing on Arctic ocean latitudes, a) comparison of 1979-2005 Arctic surface temperatures
monthly and spatially-averaged over 69◦-90◦ North for CESM-ϵ(ν) (red), the mean of 10 fully-forced CESM-
LME models (green), and ERA-Interim skin temperature reanalysis (blue), b) the residuals with respect to
ERA-Interim skin temperature for CESM -ϵ(ν) radiative surface temperature (red) and CESM-LME (green),
c) December-January-February residuals for the same period and region where error bars show the deviations
over the months, and d) are the June-July-August residuals for the same period and region.
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Figure 2. North Pole projection difference maps of Arctic radiative surface temperatures in the period
1979-2005 over 60◦-90◦ northern latitudes. Skin temperature reanalysis data is from ERA-Interim (Dee
et al [2011]), CESM-LME is the 10 ensemble mean of historical 20th century fully-forced model from the
CESM Last Millenium Ensemble (Otto-Bliesner et al. [2016]), and CESM-ϵ(ν) is this work’s model, for the
HISTCO2 case. December-January-February (DJF) mean surface temperature differences are plotted between
a) CESM-ϵ(ν) and ERA-Interim, b) CESM-LME and ERA-Interim and c) CESM-ϵ(ν)-CESM-LME. d), e)
and f) show the same for months June-July-August (JJA). Crosses indicate statistically significant grid points
to p<0.05 of the Welch’s t-test.
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Figure 3. For the RCP 8.5 case, end of century 10-year averaged clear-sky ϵ kernel maps for four seasons:
a) December-January-February, b) March-April-May, c) June-July-August, and d) September-October-
November.
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Figure 4. Same description as Figure 3, except for all-sky.1076

Figure 5. Emissivity difference in RRTMG_LW band 6 between 10-year average in RCP8.5 end of century
and a 10-year average of 1850CNTL, for four seasons: a) December-January-February, b) March-April-May,
c) June-July-August, and d) September-October-November. Red regions denote increased emissivity and in
blue areas, the emissivity has reduced.
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Figure 6. Globally- and temporally-averaged spectral kernel amplitudes by RRTMG_LW band, for the last
10 years end-of-century RCP 8.5 case for a) clear- and b) all-sky. c) The globally- and temporally-averaged
spectral emissivity change of the last 10-years of RCP 8.5 and 10 years of 1850CNTL.
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Figure 7. Temporal evolution of emissivity kernels and climatological emissivity change. a) Solid lines
show globally-averaged broadband clear-sky ϵ kernel strength in units of W/m2/ϵ . Dotted lines are polyno-
mial fits to the clear-sky kernels. Dashed lines are ratios of all-sky to clear-sky globally-averaged broadband
ϵ kernel amplitudes and is unitless. b) Globally-averaged broadband emissivity change with respect to the
1850CNTL case.
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Figure 8. Broadband kernel reduction for forced CO2 atmosphere cases, with respect to the 1850CNTL
case. a) and b) are clear-sky kernel reductions area-averaged in northern and southern high latitudes, respec-
tively. c) and d) show the all-sky cases area-averaged in northern and southern high latitudes, respectively.
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Figure 9. Total precipitable water and total cloud fraction for forced CO2 atmosphere cases. a) and b)
Area-averaged in northern and southern high latitude total precipitable water, respectively. c) and d) show
area-averaged total cloud fraction in northern and southern high latitudes, respectively.
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Figure 10. Spectral ϵ kernels for RCP8.5 scenario in high northern latitudes a) clear and b) all-sky, and in
high southern latitudes d) clear- and e) all-sky, on a monthly basis. The color scheme for RRTMG_LW bands
is [red, green, blue, yellow] for bands=[1,2,3,4] and repeated 3 more times up to band 16.
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Figure 11. Average spectral climatological surface ϵ change on a monthly basis between 2090-2100 in
RCP8.5 scenario and 10 years of 1850CNTL for a) high northern latitudes and b) high southern latitudes. Av-
erage seasonal month-to-month surface ϵ change in years 2090-2100 of RCP8.5 scenario for c) high northern
latitudes and d) high southern latitudes. See Eqns. 5 and 6 for ∆ϵi and δϵi definitions.
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Figure 12. Zonally-averaged emissivity feedback of cryosphere for each of the four CO2 forced cases, rela-
tive to 1850CNTL. Kernels from 1850CNTL atmosphere were used in this case, with clear-sky on the left and
all-sky on the right plot. Normalization by global mean ∆T̄S , for conventional prescription of feedback. The
HISTCO2 feedback is large due to smaller global mean ∆T̄S .
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Figure 13. Sea-ice emissivity feedbacks calculated using different reference periods and kernel types (static
or time-dependent/dynamic). a) Comparison of 2 different reference periods, each using their respective static
kernel. b) For the same reference period, comparison of feedback using static kernel vs. dynamic kernel. c)
Comparison of 2 different reference periods, each using their respective dynamic kernels. d) Comparison of 2
different reference periods, each using their respective dynamic kernels, but feedback is normalized by zonal
mean temperature. Marker colors indicate the model case, as described in other figures in this manuscript.
Marker fill styles indicate: left fill-clear sky Northern Hemisphere (NH), right fill-all sky NH, bottom fill-
clear sky southern hemisphere (SH), top fill-all sky SH, full fill-clear sky global, no fill-all sky global. The
line of agreement is the black dashed line, and the blue line is a linear regression.

1106

1107

1108

1109

1110

1111

1112

1113

1114

–28–This article is protected by copyright. All rights reserved.



Figure 14. Climatological surface ϵ feedback, calculated with time-dependent kernels of outgoing long-
wave radiation sensitivity to surface emissivity and zonally-averaged surface temperature change, relative to
10-year averages in 1850CNTL. Error bar lengths indicate uncertainties propagated from standard deviations
in kernel, surface emissivity, and surface temperature values.
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Figure 15. RRTMG_LW band 6 seasonal emissivity radiative response factors for high sea-ice domi-
nant latitudes. a) northern and d) southern high latitude monthly emissivity kernels for the last 10 years of
each case, the last year noted in the figure legend. b) northern and e) southern high latitude month-to-month
emissivity change (δϵi=6, Eqn. 6). c) northern and f) southern high latitude emissivity radiative response.
Errorbars are calculated from the 10-year variability. Kernel and radiative response plots use solid lines for
clear-sky, and dashed lines for all-sky.
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Figure 16. Zonally- and time-averaged seasonal emissivity radiative response for each case, using a) clear-
sky kernels, and b) all-sky kernels. The time-average is over 10-year periods ending in the year denoted in the
figure legend for each case.
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