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Summary: Treatment policies, also known as dynamic treatment regimes, are sequences of decision rules that link

the observed patient history with treatment recommendations. Multiple, plausible, treatment policies are frequently

constructed by researchers using expert opinion, theories and reviews of the literature. Often these different policies

represent competing approaches to managing an illness. Here we develop an “assisted estimator” that can be used to

compare the mean outcome of competing treatment policies. The term “assisted” refers to the fact estimators from

the Structural Nested Mean Model, a parametric model for the causal effect of treatment at each time point, are used

in the process of estimating the mean outcome. This work is motivated by our work on comparing the mean outcome

of two competing treatment policies using data from the ExTENd study in alcohol dependence.

Key words: Adaptive intervention; dynamic treatment regime; semiparametric model; sequential multiple assign-

ment randomized trial
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Comparing Treatment Policies with Assistance from the Structural Nested Mean Model 1

1. Introduction

In many areas of health, treatment response is heterogeneous in which case clinicians will

need to consider providing a sequence of treatments in order to obtain sufficient treatment

response. Furthermore patients with chronic illnesses often require changes in treatment, that

is, sequences of treatments, so as to maintain a good response. As a result clinical scientists

have become increasingly interested in, and active in, the development of interventions that

are composed of treatment sequences (Lavori and Dawson, 2000) in various fields including

alcoholism (Oslin, 2005), substance abuse (Jones et al., 2011; McKay, 2009), leukemia (Thall

et al., 2002) and autism spectrum disorder (Kasari, 2009). Ideally the treatment sequences are

adapted to accommodate treatment response heterogeneity and thus result in more efficacious

and less burdensome/costly treatment. Treatment policies (Lunceford et al., 2002; Wahed

and Tsiatis, 2004, 2006) – also called dynamic treatment regimes (Robins, 1986; Murphy

et al., 2001), adaptive treatment strategies (Lavori et al., 2000; Murphy, 2005) or adaptive

interventions (Nahum-Shani et al., 2012a,b) – operationalize the dynamic adaption via a

sequence of decision rules, one for each stage in the treatment process; the decision rule inputs

measurements of patients’ time-varying covariates and outputs recommended treatments.

Often scientists construct treatment policies that represent competing approaches to man-

aging an illness. For example in the treatment of ADHD, the American Psychological As-

sociation recommends starting with behavioral treatment and moving to a medication only

if the behavioral treatment is not effective (Brown et al., 2008), whereas the American

Academy of Child and Adolescent Psychiatry recommends starting with medication (Pliszka

and AACAP Work Group on Quality Issues, 2007). Or one treatment policy might represent

a least intensive or least costly version, whereas another treatment policy may represent a

most intensive, most costly version. For example, the Extending Treatment Effectiveness

of Naltrexone (ExTENd) trial of alcohol dependence treatments (PI: Oslin (Oslin, 2005))



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

2 Biometrics, 000 0000

involves multiple treatment policies, of which one is the most intensive and another is the

least intensive.

A common approach to estimating and comparing the mean outcomes of competing treat-

ment policies, is to use a non-parametric estimation procedure that involves inverse-probability-

weights (IPW), such as those described in Murphy et al. (2001) and Zhang et al. (2013).

These estimators are non-parametric in the sense that they do not require models that

relate baseline or time-varying covariates with the outcome. Robins and colleagues (Robins,

1997b; Orellana et al., 2010) generalized the Murphy et al. (2001) methods by parameterizing

mean outcomes with each value of the parameter representing a different policy in a class

of treatment policies. In this manuscript, we develop an alternative approach for comparing

treatment policies. This approach combines the non-parametric IPW estimators of the mean

outcome with a model-based approach based on Robins’ Structural Nested Mean Model

(SNMM; Robins (1994)). In the Structural Nested Mean Model, intermediate treatment

effect functions, also called “treatment blips,” are parametrically modeled. The intermediate

treatment effects isolate the causal effect of treatment at each time point, conditional on

baseline and time-varying covariate history up to that time point. The resulting estimator

is an “assisted” estimator in that the model-based approach assists the non-parametric

estimator in estimating the mean outcomes of competing treatment policies.

Throughout this paper we focus on the comparison of two-stage treatment policies. The

restriction to two-stage treatment policies allows the main ideas to be presented and in addi-

tion most sequentially randomized trials, aka Sequential Multiple Assignment Randomized

Trials (SMART) (Lavori and Dawson, 2004; Murphy, 2005), concern two stages of treatment.

ExTENd is a two-stage SMART. In Section 2, we formulate the estimand in a precise manner.

In this section we provide a class of assisted estimators for the mean outcome based on data

from a SMART; theoretical properties of the estimators are also provided. In Section 3, we
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Comparing Treatment Policies with Assistance from the Structural Nested Mean Model 3

briefly introduce how these estimators can be used to compare treatment policies and make

inference. Simulation studies, in Section 4, are used to investigate different aspects of the

methodology, including the performance of the proposed estimator under various levels of

mis-specifying treatment effects. In Section 5, the methodology is illustrated by an analysis

of the ExTENd data. Finally, a discussion of the paper, including ideas for future work, is

presented in Section 6. Proofs of the theorems and lemmas are relegated to Web Appendix

A.

2. Assisted Estimator for Policy Value

A two-stage treatment policy consists of two decision rules, d = (d1, d2). Each decision

rule inputs available patient information at the current stage and outputs a treatment

recommendation. Denote the outcome by Y (Y may be observed after the study or may be

a function of the data collected during the study). The value of a policy is the expectation

of Y that would result if the treatments were selected using the treatment policy d. A useful

way to define the value of a policy is via the potential outcome framework (Neyman et al.,

1935; Rubin et al., 1978). For each variable and each treatment sequence, we conceptual-

ize a “potential outcome” that would have been observed under that treatment sequence.

Using Xj to denote observations available prior to the j-th decision, the potential out-

comes are {X1, X2(a1), X3(a1, a2); for all possible sequencesof treatments (a1, a2)}. Here X3

denotes observations after the second decision; the outcome Y (a1, a2) is a known function of

{X1, X2(a1), X3(a1, a2)}. The value of the policy, d, is given by Vd = E
[
Y (a1, a2)|a2=d2(H2(a1)),a1=d1(H1)

]
where H2(a1) = (X1, a1, X2(a1)) and H1 = X1. Vd is the marginal mean of Y under the policy

d, after integrating out H2(a1) and H1.

The value of a treatment policy d, can also be written as a function of the intermediate

treatment effects or “treatment blip functions,” from Robins’ Structural Nested Mean Model

(Robins, 1994). We deviate briefly to define these intermediate treatment effects which we
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4 Biometrics, 000 0000

will use below; other types of treatment blip functions can be found in Murphy (2003) and

Robins (2004). Corresponding to the two stages of treatment, there are two intermediate

treatment effects given by µ2(h2, a2) = E[Y (a1, a2)|H2(a1) = h2] − E[Y (a1, 0)|H2(a1) = h2]

and µ1(h1, a1) = E[Y (a1, 0)|H1 = h1]−E[Y (0, 0)|H1 = h1], where at = 0 is the coding for a

reference treatment. The intermediate treatment effect, µ2, quantifies the effect of treatment

a2 relative to the reference treatment at stage two on the mean of Y , among individuals

with history h2. The intermediate treatment effect, µ1, quantifies the effect of treatment a1

relative to the stage one reference treatment, if always followed by the reference treatment

at stage two, on the mean of Y , among individuals with history h1 at stage one.

Consider randomized treatments in a randomized trial, denoted by capitalized letters,

A1, A2, where the randomization distribution of A1 given H1 = h1 is denoted by p1(·|h1) and

the randomization distribution of A2 given H2(A1) = h2 is denoted by p2(·|h2). Throughout

this paper we implicitly make all required measurability assumptions as well as existence of

regular conditional densities. We have the following lemma.

Lemma 1: Assume that (i) max{E|Y (a1, a2)|, E|µ1(H1, a1)|, E|µ2(H2(a1), a2)|} <∞ for

any treatment sequence (a1, a2) and (ii) for some δ > 0, mina1 p1(a1|H1) > δ, a.s., then

Vd = E
[
Y (A1, A2)− µ2(H2(A1), A2)− µ1(H1, A1) + µ1(H1, d1(H1))

+ µ2(H2(a1), d2(H2(a1)))|a1=d1(H1)

]
= E

[
Y (A1, A2)− µ2(H2(A1), A2)− µ1(H1, A1) + µ1(H1, d1(H1))

+
I{A1 = d1(H1)}

p1(A1|H1)
µ2(H2(A1), d2(H2(A1)))

]
. (1)

This representation of the value, Vd, will form the basis for our method. The intuition behind

this representation is that the potential outcome of Y under treatment policy d can be

constructed or recovered from the potential outcome associated with the treatment sequence

(A1, A2), by subtracting the intermediate treatment effects due to the sequence (A1, A2)
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Comparing Treatment Policies with Assistance from the Structural Nested Mean Model 5

and then adding in the intermediate treatment effects due to the policy d. The fraction

involving the randomization probability in the last term (1) is used to account for the fact

that the intermediate treatment effect of the second stage treatment under policy d depends

on H2(a1)|a1=d1(H1) (the covariate history that would occur if the first stage treatment were

assigned according to policy d); that is, this fraction adjusts for the fact that H2(A1) is not

always equal to H2(d1(H1)).

2.1 The Data and the Estimation Method

The observed data on each participant in a two-stage SMART is {X1, A1, X2, A2, X3} where

Xt denotes covariates observed prior to the t-th stage and At denotes the t-th stage ran-

domized treatment. The primary outcome Y is a known function of {X1, A1, X2, A2, X3}.

Let H2 = (X1, A1, X2) and H1 = X1. The randomization probability for an individual’s

treatment may be a function of the individual’s observed data (say P [At = a|Ht] = pt(a|Ht)).

For example, in many SMARTs, including ExTENd, participants who respond to the first

stage treatment are randomized to different treatments from participants who do not respond

to the first stage treatment. Thus non-responding participants have probability 0 of being

assigned one of the treatments available for responders whereas responding participants have

probability 0 of being assigned one of the treatments available for non-responders.

To express the intermediate effects and the value (1) in terms of the observed data,

we relate the observed data to the potential outcomes. We assume (Rubin, 1986; Robins,

1997a; Robins et al., 2008), (A1) Consistency: X2 = X2(A1), X3 = X3(A1, A2) and (A2)

Sequential Randomization: A1 is independent of all potential outcomes given observed X1;

A2 is independent of all potential outcomes given observed (X1, A1, X2). The consistency

assumption states that the observed covariates are identical to the potential outcomes of

the covariates evaluated at the observed treatment sequence. In particular this assumption

implies that each subject’s outcomes are uninfluenced by other subjects’ assigned treatments.
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6 Biometrics, 000 0000

This assumption may be violated if for example, treatment is provided in a group setting

(group counseling). The sequential randomization assumption is valid in the setting of

SMART trials because the treatment is randomized.

The intermediate treatment effects and the value, Vd, can be expressed in terms of the

observed data as follows.

Lemma 2: Assume A1 and A2 and (i) max{E|Y |, E|µ1(H1, a1)|, E|µ2(H2, a2)|} < ∞

for any treatment sequence (a1, a2) and (ii) for some δ > 0, mina1 p1(a1|H1) > δ, a.s., then

(a) µ2(h2, a2) = E[Y |H2 = h2, A2 = a2]− E[Y |H2 = h2, A2 = 0],

(b) µ1(h1, a1) = E[E[Y |H2, A2 = 0]|H1 = h1, A1 = a1] − E[E[Y |H2, A2 = 0]|H1 = h1, A1 =

0] and

(c) Vd = E
[
Y − µ2(H2, A2)− µ1(H1, A1) + µ1(H1, d1(H1)) + I{A1=d1(H1)}

p1(A1|H1)
µ2(H2, d2(H2))

]
.

Suppose the intermediate treatment effects are known up to a finite-dimensional parameter:

µ1(h1, a1) = µ1(h1, a1; β1), µ2(h2, a2) = µ2(h2, a2; β2). Robins (1994) provides a class of “g-

estimators” for the parameters, β = (β1, β2). Each member in the class corresponds to

a different choice of model for each of several nuisance functions; consistency of the g-

estimators does not require correct models for the nuisance functions (see Robins (1994)

for a detailed discussion). Furthermore this class of estimators does not require knowledge

of the treatment policy, d. Thus β can be estimated and then used to form the estimators

of the values of a variety of treatment policies. In Web Appendix B, we review the class

of g-estimators. Each estimator in this class is consistent for the true value β0 = (β10, β20)

of β, and is asymptotically normally distributed (assuming a correctly specified SNMM and

some finite moment conditions). Throughout the paper we implicitly assume consistency and

asymptotic normality of β̂.

Then, given the results of Lemma 2 and estimators, β̂, a natural assisted estimator of the
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Comparing Treatment Policies with Assistance from the Structural Nested Mean Model 7

value of the policy d, Vd is:

V̂0(d; β̂) = Pn
[
Y − µ2(H2, A2; β̂2)− µ1(H1, A1; β̂1) + µ1(H1, d1(H1); β̂1) (2)

+
I{A1 = d1(H1)}

p1(A1|H1)
µ2(H2, d2(H2); β̂2)

]
,

where Pnf(X1, A1, X2, A2, X3) denotes a sample average. This estimator belongs to a class

of assisted estimators, given by

V̂m(d;β̂) = Pn
[
Y − µ2(H2, A2; β̂2)− µ1(H1, A1; β̂1) + µ1(H1, d1(H1); β̂1) (3)

+
I{A1 = d1(H1)}

p1(A1|H1)

{
µ2(H2, d2(H2); β̂2)−m(H1, A1)

}
+m(H1, d1(H1))

]
,

indexed by the function m(h1, a1). Note the former assisted estimator, V̂0(d; β̂), corresponds

to setting m(h1, a1) ≡ 0. We have the following lemma:

Lemma 3: Assume that the assumptions for Lemma 2 hold, then

(a) The estimating function in (3) is unbiased for any choice of m that satisfies E|m(H1, a1)| <

∞ for any a1.

(b) Assume (i) E|Y |2 <∞; (ii) µ̇1(h1, a1; β1) := ∂
∂β1
µ1(h1, a1; β1) exists for all β1, a.s., and

µ̇2(h2, a2; β2) := ∂
∂β2
µ2(h2, a2; β2) exists for all β2, a.s.; and (iii) there exists some δ > 0

such that
∑

a1
E sup‖β1−β10‖6δ |µ1(H1, a1; β1)|2 + |µ̇1(H1, a1; β1)|2 <∞, and∑

a2
E sup‖β2−β20‖6δ |µ2(H2, a2; β2)|2 + |µ̇2(H2, a2; β2)|2 < ∞. Then if β̂ belongs to a

subclass B of g-estimators, the choice of m resulting in the lowest variance for V̂m(d; β̂)

satisfies m(h1, d1(h1)) = E[µ2(H2, d2(H2))|H1 = h1, A1 = d1(h1)].

The subclass B corresponds to g-estimators for which a particular nuisance function is

correctly modeled. This subclass is defined in Web Appendix B after a general review of

g-estimators; in particular, in the simulation section we use an estimator β̂ based on a

correctly specified model for the nuisance function, thus β̂ ∈ B. In Web Appendix C, we

provide additional simulation results when using a β̂ that does not belong to B.

The lemma above provides a guide for the choice of m; in practice m(h1, a1) in (3) can
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8 Biometrics, 000 0000

be replaced by a working estimator m̂(h1, a1) := m(h1, a1; α̂m) of E[µ2(H2, d2(H2))|H1 =

h1, A1 = a1], resulting in V̂m̂(d; β̂). Next we provide consistency and asymptotic normality

results for the estimators of the value. We assume A1 and A2; in addition, we assume that

µ1(h1, a1; β1) and µ2(h2, a2; β2) are functions that correctly specify the SNMM, with true

parameter value β0 = (β10, β20). In particular, Theorem 1 below implies that the assisted

estimator is consistent regardless of the choice of function m (indeed one can set m ≡ 0).

Theorem 1: Assume that the assumptions for Lemma 3 hold; moreover, assume: (1) α̂m

converges in probability to some limit α+
m; (2) there exists some δ > 0 such that

∑
a1
E sup‖αm−α+

m‖6δ

|m(H1, a1;αm)| <∞; and (3) ṁ(h1, a1;αm) := ∂
∂αm

m(h1, a1;αm) exists for all αm, a.s. Then

V̂m̂(d; β̂) is a consistent estimator for the policy value of d, Vd.

Theorem 2: Assume that the assumptions for Theorem 1 hold; moreover, assume: (1)

there exists some δ > 0 such that
∑

a1
E sup‖αm−α+

m‖6δ |m(H1, a1;αm)|2 + |ṁ(H1, a1;αm)|2 <

∞ and (2)
√
n(α̂m − α+

m) = Op(1). Then
√
n
(
V̂m̂(d; β̂)− Vd

)
is asymptotically normal.

The asymptotic variance of the limiting normal distribution in Theorem 2 is provided in

Web Appendix A. Recall that if m(h1, a1;αm) is a correct model for E[µ2(H2, d2(H2))|H1 =

h1, A1 = a1], then this asymptotic variance achieves the lowest value among all choices of m,

provided that β̂ belongs to the subclass B of g-estimators.

3. Comparison between Treatment Policies

Suppose we are interested in comparing treatment policies d = (d1, d2) and d̃ = (d̃1, d̃2).

Then, given an estimator β̂ for the intermediate treatment effects, we obtain the following
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Comparing Treatment Policies with Assistance from the Structural Nested Mean Model 9

consistent estimator for the contrast between d and d̃, i.e., Vd̃ − Vd:

(V̂md̃
(d̃; β̂)− V̂md

(d; β̂)) =Pn
[
µ1(H1, d̃1(H1); β̂1)− µ1(H1, d1(H1); β̂1) (4)

+
I{A1 = d̃1(H1)}

p1(A1|H1)

{
µ2(H2, d̃2(H2); β̂2)−md̃(H1, A1)

}
− I{A1 = d1(H1)}

p1(A1|H1)

{
µ2(H2, d2(H2); β̂2)−md(H1, A1)

}
+md̃(H1, d̃1(H1))−md(H1, d1(H1))

]
,

where the function m(h1, a1) is now subscripted by the policy d, to reflect that a good

choice of function m varies with d (see the following lemma). For ease of notation, define

∆d(h1, a1) = md(h1, a1)− E[µ2(H2, d2(H2))|H1 = h1, A1 = a1].

Lemma 4: Assume that the conditions for Lemma 3 are satisfied; in particular, assume

that β̂ belongs to the subclass B of g-estimators. Then the choice of md and md̃ resulting in

the lowest asymptotic variance for
√
n(V̂md̃

(d̃; β̂)− V̂md
(d; β̂)), among the class of estimators

in (4) with md and md̃ being arbitrary functions of (h1, a1), satisfy: (1) for h1 such that

d1(h1) 6= d̃1(h1), ∆d̃(h1, d̃1(h1)) = ∆d(h1, d1(h1)) = 0; (2) for h1 such that d1(h1) = d̃1(h1),

∆d̃(h1, d̃1(h1)) = ∆d(h1, d1(h1)).

Lemma 4 implies that, for the purpose of estimating the policy contrast, it is reasonable to

replace md(h1, a1) with a working estimate md(h1, a1; α̂m) of E[µ2(H2, d2(H2))|H1 = h1, A1 =

a1]. Then we have the following lemma concerning the estimator of the contrast in (4) with

md(h1, a1) replaced by md(h1, a1; α̂m). We will also refer to this estimator as an “assisted

estimator”. This lemma assumes that md(h1, a1; α̂m) is modeled via a linear model DT
mαm

where Dm is a function of (H1, A1) and αm is estimated via least squares.

Lemma 5: Assume that the conditions for Theorem 1 and 2 are satisfied; then
√
n
(
(V̂m̂d̃

(d̃; β̂)−

V̂m̂d
(d; β̂))− (Vd̃−Vd)

)
converges in distribution to a normal distribution with mean zero and

var-covariance matrix, Σ∆. The plug-in estimator Σ̂∆ is a consistent estimator of Σ∆.
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10 Biometrics, 000 0000

The formulae for Σ∆ and Σ̂∆ are provided in Web Appendix A.

4. Simulation Studies

All simulation experiments are based on generative models mimicking the Extending Treat-

ment Effectiveness of Naltrexone (ExTENd) trial, a SMART trial of alcohol dependence

treatment (PI: Oslin; see Figure 1). In this trial, the first-stage randomization is between

two different criteria for early non-response to Naltrexone (NTX): the stringent definition

(two or more heavy drinking days) or the lenient definition (five or more heavy drinking

days). Participants were assessed weekly for non-response; as soon as a participant met the

non-response criterion, he/she was re-randomized to either switch to combined behavioral

interventions (CBI) or to a combination of CBI and Naltrexone. If the participant did not

meet his/her assigned non-response criterion by the end of two months, then the participant

was re-randomized to one of two relapse prevention options: usual care (UC) or telephone

disease management (TDM).

The structure of the simulated data is: (X1, A1, X2, R,A2, Y ). X1 is a 3-dimension baseline

covariate simulating the distribution of {baseline percent days heavy drinking, baseline

craving score, baseline mental composite score}, A1 is the binary indicator of the randomized

non-response criterion, X2 is a 2-dimension covariate simulating the distribution of {stage 1

duration, stage 1 percent days drinking}, R is the binary indicator of early response, A2 is

the re-randomized binary treatment at the second stage. Y is a primary outcome simulating

the distribution of the end-of-study craving score (lower values are better). We will study

various simulation scenarios that are all based on the following Y :

Y = η0(X1) + A1(1, XT
1 )β1 + η1(X1, A1, X2) + A2(1, XT

2 , A1, R,RX
T
2 , RA1)β2 + ε. (5)

in which the terms involving β’s are the intermediate treatment effects and η0(·), η1(·) and

ε are other components in the distribution of Y that correspond to the main effect of X1,
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Comparing Treatment Policies with Assistance from the Structural Nested Mean Model 11

the effect of X2 conditional on (X1, A1) and the error term, respectively. We use estimates

of η0(·) and η1(·) that are by-products of estimating an SNMM with the ExTENd data; the

by-products of the estimation of SNMM also include an estimate of the variance of the error

term, and we use that variance estimate to generate ε in our simulations. More details are

provided in Web Appendix C.

We create nine simulation scenarios by varying β1, β2 in the generating model for Y . This

procedure alters the magnitude of the main effects of the treatments at both stages and

also the extent to which there are treatment by covariate interactions. In particular, the

first coordinates in β1 and β2 reflect the main effects of A1 and A2, and the remaining

coordinates reflect the interactions of A1 and A2 with covariates. We adopt the following

definition of standardized effect size of a coordinate in βj by slightly modifying Cohen’s d

measure to: SES(βjk) = βjk/
√
V ar(η0(X1)) + V ar(η1(X1, A1, X2)) + V ar(ε). We adopt this

definition of standardized effect size because η0(X1), η1(X1, A1, X2) and ε are uncorrelated

components in the generative model of primary outcome Y , and the sum of their variances

contributes to the majority of the variance in Y . Note that to ensure that this definition of

standardized effect size is meaningful, we will use standardized covariates (each covariate in

X1, X2 is standardized to come from a population with mean 0 and standard deviation equal

to 1). The nine simulation scenarios correspond to combinations of no treatment effect, low

treatment effect and medium treatment effect at both stages. We define no Aj treatment

effect (j = 1, 2) as βj = 0, define low Aj treatment effect as setting all coordinates in βj

to have SES equal to 0.2, and define medium Aj treatment effect as setting the first two

coordinates in βj to have SES equal to 0.5 (i.e., main effect and interaction effect with Xj1),

and the other coordinates in βj to have SES equal to 0.2. The rationale for only one medium

level interaction in medium Aj treatment effect case is that it is unlikely (in real data) for

the treatment to interact with many covariates at medium level. The sign of each coordinate
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in βj is determined by a preliminary fit to the ExTENd data. In each simulation scenario,

we generate 1000 simulated data sets.

Throughout β̂ in the assisted estimator is one of Robins’ g-estimators (β̂ is the solution to

a series of least squares problems; indeed if, as discussed above a particular nuisance function

is correctly modeled, then this least squares solution will belong to B). In Web Appendix

C we provide results when β̂ does not belong to B; the simulation results are similar. Also

throughout m̂d is estimated via least squares with (1, X1, A1) as predictors.

Let the triple (c1, c2, c3) denote a policy in which c1 is the assigned non-response criterion,

c2 is the assigned binary treatment for early responders at the second stage, and c3 is the as-

signed binary treatment for early non-responders at the second stage. To investigate different

aspects of the proposed methodology, we perform two sets of simulation experiments: The

first set studies the bias and MSE of the assisted estimators of the difference in values of the

most intensive policy, (1,1,1) and the least intensive policy, (0,0,0). The second set illustrates

the efficiency gain of using the assisted estimator, compared with a non-parametric policy

value estimator that is based on the marginal mean model (Murphy et al., 2001; Zhang et al.,

2013).

Simulation 1: Here we compare bias and MSE for three types of assisted estimators

for difference in value. We use the assisted estimator, V̂m̂d
(d; β̂) with m̂d, an estimator of

E[µ2(H2, d2(H2))|H1, A1], and V̂0(d; β̂), to estimate the contrast between policies (1, 1, 1) and

(0, 0, 0). We also consider V̂md
(d; β̂) in which md is the unknown E[µ2(H2, d2(H2))|H1, A1]; we

call this an “oracle” assisted estimator, because in practice the optimal md will be unknown.

The coverage of confidence intervals based on the asymptotic standard errors of each of the

two non-oracle estimators is also provided in Table 1.

[Table 1 about here.]

The simulation results with N = 100 are shown in Table 1 (results for N = 250 are shown



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Comparing Treatment Policies with Assistance from the Structural Nested Mean Model 13

in Web Appendix C). Based on the ratio of bias and standard deviation, we conclude that,

as expected, the assisted estimators provide an unbiased estimate of the contrast between

policies. The MSEs of all the three estimators are similar; V̂m̂d
(d; β̂) tends to be slightly more

efficient than V̂0(d; β̂). The coverage of the confidence intervals based on the asymptotic

standard errors is close to 95% in all cases.

In Web Appendix C we provide additional simulations; these simulations illustrate that

V̂m̂d
(d; β̂) will provide a noticeable efficiency improvement over V̂0(d; β̂) in some extreme

settings. However, we found that in most practical scenarios, a sophisticated chosen md does

not substantially improve the efficiency over md ≡ 0; therefore for simplicity we recommend

using the assisted estimator with md ≡ 0.

Simulation 2: Here we assess the robustness via the bias, MSE and confidence inter-

val coverage provided by the assisted estimators to misspecification of the SNMM. As a

comparison we consider estimators from the marginal mean model (Murphy et al., 2001)

as these estimators do not require the SNMM. The marginal mean models are estimated

via a non-parametric inverse-weighted estimator. More details about the implementation of

the marginal-mean-models-based estimator in this simulation study can be found in Web

Appendix B. We also present there some discussions about the equivalency between the

estimators proposed in Zhang et al. (2013) and in Murphy et al. (2001). Note that when

the goal is to evaluate the difference between two policies, the estimators in Orellana et al.

(2010) under particular choices of nuisance functions reduce to the marginal mean model

estimators.

V̂m̂d
(d; β̂) is estimated with two differently mis-specified SNMMs in addition to the correctly

specified SNMM. The true SNMM is implied by the generative model in (5), i.e., µ1(H1, A1) =

A1(1, XT
1 )β1, µ2(H2, A2) = A2(1, XT

2 , A1, R,RX
T
2 , RA2)β2. The first mis-specification of the

SNMM excludes X11 from the model for µ1(H1, A1) and excludes X21, RX21 from the model
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14 Biometrics, 000 0000

for µ2(H2, A2) (denoted as Assist2 in Table 2). The second mis-specification models µ1(H1, A1)

as A1(1, X∗T1 )β1 and models µ2(H2, A2) as A2(1, X∗T2 )β2, where X∗1 and X∗2 are 3-dimensional

and 7-dimensional covariates (denoted as Assist3 in Table 2). The dimensions of X∗1 and X∗2

are chosen so that the model complexity is the same as in the correctly specified SNMM; X∗1

and X∗2 generated independently of all the other covariates.

We focus on the estimation of two contrasts: the first is the contrast between the policies

(1,1,1) and (0,0,0), and the second is the contrast between a “tailored” treatment policy

and the policy (0, 0, 0). This tailored treatment policy assigns a1 = 1 if X13 > 0; a2 = 1

to all early responders and a2 = 1 to early non-responders if X21 < 0. In each of the nine

simulation scenarios we compare the marginal-mean-model-based estimator with the assisted

estimators for three differently specified SNMMs.

[Table 2 about here.]

The experiment results when N = 100 are shown in Table 2 (results for N = 250 are shown

in Web Appendix C). Instead of the MSE of the estimators, we present the relative MSE of

the assisted estimators, with the MSE of the marginal-mean-model-based estimator (MM)

as the reference. We found that, for the comparison between policies (1,1,1) and (0,0,0), the

assisted estimators with correctly specified SNMM outperform MM in terms of the MSE

in most cases; mis-specifying the SNMM does not seem to introduce bias, but severe mis-

specification (Assist3 in the Table) can lead to lower efficiency, and sometimes can even

cause the assisted estimators to have a larger MSE than MM. For the comparison between

the tailored policy and policy (0,0,0), the assisted estimators with correctly specified SNMM

outperform MM in terms of the MSE, and the advantage is greater than that of the first

contrast. Mis-specifying the SNMM introduces bias; in particular, severe mis-specification

(Assist3) leads to considerable bias. However, this bias does not seem to greatly impact

the performance of the confidence interval. Interestingly, for the estimation of this contrast,
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Comparing Treatment Policies with Assistance from the Structural Nested Mean Model 15

mis-specifying the SNMM may even result in a smaller MSE despite of the bias, due to a

smaller standard deviation in the estimate.

5. Data Analysis Example: ExTENd

The ExTENd study (see Figure 1) includes 302 participants, with 49 participants dropping

out prior to experiencing two heavy drinking days. These participants are removed from

our analysis as they did not experience the first randomization and both they and the

clinicians were blind to this randomization. Only three participants dropped out during

the first treatment stage after experiencing two heavy drinking days. The data from these

participants is also removed for simplicity. Thus the data we analyze has a sample size of

250.

[Figure 1 about here.]

We use both the marginal-mean-model-based estimator and the assisted estimator to

compare the most intensive versus the least intensive policies. Treatment policy (1,1,1)

represents the most intensive policy in the SMART, in which the early non response is

deemed to occur if and when there are 5 or more heavy drinking days in the first 8 weeks, in

which early responders are provided TDM and in which early non responders are provided

NTX+CBI. Treatment policy (0,0,0) represents the least intensive policy, in which early non

response is deemed to occur if and when there are 2 or more heavy drinking days in the first

8 weeks, in which early responders are provided UC and in which early non responders are

provided CBI only.

Besides the two treatment policies above, we will also compare a more “deeply tailored”

policy versus the policy (0, 0, 0). At stage one, this tailored policy assigns the 5 or more

heavy drinking days definition of non response to participants for whom the standardized

pre-treatment mental score is above zero and the 2 or more heavy drinking days definition
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of non response to participants with a pre-treatment mental score below zero. Among

early responders this policy assigns TDM if they have at least one heavy drinking day

during stage one and assigns UC otherwise. Among early non responders this policy assigns

NTX+CBI if their stage one duration is shorter than 49 days and otherwise assigns CBI

only. The justification of this treatment policy comes from the belief that participants who

were in worse mental health condition (indicated by a lower mental composite score) at

baseline should proceed to stage two earlier to receive more intensive treatments. Moreover,

it is considered that responders and non-responders who performed worse in stage one

(i.e., responders who experienced at least one heavy drinking day and non-responders who

transitioned to stage two sooner) should receive more intensive intervention in stage two.

We compare the treatment policies in terms of the Penn Alcohol Craving Scale (PACS).

Here we reverse code this scale such that higher values imply less craving thus are more

favorable. PACS is collected every two months during stage two. The outcome Y is the

average of the measurement at two months and four months after entry into stage two.

Among the 250 participants in our data set, 46 participants are missing Y . We deal with this

missingness in the outcome, Y , by adopting a slightly adjusted assisted estimator that han-

dles missingness via inverse-probability-weights (see Robins et al. (1995) for example). The

adjustment requires an estimator of the conditional probability of missing the outcome. This

adjustment is briefly reviewed in Web Appendix B. In particular, we make the assumption

that the missing Y ’s are missing at random (Rubin, 1976). The marginal-mean-model-based

estimator is also adjusted similarly to accommodate for missingness.

In the analysis model, we choose to include the following covariates: X1 is a 10-dimensional

baseline covariate including mean-centered versions of {gender, age, years of alcohol use,

indicator of drug abuse, pre-treatment percent days heavy drinking, indicator of being

married, years of alcohol intoxication, pre-treatment alcohol intoxication days within 30
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Comparing Treatment Policies with Assistance from the Structural Nested Mean Model 17

days, pre-treatment percent days drinking, pre-treatment mental composite score}; X2 is

5-dimensional covariate measured prior to re-randomization, including {duration of the first

stage, number of heavy drinking days during the first stage, percent days drinking during the

first stage, percent days heavy drinking during the first stage, average number of pills taken

per day during the first stage}. Moreover, A1 indicates whether (A1 = 1) or not (A1 = 0)

a patient is randomized to the lenient definition (i.e., five or more heavy drinking days) of

non-response as opposed to the stringent definition (i.e., two or more heavy drinking days);

R is the indicator of being an early responder; A2 indicates whether (A2 = 1) or not (A2 = 0)

a responder is re-randomized to TDM as opposed to UC, or whether or not a non-responder

is re-randomized to NTX+CBI as opposed to Placebo+CBI.

We run two sets of analysis with the assisted estimators, under two different SNMMs:

in the first analysis we adopt a parsimonious model for SNMM by assuming µ1(H1, A1) =

A1(1, X̃T
1 )β1 and µ2(H2, A2) = A2(1, X̃T

2 , A1, R,RX̃
T
2 , RA1)β2, where X̃1 is the first five

dimensions in X1 and X̃2 is the first three dimensions in X2; in the second analysis we adopt

a more complex model for SNMM by assuming µ1(H1, A1) = A1(1, XT
1 )β1 and µ2(H2, A2) =

A2(1, XT
2 , A1, R,RX

T
2 , RA1)β2. Asymptotic standard errors of the policy contrast estimates

are calculated and used to construct the 95% confidence intervals for the policy contrasts.

Table 3 presents the analysis results.

[Table 3 about here.]

The three estimators (including two assisted estimators with different SNMMs) produce

similar estimates, considering the relatively large standard errors. The analyses suggest that

the most intensive, (1,1,1) policy is estimated to approximately lower PACS by 3 on average

compared to the least intensive, (0,0,0) policy, and this difference is significant at 0.05 level,

across all three estimators. The proposed more tailored policy, on the other hand, does

not significantly differ from the (0,0,0) policy. Note that the marginal-mean-model based
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18 Biometrics, 000 0000

estimator has standard error no greater than that of the assisted estimators; this might

be due to either small treatment effects in the ExTENd data, or the variance due to the

considerable amount of missingness in the data.

6. Discussion

Our simulations indicate that the MSE performance of the assisted estimators is robust to

misspecification of the model for the intermediate treatment effects. None-the-less to reduce

bias, efforts should be made to ensure good model fit in estimating the intermediate treatment

effects. Data analysts should make efforts to collect all the time-varying covariates that may

moderate the effect of treatment at each stage on the primary outcome and include them

in the treatment effects models. Specific subject knowledge, and possibly results from past

studies, may provide valuable information for choosing the models.

In this manuscript we did not derive the semi-parametrically efficient estimator for policy

value and/or policy contrast. To obtain the most efficient estimator of the policy contrast,

one needs to subtract from the influence function of the assisted estimator its projection on

all tangent spaces that are orthogonal to the tangent space associated to the policy contrast;

this appears difficult because the policy contrast is a functional of a collection of finite or

infinite dimensional parameters in the data distribution and the functional is dependent on

the specific policies being studied. We plan to investigate this efficiency problem in future

research.

In this paper we focused on the comparison of two-stage treatment policies. When there are

more than two treatment stages at which (re-)randomization may happen, similar assisted es-

timators can be constructed. For example, for a three-stage treatment policy d = (d1, d2, d3),

the assisted estimator requires additional terms characterizing the effect of d3 when (d1, d2)

were followed at earlier stages. This would involve inverse-probability-weights from more

than one stage.
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Comparing Treatment Policies with Assistance from the Structural Nested Mean Model 19

The methodology proposed in this paper is only applicable when a few candidate treatment

policies have been pre-specified. When there are more than a few candidate treatment

policies, usually one of the candidate treatment policies can be considered as a reference

policy, and comparison can be made between any of the remaining policies and this reference

policy. In future work, we will also consider a multiple comparison procedure for many

treatment policies.

The assisted estimators are based upon the structural nested mean models for continuous

primary outcomes. Multiplicative structural mean models (Robins, 1997a) and generalized

structural mean models (Vansteelandt and Goetghebeur, 2003) have been proposed to deal

with non-continuous primary outcomes and non-linear treatment effects. We expect that the

assisted estimators can also be extended to deal with more complicated primary outcomes

and more complicated underlying interaction between treatments and covariates, with the

assistance of these more recent variations of SNMMs.

7. Supplementary Materials

Web Appendices referenced in Sections 2, 3, 4, 5, and the R script to obtain the proposed es-

timators and generate the simulative data sets are available with this paper at the Biometrics

website on Wiley Online Library.
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Figure 1. ExTENd SMART design for the treatment of alcohol dependence. “R” stands
for (re-)randomization. TDM = Telephone Disease Management, UC = Usual Care, NTX
= Naltrexone, CBI = Combined Behavioral Intervention, MM = Medical Management
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Table 1
Simulation 1: Statistical properties of the assisted estimators of the contrast between values of policies (1,1,1) and

(0,0,0). Oracle = contrast estimator based on V̂md(d; β̂) with the true optimal md. Assist = contrast estimator based

on V̂m̂d(d; β̂) with a working estimate of the optimal md. Assist (md = 0) = contrast estimator based on V̂0(d; β̂).
The displayed numbers for confidence interval coverage are the coverage proportion × 100. An Asterisk indicates

that the MSE of Oracle or Assist (md = 0) is significantly different from MSE of Assist (at 0.05 level).

N = 100

Scenario True Value
Bias / SD MSE ASE Coverage

Oracle Assist Assist
(md = 0)

Oracle Assist Assist
(md = 0)

Assist Assist
(md = 0)

(none,none) 0 0.04 0.04 0.04 3.51∗ 3.46 3.51∗ 95.7 95.4
(none,low) -2.4 0.01 0.01 0.01 4.26 4.26 4.31 95.1 95.6
(none,med) -5.2 0.03 0.03 0.01 3.94 3.93 4.3∗ 95.2 95.4
(low,none) -1.4 -0.01 -0.01 -0.01 3.31 3.3 3.31 95.5 96.3
(low,low) -3.8 0 0 0 4.08 4.14 4.12 95.5 95.9
(low,med) -6.6 0.04 0.04 0.04 4.09 4.1 4.25∗ 95.6 96.3
(med,none) -3.6 0.03 0.03 0.03 3.96 3.93 3.96 95.9 95.4
(med,low) -6.0 -0.01 -0.01 -0.01 4.33 4.36 4.38 95.2 95.5
(med,med) -8.8 0.01 0.01 0 4.02 4.04 4.24∗ 95 95.7
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Table 2
Simulation 2: Comparison between the marginal-mean-model-based estimators and the assisted estimators, with

respect to the performance in estimating the policy contrasts. MM = Marginal-mean-model-based estimator. Assist1
= Assisted estimator with correctly specified SNMM. Assist2 = Assisted estimator with mis-specified SNMM that
excludes X11, X21, RX21. Assist3 = Assisted estimator with mis-specified SNMM that excludes all the covariates

interacting with treatments. Bias significantly different from 0, and coverage proportion significantly different from
95%, are marked with an asterisk. Relative MSE is calculated as the ratio of MSE with that of MM.

N = 100

Estimation of the first contrast,(1, 1, 1) vs (0,0,0)

Scenario True value
Bias x 100 Coverage of 95% CI x 100 Relative MSE

MM Assist1 Assist2 Assist3 MM Assist1 Assist2 Assist3 Assist1 Assist2 Assist3

(none,none) 0 2.4 4.9 5.2 4.9 95.2 96.2 96 96.1 0.94 0.93 0.99
(none,low) -2.4 5.8 4.6 4.7 6 94.5 96 95.4 95.2 0.95 0.94 1.04
(none,med) -5.2 12 -6.8 -6.8 -2.6 93.6∗ 93.9 93.6∗ 94.6 0.95 0.95 1.01
(low,none) -1.4 -1.9 2.5 1.7 4.8 95.6 94.6 94 95 1.01 1.01 1.09
(low,low) -3.8 -12.5 -10.8 -11 -10.3 94.3 94.5 93.5∗ 94.6 0.92 0.92 0.97
(low,med) -6.6 11 -9.9 -10.4 -5.8 93.9 94.8 94.7 95.5 0.84 0.84 0.93
(med,none) -3.6 8.9 4.2 5.4 3.4 95.5 95.9 95.3 96.2 0.89 0.87 0.89
(med,low) -6.0 9.7 -1.9 -2.7 -7.1 94.3 94.8 94.1 94.9 0.85 0.85 0.93
(med,med) -8.8 28.9∗ 4.2 5.4 4.7 93.7 94.9 95.2 94.9 0.8 0.79 0.85

Estimation of the second contrast, the tailored policy vs (0,0,0)

Scenario True value
Bias x 100 Coverage of 95% CI x 100 Relative MSE

MM Assist1 Assist2 Assist3 MM Assist1 Assist2 Assist3 Assist1 Assist2 Assist3

(none,none) 0 6 1 2.4 2.3 96.2 97∗ 96.6∗ 96.1 0.78 0.76 0.57
(none,low) -2.2 6.4 4.8 -2.8 16.7∗ 95.6 96 95.7 94.7 0.79 0.77 0.59
(none,med) -3.9 11.5 -2.8 -22.1∗ -43.9∗ 94.9 95.8 95.1 94.4 0.78 0.77 0.67
(low,none) -1.1 5.3 11.2∗ 9.7 42.9∗ 95.5 95.3 94.8 93.8 0.81 0.8 0.69
(low,low) -3.3 -7.3 -6.3 -15.1∗ 46.3∗ 93.9 95.3 93.9 95 0.77 0.74 0.59
(low,med) -5 6.7 -1.8 -23.6∗ -2.8 94 96.3 94.9 95.7 0.7 0.69 0.5
(med,none) -2.3 9.3 8 9.1 50∗ 95.9 96.5∗ 95.8 95.4 0.76 0.74 0.57
(med,low) -4.4 13.7∗ 9.4 -0.3 53.3∗ 93.2∗ 95 95.2 94.1 0.7 0.67 0.57
(med,med) -6.2 24.7∗ 5.2 -15.1∗ 9.9∗ 93.1∗ 95.5 95.3 95.6 0.66 0.64 0.49
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Table 3
Illustrative data analysis results with the ExTENd data. Evaluate the policy contrasts of both the policy (1, 1, 1) and

the proposed tailored policy, in relation to the policy (0, 0, 0), with respect to PACS. MM =
Marginal-mean-model-based estimator. Assist1 = Assisted estimator with a parsimonious SNMM. Assist2 =

Assisted estimator with a complex SNMM.

(1,1,1) vs (0,0,0) Tailored vs (0,0,0)
Est (s.e.) Lower

Bound
Upper
Bound

Est (s.e.) Lower
Bound

Upper
Bound

PACS MM 2.98 (1.30) 0.44 5.52 0.21 (1.05) -1.85 2.27
Assist1 2.83 (1.44) 0.00 5.66 0.91 (0.99) -1.02 2.85
Assist2 2.95 (1.48) 0.04 5.85 1.25 (1.05) -0.80 3.31
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