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Originality-Significance Statement 

While most global change studies in microbial ecology are focusing on the impacts of climate 

change and land use change, the third component of global change, i.e. species invasions, gets 

considerably less attention. Here, we focused on the impacts of one of the most impactful 

invasive species in aquatic systems, invasive dreissenid mussels (IDMs). Our knowledge about 

their impacts on bacterial communities remains very limited, despite potentially large implications 

to ecosystem functioning if bacterial communities are affected. This is in part due to the innate 

sensitivity of IDMs to invasive sampling strategies which are required for many molecular 

analyses (i.e., they halt their feeding activity), complicating the acquisition of highly resolved 

temporal surveys. Using a recently developed flow cytometry method, which calculates 

phenotypic diversity estimates, we discovered direct impacts on natural lake bacterioplankton 

populations, within one hour of being exposed to filter feeding pressures from this invasive 

speciesquagga mussels. We also established a strong correlation between these phenotypic 

diversity measurements and their taxonomic counterpart calculated from 16S rRNA gene 

amplicon sequencing over different freshwater environments. This allowed us to predict the 

magnitude of actual community shifts solely based on flow cytometric measurements, facilitating 

a temporal resolution of this biological process that would not have been possible otherwise. We 

could then further attribute this predicted shift in community diversity to the removal of 

physiological subpopulations previously shown to contribute disproportionately to community 

metabolism. Thus, this new analysis pipeline led us to the hypothesis that IDMs directly impact 

microbial elemental cycling, as they may drivedrive bacterioplankton communities toward less 

diverse and potentially less productive states within short time periods.   
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Summary 

Species invasion is an important disturbance to ecosystems worldwide, yet knowledge about the 

impacts of invasive species on bacterial communities remains sparse. Using a novel approach, we 

simultaneously detected phenotypic and derived taxonomic change in a natural bacterioplankton 

community when subjected to feeding pressure by quagga mussels invasive dreissenid mussels 

(IDMs), a widespread aquatic invasive species. We detected a significant decrease in diversity 

within one hour of feeding, and a total diversity loss of 11.6 ± 4.1 % after 3h. This loss of 

bacterial microbial diversity was caused by the selective removal of high nucleic acid (HNA) 

populations (29 ± 5% after 3h). We were able to track the community diversity at high temporal 

resolution by calculating phenotypic diversity estimates from flow cytometry data of minute 

amounts of sample. Through parallel flow cytometry and 16S rRNA gene amplicon sequencing 

analysis of environments spanning a broad diversity range, we showed that the two approaches 

resulted in highly correlated diversity measures and captured the same seasonal and lake-specific 

patterns in community composition. Based on our results, we predict that selective feeding by 

IDMs directly impacts the microbial component of the carbon cycle, as it may drive 

bacterioplankton communities toward less diverse and potentially less productive states. 

Keywords 

Invasive species, flow cytometry, HNA bacteria, phenotypic diversity, disturbance ecology  
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Introduction 

Anthropogenic disturbances can lead to rapid changes in microbial community diversity (species 

richness, evenness, and composition). Many studies aim to better understand feedbacks between 

global change and microbial communities, as changes in microbial diversity can either mitigate 

the predicted direct effects of disturbances on ecosystem fluxes (Singh et al., 2010; Zhou et al., 

2012), or lead to major shifts in bacterially mediated fluxes (Schimel and Gulledge, 1998; Finlay et 

al., 2007; Levine et al., 2011). The responses of microbial communities to disturbances are often 

monitored by means of high-throughput molecular techniques, such as 16S rRNA gene amplicon 

sequencing (Shade et al., 2012). Community shifts in response to altering environmental 

parameters can occur within hours (Props et al., 2016b) to days (Datta et al., 2016), and demand 

substantial sampling effort at a preferably fixed frequency to allow accurate statistical inference 

(Faust et al., 2015). Current technology allows sequencing data to be generated from low-volume 

samples (e.g., 100 mL) of low-density environments (≤ 106 cells mL-1), which comprise many 

aquatic ecosystems, but larger sample volumes (> 1L) are required in order to yield a robust 

census of the microbial community (Padilla et al., 2015). For low-density environments (≤ 106 

cells mL-1), which comprise many aquatic ecosystems, this becomes particularly challenging as 

large sample volumes (> 1L) are required in order to yield sufficient DNA and provide reliable 

results (Padilla et al., 2015). This prohibits the use of this approach in many longitudinal 

microcosm studies, for which repeated invasive sampling itself would act as a disturbance. 

Recently a new approach has been developed that can generate phenotypic diversity metrics 

based on physiological information derived from flow cytometry (FCM) data (Props et al., 

2016a). These diversity metrics have been shown to be highly correlated to taxonomic diversity, 

as derived from amplicon sequencing. Yet, their derivation avoids invasive, high volume sampling 

practices (≤ 1mL of sample required), and simultaneously offers information on the physiological 

state of the community, as well as on the absolute density of its constituent populations. Briefly, 
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this approach performs kernel density estimations on multiple bivariate single-cell parameter 

combinations (e.g., fluorescence and scatter intensity) and concatenates these into a feature 

vector that is called the phenotypic fingerprint. The phenotypic fingerprint represents the community 

structure in terms of physiological aspects, such as nucleic acid content and morphology. From 

this fingerprint, the community diversity can be calculated by means of the Hill diversity numbers 

(Hill, 1973), which examine both richness and evenness components of the phenotypic 

community structure. In parallel, this approach facilitates beta-diversity assessments through the 

ordination of samples by means of a dissimilarity matrix calculated between phenotypic 

fingerprints. The ability to simultaneously track impacts on phenotypic and taxonomic diversity 

offers opportunities to address gaps in our understanding of microbial disturbance ecology. 

Currently, this method has only been tested in one, low-complexity system, and validation across 

a broader range of diversities is needed to fully assess its potential for broad applicability. 

Species invasion, which is one of the main components of global change (Chapin et al., 2000), is 

a particularly useful system to help address knowledge gaps in microbial disturbance ecology as 

we can readily mimic the real-world conditions (i.e., sudden introduction) in laboratory or field 

experiments.. The current distribution of invasive dreissenid mussels (IDMs) across North 

America (>30 states) is a prime example of a successful invasion event (Higgins and Vander 

Zanden, 2010). Initially introduced through ballast water, IDMs display high filtration rates 

(Vanderploeg et al., 2002), and are able to rapidly populate benthic and littoral substrates in 

densities of up to 19,000 individuals per m² (Nalepa et al., 2010). With respect to their feeding 

behaviourbehavior, IDMs show highly selective feeding behaviourbehavior towards on seston 

and different algal and microzooplankton taxa over a broad range of size (~ 1 to 200 µm) (Tang 

et al., 2014). While IDMs are known to strongly impact phytoplankton and zooplankton 

abundance and composition (Higgins and Vander Zanden, 2010), the few studies focused on 

their impacts on bacterioplankton report contradicting results (Denef et al, in review). Several of 

these studies reported selective feeding on bacterial species (Silverman et al., 1995; Pires et al., 
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2004; Denef et al., 2017) while a long-term environmental survey of the Hudson River prior- and 

post-invasion did not observe negative effects on bacterial community density and productivity 

(Findlay et al., 1998). 

In this study, we investigated the effect of IDM grazing (with Dreissena bugensis as model) on the 

natural bacterioplankton community of Lake Michigan through (near) non-invasive tracking of 

the phenotypic biodiversity, as well as the density of physiological subpopulations. We first 

validated whether the existing correlation between taxonomic and phenotypic diversity metrics 

holds for the high diversity environments of low productivity Lake Michigan (low primary and 

secondary productivity) and one of its high productivity freshwater estuaries (high primary and 

secondary productivity), Muskegon Lake. We then used phenotypic alpha and beta diversity 

analyses to assess the impact and extent of IDM grazing on the bacterioplankton community of 

Lake Michigan. The observed biodiversity dynamics were further related to the dynamics of well-

established physiological populations in freshwater bacterioplankton, for which the grazing rate 

was determined. 
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Results 

We aimed to use flow cytometry-derived phenotypic diversity metrics as a proxy for taxonomic 

diversity shifts occurring during quagga mussel feeding on lake bacterioplankton. The experiment 

consisted of 12 L microcosms of 153 µm screened water and quagga mussels, both retrieved 

from Lake Michigan. The Lake Michigan bacterioplankton has previously been shown to contain 

both grazing-resistant and grazing-sensitive taxa allowing the study of direct grazing impacts 

(Tang et al., 2014; Denef et al., 2017). Prior to the onset of the experiment, we assessed whether 

the previously established correlation between phenotypic and taxonomic diversity metrics for 

low diversity environments could be extended to higher diversity aquatic environments, such as 

Lake Michigan. 

1. Validation of phenotypic diversity as a proxy for taxonomic diversity 

In order to interpret the flow cytometry-derived phenotypic diversity as a proxy for the 

taxonomic diversity, we first needed to validate whether the previously established correlation for 

low diversity environments was also valid for higher diversity environments, such as Lake 

Michigan and Muskegon Lake (Fig. 1).   

Microbial communities can be classified as relatively low or high diverse communities based on 

their Hill diversity metrics as these are expressed in terms of effective number of taxa, which depict 

the number of equally abundant taxa required to obtain the same diversity value as the 

community in question (Hill, 1973). The diversity metrics derived from flow cytometric analysis 

are calculated in the same way as their taxonomic counterparts but they can only be interpreted in 

arbitrary units. In order to determine whether there was a general relationship between the 

phenotypic and taxonomic diversity, we included an independent dataset from a low diversity 

cooling water microbial community (1 – 10 effective number of taxa) (Fig. 1). This cooling water 

dataset contains two 40 day surveys of bacterioplankton communities present in the secondary 

cooling water system of a nuclear test reactor that was subjected to multiple operational phases. 
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The positive correlation between taxonomic and phenotypic diversity metrics of orders 1 (D1, 

exponential of Shannon entropy) and 2 (D2, Inverse Simpson index) could be extended to the 

Lake Michigan and Muskegon Lake communities (cross-validated r² = 0.89, Pearson’s correlation 

rp = 0.94 for both D1 and D2). We opted for a single regression model as opposed to individual 

regressions for each environment in order to avoid overfitting as well as to construct a 

generalizable model that provides robust inference for all three environments. Individual 

regression models did not significantly differ in slope and the cross-validated r² of the single 

regression model was high (r² = 0.89), thereby permitting the use of a single regression model for 

monitoring diversity dynamics (Fig S1, Table S1).  The positive correlation between taxonomic 

and phenotypic diversity metrics of orders 1 and 2 could be extended to the Lake Michigan and 

Muskegon Lake communities (adj. r² = 0.89, Pearson’s correlation rp = 0.94 for both D1 and D2).  

The dynamic range of the regression, defined as the ratio between the largest and smallest 

taxonomic diversity used in its calculation, was 88.7 for D1 and 42.5 for D2. Goodness-of-fit 

analysis of the linear regression model indicated a normal distributed residual distribution with 

homogenous variance over the entire regression range (Fig. S21). The observed richness (D0) did 

not show a distinct linear correlation (r² = 0.32, rp = 0.54, Fig. S32). Due to the high level of 

correlation between the phenotypic diversity (D1, D2) and the taxonomic diversity, it was 

permissible to use the phenotypic diversity as a stand-alone metric for evaluating 

bacterioplankton diversity. Additionally, only D2 was used in further analyses due to the high 

degree of correlation between D1 and D2 (rp = 0.99). (Hill, 1973) 

In contrast to alpha diversity, beta diversity cannot be captured by a single metric. Therefore we 

compared the taxonomic and phenotypic beta diversity by their performance to detect seasonal- 

and lake-specific community structures in the Lake Michigan and Muskegon Lake data set (Fig. 

2).  Procrustes analysis demonstrated that both approaches were significantly correlated in terms 

of the patterns that they captured in the data (correlation strength = 0.652, p = 0.001). 
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Additionally, both approaches identified season and lake type (Lake Michigan or Muskegon Lake) 

as significant predictors of the community structure (p = 0.001). The season explained the most 

variance in the beta diversity (i.e., 19.6% of the taxonomic beta diversity and 22.5% of the 

phenotypic beta diversity). Lake type still captured 17.4% of the variance in the taxonomic beta 

diversity, but only 7.0% in the phenotypic beta diversity. Lastly, the seasonal effect was 

dependent on the lake type, representing an extra 9.4% of the variance in the taxonomic beta 

diversity (p = 0.001) and 4.6% in the phenotypic beta diversity (p = 0.018). 

2. Diversity dynamics during IDM feeding 

Combined with the non-invasive nature of the sampling associated with the flow cytometry 

approach, it becomes possible to track sensitive ecological processes, such as the filter feeding by 

IDMs (Dreissena bugensis as model), in high resolution (Kryger and Riisgård, 1988). The temporal 

trajectory of the bacterioplankton community of Lake Michiganthe microcosms was monitored 

for 3h at a resolution of 0.5h when subjected to the direct feeding pressure by 15 IDMs per 

microcosm (Fig. 3). This time period was sufficiently long to allow the assessment of direct 

feeding effects (removal of 30 to 60% of seston), but short enough to avoid indirect effects, e.g. 

due to trophic cascades or substantial accumulation of feces and pseudofeces (Vanderploeg et al., 

2010).  Importantly, all mussels were subjected to an extensive pretreatment consisting of specific 

handling, rinsing, and acclimatization steps in order to avoid contamination of the 

bacterioplankton community by external periphyton, debris, and ingested particles at the onset of 

the experiment (see experimental procedures section). The size distribution of the mussels was 

not significantly different between the microcosms (22.7 ± 2.3 mm, Kruskal-Wallis test, p = 

0.08). The total dry weight of the mussels per microcosm was 0.24 ± 0.018 g DW. 

Over the span of the 3h experiment, the control microcosm’s phenotypic diversity exhibited a 

minor overall positive temporal drift (p = 0.038). In contrast,  the bacterioplankton phenotypic 

diversity underwent a clear and significant decrease (p < 0.0001) during filter feeding of the 
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IDMs, signifying the enrichment of the community by certain taxa (Fig. 3A). The treatment 

effect became significantly distinguishable from the control at the 1 hour mark (at p < 0.05). 

Using the model regression model, an average loss in taxonomic diversity (D2) could be predicted 

of 2.6 ± 1.0 effective number of taxa, corresponding to a decrease of 11.6 ± 4.1% over the 

course of the experiment. Conceptually, this means that in a hypothetical community of 23 

equally abundant taxa (diversity prior to mussel feeding), an average of 2.7 6 taxa would be lost 

due to IDM feeding. To put these measurements in perspective, we analyzed data from a recently 

published mussel-feeding study that used the same experimental design, and had 16S rRNA gene 

amplicon data at time points 0 and 3h available (Fig. 4) (Denef et al., 2017). We calculated a 

mean loss of taxonomic diversity (D2) of 5.32 ± 4.65 for their three independent experiments 

which is comparable to the taxonomic diversity loss predicted for our experiment (2.6 ± 1.0). 

While the monitoring of the phenotypic alpha diversity allowed us to track the treatment effect 

through time, a beta diversity analysis was also conducted to evaluate the treatment and temporal 

effects on the complete phenotypic structure of the bacterioplankton community (Fig. 3B). At 

time point 0h theOver the course of the experiment the bacterioplankton communities were 

similarof between  the control and treatment microcosms became more dissimilar, but they 

became more dissimilar over time. In agreement with the alpha diversity analysis, a time-

dependent treatment effect  (r²feeding = 0.34, p = 0.005) was driving the bacterioplankton structure, 

with the control bacterioplankton community also experiencing a minor temporal effect (r²control = 

0.08, p = 0.006). 

3. Bacterioplankton population dynamics during IDM feeding 

Next, we investigated whether the observed diversity dynamics were caused by selective feeding 

on specific phenotypic populations of the bacterioplankton community. To do so, contrasts 

between the phenotypic fingerprints of the treatment and the control at three different time 

points were calculated (Fig. 54A). This analysis allowed the visualization of regions in a specified 
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bivariate parameter space which are relatively more or less abundant in the treatment versus the 

control. We opted for the FL1-H and FL3-H parametersopted for the primary fluorescence 

channels of the SYBR Green nucleic acid stain (i.e., FL1-H, FL3-H) because these are often used 

in identifyingallowing us to identify distinct physiological populations with varying nucleic acid 

content (Gasol et al., 1999; Hammes and Egli, 2010; Koch et al., 2014). The results demonstrate 

that during filter feeding the bacterioplankton community becomes became enriched with a low 

nucleic acid content population (LNA, low fluorescence FL1-H/FL3-H intensity), and was is 

depleted from a high nucleic acid content population (HNA, high FL1-H/FL3-H fluorescence 

intensity). 

As these are relative changes, that do not necessarily reflect a direct feeding effect on the HNA 

population, the absolute abundances for both the HNA and LNA population were extracted 

from the total community according to the guidelines by (Prest et al., 2013) (Fig. S43). The LNA 

cell densities show similar temporal behaviourbehavior for the control (coefficient of variation – 

CV = 5.8%) and treatment (CV = 5.2%) microcosms (Fig. 54B). This level of variation falls 

within the technical variation of current flow cytometry technology (CV = 5%), and is thus not 

indicative of a feeding effect (Hammes et al., 2008). In contrast, the HNA population was directly 

affected by the filter feeding (Fig. 54C). The HNA population of the control microcosms 

displayed a similar variation to the LNA population (CV = 5.1%), while the HNA population in 

the treatment microcosms showed a monotonic decrease throughout the experiment (CV = 

12.8%). Analogous to the diversity analyses, a significant treatment effect could be detected 

within 1h. Using robust linear regression, the HNA specific removal rate was estimated at 43,174 

000 ± 3,381 000 cells mL-1 h-1 (p < 0.0001), while the control HNA cell density remained 

constant (p = 0.98). After 3 hours of being subjected to filter feeding, 29 ± 5% of the HNA 

bacterioplankton population was removed from the water column. The clearance rate on the 

HNA population was 4.56 ± 0.81 mL mg-1 DW h-1.   
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Discussion 

Our understanding of microbial disturbance ecology has been partially constrained by a lack of 

temporal resolution, caused by methodological limitations in either sampling, logistics, or analysis. 

In order to combat these bottlenecks, we further developed and validated a (near) non-invasive 

flow cytometry-based approach dedicated to detect changes in the phenotypic diversity of 

microbial communities. We validated and applied these phenotypic diversity metrics to natural, 

high diversity environments, and investigated the response of bacterioplankton communities to a 

filter feeding disturbance caused by invasive dreissenid mussels, which are highly sensitive to the 

invasive sampling imposed by alternative monitoring techniques (i.e., they would cease their filter 

feeding activity). Our experimental results highlight the sensitivity of our method to detect subtle 

changes in diversity over short timeframes. Based on (1) our presented relationship between 

phenotypic and taxonomic diversity, (2) the positive relationship that exists between the 

diversityHNA bacterial populations and functionality bacterial productivity in many ecosystems 

(Zubkov et al., 2001; Servais et al., 2003), and (3) the results of our filter feeding experiment, we 

hypothesize that IDM feeding directly influences both microbial diversity and ecosystem 

functionality. 

Relation between taxonomic and phenotypic diversity 

The regression between the taxonomic and phenotypic diversity data is in agreement with and 

expands upon previous research (Props et al., 2016a) and offers further insight into the 

fundamental relation between these metrics. Concretely, the regression’s dynamic range has been 

extended from 10.3 in the previous study (cooling water) to 42.5 for the diversity of order 2 (D2). 

The quality of the cross-validated regression is worth highlighting as there were substantial 

differences in the sample treatment and data generation of the data sets, which could have led to 

systematic bias. First, the flow cytometry samples of Lake Michigan and Muskegon Lake were 

fixed with glutaraldehyde and archived at -80°C, whereas the cooling water samples were 
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analysedanalyzed directly. The glutaraldehyde fixative used in this research has been shown to 

increase autofluorescence and may have increased the instrument noise (Gunther et al., 2008). 

Nevertheless, the bacterioplankton community could be reproducibly isolated from the raw data 

with one fixed denoising strategy for the entire data set (Fig. S34). Secondly, the amplicon 

sequencing of the 16S rRNA gene targeted the V4 region for the Lake Michigan and Muskegon 

samples, whereas the V3-V4 region was targeted for the cooling water samples. This difference in 

sequenced region has been shown to potentially alter the observed diversity (Schmalenberger et 

al., 2001; Yu and Morrison, 2004). Both potential biases would have been visible by a shift in the 

taxonomic diversity of the cooling water samples relative to the other data set. However, this was 

not observed. We did not observe this bias in the taxonomic diversity, but we did observe that 

the phenotypic diversity was incapable of resolving the Lake Michigan and Muskegon Lake 

communities, even though they had distinct taxonomic diversities. The regression analysis 

showed that the strength of the relationship between the phenotypic and taxonomic diversity was 

unaffected, but that the intercept of the linear models was different (p<0.001). Therefore we 

emphasize that the absolute values of the phenotypic diversity metrics need to be compared 

within a single ecosystem or experimental setting. Lastly, rescaling or subsampling the community 

composition to an equal library size, which is a common yet debated practice in microbial 

community analyses (McMurdie and Holmes, 2014), did not negatively affect the regression (Fig. 

S54). In fact, it improved the regression for all diversity metrics and in particular D0, indicating 

that the phenotypic diversity is metrics are primarily sensitive to fluctuations in the density of 

abundant taxa. As such, we recommend to evaluate changes in richness (D0) solely by means of 

16S rRNA gene amplicon sequencing, for which novel statistical approaches are being developed 

that account for both observed and unobserved taxa (Willis and Bunge, 2015).   It is important to 

note that in order to compare flow cytometry-derived diversity metrics with each other, the 

underlying raw data must have been generated by the same flow cytometer platform with 

identical detector and flow rate settings, which was the case for all data presented in this study. 
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The linearity on the log-scale implies that the change in phenotypic diversity required to detect a 

corresponding change in taxonomic diversity systematically increases (Fig. 1). For example, at low 

diversities, a change from 1,000 to 1,500 units in phenotypic diversity corresponds to a predicted 

change of 3.4 units in the taxonomic diversity, while an increase from 1,500 to 2,000 units only 

corresponds to a predicted change of 2.0 units in the taxonomic diversity. This is one of the 

limitations of relying on a limited fixed number of phenotypic parameters (i.e., fluorescence and 

scatter intensities); the available parameter space that bacterial cells can occupy becomes saturated 

at higher diversitiesis limited, resulting in a loss of sensitivity at higher diversities. It is 

theoretically possible to increase the number of physiological parameters (e.g., membrane 

permeability) through combining additional stains, but these approaches require substantial 

standardization, and are not always reproducible enough to be used for natural communities 

(Buysschaert et al., 2016). 

The beta diversity analyses yielded similar statistical inference on the seasonal- and lake-specific 

effects, with both the taxonomic and phenotypic beta diversity identifying seasonality as the most 

important predictor of community structure. A higher degree of variance could be explained by 

the lake type in the taxonomic beta diversity, which suggests that the phenotypic approach was 

less sensitive to differences in taxon distributions between the lakes, or that additional variation 

based on phenotypic plasticity weakens the relationship between taxonomic and phenotypic beta 

diversity. This is congruent with the alpha diversity measurements where Lake Michigan and 

Muskegon Lake samples showed similar phenotypic diversity despite possessing distinct 

taxonomic diversities. Overall, Procrustes analysis confirmed that the phenotypic beta diversity 

was able to largely capture the same patterns in the data as the taxonomic beta diversity. As such, 

phenotypic beta diversity analyses constitute a valid approach for hypothesis testing in high 

diversity environments but they are susceptible to a higher degree of variability and thus generate 

potentially lower effect sizes (e.g., for the lake type in this analysis). 
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Diversity and population dynamics 

The phenotypic diversity dynamics during the 3h filter feeding experiment were more subtle than 

in our previous study on the cooling water dataset (< 150 vs. > 500 units; (Props et al., 2016a)) 

but occurred over a much shorter time scale (3 hrsours vs. multiple days). Importantly, the 

predicted loss in taxonomic diversity based on the phenotypic diversity (2.6 ± 1.0) lies well within 

the range of expected diversity shifts (5.32 ± 4.65) calculated from previous experiments which 

had start and endpoint measurements of community composition (Figure 5). Our predictions 

also suggest i) a general season-dependent bacterioplankton diversity with a higher diversity in 

summer than in fall and winter and ii) a season-dependent specific feeding effect resulting in a 

higher diversity loss in summer than in fall and winter. Overall, the conformity of our predictions 

to these previous experiments further validates the phenotypic diversity approach. (Denef et al., 

2017) 

The diversity dynamics further suggested that D. bugensis was selectively feeding upon a fraction 

of the bacterioplankton community, thereby altering the community composition, and lowering 

the diversity. This was confirmed by identifying populations that were selectively enriched 

through contrast analysis, which demonstrated the selective feeding on bacteria with high nucleic 

acid content (HNA bacteria) (Fig. 43A). The HNA clearance rate (4.56 ± 0.81 mL mg-1 DW h-1), 

which can be interpreted as the water volume that is fully depleted of HNA bacteria per hour, 

was comparable to those previously reported for Dreissena polymorpha feeding on laboratory strains 

(3.5 – 4.8 mL mg-1 DW h-1) ranging in size between 1 and 4 µm in length (Silverman et al., 1995). 

The clearance rates on laboratory strains were measured for high cell densities (> 107 cells mL-1) 

relative to the natural densities in Lake Michigan in this study (∼ 106 cells mL-1), and with 

different IDM species at a higher temperature, thus making direct comparisons difficult. With 

respect to experiments on natural bacterioplankton, mixed results have been reported. For river 

bacterioplankton, short-term mesocosm experiments provided no evidence of a direct feeding 
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effect, while long-term environmental surveys suggested a doubling in bacterioplankton densities 

(Findlay et al., 1998). In lakes, feeding on bacteria in low nutrient systems was thought to be 

limited (Cotner et al., 1995), though short-term feeding experiments on natural bacterioplankton 

from Lake Michigan did detect significant decreases in bacterioplankton densities (Denef et al., in 

review).  

HNA and LNA populations have been well-characterized in aquatic environments, yet 

considerable debate remains regarding the characteristics of each population. Initially, it was 

thought that the HNA population was the active fraction of the bacterial community, whereas 

the LNA population served as a reservoir  of dormant, inactive, dead, dying, and damaged cells 

(Lebaron et al., 2002). Nowadays, the LNA population has been shown to be able to actively 

grow and to be metabolically active in the environment without adopting HNA properties, such 

as high nucleic acid content and increased cell size (Jochem et al., 2004; Scharek and Latasa, 2007; 

Wang et al., 2009). Most studies do report an elevated cell-specific activity for the HNA bacteria 

that can be more than an order of magnitude higher than the activity of the LNA bacteria 

(Lebaron et al., 2002; Servais et al., 2003). HNA bacteria are also generally larger and exhibit 

higher growth rates than LNA bacteria (Lebaron et al., 2002; Jochem et al., 2004; Scharek and 

Latasa, 2007), and this large, active fraction of the bacterioplankton is preferred by zooplankton 

grazing (Boenigk et al., 2004; Tadonleke et al., 2005; Garcia-Chaves et al., 2016).  

HNA population densities tend to be positively correlated with heterotrophic productivity 

(Zubkov et al., 2001; Bouvier et al., 2007). Thus, we would expect relatively low HNA densities in 

Lake Michigan, which has been rendered increasingly oligotrophic (low primary and secondary 

productivity) since the ingress of IDMs (Evans et al., 2011). HNA population densities in Lake 

Michigan field samples (29.6 ± 4.2 %, n = 30) were even lower than those reported in previous 

surveys of freshwater lakes (40 – 42.5 %, n = 81) with similar levels of primary productivity (2 ± 

1.5 µg chlorophyll a L-1 vs. 1.5 ± 1.2 µg chlorophyll a L-1 in our 2015 survey of Lake Michigan) 
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(Bouvier et al., 2007; Shuchman et al., 2013). We observed that IDMs predominantly feed on the 

HNA population; this may in part explain these lower than expected HNA densities, as Lake 

Michigan is characterized lake-wide by high densities of IDMs (Nalepa et al., 2010). With the 

HNA bacteria leveraging as much as 80 % of the community’s biomass-specific secondary 

production, and mediating up to 70 % of the bacterial carbon flux in other aquatic environments, 

the selective feeding by IDMs may have a significant impact on elemental cycling in lake systems 

(Zubkov et al., 2001; Scharek and Latasa, 2007). 

Community characterization of HNA and LNA populations has shown that there can be 

significant differences in community composition, with few shared taxa between the populations 

(Schattenhofer et al., 2011; Vila-Costa et al., 2012). As a consequence, selective removal of a 

single population (e.g., HNA) will alter the community diversity, which was observed during this 

filter feeding experiment. Other studies using basic molecular fingerprinting techniques did not 

observe distinct community structures (Servais et al., 2003; Longnecker et al., 2005). Hence, 

several scenarios have been developed to explain the dichotomy between HNA and LNA 

bacterioplankton populations (Bouvier et al., 2007). Our results only allow us to support the 

scenario in which each population has a separate community structure, since considerable 

repopulation of the HNA population through growth or potential recruitment from the LNA 

population can take several days (Gasol et al., 1999; Sintes and del Giorgio, 2014; Baltar et al., 

2016). 

While few investigations into the impacts of IDM on bacterial community composition have 

been performed, our observations are congruent with studies that have shown altered 

composition in the sediment (Frischer et al., 2000; Lohner et al., 2007; Lee et al., 2015) and water 

column (Denef et al., 2017) (Denef et al., in review) following IDM introduction. In these studies 

specific taxonomic groups were shown to become relatively enriched within the microbial 

community. Among others, taxa of the phylum Actinobacteria and the genus Polynucleobacter, 
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which are known to possess LNA-type characteristics such as small cell sizes (Wang et al., 2009), 

increased in relative abundance during short-term microcosm experiments (Denef et al, in review 

(Denef et al., 2017)). Other taxa (e.g. Chloroflexi) became enriched despite their larger cell size, 

suggesting that multiple phenotypic traits beyond mere cell size determine the feeding success on 

bacterial taxa. Relative enrichments do need to be interpreted with care as these can provide 

biased interpretations of the actual taxon abundance dynamics (Nayfach and Pollard, 2016; Props 

et al., 2016b; Stammler et al., 2016).  

In conclusion, we have shown that advanced data analysis of flow cytometry data can lead to 

robust predictions of taxonomic diversity within a large dynamic range. We further demonstrated 

that the diversity of natural bacterioplankton communities can be reliably tracked during sensitive 

ecological processes in a fast, non-invasive manner. Using this approach we were able to detect 

subtle shifts in biodiversity emerging within one hour of feeding by invasive dreissenid mussels. 

The selective removal of HNA bacteria was shown to be underlying cause of the loss of 

biodiversity, suggesting size-selective feeding behaviour in the micrometremicrometer range. As a 

result, the direct effects of IDMs are likely capable to of locally reducing the lead to an overall 

less productive diversity and less diverseproductivity of the bacterioplankton community that 

mediates a smaller carbon fluxduring feeding. The approach presented here can be readily applied 

to help address a broad range of questions in marine and freshwater systems, for which new 

analytical and computational tools are needed (Labbate et al., 2016). Flow cytometry is now also 

increasingly being developed for other environments such as soils, sediments, and sludges, 

opening new possibilities for these systems as well (Frossard et al., 2016). 
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Experimental Procedures 

16S rRNA gene amplicon sequencing analysis 

We used a combination of a previously published data set from 2013 and newly generated V4 16S 

rRNA gene amplicon sequences from 2014 and 2015 lake surveys (see data availability section). 

V4 amplicon sequencing data from Lake Michigan (2015 survey) and Muskegon Lake (2014, 2015 

surveys) were generated exactly as previously described (Schmidt et al., 2016). Samples were taken 

in September (Fall), April (Spring), and July (Summer). The DNA was extracted according to a 

previously optimized protocol (McCarthy et al., 2015) and submitted for sequencing of the V4 

hypervariable region (515F/806R) by Illumina MiSeq with v2 chemistry (2x250bp). All raw 

sequencing reads from these surveys were processed together, after which the samples with 

matching flow cytometry data were extracted. 

Contigs were created by merging paired-end reads based on the Phred quality score heuristic 

(Kozich et al 2013) in MOTHUR (v.1.38, seed = 777) (Schloss et al., 2009). Contigs were aligned to 

the Silva database (v123), and filtered from those with (i) ambiguous bases, (ii) more than 8 

homopolymers, (iii) a length outside of the 240 – 275 nt range, and (iv) those not corresponding 

to the V4 region. The aligned sequences were filtered and dereplicated, and sequencing errors 

were removed using the pre.cluster command. Chimera removal was performed by UCHIME. 

Sequences were clustered into operational taxonomic units (OTUs) at 97 % similarity with the 

cluster.split command (average neighbour algorithm). Sequences were then classified using the 

TaxAss pipeline (https://github.com/McMahonLab/TaxAss) which classifies sequences 

according to both a small, manually curated freshwater taxonomy database (Newton et al., 2011) 

and a large, general database (SILVA v123). The complete workflow is available at 

https://github.com/rprops/Mothur_oligo_batch and was run in batch mode. For comparison to 

the flow cytometry data, only the samples comprising the bacterioplankton fraction (0.22 – 3 µm 
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fraction) were used in further analyses, as this fraction was the most directly comparable to the 

measurements taken by the flow cytometer.  

The cooling water reference data contain publicly available V3-V4 16S rRNA gene amplicon 

sequences, and are available from the NCBI Sequence Read Archive (SRA) under accession 

number SRP066190. We utilized the OTU-table from a previous publication as basis for the 

diversity calculations (Props et al., 2016b). This OTU-table was generated according to the same 

pipeline as described above. 

Flow cytometry analysis  

1 mL of unfiltered water samples were fixed with 5 µL glutaraldehyde (20 % (v/v) stock), 

incubated for 10 minutes in the dark, and flash frozen in liquid nitrogen (storage at -80°C). Prior 

to flow cytometry analysis, batches of eight samples were sequentially defrosted, acclimated to 

room temperature, diluted twofold in triplicate and stained with SYBR Green I (10,000x in 

DMSO, Invitrogen) to a final concentration of 1x SYBR Green I. Samples were then incubated 

at 37 °C for 20 min in the dark, and analyzed directly on a BD Accuri C6 cytometer (BD 

Biosciences) in fixed volume mode (50 µL) (Props et al., 2016a). This resulted in a 

multiparametric description of each microbial cell by four fluorescence parameters (FL1: 533/30 

nm, FL2: 585/40 nm, FL3: > 670 nm long pass, FL4: 675/25 nm) and two scatter parameters 

(FSC, SSC). Instrument performance was verified daily using eight peak rainbow particles 

(Spherotech, Lake Forest, IL, USA).  

Phenotypic diversity analysis 

The alpha diversities for both the flow cytometry and sequencing data were assessed by the Hill 

diversity numbers, which incorporate both richness and evenness components (Hill, 1973). We 

followed the previously published protocol available here: 

https://github.com/rprops/Phenoflow_package/wiki/Phenotypic-diversity-analysis (Props et 
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al., 2016a). Raw flow cytometer data were exported in FCS format and imported into R (v3.3.0), 

using functions from the flowCore package (v1.38.2). The data were denoised from (in)organic 

noise based on previous experience with freshwater communities and according to published 

guidelines for robust denoising (Prest et al., 2013) (as described in Fig. S43). The denoising 

strategy remained the same for all samples. Samples with less than 10,000 cells were discarded 

since sample sizes larger than this threshold were required for the robust estimation of the 

diversity (Fig. S56). All single-cell parameters were normalized based on the maximum signal 

height (-H) of the FL1 parameter. The Diversity function from the Phenoflow package (v1.0, 

https://github.com/rprops/Phenoflow_package) was then used to calculate the phenotypic 

alpha diversities of the four primary parameters (FL1-H, FL3-H, FSC-H, SSC-H). Errors on the 

diversities were generated after 100 bootstraps and propagated to the mean diversity over the 

three technical replicates. The kernel density estimations were performed with a bandwidth of 

0.01, a grid size of 128x128 and a rounding factor of 3. The alpha diversity was evaluated through 

the first three Hill numbers: D0, D1 and D2, which correspond to the observed richness, the 

exponential of Shannon entropy, and the inverse Simpson index, respectively. Beta diversity 

analyses were performed by principal coordinate analysis (PCoA) of the phenotypic fingerprints 

(flowBasis function, d = 3, bw = 0.01) using the Bray-Curtis dissimilarity metric (beta_div_fcm 

function, default settings). Contrasts between the phenotypic fingerprints of the control and 

treatment groups were made by the fp_contrasts function (see tutorial here: 

https://github.com/rprops/Phenoflow_package/wiki/Making-contrasts). 

Taxonomic diversity analysis 

For calculating the taxonomic alpha diversity, we used the Diversity_16S function from the 

Phenoflow package because this allowed a direct comparison between the taxonomic and 

phenotypic diversity metrics. The community data were not rarefied because our hypothesis was 

that the taxonomic diversity was correlated with an unrelated variable, the phenotypic diversity. 
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Subsampling to the lowest sample size would result in the poorest estimate of the taxonomic 

diversity for all samples, thereby potentially obscuring the true relationship between these 

variables. Instead, we selected only samples which had a sample size larger than 10,000 reads (n = 

138), generated 100 bootstrap samples for each sample, and took the average diversity as the 

sample representative diversity. Parallel results of our analyses for the rescaled data to 10,000 

reads are available in supplementary information (Fig. S54). For beta diversity analysis the taxon 

OTU abundances were rescaled by calculating their proportions and multiplying them by the 

minimum sample size present in the data set (McMurdie and Holmes, 2014). The beta diversity 

was then assessed by PCoA of the Bray-Curtis dissimilarity matrix, which was calculated based on 

the taxon proportions instead of the read counts in order to be directly comparable to the 

phenotypic beta diversity approach. 

Feeding experiment 

Quagga mussels and lake water (5 m above lake floor) were collected at 45m deep from Lake 

Michigan (43° 12’ N, 86° 27’ W).  Mussels were rinsed of adhering sediment and were 

transported (< 8h) submerged in lake water at 5-7°C.  The standard handling and experimental 

design of (Vanderploeg et al., 2010) was followed and is briefly outlined as follows.  In the lab, 

the mussels were cleaned of debris and placed in a tank filled with 90 L of 153 µm-screened Lake 

Michigan water in order to remove grazing mesozooplankton in an environmental room set to 

ambient temperature of the lake water (9.7 °C). The next morning the mussels were transferred 

to a 40 L aquarium with 153 µm screened Lake Michigan water for 2 h. The mussel cleaning and 

~ 14 h re-acclimation period allowed the removal of external periphyton and debris, cleared the 

mussel guts of sediment ingested during capture, and gave mussels time to reach digestive 

equilibrium with their natural food source. All materials were washed with bleach and rinsed with 

deionized water to minimize bacterial contamination. Seven 19 L HDPE cylindrical containers 

were filled with 12 L of 153 µm-screened lake water each. Forty-five adult mussels were spread 
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evenly across three containers (15 mussels per container) and two containers remained mussel-

free. The size distribution of the mussels was not significantly different between the containers, 

hereafter described as microcosms (22.7 ± 2.3 µm, Kruskal-Wallis test, p = 0.08). The total dry 

weight of the mussels per microcosm was 0.24 ± 0.018 g DW. Gentle mixing was provided by 

bubbling air through a pipette, and all experiments were carried out under dim light (~ 8 µmol 

quanta m-2 s-1) . Water samples were taken before the addition of the mussels and every 0.5 h 

after the mussels showed signs of active feeding (after approx. 15 minutes). The number of 

mussels added and the experiment duration were chosen to allow healthy mussels to clear 30 – 60 

% of preferred seston. As shown in a previous study (Denef et al., 2017), our procedure ensures 

that mussel-associated bacteria do not significantly impact observed shifts in bacterial community 

composition over the duration of the experiment. One mL water samples from the top water 

layer were taken every 30 minutes throughout and at the end of the 3h experiment. The samples 

were fixed with 5 µL glutaraldehyde (20 % (v/v)), incubated for 10 minutes in the dark, and flash 

frozen in liquid nitrogen (storage at -80°C).  

Statistical analysis 

All statistical analyses were performed in the R statistical environment (v3.3.0) (R Core Team, 

2015), using functions from the vegan (v2.4-1), sandwich (v2.3-4),  MASS (v7.3-45), car (v2.1-3), 

phyloseq (v1.16.2), lmtest (v0.9-34), and caret (v6.0-73) packages. Errors on all summary statistics 

represent standard deviations on the mean and were calculated by propagating individual 

standard deviations as randomly distributed, independent errors. Ordinary least squares 

regression was used to relate the phenotypic diversity to the taxonomic diversity (both log2 

transformed). Model assumptions (i.e., normality and homoscedasticity) were evaluated through 

analysis of the residuals (Fig. S21). Goodness-of-fit statistics were calculated through tenfold 

cross validation with 100 repeats. Inference on the temporal treatment effect on the phenotypic 

diversity (D2) was performed by spline regression. We opted for natural splines because these 
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provide more stable estimates at the boundaries (James et al., 2014). Splines were given 3 degrees 

of freedom, allowing two knots to occur at the 33.3% and 66.6% quantiles (i.e., at time points 1h 

and 2h). Parameter estimation was performed by the robust ordinary least squares method. 

Robust linear regression is a variation on the traditional ordinary least squares (ols) regression 

that provides more correct inference when assumptions for ols regression are invalid (i.e. less 

sensitive to outliers). Due to the presence of moderate temporal autocorrelation in the model 

residuals (Fig. S87), robust parameter errors, calculated from the autocorrelation adjusted 

covariance matrix (vcovHAC function), were used in the statistical inference (Wald test). 

Differences between groups in the beta diversity analysis were evaluated by means of 

permutational multivariate ANOVA (PERMANOVA, adonis function, 999 permutations) of the 

Bray-Curtis dissimilarity matrix, after confirmation of the homogeneity of the variance in the 

groups (betadisper function). Similarity between beta diversity analyses was evaluated through 

Procrustes analysis (protest function, 999 permutations). Temporal trends in the HNA cell density, 

as well as the feeding rate were determined through robust ordinary least squares linear 

regression. Statistical inference on the model parameters was performed with the Wald test. The 

clearance rate (CR) was determined based on the robust linear regression of the HNA cell 

dynamics: 

 

V is the water volume of the container (mL), n is the average dry weight of the mussels (mg), a is 

the slope of the regression (cells mL-1 h-1), and b is the intercept of the regression (cells mL-1).  

Data availability 

The entire data-analysis pipeline is available as an R Markdown document at 

https://github.com/rprops/Mussel_feeding. Raw flow cytometry data is available on 

FlowRepository under accession IDs FR-FCM-ZZNA (cooling water), FR-FCM-ZYZA (mussel 
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feeding experiment), FR-FCM-ZYZN (Lake Michigan and Muskegon Lake survey). Newly 

generated V4 16S rRNA sequences from lake Michigan and Muskegon Lake were deposited on 

the NCBI SRA under accession number XXXXX. For Lake Michigan, the 2013 data set is 

publicly available on the Joint Genome Institute's genome data portal 

(http://genome.jgi.doe.gov/; Project IDs 1041195 and 1041198).   
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Figure legends 

Figure 1: Validation for the use of the phenotypic diversity (derived from FCM) across 

environments with varying degrees of taxonomic diversity (derived from 16S rRNA gene 

amplicon sequencing, n = 138). The cooling water samples represent bacterioplankton 

communities sampled throughout two 40-day temporal surveys of a cooling water system of a 

nuclear test reactor (Props et al., 2016a). Lake Michigan and Muskegon lakes samples represent 

bacterioplankton communities sampled over a productivity gradient, at various depths (110m, 

45m, 15m), and throughout three seasons (Fall, Spring, Summer). Fall, Spring and Summer 

denote samples taken in September, April and July respectively. The shaded area represents the 

95% confidence interval around the ordinary least squares regression model. Both diversities are 

depicted on a log2 scale. In addition to the average variance explained (adj. r²) after tenfold cross 

validation with 100 repeats, Pearson’s correlation coefficient (rp) is also provided. Bootstrap error 

intervals fell within the label size and were not displayed. 

 

Figure 2: Application of the taxonomic (A) and phenotypic (B) beta-diversity (PCoA of Bray-

Curtis dissimilarity matrix) to investigate season- and lake-specific effects on the community 

structure of Lake Michigan and Muskegon Lake (n = 87). Fall, Spring and Summer denote 

samples taken in September, April and July respectively. The variance explained by the lake and 

season variables, as well as the interaction effect between the lake and season variable is provided 

(PERMANOVA). All effects were significant at the p = 0.001 level with the exception of the 

interaction effect for the phenotypic beta diversity (p = 0.018). Procrustes analysis confirmed the 

high degree of correlation between both beta-diversity analyses (correlation strength = 0.65, p = 

0.001, 999 permutations). Permutations for PERMANOVA and Procrustes analyses were 

constrained within each survey year. 
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Figure 3: Feeding effect on the phenotypic alpha diversity (A), and phenotypic beta diversity (B) 

of the bacterioplankton community. Bootstrap error intervals on the phenotypic diversity were 

calculated on three technical replicates for each microcosm but fell within the label size and were 

are therefore not displayed. Shaded areas indicate 95 % confidence intervals on the robust 

smoothing spline regressions. Label radius of the data points in the beta-diversity analysis is 

proportional to the time into the experiment. The variance explained by the overall temporal and 

feeding effect, as well as the interaction effect between the feeding and experiment time is 

provided (PERMANOVA). All effects were significant at the p = 0.01 level. 

Figure 4: Measured or predicted taxonomic alpha diversity of Lake Michigan bacterioplankton 

communities after a three hour exposure to invasive quagga mussels. Measured taxonomic 

diversity data is publicly available from (Denef et al., 2017). The measured data comes from 

feeding experiments that were carried out with Lake Michigan bacterioplankton communities 

retrieved over a two year period and under the identical experimental design as described in this 

manuscript. Predicted alpha diversity values were calculated based on the phenotypic diversity 

data generated in this study. 

Figure 5: Dynamics of high nucleic acid (HNA) and low nucleic acid (LNA) populations. A) 

Contrasts between the flow cytometric fingerprints of the control samples and the feeding 

samples after 0h, 1.5h and 3h. Red contours indicate an increase in the LNA population density 

during feeding, while blue contours indicate a decrease in the HNA population density during 

feeding, both of which are relative to the control samples at the specified time point. Only 

contrasts with densities > |0.04|were visualized. B) Absolute cell density of the LNA population 

over the course of the feeding experiment. Error bars indicate standard deviation across technical 

replicates (n = 3). C) Absolute cell density of the HNA population over the course of the feeding 

experiment. Error bars indicate standard deviations across technical replicates (n = 3). Shaded 

areas indicate 95 % confidence intervals on the robust linear regression models. 
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Originality-Significance Statement 

While most global change studies in microbial ecology are focusing on the impacts of climate 

change and land use change, the third component of global change, i.e. species invasions, gets 

considerably less attention. Here, we focused on the impacts of one of the most impactful 

invasive species in aquatic systems, invasive dreissenid mussels (IDMs). Our knowledge about 

their impacts on bacterial communities remains very limited, despite potentially large implications 

to ecosystem functioning if bacterial communities are affected. This is in part due to the innate 

sensitivity of IDMs to invasive sampling strategies which are required for many molecular 

analyses (i.e., they halt their feeding activity), complicating the acquisition of highly resolved 

temporal surveys. Using a recently developed flow cytometry method, which calculates 

phenotypic diversity estimates, we discovered direct impacts on natural lake bacterioplankton 

populations, within one hour of being exposed to filter feeding pressures from invasive quagga 

mussels. We also established a strong correlation between these phenotypic diversity 

measurements and their taxonomic counterpart calculated from 16S rRNA gene amplicon 

sequencing over different freshwater environments. This allowed us to predict the magnitude of 

actual community shifts solely based on flow cytometric measurements, facilitating a temporal 

resolution of this biological process that would not have been possible otherwise. We could then 

further attribute this predicted shift in community diversity to the removal of physiological 

subpopulations previously shown to contribute disproportionately to community metabolism. 

Thus, this new analysis pipeline led us to the hypothesis that IDMs directly drive 

bacterioplankton communities toward less diverse and potentially less productive states within 

short time periods.   
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Summary 

Species invasion is an important disturbance to ecosystems worldwide, yet knowledge about the 

impacts of invasive species on bacterial communities remains sparse. Using a novel approach, we 

simultaneously detected phenotypic and derived taxonomic change in a natural bacterioplankton 

community when subjected to feeding pressure by quagga mussels, a widespread aquatic invasive 

species. We detected a significant decrease in diversity within one hour of feeding, and a total 

diversity loss of 11.6 ± 4.1 % after 3h. This loss of microbial diversity was caused by the selective 

removal of high nucleic acid (HNA) populations (29 ± 5% after 3h). We were able to track the 

community diversity at high temporal resolution by calculating phenotypic diversity estimates 

from flow cytometry data of minute amounts of sample. Through parallel flow cytometry and 

16S rRNA gene amplicon sequencing analysis of environments spanning a broad diversity range, 

we showed that the two approaches resulted in highly correlated diversity measures and captured 

the same seasonal and lake-specific patterns in community composition. Based on our results, we 

predict that selective feeding by IDMs directly impacts the microbial component of the carbon 

cycle, as it may drive bacterioplankton communities toward less diverse and potentially less 

productive states. 

Keywords 

Invasive species, flow cytometry, HNA bacteria, phenotypic diversity, disturbance ecology  
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Introduction 

Anthropogenic disturbances can lead to rapid changes in microbial community diversity (species 

richness, evenness, and composition). Many studies aim to better understand feedbacks between 

global change and microbial communities, as changes in microbial diversity can either mitigate 

the predicted direct effects of disturbances on ecosystem fluxes (Singh et al., 2010; Zhou et al., 

2012), or lead to major shifts in bacterially mediated fluxes (Schimel and Gulledge, 1998; Finlay et 

al., 2007; Levine et al., 2011). The responses of microbial communities to disturbances are often 

monitored by means of high-throughput molecular techniques, such as 16S rRNA gene amplicon 

sequencing (Shade et al., 2012). Community shifts in response to altering environmental 

parameters can occur within hours (Props et al., 2016b) to days (Datta et al., 2016), and demand 

substantial sampling effort at a preferably fixed frequency to allow accurate statistical inference 

(Faust et al., 2015). Current technology allows sequencing data to be generated from low-volume 

samples (e.g., 100 mL) of low-density environments (≤ 106 cells mL-1), which comprise many 

aquatic ecosystems, but larger sample volumes (> 1L) are required in order to yield a robust 

census of the microbial community (Padilla et al., 2015). This prohibits the use of this approach 

in many longitudinal microcosm studies, for which repeated invasive sampling itself would act as 

a disturbance. 

Recently a new approach has been developed that can generate phenotypic diversity metrics 

based on physiological information derived from flow cytometry (FCM) data (Props et al., 

2016a). These diversity metrics have been shown to be highly correlated to taxonomic diversity, 

as derived from amplicon sequencing. Yet, their derivation avoids invasive, high volume sampling 

practices (≤ 1mL of sample required), and simultaneously offers information on the physiological 

state of the community, as well as on the absolute density of its constituent populations. Briefly, 

this approach performs kernel density estimations on multiple bivariate single-cell parameter 

combinations (e.g., fluorescence and scatter intensity) and concatenates these into a feature 
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vector that is called the phenotypic fingerprint. The phenotypic fingerprint represents the community 

structure in terms of physiological aspects, such as nucleic acid content and morphology. From 

this fingerprint, the community diversity can be calculated by means of the Hill diversity numbers 

(Hill, 1973), which examine both richness and evenness components of the phenotypic 

community structure. In parallel, this approach facilitates beta-diversity assessments through the 

ordination of samples by means of a dissimilarity matrix calculated between phenotypic 

fingerprints. The ability to simultaneously track impacts on phenotypic and taxonomic diversity 

offers opportunities to address gaps in our understanding of microbial disturbance ecology. 

Currently, this method has only been tested in one, low-complexity system, and validation across 

a broader range of diversities is needed to fully assess its potential. 

Species invasion, which is one of the main components of global change (Chapin et al., 2000), is 

a particularly useful system to help address knowledge gaps in microbial disturbance ecology as 

we can readily mimic the real-world conditions (i.e., sudden introduction) in laboratory or field 

experiments.. The current distribution of invasive dreissenid mussels (IDMs) across North 

America (>30 states) is a prime example of a successful invasion event (Higgins and Vander 

Zanden, 2010). Initially introduced through ballast water, IDMs display high filtration rates 

(Vanderploeg et al., 2002), and are able to rapidly populate benthic and littoral substrates in 

densities of up to 19,000 individuals per m² (Nalepa et al., 2010). With respect to their feeding 

behavior, IDMs show highly selective feeding behavior towards seston and different algal and 

microzooplankton taxa over a broad range of size (~ 1 to 200 µm) (Tang et al., 2014). While 

IDMs are known to strongly impact phytoplankton and zooplankton abundance and 

composition (Higgins and Vander Zanden, 2010), the few studies focused on their impacts on 

bacterioplankton report contradicting results  Several of these studies reported selective feeding 

on bacterial species (Silverman et al., 1995; Pires et al., 2004; Denef et al., 2017) while a long-term 

environmental survey of the Hudson River prior- and post-invasion did not observe negative 

effects on bacterial community density and productivity (Findlay et al., 1998). 
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In this study, we investigated the effect of IDM grazing (with Dreissena bugensis as model) on the 

natural bacterioplankton community of Lake Michigan through (near) non-invasive tracking of 

the phenotypic biodiversity, as well as the density of physiological subpopulations. We first 

validated whether the existing correlation between taxonomic and phenotypic diversity metrics 

holds for the high diversity environments of Lake Michigan (low primary and secondary 

productivity) and one of its freshwater estuaries (high primary and secondary productivity), 

Muskegon Lake. We then used phenotypic alpha and beta diversity analyses to assess the impact 

and extent of IDM grazing on the bacterioplankton community of Lake Michigan. The observed 

biodiversity dynamics were further related to the dynamics of well-established physiological 

populations in freshwater bacterioplankton, for which the grazing rate was determined. 
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Results 

We aimed to use flow cytometry-derived phenotypic diversity metrics as a proxy for taxonomic 

diversity shifts occurring during quagga mussel feeding on lake bacterioplankton. The experiment 

consisted of 12 L microcosms of 153 µm screened water and quagga mussels, both retrieved 

from Lake Michigan. The Lake Michigan bacterioplankton has previously been shown to contain 

both grazing-resistant and grazing-sensitive taxa allowing the study of direct grazing impacts 

(Tang et al., 2014; Denef et al., 2017). Prior to the onset of the experiment, we assessed whether 

the previously established correlation between phenotypic and taxonomic diversity metrics for 

low diversity environments could be extended to higher diversity aquatic environments, such as 

Lake Michigan. 

1. Validation of phenotypic diversity as a proxy for taxonomic diversity 

  

Microbial communities can be classified as relatively low or high diverse communities based on 

their Hill diversity metrics as these are expressed in terms of effective number of taxa, which depict 

the number of equally abundant taxa required to obtain the same diversity value as the 

community in question (Hill, 1973). The diversity metrics derived from flow cytometric analysis 

are calculated in the same way as their taxonomic counterparts but they can only be interpreted in 

arbitrary units. In order to determine whether there was a general relationship between the 

phenotypic and taxonomic diversity, we included an independent dataset from a low diversity 

cooling water microbial community (1 – 10 effective number of taxa) (Fig. 1). This cooling water 

dataset contains two 40 day surveys of bacterioplankton communities present in the secondary 

cooling water system of a nuclear test reactor that was subjected to multiple operational phases. 

The positive correlation between taxonomic and phenotypic diversity metrics of orders 1 (D1, 

exponential of Shannon entropy) and 2 (D2, Inverse Simpson index) could be extended to the 

Lake Michigan and Muskegon Lake communities (cross-validated r² = 0.89, Pearson’s correlation 
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rp = 0.94 for both D1 and D2). We opted for a single regression model as opposed to individual 

regressions for each environment in order to avoid overfitting as well as to construct a 

generalizable model that provides robust inference for all three environments. Individual 

regression models did not significantly differ in slope and the cross-validated r² of the single 

regression model was high (r² = 0.89), thereby permitting the use of a single regression model for 

monitoring diversity dynamics (Fig S1, Table S1).   

The dynamic range of the regression, defined as the ratio between the largest and smallest 

taxonomic diversity used in its calculation, was 88.7 for D1 and 42.5 for D2. Goodness-of-fit 

analysis of the linear regression model indicated a normal distributed residual distribution with 

homogenous variance over the entire regression range (Fig. S2). The observed richness (D0) did 

not show a distinct linear correlation (r² = 0.32, rp = 0.54, Fig. S3). Due to the high level of 

correlation between the phenotypic diversity (D1, D2) and the taxonomic diversity, it was 

permissible to use the phenotypic diversity as a stand-alone metric for evaluating 

bacterioplankton diversity. Additionally, only D2 was used in further analyses due to the high 

degree of correlation between D1 and D2 (rp = 0.99).  

In contrast to alpha diversity, beta diversity cannot be captured by a single metric. Therefore we 

compared the taxonomic and phenotypic beta diversity by their performance to detect seasonal- 

and lake-specific community structures in the Lake Michigan and Muskegon Lake data set (Fig. 

2).  Procrustes analysis demonstrated that both approaches were significantly correlated in terms 

of the patterns that they captured in the data (p = 0.001). Additionally, both approaches 

identified season and lake type (Lake Michigan or Muskegon Lake) as significant predictors of the 

community structure (p = 0.001). The season explained the most variance in the beta diversity 

(i.e., 19.6% of the taxonomic beta diversity and 22.5% of the phenotypic beta diversity). Lake 

type still captured 17.4% of the variance in the taxonomic beta diversity, but only 7.0% in the 

phenotypic beta diversity. Lastly, the seasonal effect was dependent on the lake type, representing 
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an extra 9.4% of the variance in the taxonomic beta diversity (p = 0.001) and 4.6% in the 

phenotypic beta diversity (p = 0.018). 

2. Diversity dynamics during IDM feeding 

The temporal trajectory of the bacterioplankton community of the microcosms was monitored 

for 3h at a resolution of 0.5h when subjected to the direct feeding pressure by 15 IDMs per 

microcosm (Fig. 3). This time period was sufficiently long to allow the assessment of direct 

feeding effects (removal of 30 to 60% of seston), but short enough to avoid indirect effects, e.g. 

due to trophic cascades or substantial accumulation of feces and pseudofeces (Vanderploeg et al., 

2010).  Importantly, all mussels were subjected to an extensive pretreatment consisting of specific 

handling, rinsing, and acclimatization steps in order to avoid contamination of the 

bacterioplankton community by external periphyton, debris, and ingested particles at the onset of 

the experiment (see experimental procedures section). The size distribution of the mussels was 

not significantly different between the microcosms (22.7 ± 2.3 mm, Kruskal-Wallis test, p = 

0.08). The total dry weight of the mussels per microcosm was 0.24 ± 0.018 g DW. 

Over the span of the experiment, the control microcosm’s phenotypic diversity exhibited a minor 

overall positive temporal drift (p = 0.038). In contrast, the bacterioplankton phenotypic diversity 

underwent a clear and significant decrease (p < 0.0001) during filter feeding of the IDMs, 

signifying the enrichment of the community by certain taxa (Fig. 3A). The treatment effect 

became significantly distinguishable from the control at the 1 hour mark (at p < 0.05). Using the 

regression model, an average loss in taxonomic diversity (D2) could be predicted of 2.6 ± 1.0 

effective number of taxa, corresponding to a decrease of 11.6 ± 4.1% over the course of the 

experiment. Conceptually, this means that in a hypothetical community of 23 equally abundant 

taxa (diversity prior to mussel feeding), an average of 2.6 taxa would be lost due to IDM feeding. 

To put these measurements in perspective, we analyzed data from a recently published mussel-

feeding study that used the same experimental design, and had 16S rRNA gene amplicon data at 
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time points 0 and 3h available (Fig. 4) (Denef et al., 2017). We calculated a mean loss of 

taxonomic diversity (D2) of 5.32 ± 4.65 for their three independent experiments which is 

comparable to the taxonomic diversity loss predicted for our experiment (2.6 ± 1.0). 

While the monitoring of the phenotypic alpha diversity allowed us to track the treatment effect 

through time, a beta diversity analysis was also conducted to evaluate the treatment and temporal 

effects on the complete phenotypic structure of the bacterioplankton community (Fig. 3B). Over 

the course of the experiment the bacterioplankton communities of the control and treatment 

microcosms became more dissimilar. In agreement with the alpha diversity analysis, a time-

dependent treatment effect  (r²feeding = 0.34, p = 0.005) was driving the bacterioplankton structure, 

with the control bacterioplankton community also experiencing a minor temporal effect (r²control = 

0.08, p = 0.006). 

3. Bacterioplankton population dynamics during IDM feeding 

Next, we investigated whether the observed diversity dynamics were caused by selective feeding 

on specific phenotypic populations of the bacterioplankton community. To do so, contrasts 

between the phenotypic fingerprints of the treatment and the control at three different time 

points were calculated (Fig. 5A). This analysis allowed the visualization of regions in a specified 

bivariate parameter space which are relatively more or less abundant in the treatment versus the 

control. We opted for the primary fluorescence channels of the SYBR Green nucleic acid stain 

(i.e., FL1-H, FL3-H) allowing us to identify distinct physiological populations with varying 

nucleic acid content (Gasol et al., 1999; Hammes and Egli, 2010; Koch et al., 2014). The results 

demonstrate that during filter feeding the bacterioplankton community became enriched with a 

low nucleic acid content population (LNA, low FL1-H/FL3-H intensity), and was depleted from 

a high nucleic acid content population (HNA, high FL1-H/FL3-H intensity). 

As these are relative changes, that do not necessarily reflect a direct feeding effect on the HNA 

population, the absolute abundances for both the HNA and LNA population were extracted 
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from the total community according to the guidelines by (Prest et al., 2013) (Fig. S4). The LNA 

cell densities show similar temporal behavior for the control (coefficient of variation – CV = 

5.8%) and treatment (CV = 5.2%) microcosms (Fig. 5B). This level of variation falls within the 

technical variation of current flow cytometry technology (CV = 5%), and is thus not indicative of 

a feeding effect (Hammes et al., 2008). In contrast, the HNA population was directly affected by 

the filter feeding (Fig. 5C). The HNA population of the control microcosms displayed a similar 

variation to the LNA population (CV = 5.1%), while the HNA population in the treatment 

microcosms showed a monotonic decrease throughout the experiment (CV = 12.8%). Analogous 

to the diversity analyses, a significant treatment effect could be detected within 1h. Using robust 

linear regression, the HNA specific removal rate was estimated at 43,000 ± 3,000 cells mL-1 h-1 (p 

< 0.0001), while the control HNA cell density remained constant (p = 0.98). After 3 hours of 

being subjected to filter feeding, 29 ± 5% of the HNA bacterioplankton population was removed 

from the water column. The clearance rate on the HNA population was 4.56 ± 0.81 mL mg-1 

DW h-1.   
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Discussion 

Our understanding of microbial disturbance ecology has been partially constrained by a lack of 

temporal resolution, caused by methodological limitations in either sampling, logistics, or analysis. 

In order to combat these bottlenecks, we further developed and validated a (near) non-invasive 

flow cytometry-based approach dedicated to detect changes in the phenotypic diversity of 

microbial communities. We validated and applied these phenotypic diversity metrics to natural, 

high diversity environments, and investigated the response of bacterioplankton communities to a 

filter feeding disturbance caused by invasive dreissenid mussels, which are highly sensitive to the 

invasive sampling imposed by alternative monitoring techniques (i.e., they would cease their filter 

feeding activity). Our experimental results highlight the sensitivity of our method to detect subtle 

changes in diversity over short timeframes. Based on (1) our presented relationship between 

phenotypic and taxonomic diversity, (2) the positive relationship that exists between HNA 

bacterial populations and bacterial productivity in many ecosystems (Zubkov et al., 2001; Servais 

et al., 2003), and (3) the results of our filter feeding experiment, we hypothesize that IDM feeding 

directly influences both microbial diversity and ecosystem functionality. 

Relation between taxonomic and phenotypic diversity 

The regression between the taxonomic and phenotypic diversity data is in agreement with and 

expands upon previous research (Props et al., 2016a) and offers further insight into the 

fundamental relation between these metrics. Concretely, the regression’s dynamic range has been 

extended from 10.3 in the previous study (cooling water) to 42.5 for the diversity of order 2 (D2). 

The quality of the cross-validated regression is worth highlighting as there were substantial 

differences in the sample treatment and data generation of the data sets, which could have led to 

systematic bias. First, the flow cytometry samples of Lake Michigan and Muskegon Lake were 

fixed with glutaraldehyde and archived at -80°C, whereas the cooling water samples were 

analyzed directly. The glutaraldehyde fixative used in this research has been shown to increase 
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autofluorescence and may have increased the instrument noise (Gunther et al., 2008). 

Nevertheless, the bacterioplankton community could be reproducibly isolated from the raw data 

with one fixed denoising strategy for the entire data set (Fig. S4). Secondly, the amplicon 

sequencing of the 16S rRNA gene targeted the V4 region for the Lake Michigan and Muskegon 

samples, whereas the V3-V4 region was targeted for the cooling water samples. This difference in 

sequenced region has been shown to potentially alter the observed diversity (Schmalenberger et 

al., 2001; Yu and Morrison, 2004). We did not observe this bias in the taxonomic diversity, but 

we did observe that the phenotypic diversity was incapable of resolving the Lake Michigan and 

Muskegon Lake communities, even though they had distinct taxonomic diversities. The 

regression analysis showed that the strength of the relationship between the phenotypic and 

taxonomic diversity was unaffected, but that the intercept of the linear models was different 

(p<0.001). Therefore we emphasize that the absolute values of the phenotypic diversity metrics 

need to be compared within a single ecosystem or experimental setting. Lastly, rescaling or 

subsampling the community composition to an equal library size, which is a common yet debated 

practice in microbial community analyses (McMurdie and Holmes, 2014), did not negatively 

affect the regression (Fig. S5). In fact, it improved the regression for all diversity metrics and in 

particular D0, indicating that the phenotypic diversity metrics are primarily sensitive to 

fluctuations in the density of abundant taxa. As such, we recommend to evaluate changes in 

richness (D0) solely by means of 16S rRNA gene amplicon sequencing, for which novel statistical 

approaches are being developed that account for both observed and unobserved taxa (Willis and 

Bunge, 2015).  It is important to note that in order to compare flow cytometry-derived diversity 

metrics with each other, the underlying raw data must have been generated by the same flow 

cytometer platform with identical detector and flow rate settings, which was the case for all data 

presented in this study. 

The linearity on the log-scale implies that the change in phenotypic diversity required to detect a 

corresponding change in taxonomic diversity systematically increases (Fig. 1). For example, at low 
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diversities, a change from 1,000 to 1,500 units in phenotypic diversity corresponds to a predicted 

change of 3.4 units in the taxonomic diversity, while an increase from 1,500 to 2,000 units only 

corresponds to a predicted change of 2.0 units in the taxonomic diversity. This is one of the 

limitations of relying on a fixed number of phenotypic parameters (i.e., fluorescence and scatter 

intensities); the available parameter space that bacterial cells can occupy is limited, resulting in a 

loss of sensitivity at higher diversities.  

The beta diversity analyses yielded similar statistical inference on the seasonal- and lake-specific 

effects, with both the taxonomic and phenotypic beta diversity identifying seasonality as the most 

important predictor of community structure. A higher degree of variance could be explained by 

the lake type in the taxonomic beta diversity, which suggests that the phenotypic approach was 

less sensitive to differences in taxon distributions between the lakes, or that additional variation 

based on phenotypic plasticity weakens the relationship between taxonomic and phenotypic beta 

diversity. This is congruent with the alpha diversity measurements where Lake Michigan and 

Muskegon Lake samples showed similar phenotypic diversity despite possessing distinct 

taxonomic diversities. Overall, Procrustes analysis confirmed that the phenotypic beta diversity 

was able to largely capture the same patterns in the data as the taxonomic beta diversity. As such, 

phenotypic beta diversity analyses constitute a valid approach for hypothesis testing in high 

diversity environments but they are susceptible to a higher degree of variability and thus generate 

potentially lower effect sizes (e.g., for the lake type in this analysis). 

Diversity and population dynamics 

The phenotypic diversity dynamics during the 3h filter feeding experiment were more subtle than 

in our previous study on the cooling water dataset (< 150 vs. > 500 units; (Props et al., 2016a)) 

but occurred over a much shorter time scale (3 hours vs. multiple days). Importantly, the 

predicted loss in taxonomic diversity based on the phenotypic diversity (2.6 ± 1.0) lies well within 

the range of expected diversity shifts (5.32 ± 4.65) calculated from previous experiments which 

Page 49 of 75

Wiley-Blackwell and Society for Applied Microbiology

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le

15 
 

had start and endpoint measurements of community composition (Figure 5). Our predictions 

also suggest i) a general season-dependent bacterioplankton diversity with a higher diversity in 

summer than in fall and winter and ii) a season-dependent specific feeding effect resulting in a 

higher diversity loss in summer than in fall and winter. Overall, the conformity of our predictions 

to these previous experiments further validates the phenotypic diversity approach.  

The diversity dynamics suggested that D. bugensis was selectively feeding upon a fraction of the 

bacterioplankton community, thereby altering the community composition, and lowering the 

diversity. This was confirmed by identifying populations that were selectively enriched through 

contrast analysis, which demonstrated the selective feeding on bacteria with high nucleic acid 

content (HNA bacteria) (Fig. 4A). The HNA clearance rate (4.56 ± 0.81 mL mg-1 DW h-1), which 

can be interpreted as the water volume that is fully depleted of HNA bacteria per hour, was 

comparable to those previously reported for Dreissena polymorpha feeding on laboratory strains (3.5 

– 4.8 mL mg-1 DW h-1) ranging in size between 1 and 4 µm in length (Silverman et al., 1995). The 

clearance rates on laboratory strains were measured for high cell densities (> 107 cells mL-1) 

relative to the natural densities in Lake Michigan in this study (∼ 106 cells mL-1), and with 

different IDM species at a higher temperature, thus making direct comparisons difficult. With 

respect to experiments on natural bacterioplankton, mixed results have been reported. For river 

bacterioplankton, short-term mesocosm experiments provided no evidence of a direct feeding 

effect, while long-term environmental surveys suggested a doubling in bacterioplankton densities 

(Findlay et al., 1998). In lakes, feeding on bacteria in low nutrient systems was thought to be 

limited (Cotner et al., 1995), though short-term feeding experiments on natural bacterioplankton 

from Lake Michigan did detect significant decreases in bacterioplankton densities (Denef et al., in 

review).  

HNA and LNA populations have been well-characterized in aquatic environments, yet 

considerable debate remains regarding the characteristics of each population. Initially, it was 
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thought that the HNA population was the active fraction of the bacterial community, whereas 

the LNA population served as a reservoir  of dormant, inactive, dead, dying, and damaged cells 

(Lebaron et al., 2002). Nowadays, the LNA population has been shown to be able to actively 

grow and to be metabolically active in the environment without adopting HNA properties, such 

as high nucleic acid content and increased cell size (Jochem et al., 2004; Scharek and Latasa, 2007; 

Wang et al., 2009). Most studies do report an elevated cell-specific activity for the HNA bacteria 

that can be more than an order of magnitude higher than the activity of the LNA bacteria 

(Lebaron et al., 2002; Servais et al., 2003). HNA bacteria are also generally larger and exhibit 

higher growth rates than LNA bacteria (Lebaron et al., 2002; Jochem et al., 2004; Scharek and 

Latasa, 2007), and this large, active fraction of the bacterioplankton is preferred by zooplankton 

grazing (Boenigk et al., 2004; Tadonleke et al., 2005; Garcia-Chaves et al., 2016).  

HNA population densities tend to be positively correlated with heterotrophic productivity 

(Zubkov et al., 2001; Bouvier et al., 2007). Thus, we would expect relatively low HNA densities in 

Lake Michigan, which has been rendered increasingly oligotrophic (low primary and secondary 

productivity) since the ingress of IDMs (Evans et al., 2011). HNA population densities in Lake 

Michigan field samples (29.6 ± 4.2 %, n = 30) were even lower than those reported in previous 

surveys of freshwater lakes (40 – 42.5 %, n = 81) with similar levels of primary productivity (2 ± 

1.5 µg chlorophyll a L-1 vs. 1.5 ± 1.2 µg chlorophyll a L-1 in our 2015 survey of Lake Michigan) 

(Bouvier et al., 2007; Shuchman et al., 2013). We observed that IDMs predominantly feed on the 

HNA population; this may in part explain these lower than expected HNA densities, as Lake 

Michigan is characterized lake-wide by high densities of IDMs (Nalepa et al., 2010). With the 

HNA bacteria leveraging as much as 80 % of the community’s secondary production, and 

mediating up to 70 % of the bacterial carbon flux in other aquatic environments, the selective 

feeding by IDMs may have a significant impact on elemental cycling in lake systems (Zubkov et 

al., 2001; Scharek and Latasa, 2007). 
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Community characterization of HNA and LNA populations has shown that there can be 

significant differences in community composition, with few shared taxa between the populations 

(Schattenhofer et al., 2011; Vila-Costa et al., 2012). As a consequence, selective removal of a 

single population (e.g., HNA) will alter the community diversity, which was observed during this 

filter feeding experiment. Other studies using basic molecular fingerprinting techniques did not 

observe distinct community structures (Servais et al., 2003; Longnecker et al., 2005). Hence, 

several scenarios have been developed to explain the dichotomy between HNA and LNA 

bacterioplankton populations (Bouvier et al., 2007). Our results only allow us to support the 

scenario in which each population has a separate community structure, since considerable 

repopulation of the HNA population through growth or potential recruitment from the LNA 

population can take several days (Gasol et al., 1999; Sintes and del Giorgio, 2014; Baltar et al., 

2016). 

While few investigations into the impacts of IDM on bacterial community composition have 

been performed, our observations are congruent with studies that have shown altered 

composition in the sediment (Frischer et al., 2000; Lohner et al., 2007; Lee et al., 2015) and water 

column (Denef et al., 2017) following IDM introduction. In these studies specific taxonomic 

groups were shown to become relatively enriched within the microbial community. Among 

others, taxa of the phylum Actinobacteria and the genus Polynucleobacter, which are known to 

possess LNA-type characteristics such as small cell sizes (Wang et al., 2009), increased in relative 

abundance during short-term microcosm experiments (Denef et al., 2017). Other taxa (e.g. 

Chloroflexi) became enriched despite their larger cell size, suggesting that multiple phenotypic 

traits beyond mere cell size determine the feeding success on bacterial taxa. Relative enrichments 

do need to be interpreted with care as these can provide biased interpretations of the actual taxon 

abundance dynamics (Nayfach and Pollard, 2016; Props et al., 2016b; Stammler et al., 2016).  
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In conclusion, we have shown that advanced data analysis of flow cytometry data can lead to 

robust predictions of taxonomic diversity within a large dynamic range. We further demonstrated 

that the diversity of natural bacterioplankton communities can be reliably tracked during sensitive 

ecological processes in a fast, non-invasive manner. Using this approach we were able to detect 

subtle shifts in biodiversity emerging within one hour of feeding by invasive dreissenid mussels. 

The selective removal of HNA bacteria was shown to be underlying cause of the loss of 

biodiversity, suggesting size-selective feeding behavior in the micrometer range. As a result, 

IDMs are capable of locally reducing the  diversity and productivity of the bacterioplankton 

community during feeding. The approach presented here can be readily applied to help address a 

broad range of questions in marine and freshwater systems, for which new analytical and 

computational tools are needed (Labbate et al., 2016). Flow cytometry is now also increasingly 

being developed for other environments such as soils, sediments, and sludges, opening new 

possibilities for these systems as well (Frossard et al., 2016). 
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Experimental Procedures 

16S rRNA gene amplicon sequencing analysis 

We used a combination of a previously published data set from 2013 and newly generated V4 16S 

rRNA gene amplicon sequences from 2014 and 2015 lake surveys (see data availability section). 

V4 amplicon sequencing data from Lake Michigan (2015 survey) and Muskegon Lake (2014, 2015 

surveys) were generated exactly as previously described (Schmidt et al., 2016). Samples were taken 

in September (Fall), April (Spring), and July (Summer). The DNA was extracted according to a 

previously optimized protocol (McCarthy et al., 2015) and submitted for sequencing of the V4 

hypervariable region (515F/806R) by Illumina MiSeq with v2 chemistry (2x250bp). All raw 

sequencing reads from these surveys were processed together, after which the samples with 

matching flow cytometry data were extracted. 

Contigs were created by merging paired-end reads based on the Phred quality score heuristic 

(Kozich et al 2013) in MOTHUR (v.1.38, seed = 777) (Schloss et al., 2009). Contigs were aligned to 

the Silva database (v123), and filtered from those with (i) ambiguous bases, (ii) more than 8 

homopolymers, (iii) a length outside of the 240 – 275 nt range, and (iv) those not corresponding 

to the V4 region. The aligned sequences were filtered and dereplicated, and sequencing errors 

were removed using the pre.cluster command. Chimera removal was performed by UCHIME. 

Sequences were clustered into operational taxonomic units (OTUs) at 97 % similarity with the 

cluster.split command (average neighbour algorithm). Sequences were then classified using the 

TaxAss pipeline (https://github.com/McMahonLab/TaxAss) which classifies sequences 

according to both a small, manually curated freshwater taxonomy database (Newton et al., 2011) 

and a large, general database (SILVA v123). The complete workflow is available at 

https://github.com/rprops/Mothur_oligo_batch and was run in batch mode. For comparison to 

the flow cytometry data, only the samples comprising the bacterioplankton fraction (0.22 – 3 µm 
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fraction) were used in further analyses, as this fraction was the most directly comparable to the 

measurements taken by the flow cytometer.  

The cooling water reference data contain publicly available V3-V4 16S rRNA gene amplicon 

sequences, and are available from the NCBI Sequence Read Archive (SRA) under accession 

number SRP066190. We utilized the OTU-table from a previous publication as basis for the 

diversity calculations (Props et al., 2016b). This OTU-table was generated according to the same 

pipeline as described above. 

Flow cytometry analysis  

1 mL of unfiltered water samples were fixed with 5 µL glutaraldehyde (20 % (v/v) stock), 

incubated for 10 minutes in the dark, and flash frozen in liquid nitrogen (storage at -80°C). Prior 

to flow cytometry analysis, batches of eight samples were sequentially defrosted, acclimated to 

room temperature, diluted twofold in triplicate and stained with SYBR Green I (10,000x in 

DMSO, Invitrogen) to a final concentration of 1x SYBR Green I. Samples were then incubated 

at 37 °C for 20 min in the dark, and analyzed directly on a BD Accuri C6 cytometer (BD 

Biosciences) in fixed volume mode (50 µL) (Props et al., 2016a). This resulted in a 

multiparametric description of each microbial cell by four fluorescence parameters (FL1: 533/30 

nm, FL2: 585/40 nm, FL3: > 670 nm long pass, FL4: 675/25 nm) and two scatter parameters 

(FSC, SSC). Instrument performance was verified daily using eight peak rainbow particles 

(Spherotech, Lake Forest, IL, USA).  

Phenotypic diversity analysis 

The alpha diversities for both the flow cytometry and sequencing data were assessed by the Hill 

diversity numbers, which incorporate both richness and evenness components (Hill, 1973). We 

followed the previously published protocol available here: 

https://github.com/rprops/Phenoflow_package/wiki/Phenotypic-diversity-analysis (Props et 
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al., 2016a). Raw flow cytometer data were exported in FCS format and imported into R (v3.3.0), 

using functions from the flowCore package (v1.38.2). The data were denoised from (in)organic 

noise based on previous experience with freshwater communities and according to published 

guidelines for robust denoising (Prest et al., 2013) (as described in Fig. S4). The denoising 

strategy remained the same for all samples. Samples with less than 10,000 cells were discarded 

since sample sizes larger than this threshold were required for the robust estimation of the 

diversity (Fig. S6). All single-cell parameters were normalized based on the maximum signal 

height (-H) of the FL1 parameter. The Diversity function from the Phenoflow package (v1.0, 

https://github.com/rprops/Phenoflow_package) was then used to calculate the phenotypic 

alpha diversities of the four primary parameters (FL1-H, FL3-H, FSC-H, SSC-H). Errors on the 

diversities were generated after 100 bootstraps and propagated to the mean diversity over the 

three technical replicates. The kernel density estimations were performed with a bandwidth of 

0.01, a grid size of 128x128 and a rounding factor of 3. The alpha diversity was evaluated through 

the first three Hill numbers: D0, D1 and D2, which correspond to the observed richness, the 

exponential of Shannon entropy, and the inverse Simpson index, respectively. Beta diversity 

analyses were performed by principal coordinate analysis (PCoA) of the phenotypic fingerprints 

(flowBasis function, d = 3, bw = 0.01) using the Bray-Curtis dissimilarity metric (beta_div_fcm 

function, default settings). Contrasts between the phenotypic fingerprints of the control and 

treatment groups were made by the fp_contrasts function (see tutorial here: 

https://github.com/rprops/Phenoflow_package/wiki/Making-contrasts). 

Taxonomic diversity analysis 

For calculating the taxonomic alpha diversity, we used the Diversity_16S function from the 

Phenoflow package because this allowed a direct comparison between the taxonomic and 

phenotypic diversity metrics. The community data were not rarefied because our hypothesis was 

that the taxonomic diversity was correlated with an unrelated variable, the phenotypic diversity. 
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Subsampling to the lowest sample size would result in the poorest estimate of the taxonomic 

diversity for all samples, thereby potentially obscuring the true relationship between these 

variables. Instead, we selected only samples which had a sample size larger than 10,000 reads (n = 

138), generated 100 bootstrap samples for each sample, and took the average diversity as the 

sample representative diversity. Parallel results of our analyses for the rescaled data to 10,000 

reads are available in supplementary information (Fig. S5). For beta diversity analysis the OTU 

abundances were rescaled by calculating their proportions and multiplying them by the minimum 

sample size present in the data set (McMurdie and Holmes, 2014). The beta diversity was then 

assessed by PCoA of the Bray-Curtis dissimilarity matrix, which was calculated based on the 

taxon proportions instead of the read counts in order to be directly comparable to the phenotypic 

beta diversity approach. 

Feeding experiment 

Quagga mussels and lake water (5 m above lake floor) were collected at 45m deep from Lake 

Michigan (43° 12’ N, 86° 27’ W). Mussels were rinsed of adhering sediment and were transported 

(< 8h) submerged in lake water at 5-7°C. The standard handling and experimental design of 

(Vanderploeg et al., 2010) was followed and is briefly outlined as follows.  In the lab, the mussels 

were cleaned of debris and placed in a tank filled with 90 L of 153 µm-screened Lake Michigan 

water in order to remove grazing mesozooplankton in an environmental room set to ambient 

temperature of the lake water (9.7 °C). The next morning the mussels were transferred to a 40 L 

aquarium with 153 µm screened Lake Michigan water for 2 h. The mussel cleaning and ~ 14 h re-

acclimation period allowed the removal of external periphyton and debris, cleared the mussel guts 

of sediment ingested during capture, and gave mussels time to reach digestive equilibrium with 

their natural food source. All materials were washed with bleach and rinsed with deionized water 

to minimize bacterial contamination. Seven 19 L HDPE cylindrical containers were filled with 12 

L of 153 µm-screened lake water each. Forty-five adult mussels were spread evenly across three 
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containers (15 mussels per container) and two containers remained mussel-free. Gentle mixing 

was provided by bubbling air through a pipette, and all experiments were carried out under dim 

light (~ 8 µmol quanta m-2 s-1) . Water samples were taken before the addition of the mussels and 

every 0.5 h after the mussels showed signs of active feeding (after approx. 15 minutes). The 

number of mussels added and the experiment duration were chosen to allow healthy mussels to 

clear 30 – 60 % of preferred seston. As shown in a previous study (Denef et al., 2017), our 

procedure ensures that mussel-associated bacteria do not significantly impact observed shifts in 

bacterial community composition over the duration of the experiment. One mL water samples 

from the top water layer were taken every 30 minutes throughout and at the end of the 3h 

experiment. The samples were fixed with 5 µL glutaraldehyde (20 % (v/v)), incubated for 10 

minutes in the dark, and flash frozen in liquid nitrogen (storage at -80°C).  

Statistical analysis 

All statistical analyses were performed in the R statistical environment (v3.3.0) (R Core Team, 

2015), using functions from the vegan (v2.4-1), sandwich (v2.3-4),  MASS (v7.3-45), car (v2.1-3), 

phyloseq (v1.16.2), lmtest (v0.9-34), and caret (v6.0-73) packages. Errors on all summary statistics 

represent standard deviations on the mean and were calculated by propagating individual 

standard deviations as randomly distributed, independent errors. Ordinary least squares 

regression was used to relate the phenotypic diversity to the taxonomic diversity (both log2 

transformed). Model assumptions (i.e., normality and homoscedasticity) were evaluated through 

analysis of the residuals (Fig. S2). Goodness-of-fit statistics were calculated through tenfold cross 

validation with 100 repeats. Inference on the temporal treatment effect on the phenotypic 

diversity (D2) was performed by spline regression. We opted for natural splines because these 

provide more stable estimates at the boundaries (James et al., 2014). Splines were given 3 degrees 

of freedom, allowing two knots to occur at the 33.3% and 66.6% quantiles (i.e., at time points 1h 

and 2h). Parameter estimation was performed by the robust ordinary least squares method. 
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Robust linear regression is a variation on the traditional ordinary least squares (ols) regression 

that provides more correct inference when assumptions for ols regression are invalid (i.e. less 

sensitive to outliers). Due to the presence of moderate temporal autocorrelation in the model 

residuals (Fig. S8), robust parameter errors, calculated from the autocorrelation adjusted 

covariance matrix (vcovHAC function), were used in the statistical inference (Wald test). 

Differences between groups in the beta diversity analysis were evaluated by means of 

permutational multivariate ANOVA (PERMANOVA, adonis function, 999 permutations) of the 

Bray-Curtis dissimilarity matrix, after confirmation of the homogeneity of the variance in the 

groups (betadisper function). Similarity between beta diversity analyses was evaluated through 

Procrustes analysis (protest function, 999 permutations). Temporal trends in the HNA cell density, 

as well as the feeding rate were determined through robust ordinary least squares linear 

regression. Statistical inference on the model parameters was performed with the Wald test. The 

clearance rate (CR) was determined based on the robust linear regression of the HNA cell 

dynamics: 

 

V is the water volume of the container (mL), n is the average dry weight of the mussels (mg), a is 

the slope of the regression (cells mL-1 h-1), and b is the intercept of the regression (cells mL-1).  

Data availability 

The entire data-analysis pipeline is available as an R Markdown document at 

https://github.com/rprops/Mussel_feeding. Raw flow cytometry data is available on 

FlowRepository under accession IDs FR-FCM-ZZNA (cooling water), FR-FCM-ZYZA (mussel 

feeding experiment), FR-FCM-ZYZN (Lake Michigan and Muskegon Lake survey). Newly 

generated V4 16S rRNA sequences from lake Michigan and Muskegon Lake were deposited on 

the NCBI SRA under accession number XXXXX. For Lake Michigan, the 2013 data set is 
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publicly available on the Joint Genome Institute's genome data portal 

(http://genome.jgi.doe.gov/; Project IDs 1041195 and 1041198).   
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Figure legends 

Figure 1: Validation for the use of the phenotypic diversity (derived from FCM) across 

environments with varying degrees of taxonomic diversity (derived from 16S rRNA gene 

amplicon sequencing, n = 138). The cooling water samples represent bacterioplankton 

communities sampled throughout two 40-day temporal surveys of a cooling water system of a 

nuclear test reactor (Props et al., 2016a). Lake Michigan and Muskegon lakes samples represent 

bacterioplankton communities sampled over a productivity gradient, at various depths (110m, 

45m, 15m), and throughout three seasons (Fall, Spring, Summer). Fall, Spring and Summer 

denote samples taken in September, April and July respectively. The shaded area represents the 

95% confidence interval around the ordinary least squares regression model. Both diversities are 

depicted on a log2 scale. In addition to the average variance explained (r²) after tenfold cross 

validation with 100 repeats, Pearson’s correlation coefficient (rp) is also provided. Bootstrap error 

intervals fell within the label size and were not displayed. 

Figure 2: Application of the taxonomic (A) and phenotypic (B) beta-diversity (PCoA of Bray-

Curtis dissimilarity matrix) to investigate season- and lake-specific effects on the community 

structure of Lake Michigan and Muskegon Lake (n = 87). Fall, Spring and Summer denote 

samples taken in September, April and July respectively. The variance explained by the lake and 

season variables, as well as the interaction effect between the lake and season variable is provided 

(PERMANOVA). All effects were significant at the p = 0.001 level with the exception of the 

interaction effect for the phenotypic beta diversity (p = 0.018). Procrustes analysis confirmed the 

high degree of correlation between both beta-diversity analyses (correlation strength = 0.65, p = 

0.001, 999 permutations). Permutations for PERMANOVA and Procrustes analyses were 

constrained within each survey year. 
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Figure 3: Feeding effect on the phenotypic alpha diversity (A), and phenotypic beta diversity (B) 

of the bacterioplankton community. Bootstrap error intervals on the phenotypic diversity were 

calculated on three technical replicates for each microcosm but fell within the label size and are 

therefore not displayed. Shaded areas indicate 95 % confidence intervals on the robust smoothing 

spline regressions. Label radius of the data points in the beta-diversity analysis is proportional to 

the time into the experiment. The variance explained by the overall temporal and feeding effect, 

as well as the interaction effect between the feeding and experiment time is provided 

(PERMANOVA). All effects were significant at the p = 0.01 level. 

Figure 4: Measured or predicted taxonomic alpha diversity of Lake Michigan bacterioplankton 

communities after a three hour exposure to invasive quagga mussels. Measured taxonomic 

diversity data is publicly available from (Denef et al., 2017). The measured data comes from 

feeding experiments that were carried out with Lake Michigan bacterioplankton communities 

retrieved over a two year period and under the identical experimental design as described in this 

manuscript.  

Figure 5: Dynamics of high nucleic acid (HNA) and low nucleic acid (LNA) populations. A) 

Contrasts between the flow cytometric fingerprints of the control samples and the feeding 

samples after 0h, 1.5h and 3h. Red contours indicate an increase in the LNA population density 

during feeding, while blue contours indicate a decrease in the HNA population density during 

feeding, both of which are relative to the control samples at the specified time point. Only 

contrasts with densities > |0.04|were visualized. B) Absolute cell density of the LNA population 

over the course of the feeding experiment. Error bars indicate standard deviation across technical 

replicates (n = 3). C) Absolute cell density of the HNA population over the course of the feeding 

experiment. Error bars indicate standard deviations across technical replicates (n = 3). Shaded 

areas indicate 95 % confidence intervals on the robust linear regression models. 
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