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Abstract

Background: There is a need for more powerful methods to identify low-effect SNPs that contribute to hereditary
COPD pathogenesis. We hypothesized that SNPs contributing to COPD risk through cis-regulatory effects are
enriched in genes comprised by bronchial epithelial cell (BEC) expression patterns associated with COPD.

Methods: To test this hypothesis, normal BEC specimens were obtained by bronchoscopy from 60 subjects: 30
subjects with COPD defined by spirometry (FEV1/FVC < 0.7, FEV1% < 80%), and 30 non-COPD controls. Targeted
next generation sequencing was used to measure total and allele-specific expression of 35 genes in genome
maintenance (GM) genes pathways linked to COPD pathogenesis, including seven TP53 and CEBP transcription
factor family members. Shrinkage linear discriminant analysis (SLDA) was used to identify COPD-classification
models. COPD GWAS were queried for putative cis-regulatory SNPs in the targeted genes.

Results: On a network basis, TP53 and CEBP transcription factor pathway gene pair network connections, including
key DNA repair gene ERCC5, were significantly different in COPD subjects (e.g., Wilcoxon rank sum test for
closeness, p-value = 5.0E-11). ERCC5 SNP rs4150275 association with chronic bronchitis was identified in a set of
Lung Health Study (LHS) COPD GWAS SNPs restricted to those in putative regulatory regions within the targeted
genes, and this association was validated in the COPDgene non-hispanic white (NHW) GWAS. ERCC5 SNP rs4150275
is linked (D"=1) to ERCC5 SNP rs17655 which displayed differential allelic expression (DAE) in BEC and is an
expression quantitative trait locus (eQTL) in lung tissue (p = 3.2E-7). SNPs in linkage (D' = 1) with rs17655 were
predicted to alter miRNA binding (rs873601). A classifier model that comprised gene features CAT, CEBPG, GPX1,
KEAP1, TP73, and XPA had pooled 10-fold cross-validation receiver operator characteristic area under the curve of
75.4% (95% Cl: 66.3%—-89.3%). The prevalence of DAE was higher than expected (p = 0.0023) in the classifier genes.

Conclusions: GM genes comprised by COPD-associated BEC expression patterns were enriched for SNPs with cis-
regulatory function, including a putative cis-rSNP in ERCC5 that was associated with COPD risk. These findings
support additional total and allele-specific expression analysis of gene pathways with high prior likelihood for
involvement in COPD pathogenesis.
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Background

Tobacco smoking is the predominant exogenous risk
factor for chronic obstructive pulmonary disease
(COPD) [1]. However, not all smokers develop COPD,
implying that genetic factors contribute to COPD pre-
disposition and pathogenesis. COPD genome-wide asso-
ciation studies (GWAS) have significantly increased our
understanding of COPD pathogenesis, yet genomic vari-
ants identified through GWAS still explain only a small
fraction of hereditary risk [2]. Each variant identified by
COPD GWAS required large sample size for detection
due to small effect on heritability [3, 4]. Those that re-
main to be discovered will likely have an even lower ef-
fect. To address this challenge, one recent study was
designed to discover rare coding variants with large ef-
fect on COPD risk, similar to that of alpha-1-antitrypsin
deficiency [5]. In another approach, GWAS meta-
analyses were used to identify common SNPs with very
low effect through very large sample size [3, 6, 7].

The purpose of this study was to identify candidate
COPD-risk variants through their role in generation of
COPD-associated transcript abundance patterns in bron-
chial epithelial cells (BEC). BEC coat the surfaces of lung
airways and protect lung tissue from the environment.
Sub-optimal BEC function is implicated in COPD patho-
genesis [8—10]. We hypothesized that hereditary risk for
COPD is due to the combined effect of multiple regula-
tory SNPs that each contribute to generation of BEC
transcript abundance patterns associated with hereditary
predisposition to COPD. If the proposed hypothesis is
correct, a) a study to identify COPD-associated tran-
script abundance patterns in BEC will have high power
and require a relatively small sample size, and b) genes
comprised by such patterns will be enriched for cis-regu-
latory (r) SNPs and possibly SNPs significant in COPD
GWAS using reduced stringency correction for multiple
testing. Recent knowledge regarding predisposition for
diseases caused by complex genetics supports this hy-
pothesis in that SNPs associated with COPD and other
complex phenotypes are enriched for cis- and/or trans-
regulatory function [11-19]. For example, in a report on
the recently updated GTEx database nearly 50% of com-
mon GWAS variants of interest were significantly asso-
ciated with the expression of one or more genes (P <
0.05, after correcting for multiple tissue testing) [17].

A common way to identify cis-rSNPs is to measure
dose effect of alleles at candidate cis-rSNPs on total ex-
pression [17]. SNPs significant by this analysis are re-
ferred to as cis-expression quantitative trait loci (eQTL).
Another way to identify cis-rfSNPs is by measurement of
allele-specific expression (ASE) to identify differential al-
lelic expression (DAE) [15, 20, 21]. Importantly, with ap-
propriate methodological conditions, the power to
identify cis-regulatory SNPs by measurement of ASE is
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higher than that for measurement of total expression
[22], possibly because ASE controls for variation in
trans-effects, including those resulting from variation in
the environment. Importantly, there is a high correlation
between cis-rSNPs identified by ASE measurement and
those identified by as e-QTL by total expression [17].
The recent increase in throughput and reduction in cost
of next generation sequencing (NGS) now facilitates
large-scale measurement of ASE Tools and best prac-
tices for data processing in allelic expression analysis
[19, 23].

We used targeted NGS technology to measure total
and allele-specific expression (ASE) of 35 selected gen-
ome maintenance (GM) genes through RNA sequencing
(RNAseq) of BEC RNA from 30 COPD subjects and 30
non-COPD controls. This targeted NGS method em-
ploys multiplex competitive PCR-amplicon libraries that
provide excellent sequencing depth for all target analytes
[24]. This approach is based on RT-PCR technology
proven to ensure optimal quality-control characteristics,
including high linear dynamic range, signal-to-analyte
response, precision, and accuracy, and high correlation
with qPCR [24-33].

The targeted NGS RNAseq method used in this study
simplified allele-specific transcript abundance measure-
ment and assessment of genes for cis-regulatory (r) SNPs
manifesting as DAE. Gene expression is well-
documented to be a heritable trait [34—-36]. Heritable
differences in gene expression between individuals are
caused by DNA variants that affect the expression level
of one allele (cis-acting) or both alleles (trans-acting) of
a gene [37]. Measurement of DAE is recognized as a
powerful approach for identifying cis-acting regulatory
variation [27, 35, 38]. We applied this technology to as-
sess cis-rSNP activity and disease association at the exon
level. As previously reported, multivariate exon-level
analysis provides a more powerful approach than univar-
iate gene-level analysis for identification of cis-rfSNPs as
well as disease association [39].

The 35 genes selected for analysis have a high prior
likelihood for a role in COPD pathogenesis based on
studies from this laboratory as well as those from other
investigators. They represent antioxidant (AO), DNA re-
pair (DNAR), and cell cycle control (CCC) pathways that
play a key role in protecting BEC from inhaled cigarette
smoke and toxins from the environment or occupational
exposure [8, 25, 27, 29, 30, 40—43]. Importantly, there is
significant inter-individual variation in BEC regulation of
these key GM pathway genes [30, 40, 44, 45] and many
function differently in BEC of COPD subjects compared
to matched controls [8, 41-43, 46-54]. For example,
genetic variants in CAT, GSTM1, GSTT1, GSTPI,
SOD3, NFE2L2, KEAP1, OGGIl, XRCC1l, XRCC3,
XRCC4, XRCC5, CDKNI1A, and p53 are reported to be
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associated with COPD [54-69]. Further, regulation of
both CEBP and TP53 family genes as well as many of their
targets is different in subjects with COPD [52, 53, 67, 70].

A focus on members of the CEBP transcription factor
family (i.e., CEBPA, CEBPD and CEBPG) and TP53 tran-
scription factor family (i.e. TP53, TP63, and TP73) was
based on evidence that they play an important role in
regulating lung development and differentiation, and
regulation of AO, DNAR, and CCC genes in BEC [25,
29, 30, 52, 71-77]. CEBPG is a truncated transcription
factor that does not trans-activate but plays a regulatory
role through heterodimer formation [78]. CEBPG regu-
lates key GM genes in BEC [25, 29, 30]. CEBPA and
CEBPE are anti-proliferative transcription factors that
lead to cell differentiation [71, 72, 78]. CEBPB and
CEBPD contribute to regulation of cell-cycle progression
[73-75]. CEBPG or CEBPA knockout mice die at birth
or in adulthood respectively from emphysematous lungs
[52, 76], providing experimental confirmation of the im-
portant role that sub-optimal function of these regula-
tory pathways plays in risk for COPD. The role of the
TP53 gene transcription factor family in COPD is sup-
ported by association of TP53 and CDKNI1A alleles with
COPD risk and the role of CDKNIA in response to
cigarette smoke [66, 67, 79]. TP63 plays a key role in air-
way epithelial cell proliferation and differentiation [80-
88], and is important in maintaining airway epithelial in-
tegrity and repair [89]. TP53 and TP73 work together to
differentiate BEC into ciliated cells, and TP73 knockout
in mice is associated with epithelial cell loss and inflam-
mation of epithelium [90].

Methods

The goal of this study was to identify BEC gene expres-
sion patterns and hereditary DNA variants associated
with COPD pathogenesis. Toward this goal we con-
ducted a nested case-control study to a) identify genes
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associated with COPD based on BEC transcript abun-
dance values and b) assess COPD-associated genes for
cis-rfSNP enrichment, measured as DAE. In parallel, we
queried COPD GWAS for significance of putative cis-
rSNPs in COPD-associated genes. The study design is
presented schematically in Fig. 1.

Study subjects and biospecimens

Homogeneous BEC biospecimens were obtained by
bronchoscopic brush biopsy of normal appearing airway
(main bronchus) epithelium from 30 COPD and 30 non-
COPD control subjects who were enrolled in the Lung
Cancer Risk Test (LCRT) study (NCT 01130285 at Clini-
caltrials.gov) [91]. The purpose of the LCRT study is to
assess clinical validity of the previously reported LCRT
to predict risk for lung cancer [25]. LCRT enrollment
criteria included high demographic risk for lung cancer
(age 50 or more and 20 pack-years smoking or more)
and absence of lung cancer at time of enrollment based
on chest CT. Summary statistics for the demographic
and clinical characteristics of the subjects used in studies
presented here are provided in Table 1 and information
for each subject are provided in Additional file 1: Table
S1 rows 3-12. Additional relevant details of the LCRT
study are provided in Additional file 2. In the study pre-
sented here, COPD was defined by spirometry as FEV1/
FVC < 0.7 and FEV1% expected < 80%. This corresponds
to GOLD Stage II-IV COPD [92]. The LCRT enrolled
385 subjects at 11 clinical centers between 2011 and
2013. At each site, BEC were collected into ice-cold nor-
mal saline, then pelleted at 300 g and suspended in
RNAlater. Biospecimens collected from each LCRT sub-
ject were shipped on dry ice overnight to ResearchDx,
Irvine, CA, USA) for RNA extraction and storage. All
subjects provided written informed consent. Use of tis-
sue samples and corresponding medical/demographic
data for this study is approved under UT IRB protocols

~

Analysis of 35 Selected Genome Maintenance Genes
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Targeted RNAseq' in BEC' COPD3 GWAS*
68 Assays in 35 G.enome Maintenance Gen_es Analysis
BEC cDNA samples: 30 COPD/30 control subjects
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Abundance Measurement Restricted SNP Set
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COPD-Associated Genes with COPDgene NHW?
Expression Pattern DAE: GWAS Validation

Fig. 1 Schematic description of research design. 'RNAseq: RNA sequencing by next generation sequencing; BEC: bronchial epithelial cell; *COPD,
chronic obstructive pulmonary disease; “GWAS, genome wide association study; *ASE: allele-specific expression; °LHS GWAS: Lung Health Study
Genome Wide Association Study; 'DAE: differential allelic expression; *COPDgene NHW: COPDgene Non-Hispanic White Cohort
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Table 1 Clinical characteristics of study population

Non-COPD (n =30) COPD (n =30) p—valuef

Age, yr 643 636 0713
Sex 0.009

Male 11 22

Female 19 8
Smoking status 10

Current 10 9

Former 20 21

Never 0 0
Pack-years 49 60 0.088
FEV1/FVC 0.81 0.53 581E-13
Ethnicity

White 28 26

AA 2 4

*p-values were calculated using Student’s t-test for age and Pack-years, and
Fisher exact test for sex and smoking history

#108538 and #107844. For this study, COPD and control
subjects were selected with a goal to match for age,
smoking history, and gender.

BEC and peripheral blood cell (PBC) samples for
differential allelic expression (DAE) measurement
Reliable measurement of DAE required a sample size
large enough to include a sufficient number of heterozy-
gotes. Thus, in addition to the BEC samples and
matched PBC samples from 60 LCRT subjects used in
COPD classifier development, we evaluated archival
BEC (120) and PBC (117) samples from additional sub-
jects who were not characterized for COPD status for
the purpose of DAE analysis. Of the total 180 BEC and
177 PBC samples, matched samples were available from
98 subjects.

Summary statistics for the cohort used in allele-
specific expression analysis are provided in Additional
file 1: Table S2.

RNA and DNA extraction

For the 60 LCRT subject samples, RNA was extracted
from BEC samples at ResearchDx using the RNeasy Kit
(Qiagen, Valencia, CA). RNA was treated with DNAse to
remove gDNA contamination and assessed for RNA in-
tegrity (see below). The RNA was split into two aliquots
and frozen at — 80 degrees C. One of the BEC RNA ali-
quots from each subject was shipped to the University of
Toledo where it was first re-tested for gDNA contamin-
ation through PCR. Any samples with signal for gDNA
were re-treated with DNAse. Samples then were reverse
transcribed into cDNA with M-MLV reverse transcript-
ase (Invitrogen, Carlsbad, CA) using oligo dT primer ac-
cording to the manufacturer’s protocol. Genomic DNA
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was extracted from PBC at each clinical site [91], frozen
and shipped to the NCI-EDRN bio-specimen bank at
NCI-Frederick. One vial of DNA from each subject was
provided to this lab for this study. For non-LCRT subject
archival samples (120 BEC samples and 117 PBC sam-
ples), both BEC RNA and PBC DNA were extracted in
this laboratory according to previously described
methods [93].

RNA integrity analysis

RNA extracted from each BEC sample used in this study
was assessed for RNA integrity and quantity as previously
described [91]. In addition, after careful review of available
RNA integrity measurement methods, we chose the 5'/3’
ratio mRNA integrity assay to assess NBEC sample RNA
integrity, based on a recent comparison with other
methods, including quantitative microfluidic electrophor-
esis [94]. This method was particularly informative be-
cause, since RNA samples were reverse transcribed with
poly dT, low quality, fragmented, short length RNA would
be associated with lower transcript abundance measured
in assays located further away from the 3" end.

Competitive multiplex PCR amplicon library preparation
Targeted competitive multiplex PCR amplicon libraries
were prepared to quantify total and allele-specific ex-
pression at 68 target assays on 35 genes by next gener-
ation sequencing (NGS) (in Additional file 1: Table S1)
according to previously described methods [24, 26].
Genes with high prior likelihood for association with
COPD-risk were selected for analysis based on careful
literature review, as described in the background section.
Included among these was a set of genes previously re-
ported to be relatively unaffected by environmental vari-
ation based on cigarette smoking history [30, 40].
Primers. We designed a pool of forward and reverse pri-
mer sets targeting 68 assays in the 35 genes, using
methods described in detail previously [24, 26]. When
possible, we measured transcript abundance at multiple
sites for each gene because it is not uncommon that
probes assessing different alternative transcripts yield
different expression patterns due to inter-individual bio-
logical variation [28, 95]. For classifier gene DAE ana-
lysis, assays were selected from all exonic SNPs with
minor allele frequency of > 0.05 identified based on data
from the 1000 Genomes Project [96]. Additional primer
design methods are provided in Additional file 2.

Internal standards (IS) and internal standard mixture

Methods for preparation of each internal standard and the
internal standard mixture were described previously [24,
26]. Details for this study are provided in Additional file 2.
Preparation of a PCR amplicon library for each sample in-
volved four sequential PCR reactions, described in
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Additional file 2. All primer and IS sequences are provided
in Additional file 1: Table S1.

Sequencing

PCR library products were analyzed on an Illumina
HiSeq 2500 with TruSeq SBS Kit v4 reagent at Macrogen
(Macrogen, Inc., Seoul, South Korea). Macrogen then
returned raw sequencing data in FASTQ format. Data
Processing, calculation of total or allele-specific target
transcript abundance, and filtering to avoid stochastic
sampling error were described in detail in [24, 26]. De-
tails for this study are provided in Additional file 2.

Interaction network differences between COPD cases and
control

Bivariate interactions among genes in control or COPD
subjects were assessed by Pearson’s correlation. Gene pair
network connections were assessed for difference between
COPD and control cohorts by Wilcoxon rank sum test for
in- and out-degree, betweenness, and closeness, using
igraph analysis as described in Additional file 2.

Test for cis-rSNP enrichment among classifier genes
Inter-individual variation in DAE of a gene is a manifest-
ation of one or more cis-rSNPs (15, 17, 19, 22, 23]. To
test the question of whether cis-rSNPs are enriched in
genes with COPD-associated gene expression pattern,
we assessed significant difference in prevalence of DAE
among COPD-associated genes compared with preva-
lence of DAE among all genes in multiple different tis-
sues in prior studies [15, 17, 97].

Lung health study (LHS) and COPDgene non-Hispanic
white (NHW) GWAS analysis

Detailed methods for analysis of the LHS dataset
(phs000335) and COPDgene dataset phs000765 (NHW)
[98, 99] are provided in the Additional file 2.

Sub-phenotyping of LHS and COPDgene NHW subjects
As presented in Additional file 2: Figure S1 for LHS,
prior to analysis the LHS and COPDgene NHW subjects
were stratified into Chronic Bronchitis (CB) or Emphy-
sema (EM) sub-phenotypes based on clinical annotation
parameters pertaining to chronic productive cough. For
LHS, following quality-control analysis a total of 3230
subjects were included. Of these, 527 were chronic bron-
chitis, 1198 were emphysema, and 1505 were controls.
For COPDgene NHW there were a total of 5269 sub-
jects, of which 556 were chronic bronchitis, 2223 were
emphysema, and 2490 were controls.

Statistical analysis
All statistical analyses were performed using R (v 3.2.5)
(http://www.R-project.org).
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Shrinkage linear discriminant analysis (SLDA) to develop
COPD classifier

BEC transcript abundance values for each assay in each
subject were used in development of the COPD classifier
model. After filtering, 32 target assays in 23 genes
yielded BEC transcript abundance data for reliable total
transcript abundance quantification in at least 70% of
subjects and were included in statistical analyses. Typic-
ally, the cause of low subject representation for an assay
was insufficient target molecules loaded into library
preparation due to low BEC expression. Missing values
were imputed using the corresponding mean value for
each assay. Shrinkage Linear Discriminant Analysis
(SLDA) was performed to select assays. The overall
ranking of each assay was determined by correlation-
adjusted t-score (CAT scores) [100]. The 10-fold cross-
validation (CV) receiver operating characteristic (ROC)
area under the curve (AUC) was applied to identify the
best sets of assays, and the pooled 10-fold cross-
validated ROC AUC was reported for the selected classi-
fier. For each patient, the classifier assigned a probability
score for COPD phenotype. An optimal cut-point to
predict the class label based on Youden Index (J) was
determined by repeated cross-validation step. Each pa-
tient was classified according to optimal cut-point. We
compared the model predicted class label to the “true”
state of COPD or control subject then calculated the
diagnostic odds ratio and confidence interval.

Inter-individual variation in allele-specific transcript
abundance

For each gene, and at each measured transcribed poly-
morphic locus, we used the F-test to compare inter-
individual variation in allelic imbalance in ¢cDNA sam-
ples with that in peripheral blood genomic DNA sam-
ples. Specifically, gDNA was used as a control because it
is expected that every cell will have two copies of gDNA.
Therefore, under ordinary circumstances in non-
malignant cells, it is expected that the measured ratio
between alleles will be close to one, subject to analytical
variation. In contrast, inter-individual variation in cis-
regulation due to polymorphisms may cause inter-
individual variation in transcription of one allele to the
other. Each allele ratio of read counts was log base 2
transformed prior to further analysis. F-test was per-
formed using R (v 3.2.5) (http://www.R-project.org).
GraphPad Prism was used to plot figures.

Test for cis-rSNP enrichment in COPD classifier genes

We measured DAE as an indicator that a gene contained
one or more cis-rfSNPs. To assess for cis-rSNP enrich-
ment among classifier genes, we compared the fraction
of genes with DAE among the genes comprised by the
classifier to the fraction of genes with DAE in a large
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prior study [15, 101] using the N-1 Chi-Squared test
[102] at MEDCALC (https://www.medcalc.org/calc/
comparison_of_proportions.php).

Bivariate analysis

We assessed difference in inter-gene correlation of log-
transformed transcript abundance by Pearson correlation
coefficient (r-value). We used the Fisher r-to-z transform-
ation (Z-score) to assess the significance of difference be-
tween two correlation coefficients in two groups.

Covariate analysis

Analysis of covariance (ANCOVA) was used to assess
COPD vs control group difference in transcript abun-
dance after controlling for single covariates.

Correction for multiple testing

We used Bonferroni adjustment to correct for multiple
testing in GWAS analysis. GTEx data regarding eQTL in
lung tissue are reported with the p-values corrected for
multiple testing and calculated by GTEx. We report ana-
lyses of individual gene-pair correlation changes between
control and COPD and analyses of differences in means
after correction for covariates (ANCOVA) without cor-
rection for multiple testing. This is justified because each
of the features tested was selected for analysis based on
prior association with COPD, thereby reducing likeli-
hood of false discovery.

Results

RNA and DNA samples

RNA extracted from each BEC sample met previously
described thresholds for RNA integrity and quantity as
described in methods [91].

Targeted RNAseq expression data

Total transcript abundance values meeting the QC
threshold were obtained in BEC samples from at least
70% of subjects for 32 target assays in 23 genes and this
set was used in univariate and multivariate analyses.

Interaction network differences between COPD cases and
control

On a network basis, TP53 and CEBP transcription factor
pathway gene pair network connections were different be-
tween COPD and control cohorts as measured by Wil-
coxon rank sum test for in- and out-degree (p-value =
7.0E-05), betweenness (p-value = 0.00437), and closeness
(p-value = 5.0E-11) (Fig. 2). Consistent with this, the total
number of inter-gene correlation connections (lines)
among the tested assays was higher among COPD individ-
uals. Inter-gene correlation data in relationship to tran-
scription factors are presented in Additional file 1: Table
S3. Notably, ERCC5 was more highly correlated with both
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CEBPD and TP73 in COPD compared with controls
(Fig. 3, Additional file 1: Table S3). In contrast, CEPBD
correlation with TP53 was decreased in COPD.

Analysis of covariance (ANCOVA)

After adjustment for covariate effects, there was a differ-
ence in mean expression between COPD and controls
for several classifier genes. Specifically CEBPG, GPXI1,
and TP73 were expressed at a higher level in COPD
compared to controls while KEAP1 was expressed at a
lower level (Additional file 1: Table S4).

Identification of genes with COPD-associated expression
pattern

SLDA was used to rank each feature for classification
ability according to correlation-adjusted t (CAT)-score
(See Additional file 1: Table S1). After 10-fold cross-
validation, the classifier with best ROC AUC comprised
nine features, including the three demographic variables
sex, age, and smoking history in pack-years, and six
genes: CAT, CEBPG, GPX1, KEAP1, TP73, and XPA
(Fig. 4, Table 2, and Additional file 1: Table S1 rows 14—
19). The 10-fold cross-validation AUC for the model
was 75.4% (95% CIL: 66.3%—89.3%). As reported above,
ERCC5 has altered correlation with transcription factor
TP73 comprised by the classifier (Fig. 3) and other genes
as measured by iGraph (Fig. 2).

Query of LHS GWAS for targeted genes

Details of LHS GWAS analysis are provided in Add-
itional file 2: Figure S1). Briefly, the LHS COPD GWAS
subjects were stratified into chronic bronchitis (CB) or
emphysema (EM) sub-phenotypes. All LHS SNPs that
passed quality control were restricted to putative cis-
regulatory regions. Then, SNPs in this restricted set with
p <0.05 for association with LHS CB or LHS EM sub-
jects were identified. The resulting SNP sets were desig-
nated {LHS CB Restricted} and {LHS EM Restricted}.

Integration of restricted LHS SNP sets with genes
targeted in this study

The intersection of the 35 genes targeted in this study
with the {LHS CB Restricted} SNP set comprised six
linked SNPs in ERCC5, each with P <0.05 (Additional
file 1: Table S5). In contrast, no SNPs were identified in
the intersection of the 35 targeted genes and the {LHS
EM Restricted} SNP set.

Validation of ERCC5 SNP association with chronic
bronchitis in the COPDgene cohort

The independent COPDgene NHW phs000765 cohort [3,
98] was stratified according to CB or EM sub-phenotype
using the same criteria used to sub-phenotype LHS.
COPDgene NHW CB and COPDgene NHW EM were each
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Control

Fig. 2 Network of bivariate correlation among genes (transcript abundance values) for control and COPD cohorts. Each line represents Pearson r-value
with p-value < 0.05. Left: Control, Right: COPD. (See Additional file 1: Table S3 for r- and p-value of each gene pair)

COPD

queried for rs4150275, which was chosen to represent the 6
linked SNPs (Additional file 2: Figure S2). In this validation
test, because one SNP was queried in two sub-phenotypes,
the Bonferonni adjusted threshold for significance was a =
0.05/2 = 0.025. As with LHS analysis, rs4150275 was signifi-
cant in COPDgene NHW CB (p =0.0046) but not COPD-
gene NHW EM. Importantly, the haplotype represented by
rs4150275 allele A was associated with CB in both LHS and
COPDgene NHW.

Assessment of genes with COPD-associated RNAseq pat-
terns for DAE in BEC
ERCCS5 displays inter-individual variation in DAE in BEC,
measured at multiple SNPs, including rs17655, which is
linked (D’) to rs4150275) [93]. Further, rs873601 which is
linked to rs17655 is predicted to alter miRNA binding sites
and likely plays a key functional cis-regulatory role [103].
We identified at least one expressed SNP with MAF >
0.05 in four of the six COPD classifier genes selected by

SLDA;  CAT:  1s1049982,  CEBPG:  rs3745968,
KEAP1:rs1048287, and TP73:rs1801174. For each of these
SNPs, the number of heterozygotes among the cDNA sam-
ples was close to Hardy-Weinberg Equilibrium expectations
(Table 3) and comparable to that observed among gDNA
samples. Inter-individual variation in allelic-imbalance in
¢DNA was significantly higher (p < 0.05) than that in gDNA
at each of these four sites after Bonferroni adjustment for
multiple testing (Table 3, Fig. 5). The rate of DAE among
ERCCS5 and the four measurable classifier genes was 100%
(4/4) which was significantly higher (p =0.0023) than the
30% of genes that demonstrated DAE in lung tissue (5884/
19,725) [17] or lymphoblastoid cell lines (2935/9751) [101].

Assessment of BEC putative cis-rSNPs for lung tissue
quantitative trait loci (eQTL) status in GTEx database
We queried the Genotype-Tissue Expression (GTEx)
database [17, 104] for lung tissue eQTL at SNPs in that
were associated with DAE in BEC, including classifier

a Control b COPD
6 - 6- °
° &
(e] [e]
51 P 5 o
QO O o
[e ) 0 o
8 4 °® g 4 )
o
& o ° i o ©
31 y =-0.0391x + 4.7698 31 y =0.6774x +1.7584
R2=0.0013 R?=0.2099
2 T T T T 2 T
2 3 4 5 6 2 3 4 5 6
TP73.2 TP73.2
Fig. 3 Inter-gene correlation differences in control vs COPD cohorts. a, b TP73-2 vs ERCC5
J
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281
>
g . AUC: 0.754
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1.I0 O.IB OIS OIA 0|2 OIO
Specificity

Analysis Method

Linear Discriminant Analysis

Number of subjects (N)
Demographic variable used
Gene Features

60 (NC:30, CA:30)
3: Gender Age Pack-Years
6: KEAP1, GPX1, CEBPG, XPA,

CAT.2, TP73.2

AUC 75.4% (95%R Cl: 66.3%-89.3%)
Classification Accuracy 71.7% (95% CI: 60.3%-83.1%)
PPV 69.7% (95% CI: 54.0%-85.4%)
NPV 74.1% (95% CI: 57.5%-90.6%)
Sensitivity 76.7% (95% Cl: 61.5%-91.8%)
Specificity 66.7% (95% CI: 49.8%-83.5%)

AUC: Area Under Curve; Cl: Confidence Interval;, PPV:
Positive Predictive Value; NPV: Negative Predictive Value.

Fig. 4 Receiver operating characteristic curve (ROC) (a) and
summary of performance of classifier (b) in 30 control and 30
COPD subjects

genes CAT, CEBPG, GPX1, and TP73 (Table 3), and
ERCC5. GTEx measured eQTL as dose-effect of geno-
type on total transcript abundance. SNPs associated with
lung tissue eQTL include rs17655 (p =3.2E-7), located
in the 3’ untranslated region of ERCC5, and rs1049982
(p = 1.95E-08), located in the promoter of CAT. Notably,
for each of these SNPs, the same allele associated with

Table 2 COPD classifier gene features selected by SLDA' and
10-fold cross-validation

Feature  Gene Function  CAT? score Ranking  Missing value (%)
KEAP1  AO? 335 1 8%

GPX1 AO 332 2 5%

CEBPG  TF* 298 3 18%

XPA DNAR® 264 4 28%

CAT-2 AO 264 5 22%

TP73-2  CCC%/DNAR 230 6 28%

'SLDA shrinkage linear discriminant analysis, 2CAT score correlation-adjusted t-
scores, A0 antioxidant, *TF transcription factor, °DNAR DNA repair, °CCC cell
cycle control
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higher expression in GTEx lung tissue was significantly
more likely to be expressed at higher level than the op-
posite allele in BEC. SNPs associated with BEC DAE in
the other genes were not associated with significant
eQTL in lung tissue in GTEx (Table 3).

Discussion

Data reported here support the hypothesis that low-
effect COPD risk/pathogenesis SNPs may be discovered
through enrichment as cis-regulatory SNPs in genes that
display COPD-associated BEC expression patterns.
Moreover, by integrating the BEC RNAseq data with
COPD GWAS [98, 99], ENCODE [105], and GTEx [17,
104] databases, we identified ERCC5 SNP rs873601 as a
plausible functional connection between ERCC5 DAE
(measured at rs17655), and association of rs4150275
with chronic bronchitis in COPD GWAS (Additional file
1: Table S6). [103, 106]. Thus, these data support the
role of rs873601 in ERCCS5 cis-regulation associated with
COPD pathogenesis and risk. That said, other SNPs
linked to rs4150275 also are predicted to affect binding
of transacting proteins and also could play a role (Add-
itional file 1: Table S5).

Putative cis-regulatory SNPs in SLDA classifier genes

CAT SNP rs1049982 is predicted to have cis-regulatory
function because it is in the 5" untranslated region near
the promoter and affects binding of POLR2A. In
addition, this SNP was identified as a lung tissue eQTL
in lung tissue [17, 104]. Based on these characteristics,
this SNP would be a suitable target for experimental
confirmation of function in BEC [107]. With respect to
CEBPG, KEAPI, and TP73 it is likely that SNPs other
than those used to measure DAE in this study are re-
sponsible for cis-regulation of these genes in BEC and
additional experimental studies will be necessary to an-
swer this question.

COPD-associated SNPs have been reported for several
of the classifier genes (see background section) but, to
our knowledge, not validated in individual GWAS. It will
be worthwhile to assess recently completed COPD
meta-analysis GWAS for SNPs in these genes using re-
duced stringency for false reporting.

Effect of study design characteristics selected to optimize
power

Several methodological approaches were implemented in
this study to maximize the power to identify BEC tran-
scription patterns associated with COPD. For example,
genes with high prior likelihood for hereditary COPD-
risk association were targeted. In addition, a transcript
abundance measurement platform with excellent analyt-
ical performance characteristics was used. Specifically,
there was no measurable signal-to-analyte compression
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Table 3 SLDA COPD classifier gene differential allelic expression (DAE) in bronchial epithelial cell (BEC) or in GTEx lung tissue

database
DAE in BEC GTEx Lung Tissue (n =278)
TSNP MAF Subjects Assessed (n) Heterozygote Subjects with DAE data (n) 3p-value eQTL 4p-value
KEAP1-rs1048287 0.1 159 30 9.02E-10 KEAP1 °NR.
CEBPG-rs3745968 0.1 128 17 6.35E-04 CEBPG N.R.
CAT-rs1049982 0.34 156 52 1.51E-24 CAT 1.95E-08
TP73-rs1801174 0.09 158 27 1.34E-10 TP73 N.R.

Significant p-values indicated in italicized font

'SNP that served as marker for DAE. SNPs with highest minor allele frequency chosen

2n = number of subjects for whom each SNP allele was measurable in BEC after filtering to prevent stochastic sampling error. The fraction of gDNA samples with
heterozygotes was comparable to that for cDNA samples and both approximated Hardy Weinberg Equilibrium expectations

3p-value for F-test comparing inter-individual variation in cDNA to inter-individual variation in gDNA samples

“p-value reported in GTEx database
N.R not reported

a CAT-rs1049982 b CEBPG-rs3745968
(n:80 vs 52) (n:16 vs 15)
3] Ftest, p=3 03E-25 o Ftest, p=0.000126
o 1
T 2 o 9 < 2
= 0, 0° = o
S 4] Q)OO S 4
L 000, Oq. 09 o o oo
o o--uiy- D 04 M .......... o RPN
= o !o 5 = CoBios
N1 © 00q0° & 41 o o
gz (o6} 80 =]
1 24 %80 3 2 o
34 Qg 34 °
gDNA cDNA gDNA cDNA
c ERCC5-rs17655 (] KEAP1-rs1048287
(n:37 vs 41) (n:31 vs 30)
. Fiest, p=5.23E-15 3] F-test, p=1 80E-10
| '_P—'oo e
g 2 ) 22
[ 14 o OOO E 14 ooo o
o Ow = 000,
< 0% ...... — O---% """
s % o3 = (o)
L 0050° &1 0,0
S, 8o S o
S 2 oo S 2
3 3
gDNA cDNA gDNA cDNA
e TP73-rs1801174
(n:36 vs 27)
Frest, p=2.68E-11
34
24

-

Log2(allelic ratio)
L~
00
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%o (Y (eX¢)
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Fig. 5 Inter-individual variation allelic ratio for cONA compared with
gDNA. Each symbol represents results from a single heterozygous
individual. a CAT-rs1049982, b CEBPG-rs3745968, ¢ ERCC5-rs17655, d
KEAP1-rs1048287, e TP73-rs1801174

with the method used in this study [25, 28] and the tar-
geted PCR method used resulted in abundant signal for
each analyte. This resulted in robust collection of data
from each specimen, comparing favorably with other
methods, such as microarrays or whole exome sequen-
cing analysis [8, 17, 41]. Moreover, analysis of cell popu-
lations homogeneous for a particular cell type, such as
the homogeneous BEC population samples in this study,
increases the power to identify disease-associated tran-
script abundance patterns and eQTL [95, 108, 109]. Ac-
cording to ASE measurement by targeted RNAseq, DAE
was clearly detected for marker SNPs in classifier genes
CEBPG, KEAPI, and TP73 in BEC (Table 3). However,
lung tissue eQTL was not reported for any SNPs in
these genes measured by whole transcriptome RNAseq
in GTEx study [17]. This observation is likely due to dif-
ference in specimen type (i.e. homogeneous BEC vs het-
erogeneous lung tissue), and deeper coverage obtained
by targeted RNAseq for ASE in this study.

Limits of study and opportunities

It is evident that COPD risk SNPs discovered in the fu-
ture will have low effect because they are very rare and/
or they are common but their individual contribution to
risk is low. Results presented here exemplify both the
challenge to identify low-effect complex disease risk var-
iants and the opportunity of the approach used. The low
effect of rs4150275 is likely due to multiple factors. For
example, the rs4150275 A allele prevalence in European
populations is 5%. Moreover, rs873601, the putative
functional SNP linked to DAE SNP rs17655 and COPD
risk SNP rs4150275, may be one of multiple SNPs that
contribute to ERCC5 transcription regulation [93]. As
such, there is a need to directly measure function of pu-
tative cis-regulatory SNPs through recently developed
high throughput NGS methods [110-112]. Another fac-
tor contributing to low effect of rs4150275 is that, based
on data presented here, ERCC5 is likely one of many
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genes that contribute to COPD risk when sub-optimally
regulated. In this study we increased the power to iden-
tify COPD risk SNPs with cis-regulatory function in BEC
by studying homogeneous BEC biospecimens. It is likely
that hereditary variants affecting gene expression in lung
fibroblasts and immune cells also contribute to COPD
predisposition. Thus, homogeneous populations of these
cell types should be included in future studies.

Conclusion

We report that low-effect COPD risk SNPs may be
identified through enrichment as cis-regulatory SNPs
in genes that display COPD-associated BEC expres-
sion patterns. These findings support broader applica-
tion of the approach presented here, including further
targeted RNAseq analysis of BEC and homogeneous
populations of other lung cell types to identify COPD
associated expression patterns and cis-rSNPs in genes
comprised by the expression patterns, followed by test
of associated cis-rSNPs in large GWAS meta-analyses.
This approach promises to facilitate progress toward
the important goal of identifying a set of COPD risk
variants with sufficient effect on COPD pathogenesis
and variation in hereditary risk to have clinical utility.
This knowledge is expected to lead to better COPD
prevention and treatment strategies.

Additional files

Additional file 1: Tables S1, S2, S3, S4, S5 and S6. Table S1. This table
provides: a) Gene-specific assay information including SNP sites, primer and
internal standard sequences, b) Subject-specific demographic information,
and ¢) assay- and subject-specific transcript abundance values (target gene
molecules/10° ACTB molecules). Table S2. Population used for allele specific
expression analysis: Summary demographic characteristics of the study
population of allele specific expression (subject total n = 180). Table S3.
Transcription factor-target inter-gene correlation in Control, COPD, or All
subjects (p-value < 0.05). Table S4. Analysis of covariance (ANCOVA). Gene
expression values (Independent Variables) significantly correlated (positively
or negatively) with COPD subjects (Dependent Variable) after control for
expression values of other genes (Covariates). Table S5. ERCC5 SNPs linked
to rs17655 and rs873601 (D > 0.95) and with p < 0.05 in LHS and COPDgene
NHW CB cohorts. COPD GWAS p-values, population-specific genotype fre-
quencies, and epigenetic annotation information from Haploreg/Encode.
Table S6. Haplotype structure between COPDgene NHW' associated SNP
rs4150275, putative functional cis-rSNP rs873601, and DAE? SNP rs17655.
(XLSX 109 kb)

Additional file 2: Supplementary Methods, and Figures ST and S2.
Supplementary Methods: Study subjects and tissues, RNA and DNA
extraction, preparation of internal standard mixture (ISM) primers, PCR
steps, sequencing, data processing and calculation of total or allele-
specific target transcript abundance, filtering against stochastic sampling
error, Measurement of inter-individual variation in allele-specific transcript
abundance, Assessment of BEC eQTL in publically available Genotype-
Tissue Expression (GTEx) database, GWAS analysis, sub-phenotyping of
LHS and COPDgene NHW subjects, restriction of LHS GWAS SNP set, and
integration of COPD-associated putative cis-rSNPs with GWAS. Figure S1.
LHS Sub-phenotyping and SNP Restriction. Figure S2. Integration of 35
targeted genes with {LHS CB Restricted} and {LHS EM Restricted} SNP sets,
followed by test for validation in the COPDgene NHW CB and EM co-
horts. (DOCX 93 kb)
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