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Abstract 
 

Architecture degradation can have fundamental impact on software quality and 

productivity, resulting in inability to support new features, increasing technical debt and leading 

to significant losses. While code-level refactoring is widely-studied and well supported by tools, 

architecture-level refactorings, such as repackaging to group related features into one component, 

or retrofitting files into patterns, remain to be expensive and risky. Serval domains, such as Web 

services, heavily depend on complex architectures to design and implement interface-level 

operations, provided by several companies such as FedEx, eBay, Google, Yahoo and PayPal, to 

the end-users.  

The objectives of this work are: (1) to advance our ability to support complex architecture 

refactoring by explicitly defining Web service anti-patterns at various levels of abstraction, (2) to 

enable complex refactorings by learning from user feedback and creating reusable/personalized 

refactoring strategies to augment intelligent designers’ interaction that will guide low-level 

refactoring automation with high-level abstractions, and (3) to enable intelligent architecture 

evolution by detecting, quantifying, prioritizing, fixing and predicting design technical debts.  

We proposed various approaches and tools based on intelligent computational search 

techniques for (a) predicting and detecting multi-level Web services antipatterns, (b) creating an 

interactive refactoring framework that integrates refactoring path recommendation, design-level 

human abstraction, and code-level refactoring automation with user feedback using interactive 

mutli-objective search, and (c) automatically learning reusable and personalized refactoring 

strategies for Web services by abstracting recurring refactoring patterns from Web service releases. 



 xvi 

Based on empirical validations performed on both large open source and industrial services 

from multiple providers (eBay, Amazon, FedEx and Yahoo), we found that the proposed 

approaches advance our understanding of the correlation and mutual impact between service 

antipatterns at different levels, revealing when, where and how architecture-level anti-patterns the 

quality of services. The interactive refactoring framework enables, based on several controlled 

experiments, human-based, domain-specific abstraction and high-level design to guide automated 

code-level atomic refactoring steps for services decompositions. The reusable refactoring strategy 

packages recurring refactoring activities into automatable units, improving refactoring path 

recommendation and further reducing time-consuming and error-prone human intervention.  

 

KEYWORDS: Technical debt, Quality of Services, Design Defects, Architecture Evolution, Web 

Service Refactoring, Search-based Software Engineering.
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Chapter 1 Introduction 
 

1.1 Research Context 

1.1.1 Service-oriented Computing 

The Service-Oriented Computing (SOC) is becoming the leading edge of modern software 

engineering and it is increasingly adopted in the software industry. Services are, in general, 

provided by third-parties who only expose services interfaces to the outer world. These services 

are commonly treated as “black-boxes” with abstract interfaces constituting the only visible part 

of the system. The interfaces are the main source of interactions with the user to adopt the services 

in real-world applications. Thus, poorly designed service interfaces may have a negative effect on 

all these applications using the services. A well-designed interface can accelerate project schedules 

and make the Service Oriented Architecture (SOA) solution more responsive to business needs. 

Indeed, service interfaces with well-defined abstractions and cohesive operations are easy to 

comprehend and reuse in business processes [1]. 

A Web Service is defined according to the W3C (World Wide Web Consortium), as “a 

software application identified by a URI, whose interfaces and bindings are capable of being 

defined, described, and discovered as XML artefacts. For SOAP web service, its interface is 

described as a WSDL (Web service Description Language) document that contains structured 

information about the Web service’s location, its offered operations, the input/output parameters, 

etc.” A Web service interface corresponds to a WSDL port type, which is the most important 

WSDL element. A Web service has at least one interface. This WSDL element describes a Web 
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service, the operations that can be performed, and the messages that are involved. It can be 

compared to a function library (or a module or a class) in a traditional programming language. 

In the context of implementing SOA solutions, the structure of a service interface is critical. 

Like any other software systems, Web services need to be changed and updated frequently to add 

new functionalities in response to client needs [2]. For example, a hotel management Web service 

must, over time, offer new features, become more reliable and respond faster. However, these 

continuous changes may lead to increase the complexity of the service interfaces and even taking 

them away from their original design [2]. This may in turn introduce side effects known as 

antipatterns – symptoms of bad design and implementation practices that often lead to several 

usability, understandability and maintainability problems as well as runtime errors [3]. YouTube, 

eBay, Google, FedEx, PayPal, and many other companies are leveraging these Web Services in a 

reusable, distributed and portable fashion that can be invoked by the users [4]. SBSs evolve over 

time to meet new requirements or to fix bugs. Such continuous changes may have a negative 

impact on the quality of the services. 

1.1.2 Web Service Antipatterns  

A common bad design practice, i.e., antipattern, that often appear in real-world Web 

services is to group together a large number of semantically unrelated operations in a single 

interface [3], [5]. Most of existing interfaces tend to cover several distinct core abstractions and 

[3]processes, leading to many operations associated with each abstraction. This inappropriate 

service modularization will result in poorly designed applications that tend to be hard to use, 

implement, maintain and evolve [6]–[8]. 

Best practice for service design suggests that services should expose their operations in a 

modular way, where each module, i.e., interface, defines operations that handle one abstraction at 
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a time [6], [9]. Service interfaces will consequently exhibit low coupling and high cohesion [10]. 

Low coupling means that a service interface is independent to other interfaces, allowing an 

effective reuse. Cohesion refers to how strongly related the operations themselves are. High 

cohesion means that the service operations are related as they operate on the same, underlying core 

abstraction. 

Service’s providers always try to improve the quality of their service interface descriptions 

to ensure best practice of third-party reuse [3]. Although this observation might sound obvious, 

developers tend to take little care of their service WSDL descriptions as several researchers have 

pointed out [5] Search-based web service antipatterns detect [3], [11]. Most of these existing 

descriptions are designed in only one interface regrouping all the operations together. 

Web service bad design practices and antipatterns have been recently studied, and different 

approaches have been proposed to discover Web service interfaces suffering from bad design 

practices [3], [11]–[13]. However, fixing these antipatterns is still unexplored and it is a manual, 

complex, time-consuming and error-prone task. Indeed, designing a service interface with the right 

number of interfaces, i.e., port types, and an appropriate assignment of operations to port types is 

a non-trivial task especially when developers are under pressure and stress to meet several release 

deadlines [5], [14], [15]. In fact, the number of operation combinations to explore is exponentially 

high, leading to a large and complex search space. 

Unlike the area of object oriented design [16]–[25], there has been recently few studies 

focusing on the study of bad design practices for web services interface [3], [11], [13], [26]. The 

vast majority of these work relies on declarative rule specification. In these settings, rules are 

manually defined to identify the key symptoms that characterize an interface design defect using 

combinations of mainly quantitative metrics. For each possible interface design defect, rules that 
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are expressed in terms of metric combinations need high calibration efforts to find the right 

threshold value for each metric. Another important issue is that translating symptoms into rules is 

not obvious because there is no consensual symptom-based definition of design defects [13]. These 

difficulties explain a large portion of the high false-positive rates reported in existing research [11]. 

Recently, a heuristic-based approach based on genetic programming [3] is used to generate design 

defects detection. However, such approaches require a high number of interface design defect 

examples (data) to provide efficient detection rules solutions. In fact, design defects are not usually 

documented by developers. In addition, it is challenging to ensure the diversity of the examples to 

cover most of the possible bad-practices. 

1.1.3 Web Service Refactoring  

Software refactoring is defined by Fowler [27] as “the process of changing the internal 

structure of a software to improve its quality without altering the external behavior”. Refactoring 

is recognized as an essential practice to improve software quality. Dudney et al. [10] have defined 

an initial catalog of refactoring operations for Web services including Interface Partitioning, 

Interface Consolidation, Bridging Schemas or Transforms and Web Service Business Delegate. 

Despite being commonly used in the Object-Oriented Programming (OOP) paradigm and widely 

supported by OOP integrated development environments (IDEs), refactoring is still unexplored in 

the context of service-oriented computing (SOC). In fact, SOC refactoring is not a trivial case of 

recoding existing OOP refactoring techniques. 

Despite the extensive adoption of Web service technologies, very few studies has been 

proposed for the first step of the refactoring process which is the detection of antipatterns [26]. 

Indeed, the vast majority of existing work in Web services antipattern detection merely attempts 

to provide definitions and/or the key symptoms that characterize common antipatterns. Recent 
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works [11], [12] rely on a declarative rule-based language to specify antipattern symptoms at a 

higher-level of abstraction using combinations of quantitative (metrics), structural, and/or lexical 

information. However, in an exhaustive scenario, the number of possible antipatterns to be 

characterized manually and formulated with rules can be large. To make the situation worse, it is 

difficult to find a consensus to characterize and formulate such symptoms. For these reasons, the 

detection task is still mainly a manual, time-consuming and subjective process. 

1.2 Research Contributions 

Figure 1 summarizes the different contributions of this work, published in 11 venues (3 

journals: IEEE Transaction on Services Computing [28], ACM Transactions on Internet 

Technology [29], and ACM Transactions on the Web [30], and 8 conferences: 3*ICWS2017 [31]–

[33], 1*ICSOC2017 [34], 2*ICSOC2016 [35], [36], 1*ICWS2016 [37], 1*MEDES2015 [38]) 

related to the prediction, detection and correction of Web services design defects based on various 

intelligent computational search and machine learning techniques. In the following, we will 

summarize the aims of each contribution. 
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Figure 1 Overview of the proposed contributions 

1.2.1 Contribution 1: Detection of Web Service Design Defects 

Several quality metrics can be used to capture the structural and semantic attributes of the 

Web services, and can be a reliable indicator of the quality of design [12]. These quality indicators 

can then be used to quantitatively estimate and reflect the design signatures of Web Services 

architecture in terms of many metrics. The antipatterns detection process usually involves finding 

the fragments of the design which violate these metrics. In this contribution, we used a set of static 

and Web service and dynamic QoS metrics [39]. Static metrics aim at measuring the structural 

properties of Web services in both the interface (WSDL) and code levels, whereas QoS metrics 

aim at invoking the Web services and measuring different properties, e.g., response time.  

Many metric combinations are possible, so the detection rules generation process is, by 

nature, a combinatorial optimization problem. The number of possible solutions quickly becomes 

huge as the number of metrics and possible threshold values increases. A deterministic search is 

not practical in such cases, and hence the use of heuristic search is warranted. The dimensions of 
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the solution space are set by the metrics, their threshold values, and logical operations between 

them, e.g., union (metric1 OR metric2) and intersection (metric1 AND metric2). A solution is 

determined by assigning a threshold value to each metric.  

The manual definition of rules to identify maybe difficult and can be time-consuming. The 

main issue with Web service antipattern detection is that there is no general consensus on how to 

decide if a particular design violates a quality heuristic. Indeed, there is a difference between 

detecting symptoms and asserting that the detected situation is an actual antipattern. Deciding 

which Web services are antipattern candidates heavily depends on the interpretation of each 

analyst. In some contexts, an apparent violation of a design principle may be consensually accepted 

as normal practice. For example, a translation Web service1 may have in its interface only a single 

operation translates which is responsible for translating text from one language to another 

language. Although this service might be designed properly, from a strict antipattern definition, it 

may be considered as a fine-grained Web service. 

Another inherent problem is related to the definition of threshold values when dealing with 

quantitative information. Indeed, there is no general agreement on extreme manifestations of Web 

service antipatterns [13]. That is, for each antipattern, rules that are expressed in terms of metrics 

need substantial calibration efforts to find the right threshold value for each metric, above which 

an antipattern is said to be detected. 

To address or circumvent the above-mentioned issues and challenges, we used multi-

objective heuristic-based and bi-level approaches and integrate QoS information to automatically 

detect Web service antipatterns. 
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1.2.2 Contribution 2: Detection of Changes among Service Releases 

In contrast to change tracking approaches, state-based refactoring detection approaches aim 

to reveal refactorings some posteriori on the base of the two successively modified versions of a 

software artifact. The detection of atomic changes on program code has a long history in computer 

science as pointed out by [4], but is still an ongoing research topic [40]. In [11], [41], a very recent 

approach for detecting refactorings improving several open issues of previous approaches has been 

proposed. In particular, REF-FINDER tool is presented which is capable of detecting complex 

refactorings, which comprise a set of atomic refactorings using logic-based rules executed by a 

logic programming engine. 

In this contribution, we propose a genetic algorithm approach [42] to detect composite 

changes between multiple Web service releases. Our approach takes as input an exhaustive list of 

possible change types, the initial release and the revised one, and generates as output a list of 

detected changes in terms of refactorings (composite changes). A solution is defined as the 

combination of refactoring operations that should maximize the structural and textual similarity 

between the expected new Web service interface release and the generated one after applying the 

refactoring sequence on the initial release. Due to the large number of possible solutions, a search-

based method, based on Genetic Algorithms (GA) is used instead of an enumerative one to explore 

the space of possible solutions. 

1.2.3 Contribution 3: Prediction of Web Services Evolution 

Service-based systems heavily depend on the interface of selected services used to 

implement specific features. However, service providers do not know, in general, the impact of 

their changes, during the evolution Web services, on the applications of subscribers. The 

subscribers are reluctant, in general, to use Web services that are risky and not stable [2]. Thus, 
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analyzing and predicting Web service changes is critical but also challenging because of the 

distributed and dynamic nature of services. 

We propose a machine learning approach based on Artificial Neural Networks (ANN) [43] 

to predict the evolution of Web services interface from the history of previous releases’ metrics. 

The predicted interface metrics value are used to predict and estimate the risk and the quality of 

the studied Web services. We evaluated our approach on a set of 6 popular Web services including 

more than 90 releases. We reported the results on the efficiency and effectiveness of our approach 

to predict the evolution of Web services interfaces and provide useful recommendations for both 

service providers and subscribers. The results indicate that the prediction results of several Web 

service metrics, on the different releases of the 6 Web services, were similar to the expected ones 

with very low deviation rate. Furthermore, most of the quality issues of Web service interfaces 

were accurately predicted, for the next releases, with an average precision and recall higher than 

82%. The survey conducted with a set of developers also shows the relevance of prediction 

technique for both service providers and subscribers. 

1.2.4 Contribution 4: Recommendation of Web Services Design Refactoring 

The structure of a service interface is critical in SOA. However, developers tend to take 

little care of their service WSDL descriptions as several researchers have pointed out [3], [5], [11], 

[41]. Most of these existing descriptions are designed in only one interface grouping all the 

operations together. To this end, Web service bad design practices and antipatterns have been 

recently studied, and different approaches found that several of existing Web service interfaces are 

suffering from bad design practices and proposed solutions to detect them [3], [11]–[13]. In this 

work, we propose three search-based approaches to contribute Web services refactoring research: 
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 The first approach uses Genetic Algorithm (GA)-based interactive learning algorithm [44] 

for Web services interface modularization based on Artificial Neural Networks (ANN) [45]. The 

proposed approach is based on the important feedback of the user to guide the search for relevant 

Web services modularization solutions using predictive models. To the best of our knowledge, the 

use of predictive models has not been used to improve the quality of Web services design. In the 

proposed approach, we are modeling the user’s design preferences using ANN as a predictive 

model to approximate the fitness function for the evaluation of the Web services modularization 

solutions. The user is asked to evaluate manually Web services interface modularization solutions 

suggested by a Genetic Algorithm (GA) for few iterations then these examples are used as a 

training set for the ANNs to evaluate the solutions of the GA in the next iterations.  

The second approach is based on the PCA-NSGA-II methodology [46], aims at finding the 

best and reduced set of objective that represents the quality metrics of interest to the domain expert. 

A regular multi-objective NSGA-II algorithm [47] with an initial set of exhaustive metrics is 

executed for a number of iterations then a PCA component analyzes the correlation between the 

different objectives using the execution traces. The number of objectives maybe reduced during 

the next iterations based on the PCA results. The process is repeated several times until a maximum 

number of iterations is reached to generate a set of non-dominated Web services modularization 

solutions. 

Finally, a recommendation approach is proposed that dynamically adapts and interactively 

suggests a possible modularization, also called refactoring [27], of the Web services interface to 

developers and takes their feedback into consideration. Our approach uses an interactive multi-

criteria decision-making algorithm, based on interactive non-dominated sorting genetic algorithm 

(NSGA-II) [40], to find a set of good design interface modularization solutions that provide a 
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trade-off between (1) improving several interface design quality metrics (e.g. coupling, cohesion, 

number of portTypes and number of antipatterns), (2) maximizing the satisfaction of the 

interaction constraints learnt from the user feedback during the execution of the algorithm, while 

(3) minimizing the deviation from the initial design. To find a trade-off between these different 

conflicting objectives, there is no single possible modularization solution but a set of optimal, i.e., 

non-dominated, solutions, so-called Pareto front [40]. The challenge at this step is how to choose 

one solution from this front to present to the Web service’s user or developer? The traditional 

approach is to seek a ‘knee point’ [40] from the front that presents the maximum trade-off between 

the different objectives. However, this may ignore the preferences of the user. To address this 

issue, we propose to analyze and explore the Pareto front of possible remodularization solutions 

interactively and implicitly with the developer. 

1.3 Roadmap 

The remainder of this thesis is structured as follows: Chapter 2 reviews the related work 

on software codes smells, software refactoring approaches, service design defects, detection of 

service changes, investigation of service evolution, and service refactoring. Chapter 3 introduces 

our contributions for detecting Web Service design defects. Chapter 4 reports our contribution 

related to the detection of changes among service releases. Chapter 5 reports our work on the 

prediction of software and services architecture evolution. Chapter 6 describes three contributions 

related to the recommendation of Web Service Refactoring. Finally, Chapter 7 presents the 

conclusions of this dissertation and outlines the future directions to expand our current work. 
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Chapter 2 State of the Art 
 

2.1 Introduction: Software and Web Service Design Defects 

2.1.1 Software Code smells 

Code-smells, also called anti-patterns, anomalies, design flaws or bad smells, are problems 

resulting from bad design practices and refer to design situations that adversely affect the software 

maintenance. According to Fowler [27], bad-smells are unlikely to cause failures directly, but may 

do it indirectly. In general, they make a system difficult to change, which may in turn introduce 

bugs. Different types of code-smells, presenting a variety of symptoms, have been studied with 

the intent of facilitating their detection and suggesting improvement solutions. In [27], the authors 

define 22 sets of symptoms of code smells. These include large classes, feature envy, long 

parameter lists, and lazy classes. Each code-smell type is accompanied by refactoring suggestions 

to remove it. In this work, we focus on the following seven code-smell types to evaluate our 

approach:  

• Blob: This is found in designs where one large class monopolizes the behavior of a system 

(or part of it), and the other classes primarily encapsulate data. It is a large class that 

declares many fields and methods with a low cohesion and has almost no parents and no 

children. 

• Data Class: This is a class that contains only data and performs no processing on these 

data. It is typically composed of highly cohesive fields and accessors. 
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• Spaghetti Code: This is a code with a complex and tangled control structure. This code-

smell is characteristic of procedural thinking in object-oriented programming. Spaghetti 

Code is revealed by classes with no structure, declaring long methods with no parameters, 

and utilizing global variables. Names of classes and methods may suggest procedural 

programming. Spaghetti Code does not exploit and prevents the use of object-orientation 

mechanisms, polymorphism, and inheritance. 

• Functional Decomposition: This occurs when a class is designed with the intent of 

performing a single function. This is found in code produced by non-experienced object-

oriented developers. 

• Schizophrenic class: This occurs when a public interface of a class is large and used non-

cohesively by client methods i.e., disjoint groups of client classes use disjoint fragments of 

the class interface in an exclusive fashion. 

• Shotgun Surgery: This occurs when a method has a large number of external operations 

calling it, and these operations are spread over a significant number of different classes. As 

a result, the impact of a change in this method will be large and widespread. 

• Feature Envy: This is found when a method heavily uses attributes and data from one or 

more external classes, directly or via accessor operations. Furthermore, in accessing 

external data, the method is intensively using data from at least one external capsule. 

2.1.2 Web Service Design Defects 

A SOAP or Restful Web service has at least one interface. For example, a typical SOAP 

Web service interface corresponds to a WSDL port type, which is the most important WSDL 

element. This WSDL element describes a Web service, the operations that can be performed, and 
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the messages that are involved. It can be compared to a function library (or a module or a class) in 

a traditional programming language. 

Antipatterns are symptoms of poor design and implementation practices that describe bad 

solutions to recurring design problems. They often lead to software which is hard to maintain and 

evolve [48]. Different types of antipatterns presenting a variety of symptoms have been recently 

studied with the intent of improving their detection and suggesting improvements paths [10], [11], 

[13]. Web service interface antipatterns/defects are defined as bad design choices that can have a 

negative impact on the interface quality such as maintainability, changeability and 

comprehensibility which may impacts the usability and popularity of services [10], [13]. They can 

be also considered as structural characteristics of the interface that may indicate a design problem 

that makes the service hard to evolve and maintain, and trigger refactoring [4]. In fact, most of 

these defects can emerge during the evolution of a service and represent patterns or aspects of 

interface design that may cause problems in the further development of the service. In general, 

they make a service difficult to change, which may in turn introduce bugs. It is easier to interpret 

and evaluate the quality of the interface design by identifying different defects definition than the 

use of traditional quality metrics. To this end, recent studies defined different types of Web 

services design defects [4], [10], [13]. In our experiments, we focus on the eight following Web 

service defect types:  

• God object Web service (GOWS): implements a high number of operations related to 

different business and technical abstractions in a single service.  

• Fine grained Web service (FGWS): is a too fine-grained service whose overhead 

(communications, maintenance, and so on) outweighs its utility. 
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• Chatty Web service (CWS): represents an antipattern where a high number of operations 

are required to complete one abstraction. 

• Data Web service (DWS): contains typically accessor operations, i.e., getters and setters. 

In a distributed environment, some Web services may only perform some simple 

information retrieval or data access operations. 

• Ambiguous Web service (AWS): is an antipattern where developers use ambiguous or 

meaningless names for denoting the main elements of interface elements (e.g., port types, 

operations, messages). 

• Redundant PortTypes (RPT): is an antipattern where multiple portTypes are duplicated 

with the similar set of operations. 

• CRUDy Interface (CI): is an antipattern where the design encourages services the RPC-

like behavior by declaring create, read, update, and delete (CRUD) operations, e.g., 

createX(), readY(), etc. 

• Maybe It is Not RPC (MNR): is an antipattern where the Web service mainly provides 

CRUD-type operations for significant business entities. 

We choose these defect types in our experiments because they are the most frequent and 

hard to detect [3], [11], [26], cover different maintainability factors, due to the availability of defect 

examples and to compare the performance of our detection technique to existing studies [3][11]. 

However, the proposed approach in this work is generic and can be applied to any type of defects. 

The defects detection process consists in finding interface design fragments that violate structural 

or semantic properties such as the ones related to coupling and complexity. In this setting, internal 

attributes used to define these properties, are captured through several metrics, and properties are 

expressed in terms of valid values for these metrics. The list of metrics is described in Table 1. 
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Table 1 List of quality metrics 

Metric Name Definition 

NPT Number of port types 

NOD Number of operations declared 

NAOD Number of accessor operations declared 

NOPT Average number of operations in port types 

ANIPO Average number of input parameters in operations 

ANOPO Average number of output parameters in operations 

NOM Number of messages 

NBE number of elements of the schemas 

NCT Number of complex types 

NST Number of primitive types 

NBB Number of bindings 

NBS Number of services 

NPM Number of parts per message 

NIPT Number of identical port types 

NIOP Number of identical operations 

COH Cohesion 

COU Coupling 

AMTO Average meaningful terms in operation names  

AMTM Average meaningful terms in message names  

AMTMP Average meaningful terms in message parts 

AMTP Average meaningful terms in port-type names  

ALOS Average length of operations signature  

ALPS Average length of port-types signature  

ALMS Average length of message signature  

 

In the following, we introduce some issues and challenges related to the detection of the 

Web service defects. Overall, there is no consensus on how to decide if a design violates a quality 

heuristic. In fact, there is a difference between detecting symptoms and asserting that the detected 

situation is an actual design defect. Another issue is related to the definition of thresholds when 

dealing with quantitative information. For example, the GOWS defect detection involves 

information such as the interface size as illustrated in Figure 2. Although we can measure the size 

of an interface, an appropriate threshold value is not trivial to define. An interface considered large 

in each service/community of users could be considered average in another. The generation of 

detection rules requires a large defect example set to cover most of the possible bad-practice 
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behaviors. Defects are not usually documented by developers (unlike bugs report and object-

oriented design). Thus, it is time-consuming and difficult to collect defects and inspect manually 

large Web services. In addition, it is challenging to ensure the diversity of the defect examples to 

cover most of the possible bad-practices then using these examples to generate good quality of 

detection rules. 

 

Figure 2 A god object Web service (GOWS) example 

 

2.2 Detection of Web Service Design Defects 

2.2.1 Software Code Smell Detection 

The code-smell detection process consists in finding code fragments that violate structural 

or semantic properties such as the ones related to coupling and complexity. In this setting, internal 

attributes used to define these properties, are captured through software metrics, and properties are 
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expressed in terms of valid values for these metrics. This follows a long tradition of using software 

metrics to evaluate the quality of the design including the detection of code-smells. The most 

widely-used metrics are the ones defined by Chidamber and Kemerer [49]. In this work, we use 

variations of these metrics and adaptations of procedural ones as well including: Weighted 

Methods per Class (WMC), Response for a Class (RFC), Lack of Cohesion of Methods (LCOM), 

Number of Attributes (NA), Attribute Hiding Factor (AH), Method Hiding Factor (MH), Number 

of Lines of Code (NLC), Coupling Between Object classes (CBO), Number of Association (NAS), 

Number of Classes (NC), Depth of Inheritance Tree (DIT), Polymorphism Factor (PF), Attribute 

Inheritance Factor (AIF), and Number of Children (NOC). Kessentini et al. [22] allows detecting 

code-smells using metric-based detection rules independently to their severity, risk or importance 

and without predicting the evolution of the code smells. Detection rules are expressed in terms of 

metrics and threshold values. Each rule detects a specific defect type and is expressed as a logical 

combination of a set of quality metrics/threshold values. These detection rules are 

generated/learned from real instances of code-smells using genetic algorithm. 

One of the well-known development activities that can help fix code-smells and reduce the 

increasing complexity of a software system is refactoring. Fowler [27] defines refactoring as a 

disciplined technique for restructuring an existing body of code, altering its internal structure 

without changing its external behavior. The idea is to reorganize variables, classes and methods to 

facilitate future adaptations and extensions. This reorganization is used to improve different 

aspects of software-quality such as maintainability, extensibility, reusability, etc. [50]. For these 

precious benefits on design quality, some modern integrated development environments (IDEs), 

such as Eclipse, NetBeans, and Refactoring Browser, provide semi-automatic support for applying 

the most commonly used refactorings, e.g., move method, rename class, etc. However, 
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automatically suggesting/deciding where and which refactorings to apply is still a real challenge 

in software engineering. 

2.2.2 Web Service Design Defect Detection 

Comparing to object-oriented code smell, Web service antipattern is a relatively new field. 

Few works have proposed to address the problem of SOA antipatterns [10] was the first book 

related to this topic in the literature, it provides informal definitions of a list of Web service 

antipatterns. Later, Rotem-Gal-Oz described the symptoms of a set of SOA antipatterns in [4]. 

Then, [13] describes seven popular antipatterns which violate the SOA principles [42], [51], [52] 

provide a set of guidelines for service providers to avoid bad practices while writing WSDL 

documentations and able to locate eight bad practices in writing WSDL for Web services. Beside 

the definition and guidelines of service antipattern, there are also several studies related to the 

detection part. Moha et al. proposed SODA [53], a rule-based approach for SCA systems (Service 

Component Architecture) in . Then, [11] extended this work for service antipatterns in SODA-W. 

Similar to DECOR [54], the proposed approach rely on a declarative rule specification using a 

DSL to identify the key antipattern symptoms of antipatterns. In another work [55], authors created 

and reviewed a repository of 45 general antipatterns in SOA, and aim to help developers 

understand and avoid potential problems. [56] has proposed an approach to prevent antipattern 

during the phase of WSDL documentation generation. Recently, several search-based approaches 

have been proposed. [12] uses genetic programming to generate detection rules based on the 

interface metrics of service antipattern examples, and later extend in [3] which use cooperative 

parallel evolutionary algorithms and brings the code-level metrics into the process.  

The first limitation of exsiting work is lack of alternative solutions based on conflict 

objectives(e.g. generalirity and correctness) and users’ preference. Second, the detection rules are 



 20 

generated based on the exsiting services, the antipattern examples are limited to study. It is difficult 

to find the best detection rule without generating artificial defects due to the limited training set. 

Another limitation of the state-of-the-art approaches is the limited use of dynamic QoS metrics to 

measure service quality, more specifically, only response time is being used in [3]. However, in 

the dynamic environment of Web services, the QoS performance is critical to both sides of the 

service provider and user. The information extracted which is only based on code-level or 

structural-level is not enough to understand the full characteristics of Web services. Therefore, the 

Web service antipattern detection approaches in the literature are not able to provide a 

comprehensive service antipattern detection framework. 

2.3 Detection of Changes among Service Releases 

Fokaefs et al.  [57] used the VTracker tool to calculate the minimum edit distance between 

two trees representing two WSDL files. The outcome of the tool is the percentage of interface 

changes such as added, changed and removed elements among the XML models of two WSDL 

interfaces. Romano et al. [2] proposed a similar tool called WSDLDiff that can identify fewer types 

of change than VTracker that may help to analyze the evolution of a WSDL interface without 

manually inspecting the XML changes. Aversano et al. [58] analyzed the relationships between 

sets of services change during the service evolution based on formal concept analysis. The focus 

of the study is to extract relationships among services.  

Several studies have been proposed to measure the similarity between different Web 

services to search for relevant ones or classify them but not to analyze their evolution. Xing et al. 

[59] suggested a tool, called UMLDiff to detect differences between different UML diagram 

versions to understand their evolution. Zarras et al. [60] detected evolution patterns and regularities 
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by adapting Lehman’s laws of software evolution. The study was focused only on Amazon Web 

Services (AWS). 

Based on this overview of existing work in the area of Web services evolution, the problem 

of predicting the evolution of Web services was not addressed before. In addition, the use of 

machine learning algorithms in Web services was limited to the classification of Web Services and 

their messages into ontologies [61]. These existing machine learning-based studies are not 

concerned with the analysis of the releases within the same Web service but more about mining 

different Web services (one release per service) to classify them in order to help the composition 

of services process for the subscribers based on their requirements. 

2.4 Recommendation of Software and Web Service Refactoring 

2.4.1 Search-based Software Refactoring Recommendation 

Software refactoring is defined by Fowler [27] as “the process of changing the internal 

structure of a software to improve its quality without altering the external behavior”. Refactoring 

is recognized as an essential practice to improve software quality. Dudney et al. [10] have defined 

an initial catalog of refactoring operations for Web services including Interface Partitioning, 

Interface Consolidation, Bridging Schemas or Transforms and Web Service Business Delegate. 

Despite being commonly used in the Object-Oriented Programming (OOP) paradigm and widely 

supported by OOP integrated development environments (IDEs), refactoring is still unexplored in 

the context of service-oriented computing (SOC). In fact, SOC refactoring is not a trivial case of 

recoding existing OOP refactoring techniques. 

Several studies are proposed in the literature to address the refactoring problem. We focus 

mainly in this related work on existing search-based refactoring work. These studies are based on 

the use of mono, multi and many-objective optimization techniques. The GA was the most used 
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metaheuristic search algorithm according to a recent survey [62] and recently there has been also 

many other algorithms such as NSGA-II [40] and NSGA-III [46]. Hence, we classify those 

approaches into two main categories: (1) mono-objective approaches, and (2) multi/many-

objective ones. 

In the first category, the majority of existing work combines several metrics in a single 

fitness function to find the best sequence of refactorings. In [63], Qayum et. al. considered the 

problem of refactoring scheduling as a graph transformation problem. They expressed refactorings 

as a search for an optimal path, using Ant colony optimization, in the graph where nodes and edges 

represent respectively refactoring candidates and dependencies between them. Recently, 

Kessentini et. al. [22] have proposed a single-objective combinatorial optimization using genetic 

algorithms to find the best sequence of refactoring operations that improve the quality of the code 

by minimizing as much as possible the number of design defects detected on the source code. Kilic 

et. al. [64] explore the use of a variety of population-based approaches to search-based parallel 

refactoring, finding that local beam search could find the best solutions.  

In the second category of work, Harman et. al. [65] have proposed a search-based approach 

using Pareto optimality that combines two quality metrics, CBO (coupling between objects) and 

SDMPC (standard deviation of methods per class), in two separate fitness functions. The authors 

start from the assumption that good design quality results from good distribution of features 

(methods) among classes. Their Pareto optimality-based algorithm succeeded in finding good 

sequence of move method refactorings that should provide the best compromise between CBO and 

SDMPC to improve code quality. Ó Cinnéide et. al. [66] have proposed a multi-objective search-

based refactoring to conduct an empirical investigation to assess some structural metrics and to 

explore relationships between them. To this end, they have used a variety of search techniques 
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(Pareto-optimal search, semi-random search) guided by a set of cohesion metrics. Furthermore, 

Ouni et al. [67] have proposed a new multi-objective refactoring to find the best compromise 

between quality improvement and semantic coherence using two heuristics related to the 

vocabulary similarity and structural coupling. 

2.4.2 Web Service Refactoring 

One of the first attempts to address service interface refactoring was by Athanasopoulos et 

al. [5] (Greedy). The approach was able to improve the cohesion of the Web service interface. 

However, the approaches limitation is not being able to perfectly adjust to the developers’ needs 

[5]. The reasons could be ignoring the coupling between interfaces which results in much cohesive 

but highly connected interfaces, and the greedy algorithm provides only one specific 

remodularization solution with fixed interface size which might be not suitable for the developers. 

In another study, Mateos et al. [42] and Rodriguez et al. [51], [52] have proposed a set of guidelines 

for the providers of Web service to avoid introducing antipattern while constructing the WSDL 

files. Based on the heuristics, the authors detected eight bad practices happens while writing the 

WSDLs. 

A lot of efforts has been devoted to refactoring of object-oriented (OO) applications. My 

contributions to this domain contain refactorings that are similar in OO systems, such as Extract 

Class which employs metrics to split a large class into smaller, more cohesive [27]. Bavota et al. 

[51], [52] have proposed an approach for software refactoring to split a large class into smaller 

cohesive classes using structural and semantic similarity measures. Fokaefs et al. [68] proposed an 

automated refactoring approach to Extract Class based on a hierarchical clustering algorithm to 

locate cohesive subsets of class methods and attributes. However, the Extract Class refactoring is 

not applicable in the context of Web services, because of the development paradigm, used 



 24 

technologies and metrics are different. For example, Web service source code is not publicly 

available typically. The Web service providers only expose their interfaces to the clines, compare 

to general software refactoring, the main challenge is that less information can be extracted or 

gathered; this is also a key reason that we introduce client application releases. 

2.5 Conclusion 

In this Chapter, several related works are described, as well as their limitations. To 

summarize, Table 2 reports the limitations of the existing work. These limitations are addressed 

by my research works, and detailly reported in the following chapters. 

Table 2 State of the art summary 

Existing Work  Main Limitations Problem Domain 

Rotem-Gal-Oz et 

al. [4] 
• Manual support to detect antipatterns 

• Limited to three types of antipatterns 

• Limited set of quality metrics to describe the 

symptoms  
Detection Service  

Antipatterns 

Rodriguez et al. 

[41] 

Ouni et al. [3] 
• Limited to interface-level metrics 

• Aggregating several conflicting quality 

metrics and objectives 

• Limited training set and types of antipatterns 

and metrics 

Palma et al. [11] 

Fokaefs et al.  [68] 
• Limited to the detection of atomic changes 

(not complex refactorings) 

• Based only on structural similarities   

• Limited types of changes to detect 

Detection of  

Service changes 
Aversano et al. [58] 

Xing et al. [59] 

Athanasopoulos et 

al. [5] 
• Used only cohesion as a metric to evaluate the 

refactoring solutions 

• Used only one type of refactoring to 

decompose portTypes.  

• Generate only one decomposition solution and 

do not support the consideration user 

preferences.  

Web Service 

Refactoring 
Ouni et al. [69] 
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Chapter 3 Detection of Web Service Design Defects 
 

3.1 Multi-objective Web Service Design Defect Detection 

3.1.1 Introduction 

Web services must be carefully designed and implemented to adequately fit in the required 

system’s design whilst achieving good quality of services [13]. Indeed, there is no exact recipe to 

follow for proper service design. A set of guiding quality principles for service-oriented design 

exists, including such principles as service flexibility, operability, composability, and loose 

coupling. However, the design of services is strongly influenced by the context, environment and 

other decisions the service designers take, and such factors may lead to violations of quality 

principles. The presence of programming patterns associated with bad design and programming 

practices, known as antipatterns, are indications of such violations [70]. Furthermore, it is widely 

believed that such antipatterns lead to various maintenance and evolution problems including an 

increased bug rate, fragile design and inflexible code. 

Despite the extensive adoption of Web service technologies, very few studies has been 

proposed for the first step of the refactoring process which is the detection of antipatterns [26]. 

Indeed, the vast majority of existing work in Web services antipattern detection merely attempts 

to provide definitions and/or the key symptoms that characterize common antipatterns. Recent 

works [11], [12] rely on a declarative rule-based language to specify antipattern symptoms at a 

higher-level of abstraction using combinations of quantitative (metrics), structural, and/or lexical 
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information. However, in an exhaustive scenario, the number of possible antipatterns to be 

characterized manually and formulated with rules can be large. To make the situation worse, it is 

difficult to find a consensus to characterize and formulate such symptoms. For these reasons, the 

detection task is still mainly a manual, time-consuming and subjective process. 

To address the above-mentioned limitations, we propose in this work a multi-objective 

search-based approach for the generation of antipatterns detection rules from both bad and well-

designed service examples. The process aims at finding the optimal combination of quality metrics, 

from an exhaustive list of possible metric combinations, that: 1) maximizes the coverage of a set 

of antipattern examples collected from different systems; and 2) minimizes the detection of 

examples of good-design practices. In fact, it is difficult to ensure that the used design defect 

examples cover all possible bad-design practices. Thus, we used good-design practices as another 

objective to detect antipatterns that are not similar to the well-designed service examples and 

design defect examples. To this end, a multi-objective genetic programming (MOGP) [71] is used 

to generate the antipatterns detection rules that find trade-offs between the two above-mentioned 

objectives. MOGP is a powerful evolutionary metaheuristic which extends the generic model of 

learning to the space of programs [71]. 

To validate our proposal, we present an empirical evaluation of our approach on a 

benchmark of 415 Web services from ten different application domains and we considered 8 

common Web service antipattern types. We compared our multi-objective approach with random 

search, an existing mono-objective technique [3], [12] and a rule-based approach [11] not based 

on heuristic search techniques. Statistical analysis demonstrates the efficiency of our approach in 

detecting Web service antipatterns, on average, with a precision score of 94% and a recall score of 
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92%. To the best of our knowledge, this is the first work to use multi-objective evolutionary 

algorithms for the detection of Web service antipatterns. 

3.2.1 Multi-Objective Genetic Programming 

Genetic Programming (GP) is a powerful evolutionary metaheuristic which extends the generic 

model of learning to the space of programs [71]. Differently to other evolutionary approaches, in 

GP, population individuals are themselves programs following a tree-like structure instead of fixed 

length linear string formed from a limited alphabet of symbols. GP can be seen as a process of 

program induction that allows automatically generating programs that solve a given task. Most 

exiting work on GP makes use of a single objective formulation of the optimization problem to 

solve using only one fitness function to evaluate the solution. Differently to single-objective 

optimization problems, the resolution of Multi-Objective Optimization Problems (MOPs) yields a 

set of trade-off solutions called non-dominated solutions and their image in the objective space is 

called the Pareto front.  

 

Figure 3 High level pseudo code for MOGP 

A high-level view of MOGP is depicted in Figure 3. The algorithm starts by randomly creating an 

initial population 𝑃𝑜 of individuals encoded using a specific representation (line 1). Then, a child 
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population 𝑄𝑜  is generated from the population of parents 𝑃𝑜  (line 2) using genetic operators 

(crossover and mutation). Both populations are merged into an initial population 𝑅𝑜 of size 𝑁 (line 

5). Fast non-dominated-sort [40] is the technique used by MOGP to classify individual solutions 

into different dominance levels (line 6). Indeed, the concept of non-dominance consists of 

comparing each solution 𝑥 with every other solution in the population until it is dominated (or not) 

by one of them. According to Pareto optimality: “A solution 𝑥1 is said to dominate another solution 

𝑥2 , if 𝑥1  is no worse than 𝑥2  in all objectives and 𝑥1  is strictly better than 𝑥2  in at least one 

objective”. Formally, if we consider a set of objectives 𝑓𝑖 , 𝑖 ∈ 1. . 𝑛  , to maximize, a solution 𝑥1 

dominates 𝑥2  : 

 

The whole population that contains 𝑁  individuals (solutions) is sorted using the dominance 

principle into several fronts (line 6). Solutions on the first Pareto-front 𝐹0 get assigned dominance 

level of 0 Then, after taking these solutions out, fast-non-dominated-sort calculates the Pareto front 

𝐹1 of the remaining population; solutions on this second front get assigned dominance level of 1, 

and so on. The dominance level becomes the basis of selection of individual solutions for the next 

generation. Fronts are added successively until the parent population 𝑃𝑡+1  is filled with 𝑁 

solutions (line 8). When NSGA-II must cut off a front 𝐹𝑖 and select a subset of individual solutions 

with the same dominance level, it relies on the crowding distance to make the selection (line 9). 

This parameter is used to promote diversity within the population. This front 𝐹𝑖 to be split, is sorted 

in descending order (line 13), and the first (𝑁 −  |𝑃𝑡+1|) elements of 𝐹𝑖 are chosen (line 14). Then 

a new population 𝑄𝑡+1 is created using selection, crossover and mutation (line 15). This process 

will be repeated until reaching the last iteration according to stop criteria (line 4). 
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3.1.2 Multi-Objective Optimization and NSGA-II 

An optimization problem consists in searching for an optimal or near-optimal solution 

within a predefined search space where the goal is to maximize or minimize a quality function 

called objective function. As opposed to single-objective optimization problems where we are 

looking for a single optimal solution, the resolution of a multi-objective problem (MOP) yields a 

set of compromise solutions, called non-dominated solutions, and their image in the objective 

space is called the Pareto front. In what follows, we give some background definitions related to 

this topic: 

Definition - MOP. An MOP consists in minimizing or maximizing a set of objective 

functions under some constraints [40]. An MOP could be expressed as:    

 

where M is the number of objective functions, P is the number of inequality constraints, Q 

is the number of equality constraints,  and  correspond to the lower and upper bounds of the 

variable . A solution  satisfying the (P+Q) constraints is said to be feasible and the set of all 

feasible solutions defines the feasible search space denoted by Ω. In this formulation, we consider 

a minimization MOP since maximization can be easily turned to minimization based on the duality 

principle by multiplying each objective function by -1. The resolution of a MOP consists in 

approximating the whole Pareto front. 

Definition - Pareto optimality. A solution  is Pareto optimal if there does not exist 

any solution x such that fm(x)< fm(x*) for all m. 





















.1                

1                        0)(

1                        0)(

)](),...,(),([)( 21

,...,nixxx

,...,Q;kxh

,...,P;jxg

xfxfxfxfMin

U
ii

L
i

k

j

T
M

L
ix U

ix

ix ix

*x



 31 

The definition of Pareto optimality states that  is Pareto optimal if no feasible vector  

exists which would improve some objective without causing a simultaneous worsening in at least 

another one. Other important definitions associated with Pareto optimality are essentially the 

following:    

Definition - Pareto dominance. A solution u = (u1,u2,..., un) is said to dominate another 

solution v = (v1,v2,...,vn)  (denoted by ) if and only if  is partially less than . 

In other words,  we have  and  where . 

Definition - Pareto optimal set. For a MOP , the Pareto optimal set is 

. 

Definition - Pareto optimal front. For a given MOP and its Pareto optimal set , 

the Pareto front is . 

Several methods were proposed in the literature to solve MOPs. Due to their population-

based nature, Evolutionary Algorithms (EAs) have shown their effectiveness and efficiency in 

providing a well-converged and well-diversified approximation of the Pareto front independently 

of its geometrical nature which is not the case for classical mathematical methods. Among the 

most used Multi-Objective EAs (MOEAs), we cite NSGA-II, SPEA2, IBEA and MOEA/D. Since 

the most used MOEA within the SBSE community is NSGA-II [40], we choose to use it in this 

study. 

NSGA-II is one of the most used and effective MOEAs. It begins by generating an 

offspring population from a parent one by means of variation operators (crossover and mutation) 

such that both populations have the same size. After that, it ranks the merged population (parents 

and children) into several non-dominated layers, called fronts, as depicted by Figure 3. Non-
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dominated solutions are assigned a rank of 1 and constitute the first layer. Non-dominated solutions 

according to the population truncated of the layer 1 are assigned a rank of 2 and constitute the layer 

2. This process is continued until the ranking of all parent and children individuals. After that, each 

solution is assigned a diversity score, called crowding distance, front wise. This distance 

corresponds to the half of the perimeter of the cuboid having the two closest neighboring solutions 

to the considered individual as vertices. It is important to note that extreme solutions are assigned 

an infinite crowding score since they are of great importance for diversity. The fitness in NSGA-

II is not a scalar value. In fact, it is a couple (rank, crowding distance). Solutions having better 

ranks are emphasized. Among solutions having the same rank (belonging to the same layer), 

solutions having larger crowding distances are emphasized since they are less crowded than the 

others. Once all individuals of the merged population are assigned a rank and a diversity score, we 

perform the environmental selection to form the parent population for the next generation. Indeed, 

solutions belonging to the best layers are selected. Figure 4 illustrates this process where the last 

selected layer is the 4th one. Usually, the cardinality of the last layer (layer 4 in Figure 4) is greater 

than the number of available slots in the parent population of the next generation. As denoted by 

Figure 4, solutions of the 4th layer are selected based on their crowding distance values. In this 

way, most crowded solutions are discouraged to remain in the race; thereby emphasizing 

population diversification. To sum up, the Pareto ranking encourages convergence and the 

crowding factor procedure emphasizes diversity, therefore NSGA-II is an elitist multi-objective 

EA which is today the most used metaheuristic in multi-objective applied optimization. 
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Figure 4 NSGA-II replacement scheme for a bi-objective maximization case. 

One of the widely used multi-objective search techniques is NSGA-II [40] that has shown 

good performance in solving several software engineering problems [62]. 

As in Figure 5, the algorithm starts by randomly creating an initial population 𝑃0  of 

individuals encoded using a specific representation (line 1). Then, a child population 𝑄0  is 

generated from the population of parents 𝑃0  (line 2) using genetic operators (crossover and 

mutation). Both populations are merged into an initial population 𝑅0 of size 𝑁 (line 5). Fast-non-

dominated-sort [20] is the technique used by NSGA-II to classify individual solutions into 

different dominance levels (line 6). Indeed, the concept of non-dominance consists of comparing 

each solution 𝑥 with every other solution in the population until it is dominated (or not) by one of 

them. According to Pareto optimality: “A solution 𝑥1 is said to dominate another solution 𝑥2, if 𝑥1 

is no worse than 𝑥2 in all objectives and 𝑥1 is strictly better than 𝑥2 in at least one objective”. 

Formally, if we consider a set of objectives 𝑓𝑖 , 𝑖 ∈ 1. . 𝑛, to maximize, a solution 𝑥1 dominates 𝑥2. 

The whole population that contains 𝑁 individuals (solutions) is sorted using the dominance 

principle into several fronts (line 6). Solutions on the first Pareto-front 𝐹0 get assigned dominance 

level of 0 Then, after taking these solutions out, fast-non-dominated-sort calculates the Pareto-

front 𝐹1 of the remaining population; solutions on this second front get assigned dominance level 

of 1, and so on. The dominance level becomes the basis of selection of individual solutions for the 
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next generation. Fronts are added successively until the parent population 𝑃𝑡+1 is filled with 𝑁 

solutions (line 8). When NSGA-II has to cut off a front 𝐹𝑖  and select a subset of individual 

solutions with the same dominance level, it relies on the crowding distance [20] to make the 

selection (line 9). This parameter is used to promote diversity within the population. This front 𝐹𝑖 

to be split, is sorted in descending order (line 13), and the first (N- |𝑃𝑡+1|) elements of 𝐹𝑖 are chosen 

(line 14). Then a new population 𝑄𝑡+1 is created using selection, crossover and mutation (line 15). 

This process will be repeated until reaching the last iteration according to stop criteria (line 4). 

 

Figure 5 High level pseudo code for NSGA-II 

3.1.3 NSGA-II Adaptation 

1) Problem Formulation 

The Web service antipatterns detection problem involves searching for the best metric 

combinations among the set of candidate ones, which constitutes a huge search space. A solution 

of our antipatterns detection problem is a set of rules (metric combination with their thresholds 

values) where the goal of applying these rules is to detect design defects in a web service. We 

propose a multi-objective formulation of the Web service antipatterns rules generation problem. 

Consequently, we have two objective functions to be optimized: (1) maximizing the coverage of 
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antipattern examples, and (2) minimizing the detection of good design practice examples of Web 

services. The collected examples of well-designed Web services and antipatterns are taken as an 

input for our approach. Analytically speaking, the formulation of the multi-objective problem can 

be stated as follows: 

 

where |𝐷𝐶𝑆(𝑥)| is the cardinality of the set of detected antipatterns by the metric combination 𝑥, 

|𝐸𝐶𝑆| is the cardinality of the set of existing antipatterns, and |𝐸𝐷𝐸| is the cardinality of the set of 

existing good examples. Once the bi-objective trade-off front is obtained, the developer can 

navigate through this front in order to select his/her preferred solution (metric combination).  

The basic idea of the algorithm is to explore the search space by making a population of 

candidate solutions, also called individuals, and evolve this population towards an “optimal” 

solution for the detection of antipatterns. To evaluate the solutions, the fitness functions, as 

explained previously, are used. The best solutions (detection rules) will cover the maximum of 

anti-pattern examples and a minimum of good design examples of Web services.  

In the initialization of the MOGP algorithm, our base of examples is split into ten subsets, 

each representing a different application domain, e.g., finance, travel, etc. One subset (WS) is the 

test dataset and the remaining subsets (B or GE) are the training datasets (the ground truth). Thus, 

MOGP is run to detect antipatterns in the selected subset(WS), which is not of course part of the 

training set. 

The initial population for MOGP is a set of individuals (I) that stand for possible solutions 

representing detection rules (metrics combination). Then, the algorithm explores the search space 
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and constructs new individuals by combining metrics to generate rules. In each iteration of the 

training process, antipatterns are iteratively evaluated using the generated rules. As described 

earlier, the process is driven by two fitness functions that calculates the quality of each candidate 

solution (detection rule) by comparing the base of examples along with the percentage of covered 

well-designed examples. A new population of individuals is generated by iteratively selecting pairs 

of parent individuals from population Pop and applying genetic operators to them (crossover and 

mutation). We include both the parent and child variants in the new population. We then apply the 

mutation operator, with a probability score, for both parent and child to ensure solution diversity; 

this produces the population for the next generation. Developers can use the best rules (solution) 

to detect potential antipatterns on any new Web service. 

2) Solution Approach 

In the following, we describe the three main steps of adaptation of the MOGP algorithm to 

our problem.  

Solution representation: 

Candidate solutions to the problem are antipattern detection rules. A solution is represented 

as a set of IF-THEN rules, each with the following structure: 

IF “Combination of metrics with their thresholds” THEN “antipattern type” 

The antecedent of the IF statement combines some metrics and their threshold values using 

logic operators (AND, OR). If these conditions are satisfied by a Web service, then it is determined 

to be of the antipattern type featuring in the THEN clause of the rule. Figure 6 provides an example. 

More formally, each candidate solution S is a sequence of detection rules where each rule is 

represented by a binary tree such that: 

A. Each leaf node (terminal) L represents a metric (our metric suite described earlier) and its 

corresponding threshold, generated randomly. 
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B. Each internal node (function) N represents a logic operator, either AND or OR. 

We will have as many rules as types of antipatterns to be detected. In this work, we focus 

on the detection of eight common types as defined in Section II-A. 

Evaluation functions: 

The solution is evaluated based on the two objective functions defined in the previous 

section. Since we are considering a bi-objective formulation, we use the concept of Pareto 

optimality to find a set of compromise (Pareto-optimal) solutions. The fitness of a particular 

solution in MOGP corresponds to a couple (Pareto Rank, Crowding distance). In fact, MOGP 

classifies the population individuals (of parents and children) into different layers, called 

nondominated fronts. The output of MOGP is the last obtained parent population containing the 

best of the non-dominated solutions found. When plotted in the objective space, they form the 

Pareto front from which the user will select his/her preferred antipatterns detection rules solution. 

 

Figure 6 Solution representation example. 

3.1.4 Validation 

1) Experimental Setup 

We designed our experiments to answer the following research questions: 

• RQ1: How does our multi-objective approach, MOGP, compare to random search and an 

existing mono-objective technique [3]? 

• RQ2: To what extent can the proposed approach efficiently detect Web service 

antipatterns? 
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• RQ3: What types of Web service antipatterns does it detect correctly? 

• RQ4: How does MOGP perform compared to existing Web service antipattern detection 

approach not based on heuristic search [11]? 

To evaluate our approach, we collected a set of Web services using different Web service 

search engines including eil.cs.txstate.edu/ServiceXplorer, programmableweb.com, 

biocatalogue.org, webservices.seekda.com, taverna.org.uk, and myexperiment.org. Table 3 

summarizes the collected services. Furthermore, our collected Web services are drawn from ten 

different application domains: financial, science, search, shipping, travel, weather, media, 

education, messaging and location. All services were manually inspected and validated to identify 

antipatterns based on guidelines from the literature [4], [10]. Furthermore, our dataset is available 

online [72] to encourage future research in the area of automated detection of Web service 

antipatterns. We considered antipattern types range from eight common antipatterns, namely god 

object web service (GOWS), fine-grained Web service (FGWS), chatty Web service (CWS), data 

Web service (DWS), ambiguous Web service (AWS), redundant port types (RPT), CRUDy 

interface (CI), and maybe it is not RPC (MNR). In our study, we employed a 10-fold cross 

validation procedure. We split our data into training data and evaluation data. For each fold, one 

category of services is evaluated by using the remaining nine categories as a base of examples 

(ground-truth). For instance, weather services are analyzed using antipattern instances from travel, 

shipping, search, science financial, media, education, messaging, and location services. We use 

precision and recall [73] to evaluate the accuracy of our approach. Precision denotes the ratio of 

true antipatterns detected to the total number of detected antipatterns, while recall indicates the 

ratio of true antipatterns detected to the total number of existing antipatterns. To answer RQ1, we 

investigate and report on the effectiveness of MOGP, since one of our primary novelties lies in the 
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adoption of the multi-objective formulation. To this end, we implemented random search (RS) 

with the same fitness functions as MOGP. Indeed, it is important to compare our search technique 

to random search, since if an intelligent search method fails to outperform random search, then the 

proposed formulation is not adequate. In addition, we compared our multi-objective algorithm to 

an existing mono-objective approach where only examples of antipatterns were considered [3] 

without the use of positive examples of well-designed Web services. To answer RQ2, we use both 

recall and precision to evaluate the efficiency of our approach in identifying antipatterns. To 

answer RQ3, we investigated the antipattern types that were detected to find out whether there is 

a bias towards the detection of specific antipattern types. To answer RQ4, we compared our 

approach with the SODA-W approach of Palma et al. [11]. SODA-W manually translates 

antipattern symptoms into detection rules and algorithms based on a literature review of Web 

service design. All three approaches are tested on the same benchmark described in Table 3. 

Table 3 Web services used in the empirical study. 

 

2) Experiment Results 

Results for RQ1. The goal of RQ1 is to investigate how well MOGP performs against 

random search and an existing single-objective approach where only antipattern examples are 

used. Table 4 and Figure 7 report the comparative results. Over 31 runs, RS did not perform well 
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when compared to MOGP in terms of precision and recall achieving average values of only 29% 

and 31% respectively on the different Web services. The main reason could be related to the large 

search-space of possible combinations of metrics and threshold values to explore. 

Table 4 MOGP results on the different Web service. 

 

The results achieved by MOGP are also better than the mono-objective approach in terms 

of precision and recall. In fact, the single-objective GP technique has an average of 86% and 87% 

of precision and recall however MOGP has better scores with 94% of precision and 92% of recall 

on the different Web services. These results confirm that an intelligent search is required to explore 

the search space and that the use of well-designed We service examples improved the obtained 

detection results. 

Results for RQ2. The results for RQ2 are presented in Table 4 MOGP results on the 

different Web service. The obtained results show that we were able to detect most of the expected 

antipatterns in the different categories with a median precision higher than 94%. The higher 

precision value for travel and Education (97%) can be explained by the fact that these Web services 

are large than the others and contain a high number of operations and complex types that match 

the GOWS antipattern. For the We service weather, the precision is the lowest one (91%), but is 

still a very acceptable score. This is due to the nature of the antipatterns involved which are 

typically data or chatty Web services. Indeed, some false positives are recorded for the DWS and 
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CWS antipatterns. These antipatterns are likely to be difficult to detect using metrics alone. Similar 

interpretations can be made for recall. The obtained results indicate that our approach is able to 

achieve a recall of 92%. The highest values were recorded for travel services with 96% where most 

of the detected services are GOWS and AWS. The lowest recall score was recorded for the location 

service (91%) which is attributable mostly to FGWS. Indeed, location Web services typically 

provide one or two operations which falsely matches the symptoms of FGWS. 

Results for RQ3. Based on the results of Figure 7, we observe that MOGP does not have a 

bias towards the detection of any specific antipattern type. As described the figure, we had an 

almost equal distribution of each antipattern type. On some Web services such as weather, the 

distribution is not as balanced. This is principally due to the number of actual antipattern types 

detected. Overall, all the 8 antipattern types are detected with good precision and recall scores 

(more than 88%). Most existing guidelines/definitions [10], [11] rely heavily on the notion of size 

to detect antipatterns. This is reasonable for antipatterns like GOWS and FGWS that are associated 

with a notion of size, but for antipatterns like AWS, however, the notion of size is less important, 

and this makes this type of anomaly hard to detect using structural information. This difficulty 

limits the performance of GP in detecting this type of antipattern. Thus, we can conclude that our 

MOGP approach detects well all the types of considered antipatterns (RQ3). 

Results for RQ4. Figure 8 reports the comparison result of MOGP, Ouni et al. [3], [12], 

and SODA-W. While SODA-W shows promising results with an average precision of 71% and 

recall of 83%, it is still less than MOGP in all the eight considered antipattern types. We conjecture 

that a key problem with SODA-W is that it simplifies the different notions/symptoms that are 

useful for the detection of certain antipatterns. Indeed, SODA-W is limited to a set of WSDL 

interface metrics, but ignores the source code of the Web service artifacts. In fact, service design 
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may look promising at the interface level, but can prove to be an antipattern if the source code is 

not implemented well. In contrast, our approach is based on both interface and code metrics. 

Another limitation of SODA-W is that in an exhaustive scenario, the number of possible 

antipatterns to manually characterize with rules can be very large, and rules that are expressed in 

terms of metric combinations need substantial calibration efforts to find the suitable threshold 

value for each metric. By contrast, our approach needs only some examples of antipatterns to 

generate detection rules. Figure 8 also shows that the mono-objective GP [12] provides lower 

detection results for the eight studied antipatterns with an average of 72% for both precision and 

recall. The lower performance can be explained by the fact that of the mono-objective formulation 

is based only on interface metrics that may not be able to capture all possible antipattern symptoms. 

 

Figure 7 Detection results for each 

antipattern type 

Figure 8 Comparative results of MOGP, 

Mono-objective GP and SODA-W 
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In this work, we introduced a new multi-objective approach for the detection of Web 

service antipatterns. In our multi-objective adaptation, two fitness functions are used to maximize 

the coverage of antipattern examples and minimize the coverage of well-designed Web service 

examples. The proposed approach is evaluated on a benchmark of 415 Web services and eight 

common Web service antipattern types. Statistical analysis of the obtained results provides 

compelling evidence that the proposed multi-objective algorithm outperforms mono-objective 

approaches, random search, and a recent state-of-the art approach with a median precision of more 

than 94% and a median recall of more than 92%. As future work, we plan to extend the approach 

to detect business process antipatterns in SBS in addition to individual Web service antipatterns 

and automate the correction, through refactoring, of the detected antipatterns. 

3.1.5 Conclusion 

In this contribution, we introduced a new multi-objective approach for the detection of 

Web Service antipatterns. In our multi-objective adaptation, two fitness functions are used to 

maximize the coverage of antipattern examples and minimize the coverage of well-designed Web 

service examples. The proposed approach is evaluated on a benchmark of 415 Web services and 

eight common Web service antipattern types. Statistical analysis of the obtained results provides 

compelling evidence that the proposed multi-objective algorithm outperforms mono-objective 

approaches, random search, and a recent state-of-the art approach with a median precision of more 

than 94% and a median recall of more than 92%. 

In the next section, we extend the approach to Bi-level which is able to generate artificial 

design defects to improve the generation process of antipatterns detection rules. 
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3.2 Bi-level Identification of Web Service Defects 

3.2.1 Introduction 

In the majority of existing works, detection rules are manually defined to identify the key 

symptoms that characterize an interface design defect using combinations of mainly quantitative 

metrics. For each possible interface design defect, rules that are expressed in terms of metric 

combinations need high calibration efforts to find the right threshold value for each metric. 

Another important issue is that translating symptoms into rules is not obvious because there is no 

consensual symptom-based definition of design defects [74]. These difficulties explain a large 

portion of the high false-positive rates reported in existing research [11]. Recently, a heuristic-

based approach based on genetic programming [3] is used to generate design defects detection. 

However, such approaches require a high number of interface design defect examples (data) to 

provide efficient detection rules solutions. In fact, design defects are not usually documented by 

developers. In addition, it is challenging to ensure the diversity of the examples to cover most of 

the possible bad-practices.  

In this work, we start from the hypothesis that the generation of efficient Web service 

defects detection rules heavily depends on the coverage and the diversity of the used defect 

examples. In fact, both mechanisms for the generation of detection rules and the generation of 

defect examples are dependent. Thus, the intuition behind this work is to generate examples of 

defects that cannot be detected by some possible detection solutions then adapting these rules-

based solutions to be able to detect the generated defect examples. These two steps are repeated 

until reaching a termination criterion (e.g. number of iterations). To this end, we propose, for the 

first time, to consider the Web services defects detection problem as a bi-level one [75], [76]. Bi-

Level Optimization Problems (BLOPs) are a class of challenging optimization problems, which 
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contain two levels of optimization tasks. The optimal solutions to the lower level problem become 

possible feasible candidates to the upper level problem.  

In our adaptation, the upper level generates a set of detection rules, combination of quality metrics, 

which maximizes the coverage of the base of defect examples; and artificial defects are generated 

by the lower level. The lower level maximizes the number of generated “artificial” interface 

defects that cannot be detected by the rules produced by the upper level. The overall problem 

appears as a BLOP task, where for each generated detection rule, the upper level observes how the 

lower-level acts by generating artificial Web service interface defects that cannot be detected by 

the upper level rule, and then chooses the best detection rule which suits it the most, taking the 

actions of the defects generation process (lower level or follower) into account. The main 

advantage of our bi-level formulation is that the generation of detection rules is not limited to some 

interface defect examples identified manually that are difficult to collect but it allows the prediction 

of new interface defect behaviours that are different from those in the base of examples.  

The primary contributions of this work can be summarized as follows:  

A. The work introduces a novel formulation of the Web services design defects detection as a 

bi-level problem.  

B. The work reports the results of an empirical study with an implementation of our bi-level 

approach. The statistical analysis of our experiments over 30 runs on a benchmark of 415 

Web services shows that 8 types of interface design defects were detected with an average 

of more than 93% of precision and 98% recall. The results confirm the outperformance of 

our bi-level proposal compared to state-of-art Web service design defects detection 

techniques [11], [12] and the survey performed by potential users and programmers also 

shows the relevance of detected defects. 
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3.2.2 Bi-Level Optimization 

Most studied real-world and academic optimization problems involve a single level of 

optimization. However, in practice, several problems are naturally described in two levels. These 

latter are called BLOPs [75], [76]. In such problems, we find a nested optimization problem within 

the constraints of the outer optimization one. The outer optimization task is usually referred as the 

upper level problem or the leader problem. The nested inner optimization task is referred as the 

lower level problem or the follower problem, thereby referring the bi-level problem as a leader-

follower problem or as a Stackelberg game. The follower problem appears as a constraint to the 

upper level, such that only an optimal solution to the follower optimization problem is a possible 

feasible candidate to the leader one.  

BLOPs are intrinsically more difficult to solve than single-level problems, it is not 

surprising that most of existing studies to date has tackled the simplest cases of BLOPs, i.e., 

problems having nice properties such as linear, quadratic or convex objective and/or constraint 

functions. In particular, the most studied instance of BLOPs has been for a long time is the linear 

case in which all objective functions and constraints are linear with respect to the decision 

variables. 

3.2.3 Bi-level Approach Overview 

As described in Figure 9, our bi-level formulation includes two levels as described in the 

previous section. At the upper level, the detection rules generation process has a main objective 

which is the generation of detection rules that can cover as much as possible the Web service 

defects in the base of examples. The defects generation process has one objective that is 

maximizing the number of generated artificial defects that cannot be detected by the detection 

rules. The generated defects are dissimilar from the base of well-designed Web services design 



 

 

47 

 

based on a defined distance using the different metrics. There is a hierarchy in the problem, which 

arises from the manner in which the two entities operate. The detection rules generation process 

has higher control of the situation and decides which detection rules for the defects generation 

process to operate in. It should be noted that in spite of different objectives appearing in the 

problem, it is not possible to handle such a problem as a simple multi-objective optimization task. 

The reason for this is that the leader cannot evaluate any of its own strategies without knowing the 

strategy of the follower, which it obtains only by solving a nested optimization problem. 

 

 Figure 9 Bi-level Web service defects detection overview 

The leader (upper level) takes as inputs a base (i.e. a set) of Web service defect examples, 

and takes, as controlling parameters, a set of metrics as described in Table 1 and generates as 

output a set of detection rules. The rule generation process selects randomly, from the list of 

possible metrics, a combination of quality metrics (and their threshold values) to detect a specific 
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defect types. Consequently, the ideal solution is a set of rules that best detect the defects of the 

base of examples and those generated by the lower level. For example, the following rule of Figure 

10 states that a Web service s satisfying the following combination of metrics and thresholds is 

considered as a GOWS defect:  

R1: IF (NOD(s)≥17 AND COH(s)≤0.43) OR NCT≥32, THEN s = GOWS. 

 

 Figure 10 Solution representation at the upper level 

An upper-level detection rules solution is evaluated based on the coverage of the base of 

defect examples (input) and also the coverage of generated “artificial” Web service design defects 

by the lower-level problem. These two measures are used to be maximized by the population of 

detection rules solutions. The follower (lower level) uses a set of well-designed Web service 

examples to generate “artificial” defects based on the notion of deviation from a reference (well-

designed) set of Web services. The generation process of artificial defect examples is performed 

using a heuristic search that maximizes on one hand, the distance between generated defects 

examples and reference code examples using the list of considered metrics and, on the other hand, 

maximizes the number of generated examples that are not detected by the leader (detection rules). 

As described in Figure 11, the generated structure of defects is represented as a vector where each 

element is a (metric, threshold) pair that characterises the generated Web service.  

 

Figure 11 Solution representation at the lower level. 
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There is no parallelism in our bi-level formulation. The upper level is executed for number 

iterations then the lower level for another number of iterations. After that the best solution found 

in the lower level will be used by the upper level to evaluate the associated solution (detection 

rules), and then this process in repeated several times until reaching a termination criterion (e.g. 

number of iterations). Thus, there is no parallelism since both levels are dependent.  

Next, we describe our adaptation of bi-level optimization to the Web service defects 

detection problem in more details. 

3.2.4 Bi-Level Optimization Adaptation 

At the upper level, the objective function is formulated to maximize the coverage of Web 

services defect examples (input) and also maximize the coverage of the generated artificial Web 

service defects at the lower level (best solution found in the lower level). Thus, the objective 

function at the upper level is defined as follows: 
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It is clear that the evaluation of solutions (detection rules) at the upper level depends on the 

best solutions generated by the lower level (artificial Web service defects). Thus, the fitness 

function of solutions at the upper level is calculated after the execution of the optimization 

algorithm in the lower level at each iteration. 

At the lower level, for each solution (detection rule) of the upper level an optimization 

algorithm is executed to generate the best set of artificial Web service defects that cannot be 

detected by the detection rules at the upper level. An objective function is formulated at the lower 

level to maximize the number of un-detected artificial defects that are generated and also maximize 

the distance with well-designed Web services. Formally, 
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where ms is the number of structural metrics used to compare between artificial defects 

and the well-designed web services, M is a structural metric (such as the number of operations, 

etc.) and u is the number of artificial defects uncovered by the detection rule solution defined at 

the upper level.  

For the GP algorithm (upper-level), the mutation operator can be applied to a function node 

(metric), or to a terminal node (logical operator) in our tree representation. It starts by randomly 

selecting a node in the tree. Then, if the selected node is a terminal (metric), it is replaced by 

another terminal (metric or another threshold value); if it is a function (AND-OR), it is replaced 

by a new function; and if tree mutation is to be carried out, the node and its sub-tree are replaced 

by a new randomly generated sub-tree. For the GA (lower-level), the mutation operator consists 

of randomly changing a metric in one of the vector dimension. 

Regarding the crossover, two parent individuals are selected at the upper level, and a sub-

tree is picked on each one. Then crossover swaps the nodes and their relative sub-trees from one 

parent to the other. This operator must ensure the respect of the depth limits. The crossover 

operator can be applied with only parents having the same rule category (defect type to detect). 

Each child, thus combines information from both parents. For the GA (lower-level), the crossover 

operator allows to create two offspring o1 and o2 from the two selected parents p1 and p2, where 

the first k elements of p1 become the first k elements of o1. Similarly, the first k elements of p2 

become the first k elements of o2. 

3.2.5 Validation 

1) Experimental Setup 
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In order to evaluate the feasibility and the performance of our bi-level (BLOP) approach 

comparing to existing Web service defects detection approaches, we addressed the following 

research questions: 

• RQ1: How does BLOP perform to detect different types of Web service defects?  The goal 

of this research question is to quantitatively assess the completeness and correctness of our 

approach. 

• RQ2: How do BLOP perform compared to existing mono-level Web service defects 

detection algorithms? The goal is to evaluate the benefits of the use of a bi-level approach 

in the context of Web service defects detection. 

• RQ3: How does BLOP perform compared to the existing Web service defects detection 

approaches not based on the use of metaheuristic search?  

• RQ4: Can our approach be useful for developers during the development of software 

systems? 

To evaluate the performance of our approach, we used an existing benchmark [11], [12] 

that includes a set of Web services from different categories as described in Table 5.  

Table 5 Web services used in the empirical study 

Category #services #defects 

Financial 94 67 

Science 34 3 

Search 37 13 

Shipping 38 10 

Travel 65 28 

Weather 42 15 

Media 19 14 

Education 26 20 

Messaging 29 22 

Location 31 136 
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We considered the different antipattern types described in chapter 2. We used a 10-fold 

cross validation procedure. We split our data into training data and evaluation data. For each fold, 

one category of services is evaluated by using the remaining nine categories as training examples. 

We use the two measures of precision and recall evaluating the accuracy of our approach and to 

compare it with existing techniques [11], [12]. Precision denotes the ratio of true antipatterns 

detected to the total number of detected antipatterns, while recall indicates the ratio of true 

antipatterns detected to the total number of existing antipatterns. 

To answer RQ1, we use both recall and precision to evaluate the efficiency of our approach 

in identifying antipatterns. We also investigated the Web service defect types that were detected 

to find out whether there is a bias towards the detection of specific Web service defect types.  

To answer RQ2, we investigate and report on the effectiveness of BLOP comparing to 

existing approaches. We implemented random search (RS) with the same used fitness functions 

used at the two levels. If an intelligent search method fails to outperform random search, then the 

proposed formulation is not adequate. In addition, we compared our bi-level algorithm to an 

existing mono-level and mono-objective approach where only examples of defects were 

considered [11] without the use of the lower level.  

To answer RQ3, we compared our approach with the SODA-W approach of Palma et al. 

[11]. SODA-W manually translates Web services defect symptoms into detection rules based on a 

literature review of Web service design. All three approaches are tested on the same benchmark 

described in Table 7. 

To answer RQ4, we used a post-study questionnaire that collects the opinions of developers 

on our detection tool and Web service defects. To this end, we asked 31 software developers, 

including 17 professional developers working on the development of services-based application 
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and 14 graduate students from the University of Michigan. The experience of these subjects on 

web development and Web services ranged from 2 to 16 years. All the graduate students have an 

industrial experience of at least 2 years with large-scale systems especially in automotive industry. 

2) Parameters Tuning 

We performed a set of experiments using several population sizes: 30, 40 and 50. The 

stopping criterion was set to 500,000 fitness evaluations. We used a high number of evaluations 

as a stopping criterion since our bi-level approach requires involves two levels of optimization. 

Each algorithm was executed 30 times with each configuration and then comparison between the 

configurations was performed based on precision and recall using the Wilcoxon test with a 95% 

confidence level (α = 5%).  The other parameters setting were fixed by trial and error and are as 

follows: (1) crossover probability = 0.6; mutation probability = 0.4 where the probability of gene 

modification is 0.2. Both lower-level and upper-level are run each with a population of 40 

individuals and 50 generations. 

3) Experiment Results 

The results for the first research question RQ1 are presented in Table 6. The obtained 

results show that we were able to detect most of the expected antipatterns in the different categories 

with a median precision higher than 96%. The highest precision value for Science (100%) can be 

explained by the fact that these Web services contain the lowest number of Web service defects. 

For the Web service Location, the precision is the lowest one (89%), but is still an acceptable 

score. It could be explained by the nature of the antipatterns involved which are typically data or 

chatty Web services. These antipatterns are likely to be difficult to detect using metrics alone. 

Similar observations are valid for the recall. The obtained results indicate that our approach is able 

to achieve an average recall of more 93%. The highest values (after the Science category) were 
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recorded for Location services with 98% where most of the expected defects are detected but with 

the lowest precision. The lowest recall score was achieved the Financial services (92%). Indeed, 

these Web services contain the highest number of expected defects to be detected. Figure 12 and  

Figure 13 confirm that our detection rules can detect different types of Web service defects 

with almost similar scores of precision and recall. Thus, the quality of the detection rules are good 

for almost all the defect types considered in our experiements. Overall, all the 8 antipattern types 

are detected with good precision and recall scores (more than 89%). This could be explained by 

the diverse set of generated defects by the lower level leading to a better coverage of possible 

defects to detect. This ability to identify different types of Web service defects underlines a key 

strength to our approach. Most other existing detection techniques rely heavily on the notion of 

size to detect defects. This is reasonable considering that some Web service defects like the GOWS 

are associated with the notion of size. For defects like AWS, however, the notion of size is less 

important, and this makes this type of defect hard to detect using structural information. Thus, we 

can conclude that our BLOP approach detects well all the types of considered antipatterns (RQ1).  

The goal of research questions RQ2 and RQ3 is to investigate how well BLOP performs 

against random search (RS), an existing mono-level and single-objective approach (GP) where 

only defect examples are used (without the consideration of the lower-level algorithm), and an 

existing detection tool (SODA-W) not based on computational search. Figure 12 and  

Figure 13 report the average comparative results. Over 30 runs, RS did not perform well 

when compared to BLOP both in terms of precision and recall achieving average around 30% on 

the different Web services. The main reason could be related to the large search-space of possible 

combinations of metrics and threshold values to explore, and the diverse set of Web service defects 

to detect. Furthermore, the results achieved by BLOP are also better than the mono-objective 
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approach in terms of precision and recall. In fact, the single-objective GP technique has an average 

of 86% and 87% of precision and recall however BLOP has better scores with an average of more 

than 93% of precision and recall on most of the different Web services. These results confirm that 

an intelligent search is required to explore the search space and that the use of the two levels 

improved the obtained detection results. 

Table 6 Median precision and recall results based on 30 runs 

Category Precision Recall 

Financial 96 92 

Science 100 100 

Search 97 94 

Shipping 98 96 

Travel 94 96 

Weather 93 97 

Media 98 94 

Education 96 96 

Messaging 94 97 

Location 89 98 

 

 

Figure 12 Median precision value over 30 runs on all the 10 Web service categories using the 

different detection techniques with a 95% confidence level (α < 5%)  
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While SODA-W shows promising results with an average precision of 71% and recall of 

83% (Figure 12 and  

Figure 13), it is still less than BLOP in all the eight considered defect types. We conjecture 

that a key problem with SODA-W is that it simplifies the different notions/symptoms that are 

useful for the detection of certain antipatterns. Indeed, SODA-W is limited to a smaller set of 

WSDL interface metrics comparing to our approach. In an exhaustive scenario, the number of 

possible antipatterns to manually characterize with rules can be large, and rules that are expressed 

in terms of metric combinations need substantial calibration efforts to find the suitable threshold 

value for each metric. However, our approach needs only some examples of defects to generate 

detection rules.  

 

Figure 13 Median recall value over 30 runs on all the 10 Web service categories using the 

different detection techniques with a 95% confidence level (α < 5%) 
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Figure 14 The impact of the number of Web service defect examples on the quality of the 

results (Precision on the Financial Web services). 

One of the advantages of using our BLOP adaptation is that the developers do not need to 

provide a large set of examples to generate the detection rules. In fact, the lower-level optimization 

can generate examples of Web service defects that are used to evaluate the detection rules at the 

upper level. Figure 14 shows that BLOP requires a low number of manually identified defects to 

provide good detection rules with reasonable precision scores. The existing mono-level work of 

Ouni et al. [3] (GP) require a higher number of defect examples than BLOP to generate good 

quality of detection rules. We can conclude, based on the obtained results that our BLOP approach 

outperforms, in average, an existing mono-level search technique [3] and an approach not based 

on heuristic search [26] (response to RQ2 and RQ3).  

To answer RQ4, subjects were first asked to fill out a pre-study questionnaire containing 

five questions. The questionnaire helped to collect background information such as their role 

within the company, their programming experience, their familiarity with Web services and web-

based applications. The first part of the questionnaire includes questions to evaluate the relevance 

of some detected Web service defects using the following scale: 1. Not at all relevant; 2. Slightly 

relevant; 3. Moderately relevant; and 4. Extremely relevant. If a detected Web service defect is 
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considered relevant then this is mean that the developer considers that it is important to fix it. The 

second part of the questionnaire includes questions for those defects that are considered at least 

“moderately relevant”, we asked the subjects to specify their usefulness based on the following 

list: 1. Refactoring guidance; 2. Quality assurance; 3. Bug prediction; 4. Web service stability; and 

4. Web service selection. During the entire process, subjects were encouraged to think aloud and 

to share their opinions, issues, detailed explanations and ideas with the organizers of the study and 

not only answering the questions.  

 

Figure 15 The relevance of detected Web service defects evaluated by the subjects 

 

Figure 16 The usefulness of detected Web service defects evaluated by the subjects 

 

Figure 15 illustrates that only less than 16% of detected Web service defects are considered 

not at all relevant by the developers. Around 67% of the defects are considered as moderately or 
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extremely relevant by the developers. This confirms the importance of the detected Web service 

defects for developers that they need to fix them for a better quality of their systems. It is also 

important to evaluate the usefulness of the detected Web service defects for the users. Figure 16 

shows that the main usefulness is related to the Web services selection. In fact, most of the 

developers of service-based systems that we interviewed found that the detected defects give 

relevant advices about which service to select when several options are available. The users prefer, 

in general, to select services that are stable and have lower risk to include quality issues or bugs. 

However, we believe that we cannot generalize the results of our survey due to the limited number 

of participants. 

3.2.6 Conclusion 

In this work, we have proposed a bi-level evolutionary optimization approach for the 

problem of Web service defects detection. The upper-level optimization produces a set of detection 

rules, which are combinations of quality metrics, with the goal to maximize the coverage of not 

only a defect examples base but also a lower-level population of artificial defects. The lower-level 

optimization tries to generate artificial Web service defects that cannot be detected by the upper-

level detection rules, thereby emphasizing the generation of broad-based and fitter rules. The 

statistical analysis of the obtained results over an existing benchmark have shown the 

competitiveness and the outperformance of our proposal in terms of precision and recall over a 

single-level genetic programming [3] and a non-search-based approach [11].  

The next chapter will extend our detection methods by considering dynamic QoS metrics 

of Web services. 
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3.3 On the Use of Quality of Service for Detecting Bad Design Practices 

3.3.1 Introduction 

Quality of service (QoS) is a combination of several service qualities or properties, such as 

response time and availability. QoS has long been a major concern in areas, such as real-time 

application [77], middle-ware [78], [79], and networking [80], [81]. Organizations in modern 

markets, such as e-commerce activities, require QoS management [82]. With the right control of 

QoS, the quality service product can fulfill client expectations and achieve customer satisfactions. 

In this work, nine common QoS metrics are used to identify refactoring opportunities. 

The common idea of previously mentioned or developed techniques is to generate detection 

rules, mainly based on the interface or code-level metrics of the bad-designed Web services. These 

metrics are extracted from the interface or the code skeleton of the Web service. Though these 

techniques, developers can evaluate the design quality based on the very limited static information 

exposed by the Web service provider. 

Beside design quality of Web services, another important concept is called quality of 

service(QoS). It refers to the non-functional aspects of Web service. The non-functional attributes 

of QoS, e.g., response time, availability and reliability, have become the major concerns in the 

management of Web services [83], [84]. The service clients also compare QoS measurements to 

select from the Web services with similar functionalities. An acceptable QoS of the service is 

considered same importance as desired functional results [85]. 

In the real world, developers usually seek for the Web services that have not only a well-

designed structure, but also an outstanding overall QoS performance. Such services can achieve 

non-functional requirements with less effort to implement or maintain. However, to the best of our 

knowledge, all the existing antipattern detection techniques of the Web service do not take into 
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consideration the QoS metrics. Without the real-time quality measurements of Web service, the 

detection of best refactoring opportunities could be hard to find. Furthermore, every service has 

its own business concept and purpose, so their exposed interface could be very different. The 

refactoring opportunity detection that only validates the static information could be not accurate. 

This issue can be addressed by introducing the dynamic QoS metrics. 

In this work, we propose an antipattern detection approach based on the QoS measurement 

and the structural information of Web service. This work is an extension of our previous 

publication in the Proceedings of the 23rd International Conference on Web Services as follows.  

We propose a novel approach for detecting Web service refactoring opportunities based on 

the dynamic QoS and the static interface/code metrics. In our approach, multi-objective algorithm 

NSGA-II [40] is implemented to generated the best detection rule sets that maximize the detection 

of Web service antipattern examples and minimize the detection of well-designed Web service 

design examples. 

We extend our initial approach which is based on the static input of the web service 

examples by introducing dynamic QoS metrics. We introduce 9 QoS metrics namely, response 

time, availability, throughput, successability, reliability, compliance, best practices, latency, 

documentation. Manual inspection and survey of our previous work show, some detected 

antipatterns from the services with a high QoS performance do not cause difficulties and don’t 

consider as antipattern to the users. These Web services are still preferred to use by the developers. 

On the other hand, some refactoring opportunities that can’t be generalized perfectly by the current 

metric types since there are no considerations of the non-functional behaviors.  

We perform an empirical study of our approach on 500 Web services from a QoS 

benchmark. We evaluated how well our approach can detect refactoring opportunities with the 
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state-of-the-art techniques [12], [26], [35], [37] that uses static structural metrics. Statistical 

analysis demonstrates the accuracy of our approach in service refactoring opportunities detection, 

with a precision score of 91% and a recall score of 85%.  

3.3.2 Motivating Example 

 

Figure 17 An example of god object Web service provided by Oracle Taleo. 

In this section, we illustrate a real-world example of god object Web service(GOWS) 

antipattern provided by Oracle Taleo1. Oracle Taleo is a famous talent acquisition service which 

enables companies to easily source, recruit or manage talents. The antipattern in this example, 

                                                 
1

 Oracle Taleo: https://tbe.taleo.net/ 
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GOWS, has a key characteristic that it implements uncohesive operations of many core business 

or/and technical abstractions. Figure 17 shows the interface2 of Oracle Taleo which contains a 

large amount of operations for different business abstractions. In this example, total of 127 

operations are implemented within a single port type. These operations represent different 

functionality aspect of the service, such as administration, employee management, task 

information, interview management, job entry, job allocation, and so on. For instance, 

()createUser  is an administrative operation that creates new authorized user of the service, 

()kgroundChecupdateBack  attempts to update the background check data for employee 

management, while ()sitiontesByRequigetCandida  lists the potential candidates who fit for a 

specific requisition. These operations are desired and used by different service users, e.g., 

companies who want to hire and companies who want to provide talents. 

From the QoS perspective, Taleo service also behaves as GOWS. According to the QWS 

dataset3, there is only a little documentation (i.e. description tags) to help developers understand 

all the operations of Taleo service. Furthermore, the Taleo service takes long (

mslatency 232.46= ) to process the request, and the availability of the services is relatively low 

(40%  of the error messages to total messages). Overall, these behaviors of GOWS, could cause 

difficulties of reuse or reduce the practical value of the service. 

For the service clients, it is hard to know what is the appropriate design or performance of 

the Web service. On the other hand, the antipatterns are hard to avoid by the service providers, due 

to the changing requirements or human factors/resource of the development. In fact, the services 

                                                 
2

 Oracle Taleo Interface: https://tbe.taleo.net/wsdl/WebAPI.wsdl 

3
 The QWS Dataset:http://www.uoguelph.ca/ qmahmoud/qws/ 
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that contain more useful functionalities, could have a higher probability to certain antipatterns (e.g. 

GOWS in our example). Therefore, it is important to find the solution for service clients to detect 

antipatterns efficiently based on the programming and QoS metrics.  

3.3.3 Collection of Metric Suite 

Quality metrics can be used to extract the semantic and structural attributes of the Web 

services. These quality indicators can then be used to quantitatively track and evaluate the design 

patterns of Web Services architecture. The antipatterns detection process usually involves finding 

the fragments of the design which violate these metrics. In our previous work [35], we used a set 

of static Web service metrics from interface and code level, and one dynamic metrics, namely 

response time [11]. The static metrics aim at measuring the structural information of Web services 

in different levels. Table 7 describes all of the metrics that are being used in this work. 

For the dynamic level, the response time was valuable to prove the concept of using QoS 

metric for us. However, it is not enough to measure full dynamic behaviors of the services. For 

instance, in the motivating example of Figure 18, the Oracle Taleo service has an acceptable 

response time of ms442.53 . The response time includes network traffic time and latency time 

which is the time taken for service to process the request. However, Taleo suffers from a high 

latency time of ms232.46  compares to the others. This situation means that even though the 

service has good facilities and network configurations to provide a reasonable response time, it 

still suffers from high process time due to the GOWS antipattern, and by only using response time 

metric, this information can not be reflected in the metric suite. To better detect the antipattern of 

web services from dynamic Internet environment, we extend the dynamic metric suite to 9 

parameters in this work. The dynamic and static metrics we used in this work are described as 

follow: 
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1) Web service QoS metrics 

To detect antipattern from the QoS aspect, we introduced 9 popular metrics from the 

literature [85]–[87]. Documentation, compliance, and best practices are static metrics extracted 

based on interface level to extend our static metrics, they measure the usability of the web service 

interface from QoS aspect. Response, availability, throughput, successability, reliability and 

latency are dynamic metrics which measure the web service overall performance and experience. 

In this work, we use the QWS dataset, a widely used QoS benchmark in field of Web service and 

service composition [87]–[90]. Commercial benchmark tools are used to extract the parameters 

and each service was tested over a ten-minute period for three consecutive days. 

Table 7 The collection of metrics used for service defect detection. 

Metric Name   Definition   Metric Level  

Response   Time taken to send a request and receive a response (ms)  QoS 

Availability   Number of successful invocations/total invocations (%)  QoS 

Throughput   Number of invocations for a given time (invokes/sec)  QoS 

Successability   Number of response / number of request messages (%)  QoS 

Reliability   Ratio of number of error messages to total messages (%)  QoS 

Compliance   The extent to which a WSDL follows specification (%)  QoS 

Best Practices   The extent to which a service follows WS-I Basic (%)  QoS 

Latency   Time taken for the server to process a given request (ms)  QoS 

Documentation   Measure of documentation (e.g. description tags) (%)  QoS 

ALPS   Average length of port types signature  Interface 

COH   Cohesion  Interface 

COUP   Coupling  Interface 

NAOD   Number of accessor operations declared  Interface 

NCO   Number of CRUD operations  Interface 

NOD   Number of operations declared  Interface 

NOPT   Average number of operations in port types  Interface 

NPT   Number of port types  Interface 

RAOD   Ratio of accessor operations declared  Interface 

ALOS   Average length of operations signature  Interface 

AMTO   Average number of meaningful terms in operation names  Interface 

ANIPO   Average number of input parameters in operations  Interface 

ANOPO   Average number of output parameters in operations  Interface 

NPO   Average number of parameters in operations  Interface 

ALMS   Average length of message signature  Interface 

AMTM   Average number of meaningful terms in message names  Interface 
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NOM   Number of messages  Interface 

NPM   Average number of parts per message  Interface 

AMTP   Average number of meaningful terms in port type names  Interface 

NCT   Number of complex types  Interface 

NCTP   Number of complex type parameters  Interface 

NST   Number of primitive types  Interface 

RPT   Ratio of primitive types over all defined types  Interface 

Ca   Afferent couplings  Code 

CAM   Cohesion Among Methods of Class  Code 

CBO   Coupling between object classes  Code 

Ce   Efferent couplings  Code 

DAM   Data Access Metric  Code 

DIT   Depth of Inheritance Tree  Code 

LCOM   Lack of cohesion in methods  Code 

LCOM3   Lack of cohesion in methods  Code 

LOC   Lines of Code  Code 

MFA   Measure of Functional Abstraction  Code 

MOA   Measure of Aggregation  Code 

NOC   Number of Children  Code 

NPM   Number of Public Methods  Code 

RFC   Response for a Class  Code 

WMC   Weighted methods per class  Code 

AMC   Average Method Complexity  Code 

CC   The McCabe’s cyclomatic complexity  Code 

 

2) Web service interface-level (WSDL) metrics 

 There are fifteen metrics used in this work from the interface level. These metrics defined 

in the literature [6], [11], [12], [91] measure design concepts from interface type, message, 

operation and Port type levels. Most metrics are calculated directly based on the information of 

Web service interface description file. For AMTO, AMTM, and AMTP, they are implemented by 

comparing the tokenized identifiers of ever operation, port type and message with lexical database, 

WordNet4. 

3) Web service code-level metrics 

                                                 
4

 WordNet: http://wordnet.princeton.edu/ 
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 Web service only exposes the interface for clients to use while the source code is not 

available to access. In this work, code-level metrics [92], [93] are extracted from the service code 

skeletons which are generated by JAX-WS5 (a Java API) for XML Web services. The code-level 

metrics used in this work are defined by Chidamber and Kemerer [49]. The ckjm tool6 is used to 

extract these metric to reflect design quality from a deeper level of Web service. 

The detection rules generated by our approach are composited by the metrics mentioned 

above. The dimensions of the solution space are set by the metrics associated with greater/less 

than, their threshold values, and logical operations between them, e.g., union (

bmetricORametric <2>1 ) and intersection ( bmetricANDametric <2>1 ). A 

solution is a composited logical expression by multiple metrics, e.g., 

)<2<2(>1 bmetricORbmetricANDametric . By nature, this is a combinatorial 

optimization problem with a large search base(number of possible solutions is huge). A heuristic 

search algorithm is desired in this problem. Furthermore, since we also try to generate detection 

rules that can satisfy different detection strictness, multi-objective evolutionary algorithm - 

NSGA-II [40]. 

3.3.4 Solution Approach 

1) Problem Statement 

Efficient identification of refactoring opportunities is beneficial to the service clients and 

providers. However, there is no general consensus on how to decide if a specific design is a 

violation of the quality principles. Design patterns that contain antipattern symptoms, may not 

                                                 
5

 JAX-WS: http://docs.oracle.com/javase/6/docs/technotes/tools/share/wsimport.html 

6
 ckjm tool: http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/ 
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necessarily be an actual antipattern to the clients [12]. The reason is that every service 

user/provider has different understandings, requirements or contexts. For instance, some Web 

services focus to provide single business service to convenient their client (e.g., translation, 

weather, and calculation service). These services might be designed properly, but they still have a 

high chance to be classified as fine-grained Web service (FGWS) due to the size of service. 

One major challenge of antipattern detection is to find the suitable metric combination to 

define the antipattern. Single metric can’t represent the full characteristic of any antipattern. Also, 

manual work to find the metric composition is time-consuming and could have bias. Based on the 

antipattern symptoms in the literature [10], [11], [94], many work [11], [12], [35], [36], [95] have 

been proposed to find detection rules based on the interface-level/code-level metrics. These static 

metrics provide quantitative information of the design. However, transferring natural description 

to detection rules is difficult and could be subjective. By using only the static metrics, the detection 

rules could have less practical value. In fact, most client users treat QoS performance and 

functionalities of Web service as major concerns [83], [96]. 

Another challenge is to find the right threshold value for each metric of detection rule. A 

threshold value is needed for quantitative metrics to transform the description to detection rules. 

Similar to the previous challenge, there is no general opinion on the degrees of antipattern. To 

make it worse, after introducing more metrics of QoS perspective, this NP-hard problem by nature 

is getting more complex. 

The final challenge raises when the detection problem gets subjective and complicated. 

The detection rules generated by most existing approaches are fixed results, in another word, there 

is only one detection method for each antipattern. Since there is no “best” result due to the various 

requirements or background of the users, it’s common that different users may feel the result is too 
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strict or too flexible. For instance, a general detection rule of GOWS is not suitable for the users 

who usually deal with complex Web services. On the other hand, a general FGWS detection rule 

is not preferred by the developers who look for light-weight services for composition. However, 

the users can’t have an alliterative choice based on their preference or need. 

To address or circumvent the above-mentioned challenges, we introduce new QoS metrics 

to this problem, and propose a multi-objective heuristic-based approach which automatically 

detects Web service antipatterns and generates solutions for different preferences as detailed in the 

next sub-section. 

2) Solution Approach Overview 

Given a set of service metrics and their value ranges, there are many ways in which the 

rule with metric combination can be combined and leading to different detection results. This 

problem is an NP-hard problem by nature, therefore it should be suited to a meta-heuristic search-

based approach [15], [65], [97]. Also, our problem requires a search for a solution which balances 

the objectives to generate rules suitable for different scenarios. 

Figure 18 shows our approach to the QoS-aware Web service refactoring opportunities 

identification problem. It targets to explore the large search space and finds a set of optimal 

detection rules, by combining metrics and their threshold values. The output is a set of detection 

rules which are the optimal solutions to the two conflict objects of the search-based algorithm 
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Figure 18 QoS-aware detection approach overview 

The approach takes two sets of Web service examples: one set contains service antipattern 

examples and another has well-designed service examples. These example sets are selected from 

the QWS dataset7, which includes a set of 2,507 Web services and their QWS measurements. We 

took a sample of 500 services from this dataset, and manually inspect and validate the antipatterns 

of these services based on the existing guidelines. The approach processes and calculates the 

metrics of each service in the sets through: (i) QoS Evaluation: measures real-time metrics from 

the services or documentation metrics from the interface file, (ii) Interface Analysis, parses the 

interface source though tree walking up the XML hierarchy to extract the Web service structure 

data (e.g., operation, message, and input/output), then calculates the interface level metrics, and 

(iii) Code Analysis, extracts the Web service code skeleton and uses typical object-oriented metrics 

to evaluate. The metric suite used in this work, which contains a total of 49 metrics, is described 

in the previous section. 

                                                 
7 The QWS Dataset: http://www.uoguelph.ca/~qmahmoud/qws/ 
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Then, the metric data of two service example sets are passed to multi-objective algorithm 

among with service metric types and threshold ranges. The search-based algorithm - NSGA-II 

[40], generates, evaluates and selects antipattern detection rules based on the following objectives: 

(i) Maximizing detection number of the service antipatterns, and (ii) Minimizing the detection 

number of well-designed services. The details of this step and algorithm are described next. 

3) Problem Adaptation 

To adapt a search-based algorithm to a specific problem, the following elements should be 

defined: (i) solution representation and the generation of initial population, (ii) fitness function to 

evaluate candidate solutions according to each objective, (iii) Evolutionary operators to generate 

new individuals using genetic operators (crossover and mutation). In the following, we describe 

how we formulate the problem and these elements.  

1) Solution Representation: 

The candidate solutions we seek in this problem are the antipattern detection rules. Each 

solution is a logical expression, and the antipattern is detected while the condition in the logical 

expression is satisfied. 

The logical expression is encoded in a tree-based structure and connects every metric with 

its threshold value using a logic operator (“AND” or “OR”). If the expression is satisfied by a Web 

service, then it is determined to be of the antipattern type associated with this solution. A solution 

is randomly generated at the beginning, and can be “mutated” by itself or “crossovered” with 

another solution to generate new ones. Figure 19 provides an example of a candidate solution. 

Formally, each candidate solution   is a sequence of detection rules where each rule is represented 

by a binary tree such that: 
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Figure 19 Example of NSGA-II solution representation 

• The Root R  and each internal node N  represents a logic operator to connect other nodes 

or leaf, either AND  or OR .  

• Each leaf node L  represents a metric (from the metrics described in section 3.3) and its 

corresponding threshold (generated randomly among the range of the metric).  

Each solution represents a detection rule for one specific type of service defects, and each 

execution of the approach only generate the solution set which is used for one antipattern. In this 

work, we focus on detecting eight popular types as defined in Chapter 2. 

2) Fitness Functions: 

The quality of each solution is determined by the fitness functions in multi-objective 

problems. Each fitness function evaluates one objective by calculating a specific value that is 

desired to be either minimized or maximized for a solution. In this problem, we aim to optimize 

the following two finesse functions: (i) Maximizing the coverage of antipattern examples. (ii) 

Minimizing the detection of good design practice examples of Web services. The collected 

examples of well-designed Web services and antipatterns and the metrics of these services are 

taken as the input of NSGA-II. In algorithm iterations, each solution (detection rule) is applied to 
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both example sets, and evaluated by the fitness functions. Analytically speaking, the formulation 

of the multi-objective problem can be state as follows:  
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where   is the cardinality of the set of detect antipatterns by the solution  ,   is the cardinality of the 

set of antipattern examples, and   is the cardinality of the set of well-designed service examples. 

These two fitness functions drive the algorithm to search for the optimal solutions by comparing 

the list of detected antipatterns with the expected ones from the base of examples along with the 

percentage of covered well-designed examples. Once the bi-objective trade-off Pareto front is 

generated, service developers/users can select preferred detection rule from the best solution rules 

to detect potential antipatterns on any new Web service. 

3) Evolutionary Operators: 

Evolutionary algorithms deploy change operators to generate new solutions in each 

iteration. Except the initial population is randomly generated, all other candidate solutions are 

generated by applying change operators to the existing ones. These generated solutions can explore 

the search space, potentially and eventually, increase the diversity and approach to better solutions. 

We use crossover and mutation operators in this work to produce offspring solutions. 

 Mutation Operator: 

 The mutation operator is used to apply minor random change into one parent solution. 

This operator promotes the algorithm into the location of the search space that would not be 

reachable through recombination alone and avoids the convergence of the population towards a 
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few elite solutions. In our adaptation, the mutation operator first picks a random node of the parent 

solution. Then, if a non-leaf node is selected, the operator simply replace it by another possible 

function (e.g., replace “AND” by “OR”). If a leaf node is selected, the mutation operator assigns 

either a new threshold value for the existing metric, or a new metric with a new random threshold 

value to replace the leaf completely. Figure 20 shows an example of mutation, the highlighted leaf 

( 6<NOD ) of 1Parent  is selected and replaced by a new metric ( 8.2>CBO ) to generate new 

solution 1Child . 

 

Figure 20 Example of mutation 

 Crossover Operator 

In population-based algorithms, the crossover operator is using more than one solution to 

create the new and different solutions, e.g., re-combining solutions into ones. In our approach, we 

use a single, random cut-point crossover to generate offspring solutions. Two cut-points are 

selected randomly in two parents, more specifically, two non-leaf nodes of the solutions. Then all 

the relative sub-trees from the cut-point nodes are swapped to generate new solutions to perform 

crossover action. Therefore two new solutions are created after the crossover. An example of 

crossover is described in Figure 21, two highlighted sub-trees are selected and swapped from 

1Parent  and 2Parent , then two new solutions, 1Child  and 2Child  are generated. 
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Figure 21 Example of crossover 

3.3.5 Validation 

1) Experimental Setup 

To validate our approach, experiments are designed to answer the following research 

questions:   

• RQ1. To what extent does QoS dynamic metric improve the antipattern detection of Web 

services?  

• RQ2. How does our multi-objective approach compare to random search and mono-

objective search-based algorithm?  

• RQ3. How does approach perform compared to other existing Web service antipattern 

detection approaches [3], [26]?  
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To evaluate our approach, we select a popular QoS benchmark, the QWS dataset8 which 

includes a set of 2,507 Web services and their QWS measurements. We randomly selected a 

sample of 500 available services from the dataset, extract their interface file and code skeleton, 

and manually inspect and validate the antipatterns of these services based on the existing 

guidelines [4], [10]. To avoid possible biases in the empirical study, we select services covered 

different sizes, QoS performance, and application categories (such as financial, science, travel, 

weather, and so on). Table 8 summarizes the selected Web services. 

Table 8 Overview of 500 Web services used in the empirical study 

 NOD NOM NCT Response Latency Availability Throughput Reliability 

Max 231 462 287 3768.33 ms 1991 ms 100% 41.2/sec 89% 

Min 1 1 0 46.05 ms 0.33 ms 9% 0.2/sec 33% 

Average 14.43 30.44 21.40 343.10 ms 52.84 ms 84.81% 8.01/sec 68.21% 

 

In this work, we validate our approach on eight common antipattern types, namely, god 

object web service (GOWS), fine-grained Web service (FGWS), chatty Web service (CWS), data 

Web service (DWS), ambiguous Web service (AWS), redundant port types (RPT), CRUDy 

interface (CI), and maybe it is not RPC (MNR) as described. We use 10-fold cross-validation 

method to evaluate our approach. For the services in each fold, are used to test the detection rule 

set generated by examples in other nine folds. Therefore, in the experiments, 450 services are 

selected as training examples(ground-truth) to execute the algorithm, and rest 50 services are used 

as the test set. Precision and recall [65] are used to evaluate the accuracy and effectiveness of our 

approach. Precision represents the ratio of true antipatterns detected to the total number of detected 

antipatterns, and recall denotes the ratio of true detected antipatterns to the total number of real 

antipatterns in the test set. Since our approach generates a solution set, we evaluate on all generated 

                                                 
8 The QWS Dataset: http://www.uoguelph.ca/~qmahmoud/qws/ 
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detection rules and record the one with highest average precision and recall to compare. During 

the piratical implementation of our approach, the users can select based on their preference to 

better detect the defects. 

While comparing different search-based evolutionary algorithms, changing parameters 

could lead to completely different results (e.g., low number of iteration). To ensure fair 

comparisons, we used same parameters for the all the evolutionary algorithm experiments as 

following: 300=SizePopulation , 1000=onMaxIterati , 10=SolutionMaxDepth , 

0.8=crossoverR , 0.1=mutationP . We used a high number of population size due to the size of 

search space and solution combination, a small population size leads to low diversity in our 

approach. Also for the mutation probability is relatively high (compare to applications of NSGA-

II in other fields), to ensure the good convergence. 

To answer RQ1, we investigate the effectiveness of using QoS metrics on different types 

of service antipattern, since this is one of the main novelties in our work. To this end, we compared 

the results of our approach, with the results of the approach using the same algorithm, settings, and 

training/testing sets, but only use interface-level and code-level metrics as described. 

To answer RQ2, we investigate the efficiency of using NSGA-II and our problem 

formulation. We compared our approach to random search and mono-objective genetic algorithm. 

Since another novelty of our approach is using multi-objective optimization search-based 

techniques, it’s important to compare with the random search (RS) to prove the adaptation is 

adequate [98]. Therefore, we implemented a random search using same training and test sets. 

Further more, an genetic algorithm is implemented with an aggregated fitness function (average 

of our two fitness functions) to validate if our multi-objective approach is able to improve the 

detection process. 
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To answer RQ3, we compared our approach with state-of-the-art detection approaches: a 

search-based approach from [3] and SODA-W of [26]. All three approaches were tested on the 

same services examples described in Table 8. 

2) Experiment Results 

The goal of RQ1 is to investigate the importance of QoS metric in detecting service 

antipattern. We executed both approaches (with and without QoS metrics) 5 times for the each 

fold of the validation (total of 50 runs). Figure 22 report the comparative results. With same 

experiment settings, our multi-objective approach with QoS metrics performs slightly better than 

the one with only static metrics. The average precision is improved from 91.4%  to 93.2% , while 

recall is improved is 89.4%  to 91.6% . For antipattern types that have negative impacts on the 

service performance such as GOWS and MNR, the QoS metrics improved the accuracy service. 

However, for few antipattern types such as AWS, DWS, and RPT, the precision and recall remain 

the same because these antipatterns don’t affect the QoS parameters of the service. Thus, the QoS-

aware approach shows effectiveness in detecting antipatterns that are related to the service 

dynamics. Furthermore, by observing result of our approach on different types of antipatterns. We 

had high precision and recall score very equally for all eight types of antipatterns. By using QoS 

metrics related to real-time performance like latency and availability, we manage to have 

promising detection results in antipatterns like FGWS, MNR and GOWS, especially for FGWS 

we reached 100% precision for all the tests. The reason is that these antipatterns have substantial 

impacts to service performance and signatures on the structural documentation as well. While 

checking lower scores for few types like AWS which is more related to human understandability 

issue, we managed to identify most of them by using parameters like AMTO, AMTM, and AMTP. 

However, it’s in general hard to detect only by the design or QoS metrics. 
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Figure 22 Comparative results of multi-objective approaches with and without QoS metrics 

The result of RQ2 is presented in Figure 23. Over 50 runs for 8 types of antipatterns, the 

random search (RS) didn’t perform well, the average precision is 26.2%, and average recall is 

27.3%. The main reason to this is obvious, which is the very large search space of this problem 

due to the high possible combinations of metrics with possible thresholds. While comparing to 

result of our approach in the figure, this shows we made a success evolutionary adaptation to 

antipattern detection problem. Furthermore, comparing our approach with the mono-objective 

genetic algorithm (GA), the results were close due to the same evolutionary steps, problem 

adaptation, and solution representation in the algorithm. The average precision and recall for GA 

were 84.8% and 84.1%, and the experiments also show that there is no obvious bias to any specific 

antipattern type. However, QoSMO outperforms GA significantly in average, while QoSMO can 

generate at least one better solution than the solution of GA in each single test. The reason is 

mainly due to the limitation of GA is only able to handle this problem as mono-objective and 

output one solution which is limited by the single fitness function. As the conclusion to this 

research question, our approach outperforms GA and RS and proves to be a success use of multi-

objective evolutionary algorithms. 
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Figure 23 Comparative results of QoSMO, GA and RS 

Results for RQ3. Figure 24 reports the comparison study of our approach (QoSMO), PE-

A [3], SODA-W [26]. PE-A performs well an average precision of 88.8% and a recall of 90.0%, 

it’s one of the best state-of-the-art algorithms we tested. However, it’s still less than QoSMO in 

detecting 7 types of antipatterns and performs same as QoSMO in detecting AWS. PE-A is using 

a cooperative parallel model to combine GA and GP, it’s limited by using non-QoS metrics and 

mono-objective search algorithms. Serval antipatterns are easier to detect using QoS metric as we 

describe in RQ1, and mono-objective approach may produce a solution that has a certain bias in 

optimizing an aggregated fitness function. SODA-W also has good results with an average 

precision of 69.8% and recall of 77.9%. The limitations of this work include the ones we mentioned 

earlier for PE-A, and not considering the source code of the service artifacts. These two levels of 

metrics reflect the design of different layers, and both layers are necessary to evaluate the static 

assessment of service design. Also, PE-A uses an exhaustive approach, which could limit the result 

by the large search base. Different from PE-A and SODA-W, our approach using not only both 

static metrics, but also QoS metrics to evaluate the real-time performance of the services and multi-

objective approach to better manage the challenge for the larger search space. 
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Figure 24 Comparative results of QoSMO, PE-A and SODA-W 

External threats may exist because in this work, we did not evaluate our approach on all 

possible antipattern types. However, the eight types of Web service antipatterns we employed 

constitute a broad representative set of standard and frequent defects. In addition, we did not yet 

generalize our approach for other service types such as RESTful services. It is also possible to 

extend the work for other domains such as mobile apps to validate the generality of our approach. 

Construct threats: This type of threats is caused by the relationship between theory and 

what is observed. A possible threat is related to the antipattern examples that are being used to 

train/validate the approach, as the users may not agree with classified antipatterns. As we 

mentioned early, there is no general consensus on how a specific design violates the quality 

principles. This is indeed one key motivation to use multi-objective search-based approach to 

generate a set of solutions for users to choose from based on their preferences. In our experiments, 

the standard metrics such as precision and recall are used to validate the proposed approach, these 

metrics are widely used in validating code smell detection tools. As part of our future work, we 

may need to conduct a survey with developers to study the relevance of detected antipatterns. 



 

 

82 

 

3.3.6 Conclusion 

We introduced a search-based multi-objective approach to generated detection rule 

solutions as a composition of QoS, Interface, and code metrics. In our multi-objective adaptation, 

two fitness functions are used to maximize the coverage of antipattern examples and minimize the 

coverage of well-designed Web service examples. The proposed approach is evaluated on 500 

Web services of a QoS benchmark and eight common Web service antipattern types. The empirical 

study shows that proposed QoS-aware antipattern detection outperforms our previous multi-

objective approach and other state-of-the-art approaches with an average precision score of 94% 

and a recall of 93%.  
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Chapter 4 Detection of Changes among Service Releases 

4.1 Introduction 

Systems implemented based on Web services depend on the interface that only shows the 

list of available operations/features to the subscribers. The users of the services would be 

discouraged to integrate a new release of an existing Web service if major changes are introduced. 

In fact, they have to introduce changes to their implementation of the system to be coherent with 

the new service. Thus, it is critical to provide support for developers to better understand the 

introduced changes to the services. Some recent studies were proposed to understand the evolution 

of Web services especially at the interface level [2], [51], [57], [59]. 

The majority of the changes in a web service interface typically affect the systems of its 

subscribers. Thus, it is important for subscribers to estimate the risk of using a specific service and 

compare its evolution to other services offering the same features in order to reduce the effort of 

adapting their applications in the next releases. Subscribers prefer to use, in general, Web services 

that are stable with a low risk to include bugs and introduce major revisions in the future. Thus, a 

support to compare between multiple releases of a service may help the developers to select the 

best service in terms of stability between multiple competing ones. 

In this work, we propose a genetic algorithm approach [99] to detect composite changes 

between multiple Web service releases. Our approach takes as input an exhaustive list of possible 

change types, the initial release and the revised one, and generates as output a list of detected 

changes in terms of refactorings (composite changes). A solution is defined as the combination of 
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refactoring operations that should maximize the structural and textual similarity between the 

expected new Web service interface release and the generated one after applying the refactoring 

sequence on the initial release. Due to the large number of possible solutions, a search-based 

method, based on Genetic Algorithms (GA) is used instead of an enumerative one to explore the 

space of possible solutions.  

We evaluated our approach on a set of 6 popular Web services including more than 110 

releases. We report the results on the efficiency and effectiveness of our approach to detect changes 

of the evolution of Web services interfaces. The results indicate that the detection results of several 

Web service metrics, on the different releases of the 6 Web services, were correct with an average 

precision and recall respectively higher than 86% and 89%.  

4.2 Approach 

4.2.1 Overview 

As described in Figure 25, the proposed approach takes as input two or more Web service 

releases, and as controlling parameters, an exhaustive list of Web service refactoring operations. 

The approach generates a set of refactoring applications that represents the evolution from the 

initial release to the target one. The process of detecting Web service changes between two releases 

can be viewed as the search mechanism that finds the best way to combine refactoring operations 

of the exhaustive list of possible refactorings, in such a way to maximize the structural and 

semantic/textual similarity between the initial and target releases when applying the detected 

refactorings on the initial one.  
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Figure 25 Genetic algorithms for the detection of changes among multiple releases 

Due to the large number of possible refactoring solutions between the Web service releases, 

we consider changes detection as an optimization problem. The algorithm explores a large search 

space. In fact, the search space is determined not only by the number of possible refactoring 

combinations, but also by the order in which they are applied. To explore this search space, we use 

a mono-objective Genetic Algorithm. This algorithm and its adaptation to our problem are 

described in the next section. 

4.2.2 Adaptation 

Genetic Algorithm (GA) is a population-based metaheuristic inspired by Darwinian 

Theory. The basic idea is to explore the search space by evolving a population of solutions for a 

pre-specified number of generations. The algorithm next gives the pseudo-code of a canonic elitist 

GA. The Elitism concept consists that a sub-optimal solution could not be favored for survival 

over a better one. Its basic iteration is as follows. A parent population P is generated (by 

environmental selection except for the initialization step where it is produced randomly) and each 

of its individuals is evaluated. Once the evaluation step is performed, we fulfill the mating pool by 

selecting parents from P. These selected parents are then subject to genetic operators (crossover 

and mutation) in order to generate an offspring population Q. Once offspring individuals are 

evaluated, P and Q are merged to form the population U. We perform now environmental selection 

on U by selecting fittest individuals and thereby we generate the parent population for the next 



 

 

86 

 

generation. Elitism is then ensured by saving best individuals coming from parent population P 

and offspring population Q in each generation of the algorithm. Once the termination criterion is 

met, the GA returns the best (fittest) individual from P. 

GA pseudo-code 

1:  P0 ← random_initialization() 

2:  P0 ← evaluate(P0) 

3:  t ← 0; 

4:  while (NOT termination_condition) do 

5:  Parents ← parent_selection(Pt) 

6:   Qt ←genetic_operators(Parents) 

7:   Ut ← merge (Pt, Qt) 

8:  Pt+1 ←environmental_selection(Ut) 

9:  t ← t+1; 

10: end 

11: s ← fittest(Pt) 

12: return s 

4.2.3 Solution Representation 

One key issue when applying a search-based technique is to find a suitable mapping 

between the problem to solve and the techniques to use, i.e., in our case, detecting Web service 

changes. The ith individual (solution) represents a combination of refactoring operations to apply. 

The order of applying refactorings corresponds to their position in the vector (referred to as 

dimension number in the following). In addition, the execution of the refactorings is respecting 

pre- and postconditions to avoid conflicts and semantic inconsistencies. Furthermore, it has to be 

noted that the same type of refactoring operation could be applied several times in the same 

solution (but to different interface elements). The list of considered refactoring types in our 

experiments and their controlling parameters are the following:  
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1. ExtractOperation (name of source operation, name of the new operation, list of 
operation parameters to move);  

2. MoveOperation (name of source port type, name of the target port type, name of the 
operation);  

3. MergeOperations(name of the first operation, name of the second operation, etc.);  
4. AddOperation(operation name, operation parameters);  
5. RemoveOperation(operation name, operation parameters);  
6. RenameOperation(operation name, new name);  
7. AddParameter(operation name, parameter name);  
8. RemoveParameter(operation name, parameter name); 
9. RenameParameter(operation name, parameter name, new name); 
10. AddPortType(port type name);  
11. RemovePortType(port type name);  
12. RenamePortType(port type name, new name). 

 

Initial Population Generation. To generate an initial population, we start by defining the 

maximum vector length including the number of refactorings. The vector length is proportional 

with the number of refactorings to use for detecting Web service changes. Sometimes, a high 

vector length does not mean that the results are more precise, but that only a few refactorings are 

sufficient to detect changes. These parameters can be specified either by the user or chosen 

randomly. Thus, the individuals have different vector length (structure). Then, for each individual 

we randomly assign one refactoring, with its parameters, to each dimension. The generated 

solutions (refactoring combination) are applied to the initial release of the Web service to generate 

a new one. Then, the new generated Web service will be evaluated by the fitness function to check 

its similarity with the expected release.  
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Table 9 List of considered structural metrics 

Metric Name Definition 

NPT Number of port types 

NOD Number of operations declared 

NAOD Number of accessor operations declared 

NOPT Average number of operations in port types 

ANIPO Average number of input parameters in operations 

ANOPO Average number of output parameters in operations 

NOM Number of messages 

NBE number of elements of the schemas 

NCT Number of complex types 

NST Number of primitive types 

NPM Number of parts per message 

COH Cohesion 

COU Coupling 

AMTO Average meaningful terms in operation names  

AMTM Average meaningful terms in message names  

AMTMP Average meaningful terms in message parts 

AMTP Average meaningful terms in port-type names  

ALOS Average length of operations signature  

ALPS Average length of port-types signature  

ALMS Average length of message signature  
 

4.2.4 Fitness Functions 

The fitness function quantifies the quality of the proposed detection solutions. The goal is 

to define an efficient and simple fitness function in order to reduce the computational complexity. 

The proposed function is based on two main components: 

• Maximizing structural similarities between the initial and target Web service interface 

elements  

• Maximizing the syntactic/textual similarities between the initial and target Web service 

interface elements  

In this context, we define the fitness function to maximize as: 
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where n is the number of Web service interface elements. We treat both components of the 

fitness function with an equal importance and we normalized it in the range of [0, 1]. 

The structural similarity is calculated using the metrics defined in Table I, whereas the goal 

is to minimize the difference between the metric values of matched source and target elements. 

Thus, this similarity is defined as follows: 
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where t is the number of target Web service interface elements matched to source Web 

service interface elements ei; sqm (for ei) and tqm (for the matched element(s)) are the average 

metrics values used to characterize the structure as described in Table 9. 

The syntactic similarity SyntacticSim(ei) of a source Web service interface element ei 

corresponds to the weighted sum of each vocabulary used to calculate the similarity between ei 

and the target Web service interface elements matched to ei. Hence, the syntactic similarity of a 

solution corresponds to the average of syntactic coherence for each source Web service interface 

element: 
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where SynHomog(ei, ek) is the average of syntactic measures applied between the source 

Web service interface element ei and the matched Web service interface element ek of the new 

release. 

We start from the assumption that the vocabulary that is used for naming the interface 

elements is borrowed from the respective domain terminology and then we determine which part 

of the domain properties is encoded by an element. Thus, two interface elements could be 

syntactically similar if they use a similar/common vocabulary. The vocabulary of an element 

includes names of port types, operations, parameters, etc. This similarity could be interesting to 

consider when searching for correspondences between the two initial and expected interfaces. We 

are using two measures to approximate the syntactic homogeneity between metamodel elements: 

(1) cosine similarity [100] and (2) the Normalized Levenshtein Edit Distance [101]. 

4.2.5 Change Operators 

Several change operators are used as part of the adapted GA. 

1) Selection.  

To select the individuals that will undergo the crossover and mutation operators, we used 

the stochastic universal sampling (SUS), in which the probability of selection of an individual is 

directly proportional to its relative fitness in the population. SUS is a random selection algorithm 

which gives higher probability to be selected to the fittest solutions while still giving a chance to 

every solution. For each iteration, we use SUS to select individuals (population_size/2) from 

population Pn for the next population Pn+1. These selected individuals (upper half of the ranking) 

will “give birth” to new individuals (substituting the lower half of the ranking) using the crossover 

operator. 
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2) Crossover.  

When two parent individuals are selected, a random cut point is determined to split them 

into two sub-vectors. The crossover operator selects a random cut-point in the interval [0, 

min_{length}] where min_{length} is the minimum length between the two parent chromosomes. 

Then, crossover swaps the sub-vectors from one parent to the other. Thus, each child combines 

information from both parents. This operator must enforce the length limit constraint by 

eliminating randomly some refactoring operations.  

For each crossover, two individuals are selected by applying the SUS selection. Even 

though individuals are selected, the crossover happens only with a certain probability. The 

crossover operator allows creating two offspring P1’ and P2’ from the two selected parents P1 and 

P2. It is defined as follows. A random position k is selected. The first k refactorings of P1 become 

the first k elements of P1’. Similarly, the first k refactorings of P2 become the first k refactorings 

of P2’.  

3) Mutation.  

The mutation operator consists of randomly changing one or more dimensions (refactoring) 

in the solution (vector). Given a selected individual, the mutation operator first randomly selects 

some positions in the vector representation of the individual. Then the selected dimensions are 

replaced by other refactoring. Furthermore, the mutation can only modify the controlling elements 

of some positions without replacing the refactoring by a new one.  

When applying the mutation and crossover, we used also a repair operator to delete 

duplicated refactorings after applying the crossover and mutation operators.  
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4.3 Validation 

1) Experimental Setup 

In order to evaluate the ability of our changes detection framework to efficiently detect the 

refactorings applied between multiple Web service releases, we conducted a set of experiments 

based on six widely used Web services. In this section, we first present our research questions, the 

experiments setup and then describe and discuss the obtained results.  

We defined the following two research questions that address the applicability and 

performance of our Web services changes detection approach. The two research questions are as 

follows: 

• RQ1: To what extent can our approach detect correctly the composite changes applied 

between multiple releases of Web services? 

• RQ2: How does our approach perform comparing to techniques just based on either 

structural or textual similarities? 

To answer these two research questions, the quality of the results was measured by two 

methods: automatic correctness (AC) and manual correctness (MC). Automatic correctness consist 

of comparing the detected changes to the reference ones, operation by operation using precision 

(AC-P) and recall (AC-R). AC method has the advantage of being automatic and objective. 

However, since different refactoring combinations exist that describe the same evolution (different 

changes but same target Web services interface), AC could reject a good solution because it yields 

different refactoring operations from reference ones. To account for those situations, we also use 

MC which manually evaluates the detected changes, here again operation by operation. The 

precision corresponds to the number of correct refactorings divided by the total number of 
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generated refactorings. The recall is the number of correct refactorings divided by the number of 

expected ones. 

To answer RQ2, we compared our approach that combines both structural and textual 

measures into one fitness function to two different techniques. The first technique, ST, is based 

also on a GA algorithm but using only the structural measures. The second technique, TE, used a 

GA algorithm but only based on cosine similarity and edit distance measures. 

We selected these 6 Web services for our validation because different releases of their 

WSDL interface are publicly available and belong to different categories. Table 10 provides some 

descriptive statistics about these six Web services: 

• Amazon EC2: Amazon Elastic Compute Cloud is a web service that offers resizable 

compute capacity in the cloud. In this study we have considered a total of 44 releases from 

2006 until 2014.  

• Amazon Simple Queue Service (Amazon SQS) offers reliable hosted queues for storing 

messages exchanged between computers. We considered in our study a total of 6 releases. 

• Fedex Track service offers accurate update of the status of shipments. We used 10 releases 

from this Web service. 

• FedEx Ship Service:  Ship Service provides functionalities for managing package 

shipments and their options. A total of 17 releases are considered in our experiments from 

this Web service. 

• FedEx Rate Service: the Rate Service provides the shipping rate quote for a specific service 

combination depending on the origin and destination information supplied in the request. 

We used 18 releases for our prediction algorithm. 
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• Amazon Mechanical Turk Requester: it is a web service that provides an on-demand, 

scalable, human workforce to complete jobs that humans can do better than computers such 

as recognizing objects in photos. We used 15 releases developed between 2005 until 2012. 

Table 10 Web service statistics 

Web Service Name # Releases Average number of changes per release 

Amazon EC2 44 13 

Amazon Mechanical Turk 15 11 

Amazon Simple Queue 6 9 

FedEx Rate Service 18 16 

FedEx Ship Service 17 21 

FedEx Track Service 10 14 
 

Since metaheuristic algorithms are stochastic optimizers, they can provide different results 

for the same problem instance from one run to another. For this reason, our experimental study is 

performed based on 30 independent simulation runs for each problem instance and the obtained 

results are statistically analyzed by using the Friedman test with a 99% confidence level (α = 1%). 

In fact, we computed the p-value of the ST and TE results with GA ones. In this way, we could 

decide whether the superior performance of GA to one of each of the others (or the opposite) is 

statistically significant or just a random result.  

2) Experiment Results 

Results for RQ1. Figure 26 summarizes the outcome for the first research question. Most 

of the Web service changes were detected accurately on the different Web services with an average 

precision higher than 86% as described in Figure 26. For Fedex Track service and Fedex Rate 

service, the precision is the highest with more than 88%. This could be related to the lower number 

of changes to detect comparing to other services. For Amazon EC2, the precision is also high with 

more than 86% even that this service has a higher number of changes to detect comparing to several 
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other Web services. This confirms that our detection results are independent from the number of 

changes to detect. 

The same observations are valid for the recall. Fedex Track Service and Amazon 

Mechanical Turk have the highest recall with more than 90% but still they have a good precision 

higher than 83%. This may confirm that the precision and recall were both acceptable for the 

different services. Overall, the recall results were better than the precision. This could be explained 

by the fact that our optimization algorithm is based on the use of heuristics (fitness functions) to 

estimate the similarity between the generate interface and the expected one of the new release. 

Thus, some flexibility is introduced based on this estimation of structural and textual similarities 

which may explain the lower precision comparing to the recall on the different Web services. 

Figure 26 also confirms that the manual correctness MC of the detected changes is the 

highest on all the Web services comparing to the automatic correctness based on both precision 

and recall. This could be explained by the fact that there are multiple ways to describe the changes 

between the different Web service releases. 

To answer the first research question, our approach is able to detect the changes during the 

evolution of Web service with a high accuracy. 
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Figure 26 Median precision, recall and manual correctness of detected refactorings by our GA 

approach based on 30 independent runs.  

Results for RQ2. Based the AC and MC measures, Figure 27 show that the solutions 

provided by GA have the highest manual and automatic correctness values on all the Web services 

comparing to the two other approaches that just use either structural (ST) and textual (TE) 

similarities. In fact, the average AC value for GA is 88% and it is lower than 80% for all the 

remaining algorithms on all the Web services. The same observation is valid for MC, GA has the 

highest MC average value with 90% while the remaining algorithms their MC average is lower 

than 82%. Based on these results, it is also interesting to note that there is no correlation between 

the number of refactorings to detect and the correctness values. More precisely, we sort AC and 

MC of the different approaches based on the number of refactorings for each Web service. From 

this data, we conclude that AC and MC are not necessarily affected negatively by a larger number 

of refactorings to detect. Thus, we can conclude that our proposal shows a good scalability and is 

not affected negatively by the number of refactorings.   

Overall the obtained results of the TE approach is better than the ST ones based on the 

different measures. This may confirm the importance of considering semantics similarity when 
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detecting changes between Web services. The results confirm that both textual and structural 

similarities are complementary based on the outperformance of our tehcniques. 

In conclusion, we answer RQ2, the results support the claim that our GA formulation 

provides the best compromise between the structural and textual similarities when detecting 

changes between multiple Web service releases. 

 

Figure 27 Comparison between the median precision, recall and manual correctness of detected 

refactorings by the different approaches based on 30 independent runs.  

 

3) Threats to Validity 

Conclusion validity is concerned with the statistical relationship between the treatment and 

the outcome. We used the Wilcoxon rank sum test on 30 runs with a 99% (α < 0.05) confidence 

level to test if significant differences existed between the measurements for different treatments. 

This test makes no assumption that the data is normally distributed and is suitable for ordinal data, 

so we can be confident that the statistical relationships we observed are significant. 

Internal validity is concerned with the causal relationship between the treatment and the 

outcome. The parameter tuning of our genetic algorithm is important. In fact, different results can 

be obtained with different parameter settings such number of iterations, stopping criteria, etc. We 
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need to evaluate in our future work the impact of different parameters on the quality of the results 

(parameters sensitivity) in terms of precision, recall and manual correctness.  

Construct validity is concerned with the relationship between theory and what is observed. 

Most of what we measure in our experiments are standard metrics such as precision, recall, etc. 

that are widely accepted as good proxies for quality evaluation. The metrics used for structural and 

syntactic similarities can be extended using additional ones such as number of detected 

refactorings. Additional experiments are required in future work to evaluate the impact of number 

of used metrics on the quality of the results. Another limitation is related to the use of Wordnet to 

find synonyms of the name of service elements such as operations which is not usually feasible 

due to the limited words/vocabulary considered in Wordnet. We will investigate in our future work 

the adaptation of other dictionaries on the quality of our results.  

External validity refers to the generalizability of our findings. In this study, we performed 

our experiments on different widely used Web services belonging to different domains and with 

different sizes in terms of expected changes and number of operations. However, we cannot assert 

that our results can be generalized to other services. Future replications of this study are necessary 

to confirm our findings. 

4.4 Conclusion 

In this work, we proposed an approach to detect changes during the evolution of Web services. 

Our approach, based on genetic algorithms, takes as input an exhaustive list of possible change 

types, the initial release and the revised one, and generates as output a list of detected changes in 

terms of composite changes, and not atomic ones. A solution is defined as the combination of 

refactoring operations that should maximize the structural and textual similarity between the 

expected new Web service interface release and the generated one after applying the refactoring 
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sequence on the initial release. We evaluated our approach on a set of 6 popular Web services 

including more than 110 releases. We reported the results on the efficiency and effectiveness of 

our approach to detect changes of the evolution of Web services interfaces in terms of precision 

and recall.  
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Chapter 5 Prediction of Software and Service Defects 

5.1 On the Use of Time Series for Software Refactoring Recommendation 

5.1.1 Introduction 

During software maintenance and evolution, software systems undergo continuous 

changes, through which new features are added, bugs are fixed, and business processes are adapted 

constantly. However, this may in turn introduce poor design effects and make systems more 

complex. This complexity leads to significantly reduced productivity, decreased system’s 

performance, increased fault-proneness, more costly software and even canceled projects. Many 

studies reported that software engineers spend around 60% of their time in understanding the code 

and that software maintenance activities consume up to 90% of the total cost of a typical software 

project. 

This high cost could potentially be greatly reduced by providing automatic or semi-

automatic solutions to increase their understandability, adaptability, and extensibility, to avoid and 

fix bad-design practices. A widely used technique to improve the overall quality of systems is 

refactoring which improves design structure while preserving the overall functionalities and 

behavior .  

A variety of refactoring work has been proposed in the literature [27], [62], [64], [65], [67], 

[102], [103]. In general, refactoring is performed through two main steps: 1) detection of code 

fragments that need to be improved (e.g., code-smells) and 2) identification of refactoring solutions 

to achieve this goal. The first step is well covered in the literature, and there exists a growing 



 

 

101 

 

number of techniques to identify code-smells [27]. Once detected, not all code-smells have equal 

effects and importance. In general, developers need to start by fixing the higher risk code-smells. 

However, in the literature, the majority of existing contributions proposes manual or semi-

automated refactoring solutions that can be applied to fix particular types of code-smells (e.g. 

blobs, spaghetti code, etc.) or to improve some quality metrics (e.g., cohesion, coupling, etc.) 

without taking into consideration the importance/risk of the code-smells to fix. Furthermore, some 

code smells could become more and more risky if they are not fixed as early as possible. For 

example, a blob defect (a large class with high number of responsibilities) is difficult to fix if it 

was not detected early. However, existing refactoring studies did not consider the impact of 

refactoring solutions on future releases of the system when not all the detected code smells were 

fixed.   

In this work, we introduce a novel approach to support automated refactoring suggestions 

for correcting not only existing code smells but also the code fragments that may contain quality 

issues in the next releases. Hence, we formulated the refactoring suggestion problem as a 

combinatorial optimization problem to find the near-optimal sequence of refactorings from a large 

number of possible refactorings.To this end, we propose to combine the use of search-based 

software engineering with time series [104] to recommend good refactoring strategies in order to 

manage technical debt. We used a multi-objective algorithm, based on NSGA-II [40], to generate 

refactoring solutions that maximize the correction of important and riskiest quality issues, and 

minimize the effort. For these two fitness functions, we adapted time series forecasting to estimate 

the impact of the generated refactorings solution on future releases of the system by predicting the 

evolution of the remaining code smells in the system, after refactoring, using different quality 

metrics. We evaluated our approach on one industrial project and a benchmark of 4 open source 
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systems. The results confirm the efficiency of our technique to provide better refactoring 

management compared to several existing refactoring techniques [54], [65], [103], [105].  

5.1.2 Time Series Forecasting 

A time series [104] is a sequence of data points that are typically measured at successive 

equally-spaced time instants. Examples of time series are global temperature, ocean tides, daily 

closing value, etc. A time series is either used for analysis or forecasting. Analysis means 

extracting meaningful statistics and characteristics of the data; while forecasting means building a 

model to predict future values based on previously observed values. In this work, we are interested 

in forecasting. A time series model is a stochastic process that can have different models. Some of 

the most used ones are the AR (Auto-Regressive) model, the MA (Moving-Average) model, and 

the ARMA (Auto-Regressive Moving-Average) one. The hybridization of these three models has 

yielded the ARIMA (Auto-Regressive Integrated Moving Average) model, which is one of the 

most used models in the literature [106]. Motivated by the interesting results of ARIMA in 

previous Software engineering applications [107]–[110], we chose to use it in this work. [107]–

[110], we choose to use it in this work.  

By definition, the ARIMA (p, d, q) model consists of a combination of AR(p), MA(q), and 

ARMA(p, q) where p is the order of the autoregressive component, d is the order of the differenced 

component, and q is the order of the moving average component. An autoregressive model of order 

p views the present value of the series as the linear regression of the previous p values, whereas a 

moving average model of order q is conceptually a line regression of the current value of the series 

against previous white noise error terms. The ARMA (p, q) model is obtained by combining AR 

and MA. If a time series is not stationary, this time series need to be differenced before applying 

ARMA (p, q). 
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The ARIMA modelling strategy usually follows four steps as described by Figure 28. 

These steps are the following: 

1) Identification 

This step consists in plotting the time series and some related measures such as the mean, 

the range, the ACF (Auto-Correlation Factor), and the PACF (Partial Auto-Correlation Factor). 

The different plots allow understanding the nature of the series changes over time. The ACF 

represents the correlation, at specific lags, between the residuals of the data. If the lag terms persist 

in the ACF plots, it indicates inertia in the series. Such series can be differenced to remove this 

effect. While identifying non-stationary series, the ACF and PACF of the difference are studied, 

to ensure that the persistence of ACF due to non-stationary nature does not lead to incorrect 

identification. A non-stationary series can be converted to a stationary series by differencing 

(taking the difference (Yt – Yt-1)). 

2) Estimation 

The ARIMA model is mathematically stated by the following equation:  

 

where B is the backward shift operator, ,  is the backward difference,  is a 

white noise, and  and  are polynomials of order p and q respectively. We can observe that 

the model is composed with different parts: (1) an auto-regressive (AR(p)) part 

, an integrating part  , and a moving average (MA(q)) part 

.  The estimation step consists in estimating the parameters of equation 

(1) (i.e,  and ). The most used estimation methods are the least square method and the 

maximum likelihood one. 

tqt

d

p BxB  )()( 

1 yy xBx B 1 t

p q

p

pp BB   ...1 1

1
ddI )(

q

qq BB   ...1 1

1

p q



 

 

104 

 

3) Diagnostic checking 

This step consists in assessing the goodness of the model in fitting the data. If the model 

well fits the data, the residuals of the model behave as an independent identically distributed 

sequence with a mean of zero and a variance of one. That is, the residual sequence should 

correspond to a white noise; otherwise, the model needs to be improved. The χ2 testing on the 

residual sequence is commonly used in this step. 

4) Application 

Once the ARIMA (p, d, q) model is built, we can use this model to make a prediction of a 

future quantity or to explain actual data trends. In this work, we are interested in prediction (i.e., 

forecasting). Generally, there are two ways to make forecasting: (1) static forecasting and (2) 

dynamic forecasting. Static forecasting computes a sequence of one-step forecasting values using 

the actual values rather than the forecasted ones for lagged dependent variables. Dynamic 

forecasting calculates multi-step forecast values at once. Previously forecasted values for the 

lagged dependent variable are used in forming forecasts of the current value. In this work, we used 

the static forecasting. For our problem, the Time Series prediction process consists of three main 

steps: the metrics extraction, the model definition and prediction of the future value of the metrics. 

In our case, the features represent the quality metrics values of the system after refactoring and the 

output of the model is the new values of the metrics in the new release if the given refactoring 

solution was applied. Of course, the quality of our prediction depends mainly on the size of the 

training set which is, in our case, the previous releases of a system. To this end, we selected in our 

experiments systems containing an extensive set of previous releases.  

In the next sub-section, we describe the adaption of NSGA-II to our problem and how the 

Time Series algorithm was combined with that multi-objective algorithm. 
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Figure 28 ARIMA steps: Box-Jenkins methodology 

5.1.3 Approach Overview 

The goal of our approach is to generate the best refactoring sequence that improves the 

quality of the design and minimize the effort. Therefore, we use a multi-objective optimization 

algorithm to compute an optimal sequence of refactorings in terms of finding trade-offs between 

these two objectives. The first objective represents the main novelty of this work since we consider 

the prediction of code smells evolution when evaluating refactoring solutions. Thus, the main goal 

is to reduce not only the number of existing code smells but also to fix risky code fragments that 

can become severe code smells to fix in future releases. The second objective minimizes the 

number of code smells to fix before the next release to reduce the effort. The general structure of 

our approach is sketched in Figure 29.  
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Figure 29 Multi-objective model refactoring: overview 

The search-based process takes as inputs the list of 23 possible types of refactoring, the 

code smells detection rules from the previous work of Kessentini et al [22], a list of metrics to 

predict the evolution of code smells after refactoring, and the system to refactor. The process of 

generating a solution can be viewed as the mechanism that finds the best refactorings sequence 

among all possible solutions that optimize the above two conflicting objectives. The size of the 

search space is determined not only by the number of refactoring but also by the order in which 

they are applied. Due to the large number of possible refactoring combinations and the two 

conflicting objectives to optimize, we considered the refactoring problem as a multi-objective 

problem. In order to predict the evolution of the quality metrics after refactoring, we used a 

machine learning algorithm based on Time Series, taking as input the code smells detection rules, 

the system after applying the refactoring solution and a set of training data composed of the metrics 

values of the previous releases. It generates as output the predicted metrics value for the next 

release after refactorings along with the number of code smells that will be created in the future 

releases based on the prediction.  
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5.1.4 NSGA-II Adaptation 

1) Solution representation 

To represent a candidate solution (individual), we used a vector representation. Each 

vector’s dimension represents a refactoring operation. Thus, a solution is defined as a long 

sequence of refactorings applied to different parts of the system. When created, the order of 

applying these refactorings corresponds to their positions in the vector. In addition, for each 

refactoring, a set of controlling parameters are stored in the vector, e.g., actors and roles are 

randomly picked from the class diagram to be refactored and stored in the same vector. An example 

of a solution is given in Figure 30. 

move method (Person, Employee, calculateExperience(int)) 

move field (Employee, Company, salary) 

extract class (FinanceDept, Company, id, numberEmployee (int,)) 

Figure 30 Representation of an NSGA-II individual 

After the generation of the refactoring solutions, it is important to guarantee that they are 

feasible and that they can be legally applied. For example, to apply the refactoring operation move 

method, a number of necessary preconditions should be satisfied, e.g., Person and Employee 

should exist and should be classes; calculateExperience(int) should exist and should be a method; 

the classes Person and Employee should not be in the same inheritance hierarchy; the method 

calculateExperience(int) should be implemented in Person; the method signature of 

calculateExperience(int) should not be present in class Employee. As postconditions, Person, 

Employee and calculateExperience(int) should exist; calculateExperience(int) declaration should 

be in the class Employee; and calculateExperience(int) declaration should not exists in the class 

Person.  

2) Fitness functions 



 

 

108 

 

After creating a solution, it should be evaluated using fitness functions. Since we have two 

objectives to optimize, we are using two different fitness functions to include in our NSGA-II 

adaptation. We used the following fitness functions: Number of detected and predicted code smells 

after applying the refactoring solution. More formally, this fitness function is composed as 

following: , where dCS represents the number of detected code smells after 

applying the refactoring solution on the system. pCS is the number of predicted code smells (on 

the system after refactoring) in the next release using Time Series. The code smells are detected 

using the rules defined by Kessentini et al. [22]: Effort E (number of changes to introduce in the 

system): Number of refactorings composing the solution (size). 

3) Genetic operators 

To better explore the search space, the crossover and mutation operators are defined. For 

crossover, we use a single, random, cut-point crossover.  It starts by selecting and splitting at 

random two parent solutions. Then crossover creates two child solutions by putting, for the first 

child, the first part of the first parent with the second part of the second parent, and, for the second 

child, the first part of the second parent with the second part of the first parent. This operator must 

ensure that the length limits are respected by eliminating randomly some refactoring operations. 

Each child combines some of the refactoring operations of the first parent with some ones of the 

second parent. In any given generation, each solution will be the parent in at most one crossover 

operation. 

The mutation operator picks randomly one or more operations from a sequence and replaces 

them by other ones from the initial list of possible refactorings. After applying genetic operators 

(mutation and crossover), we verify the feasibility of the generated sequence of refactoring by 

checking the pre and post conditions. Each refactoring operation that is not feasible due to 

pCSdCSNCS 
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unsatisfied preconditions will be removed from the generated refactoring sequence. The new 

sequence is considered valid in our NSGA-II adaptation if the number of rejected refactorings is 

less than 5% of the total sequence size. 

5.1.5 Validation 

1) Experimental Setup 

Our study aims at addressing the two research questions outlined below. 

• RQ1: (Usefulness) To what extent can the proposed approach improve the quality? 

• RQ2: (Comparison to state-of-the-art) To what extent can the proposed approach improves 

the results of refactoring suggestion using the prediction of code smells component 

compared to existing work that do not use it [22], [65], [68]? 

To answer RQ1, we validate the proposed refactoring solutions to improve the quality of 

the system by evaluating their ability to improve the different maintainability objectives defined 

by the QMOOD model [111] related to reusability, flexibility, understandability, functionality, 

extendibility, and effectiveness. The improvement in quality can be assessed by comparing the 

quality before and after refactoring independently to the number of fixed design defects. 

We have also asked a group of five software engineers (graduate students in Software 

Engineering) to manually evaluate the best refactoring solutions. To this end we define the 

following precision metric MP (Manual precision) defined as the number of good refactorings 

divided by the total number of recommended refactoring:  

gsrefactorin proposed#

gsrefactorin g# ood
MP   

To answer RQ2, we compared our refactoring results with two existing search-based 

refactoring techniques and one tool not based on Heuristic search by the mean of JDeodorant [22], 
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[65], [68]. All these techniques did not consider the prediction of quality issues when 

recommending refactorings.  

Our study considers model fragments extracted from four open source projects and one 

industrial project: FindBugs, JFreeChart, Hibernate, Pixelitor and JDI-Ford. Table 11 summarizes 

the statics related to these systems. JDI-Ford is a system provided by our industrial partner the IT 

department at Ford Motor Company. It is Java-based software system that helps Ford Motor 

Company analyze useful information from the past sales of dealerships data and suggests which 

vehicles to order for their dealer inventories in the future. JDI is a highly structured and several 

versions were proposed by software engineers at Ford during the past 10 years. We selected these 

systems for our validation because they range from medium to large-sized open source projects 

that have been actively developed over the past 10 years, and include a large number of design 

defects and previous releases. In addition, these open source systems were analyzed by previous 

work [22], [54], [102], [105].  

Parameter setting has a significant influence on the performance of a search algorithm on 

a particular problem instance. For this reason, for each algorithm and for each system, we perform 

a set of experiments using several population sizes: 50, 100, 200, 300 and 500. The stopping 

criterion was set to 100000 evaluations for all algorithms in order to ensure fairness of comparison. 

The other parameters’ values were fixed by trial and error and are as follows: (1) crossover 

probability = 0.8; mutation probability = 0.5 where the probability of gene modification is 0.3; 

stopping criterion = 100000 evaluations.  

Since metaheuristic algorithms are stochastic optimizers, they can provide different results 

for the same problem instance from one run to another. For this reason, our experimental study is 

performed based on 31 independent simulation runs for each problem instance and the obtained 
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results are statistically analyzed by using the Wilcoxon rank sum test [112] with a 99% confidence 

level (α = 1%). 

  

Table 11 Systems studied 

 

 

 

 

We note that the mono-objective algorithm provides only one refactorings solution, while 

NSGA-II generates a set of non-dominated solutions. In order to make meaningful comparisons, 

we select the best solution for NSGA-II using a knee point strategy. The knee point corresponds 

to the solution with the maximal trade-off between the two objectives. We use the trade-off 

“worth” metric proposed by Rachmawati and Srinivasan to find the knee point. This metric 

estimates the worthiness of each non-dominated merging solution in terms of trade-off between 

our conflicting objectives. After that, the knee point corresponds to the solution having the 

maximal trade-off “worthiness” value. 

2) Experiment Results 

Results for RQ1. As described in Figure 31, after applying the proposed refactoring 

operations by our approach (NSGA-II), we found that, in average, all the quality attributes of 

QMOOD were improved on all the five studied systems. It is clear that the understandability and 

extendibility attributes were improving better than all other quality attributes. This can be 

explained by the nature of code smells that were fixed. Moreover, to ensure the efficiency and 

usefulness of our approach, we verified manually the feasibility of the different proposed 

refactoring sequences for each system. We applied the proposed refactorings using Eclipse. Some 

Systems Releases #Classes 
#Smells  

(last release) 

JFreeChart From v0.9.6 to v1.0.13  960 84 

FindBugs From v1.2.1 to v 3.0.1 1907 118 

Hibernate From v4.0.0 to v4.2.18 1,004 124 

Pixelitor From v0.1 to v1.1.2 564 73 

JDI-Ford From v2.1 to v5.8 638 88 
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semantic errors (programs behavior) were found. When a semantic error is found manually, we 

consider the operations related to this change as a bad recommendation. We calculate a correctness 

precision score MP (ratio of possible refactoring operations over the number of proposed 

refactoring) as one of the performance indicators of our algorithm. Figure 32 shows also that an 

average of more than 80% of refactorings are feasible confirming the correctness of the 

recommended refactorings.  

We have evaluated the ability of our approach to reduce the number of refactorings to apply 

while maximising the quality. Figure 33 describes that NSGA-II proposed a reasonable number of 

refactings to apply, lower than 200, on the different systems. Another interesting observation is 

that the number of suggested refactorings was correlated with the number of code smells to fix on 

the different systems. 

To sum up, we can conclude based on the results of Figure 31 that our approach succeeded 

in improving the design quality not only by fixing the majority of detected code smells in the 

system (as a fitness function to maximize) but also by improving the user understandability, the 

reusability, the flexibility, as well as the effectiveness of the refactored design. 

 

Figure 31 QMOOD quality attributes median values 
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Figure 32 The manual refactoring precision (RP) median values 

 

Figure 33 The number of refactorings median values 

Results for RQ2. As described in Figure 31, Figure 32, and Figure 33, it is clear that our 

proposal outperforms the different existing techiques. Figure 31 shows that our approach improves 

the quality of the design with a better quality attributes value comparing to  all existing approaches 

considered in our experiements. In terms of behavior preservation it is clear that our approach 

provides much more feasible refactorings than existing approachges for all the systems as 

described in Figure 32. Figure 33 shows that our proposal requires less effort to apply the best 

solutions on all the systems than existing approaches. In fact, all the other existing techniques are 

not considering the minimization of the size of a refactoring solution. We found that an explanation 

of the outperformance of our technique is that the recommended refactorings by NSGA-II fixed 
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not only the majority of existing code smells but also several code fragments that contain some 

early symptomps of code smells that were predicted using the Time Series algorithm. 

Usually in the optimization research field, the most time consuming operation is the 

evaluation step. In fact, all the algorithms under comparison were executed on machines with Intel 

Xeon 3 GHz processors and 8 GB RAM. Figure 8 illustrates the obtained average CPU times of 

all algorithms on the systems. We note that the results presented in this figure were analyzed by 

using the same previously described statistical analysis methodology. In fact, based on the obtained 

p-values regarding CPU times, the NSGA-II provides a comparable execution time to the 

remaining techniques as highlighted through Figure 34. This observation could be explained by 

the fact that a multi-objective algorithm requires, in general, a higher execution time than a mono-

objective one. In addition, the use of Time Series to evaluate the refactoring solutions is another 

reason of the higher execution time. However, we can consider that an average of less than 25 

minutes of difference between the execution time of our algorithm and existing work is not an 

issue especially that refactoring is not a real-time problem. For example, developers can execute 

our tool overnight. 

 

Figure 34 Average execution time on all the systems 
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5.1.6 Conclusion 

This work presented a novel multi-objective refactoring approach taking into consideration 

multiple criteria to suggest good and feasible refactoring solutions to improve the design quality 

while reducing the effort. The suggested refactorings preserve the behavior of the design to 

restructure and consider the impact of fixing code smells in the system using several quality 

metrics. Our search-based approach succeeded to find the best trade-off between these criteria. 

Thus, our proposal produces more meaningful refactorings in comparison to some of those 

discussed in the literature. Moreover, the proposed approach was empirically evaluated on several 

open-source systems and one industrial project, and compared successfully to an existing approach 

not based on heuristic search. 

5.2 Prediction of Web Services Defects and Evolution  

5.2.1 Introduction 

Service-based systems heavily depend on the interface of selected services used to 

implement specific features. However, service providers do not know, in general, the impact of 

their changes, during the evolution Web services, on the applications of subscribers. The 

subscribers are reluctant, in general, to use Web services that are risky and not stable [2]. Thus, 

analyzing and predicting Web service changes is critical but also challenging because of the 

distributed and dynamic nature of services. As a consequence, recent studies were proposed to 

understand the evolution of Web services especially at the interface level [2], [51], [57]. 

We use, in this contribution, the changes collected from previous Web service releases to 

address the following problems. Most of the changes in a web service interface typically affect the 

systems of its subscribers. Thus, it is important for subscribers to estimate the risk of using a 

specific service and compare its evolution to other services offering the same features in order to 
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reduce the effort of adapting their applications in the next releases. Subscribers prefer to use, in 

general, Web services that are stable with a low risk to include bugs and introduce major revisions 

in the future. In addition, the prediction of interface changes may help web service providers to 

better manage available resources (e.g. programmers’ availability) and efficiently schedule 

required maintenance activities to improve the quality of developed services. In fact, the prediction 

of Web service changes can be used to identify potential quality issues that may occur in the future 

releases. Thus, it is easier to fix these quality issues as early as possible before that they become 

more complex. 

In this work, we propose a machine learning approach based on Artificial Neural Networks (ANN) 

[43] to predict the evolution of Web services interface from the history of previous releases’ 

metrics. The predicted interface metrics value is used to predict and estimate the risk and the 

quality of the studied Web services. We evaluated our approach on a set of 6 popular Web services 

including more than 90 releases. We report the results on the efficiency and effectiveness of our 

approach to predict the evolution of Web services interfaces and provide useful recommendations 

for both service providers and subscribers. The results indicate that the prediction results of several 

Web service metrics, on the different releases of the 6 Web services, were similar to the expected 

ones with very low deviation rate. Furthermore, most of the quality issues of Web service 

interfaces were accurately predicted, for the next releases, with an average precision and recall 

higher than 82%. The survey conducted with a set of developers also shows the relevance of 

prediction technique for both service providers and subscribers. 

5.2.2 Approach Overview 

As described in Figure 35, our technique takes as input the previous releases of the Web 

service interfaces to predict its evolution, an exhaustive list of metrics to predict, and a list of 
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detection rules to detect potential future quality issues, called Web service antipatterns, based on 

the predicted metrics. Our approach generates as output the set of predicted evolution metrics 

values and possible future quality issues for the next release.  

 

 

Figure 35 Prediction approach: overview 

 

Our prediction model is based on machine learning algorithm using Aritificial Neural 

Network (ANN) model. In the following we describe the ANN adaptation to our Web services 

evolution prediction problem. 

5.2.3 Artificial Neural Network Model 

Artificial Neural Network (ANN): ANN models are mathematical models inspired by the 

functioning of nervous systems [113]–[116], which are composed by a number of interconnected 

entities, the artificial neurons. ANNs are based on learning which is a characteristic of adaptive 

systems which are capable of improving their performance on a problem as a function of previous 

experience [116]. An ANN builds a map between a set of inputs and the corresponding outputs. 

This model can deal with non-linear regression analysis with noisy signals and incomplete data. 

In this work, we used a Multi-Layer Perception ANN (MLP-ANN) [113]. It is well-known that 

MLP-ANNs are universal approximators, which makes them attractive for modeling black-box 

functions for which little information about their form is known. The output of each neuron is 

expressed as follows: 
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where w denotes the weight vector, a is the input vector, b is the bias,  is the activation function, 

and n is the number of neurons in the hidden layer. A hidden neuron influences the network outputs 

only for those inputs that are near to its center, therefore requiring an exponential number of hidden 

neurons to cover entirely the input space. For this reason, it is suggested that MLP-ANN are 

suitable for problems with a small number of inputs like our prediction of Web services evolution 

problem. 

5.2.4 Artificial Neural Network Adaptation 

We applied the ANN as being among the most reliable predictive models, especially, in 

the case of noisy and incomplete data. Its architecture is chosen to be a multilayered architecture 

in which all neurons are fully connected; weights of connections have been, randomly, set at the 

beginning of the training. Regarding the activation function, the sigmoid function is applied [43] 

as being adequate in the case of continuous data. The network is composed of three layers: the first 

layer is composed of p input neurons. Each neuron is assigned the value . The hidden layer is 

composed of a set of hidden neurons. The learning algorithm is an iterative algorithm that allows 

the training of the network. Its performance is controlled by two parameters. The first parameter 

is the momentum factor that tries to avoid local minima by stabilizing weights. The second factor 

is the learning rate which is responsible of the rapidity of the adjustment of weights.  

Learning process. Before the learning process, the data used in the training set should be 

normalized. In our case, we choose to apply the min-max technique since it is among the most 

accurate techniques according to [117]. In our adaptation, we used the following list of metrics 

from the literature [12] to predict for the next Web service releases, as described in Table 12. 
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Table 12 Web service interface metrics used 

Metric Name Definition 

NPT Number of port types 

NOD Number of operations declared 

NAOD Number of accessor operations declared 

NOPT Average number of operations in port types 

ANIPO Average number of input parameters in operations 

ANOPO Average number of output parameters in operations 

NOM Number of messages 

NBE number of elements of the schemas 

NCT Number of complex types 

NST Number of primitive types 

NBB Number of bindings 

NBS Number of services 

NPM Number of parts per message 

NIPT Number of identical port types 

NIOP Number of identical operations 

COH Cohesion 

COU Coupling 

AMTO Average meaningful terms in operation names  

AMTM Average meaningful terms in message names  

AMTMP Average meaningful terms in message parts 

AMTP Average meaningful terms in port-type names  

ALOS Average length of operations signature  

ALPS Average length of port-types signature  

ALMS Average length of message signature  

 

During the learning process, our ANN solutions are represented as follows: let us denote 

by O the matrix that includes numerical values related to the set of metrics to predict. O is 

composed of n lines and p columns where n is equal to the number of metrics to predict and p is 

equal to the number of steps (releases). 
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Learning technique. There are several learning algorithms, depending on whether the ANN 

model is linear or non-linear. Our MLP model utilizes a supervised learning technique called back-

propagation (BP) for training the network. MLP is a modification of the standard linear perceptron 

and can distinguish data that are not linearly separable. BP is one of the most popular and common 

training procedures used, that is described in depth in the literature [43]. Our BP neural network 

has been trained with moderate values for the learning rate (α) and momentum (μ). The weights 

are recalculated every time a training vector is presented to the network. The exit strategy or the 

termination condition for the network is based on the sum square error until it reaches a certain 

threshold assigned prior to running the network. Our implementation is based on the Weka9 

framework with it default configuration.  

5.2.5 Validation 

1) Experimental Setup 

In order to evaluate the ability of our prediction framework to efficiently predict the 

evolution trends of Web services, we conducted a set of experiments based on six widely used 

Web services. In this section, we first present our research questions, the experiments setup and 

then describe and discuss the obtained results. Finally, we discuss some threats related to our 

experiments. 

We defined the following three research questions that address the applicability, 

performance, and the usefulness of our Web services prediction approach. The three research 

questions are as follows: 

• RQ1: To what extent can our approach predict correctly the evolution of Web services? 

• RQ2:  To what extent can our approach predict Web service quality issues? 

                                                 
9 http://www.cs.waikato.ac.nz/ml/weka 
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• RQ3: Can our prediction results be useful for developers? 

To answer RQ1, we calculated the deviation between the actual expected metrics value and 

the predicted ones using our ANNs algorithm on different Web service releases. To this end, we 

considered the list of metrics described in the previous section. The error rate is defined as follows: 

iii EMPMSMratee ),(_ , 

where PM is the predicted metric value using ANNs and EM is the expected value. We calculated 

the error rate for one and many steps (releases) over time for every of the considered Web services. 

To answer RQ2, we calculated precision and recall scores to compare between the predicted Web 

services antipatterns and the expected ones: 

]1,0[
nsantipatter expected 

 nsantipatter expected  nsantipatter predicted
RC 


recall  

]1,0[
nsantipatter predicted

 nsantipatter expected  nsantipatter predicted
PR precision 


  

 

We considered five types of antipatterns from the literature [11]: Multi-service (MS: a 

service implementing many operations), Nano-service (NS: too-fine grained service), Chatty-

service (CS: a service including many fine-grained operations), Data-service (DS: a service 

including only data access operations) and Ambiguous service (AS: a service including ambiguous 

names of operations). More details about existing Web service antipatterns can be found in the 

following references [11]. We used the manually defined rules in [12] to detect the predicted and 

actual Web service antipatterns. 

To answer RQ3, we used a post-study questionnaire that collects the opinions of developers 

on our prediction results. We also wished to assess how these results may help developers working 

on services-based applications. To this end, we asked 24 software developers, including 11 

developers working in a Web development startup and providing some Web services for customers 
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from the automotive industry sector. The remaining participants are 13 graduate students (8 MSc 

and 5 PhD students) in Software Engineering at the University of Michigan-Dearborn. 9 out the 

13 students are working either full-time or part-time programmers in Software industry. All the 

participants are volunteers and have a minimum of 2 years’ experience as a developer. The 

participants were first asked to fill out a pre-study questionnaire containing five questions. The 

questionnaire helped to collect background information such as their role within the company, 

their programming experience, their familiarity with Web services and service-based applications. 

In addition, all the participants attended one lecture about Web service antipatterns and passed five 

tests to evaluate their performance to evaluate the design of Web services using quality metrics. 

We selected these 6 Web services for our validation because different releases of their WSDL 

interface are publicly available and belong to different categories. Table 13 Web service statistics 

provides some descriptive statistics about these six Web services: 

• Amazon EC2: Amazon Elastic Compute Cloud is a web service that offers resizable 

compute capacity in the cloud. In this study we have considered a total of 44 releases from 

2006 until 2014.  

• Amazon Simple Queue Service (Amazon SQS) offers reliable hosted queues for storing 

messages exchanged between computers. We considered in our study a total of 6 releases. 

• Fedex Track service offers accurate update of the status of shipments. We used 10 releases 

from this Web service. 

• FedEx Ship Service: The Ship Service provides functionalities for managing package 

shipments and their options. A total of 17 releases are considered in our experiments from 

this Web service. 
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• FedEx Rate Service: The Rate Service provides the shipping rate quote for a specific 

service combination depending on the origin and destination information supplied in the 

request. We used 18 releases for our prediction algorithm. 

• Amazon Mechanical Turk Requester: it is a web service that provides an on-demand, 

scalable, human workforce to complete jobs that humans can do better than computers such 

as recognizing objects in photos. We used 15 releases developed between 2005 until 2012. 

 

Table 13 Web service statistics 

Web Service Name # Releases Average number of Antipatterns 

Amazon EC2 44 134 

Amazon Mechanical Turk 15 61 

Amazon Simple Queue 6 21 

FedEx Rate Service 18 17 

FedEx Ship Service 17 82 

FedEx Track Service 10 44 

 

2) Experiment Results 

Results for RQ1. Figure 36,  

Figure 37 and Figure 38 summarize the outcome for the first research question. Most of the 

Web service metrics were predicted accurately on the different Web services with an average 

error rate lower than 2.8 as described in  

Figure 37. For FedEx Track service and FedEx Rate service, the average error rate is the 

highest. This could be related to the lower training set comparing to the other services. For Amazon 

EC2, the metrics were predicted with a minimum deviation score of 2.1 due to the large training 

set available for this service. However, Amazon Simple Queue has one of the lowest deviation 

score of 1.8. This confirms that our prediction results are independent from the size of the Web 

services to evaluate and the training data. 
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Figure 37 shows more detailed results of the average error rate by metric. The results 

clearly support the claim that our results are independent from the type of metric to predict. 

However, the error rate depends on the range of every metric. For example, it is expected that the 

number of operations per service may get the highest error rate since the variation of this metric is 

high and its range is larger than the other metrics. 

Figure 38 describes the ability of our algorithm to predict the metrics value not only for the 

next release but for up-to the next 5 releases. In fact, the obtained results on the different Web 

services (except Amazon Simple Queue, not considered due to the limited number of releases) 

clearly show that the error rate for the 5th upcoming release is minimal with a score less than 4.5.  

To answer the first research question, our approach is able to predict the evolution of Web service 

metrics with a high accuracy. 

 

Figure 36 Average error rate (e_rate) on the different Web services 
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Figure 37 Average error rate (e_rate) per metric on the different Web services 

 

Figure 38 Average error rate (e_rate) of the different metrics on the Web services  

(except Amazon Simple Queue) per prediction step 

Results for RQ2. Figure 39, Figure 40 and Figure 41 summarize our findings. Overall, most 

of the expected quality issues (Web service antipatterns) for the next release were identified as 

described in Figure 39. Our prediction algorithm was able to detect Web service antipatterns on 

the different services with an average precision and recall respectively higher than 84% and 86%. 

For FedEx Ship service and Amazon Mechanical Turk, the precision is higher than for the other 
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systems with more than 88%. This can be explained by the fact that these systems are smaller than 

others and contain a lower number of antipatterns to predict. For FedEx Rate Service, the precision 

is also high (around 82%), i.e., most of the predicted antipatterns are correct. This confirms that 

our precision results are independent from the size of the Web services to evaluate. For Amazon 

EC2, the precision is one of the lowest (81%) but still acceptable. Amazon EC2 contains a high 

number of ambiguous services that are difficult to detect using metrics. 

The same observations are valid for the recall. The average recall on the six Web services was 

higher than 86%. For Fedex Track service and Amazon EC2, the precision is higher than for the 

other systems with more than 90%. This can be explained by the fact that these systems are using 

more training data than others. For FedEx Ship Service, the precision is also high (around 81%), 

thus the impact of the size of the training data was not high on the quality of the prediction results. 

An interesting observation is that the obtained precision and recall scores are conflicting since the 

services with the highest precision scores received the lowest recall. However, both scores are 

acceptable for all the Web services. 

One key strength of our technique is the ability to predict quality issues not only for the 

next release but for up-to the next 5 releases as described in Figure 41. In fact, the obtained results 

clearly show that both precision and recall are still high for all the Web services when predicting 

quality issues for the 5th upcoming release with an average higher than 73%. We did not consider 

in our evaluation the Amazon Simple Queue due to the limited number of available releases. 

To summarize, it is clear based on the obtained results that our approach predicts Web service 

quality issues with a high accuracy. 
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Figure 39 Average precision and recall of the predicted antipatterns on the different Web 

services 

 

 

Figure 40 Average precision and recall per antipattern type on the different Web services 
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Figure 41 Average precision and recall on the Web services (except Amazon Simple Queue) 

per prediction step 

Results for RQ3. To answer RQ3, we used a post-study questionnaire to the opinions of the 

participants about their experience in using our prediction tool and results. The questionnaire asked 

participants to rate their agreement on a Likert scale from 1 (complete disagreement) to 5 

(complete agreement) with the following statements: 

• The predicted metrics value is useful to estimate the risk and cost of using a specific Web 

service and may help the developer to select the best service based on his preferences. 

• The predicted quality issues may help developers and managers to better schedule 

maintenance activities and reduce the cost of fixing these issues. 

The agreement of the participants was 4.6 and 4.8 for the first and second statements 

respectively. This confirms the usefulness of our prediction results for the developers considered 

in our experiments.  

The remaining questions of the post-study questionnaire were about the benefits and also 

limitations (possible improvements) of our prediction approach. We summarize in the following 

the feedback of the developers. Most of the participants mention that our results may help 



 

 

129 

 

developers of the service providers to decide when to refactor their Web service implementations. 

For example, they can consider to perform some refactorings when the prediction results show that 

the quality issue may become much more severe after few releases such as a multi-service 

antipattern. Thus, the developers liked the functionality of our tool that helps them to identify 

refactoring opportunities as early as possible.  

The participants found our tool helpful for also the developers of Service-based 

applications. In fact, the majority of the participants mention that they consider the stability and 

quality of services as important criteria to select a Web service when several options are available. 

The non-stability of a service may negatively impact their systems in the future and it is maybe an 

indication that the used service includes many bugs explaining several new releases. Furthermore, 

the subject liked the prediction of antipatterns feature since it is easier for them to evaluate the 

quality of Web services in next releases based on the number of antipatterns rather than analyzing 

a set of metrics. 

The participants also suggested some possible improvements to our prediction approach. 

Some participants believe that it will be very helpful to extend the tool by adding a new feature to 

automatically calculate the risk, cost and benefits of using different possible Web services. Another 

possibly suggested improvement is to use some visualization techniques to evaluate the evolution 

of the We services to easily estimate their stability.  

3) Threats to Validity 

Conclusion validity is concerned with the statistical relationship between the treatment and 

the outcome. The parameter tuning of the ANNs used in our experiments creates a threat that we 

need to evaluate in our future work. The parameters' values used in our experiments are found by 

trial-and-error. However, it would be an interesting perspective to design an adaptive parameter 
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tuning strategy for our approach so that parameters are updated during the execution in order to 

provide the best possible performance.  

Internal validity is concerned with the causal relationship between the treatment and the 

outcome. We used a set of manually defined rules for the detection of possible future quality issues 

in the next releases [19]. However, the obtained results depend on the used rules and some of the 

predicted quality issues may not be important antipatterns to fix by the service provider’s 

developers. 

Construct validity is concerned with the relationship between theory and what is observed. 

To evaluate the relevance of our prediction results, we interviewed a group of developers. For the 

selection threat, the participant diversity in terms of experience could affect the results of our study. 

We addressed the selection threat by making sure that all the participants have almost the same 

experience in web development and familiarity with Web services. For the fatigue threat, we did 

not limit the time to fill the questionnaire and we also sent the questionnaires to the participants 

by email and gave them the required time to complete each of the required tasks.  

External validity refers to the generalizability of our findings. In this study, we performed 

our experiments on six widely used Web services belonging to different domains and having 

different sizes. However, we cannot assert that our results can be generalized to other Web services, 

and to other practitioners. Future replications of this study are necessary to confirm our findings. 

In addition, our study was limited to the use of specific metrics. Future replications of this study 

are necessary to confirm our findings. 

5.2.6 Conclusion 

We proposed, in this contribution, an approach to predict the evolution of Web services. In 

fact, it is maybe important for subscribers to estimate the risk of using a selected service and 
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compare its evolution to other possible services offering the same features. Furthermore, the 

prediction of future changes may help web service providers to better manage available resources 

and efficiently schedule required maintenance activities to improve the quality. In this work, we 

propose to use machine learning, based on Artificial Neuronal Networks, for the prediction of the 

evolution of Web services interface design. To validate the proposed approach, we collected 

training data from quality metrics of previous releases from 6 Web services. The validation of our 

prediction techniques shows that the predicted metrics value, such as number of operations, on the 

different releases of the 6 Web services were similar to the expected ones with a very low deviation 

rate. In addition, most of the quality issues of the studied Web service interfaces were accurately 

predicted, for the next releases, with an average precision and recall higher than 82%. The survey 

conducted with developers also shows the relevance of prediction technique for both service 

providers and subscribers.  
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Chapter 6 Recommendation of Web Service Refactoring 

6.1 Context 

The Service-Oriented Architecture (SOA) [118], [119] is a modern development paradigm 

that changes the way of software design, implementation, and management process. It enables 

enterprises to adapt to new requirements efficiently and utilize the existing services provided by 

others conveniently. Most of the common products of SOAs are based on Web services. A Web 

service is a self-describing software application that can be invoked on the internet using a set of 

standards (SOAP, REST, etc.) [120]. Nowadays, there are many companies aim to extend their 

business and accessibilities by providing Web services to their clients, such as FedEx, PayPal, 

YouTube, and Twitter. They only need to expose the interface of the services and its description 

(such as WSDL document) to the clients, so clients’ application can communicate and interact 

with the Web services.  

Similar to traditional software, the interface of Web services carries the duty of interaction 

with its customers and maintain the binding between them. However, a Web service with one 

single interface may be composited by others [121] and have many different clients. Though the 

evolution of the Web services, context, environment and business process may lead them to 

violations of quality principles [4]. Such violations may present with bad design and programming 

practice, known as antipatterns [13], [94]. As a service provider, these antipatterns can cause 

problems such as fragile design, bug rate, and inflexible code. As clients of the service, they need 

to spend more time to understand the service, maintain activities and avoid creating antipatterns in 

their code.  
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Furthermore, the client applications and the Web services that they invoke with can be both 

changed over time due to new requirements or management. As a consequence, these changes can 

lead to a high cost of testing and reduce the maintainability of client applications [5]. Again, since 

the Web services interface and descriptions are provided to all clients at once as the same format, 

most of the clients do not need all the functionalities, but they still have to go through the same 

documentation and access through the same interfaces with others. This unnecessary work could 

lead to extra cost and development time. 

To address this issue, we propose fived solutions in this chapter to recommend 

remodularization of Web service interface based on the client’s preference and quality metrics. 

The recommendations will help clients by giving them different options to create their own 

subinterfaces, to increase the usability, understandability, and maintainability of their application. 

From the other hand, Web service provider can preserve the original service interface to other 

clients, and at the same time use this approach to customize their product to increase their most 

valuable customer satisfaction by creating additional interface though one or more new interfaces.  

6.2 Web service Interface Refactoring 

Modularity. The service interface modularity can be defined as the degree to which the 

operations of a service belong together and well partitioned into cohesive interfaces. A proper 

modularization of design leads to a service which is easier to use, design, develop, test, maintain, 

and evolve. The importance of design modularity was best articulated by David et al. [91]: 

“Perhaps the most widely accepted quality objective for design is modularity.” Although 

modularity tends to be a subjective concept, measuring the degree of modularization of a software 

design can be achieved through two quality measures: cohesion and coupling [122]. 
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Refactoring. Software refactoring is defined by Fowler [27] as “the process of changing 

the internal structure of software to improve its quality without altering the external behavior.” 

Refactoring is recognized as an essential practice to improve software quality. Dudney et al. [10] 

have defined an initial catalog of refactoring operations for Web services including Interface 

Partitioning, Interface Consolidation, Bridging Schemas or Transforms and Web Service Business 

Delegate. Despite being widely used in the Object-Oriented Programming (OOP) paradigm and 

supported by OOP integrated development environments (IDEs), refactoring is still unexplored in 

the context of service-oriented computing (SOC). In fact, SOC refactoring is not a trivial case of 

recoding existing OOP refactoring techniques. 

To the best of our knowledge, there is no tool currently supports developers in refactoring 

decision making with Web services interface based on their application releases. Our approachs 

proposed in this diserrtation, defines and supports three WSDL refactoring operations based on 

literature [4], [10]: 

• Interface Partitioning: This refactoring decomposes a large, multi-abstraction interface 

into multiple interfaces that each represents a distinct abstraction. 

• Interface Consolidation: This refactoring merges a set of interfaces that collectively 

implement a complete, single abstraction. Different service interfaces that operate against 

the same abstraction are merged into one interface that represents a single cohesive 

abstraction. 

• Move Operation: This refactoring moves an operation from one interface to another one. 

It implies deciding what the core abstraction should be and moving the operations that do 

not fit that abstraction to some other interface(s). 
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Table 14 Adopted refactorings of Web service 

 

Table 14 presents the set of parameters, pre and post-conditions required for each of our adopted 

refactorings [123]. 

To illustrate some of the issues related to service interface remodularization, let’s consider 

a real-world web service example, Amazon Simple Storage Service (Amazon S3). AmazonS3 is 

object storage with a simple web service interface to store and retrieve data from the web, its main 

interface design extracted from its latest version10 is described in Figure 42. This interface enables 

Amazon S3’s main functionalities and communications between clients and Amazon S3 such as 

creating a new bucket for the storage - CreateBucket(), putting objects into storage – PutObject(), 

and setting object access control protocol -  SetObjectAccessControlPolicy().  

A history of a client application releases is described in Figure 42 Motivating example 

(Amazon S3). Originally, it is an application created to analyze and track Amazon S3 access log 

and control policy and based on Amazon S3. In Version 4, ListBuck() and DeleteBucket() are added 

to the application, so that the users can delete useless bucket. In Version 11, the users can access 

data through GetObject() and GetObjectExtended() and delete useless object in the bucket. 

Despite that Amazon S3 is a small and straightforward service, it is still obvious to notice 

that the interface of it exposes different functionalities that do not belong together including bucket 

management, object management, access control policy and access log operations. This design 

                                                 
10 http://docs.aws.amazon.com/AmazonS3/latest/API/APISoap.html 
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makes the service hard to understand and reuse by the developers from industrials. Potential 

developers may need to understand the whole API documentation just to find few operations 

needed by their implementation. Furthermore, whenever there is an update of the service interface, 

developers have to read, re-implement, test and configure for all operations because they are all in 

one interface. 

A better SOA design practice could consider partitioning the AmazonS3 interface into 

appropriately-sized, cohesive and loosely coupled interfaces that related to the management of 

queue attributes, such as four sub-interfaces related to “bucket management”, “object 

management”, “access control management” and “log management”. Furthermore, to make sure 

the new interface is suitable to the client and easy to use by the developers, the study of the client 

releases is needed to find the connection and favor between the operations. Learning from the first 

release of the client application, operations of “access control management” and “log 

management” are favored to use together; “Bucket Management” and “Object management” can 

be in separate interfaces since related operations are invocated in later releases separately. Figure 

42 (on the right) shows one best-decomposed interfaces solution for the client user; it’s composed 

of three sub-interfaces related to “Access control and log management”, “Bucket Management” 

and “Object Management”. In addition, the new interface is built based on the evolution of client 

application; this can make client developers easier to test or update their application in the future. 

Thus the reusability, maintainability, and even performance of Web service can be improved 

through good decomposition design. 
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Figure 42 Motivating example (Amazon S3) 

6.3 Web Service Interface Remodularization Using Multi-Objective 

Optimization 

6.3.1 Approach Overview 

Given a set of service operations there are many ways in which the module boundaries can 

be drawn leading to different possible modularizations of the service abstractions. The problem is 

a graph partitioning problem, which is known to be NP hard and therefore seems suited to a 

metaheuristic search-based approach [15], [124]. 

Figure 43 shows the overall architecture of the Multi-Ojbective approach(WSIRem) to the 

Web service interface remodularization problem. WSIRem aims at exploring a large search space 

to find a set of optimal remodularization solutions, by grouping together all collections of 

operations that have high cohesion into separate interfaces. WSIRem takes as input a Web service 

interface WSDL file/url to be improved. Then, WSIRem parses the WSDL sources by tree walking 
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up the XML hierarchy. It then analyses the parsed WSDL through 1) a structural analysis to extract 

both sequential and communicational operations similarity, and 2) a semantic analysis in order to 

extract semantic relationships between operations. The extracted information will be used in an 

optimization process based on the non-dominated sorting genetic algorithm (NSGA-II) [40]to 

generate remodularization solutions. An optimal modularization solution should find the best 

trade-off between the following objectives (i) maximizing cohesion, (ii) minimizing coupling, (iii) 

maximizing the number of interfaces, and (iv) minimizing the number of operations per interface. 

As output, the result of WSIRem should be a set of interfaces, one for each distinct abstraction, and 

each one containing the complete set of operations that operates on that abstraction. 

To manipulate instances of this kind, WSIRem start by (i) creating a set of new empty 

interfaces, and (ii) assigning each operation to a unique interface. A modularization solution should 

assign each operation to exactly one interface, and has no empty interfaces. Then, WSIRem uses 

NSGA-II in order to find the best modularization solution that provide the best trade-off between 

our four objective functions. 

 

Figure 43 Overall WSIRem architecture 
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6.3.2 Web Service Interface Modularization Metrics 

We define the Web service interface Modularization ℳ as a decomposition of the set of 

operations O into a set of service interfaces si, where each interface represents a WSDL port type 

PT, i.e., a container of operations. We define the interface size, size(si), by the number of its 

operations. Consider a Web service with set of operations 𝑂 = {𝑜𝑝1, 𝑜𝑝2, . . . , 𝑜𝑝𝑛} where 𝑛 is the 

number of operations in the service. The set of possible modules, i.e., interfaces, is represented by 

ℳ = {𝑠𝑖1, 𝑠𝑖2, . . . , 𝑠𝑖𝑚  where 𝑚 is the number of service interfaces, and each interface has its 

unique number 1,2, . . . , 𝑚. A possible modularization solution for this problem is defined by the 

decision variables 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}f, where 𝑥𝑖 = 𝑠𝑖 indicates that 𝑜𝑝𝑖 belongs to interface 𝑠𝑖. 

Figure 48 shows a service interface modularization example. A simple solution 𝑋 =

{1,2,3,1,3,2,2}, for example, denotes a modularization of seven operations into three service 

interfaces. Operations 𝑜𝑝1  and 𝑜𝑝4  are in service interface 𝑠𝑖1 , 𝑜𝑝2 , 𝑜𝑝6  and 𝑜𝑝7  in 𝑠𝑖2 , and 

finally 𝑜𝑝3 and 𝑜𝑝5 are in 𝑠𝑖3. Moreover, different service operation dependencies exist in order 

to implement the required functionalities by the service. An appropriate modularization should 

maximize the cohesion within an interface while minimize coupling between interfaces. Interface 

Cohesion 

Cohesion is a widely used metric in SOC to measure how strongly related are the operations 

of a service interface [5], [6], [125]. WSIRem employs three commonly used interface cohesion 

metrics that will drive the remodularization search process: sequential, communicational, and 

conceptual cohesion. Our cohesion metrics focus on interface-level relations, as service 

implementation is typically not provided by the service providers. Similarly, we do not consider 

information concerning the usage of operations by clients, as this information is mostly influenced 

by the specific scenario where the service is used. 
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A. Lack of Sequential Cohesion (𝐿𝑜𝐶𝑠𝑒𝑞): 

The sequential similarity 𝑆𝑠𝑒𝑞 between two operations quantifies the sequential category of 

cohesion [6]. Two operations are deemed to be connected by a sequential control flow if the output 

from an operation is the input for the second operation, or vice versa. Formally, let 𝑜𝑝1, 𝑜𝑝2 ∈ 𝑠𝑖, 

two operations belonging to an interface 𝑠𝑖, then 𝑆𝑠𝑒𝑞 is defined as follows: 

𝑆𝑠𝑒𝑞(𝑜𝑝1, 𝑜𝑝2) =
𝑀𝑆(𝐼(𝑜𝑝1), 𝑂(𝑜𝑝2)) + 𝑀𝑆(𝑂(𝑜𝑝1), 𝐼(𝑜𝑝2))

2
 

where 𝐼(𝑜𝑝) and 𝑂(𝑜𝑝) refer to the input and output messages of the operation 𝑜𝑝, respectively; 

and 𝑀𝑆(𝐼(𝑜𝑝1), 𝑂(𝑜𝑝2)) is the function that returns the message similarity between two messages 

𝐼(𝑜𝑝1) and 𝑂(𝑜𝑝2). 

Message similarity (MS). Two messages are similar if they have common parameters, or 

similar types of parameters. To calculate MS of two messages 𝑚1 and 𝑚2, our approach is based 

on the average of: 

• The number of common subtrees: it corresponds to the sum of the orders of common 

bottom-up subtrees of 𝑚1 and 𝑚2, divided by the order of the message that results from 

the union of 𝑚1 and 𝑚2, as defined in [125]. 

• The number of common primitive types: it corresponds to the Jaccard similarity between 

𝑚1 and 𝑚2, i.e., the ratio of common primitive types in 𝑚1 and 𝑚2, divided by the union 

of primitive types of 𝑚1 and 𝑚2.  

By combining these two measures, MS aims at capturing message similarity. The more 

two messages share common primitive types, the more they are likely to be related. 
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B. The Lack of sequential cohesion 𝐿𝑜𝐶𝑠𝑒𝑞 of an interface 𝑠𝑖 is defined as the complement of 

the average 𝑆𝑠𝑒𝑞  of all pairs of operations belonging to the interface 𝑠𝑖 [40]. Formally, 

𝐿𝑜𝐶𝑠𝑒𝑞 is defined as follows: 

𝐿𝑜𝐶𝑠𝑒𝑞(𝑠𝑖) = 1 −

∑
∀(𝑜𝑝𝑖,𝑜𝑝𝑗)∈𝑠𝑖

𝑜𝑝𝑖≠𝑜𝑝𝑗

𝑆𝑠𝑒𝑞(𝑜𝑝𝑖,𝑜𝑝𝑗)

|𝑠𝑖|×(|𝑠𝑖|−1)

2

  

C. Lack of Communicational Cohesion (𝐿𝑜𝐶𝑐𝑜𝑚) 

The Communicational Similarity 𝑆𝑐𝑜𝑚  between two operations quantifies the 

communicational category of cohesion [6]. Two service operations are deemed to be connected by 

a communication similarity, if they share (or use) common parameter and return types, i.e., both 

operations are related by a reference to the same set of input and/or output data. Formally, let 𝑚1 

and 𝑚2, two operations, then 𝑆𝑐𝑜𝑚 is defined as follows: 

𝑆𝑐𝑜𝑚(𝑜𝑝1, 𝑜𝑝2) =
𝑀𝑆(𝐼(𝑜𝑝1), 𝐼(𝑜𝑝2)) + 𝑀𝑆(𝑂(𝑜𝑝1), 𝑂(𝑜𝑝2)

2
 

where 𝐼(𝑜𝑝) and 𝑂(𝑜𝑝) refer to the input and output messages of the operation 𝑜𝑝, respectively; 

and 𝑀𝑆(𝐼(𝑜𝑝1), 𝐼(𝑜𝑝2)) is the function that returns the message similarity between two messages 

𝐼(𝑜𝑝1) and 𝐼(𝑜𝑝2). 

D. The Lack of communicational cohesion 𝐿𝑜𝐶𝑐𝑜𝑚  of an interface 𝑠𝑖  is defined as the 

complement of the average 𝑆𝑐𝑜𝑚 of all pairs of operations belonging to the interface 𝑠𝑖 

[40]. Formally, 𝐿𝑜𝐶𝑐𝑜𝑚 is defined as follows:  

𝐿𝑜𝐶𝑐𝑜𝑚(𝑠𝑖) = 1 −

∑∀(𝑜𝑝𝑖,𝑜𝑝𝑗)∈𝑠𝑖

𝑜𝑝𝑖≠𝑜𝑝𝑗

𝑆𝑐𝑜𝑚(𝑜𝑝𝑖 , 𝑜𝑝𝑗)

|𝑠𝑖| × (|𝑠𝑖| − 1)
2

 

E. Lack of Semantic Cohesion (𝐿𝑜𝐶𝑠𝑒𝑚) 
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The Semantic Similarity 𝑆𝑠𝑒𝑚 between two operations quantifies the conceptual category 

of cohesion. We define a concrete refinement of the conceptual cohesion, as it is regarded as the 

strongest cohesion metric [9]. 

𝑆𝑠𝑒𝑚 is based on the meaningful semantic relationships between two operations, in terms 

of some identifiable domain level concept. We expand the existing definition to get more 

meaningful sense of the semantic meanings embodied in the operation names. To this end, we 

perform a lexical analysis on operation signature. Our lexical analysis consists of the four 

following steps: 

a) Tokenization. The operation names are tokenized using a camel case splitter where each 

name is broken down into tokens/terms based on commonly used coding standards. 

b) Filtering. We use a stop word list to cut-off and filter out all common English words11 from 

the extracted tokens. Typically, these words are irrelevant to the implemented concept. 

Such words carry a very low information value and can negatively affect the semantic 

similarity process as they have no direct relation to the business abstraction domain. 

c) Lemmatization. This is a morphological process that transforms each word to its basic form 

(i.e., lemma). This process aims at reducing a word to its basic form in order to group 

together the different inflected forms of a basic word so they can be analyzed as a same 

word. Hence, different forms of words that may have similar meanings are grouped 

together and handled as identical word. For example, the verb ‘to pay’ may appear as ‘pay’, 

‘paid’, ‘paying’, ‘payment’, ‘payments’. The base form, ‘pay’ is then the lemma of all these 

                                                 
11

 http://www.textfixer.com/resources/common-english-words.txt 
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words. To do so, we use Stanford’s CoreNLP12 to find the base forms of all extracted 

words. 

d) Vocabulary expansion. To enhance the effectiveness of the semantic similarity, we 

considered WordNet13 , a widely used lexical database that groups words into sets of 

cognitive synonyms, each representing a distinct concept. We use WordNet to enrich and 

add more informative sense to the extracted bag of words for each operation. For example, 

the word customer can be used with different synonyms (e.g., client, purchaser, etc.), but 

pertaining to a common domain concept. 

To capture semantics or textual similarity between two bags of words 𝐴 and 𝐵 extracted 

from two operations 𝑜𝑝1 and 𝑜𝑝2 respectively, we use the cosine of the angle between both vectors 

representing 𝐴 and 𝐵 in a vector space using tf-idf (term frequency-inverse document frequency) 

model. We interpret term sets as vectors in the n-dimensional vector space, where each dimension 

corresponds to the weight of the term (tf-idf) and thus n is the overall number of terms. Formally, 

the 𝑆𝑠𝑒𝑚 between 𝑜𝑝1 and 𝑜𝑝2 corresponds to the cosine similarity of their two weighted vectors 

𝐴 and 𝐵⃗⃗ and defined as follows: 

𝑆𝑠𝑒𝑚(𝑜𝑝1, 𝑜𝑝2) = 𝑐𝑜𝑠𝑖𝑛𝑒(𝐴, 𝐵⃗⃗) =
𝐴 ⋅ 𝐵⃗⃗

∥ 𝐴 ∥×∥ 𝐵⃗⃗ ∥
 

F. The Lack of semantic cohesion 𝐿𝑜𝐶𝑠𝑒𝑚 of an interface 𝑠𝑖 is defined as the complement of 

the average 𝑆𝑠𝑒𝑚 of all pairs of operations belonging to the interface 𝑠𝑖. Formally, 𝐿𝑜𝐶𝑠𝑒𝑚 

is defined as follows: 

                                                 
12

 nlp.stanford.edu/software/corenlp.shtml 

13
 wordnet.princeton.edu 
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𝐿𝑜𝐶𝑠𝑒𝑚(𝑠𝑖) = 1 −

∑∀(𝑜𝑝𝑖,𝑜𝑝𝑗)∈𝑠𝑖

𝑜𝑝𝑖≠𝑜𝑝𝑗

𝑆𝑠𝑒𝑚(𝑜𝑝𝑖 , 𝑜𝑝𝑗)

|𝑠𝑖| × (|𝑠𝑖| − 1)
2

 

G. Lack of Cohesion (𝐿𝑜𝐶) 

The 𝐿𝑜𝐶 metric covers all possible aspects of service interface cohesion as captured by the 

previously defined metrics 𝐿𝑜𝐶𝑠𝑒𝑞 , 𝐿𝑜𝐶𝑐𝑜𝑚  and 𝐿𝑜𝐶𝑠𝑒𝑚 . Thus, it quantifies the total (overall) 

cohesion of a service interface. 𝐿𝑜𝐶 of an interface 𝑠𝑖 is defined as follows: 

𝐿𝑜𝐶(𝑠𝑖) = 𝑤𝑠𝑒𝑞 ∗ 𝐿𝑜𝐶𝑠𝑒𝑞(𝑠𝑖) + 𝑤𝑐𝑜𝑚 ∗ 𝐿𝑜𝐶𝑐𝑜𝑚(𝑠𝑖) + 𝑤𝑠𝑒𝑚 ∗ 𝐿𝑜𝐶𝑠𝑒𝑚(𝑠𝑖) 

where 𝑤𝑠𝑒𝑞 + 𝑤𝑐𝑜𝑚 + 𝑤𝑠𝑒𝑚 = 1 and their values denote the weight of each similarity measure. 

Interface Coupling 

Although best service design practice suggests that operations in service interface should 

be cohesive, e.g., operate on the same set of data, however, some interactions can arise between 

different service interfaces. This is because, typically, operations of a service may contribute to 

either single business abstractions or some other semantically meaningful concepts such as a data 

entity or another abstraction in the problem domain, and therefore coupling between service 

interfaces is sometimes unavoidable. 

We define the Coupling metric between two service interfaces 𝑠𝑖1 and 𝑠𝑖2 as the average similarity 

between all possible pairs of operations from 𝑠𝑖1 and 𝑠𝑖2. Formally, the coupling, 𝐶𝑝𝑙, is defined 

as follows: 

𝐶𝑝𝑙(𝑠𝑖1, 𝑠𝑖2) =
∑∀𝑜𝑝𝑖∈𝑠𝑖1,∀𝑜𝑝𝑗∈𝑠𝑖2 𝑆𝑖𝑚(𝑜𝑝𝑖 , 𝑜𝑝𝑗)

|𝑠𝑖1| × |𝑠𝑖2|
 

where |𝑠𝑖1| denotes the number of operations in the interface 𝑠𝑖1, and 𝑆𝑖𝑚(𝑜𝑝𝑖, 𝑜𝑝𝑗) is defined as 

the weighted sum of the different operations similarity measures defined in the previous section: 

𝑆𝑖𝑚(𝑜𝑝𝑖, 𝑜𝑝𝑗) = 𝑤𝑠𝑒𝑞 ∗ 𝑆𝑠𝑒𝑞(𝑜𝑝𝑖, 𝑜𝑝𝑗) + 𝑤𝑐𝑜𝑚 ∗ 𝑆𝑐𝑜𝑚(𝑜𝑝𝑖, 𝑜𝑝𝑗) + 𝑤𝑠𝑒𝑚 ∗ 𝑆𝑠𝑒𝑚(𝑜𝑝𝑖 , 𝑜𝑝𝑗) 
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6.3.3 NSGA-II Adaptation 

To adapt a search algorithm to a specific problem, the following elements should be 

defined: (i) solution representation and the generation of initial population, (ii) fitness function to 

evaluate candidate solutions according to each objective, (iii) change operators to generate new 

individuals using genetic operators (crossover and mutation). In the following we describe these 

element. 

A. Solution representation 

In our problem, a candidate solution is a service modularization, i.e., a set of interfaces, 

each exposes a set of cohesive operations. A valid solution should have each interface contains at 

least two operations, and each operation should exist in one interface. To this end, we adopt the 

label-based integer encoding [126] where a candidate solution is represented as an integer array 

of 𝑛 positions, where 𝑛 is the total number of operations available in a service. Each position 

corresponds to a specific operation. The integer values in the array represent the interface to which 

the operations belong. For instance, the modularization example in  

Figure 44 is encoded as shown in Figure 45 where the operations 𝑜𝑝 1, 4 and 5 belong to 

the same service interface 𝑠𝑖 labeled with 1; operations 2,6, 8 and 9 belong to the interface 2, and 

operations 3 and 7 belong to the interface 3. 

 

Figure 44 An example of Web service interfaces remodularization solution. 
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Figure 45 An example of a solution encoding 

To create the initial population, we first define the parameter 𝑚𝑖𝑛𝑆𝑖𝑧𝑒 as minimum number 

of operations per interface. Then, create a number of interfaces completely random where a max 

number of interfaces (
𝑛

𝑚𝑖𝑛𝑆𝑖𝑧𝑒
) is fixed. Then, for each interface, (𝑚𝑖𝑛𝑆𝑖𝑧𝑒) operations of the Web 

service are randomly assigned to it make sure the all the interfaces has at least (𝑚𝑖𝑛𝑆𝑖𝑧𝑒) 

operations. Then, for the rest of the operations, we assign each one of them randomly to any of the 

interfaces. Furthermore, for this problem, we fixed 𝑚𝑖𝑛𝑆𝑖𝑧𝑒 at 2, as typically a core business 

abstraction requires at least two operations. 

B. Objective Functions  

 The quality of each candidate modularization solution is defined by a fitness function that 

evaluates multiple objective and constraint dimensions. Each objective dimension refers to a 

specific value that should be either minimized or maximized for a solution to be considered 

“better" than another solution. In our approach, we optimize the following four objectives: 

Cohesion: The cohesion objective function is a measure of the overall cohesion of a 

candidate interface modularization. This objective function corresponds to the average 

cohesion score of each interface in a Modularization ℳ and is computed as follows:  

 𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛(ℳ) = 1 −
∑∀𝑠𝑖∈ℳ 𝐿𝑜𝐶(𝑠𝑖)

|ℳ|
 

where 𝐿𝑜𝐶(𝑠𝑖𝑖) denotes the total interface lack of cohesion given by equation 10, and |ℳ| is the 

total number of interfaces in the modularization ℳ. 

Coupling: The coupling objective function measures the overall coupling among interfaces 

in a modularization ℳ. This objective function corresponds to the average coupling score 
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between all possible pairs interfaces in a the modularization ℳ  in a service and is 

calculated as follows: 

 𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔(ℳ) =

∑∀(𝑠𝑖𝑖,𝑠𝑖𝑗)∈ℳ

𝑠𝑖𝑖≠𝑠𝑖𝑗

𝐶𝑝𝑙(𝑠𝑖𝑖,𝑠𝑖𝑗)

|ℳ|×(|ℳ|−1)

2

 

where 𝐶𝑝𝑙(𝑠𝑖𝑖 , 𝑠𝑖𝑗) denotes the coupling between the interfaces 𝑠𝑖𝑖 and 𝑠𝑖𝑗 given by equation 9, 

and  |ℳ| is the total number of interfaces in the modularization ℳ. 

Typically, coupling among service interfaces should be minimized as this indicates that each 

interface covers separate functionality aspects. 

Number of interfaces (NI): This objective function refers to the total number of interfaces 

in the modularization ℳ. 

 𝑁𝐼(ℳ) = |ℳ| 

The number of interfaces should be maximized in order to avoid having all operations in a single 

large interface. 

Average number of operations per interface (AOI): The average number of operations 

per interface in a modularization ℳ ought to be minimized to aim at appropriately, equal-

sized interfaces. 

 𝐴𝑂𝐼(ℳ) =
∑∀𝑠𝑖∈ℳ 𝑆𝑖𝑧𝑒(𝑠𝑖)

|ℳ|
 

where 𝑆𝑖𝑧𝑒(𝑠𝑖) returns the number of operations in the interface 𝑠𝑖. 

One can notice that these objective functions are conflicting by nature making service 

interface remodularzation more challenging to find the best balance between coupling and 

cohesion. On the other hand, decreasing the average number of operations per interface (AOI) 

might result in a large number of interfaces (NI), leading to several scattered core abstractions. 

This makes service interface modularization a non-trivial decision-making task for developers. 
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Population-based search algorithms deploy crossover and mutation operators to improve the 

fitness of the solutions in the population in each iteration. Change operators such as crossover and 

mutation aim to drive the search towards near-optimal solutions, i.e., remodularizations. 

 The crossover operator is responsible for creating new solutions based on already existing 

ones, e.g., re-combining solutions into ones. In our adaptation, we use a single, random cut-point 

crossover to construct offspring solutions. It starts by selecting and splitting at random two-parent 

solutions. Then crossover creates two child solutions by putting, for the first child, the first part of 

the first parent with the second part of the second parent, and vice versa for the second child. An 

example of crossover is depicted in Figure 46. 

 

Figure 46 Crossover operator 

 The mutation operator is used to introduce slight random changes into candidate solutions. 

This operator guides the algorithm into areas of the search space that would not be reachable 

through recombination alone and avoids the convergence of the population towards a few elite 

solutions. With Web service interface remodularization, we use a mutation operator that picks at 

random one or more positions from their integer array and replaces them by other ones randomly 

as shown is Figure 47. 
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Figure 47 Mutation operator 

 Note that, to be valid, crossover and mutation operators should ensure that (i) each 

operation is assigned to a unique interface, and (ii) each interface should contain more than one 

operation (𝑚𝑖𝑛𝑆𝑖𝑧𝑒 = 2). In addition, when applying crossover and mutation operators we ensure 

the validity of the solution using a repair function that eliminates the redundancy when assigning 

operations to the interfaces. Thus, we ensure that an operation is not assigned to two interfaces at 

the same time after applying the change operators. 

 

 

Figure 48 An example of Web service interface modularization. 

Problem complexity. Finding the best partitioning of operations into cohesive service 

interfaces is not an obvious task for developers as the number of possible partitions can be very 

large causing a combinatorial explosion. The search space tends to be enormous as the number of 

possible partitions is given by: 
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𝐵𝑛+1 = ∑𝑛
𝑘=0 (

𝑛
𝑘

) 𝐵𝑘  

where 𝐵𝑛, counts the number of different possibilities of how a given set of 𝑛 operations can be 

divided into interfaces. The order of the partitions, i.e., interfaces, as well as the order of the 

operations within an interface do not need to be considered. For instance, consider the 

AmazonEC2PortType Web service which exposes 87 operations in the version 2010. To find the 

right interface partitioning for AmazonEC2PortType, the number of combinations of its 87 

operations, a developer need to explore 𝐵87 ≈ 6.39 × 1098 possible ways to create interfaces. Due 

to this huge search space, an exhaustive search is unsuitable. Instead, a heuristic search maybe 

efficient for this kind of combinatorial problems [15], [62]. 

 

where 𝑤𝑠𝑒𝑞 + 𝑤𝑐𝑜𝑚 + 𝑤𝑠𝑒𝑚 = 1 and their values denote the weight of each similarity measure. 

6.3.4 Validation 

1) Experimental Setup 

The purpose of this study is to investigate how well our WSIRem approach provides 

modularization solutions and compare it with available state-of-the-art approach by 

Athanasopoulos et al. [5]. All the materials used in our study as well as the raw results are publicly 

available in a comprehensive replication package14. 

To the best of our knowlege, Athanasopoulos et al. [5] is the only existing technique that 

attempt to automate the service interface remodularization. In the rest of the work we refer by 

Greedy to denote the approach proposed in [5]. Greedy is a cohesion-based approach that 

                                                 
14 Data: http://sel.ist.osaka-u.ac.jp/~ali/WSIRem. 

http://sel.ist.osaka-u.ac.jp/~ali/WSIRem
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iteratively split a service interface using a greedy algorithm without considering the coupling 

between the generated interfaces. 

Our empirical study is performed through three types of evaluations: 

• Evaluation with design metrics: we evaluate the impact of the suggested remodularizations 

by our approach on the interface design quality in terms of cohesion, coupling and 

modularity. 

• Evaluation with interface partitioning correctness: We compare our remodularization 

results with those manually performed by developers in terms of precision and recall. The 

goal is to see if our technique can actually identify new abstractions which were improperly 

embedded in the original interface. 

• Evaluation with developers: We asked independent developers to evaluate each of the 

modularizations provided by our approach, and give more qualitative feedback. For each 

evaluation, we present the research questions we set out to answer: 

RQ1: To what extent can WSIRem improve the service interface design quality? 

RQ2: Does WSIRem able to identify appropriate partitioning of distinct business 

abstractions? 

RQ3: Does WSIRem result in ‘useful’ interface remodularization solutions from a 

developer’s point of view? 

2) Experiment Results 

To evaluate our approach, we conducted our experiment on a benchmark of 22 real-world 

services provided by Amazon15 and Yahoo16. We selected services that are identified as god object 

Web service antipatterns [5], [11] with interfaces exposing at least 10 operations. We chose these 

                                                 
15 http://aws.amazon.com/ 
16 developer.searchmarketing.yahoo.com/docs/V6/reference/ 



 

 

152 

 

Web services because their WSDL interfaces are publicly available, and they were previously 

studied in the literature [5], [57]. Table 15 presents our used benchmark. We chose these Web 

services because their WSDL interfaces are publicly available, and they were previously studied 

in the literature [5], [57]. 

Table 15 Experimental benchmark overview. 

 

To answer RQ1, we assess the design improvement that a candidate remodularization suggested 

by SIM will bring to the service comparing to Greedy [5]. Historically, software engineers have 

conceived metric suites as valuable tools to estimate the quality of their software artifacts [6], 

[125], [127]. Our evaluation is based on Cohesion, Coupling, and Modularity metrics. For 

Cohesion, we use the complement of the average of three widely used lack of cohesion metrics: 
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lack of sequential cohesion (𝐿𝑜𝐶𝑠𝑒𝑞), lack of communicational cohesion (𝐿𝑜𝐶𝑐𝑜𝑚), and lack of 

semantic cohesion (𝐿𝑜𝐶𝑠𝑒𝑚). Coupling refers to the average coupling values between all possible 

pairs of interfaces. Finally, Modularity evaluates the balance between coupling and cohesion by 

combining them into a single measurement. The aim is to reward increased cohesion with a higher 

Modularity score and to punish increased coupling with a lower Modularity score. It has been 

proved that the higher the value of Modularity, the better the quality of the modularization [128]. 

The Modularity metric is computed as the average of the overall cohesion and coupling. 

 For each of these three metrics, we report the quality improvement (QI), i.e., the difference 

value before and after remodularization, 𝑄𝐼𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛, 𝑄𝐼𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔, and 𝑄𝐼𝑀𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦. 

Figure 49 reports the results achieved by both WSIRem and Greedy in terms of cohesion, coupling 

and modularity. We expected an increase of cohesion (desired effect) due to the split of different 

operations exposed in the original interface. However, we also expected an increase of coupling 

(side effect), since splitting an interface into several interfaces typically results in an increment of 

the total dependencies between these interfaces. For these reasons coupling and cohesion should 

be measured together to make a proper judgment on the complexity and quality of the identified 

interfaces, using our Modularity metric.  
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Figure 49 Quality improvements achieved by WSIRem and Greedy in terms of cohesion, 

coupling and modularity.   
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Looking at Figure 49a, we can see that, for almost all the interfaces, the cohesion is greatly 

improved by both approaches. In particular, the improvement achieved by Greedy is better than 

WSIRem. However, Figure 49b shows the achieved cohesion improvement increased the coupling 

results. Indeed, this is natural as the original service has a single interface (thus its Coupling = 0). 

Consequently, any interface partitioning will result in some connections between interfaces due to 

the semantic similarity that is unlikely to be equals to zero and due to some shared (primitive) data 

types in messages. As reported in Figure 49b, WRIRem is able to remarkably reduce the coupling 

for all the services. Improvement of cohesion usually comes at the expense of increase in coupling 

and vice versa.  

We assume that a candidate remodularization is a good design solution if the improvement 

of cohesion is significantly greater than the deterioration of coupling. This balance is captured by 

the Modularity metric as reported in Figure 49c. For the 22 services, interesting modularity 

improvements was achieved by WSIRem with an average of 0.08, while Greedy approach turns 

out to be less effective with an average of 0.04. Furthermore, we noticed that Greedy produced 

three modularizations for AmazonS3 (I7), AutoScalingPorType (I11) and AccountService (I16) 

with deteriorated modularity due to the high coupling resulted in the new interfaces. 

To answer RQ2, we asked a group of independent developers to manually decompose each 

of the studied interfaces in order to identify groups of operations that represent distinct core 

abstractions. The abstractions identified by the developers were considered as the ground truth, 

allowing the calculation of the precision and recall of our approach. 

We compute the precision and recall scores as follows: where TP (True Positive) 

corresponds to an interface identified by the independent developer and also by the proposed 

approach; FP (False Positive) corresponds an interface identified by the proposed developer, but 
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not by the independent expert; FN (False Negative) corresponds to an interface identified by the 

independent developer, but not by the proposed approach.  

Note that we computed TP, FP and FN at a fine-grained level, meaning that the interface 

identified by the proposed approach and by the independent developer should match with a Jaccard 

similarity of at least 80% in terms of their operations. 

Our evaluation involved 14 independent volunteer participants including 6 industrial 

developers and 8 graduate students in Software Engineering (3 MSc and 5 PhD candidates). We 

first gathered information about the participant’s background. All participants are familiar with 

service-oriented development and SOAP Web services with an experience ranging from 4 to 9 

years. The participants were unaware of the techniques WSIRem and Greedy neither the particular 

research questions, in order to guarantee that there will be no bias in their judgment. 

Table 16 and Figure 50 report the results for RQ2 in terms of number of generated 

interfaces, precision and recall of each of WSIRem and Greedy. As it can be observed from the 

table and figure, for the 22 services, WSIRem had an average interface split (i.e., (modularization 

size) of 6.04, an average precision of 73% and an average recall of 77% comparing the manual 

modularizations performed by developers. We consider that these values of precision and recall 

are high since a deviation between the proposed solution and the manual one may not be an 

indication of some wrong recommendations but it could be just another possible good solution. In 

fact, there is no single good remodularization solutions but multiple ones. On the other hand, we 

noticed that Greedy tends to produce more split interfaces with an average of 8.22, but smaller 

interfaces. Indeed, smaller interfaces tend to have higher cohesion. This resulted in low precision 

and recall with an average of 27% and 33%, respectively. We noticed that, Greedy generated in 

many cases, several interfaces with only one operation. Such finegrained interfaces will make the 
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service more complex and severely limit its reusability as core abstractions will be split into several 

small and scattered interfaces. 

Table 16 Comparison results of WSIRem and Greedy in terms of (a) number of generated 

interfaces, (b) precision and (c) recall. 
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Figure 50 Boxplots for the comparison results of WSIRem and Greedy in terms of (a) numer 

of generated interfaces, (b) precision and (c) recall. 

We noticed that all fourteen participants were able to identify more independent, and 

sometimes completely disconnected interfaces from the original interface. These interfaces are 

usually the best candidates for split since they present core abstractions and do not bare strong 

dependency from the rest of the original interface. Another interesting observation was that 

WSIRem successfully identified remodularization solutions with 100% of precision and recall in 7 

out of the 22 services while Greedy succeeded to do so only twice. On the other hand, Greedy 

turns out to completely fail in identifying correct remodularization in 4 cases out of 22 with 0% of 

precision and recall. Finally, we identify a main drawback of the Greedy approach from our 

perspective, that driving Web service interface modularization with only cohesion metrics would 

not be enough, and coupling, size of interfaces is as important as cohesion for good service 

interface design. 

To answer RQ3, we asked our fourteen participants involved in RQ2 to evaluate the 

usefulness of three remodularization solutions, for each of the 22 cases: (i) the remodularization 

provided by WSIRem, (ii) the remodularization provided by Greedy, and (iii) a random 
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remodularization. The random remodularization option is considered as a ‘sanity check’ to make 

sure whether participants have seriously answered this study, as a random remodularization does 

not make sense.  

To this end, we used a survey hosted in eSurveyPro 17 , an online Web application. 

Specifically, for each modularization solution, we provide a high-level description of each service 

interfaces before and after remodularization using UML classes. Then, the participants were asked 

to answer the following question for each remodularization solution: “Does the new 

modularization improve the understandability of the service?” Possible answers follow a five-

point Likert scale [53] to express their level of agreement: 1: Strongly disagree, 2: Disagree, 3: 

Neutral, 4: Agree, 5: Fully agree. Note that the Web application used for our survey allowed our 

participants to save and complete the study in multiple rounds within a maximum of 7 days 

available to respond. At the end of the 7 days we collected the 14 complete questionnaires. 

Figure 51 and Table 17 report the results achieved by our study for the developer’s 

assessment. Looking at Table 17, we can see that for all the studied services, the participants rated 

the WSIRem remodulations with an average score of 3.81, an average of 2.59 for the Greedy 

approach, while an average of 1.51 was recorded was recorded for the random remodularizations. 

This provides evidence that the remodularization solutions suggested by WSIRem are more 

adjusted to developers needs than those of Greedy. Moreover, on top of the 22 cases, participants 

identified two services, GeographicalDictionaryService and AutoScalingPortType where the 

original interface is relatively understandable even without remodularization, but they suggested 

that an early remodularization would be interesting to avoid potential difficulties in future service 

releases with additional operations. 

                                                 
17 http://www.esurveyspro.com 
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Table 17 Developer’s evaluation of the interface remodularizations for WSIRem, Greedy, and 

random modularization for each service. 
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Figure 51 Developer’s evaluation of the interface remodularizations for WSIRem, Greedy, and 

random modularization. 

It is worth to note that during the evaluation, we discovered some common operations 

provided by different services provided by Amazon. For example, we found that 

AmazonVPCPortType and AmazonEC2PortType have several common operations including 

CreateVpc(), DescribeVpcs(), DeleteVpc(), DeleteVpnConnection(), CreateVpnGateway() and 

DeleteVpnGateway(). More interestingly, some generated interfaces from both 

AmazonVPCPortType and AmazonEC2PortType expose exactly the same operations. Although 

this redundancy can be related to some business constraints, best design practice in SOC suggests 

that common core abstraction can be implemented in separate service, making them easier to 

maintain, evolve and reuse. 

An interesting point here was that the participants confirmed that the interfaces suggested 

by WSIRem tend to be more appropriately sized and describe distinct abstractions with less overlap. 

We asked one of the participants to comment on his decision for the generated Amazon EC2 

interfaces, his answer was: “This new interface structure is more understandable to me, as it was 
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previously very difficult to follow and understand a bench of 87 operations exposed in a single 

interface. I strongly recommend the original provider to restructure his service, to allow the 

service to be reused more effectively”. 

Moreover, we noticed that in most of the cases, Greedy approach tend to split core abstractions 

into many interfaces. For instance, in the Amazon EC2 interface, operations related to image 

management was dispersed through many other interfaces: operations RegisterImage() and 

DescribeImages() are assigned to a new interface, DescribeImageAttribute() is in another 

interface, CreateImage() is in another interface, ResetImageAttribute(), DeregisterImage() and 

ModifyImageAttribute() are in another interface along with other unrelated operations [5].We 

asked another participant comment on this remodularization, his answer was: “Such scattered 

abstractions will result in several connections between interfaces for no benefit as a large number 

of suggested interfaces are not representing core abstractions”. On the other hand, most of the 

identified interfaces expose operations related to different core abstractions. For instance, for the 

same Amazon EC2 service, a suggested interface by Greedy contains DetachVolume(), 

AttachVolume() and DescribeInstanceAttribute(). Results show that this design is unlikely to be 

desirable for developers. Moreover, the obtained results suggest that coupling is as important 

metric as cohesion to drive Web service interface remodularization. 

6.4 History-based Service Interface Remodularization Using Many-Objective 

Optimization 

6.4.1 Many-Objective Search-Based Problem 

Recently many-objective optimization has attracted great attention in Evolutionary Multi-

objective Optimization (EMO) which is one of the most active research areas in evolutionary 
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computation [129]. By definition, a many-objective problem is a multi-objective problem with a 

number of objectives greater than three. Mathematically, it could be formulated as follows:  
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where M is the number of objective functions and is strictly greater than 3, P is the number of 

inequality constraints, Q is the number of equality constraints, 𝑥𝑖
𝐿 and  𝑥𝑖

𝑈 correspond to the lower 

and upper bounds of the decision variable  𝑥𝑖 (i.e., 𝑖th component of 𝑥). A solution 𝑥 satisfying 

the (P + Q) constraints is said to be feasible, and the set of all feasible solutions defines the 

feasible search space denoted by Ω. 

In this formulation, all the considered objectives are to be minimized, since maximization 

can be easily turned to minimization based on the duality principle. Over the two past decades, 

several Multi-Objective Evolutionary Algorithms (MOEAs) have been proposed with the hope to 

work with any number of objectives M. Unfortunately, it has been demonstrated that most MOEAs 

are ineffective in handling such type of problems. For example, NSGA-II [40], which is one of the 

most popular MOEAs, compares solutions based on their non-domination ranks. Solutions with 

best ranks are emphasized in order to converge to the Pareto front. When M > 3, only the first rank 

may be assigned to every solution as almost all population individuals become non-dominated 

with each other [130], [131]. Without a variety of ranks, NSGA-II cannot keep the adequate search 

pressure in high dimensional objective spaces. 

In this work, our problem requires a search for a solution which balances multiple 

objectives and constraints to achieve near optimal or optimal results. This search can be fastidious 

and requires a labor-intensive human activity. Search-based many-objective techniques have 

provided new ways, based on heuristics, transforming many-objective problems from human-
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based search to machine-based search techniques. Thus, the use of heuristics can guide the 

automated search and avoid the tedious human-in-the-loop manual activities. However, even in 

software engineering field, many currently existing techniques lack scalability to meet the 

demands of high dimensional solutions. According to a recent survey by Harman [132], most 

software engineering problems are naturally multi-objective. However, they are mostly handled 

from a mono-objective perspective. For software engineering problems,  multi-objective 

optimization techniques have been proposed in a few works [15], [65], [67]. To the best of our 

knowledge no on has applied many-objective techniques to solve Web service remodularization 

problem.  

We investigate, in this work, the applicability of many-objective techniques for the Web 

service remodularization problem where five objectives are considered to find the most suitable 

remodularization suggestions for developers. 

6.4.2 Approach Overview 

Figure 52 shows our approach overview to the History-based Web service interface 

remodularization problem. It targets to explore a large search space and find a set of optimal 

remodularization solutions, by grouping together all collections of operations that have high 

cohesion and history preference into separate interfaces. The approach takes two inputs: an 

interface WSDL file/URL of the Web service to be improved and the source code of a series of 

client application releases. First, parsing the WSDL sources though tree walking up the XML 

hierarchy to extract the Web service structure data (e.g., operation, message, and input/output). 

Then, Code analysis module extracts all of the Web service operations being used in the first 

release and its release date, as well as the added operations in the other releases and their release 

dates by scanning all versions of input source code files. The extracted information from first two 
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steps will be used in an optimization process based on the non-dominated sorting genetic algorithm 

(NSGA-III) to generate remodularization solutions. During the execution of the NSGA-III, it 

generates new interface design, evaluates and select them based on 1) a structural analysis to 

calculate both sequential and communicational operations similarity, 2) a semantic analysis to 

calculate semantic relationships between operations, 3) a history-based analysis to calculate the 

history-preference score.   

An optimal modularization solution should find the best trade-off between the following 

objectives (i) maximizing history-based similarity, (ii) maximizing cohesion, (iii) minimizing 

coupling, (iv) maximizing the number of interfaces, and (v) maximizing the number of operations 

per interface. 

As output, the result should be a set of interfaces; each interface is a new distinct design of 

the same operations/functionalities of the input Web service. 

 

Figure 52 Solution encoding 

To manipulate instances of this kind, at the beginning of NSGA-III, it starts by (i) creating 

a random size of new empty interfaces, and (ii) for each interface, selects randomly two operations 

from all the operations then remove it from the queue. (iii) Assign the rest of the operations one 

by one into the interfaces randomly.  A modularization solution should include all the operations 
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in different interfaces, and there is no interfaces have less than two operations. Then, the algorithm 

starts to find the best modularization solution set that provides the best trade-off between our four 

objective functions. 

In order to measure how Web service remodularization interfaces are suitable to the client 

application, we introduce two metrics, Operation Similarity and Invocation Time Scale to validate 

the correlation between the remodularization solution and evolution of the client application. A 

good Web interface design should respect the invocation usage of the client application and the 

change history of the client application so that the client developers fell comfort to understand or 

convenient to use the new interfaces. In this work we include the metrics listed in Chapter 6.3.2 

(page 139), as well as the following metrcis: 

A. Operation Similarity (OS) 

Operation Similarity is a metric defined by us to quantify the similarity between interface 

and history of operation invocations of the client application. It’s important that the interface 

remodularization should respect the client usage and their change history. Because of client 

developers understand the code and changes most of the time, if the design of Web service is 

similar, they should spend less time to understand and fell easy to maintain the usage of the Web 

service. In Figure 42, Access control and log management are added in the first release together, 

so it’s cohesive and easier to understand to group them together as in one interface for the 

developers.  

Definition (Operation Similarity (OS)).  The operations of one interface should contain more 

changes that are made one release to be easier to understand or use by the developers. Formally, 

to one interface 𝑠𝑖, the OS is defined as follows:                

𝑂𝑆(𝑠𝑖) = 𝑚𝑎𝑥
∀(𝑑𝑖∈𝐻𝑂𝐼)

(
|𝑑𝑖 ⋂ 𝑠𝑖 |

|𝑑𝑖|
) 



 

 

167 

 

Where 𝐻𝑂𝐼 refers to the history of operation invocations, 𝑑𝑖 represents the groups of Web service 

operations that are being introduced separetly during the evolution of the application. Initially, 𝑑0 

represents the invocated operations of first client release, 𝑑𝑖 where 𝑖 > 0 represents the changes 

introduced considering the previous release. If there is no new operations invoked in one release 

regarding to the Web serivce, there is no 𝑑𝑖 generated for that version. For example, in Figure 42, 

at 4th release, we generate 𝑑1 =(𝐷𝑒𝑙𝑒𝑡𝑒𝐵𝑢𝑐𝑘𝑒𝑡, 𝐿𝑖𝑠𝑡𝐵𝑢𝑐𝑘). 

B. Invocation Time Scale (ITS) 

Invocation time scale quantifies the time gap between the operations in one interface 

regarding the evolution timeline. The motivation of defining this metric is to make the most use of 

release history and make up the limitation of 𝑂𝑆. During the evolution of software, the changes 

that are made in longer time gap tends to represent different funtionailties. Therefore, we decide 

to calculte the operations time gap within one interfaces, if the operations were introduced in client 

application during a large time scale, it means this interface tends to be less cohesive in the view 

of client developers. Also, the operation similairty could have its weakness, because if we put 

opertions of different 𝑑𝑖 together in one interface, the score is 1 which is the best possbile score, 

but obviouly, this is not respecting the modular design best practices. By introducing this metrcis, 

we can guide the algorithm search and solve this limitation.  

Definition (Invocation Time Scale (ITS)).  Invocation Time Scale is the degree at which 

operations of one interface shares same introduced time. Formally, to one interface 𝑠𝑖, the ITS is 

defined as follows:                

𝐼𝑇𝑆(𝑠𝑖) =
𝑇𝐿𝑎𝑠𝑡 − 𝑇𝐹𝑖𝑟𝑠𝑡

𝑇𝑀𝑎𝑥
 

where 𝑇𝐿𝑎𝑠𝑡 and 𝑇𝐹𝑖𝑟𝑠𝑡 refer to the release time of the first and last version of client applications 

that have introduced at lease one opertion of 𝑠𝑖 at the time. TMax represents the maxium time 



 

 

168 

 

difference, in most cases is the time scale from first input release date to the last one. For example, 

in Figure 42, “BuckManage” interface only contains operations that are being introduced during 

Version 4, so 𝑇𝐿𝑎𝑠𝑡 = 𝑇𝐹𝑖𝑟𝑠𝑡 = 𝑇𝑉4, 𝑇𝑀𝑎𝑥= 488 (days) and 𝐼𝑇𝑆(𝐵𝑢𝑐𝑘𝑀𝑎𝑛𝑎𝑔𝑒) = 0 (days). 

6.4.3 NSGA-III and Problem Adaptation 

A. NSGA-III, Many-Objective Optimization Algorithm 

NSGA-III is a recent many-objective algorithm proposed by [46]. The basic framework 

remains similar to the original NSGA-II algorithm with significant changes in its selection 

mechanism. Figure 53 shows the pseudo-code of the NSGA-III procedure for a particular 

generation t. First, the parent population Pt (of size N) is randomly initialized in the specified 

domain, and then the binary tournament selection, an offspring population Qt is created by 

applying crossover and mutation operators to Pt. Thereafter, both populations are combined and 

sorted according to their domination level and the best N members are selected from the combined 

population to form the parent population for the next generation. The fundamental difference 

between NSGA-II and NSGA-III is the niche preservation operation: Unlike NSGA-II, NSGA-III 

starts with a set of reference points Zr. The set of uniformly distributed reference points is generated 

using the method of [133] which is well-detailed and described in [134]. 

After the non-dominated sorting, all acceptable front members and the last front Fl that 

could not be completely accepted are saved in a set St. Members in St/Fl have selected right away 

for the next generation. However, the remaining members are selected from Fl such that the desired 

diversity is maintained in the population. Original NSGA-II uses the crowding distance measure 

for selecting a well-distributed set of points, however, in NSGA-III the supplied reference points 

(Zr) are used to select these remaining members. To accomplish this, objective values and reference 

points are first normalized so that they have an identical range. Thereafter, orthogonal distance 
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between a member in St and each of the reference lines (joining the ideal point, i.e., the vector 

composed of 7 zero and a reference point) is computed. The member is then associated with the 

reference point having the smallest orthogonal distance. Next, the niche count ρ for each reference 

point, defined as the number of members in St/Fl that are associated with the reference point, is 

computed for further processing. The reference point having the minimum niche count is identified 

and the member from the last front Fl that is associated with it is included in the final population. 

The niche count of the identified reference point is increased by one and the procedure is repeated 

to fill up population Pt+1. 

It is meaningless that a reference point may have one or more population members 

associated with it or need not have any population member associated with it. Let us denote this 

niche count as ρj for the j-th reference point. We now devise a new niche-preserving operation as 

follows. First, we identify the reference point set Jmin = {j: argminj (ρj)} having minimum ρj. In 

case of multiple such reference points, one (j*Jmin) is chosen at random. If ρj* = 0 (meaning that 

there is no associated Pt+1 member to the reference point j*), two scenarios can occur. First, there 

exist one or more members in front Fl that are already associated with the reference point j*. In 

this case, the one having the shortest perpendicular distance from the reference line is added to 

Pt+1. The count ρj* is then increased by one. Second, the front Fl doesn’t have any member 

associated with the reference point j*. In this case, the reference point is excluded from further 

consideration for the current generation. In the event of ρj* ≥ 1 (meaning that already one member 

associated with the reference point exists), a randomly chosen member, if exists, from front Fl that 

is associated with the reference point Fl is added to Pt+1. If such a member exists, the count ρj* is 

incremented by one. After ρj counts are updated, the procedure is repeated for a total of K times to 

increase the population size of Pt+1 to N.  
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NSGA-III procedure at generation t 

Input: H structured reference points Zs, parent population Pt 

Output: Pt+1 

00: 

01: 

02: 

03: 

04: 

05: 

06: 

07: 

08: 

09: 

10: 

11: 

12: 

 

13: 

 

14: 

 

 

 

15: 

 

 

16: 

 

17: 

18: 

19: 

 Begin 

 St ← Ø, i ← 1; 

 Qt ← Variation (Pt); 

 Rt ← Pt Qt; 

 (F1, F2, ...) ← Non-dominationed_Sort (Rt); 

 Repeat 

    St ← St  Fi; i ← i+1; 

 Until | St | ≥ N; 

 Fl ← Fi; /*Last front to be included*/ 

 If | St | = N then 

    Pt+1 ← St;  

 Else 

   Pt+1 ← 
1
1




l
j Fj; 

   /*Number of points to be chosen from Fl*/ 

   K ← N – |Pt+1|;  

   /*Normalize objectives and create reference set Zr*/ 

   Normalize (FM; St; Zr; Zs);   

   /*Associate each member s of St with a reference point*/ 

   /*π(s): closest reference point*/ 

   /*d(s): distance between s and π(s)*/ 

   [π(s), d(s)] ← Associate (St, Zr);  

   /*Compute niche count of reference point rZj */ 

   ρj ←  lFtSs /
((π(s) = j) ? 1 : 0); 

   /*Choose K members one at a time from Fl to construct Pt+1*/ 

   Niching (K, ρj, π(s), d(s), Zr, Fl, Pt+1); 

 End If 

 End 

Figure 53 Pseudo-code of NSGA-III main procedure 

B. Fitness Functions 

The quality of each candidate modularization solution is defined by a fitness function that 

evaluates multiple objective and constraint dimensions. Each objective dimension refers to a 

specific value that should be either minimized or maximized for a solution to be considered 

“better" or “worse” than another solution. In our approach, we optimize the following five fitness 

functions: 

1) History-based similarity (HS). The history-based similarity measures the overall similarity 

of a candidate interface ℳ to the developer preference based on the application release history. 
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This fitness function is composed by the operation similarity score and invocation time scale 

of each interface in a remodularization ℳ. It’s computed as follows: 

𝐻𝑆(ℳ) =
∑∀𝑠𝑖∈ℳ

𝑂𝑆(𝑠𝑖) + (1 − 𝐼𝑇𝑆(𝑠𝑖))
2

|ℳ|
 

Where 𝑂𝑆(𝑠𝑖) and 𝐼𝑇𝑆(𝑠𝑖) are the score of operation similarity and invocation time scale score 

given by the equation 2 and 3, and |ℳ| is the total number of interfaces in modularization ℳ. 

 

2) Cohesion. The cohesion fitness function is a measure of the overall cohesion of a candidate 

interface modularization. This fitness function corresponds to the average cohesion score of 

each interface in a Modularization ℳ and is computed as follows:  

𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛(ℳ) = 1 −
∑∀𝑠𝑖∈ℳ 𝐿𝑜𝐶(𝑠𝑖)

|ℳ|
 

where 𝐿𝑜𝐶(𝑠𝑖𝑖) denotes the total interface lack of cohesion given by equation 10, and |ℳ| is the 

total number of interfaces in the modularization ℳ. 

 

3) Coupling. The coupling fitness function measures the overall coupling between operations 

among all interfaces in a modularization ℳ. This fitness function corresponds to the average 

coupling score between all possible pairs interfaces in the modularization ℳ in a service and 

is calculated as follows:  

𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔(ℳ) =

∑∀(𝑠𝑖𝑖,𝑠𝑖𝑗)∈ℳ

𝑠𝑖𝑖≠𝑠𝑖𝑗

𝐶𝑝𝑙(𝑠𝑖𝑖 , 𝑠𝑖𝑗)

|ℳ| × (|ℳ| − 1)
2

 

where 𝐶𝑝𝑙(𝑠𝑖𝑖 , 𝑠𝑖𝑗) denotes the coupling between the interfaces 𝑠𝑖𝑖 and 𝑠𝑖𝑗 given by equation 11, 

and  |ℳ| is the total number of interfaces in the modularization ℳ. 
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Typically, coupling among service interfaces should be minimized as this indicates that each 

interface represents separate functionality aspects. 

4) Number of interfaces (NI). Number of interfaces fitness function refers to the total number 

of interfaces in the modularization ℳ. 

𝑁𝐼(ℳ) = |ℳ| 

The number of interfaces should be maximized in order to avoid having all operations in a single 

large interface. 

5) Average number of operations per interface (AOI). The average number of operations per 

interface in a modularization ℳ: 

𝐴𝑂𝐼(ℳ) =
∑∀𝑠𝑖∈ℳ 𝑆𝑖𝑧𝑒(𝑠𝑖)

|ℳ|
 

Where 𝑆𝑖𝑧𝑒(𝑠𝑖) returns the number of operations in the interface 𝑠𝑖. This fitness functiong ought 

to be maximized to avoid having too many interfaces and over-splitting the Web services.  aim at 

appropriately, equal-sized interfaces. 

One can notice that the first three objective functions are conflicting by nature making 

service interface remodularization more challenging to find the best balance between coupling and 

cohesion. On the other hand, looking at the last two fitness function, decreasing the average 

number of operations per interface (AOI) might result in a large number of interfaces (NI), leading 

to several scattered core abstractions. By introducing these two conflicting fitness functions, the 

solution set’s diversity is increased regarding interface numbers. In another word, our service 

interface remodularization approach provides solutions with more interface size choices to the 

developers while providing the design that is cohesive and easier to understand or reuse by them. 

C. Evolutionary Operators 
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Population-based search algorithms require evolutionary operators to improve the fitness 

functions of the solutions in the population at each iteration. Evolutionary operators such as 

crossover and mutation aim to promote the search towards to the optimal solutions, in our case, to 

the best remodularizations. The evolutionary operators are used to creating new solutions based 

on the existing one/ones. 

The crossover operator is using more than one solution to create the new and different 

solutions, e.g., re-combining solutions into ones. In our adaptation, we use a single, random cut-

point crossover to construct offspring solutions. The cut-point selects and splits at random two-

parent solutions. Then to perform crossover action, swap the first or second part of the solutions, 

so that two new child solutions are created based on the existing two. An example of crossover is 

depicted in Figure 54. 

 

Figure 54 An example of crossover. 

The mutation operator is used to introduce minor random changes into the parent solution. 

This operator promotes the algorithm into the location of the search space that would not be 

reachable through recombination alone and avoids the convergence of the population towards a 

few elite solutions. With Web service interface remodularization, we define two types of mutation 

operator to guide the search. The first mutation operator that picks at random one or more positions 

from their integer array and replaces them by other ones randomly. The second mutation operator 
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picks two random positions with different integer then swap them. The first operator is same as 

moving one or more operations to a new interface, while the second operator is equal to swap two 

operations in the different interfaces. The examples of these two operators are in Figure 55. These 

two mutation operators are randomly () selected to perform during the mutation stage. 

 

 

Figure 55 The examples of mutation. 

Note that, to be valid, crossover and mutation operators should ensure that (i) each 

operation is assigned to a unique interface, and (ii) each interface should contain more than one 

operation ( 𝑚𝑖𝑛𝑆𝑖𝑧𝑒 = 2 ). If any child solution is failed to pass the validation, a new 

crossover/mutation operator should be applied to the parent solutions. In addition, when applying 

crossover and mutation operators we ensure the validity of the solution using a repair function that 

eliminates the redundancy when assigning operations to the interfaces. Thus, we ensure that an 

operation is not assigned to two interfaces at the same time after applying the change operators. 

6.5 Improving Web Services Design Quality Using Heuristic Search and 

Machine Learning 

The evolution of Web services may have a negative impact on the design quality of the 

interface by concatenating many non-cohesive operations that are semantically unrelated. The 

Web services interface design becomes unnecessarily complex for users to find relevant operations 

to be used in their services-based systems. An example of well-known interface design defect is 
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the God object Web service (GOWS) [10], [12]. GOWS implements many operations related to 

different business and technical abstractions in a single service interface leading to low cohesion 

of its operations and high unavailability to end users because it is overloaded. Indeed, the 

modularization process of how operations should be exposed through a service interface can have 

an impact on the performance, popularity and reusability of the service and it is not a trivial task.  

Recently, several studies provided solutions to improve the design of Web service 

interfaces for the users/subscribers [1], [2], [5], [12], [35], [69]. However, most of these studies 

addressed the problem of the detection of design defects of Web services interface based on 

declarative rule specification and not the correction step to fix these design defects. In these 

existing techniques, Web services modularization solutions are evaluated based on the use of 

quality metrics. However, the evaluation of the design quality is subjective and difficult to 

formalize using quality metrics with the appropriate threshold values due to several reasons.  

Several challenges could be discussed around the modularization of Web services 

interface. First, there is no consensus about the definition of Web services design defects [10], 

[35], [135], [136] also called antipatterns, due to the various user behaviors and contexts. Thus, it 

is difficult to formalize the definitions of these design violations in terms of quality metrics then 

use them to evaluate the quality of a Web service modularization solution. Second, existing studies 

do not include the user in the loop to analyze the suggested modularization solutions and give their 

feed-back during the design improvement process. Third, the computational complexity of some 

Web services quality metrics is expensive thus the defined fitness function to evaluate proposed 

Web services design changes can be expensive. Fourth, deciding on how to decompose/modularize 

an interface is subjective and difficult to automate since it is required to integrate the feedback of 

users during the modularization process Finally, quality metrics can just evaluate the structural 
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improvements of the design after applying the suggested interface changes but it is difficult to 

evaluate the semantic coherence of the design without an interactive user interpretation.  

We propose, in this work, a Genetic Algorithm (GA)-based learning algorithm [44] for 

Web services interface modularization based on Artificial Neural Networks (ANN) [45]. The 

proposed approach is based on the important feedback of the user to guide the search for relevant 

Web services modularization solutions using predictive models. To the best of our knowledge, the 

use of predictive models has not been used to improve the quality of Web services design. In the 

proposed approach, we are modeling the user’s design preferences using ANN as a predictive 

model to approximate the fitness function for the evaluation of the Web services modularization 

solutions. The user is asked to evaluate manually Web services interface modularization solutions 

suggested by a Genetic Algorithm (GA) for few iterations then these examples are used as a 

training set for the ANNs to evaluate the solutions of the GA in the next iterations.  

We evaluated our approach on a set of 82 real-world Web services, extracted from an 

existing benchmark [5], [12]. Statistical analysis of our experiments shows that our interactive 

approach performed significantly better than the state-of-the-art modularization techniques [5], 

[69] in terms of design improvements and fixing design defects. The primary contributions of this 

work can be summarized as follows:  

This contribution introduces a novel way to modularize and improve the design quality of 

Web services using interactive predictive modeling optimization. The proposed technique supports 

the adaptation of interface design solutions based on the user without the need to use specific 

design quality metrics. To the best of our knowledge, we propose the first approach to interactively 

generate a modularized Web services interface using predictive modeling techniques. 
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The section reports the results of an empirical study on an implementation of our approach. The 

obtained results provide evidence to support the claim that our proposal is more efficient, on 

average, than existing Web services modularization techniques based on 82 real-world services.  

6.5.1 Approach 

As described in Figure 56, our approach takes as input the Web services interface to 

modularize, list of possible operators (decompose a port Type or merge port Types or move 

operations) and the number of user’s interactions during the search process. It generates as output 

the best sequence of design changes/operators that improves the quality of the Web service 

interface. Our approach is composed of two main components: the interactive component (IGA) 

and the learning module (LGA). 

The algorithm starts first by executing the IGA component where the designer evaluates 

the modularization solutions manually generated by a genetic algorithm (GA) [44] for a number 

of iterations. The user evaluates the feasibility and the efficiency/quality of the suggested 

suggestions one by one since each modularization solution is a sequence of change operator 

(decompose or merge or move). Thus, the user classifies all the suggested design changes 

(modules) as good or not one by one based on his preferences and gives the different port Types 

values between 0 and 1.  

After executing the IGA component for a number of iterations, all the evaluated solutions 

by the user are considered as training set for the second component LGA of the algorithm. The 

LGA component executes an Artificial Neural Network (ANN) to generate a predictive model to 

approximate the evaluation of the interface modularization solutions in the next iteration of the 

GA. Thus, our approach does not require the definition of a fitness function. Alternatively, the 

LGA incorporates many components to approximate the unknown target function f . Those 
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components are the training set, the learning algorithm and the predictive model. For each new 

sequence of refactoring
1kX , the goal of learning is to maximize the accuracy of the evaluation 1ky

. We applied the ANN as being among the most reliable predictive models, especially, in the case 

of noisy and incomplete data. Its architecture is chosen to be a multilayered architecture in which 

all neurons are fully connected; weights of connections have been, randomly, set at the beginning 

of the training. Regarding the activation function, the sigmoid function is applied [45] as being 

adequate in the case of continuous data. The network is composed of three layers: the first layer is 

composed of p input neurons. Each neuron is assigned the value ktx . The hidden layer is composed 

of a set of hidden neurons. The learning algorithm is an iterative algorithm that allows the training 

of the network. Its performance is controlled by two parameters. The first parameter is the 

momentum factor that tries to avoid local minima by stabilizing weights. The second factor is the 

learning rate which is responsible of the rapidity of the adjustment of weights. 

 

Figure 56 Approach overview 

6.5.2 Problem Adaptation 

A. Training Set and Data Normalization 
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Before the learning process, the data used in the training set should be normalized. In our 

case, we choose to apply the Min-max technique since it is among the most accurate techniques. 

We used the following data representation to the GA-based learning problem using ANN for 

software refactoring. Let us denote by E the training set of the ANN. It is composed of a set of 

couples that represent the refactoring sequence and its evaluation. 

   nkyXyXyXyXyXE nnkk ..1,),(),...,,(),..,,(),,(),,( 332211   

kX  is an interface refactoring sequence represented as  
   ptxxxxX kpktkkk ..1,,...,,...,, 21   . 

ky is the evaluation associated to the kth refactoring sequence in the range  1..0ky . 

Let’s denote by O  the matrix that includes numerical values related to the set of 

refactorings and by Y the vector that contains numerical values representing Xk’s evaluations. O  

is composed of n lines and p columns where n is equal to the number of refactoring sequences and 

p is equal to the number of solutions. 
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B. Change operators 

In each search algorithm, the variation operators play the key role of moving within the 

search space with the aim of driving the search towards optimal solutions. For the crossover, we 

use the one-point crossover operator. It starts by selecting and splitting at random two parent 

solutions. Then, this operator creates two child solutions by putting, for the first child, the first part 

of the first parent with the second part of the second parent, and vice-versa for the second child. It 

is important to note that in multi-objective optimization, it is better to create children that are close 

to their parents to have a more efficient search process. For mutation, we use the bit-string mutation 
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operator that picks probabilistically one or more modularization operations from its or their 

associated sequence and replaces them by other ones from the initial list of possible refactorings. 

When applying the change operators, different pre- and post-conditions are checked to ensure the 

applicability of the newly generated solutions such as removing redundant operations or conflicts 

between operations such as assigning the same operation to two different port types. 

6.5.3 Validation 

1) Experimental Setup 

To evaluate the ability of our Web services modularization framework to generate a good 

design quality, we conducted a set of experiments based on 82 real-world web services as described 

in Table 18. the obtained results are subsequently statistically analyzed with the aim of comparing 

our proposal with a variety of existing fully-automated approaches. In this section, we first present 

our research questions and then describe and discuss the obtained results. 

A. Research Questions 

We defined three research questions that address the applicability, performance in comparison to 

existing fully-automated Web services modularization approaches [5], [69] and the usefulness of 

our approach. The three research questions are as follows: 

• RQ1: To what extent can our approach recommend relevant Web services design 

improvements? 

• RQ2: How does our interactive formulation perform compared to fully-automated Web 

services restructuring techniques? 

• RQ3: Can our approach be useful for the users of Web services (the developers of service-

based systems)? 
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To answer these research questions, we considered the best interface design restructuring solutions 

recommended by our approach. To answer RQ1, it is important to validate the proposed 

modularization solutions on the different Web services highlighted in Table 18. We asked a group 

of developers, as detailed in the next section, to manually modularize the design of the different 

interfaces considered in our experiments. Then, we calculated precision and recall scores to 

compare between the generated design and the expected one: 

]1,0[
portTypes suggested 

 portTypes expected  portTypes suggested
PRprecision 




]1,0[
portTypes expected 

 portTypes expected portTypes suggested
RC 


recall

 

When calculating the precision and recall, we consider a two port types are similar if they 

contain the same operations. We divided the participants in groups to make sure that they do not 

use our tool on the Web services that they are asked to manually modularize. 

Another metric that we considered for the quantitative evaluation is the percentage of fixed 

design antipatterns (NF) by the proposed modularization solution. The detection of design 

antipatterns after applying a modularization solution is performed using the detection rules of our 

previous work [3]. Formally, NF is defined as  

]1,0[
nsantipatter design# 

 nsantipatter desing fixed#
NF  

For the qualitative validation, we asked groups of potential users of our Web services 

modularization tool to evaluate, manually, whether the suggested interface design modularizations 

are feasible and efficient at improving the quality of Web services interface design. We define the 

metric Manual Correctness (MC) to mean the number of meaningful Web services interface 

refactorings divided by the total number of recommended refactorings by our tool. MC is given by 

the following equation:  
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operations tionmodulariza proposed#

operations tionmodulariza correct#
MC

 

To answer RQ2, we compared our approach to two other existing fully-automated Web 

services decomposition techniques [5], [69]. Ouni et al. [69] proposed an approach to decompose 

Web services using graph partitioning to improve cohesion. Similarly, Athanasopoulos et al. [5] 

used a greedy algorithm to decompose the interface based on cohesion as well. All these existing 

techniques are fully-automated and do not provide any interaction with the developers to update 

their solutions towards a desired design. We also compared the running time T of the proposed 

algorithm comparing to fully automated techniques. Thus, we used the metrics PR, RC, T and NF 

to perform the comparisons.  

To answer RQ3, we used a post-study questionnaire that collects the opinions of Web 

service developers on our tool as described in the next section. Thus, we asked these participants 

to use both our tool and the automated framework proposed by Ouni et al. [3] on different sets of 

Web services. The participants were asked to make changes, when appropriate, to the final solution 

of the automated approach of Ouni et al. [3]. Thus, we can check whether the interactive 

component of the proposed interactive approach makes a real contribution, or whether the same 

effect can be attained by just fixing the output of the automated remodularization approaches. We 

measured the time spent by the developers on using our interactive approach and the automated 

techniques. Then, we compared between the outcomes of the survey questions for both interactive 

and fully automate techniques. 
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Table 18 Web service statistics 

Web Service Provider #services #operations (min, max) 

FedEx 19 (13, 36) 

Amazon 16 (16, 93) 

Yahoo 18 (11, 41) 

Ebay 12 (13, 37) 

Microsoft 17 (11, 59) 

 

We extracted a set of 82 well-known Web services from an existing benchmark [3], [5] as 

detailed in Table 18. All studied services are widely used in different contexts and provided by 

Amazon, FedEx, Ebay, Microsoft and Yahoo, five major Web service providers. We selected these 

Web services for our validation because they range from medium to large-sized interfaces, which 

have been actively developed and changed over several years. Our study involved 36 participants 

from the University of Michigan to use and evaluate our tool. Participants include 27 master 

students in Software Engineering and 9 Ph.D. students in Software Engineering. All the 

participants are volunteers and familiar with Web services and refactoring in general. The 

experience of these participants on programming ranged from 3 to 17 years. 19 out of the 36 

participants are currently active programmers as well in software industry with a minimum 

experience of 3 years. Participants were first asked to fill out a pre-study questionnaire containing 

nine questions. The questionnaire helped to collect background information such as their role 

within the company, their programming experience, their familiarity with Web services. As part 

of the Software Quality Assurance graduate course, all the participants attended two lectures about 

Web services design quality, modularization and passed five tests to evaluate their performance to 

evaluate and suggest interface design modularization solutions.  

As described in Table 19, we formed 6 groups. Each of the 6 groups is composed by 6 

participants. summarizes the survey organization including the list of Web services and the 

algorithms evaluated by each of the groups. The groups were formed based on the pre-study 



 

 

184 

 

questionnaire and the tests result to make sure that all the groups have almost the same average 

skills. Consequently, each group of participants who accepted to participate in the study received 

a questionnaire, a manuscript guide to help them to fill the questionnaire, the tools and results to 

evaluate the Web services design. Since the application of remodularization solutions is a 

subjective process, it is normal that not all the developers have the same opinion. In our case, we 

considered the majority of votes to determine if suggested solutions are correct or not.  

Table 19 Survey organization 

Groups Web Services 

Group 1 FedEx 

Group 2 Amazon 

Group 3 Yahoo 

Group 4 Ebay 

Group 5 Microsoft, Ebay 

Group 6 FedEx, Yahoo 

 

We executed three different scenarios. In the first scenario, we asked every participant to 

manually modularize a set of Web services. As an outcome of the first scenario, we calculated the 

differences between the recommended modularizations and the expected ones (manually 

suggested by the users/developers). The evaluate the fixed Web services design antipatterns, we 

focus on the ones defined. In the second scenario, we asked the users to manually evaluate the 

recommended solution by our algorithm. We performed a cross-validation between the groups to 

avoid the computation of the MC metric being biased by the developer’s feedback. In the third 

scenario, we collected their opinions of the participants based on a post-study questionnaire that 

will be detailed before in this section. The participants were asked to justify their evaluation of the 

solutions and these justifications are reviewed by the organizers of the study.  

Parameter setting influences significantly the performance of a search algorithm. For this 

reason, for each algorithm and for each Web service, we perform a set of experiments using several 
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population sizes: 20, 30 and 50. We limited the interaction with the user in our approach to a 

maximum of 30. The stopping criterion was set to 1000 evaluations for all algorithms to ensure 

fairness of comparison. The other parameters’ values were fixed by trial and error and are as 

follows: (1) crossover probability = 0.5; mutation probability = 0.2 where the probability of gene 

modification is 0.1. Each algorithm is executed 30 times with each configuration and then the 

comparison between the configurations is done using the Wilcoxon test. To achieve significant 

results, for each couple (algorithm, Web service), we use the trial and error method to obtain a 

good parameter configuration.  

Since metaheuristic algorithms are stochastic optimizers, they can provide different results 

for the same problem instance from one run to another. For this reason, our experimental study is 

based on 30 independent simulation runs for each problem instance of the automated approaches 

and the obtained results are statistically analyzed by using the Wilcoxon rank sum test with a 95% 

confidence level (α = 5%). The latter tests the null hypothesis, H0, that the obtained results of two 

algorithms are samples from continuous distributions with equal medians, against the alternative 

that they are not, H1. The p-value of the Wilcoxon test corresponds to the probability of rejecting 

the null hypothesis H0 while it is true (type I error). A p-value that is less than or equal to α (≤ 

0.05) means that we accept H1 and we reject H0. However, a p-value that is strictly greater than α 

(> 0.05) means the opposite. In fact, for each problem instance, we compute the p-value obtained 

by comparing existing studies  results with our approach ones. In this way, we determine whether 

the performance difference between our technique and one of the other approaches is statistically 

significant or just a random result. The results presented were found to be statistically significant 

on 30 independent runs of the fully-automated approaches using the Wilcoxon rank sum test with 

a 95% confidence level (α < 5%) as detailed in the next sub-section. 
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B. Experiment Results 

Results for RQ1. As described in Figure 57 and Figure 58, we found that a considerable 

number of proposed port types, with an average of more than 81% in terms of precision and recall 

on all the 82 Web services, were already suggested manually (expected refactorings) by the users 

(software development team). The achieved recall scores are slightly higher, in average, than the 

precision ones since we found that some of the port types suggested manually by developers do 

not exactly match the solutions provided by our approach. In addition, we found that the slight 

deviation with the expected port types is not related to incorrect ones but to the fact that different 

possible modularization solutions could be optimal. 

We evaluated the ability of our approach to fix several types of interface design antipatterns 

and to improve the quality. Figure 59 depicts the percentage of fixed code smells (NF). It is higher 

than 82% on all the Web services, which is an acceptable score since users may not be interested 

to fix all the antipatterns in the interface. We reported the results of our empirical qualitative 

evaluation in Figure 60 (MC). As reported in Figure 60, most of the Web services modularization 

solutions recommended by our interactive approach were correct and approved by developers. On 

average, for the different Web services, 88% of the created port types and applied changes to the 

initial design are considered as correct, improve the quality, and are found to be useful by the 

software developers of our experiments. Thus, we found that the slight deviation with the expected 

design is not related to incorrect changes but to the fact that the developers have different 

scenarios/contexts in using the different operations. 

To summarize and answer RQ1, the experimentation results con-firm that our interactive 

approach helps the participants to re-structure their Web service interface design efficiently by 

finding the relevant portTypes and improve the quality of all the 22 Web services. 
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Results for RQ2. Figure 57, Figure 58, Figure 59, and Figure 60 confirm the average 

superior performance of our interactive learning GA approach compared to the two existing fully 

automated Web service modularization techniques [3], [5]. Figure 60 shows that our approach 

provides significantly higher manual correctness results (MC) than all other approaches having 

MC scores respectively between 41% and 62%, on average as MC scores on the different Web 

services. The same observation is valid for the precision and recall as described in Figure 57 and 

Figure 58. The outperformance of our technique in terms of percentage of fixed defects, as 

described in Figure 59, can be explained by the fact that the main goal of existing studies is not to 

mainly fix these defects (not considered in the fitness function by the work of Ouni et al. [3]). 

In conclusion, our interactive approach provides better results, on average, than all existing 

fully-automated Web services modularization techniques (answer to RQ2). 

Results for RQ3. To further analyze the obtained results, we have also asked the 

participants to take a post-study questionnaire after completing the different validation and tasks 

using our interactive approach and the two techniques considered in our experiments. The post-

study questionnaires collected the opinions of the participants about their experience in using our 

approach compared to fully-automated tools. The post-study questionnaire asked participants to 

rate their agreement on a Likert scale from 1 (complete disagreement) to 5 (complete agreement) 

with the following statements: (1) The interactive interface modularization recommendations 

using our predictive modeling approach are a desirable feature to improve the quality of Web 

services interface. (2) The interactive manner of recommending modularization solutions by our 

GA learning approach is a useful and flexible way to consider the user perspective compared to 

fully-automated tools. 
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Figure 57 Median precision (PR)  

 

Figure 58 Median recall (RC) value  

 

Figure 59 Median number of fixed Web service defects (NF) value 

 

Figure 60 Median manual correctness (MC) value 
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Figure 61 Median execution time (T), including user interaction 

The agreement of the participants was 4.6 and 4.2 for the first and second statements 

respectively. This confirms the usefulness of our approach for the users of our experiments. The 

remaining questions of the post-study questionnaire were about the benefits and the limitations 

(possible improvements) of our interactive approach.  

We summarize in the following the feedback of the users. Most of the participants mention 

that our approach is much faster and easy to use compared to the manual restructuring of the 

interface since they spent a long time with manual changes to create port types and move 

operations. Thus, the developers liked the functionality of our tool that helps them to modify a port 

type based on the recommendations. Some participants believe that it will be very helpful to extend 

the tool by adding a new feature to decompose multiple services into interfaces based on the 

dependency between them. Another possibly suggested improvement is to consider the users 

invocation data to restructure the interface. 

In our evaluation, we considered measuring the time spent by the different developers to 

use our tool and automated Web services modularization techniques [3], [5]. We allowed the user 

to fix the solutions proposed by the automated tools to reach an acceptable design. Figure 61 shows 

the average results of the execution time of the different tools per Web service including the 

interaction time. The developers found that automated techniques generate solutions that require a 
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lot of effort to inspect and manually adjust the proposed design. All developers expressed a high 

interest in the idea of the interactive tool that can incorporate their preferences by evaluating 

manually very few solutions.  

6.6 Improving Web Services Design Quality Using Dimensionality Reduction 

Techniques  

6.6.1 Introduction 

In this work, we start from the hypothesis that there may be correlations among any two 

or more objectives (e.g. quality metrics) that are used to evaluate Web service modularization 

solutions. Our approach, based on the PCA-NSGA- II methodology [40], [137],aims at finding the 

best and reduced set of objectives that represents the quality metrics of interest to the domain 

expert. A regular multi-objective NSGA-II algorithm [40] with an initial set of exhaustive metrics 

is executed for a number of iterations then a PCA component analyzes the correlation between the 

different objectives using the execution traces. The number of objectives maybe reduced during the 

next iterations based on the PCA results. The process is repeated several times until a maximum 

number of iterations is reached to generate a set of non-dominated Web services modularization 

solutions. 

6.6.2 Approach 

The general structure of the proposed approach is described in Figure 62. The approach 

takes as inputs a set of quality metrics, several Web services refactoring types, and a Web service 

to refactor. The first component consists of a regular execution of NSGA-II during a number of 

iterations. During this phase, NSGA-II [40]  will try to find the non-dominated solutions balancing 
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the initial set containing all the objectives such as improving the quality metrics of the service and 

minimizing the number of refactorings in the proposed solutions. 

After a number of iterations, the second component of the algorithm is executed to analyze 

the execution traces of the first component (solutions and their evaluations), using PCA [138], to 

check the correlation between the different objectives. When a correlation between two or more 

objectives is detected, only one of them is selected for future iterations of the first component. 

Then, the first component is executed again with the new objective set. 

The whole process of these two components continue until a maximum num- ber of iterations 

is reached. A set of non-dominated refacotoring solutions are proposed to the users with the reduced 

objectives set to select the best Web service refactorings sequence based on his or her preferences. 

 

Figure 62 The proposed approach 

6.6.3 NSGA-II Adaptation 

Objective space dimensionality reduction approaches assume that given a multi-objective 

problem with M  objectives, there is a subset of the objectives that are correlated. To the best of 

our knowledge, very few methodologies have been developed for multi-objective evolutionary 

algorithms towards the reduction of the number of objectives [46]. 

Saxena et al. proposed two dimensionality reduction methodologies based on Principal 

Component Analysis (PCA). Their methodology considers both linear and nonlinear solutions 

[46]. The authors demonstrated that the methodology have some vulnerabilities in finding Pareto-
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optimal front in a 10-objective problem. In [137] a more robust objectives selection approach was 

proposed to improve the performance of both non-linear and linear dimensionality reduction. Not 

only these methodologies can be utilized before and after execution of the MOEA, but the 

computation of the PCA is straightforward for the multi-objective optimization problem. In this 

work, we apply the linear PCA dimensionality reduction technique to the multi/many-objective 

software refactoring problem using NSGA-II. In the remainder of this work, PCA refers to linear 

PCA unless specified otherwise. 

PCA is posed as an eigenvalue-eigenvector problem: the data is recorded over a population 

of individuals of size N  generated and used in the NSGA-II algorithm. This data consists of 

measurement of all the objective function used in the NSGA-II, and represented as a matrix 

 TMfffF ,,,= 21  . A column  TiNiii fff ,,,= 21 f  is the vector representing values for the 

i th objective over the N  individuals, and each entry ijf  of if  is the value of the i -th 

objective for the j -th individual in the population. In this notation, )(T  is the matrix transpose 

operator, and M  is the number of objectives. 

PCA is performed using the correlation or covariance matrix of the standardized dataset 

 TM21 xxxX ,,,=  . This means each entry iiijij fx  )/(=  , where i  and i  are the 

sample mean and standard deviation of if , respectively. Consequently, every row of X  centered 

at zero, and has unit standard deviation. The correlation matrix is given by equation 1, and 

algorithm 3.2 gives an high-level view of the objective reduction procedure.  

 T

M
XXR

1
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A. Refactoring solution representation 

 A solution consists of a sequence of n interface change operations assigned to a set of port 

types. A port type could contain one or many operations but an operation could be assigned to only 

one port type. A vector-based representation is used to cluster the different operations of the 

original interface, taken as input from the WSDL file description, into appropriate interfaces, i.e., 

port types. Figure 63 describes an example of 5 operations assigned to two port types. As output, 

a vector representation is automatically translated by our tool into a graphical interface of the 

modularized Web service. 

 

Figure 63 Solution representation example 

B. Change operators 

In each search algorithm, the variation operators play the key role of moving within the 

search space with the aim of driving the search towards optimal solutions. For the crossover, we 

use the one-point crossover operator. It starts by selecting and splitting at random two parent 
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solutions. Then, this operator creates two child solutions by putting, for the first child, the first part 

of the first parent with the second part of the second parent, and vice versa for the second child. It 

is important to note that in multi-objective optimization, it is better to create children that are close 

to their parents to have a more efficient search process. For mutation, we use the bit-string mutation 

operator that picks probabilistically one or more refactoring operations from its or their associated 

sequence and replaces them by other ones from the initial list of possible refactorings. 

When applying the change operators, different pre- and post-conditions are checked to 

ensure the applicability of the newly generated solutions such as removing redundant operations 

or conflicts between operations such as assigning the same opera-tion to two different port types. 

C. Objective functions and solution evaluation 

We used the 11  quality attributes that are defined in Table 1 along with the number of 

refactorings in the solutions (solution size) as fitness functions of our algorithm. The initial 

iterations of NSGAII-PCA will use all the 12 fitness functions as input then the algorithm will 

reduce the number of objectives by mining the execution traces (the solutions and their 

evaluations). 

6.6.4 Validation 

1) Experimental Setup 

We designed our experiments to address the following research questions:   

• RQ1.: To what extent can the proposed dimensionality reduction approach 

recommends useful Web service refactorings?  

• RQ2.: To what extent does the proposed dimensionality reduction approach reduce the 

number of objectives while recommending useful refactorings?  
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• RQ3.: How does the proposed dimensionality reduction approach perform compared 

to other existing Web services modularization techniques not based on computational 

search [1, 11]?  

To answer RQ1., we considered both automatic and manual validations to evaluate the 

usefulness of the proposed Web service refactorings. For the automatic validation we compared 

the proposed Web service refactorings with the expected ones. The expected refactorings are 

suggested by users (e.g. subjects of our study) to fix existing Web service design defects as detailed 

later.
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For the manual validation, we asked groups of potential users of our tool to manually 

evaluate whether the suggested refactorings are feasible and efficient at improving the services 

quality and achieving their maintainability objectives. We define the metric Manual Correctness 

(MC) that corresponds to the number of meaningful refactorings divided by the total number of 

suggested refactorings. MC is given by the following equation: 

 [0,1]
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 We have also evaluated the ability of our approach to fix design defects, detailed in Section 

2, using the measure NF that corresponds to the number of fixed defects divided by the total 

number of defects. The defects are detected using a set of rules defined in our previous work [3]. 
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To answer RQ2, we compared the number of objectives (NOB), precision, recall and 

manual correctness of our approach to a regular multi-objective algorithm (NSGAII) using the 

same fitness functions adaptation. 

To answer RQ3, We compared our results with a recent state-of-the art approaches by [5], 

[69]. Athanasopoulos et al. proposed a Web service refactoring approach based on a greedy 

algorithm to refactor and split Web service interfaces based on different cohesion measures. Ouni 

et al. proposed a graph decomposition approach for Web services remodularization using coupling 

and cohesion metrics.  

To answer all the above research questions, we conducted our experiment on a benchmark 

of 22 real-world services provided by Amazon18 and Yahoo19. We selected services with interfaces 

exposing at least 10 operations. We chose these Web services because their WSDL interfaces are 

publicly available, and they were previously studied in the literature [5], [57]. Table 20 presents 

our used benchmark. 

Our evaluation involved 14 independent volunteer participants including 6 industrial 

developers and 8 graduate students. In particular, 3 senior developers from Browser Kings20, 3 

developers from Accunet Web Services21, 3 MSc and 5 PhD candidates in Software Engineering. 

We first gathered information about the participant’s background. All participants are familiar with 

service-oriented development and SOAP Web services with an experience ranging from 4 to 9 

years. The participants were unaware of the techniques to be evaluated neither the particular 

research questions, in order to guarantee that there will be no bias in their judgment. 

                                                 
18

 http://aws.amazon.com/ 
19

 developer.searchmarketing.yahoo.com/docs/V6/reference/ 
20

 http://www.browserkings.com 
21

 http://www.accunet.us 
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Table 20 Amazon and Yahoo benchmark overview 

Service interface Provider 

AutoScalingPortType Amazon 

MechanicalTurkRequesterPortType Amazon 

AmazonFPSPorttype Amazon 

AmazonRDSv2PortType Amazon 

AmazonVPCPortType Amazon 

AmazonFWSInboundPortType Amazon 

AmazonS3 Amazon 

AmazonSNSPortType Amazon 

ElasticLoadBalancingPortType Amazon 

MessageQueue   Amazon  

AmazonEC2PortType   Amazon  

KeywordService   Yahoo  

AdGroupService   Yahoo  

UserManagementService   Yahoo  

TargetingService   Yahoo  

AccountService   Yahoo  

AdService   Yahoo  

CompaignService   Yahoo  

BasicReportService   Yahoo  

TargetingConverterService   Yahoo  

ExcludedWordsService   Yahoo  

GeographicalDictionaryService   Yahoo  

 

We performed a set of experiments using several population sizes: 30, 40 and 50. The 

stopping criterion was set to 100,000 fitness evaluations. Each algorithm was executed 30 times 

with each configuration and then comparison between the configurations was performed based on 

precision and recall using the Wilcoxon test with a 95% confidence level ( 5= %). The other 

parameters setting were fixed by trial and error and are as follows: (1) crossover probability = 0.4; 

mutation probability = 0.7 where the probability of gene modification is 0.1. 

2) Experiment results 

We reported the results of our empirical qualitative evaluation in Figure 64 (MC). As 

reported in Figure 64, most of the Web services modularization solutions recommended by our 

approach were correct and approved by developers. On average, for the different Web services, 
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78% of the created port types and applied changes to the initial design are considered as correct, 

improve the quality, and are found to be useful by the software developers of our experiments. The 

highest MC score is 84% and was achieved for the Web service GeographicalDictionary, while 

the lowest score was 67% for AmazonVPCPortType. Thus, this finding indicates that the results 

are independent of the size of the Web services and the number of recommended changes to the 

initial design. 

Since the manual correctness MC metric just evaluates the correctness and not the 

relevance of the recommended solutions, we also compared the proposed modularization changes 

with some expected ones defined manually by the different groups for the different Web services. 

Figure 65 and Figure 66 summarize our findings. We found that a considerable number of proposed 

port types, with an average of more than 76% in terms of precision and recall, were already created 

by the users manually (expected port types). The recall scores are higher than precision ones since 

we found that the port types sug-gested manually by developers could be further decomposed, if 

necessary. This was confirmed by the qualitative evaluation (MC). In addition, we found that the 

slight deviation with the expected design is not related to incorrect changes but to the fact that the 

developers have different scenarios/contexts in using the different operations. 

We evaluated also the ability of our approach to fix several types of design defects and to 

improve the service interface design quality as described in Figure 67 that depicts the percentage 

of fixed defects (NF). It is higher than 77% on all the 22 Web services, which is an acceptable 

score since developers may reject or modify some design changes that fix some de-fects because 

they do not consider some of them as very important (their goal is not to fix all design defects in 

the Web service interface) or because they wanted to focus on improving the cohesion and 
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minimize coupling. Some Web service interfaces, such as AmazonFWSInboundPortType, have a 

higher percentage of fixed code smells with an average of more than 83%. 

To summarize and answer RQ1, the experimentation results confirm that our approach 

helps the participants to restructure their Web service interface design efficiently by finding the 

relevant portTypes and improve the quality of all the 22 Web services. 

 

Figure 64 Median manual correctness value 
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Figure 65 Median precision value over 30 runs 

 

Figure 66 Median recall value over 30 runs 

 

Results for RQ2. Figure 68shows that our approach significantly reduced the number of 

objectives when executed on all the systems. The number of objectives were reduced to only four 
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in several services. The reduced objectives may show the importance of coupling and cohesion 

when identifying refactoring recommendations since they were identified in all the 22 services 

after the reduction of objectives.The number of changes was also selected for all the services after 

the reduction step. Combined with the results of RQ1, it is clear that the proposed NSGAII-PCA 

formulation successfully reduced the number of objectives while generating useful Web services 

refactoring recommendations. 

 

Figure 67 Median number of fixed design defects value 
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Figure 68 Median number of objectives value over 30 runs 

Results for RQ3. Figure 64, Figure 65, Figure 66, and Figure 67 confirm the average superior 

performance of our approach compared to the two existing fully automated Web service 

modularization techniques [1, 11] and also the multi-objective approach combining all the metrics 

together without the use of the PCA component. Figure 64 shows that our approach provides 

significantly higher manual correctness results (MC) than all other approaches having MC scores 

respectively between 48% and 64%, on average as MC scores on the different Web services. The 

same observation is valid for the precision and recall as described in Figure 65, Figure 66. The 

outperformance of our technique in terms of percentage of fixed defects, as described in Figure 

67, can be explained by the fact that the main goal of existing studies is not to mainly fix these 

defects. Existing work are mainly limited to the coupling and cohesion metrisc which may not be 

sufficient to guide the modularization of Web services. In conclusion, our approach provides better 

results, on average, than all existing fully-automated Web services modularization techniques 

(answer to RQ3). 

3) Threats to Validity 
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Threats to Validity. We identify, in the following, several factors that may affect the 

validity of our study. A possible threat to construct validity can be related to the set of ground truth 

to calculate precision and recall with refactorings performed manually by developers. A possible 

threat to construct validity can be related to the set of ground truth to calculate precision and recall 

with refactorings performed manually by developers. An external threat can be related to the 

studied services. Although we used 22 real-world Web services provided by Amazon and Yahoo, 

from different application domains and ranging from 10 to 87 operations, we cannot generalize 

our results to other services and other technologies, e.g., REST services. As part of our future 

work, we plan to test our approach with an extended benchmark of Web services. 

An internal threats to validity can be related to the knowledge and expertise of the human 

evaluators. Inadequate knowledge could lead to limited ability to assess the quality of an interface. 

We mitigate this threat by selecting participants having from 4 to 9 years experience with service-

oriented development and familiar with SOAP Web services. Moreover, to avoid bias in the 

experiment none of the authors have been involved in this evaluation. In addition, we randomized 

the ordering in which the  MOWSIR ,  Athanasopoulos et al.  and random refactorings were shown 

to participants, to mitigate any sort of learning or fatigue effect. 

6.6.5 Conclusion 

In this work, we proposed a dimensionality reduction approach for multi-objective Web 

services remodularization that adjusts the number of considered objectives during the search for 

near optimal solutions. The execution traces of the multi-objective algorithm are analyzed using a 

PCA component to find potential correlation between the objectives (e.g. quality metrics). To 

evaluate the effectiveness of our tool, we conducted a human study on a set of users who evaluated 

the tool and compared it with the state-of-the-art Web services modularization techniques. Our 
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evaluation results provide strong evidence that our technique successfully reduced the initial set 

of large number of objectives/quality metrics. The results also show that our approach outperforms 

several of existing Web services modularization techniques, not based on heuristic search. 

6.7 Interactive Design of Web Services Interface Refactoring  

6.7.1 Introduction 

The decision on how to decompose/modularize an interface is subjective and difficult to 

automate since it is required to integrate the feedback of users during the modularization process. 

In addition, the history of interactions between the users and the current Web service interface 

could be important to understand the dependency between the operations and generate a well-

designed interface [1]. However, these aspects related to the users’ feedback, when improving the 

quality of services interface, were not considered by existing studies.   

In this work, we propose a recommendation approach that dynamically adapts and 

interactively suggests a possible modularization, also called refactoring [27], of the Web services 

interface to developers and takes their feedback into consideration. Our approach uses an 

interactive multi-criteria decision-making algorithm, based on interactive non-dominated sorting 

genetic algorithm (NSGA-II) [105],to find a set of good design interface modularization solutions 

that provide a trade-off between (1) improving several interface design quality metrics (e.g. 

coupling, cohesion, number of portTypes and number of antipatterns), (2) maximizing the 

satisfaction of the interaction constraints learnt from the user feedback during the execution of the 

algorithm, while (3) minimizing the deviation from the initial design. To find a trade-off between 

these different conflicting objectives, there is no single possible modularization solution but a set 

of optimal, i.e., non-dominated, solutions, so-called Pareto front [40]. The challenge at this step is 

how to choose one solution from this front to present to the Web service’s user or developer? The 
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traditional approach is to seek a ‘knee point’ [40] from the front that presents the maximum trade-

off between the different objectives. However, this may ignore the preferences of the user. To 

address this issue, we propose to analyze and explore the Pareto front of possible remodularization 

solutions interactively and implicitly with the developer.  

Our algorithm starts by finding the most frequently-occurring remodularization operations 

among the set of non-dominated solutions. Based on this analysis, a complete interface 

remodularization solution is chosen from the front that best matches the most frequently-occurring 

operations, i.e., the solution that best represents the entire front. The recommended modularization 

operations are then ranked and suggested to the developer one by one. The developer can approve, 

modify or reject each suggested modularization such as moving operations between port types, or 

merging/splitting port types. Each action by the developer participates to guide the search process 

towards a desired solution. For example, if the user rejects to apply a modularization operation, 

the search process will subsequently avoid reconsidering it when creating new solutions. NSGA-

II will continue to execute in the new modified context to repair and evolve the set of good 

remodularization solutions based on the feedback received from the Web services developer.  

We evaluated our approach on a set of 22 real-world Web services, provided by Amazon 

and Yahoo. Statistical analysis of our experiments shows that our dynamic interactive Web 

services interface modularization approach performed significantly better than the state-of-the-art 

modularization techniques [5], [69]. The primary contributions of this work can be summarized as 

follows:  

The work introduces a novel interactive way to modularize and improve the quality of Web 

services using interactive dynamic multi-objective optimization. The proposed technique supports 

the adaptation of interface design solutions based on the user feedback while improving several 
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quality attributes while minimizing the deviation from the initial design. To the best of our 

knowledge, we propose the first approach to interactively generate a modularized Web services 

interface. 

The work reports the results of an empirical study on an implementation of our approach. 

The obtained results provide evidence to support the claim that our proposal is more efficient, on 

average, than existing Web services modularization techniques based on a benchmark of 22 real-

world services. The work also evaluates the relevance and usefulness of the suggested interface 

design improvements for Web service users. 

6.7.2 Approach 

A. Approach Overview 

The goal of our approach is to propose a new dynamic interactive way for users to refactor 

their Web services interface de-sign. The general structure of our approach is sketched in Figure 

69. Our technique comprises two main components. The first component consists of an offline 

phase. It is executed first in the background when the developer uploads the WSDL file to analyze. 

During this phase, the multi-objective algorithm, NSGA-II [40], is executed for several iterations 

to find the non-dominated solutions balancing the three following objectives: 

• Objective 1 maximizes the interface design quality, which corresponds to minimize the 

number of design antipatterns and improve design quality metrics (coupling and cohesion),  

• Objective 2 maximizes the satisfaction of the constraints learnt from the user interaction,  

• Objective 3 minimizes the number of introduced changes to modify the Web service design 

and port types. 

The output of this first step of the offline phase is a set of Web services remodularization 

solutions that optimize the above three objectives. As explained in Algorithms 1 and 2, the second 
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step of the offline phase explores this Pareto front in an intelligent manner using our algorithm to 

rank recommended changes based on the common features between the non-dominated solutions. 

In our adaptation, we assume true the hypothesis that the most frequently occurring 

remodularization operations in the non-dominated solutions are the most relevant ones for 

developers and can fix several antipattern types. Thus, the output of this second step of the offline 

phase is a set of ranked solutions based on this frequency score. 

 
Figure 69 Approach overview 

The second component of our approach is an online phase to manage the interaction with 

the user. It dynamically updates the list of interaction constraints based on the feedback of the 

developer. This feedback can be to accept/apply or modify or reject some of the suggested design 

changes. Thus, the goal is to guide, implicitly, the exploration of the search space of possible Web 

services modularization solutions. Since the interactions constraints are updated dynamically, our 

interactive algorithm allows the implicit move between non-dominated solutions of the Pareto 

front. The list of constraints that could be learnt will be discussed in the next section. For example, 

when a user accepts a port type then the operations of that port type should stay together in the 
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next interactions of the algorithm, but new operations could be moved to that port type. Another 

interaction option for the user is to specify desired values of the different metrics then the multi-

objective algorithm will try to restructure the design of the interface to reach these desired values. 

The interaction algorithm will be explained later in more details. 

After several interactions, users may have modified or rejected a high number of suggested 

design changes or have introduced several new changes manually. Whenever the users stop the 

Web service design modularization session by closing the suggestions window, the first 

component of our approach is executed again on the background to update the last set of non-

dominated modularization solutions by continuing the execution of NSGA-II based on the three 

objectives defined in the first component as described in Algorithm 1 and the new constraints 

summarizing the feedback of the user. In fact, we consider the rejected port types or operations by 

the developer as constraints to avoid generating solutions containing similar port types in the next 

iterations to avoid putting together again the operations of that rejected port types in the next 

iterations of the algorithm. This may lead to reducing the search space and thus a fast convergence 

to better interface modularization solutions. Of course, the next iterations of NSGA-II take as input 

the updated version of the interface after the interactions with users. The whole process continues 

until the developers decide that there is no necessity to restructure the Web service anymore. The 

outcome of the proposed approach that consists of the modularization of the Web service interface 

should have an impact on the implementation of the operations as well. In fact, the operations that 

are grouped together into one sub-interface may give an indication that they should be 

implemented within the same module. Thus, the proposed interface modularization could help the 

services developer to improve the cohesion and coupling of their implementation of services 

operation. 
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B. Interactive NSGA-II 

Most real world optimization problems encountered in practice involve multiple criteria to 

be considered simultaneously. These criteria, also called objectives, are often conflicting. Usually, 

there is no single solution that is optimal with respect to all these objectives at the same time, but 

rather many different designs exist which are incomparable per se. Consequently, contrary to 

Single-objective Optimization Problems (SOPs) where we look for the solution presenting the best 

performance, the resolution of a multi-objective optimization (MOP) yields a set of compromise 

solutions presenting the optimal trade-offs between the different objectives. When plotted in the 

objective space, the set of compromise solutions is called the Pareto front. The resolution of a 

MOP yields a set of trade-off solutions, called Pareto optimal solutions or non-dominated 

solutions, and the image of this set in the objective space is called the Pareto front. Hence, the 

resolution of a MOP consists in approximating the whole Pareto front.  

In this work, we adapted one of the widely used multi-objective search algorithms called 

NSGA-II and integrated our interactive component to it. NSGA-II is a powerful search method 

stimulated by natural selection that is inspired from the theory of Darwin. Hence, the basic idea of 

NSGA-II is to make a population of candidate solutions evolve toward the near-optimal solution 

in order to solve a multi-objective optimization problem. NSGA-II is designed to find a set of 

optimal solutions, called non-dominated solutions, also Pareto set. A non-dominated solution is 

the one which provides a suitable compromise between all objectives without degrading any of 

them. As described in Algorithm 1, the first step in NSGA-II is to create randomly a population P0 

of individuals encoded using a specific representation. Then, a child population Q0 is generated 

from the population of parents P0 using genetic operators such as crossover and mutation. Both 

populations are merged into an initial population R0 of size N. As a consequence, NSGA-II starts 
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by generating an initial population based on a specific representation that will be discussed later, 

using the exhaustive list of interface operations given as input as mentioned in the previous section. 

Thus, this population stands for a set of possible solutions represented as sequences of portTypes 

(including the operations) which are selected and combined. After a number of iterations, the best 

solution (interface design modularization) will be presented to the user to get his feedback then 

the algorithm will continue to execute taking into consideration the new learnt interaction 

constraints. 

To summarize, the main NSGA-II loop goal is to make a population of candidate solutions 

evolve toward the best clustering of interface operations into portTypes, i.e., the sequence that 

minimizes the coupling, number of antipatterns, number of portTypes and number of interface 

changes, and maximizes the cohesion and the satisfaction of the interaction constraints. During 

each iteration t, an offspring population Qt is generated from a parent population Pt using genetic 

operators (selection, crossover and mutation). Then, Qt and Pt are assembled to create a global 

population Rt. Then, each solution Si in the population Rt is evaluated using our three fitness 

functions. We describe in the next sections, the different steps of adaption of the interactive NSGA-

II algorithm to our problem. 

C. Fitness Function 

The generated solutions are evaluated using three fitness functions as detailed in the 

following. 

Objective 1: Maximize the Web services design quality metrics. This fitness function is 

defined as the average of three measures. The first measure is the number of design antipatterns 

that can be detected using the rules defined in our previous work in Chapter 3. The second measure 

is the cohesion that corresponds to the degree to which the operations exposed in a service interface 
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conceptually belong together. We used, in this work, the definition of cohesion described before 

which is based on communicational and textual similarities between the operations within the same 

port type based on cosine similarity and call-graphs. The third measure is coupling within a service 

measures the relationships between implementation elements belonging to the same service . 

Service interface coupling is a measure of how strongly a service interface is connected to or relies 

on other service interfaces. We used the existing definition of coupling based on the similarity 

between the operations within the same port type and the number of calls to other operations in 

different port types. The reason of not treating quality objectives separately are related to redcuing 

the execution time and the number of non-dominated solutions (especially for an interactive 

approach), and also the performance of NSGA-II when the number of objectives becomes high.  

 

Objective 2: Maximize the interaction-based function. This function maximizes the 

satisfaction of the constraints learnt from the interaction with user or minimizes the distance with 

the desired metrics, if specified by the user as described in Figure 69. In case that the user did not 

specify these desired values then we just ignore this component of the fitness function. 

Furthermore, the user has four other types of interaction, as described in Figures 5 and 6, that 

correspond to accept a portType, reject a portType, move operation(s) and delete operation(s). 

Each of these user actions will generate a set of constraints for the exploration of the search space. 

When a port type is accepted, the list of operations in that port type should stay together in the next 

iterations but new operations could be added to the port type. When a port type is rejected by the 

user, a constraint is generated to avoid regrouping together again these operations into the same 

port type. The application of a move operation action will generate a constraint to keep the moved 

operation in the targeted port type in the next iterations. When an operation is deleted, a constraint 



 

 

212 

 

will be generated to avoid putting again that operation in the source port type in the next iterations. 

Formally, the second fitness function to minimize is defined as follows:  

 

This second fitness function is composed by two components. The first component is to 

minimize the distance between the desired metrics value specified by the user (e.g. coupling, 

cohesion, number of portTypes, etc.) and the actual values of the solution to evaluate. The second 

component is to maximize the number of satisfied interaction constraints over the total number of 

learnt constraints. 

Objective 3: Minimize the number of changes comparing to the initial design. The designer 

may have some preferences regarding the degree of the deviation with the initial design of the 

interface. Thus, we formally define the fitness function as the following: 

 

The number of design changes is calculated based on the number of differences between 

the two vector representations of the initial design and the generated one, i.e. the number of 

operations of the new design assigned to different port types compared to the initial design. 
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Figure 70 The proposed Web services design modularization tool 

D. Interactive Recommendations 

The first step of the interactive component is executed as described in Algorithm, to 

investigate if there are some common patterns among the generated non-dominated refactoring 

solutions. The algorithm checks if the optimal refactoring solutions have some common features 

such as similar refactoring operations among most or all the solutions, and a specific common 

order/sequence in which to apply the refactorings. Such information will be used to rank the 

suggested refactorings for developers using the following formula: 

 

Algorithm. The ranking procedure to manage the interactions with the developer (online phase) 
Input 
RNS: Ranked Non-dominated SolutionSet  
Output 
M: Map of refactorings along with their occurrences. 
Begin 
Applied-Refactorings ← Ø; 
Rejected-Refactorings ← Ø; 
For i=1 to |RNS| do 
   ref[i] ← 0; 
End for 
/* Main loop to suggest refactorings one by one to the user*/ 
While |Rejected-Refactorings|< α do 
/* Select index of the the solution with highest rank*/ 
   index ← Max-Rank(RNS); 
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   d ← User-Decision(RNSindex,ref[index]); 
/* If the user has applied or modified the operation*/ 
   If (d = True) then  
         Applied-Refactorings ← Applied-Refactorings ∪ RNSindex,ref[index]; 
/* If the user has rejected the operation*/ 
   else 
         Rejected-Refactorings ← Rejected-Refactorings ∪ RNSindex,ref[index]; 
   End if 
   ref[index] ← ref[index] + 1; 
/* Update solutions indexes */ 
   For i=1 to |RNS| do 
      Update-Rank(RNSi; Applied-Refactorings,Rejected-Refactorings) 
End While 
End   

 

where Rx,y is the refactoring operation number x (index in the solution vector) of solution 

number y, and n is the number of solutions in the front. Si is the solution of index i. All the solutions 

of the Pareto front are ranked based on the score of this measure applied to every solution. 

 

Figure 71 User interactions 

Once all Pareto front solutions are ranked, the second step of the interactive process is 

executed as described in Figure 70. The refactorings of the best solution, in terms of ranking, are 

recommended to the developer based on their order in the vector. Then, the ranking score of the 

solutions is updated automatically after every feedback (interaction) with the developer. Our 

interactive algorithm proposes three levels of interaction as described in Figure 70. The developer 

can check the ranked list of refactorings and then apply, modify or reject the refactoring. If the 

developer prefers to modify the refactoring, then our algorithm can help them during the 

modification process as described in Figure 71. In fact, our tool proposes to the developer a set of 
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recommendations to modify the refactoring based on the history of changes applied in the past and 

the semantic similarity between the port types and operations. For example, if the developer wants 

to modify a move operation refactoring then, having specified the source port type to move, our 

interactive algorithm automatically suggests a list of possible target port types ranked based on the 

history of changes and semantic similarity. This is an interesting feature of our approach since 

developers often know which operation to move, but find it hard to determine a suitable target port 

type. The same observation is valid for the remaining refactoring types. Another action that the 

developers can select is to reject/delete a refactoring from the list. After every action selected by 

the developer, the ranking is updated based on the feedback using the following formula: 

Where Si is the solution to be ranked, the first component consists of the sum of the ranks 

of its operations as explained previously and the second component will take the value of 1 if the 

recommended refactoring operation was applied by the developer, or -1 if the refactoring operation 

was rejected or 0.5 if it was partially modified by the developer. We selected 0.5 as a threshold 

since most of the operations have very few parameters (up-to two parameters) that could be 

modified. The recommended refactorings will be adjusted based on the updated ranking score. 

It is important to note that we calculate the ranking score for each non-dominated solution 

using our ranking measure and then the solution with the highest score is presented refactoring by 

refactoring to the developer. In fact, refactorings tend to be dependent on one another, thus it is 

important to ensure the coherence of the recommended solution. After several modified or rejected 

refactorings, the generated Pareto front of refactoring solutions by NSGA-II needs to be updated 

since the original interface was modified. Thus, the ranking of the solutions will change after every 

interaction. If many refactorings are rejected, the NSGA-II algorithm will continue to execute 

while taking into consideration all the feedback from developers as constraints to satisfy during 
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the search. The rejected refactorings should not be considered as part of the newly generated 

solutions and the new Web service interfaces after refactoring will be considered in the input of 

the next iteration of the NSGA-II. 

In a non-interactive Web services refactoring approach, the set of refactorings, suggested 

by the best-chosen solution, needs to be fully executed to reach the solution’s promised results. 

Thus, any changes applied to the set of refactorings such as changing or skipping some of them 

could deteriorate the resulting design quality. In this context, the goal of this work is to cope with 

the above-mentioned limitation by granting to the developer’s the possibility to customize the set 

of suggested refactorings either by accepting, modifying or rejecting them. The novelty of this 

work is the approach’s ability to consider the developer’s interaction, in terms of introduced 

customization to the existing solution, by conducting a local search to locate a new solution in the 

Pareto Front that is nearest to the newly introduced changes. We believe that our approach may 

narrow the gap that exists between automated and manual Web services refactoring techniques. It 

allows the developer to select the refactorings that best match his/her design preferences. 

6.7.3 Validation 

1) Experimental Setup 

We defined three research questions that address the applicability, performance in 

comparison to existing fully-automated Web services modularization approaches [5], [69], and the 

usefulness of our interactive multi-objective approach. The three research questions are as follows: 

• RQ1: To what extent can our approach recommend relevant Web services design 

improvements? 

• RQ2: How does our interactive formulation perform compared to fully-automated Web 

services restructuring techniques [5], [69]? 
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• RQ3: Can our approach be useful for the users of Web services (the developers of service-

based systems)? 

To answer these research questions, we considered the best interface design restructuring 

solutions recommended by our approach after interactions with the developers as described in the 

previous section. To answer RQ1, it is important to validate the proposed modularization solutions 

on the different Web services highlighted in Table 22. We asked a group of developers, as detailed 

in the next section, to manually modularize the design of the different interfaces considered in our 

experiments. Then, we calculated precision and recall scores to compare between the generated 

design and the expected one:  

 

When calculating the precision and recall, we consider a two port types are similar if they 

contain the same operations. We divided the participants in groups to make sure that they do not 

use our tool on the Web services that they are asked to manually modularize. 

Another metric that we considered for the quantitative evaluation is the percentage of fixed 

design antipatterns (NF) by the proposed modularization solution. The detection of design 

antipatterns after applying a modularization solution. Formally, NF is defined as: 

 

For the qualitative validation, we asked groups of potential users of our Web services 

refactoring tool to evaluate, manually, whether the suggested interface design refactorings are 

feasible and efficient at improving the quality of Web services interface design. We define the 

metric Manual Correctness (MC) to mean the number of meaningful refactorings divided by the 
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total number of recommended refactorings by our tool. The MC metric is computed after the user 

interaction is completed. In fact, the number of correct refactorings includes the number of design 

refactorings applied by developers when using our tool, since they can either apply, modify or 

reject a refactoring recommendation (e.g. created port type). MC is given by the following 

equation:  

 

To avoid the computation of the MC metric being biased by the developer’s feedback, we 

asked the developers to manually evaluate the correctness of the recommended refactorings on the 

Web services that they did not refactor using our tool. 

We considered also some other useful metrics to answer RQ1 that count the percentage of 

Web service refactorings that were accepted (NAC) or rejected (NRE) or applied with some 

modifications (NMO). Formally, these metrics are defined as: 

 

To answer RQ2, we compared our approach to two other existing fully-automated Web 

services decomposition techniques [5], [69]. Ouni et al. [69] proposed an approach to decompose 

Web services using graph partitioning to improve cohesion. Similarly, Athanasopoulos et al. [5] 

used a greedy algorithm to decompose the interface based on cohesion as well. All these existing 

techniques are fully-automated and do not provide any interaction with the developers to update 

their solutions towards a desired design. Thus, we used the metrics PR, RC, and NF to perform the 

comparisons.  
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To answer RQ3, we used a post-study questionnaire that collects the opinions of Web 

service developers on our tool as described in the next section. Thus, we asked these participants 

to use both our interactive tool and the automated framework proposed by Ouni et al. [5] on 

different sets of Web services. The participants were asked to make changes, when appropriate, to 

the final solution of the automated approach of Ouni et al. [5]. Thus, we can check whether the 

"online phase" of the proposed interactive approach makes a real contribution, or whether the same 

effect can be attained by just fixing the output of the automated remodularization approaches. 

Then, we compared between the outcomes of the survey questions for both interactive and fully 

automate techniques.  

Table 21 Studied Web service interfaces 

Service interface  Provider  #operations  

AutoScalingPortType  Amazon 13 

MechanicalTurkRequesterPortType  Amazon 27 

AmazonFPSPorttype  Amazon 27 

AmazonRDSv2PortType  Amazon 23 

AmazonVPCPortType  Amazon 21 

AmazonFWSInboundPortType Amazon 18 

AmazonS3 Amazon 16 

AmazonSNSPortType Amazon 13 

ElasticLoadBalancingPortType Amazon 13 

MessageQueue Amazon 13 

AmazonEC2PortType  Amazon 87 

KeywordService  Yahoo 34 

AdGroupService  Yahoo 28 

UserManagementService  Yahoo 28 

TargetingService Yahoo 23 

AccountService Yahoo 20 

AdService  Yahoo 20 

CompaignService  Yahoo 19 

BasicReportService  Yahoo 12 

TargetingConverterService  Yahoo 12 

ExcludedWordsService  Yahoo 10 
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We used a benchmark of 22 well-known Web services as detailed in Table 21. All studied 

services are widely used in different contexts and provided by Amazon and Yahoo, two major 

Web service providers. We selected these Web services for our validation because they range from 

medium to large-sized projects, which have been actively developed and changed over several 

years. Our study involved 24 participants from the University of Michigan to use and evaluate our 

tool. Participants include 16 master students in Software Engineering and 8 Ph.D. students in 

Software Engineering. All the participants are volunteers and familiar with Web services and 

refactoring in general. The experience of these participants on programming ranged from 2 to 19 

years. 11 out of the 24 participants are currently active programmers as well in software industry 

with a minimum experience of 2 years. Participants were first asked to fill out a pre-study 

questionnaire containing twelve questions. The questionnaire helped to collect background 

information such as their role within the company, their programming experience, their familiarity 

with Web services. In addition, all the participants attended one lecture about Web services design 

quality, modularization and passed five tests to evaluate their performance to evaluate and suggest 

interface design modularization solutions. 

As described in Table 22, we formed 4 groups. Each of the four groups is composed by 6 

participants. Table 22 summarizes the survey organization including the list of Web services and 

the algorithms evaluated by each of the groups. The groups were formed based on the pre-study 

questionnaire and the tests result to make sure that all the groups have almost the same average 

skills. Consequently, each group of participants who accepted to participate in the study received 

a questionnaire, a manuscript guide to help them to fill the questionnaire, the tools and results to 

evaluate the Web services design. Since the application of remodularization solutions is a 

subjective process, it is normal that not all the developers have the same opinion. In our case, we 
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considered the majority of votes to determine if suggested solutions are correct or not. We 

performed a cross-validation between the groups to avoid the evaluation will be biased by the 

developer’s feedback. Thus, the subjects within the same group evaluated only the desiring 

obtained with the feedback of individual of other groups. 

Table 22 Survey organization 

Groups Web Services Algorithms / Approaches 

Group 1 i1-i5 
Interactive approach 

Ouni et al. [4] 

Athanasopoulos et al. [5] 

Group 2 i6-i10 

Group 3 i11-i16 

Group 4 i17-i22 

 

We executed three different scenarios. In the first scenario, we asked every participant to 

manually modularize a set of Web services. As an outcome of the first scenario, we calculated the 

differences between the recommended modularizations and the expected ones (manually 

suggested by the users/developers). To evaluate the fixed Web services design antipatterns, we 

focus on the ones defined. In the second scenario, we asked the users to manually evaluate the last 

recommended solution by our algorithm after the interaction with the user. We performed a cross-

validation between the groups to avoid the computation of the MC metric being biased by the 

developer’s feedback. In the third scenario, we collected their opinions of the participants based 

on a post-study questionnaire that will be detailed before in this section. The participants were 

asked to justify their evaluation of the solutions and these justifications are reviewed by the 

organizers of the study.  

Parameter setting influences significantly the performance of a search algorithm. For this 

reason, for each algorithm and for each Web service, we perform a set of experiments using several 

population sizes: 20, 30, 50, 100 and 200. The stopping criterion was set to 50,000 evaluations for 

all algorithms to ensure fairness of comparison. The other parameters’ values were fixed by trial 
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and error and are as follows: (1) crossover probability = 0.6; mutation probability = 0.3 where the 

probability of gene modification is 0.2; stopping criterion = 50,000 evaluations. Each algorithm is 

executed 30 times with each configuration and then the comparison between the configurations is 

done using the Wilcoxon test. To achieve significant results, for each couple (algorithm, Web 

service), we use the trial and error method to obtain a good parameter configuration.  

Since metaheuristic algorithms are stochastic optimizers, they can provide different results 

for the same problem instance from one run to another. For this reason, our experimental study is 

based on 30 independent simulation runs for each problem instance and the obtained results are 

statistically analyzed by using the Wilcoxon rank sum test with a 95% confidence level (α = 5%). 

The latter tests the null hypothesis, H0, that the obtained results of two algorithms are samples 

from continuous distributions with equal medians, against the alternative that they are not, H1. The 

p-value of the Wilcoxon test corresponds to the probability of rejecting the null hypothesis H0 

while it is true (type I error). A p-value that is less than or equal to α (≤ 0.05) means that we accept 

H1 and we reject H0. However, a p-value that is strictly greater than α (> 0.05) means the opposite. 

In fact, for each problem instance, we compute the p-value obtained by comparing existing studies. 

results with our approach ones. In this way, we determine whether the performance difference 

between our technique and one of the other approaches is statistically significant or just a random 

result. The results presented were found to be statistically significant on 30 independent runs using 

the Wilcoxon rank sum test with a 95% confidence level (α < 5%) as detailed in the next section. 

The Wilcoxon rank sum test verifies whether the results are statistically different or not; 

however, it does not give any idea about the difference in magnitude. To this end, we used the 

Vargha-Delaney A measure which is a non-parametric effect size measure. In our context, given 

the different performance metrics (such as PR, RC, NF, MC, etc.), the A statistic measures the 



 

 

223 

 

probability that running an algorithm B1 (interactive NSGA-II) yields better performance than 

running another algorithm B2 (such as [69].). If the two algorithms are equivalent, then A = 0.5. 

In our experiments, we have found the following results: a) On small Web services our approach 

is better than all the other algorithms based on all the performance metrics with an A effect size 

higher than 0.91; and b) On large Web services, our approach is better than all the other algorithms 

with an A effect size higher than 0.84. 

2) Results and Discussions 

Results for RQ1. As described in Figure 73 and Figure 74, we found that a considerable 

number of proposed port types, with an average of more than 80% in terms of precision and recall 

on all the 22 Web services, were already suggested manually (expected refactorings) by the users 

(software development team). The achieved recall scores are slightly higher, in average, than the 

precision ones since we found that some of the port types suggested manually by developers do 

not exactly match the solutions provided by our approach. In addition, we found that the slight 

deviation with the expected port types is not related to incorrect ones but to the fact that different 

possible modularization solutions could be optimal. 

We evaluated the ability of our approach to fix several types of interface design antipatterns 

and to improve the quality. Figure 75 depicts the percentage of fixed code smells (NF). It is higher 

than 79% on all the 22 Web services, which is an acceptable score since users may not be interested 

to fix all the antipatterns in the interface. Some Web services, such as AmazonSNSPortType, has a 

higher percentage of antipatterns with an average of more than 86%. This can be explained by the 

fact that this Web service interface includes a lower number of antipatterns than others.  

We reported the results of our empirical qualitative evaluation in Figure 72 (MC). As 

reported in Figure 72, most of the Web services modularization solutions recommended by our 
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interactive approach were correct and approved by developers. On average, for the different Web 

services, 89% of the created port types and applied changes to the initial design are considered as 

correct, improve the quality, and are found to be useful by the software developers of our 

experiments. The highest MC score is 94% and was achieved for the Web service 

GeographicalDictionary, while the lowest score was 79% for AmazonVPCPortType. Thus, this 

finding indicates that the results are independent of the size of the Web services and the number 

of recommended changes to the initial design. 

Since the manual correctness MC metric just evaluates the correctness and not the 

relevance of the recommended solutions, we also compared the proposed modularization changes 

with some expected ones defined manually by the different groups for the different Web services. 

Figure 73 and Figure 74 summarize our findings. We found that a considerable number of proposed 

port types, with an average of more than 84% in terms of precision and recall, were already created 

by the users manually (expected port types). The recall scores are higher than precision ones since 

we found that the port types suggested manually by developers could be further decomposed, if 

necessary. This was confirmed by the qualitative evaluation (MC). In addition, we found that the 

slight deviation with the expected design is not related to incorrect changes but to the fact that the 

developers have different scenarios/contexts in using the different operations. 
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Figure 72 Median manual correctness (MC) value over 30 runs 

 

Figure 73 Median precision (PR) value over 30 runs 

We evaluated also the ability of our approach to fix several types of design antipatterns and 

to improve the service interface design quality as described in Figure 75 that depicts the percentage 

of fixed antipatterns (NF). It is higher than 83% on all the 22 Web services, which is an acceptable 

score since developers may reject or modify some design changes that fix some antipatterns 



 

 

226 

 

because they do not consider some of them as very important (their goal is not to fix all design 

antipatterns in the Web service interface) or because they wanted to focus on improving the 

cohesion and minimize coupling. Some Web service interfaces, such as 

AmazonFWSInboundPortType, have a higher percentage of fixed code smells with an average of 

more than 90%. This can be explained by the fact that these Web services include a higher number 

of design antipatterns than others. We have also considered three other evaluation metrics NMO 

(percentage of modified portTypes), NRE (percentage of rejected portTypes) and NAC (percentage 

of accepted portTypes) to evaluate the efficiency of our interactive approach. We collected this 

data using a feature that we implemented in our tool to record all the actions performed by the 

developers during the remodularization sessions. Figure 76 shows that, on average, more than 81% 

of the recommended portTypes were accepted by the developers. In addition, an average of 9% of 

the recommended refactorings were modified by the developers, while 11% of the suggested 

refactorings were rejected by the developers. Thus, our recommendation tool successfully 

suggested a good set of design changes to apply.  

 

Figure 74 Median recall (RE) value over 30 runs 
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To summarize and answer RQ1, the experimentation results confirm that our interactive 

approach helps the participants to restructure their Web service interface design efficiently by 

finding the relevant portTypes and improve the quality of all the 22 Web services.  

 

Figure 75 Median number of fixed Web service antipatterns (NF) value over 30 runs  

Results for RQ2. Figure 72, Figure 73, Figure 74, and Figure 75 confirm the average 

superior performance of our interactive approach compared to the two existing fully automated 

Web service modularization techniques. Figure 72 shows that our approach provides significantly 

higher manual correctness results (MC) than all other approaches having MC scores respectively 

between 48% and 61%, on average as MC scores on the different Web services. The same 

observation is valid for the precision and recall as described in Figure 73 and Figure 74. The 

outperformance of our technique in terms of percentage of fixed antipatterns, as described in 

Figure 75, can be explained by the fact that the main goal of existing studies is not to mainly fix 

these antipatterns (not considered in the fitness function by the work of Ouni et al.). 

Overall the superior performance of our interactive approach can be explained by several 

factors. First, existing studies use only structural indications (quality metrics) to evaluate the 
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remodularization solutions and thus a high number of changes may lead to a semantically 

incoherent Web services design. Our approach reduces the number of semantic incoherencies 

when suggesting refactorings and during the interaction with the developers. Second, the ranking 

component of our approach improved the quality of the suggested refactoring solutions by using 

an interactive approach as compared to a regular NSGA-II where the developers need to select one 

solution from the Pareto front that cannot be updated dynamically. Third, existing work are mainly 

limited to the cohesion metric which may not be sufficient to guide the modularization of Web 

services.  

In conclusion, our interactive approach provides better results, on average, than all existing 

fully-automated Web services modularization techniques (answer to RQ2). 

 

Figure 76 Median percentage of accepted (NAC), modified(NMO) and rejected(NRE) 

portTypes over 30 runs 

Results for RQ3. To further analyze the obtained results, we have have also asked the 

participants to take a post-study questionnaire after completing the different validation and tasks 

using our interactive approach and the two techniques considered in our experiments. The post-

study questionnaires collected the opinions of the participants about their experience in using our 

approach compared to fully-automated tools. The post-study questionnaire asked participants to 
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rate their agreement on a Likert scale from 1 (complete disagreement) to 5 (complete agreement) 

with the following statements: 

The interactive dynamic interface modularization recommendations are a desirable feature 

to improve the quality of Web services interface. 

The interactive manner of recommending modularization solutions by our approach is a 

useful and flexible way to consider the user perspective compared to fully-automated tools. 

The agreement of the participants was 4.9 and 4.6 for the first and second statements 

respectively. This confirms the usefulness of our approach for the users of our experiments. The 

remaining questions of the post-study questionnaire were about the benefits and the limitations 

(possible improvements) of our interactive approach.  

We summarize in the following the feedback of the users. Most of the participants mention 

that our interactive approach is much faster and easy to use compared to the manual restructuring 

of the interface since they spent a long time with manual changes to create port types and move 

operations. Thus, the developers liked the functionality of our tool that helps them to modify a port 

type based on the recommendations.  

Another important feature that the participants mention is that our interactive approach 

allows them to take the advantages of using multi-objective optimization without the need to learn 

anything about optimization and exploring explicitly the Pareto front to select one “ideal” solution. 

The implicit exploration of the Pareto front in an interactive fashion represents an important 

advantage of our tool along with the dynamic update of the recommended design. The participants 

also suggested some possible improvements to our interactive approach. Some participants believe 

that it will be very helpful to extend the tool by adding a new feature to decompose multiple 
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services into interfaces based on the dependency between them. Another possibly suggested 

improvement is to consider the users invocation data to restructure the interface. 

3) Threats to Validity 

Conclusion validity is concerned with the statistical relationship between the treatment and 

the outcome. The parameter tuning of the different computational search algorithms used in our 

experiments creates another internal threat that we need to evaluate in our future work. The 

parameters' values used in our experiments are found by trial-and-error. However, it would be an 

interesting perspective to design an adaptive parameter tuning strategy for our approach so that 

parameters are updated during the execution to provide the best possible performance. In addition, 

our multi-objective formulation treats the different types of quality metrics such as coupling and 

cohesion with the same weight in terms of complexity when calculating one of the fitness 

functions. However, some quality metrics can be more important than others when evaluating a 

Web service design but we considered both coupling and cohesion as equally important. The same 

observation is valid for the different types of considered design antipatterns. Another threat is 

related to the use of our previous work to detect antipatterns which may include few false positive. 

However, this threat may not have a high impact on the validity of the results since the different 

proposed refactorings were manually validated by the participants but some of the rejected 

recommendations by the developer are related to the detected antipatterns.  

Internal validity is concerned with the causal relationship between the treatment and the 

outcome. We dealt with internal threats to validity by performing 30 independent simulation runs 

for each problem instance. This makes it highly unlikely that the observed results were caused by 

anything other than the applied multi-objective approach. The second internal threat is related to 

the variation of correctness and speed between the different groups when using our approach and 
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the other tools. In fact, our approach may not be the only reason for the superior performance 

because the participants have different programming skills and familiarity with Web services and 

tools. To counteract this, we assigned the developers to different groups per their programming 

experience to reduce the gap between the different groups and we also adapted a counter-balanced 

design.  

Construct validity is concerned with the relationship between theory and what is observed. 

The different developers involved in our experiments may have divergent opinions about the 

recommended modularizations in terms of correctness and readability. We considered in our 

experiments the majority of votes from the developers. For the selection threat, the participant 

diversity in terms of experience could affect the results of our study. We addressed the selection 

threat by giving a lecture and examples of Web services modularization already evaluated with 

arguments and justification. 

External validity refers to the generalizability of our findings. In this study, we performed 

our experiments on eight different widely used Web services belonging to different domains and 

having different sizes. However, we cannot assert that our results can be generalized to other Web 

service, and to other technologies or practitioners. Future replications of this study are necessary 

to confirm our findings. Further empirical studies are also required to deeply evaluate the 

performance of the interactive NSGA-II using the same problem formulation. The first threat is 

the limited number of participants and evaluated Web services, which externally threatens the 

generalizability of our results. In addition, our study was limited to the use of specific refactoring 

types and types of design antipatterns. Future replications of this study are necessary to confirm 

our findings. Another external threat is the current applicability of the proposed tool only on 
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WSDL interfaces. However, the proposed approach is generic and can be adapted as part of our 

future work to RESTfull since REST is nowadays widely used to implement services. 

6.7.4 Conclusion 

We proposed, in this work, an interactive recommendation tool for Web services interface 

design modularization that dynamically adapts and suggests design changes to developers based 

on their feedback and three objective functions. Our interactive approach allows users to benefit 

from search-based tools without explicitly involving any knowledge about optimization and multi-

objective optimization algorithms. In fact, the exploration of the non-dominated refactoring 

solutions is implicitly performed based on the interaction with the users. The feedback received 

from the users is used to reduce the search space and converge to better design modularization 

solutions. 
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Chapter 7 Conclusion and Future work 

7.1 Conclusion 

To summarize the contributions related to the detection of Web service design defects 

(chapter 3), we introduced multi-objective and bi-level approaches for this problem. We used 

interface, code-level metrics, and also introduced QoS metrics for the first time to this problem. 

We designed fitness functions to guide the search to cover most of the antipatterns example and 

the minimum of good design practices example. We validated all contributions on over 400 real-

world web-services with a median precision and recall over 90% for all three contributions.  

In the work around the detection of changes among service releases (chapter 4), we 

proposed an approach to detect changes during the evolution of Web services. Our genetic 

algorithm approach generates a list of detected changes in terms of composite changes, and not 

atomic ones. We evaluated our approach on a set of 6 popular Web services including more than 

110 releases. We reported the results on the efficiency and effectiveness of our approach to detect 

changes of the evolution of Web services interfaces in terms of precision and recall. 

For the prediction of service evolution (chapter 5), we propose to use machine learning, 

based on Artificial Neuronal Networks, to forecast the evolution of Web services interface design. 

To validate the proposed approach, we collected training data from quality metrics of previous 

releases from 6 Web services. The validation of our prediction approach shows that the predicted 

metric's value, such as the number of operations, on the different releases of the 6 Web services 

were similar to the expected ones with a very low deviation rate. Furthermore, most of the quality 
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issues of the studied Web service interfaces were accurately predicted, for the next releases, with 

an average precision and recall higher than 82%. 

Finally, we proposed many techniques to automatically recommend better service designs 

(chapter 6). The proposed multi-objective and many objective search-based approaches generate 

new service designs based on many quality fitness functions (e.g. interface quality, history-based 

similarity, user preferences and so on). We introduce machine learning techniques to solve the 

increasing complexity of search algorithm. An interactive method is also introduced to better 

evolve the solutions based on user feedback. The feedback received from the users is used to 

reduce the search space and converge to better design modularization solutions. Finally, we 

evaluated our work on over 20 major services provided by Amazon and Yahoo, the statistical and 

survey results show high effectiveness and efficiency of our approaches. 

To conclude, this dissertation introduced, using search-based and machine learning 

algorithms, various approaches to find, predict and correct the Web Services design problems. For 

the methodologies presented in this work, we have applied machine learning techniques to 

interpret, understand or predicted the service evolution; multi-objective evolutionary algorithms 

to search the solutions of defined issue; and objective reduction, bi-level and interactive 

methodologies to reach better convergence to desired solutions. To the best of our knowledge, this 

thesis is the first to apply these technologies to solve these problems in the Web Service filed and 

addresses the problem of refactoring Web services. Based on the validation results, we have 

outperformed state-of-the-art technologies using various evaluation metrics on existing 

benchmarks.  
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7.2 Future Work 

We plan to extend the detection approach to identify business process and work flow 

antipatterns in SBS. We also intend to automate the process of service compositions/selection 

while avoiding antipatterns and improve QoS performance. Future work of Web service prediction 

involves the validation of our prediction technique with additional metrics, Web services and 

developers to conclude about the general applicability of our methodology. Furthermore, we plan 

to extend the prediction approach by defining new risk measures based on the predicted metrics 

value. In addition, we will study of the impact of predicted quality issues on the usability and 

popularity of Web services over time. 

In our future work for services refactoring, we are planning to validate our technique with 

additional objectives and Web services in order to conclude about the general applicability of our 

methodology. Furthermore, we are planning to adapt our dimensionality reduction approach to 

others problems such as Web services composition. Another future research direction related to 

our work is to integrate the developers in the loop when reducing the number of objectives to either 

select which one to eliminate or revise the fitness function formulation (aggregating the 

objectives). 

Finally, we will investigate the use intelligent-based approaches to combine search-based 

algorithms and machine learning to address large-scale services composition challenges. Most 

exsiting large software sytems use multiple layers of work flows while each layer involve the 

compostion of many micro services which are in general hard to evaluate, evolve, or merge with 

new features. We plan to abstract such system into a structured representation and treat each 

service and software compoent as a dimension within that structure. Then, we will define new 

metrics and objectives to evaluate the performance of the micro-services component. 
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