

Intelligent Web Services Architecture Evolution Via An Automated

Learning-Based Refactoring Framework

by

Hanzhang Wang

A dissertation submitted in partial fulfillment

 of the requirements for the degree of

Doctor of Philosophy

(Computer and Information Science)

in the University of Michigan Dearborn

2018

Doctoral Committee:

Assistant Professor Marouane Kessentini, Chair

Professor William Grosky

Professor Bruce Maxim

Associate Professor Brahim Medjahed

Professor Armen Zakarian

Professor Qiang Zhu

Hanzhang Wang

wanghanz@umich.edu

© Hanzhang Wang 2018

 ii

Acknowledgements

Many people have offered me valuable supports during my Ph.D. journey, I am extremely

privileged to have them in my life.

Firstly, I would like to give my sincere gratitude to Dr. Marouane Kessentini, my Ph.D.

advisor who, with extraordinary patience and consistent encouragement, gave me the great help

by providing me with important advices and insights of great value. As a professor who really

cares about his student, he always watches my back and thinks for my future. Under his wise

guidance, not only I successfully accomplished my Ph.D., but also learnt how to success, to love

your family and to help the people around you.

My heartfelt thanks also go to Dr. William Grosky, Dr. Bruce Maxim, Dr. Brahim

Medjahed, and Dr. Qiang Zhu, for their insightful comments and encouragement, but also for the

interesting questions which incented me to widen my research from various perspectives.

I want to thank my fellow labmates for the sleepless nights we were working together

before deadlines, and for all the fun we have had in the last three years. I also want to thank my

friends in US and China, for making my life so vividly beautiful.

A special thank goes to Guozhang Yuan, who truly has faith in me and convinced me to

start doing a Ph.D., his wisdom benefits me in so many ways.

Finally, I would like to thank my parents, Jing Wang and Tianxia Zhang, for their endless

love and selflessly supporting me spiritually and materially throughout my ten years study in

American.

 iii

Table of Contents

Acknowledgements ... ii

List of Tables .. vii

List of Figures .. ix

List of Abbreviations ... xiii

Abstract ... xv

Chapter 1 Introduction .. 1

1.1 Research Context .. 1

1.1.1 Service-oriented Computing .. 1

1.1.2 Web Service Antipatterns .. 2

1.1.3 Web Service Refactoring ... 4

1.2 Research Contributions ... 5

1.2.1 Contribution 1: Detection of Web Service Design Defects ... 6

1.2.2 Contribution 2: Detection of Changes among Service Releases 8

1.2.3 Contribution 3: Prediction of Web Services Evolution ... 8

1.2.4 Contribution 4: Recommendation of Web Services Design Refactoring 9

1.3 Roadmap ... 11

Chapter 2 State of the Art ... 12

2.1 Introduction: Software and Web Service Design Defects .. 12

2.1.1 Software Code smells .. 12

2.1.2 Web Service Design Defects ... 13

2.2 Detection of Web Service Design Defects .. 17

2.2.1 Software Code Smell Detection ... 17

2.2.2 Web Service Design Defect Detection .. 19

2.3 Detection of Changes among Service Releases .. 20

2.4 Recommendation of Software and Web Service Refactoring .. 21

2.4.1 Search-based Software Refactoring Recommendation .. 21

2.4.2 Web Service Refactoring ... 23

2.5 Conclusion .. 24

 iv

Chapter 3 Detection of Web Service Design Defects ... 26

3.1 Multi-objective Web Service Design Defect Detection .. 26

3.1.1 Introduction .. 26

3.1.2 Multi-Objective Optimization and NSGA-II ... 30

3.1.3 NSGA-II Adaptation .. 34

3.1.4 Validation ... 37

3.1.5 Conclusion ... 43

3.2 Bi-level Identification of Web Service Defects .. 44

3.2.1 Introduction .. 44

3.2.2 Bi-Level Optimization ... 46

3.2.3 Bi-level Approach Overview ... 46

3.2.4 Bi-Level Optimization Adaptation .. 49

3.2.5 Validation ... 50

3.2.6 Conclusion ... 59

3.3 On the Use of Quality of Service for Detecting Bad Design Practices 60

3.3.1 Introduction .. 60

3.3.2 Motivating Example ... 62

3.3.3 Collection of Metric Suite .. 64

3.3.4 Solution Approach ... 67

3.3.5 Validation ... 75

3.3.6 Conclusion ... 82

Chapter 4 Detection of Changes among Service Releases ... 83

4.1 Introduction ... 83

4.2 Approach ... 84

4.2.1 Overview .. 84

4.2.2 Adaptation .. 85

4.2.3 Solution Representation ... 86

4.2.4 Fitness Functions ... 88

4.2.5 Change Operators ... 90

4.3 Validation .. 92

4.4 Conclusion .. 98

Chapter 5 Prediction of Software and Service Defects ... 100

5.1 On the Use of Time Series for Software Refactoring Recommendation 100

5.1.1 Introduction .. 100

5.1.2 Time Series Forecasting ... 102

5.1.3 Approach Overview ... 105

5.1.4 NSGA-II Adaptation .. 107

 v

5.1.5 Validation ... 109

5.1.6 Conclusion ... 115

5.2 Prediction of Web Services Defects and Evolution .. 115

5.2.1 Introduction .. 115

5.2.2 Approach Overview ... 116

5.2.3 Artificial Neural Network Model ... 117

5.2.4 Artificial Neural Network Adaptation ... 118

5.2.5 Validation ... 120

5.2.6 Conclusion ... 130

Chapter 6 Recommendation of Web Service Refactoring .. 132

6.1 Context .. 132

6.2 Web service Interface Refactoring .. 133

6.3 Web Service Interface Remodularization Using Multi-Objective Optimization 137

6.3.1 Approach Overview ... 137

6.3.2 Web Service Interface Modularization Metrics ... 139

6.3.3 NSGA-II Adaptation .. 145

6.3.4 Validation ... 150

6.4 History-based Service Interface Remodularization Using Many-Objective Optimization .. 162

6.4.1 Many-Objective Search-Based Problem .. 162

6.4.2 Approach Overview ... 164

6.4.3 NSGA-III and Problem Adaptation ... 168

6.5 Improving Web Services Design Quality Using Heuristic Search and Machine Learning .. 174

6.5.1 Approach .. 177

6.5.2 Problem Adaptation ... 178

6.5.3 Validation ... 180

6.6 Improving Web Services Design Quality Using Dimensionality Reduction Techniques 190

6.6.1 Introduction .. 190

6.6.2 Approach .. 190

6.6.3 NSGA-II Adaptation .. 191

6.6.4 Validation ... 194

6.6.5 Conclusion ... 203

6.7 Interactive Design of Web Services Interface Refactoring ... 204

6.7.1 Introduction .. 204

6.7.2 Approach .. 206

6.7.3 Validation ... 216

6.7.4 Conclusion ... 232

Chapter 7 Conclusion and Future work .. 233

 vi

7.1 Conclusion .. 233

7.2 Future Work .. 235

Bibliography ... 237

 vii

List of Tables

Table 1 List of quality metrics .. 16

Table 2 State of the art summary .. 24

Table 3 Web services used in the empirical study. ... 39

Table 4 MOGP results on the different Web service. ... 40

Table 5 Web services used in the empirical study .. 51

Table 6 Median precision and recall results based on 30 runs ... 55

Table 7 The collection of metrics used for service defect detection. .. 65

Table 8 Overview of 500 Web services used in the empirical study .. 76

Table 9 List of considered structural metrics .. 88

Table 10 Web service statistics ... 94

Table 11 Systems studied .. 111

Table 12 Web service interface metrics used ... 119

Table 13 Web service statistics ... 123

Table 14 Adopted refactorings of Web Service .. 135

Table 15 Experimental benchmark overview. .. 152

Table 16 Comparison results of WSIRem and Greedy in terms of (a) number of generated

interfaces, (b) precision and (c) recall. .. 157

Table 17 Developer’s evaluation of the interface remodularizations for WSIRem, Greedy, and

random modularization for each service. .. 160

Table 18 Web service statistics ... 183

Table 19 Survey organization ... 184

Table 20 Amazon and Yahoo benchmark overview ... 197

 viii

Table 21 Studied Web service interfaces .. 219

Table 22 Survey organization ... 221

 ix

List of Figures

Figure 1 Overview of the proposed contributions .. 6

Figure 2 A god object Web service (GOWS) example ... 17

Figure 3 High level pseudo code for MOGP .. 28

Figure 4 NSGA-II replacement scheme for a bi-objective maximization case. 33

Figure 5 High level pseudo code for NSGA-II ... 34

Figure 6 Solution representation example. ... 37

Figure 7 Detection results for each antipattern type ... 42

Figure 8 Comparative results of MOGP, Mono-objective GP and SODA-W 42

Figure 9 Bi-level Web service defects detection overview .. 47

Figure 10 Solution representation at the upper level .. 48

Figure 11 Solution representation at the lower level. ... 48

Figure 12 Median precision value over 30 runs on all the 10 Web service categories using the

different detection techniques with a 95% confidence level (α < 5%) ... 55

Figure 13 Median recall value over 30 runs on all the 10 Web service categories using the different

detection techniques with a 95% confidence level (α < 5%) .. 56

Figure 14 The impact of the number of Web service defect examples on the quality of the results

(Precision on the Financial Web services). .. 57

Figure 15 The relevance of detected Web service defects evaluated by the subjects 58

Figure 16 The usefulness of detected Web service defects evaluated by the subjects 58

Figure 17 An example of god object Web service provided by Oracle Taleo. 62

Figure 18 QoS-aware Detection Approach Overview .. 70

Figure 19 Example of NSGA-II solution representation .. 72

 x

Figure 20 Example of Mutation .. 74

Figure 21 Example of Crossover .. 75

Figure 22 Comparative results of multi-objective approaches with and without QoS metrics 79

Figure 23 Comparative results of QoSMO, GA and RS ... 80

Figure 24 Comparative results of QoSMO, PE-A and SODA-W .. 81

Figure 25 Genetic Algorithms for the detection of changes among multiple releases 85

Figure 26 Median precision, recall and manual correctness of detected refactorings by our GA

approach based on 30 independent runs. .. 96

Figure 27 Comparison between the median precision, recall and manual correctness of detected

refactorings by the different approaches based on 30 independent runs. 97

Figure 28 ARIMA steps: Box-Jenkins methodology.. 105

Figure 29 Multi-objective model refactoring: overview ... 106

Figure 30 Representation of an NSGA-II individual .. 107

Figure 31 QMOOD quality attributes median values ... 112

Figure 32 The manual refactoring precision (RP) median values .. 113

Figure 33 The number of refactorings median values .. 113

Figure 34 Average execution time on all the systems .. 114

Figure 35 Prediction approach: overview ... 117

Figure 36 Average error rate (e_rate) on the different Web services ... 124

Figure 37 Average error rate (e_rate) per metric on the different Web services 125

Figure 38 Average error rate (e_rate) of the different metrics on the Web services 125

Figure 39 Average precision and recall of the predicted antipatterns on the different Web services

... 127

 xi

Figure 40 Average precision and recall per antipattern type on the different Web services 127

Figure 41 Average precision and recall on the Web services (except Amazon Simple Queue) per

prediction step ... 128

Figure 42 Motivating Example (Amazon S3) ... 137

Figure 43 Overall WSIRem architecture .. 138

Figure 44 An example of Web service interfaces remodularization solution. 145

Figure 45 An example of a solution encoding .. 146

Figure 46 Crossover operator .. 148

Figure 47 Mutation operator ... 149

Figure 48 An example of Web service interface modularization. .. 149

Figure 49 Quality improvements achieved by WSIRem and Greedy in terms of Cohesion,

Coupling and Modularity. ... 154

Figure 50 Boxplots for the comparison results of WSIRem and Greedy in terms of (a) numer of

generated interfaces, (b) precision and (c) recall. ... 158

Figure 51 Developer’s evaluation of the interface remodularizations for WSIRem, Greedy, and

random modularization. .. 161

Figure 52 Solution encoding ... 165

Figure 53 Pseudo-code of NSGA-III main procedure .. 170

Figure 54 An example of Crossover. .. 173

Figure 55 The examples of Mutation. ... 174

Figure 56 Approach overview .. 178

Figure 57 Median precision (PR) .. 188

Figure 58 Median recall (RC) value ... 188

 xii

Figure 59 Median number of fixed Web service defects (NF) value ... 188

Figure 60 Median manual correctness (MC) value ... 188

Figure 61 Median execution time (T), including user interaction .. 189

Figure 62 The proposed approach ... 191

Figure 63 Solution representation example .. 193

Figure 64 Median manual correctness value .. 199

Figure 65 Median precision value over 30 runs .. 200

Figure 66 Median recall value over 30 runs .. 200

Figure 67 Median number of fixed design defects value .. 201

Figure 68 Median number of objectives value over 30 runs .. 202

Figure 69 Approach overview .. 207

Figure 70 The proposed Web services design modularization tool .. 213

Figure 71 User Interactions ... 214

Figure 72 Median manual correctness (MC) value over 30 runs .. 225

Figure 73 Median precision (PR) value over 30 runs ... 225

Figure 74 Median recall (RE) value over 30 runs ... 226

Figure 75 Median number of fixed Web service antipatterns (NF) value over 30 runs 227

Figure 76 Median percentage of accepted (NAC), modified(NMO) and rejected(NRE) portTypes

over 30 runs... 228

 xiii

List of Abbreviations

AC Automatic Correctness

ANN Artificial Neural Networks

API Application Programming Interface

AR Auto-Regressive

ARIMA Auto-Regressive Integrated Moving Average

ARMA Auto-Regressive Moving-Averagedels

AWS Ambiguous Web Service or Amazon Web Services

BLOP Bi-Level Optimization Problems

BP Back-Propagation

CI

CRUD

 CRUDy Interface

 Create, Read, Update, and Delete

CWS Chatty Web Service

DSL Digital Subscriber Line

DWS Data Web Service

EA Evolutionary Algorithms

FGWS Fine grained Web Service

GA Genetic Algorithms

GOWS God object Web Service

GP Genetic Programing

IBEA Indicator based Evolutionary Algorithm

IDE Integrated Development Environment

MA Moving-Average

MC Manual Correctness

MLP Multi-Layer Perceptron

MNR Maybe It is Not RPC

MOEA/D Multiobjective Evolutionary Algorithm Based on Decomposition

MOGP Multi-Objective Genetic Programming

NLP Natural Language Processing

NP-hard Non-deterministic Polynomial-Time Hard

 xiv

NSGA Non-dominated Sorting Genetic Algorithm

OO Object-Oriented

OOP Object-Oriented Programming

PCA Principal Components Analysis

QoS Quality of Service

REST Representational State Transfer

RPC Remote Procedure Call

RPT Redundant PortTypes

RQ Research Question

RS Random Search

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SOC Service-Oriented Computing

SPEA Strength Pareto Evolutionary Algorithm

SUS Stochastic Universal Sampling

URI Uniform Resource Identifier

W3C World Wide Web Consortium

WS Web Services

WSDL Web service Description Language

XML Extensible Markup Language

 xv

Abstract

Architecture degradation can have fundamental impact on software quality and

productivity, resulting in inability to support new features, increasing technical debt and leading

to significant losses. While code-level refactoring is widely-studied and well supported by tools,

architecture-level refactorings, such as repackaging to group related features into one component,

or retrofitting files into patterns, remain to be expensive and risky. Serval domains, such as Web

services, heavily depend on complex architectures to design and implement interface-level

operations, provided by several companies such as FedEx, eBay, Google, Yahoo and PayPal, to

the end-users.

The objectives of this work are: (1) to advance our ability to support complex architecture

refactoring by explicitly defining Web service anti-patterns at various levels of abstraction, (2) to

enable complex refactorings by learning from user feedback and creating reusable/personalized

refactoring strategies to augment intelligent designers’ interaction that will guide low-level

refactoring automation with high-level abstractions, and (3) to enable intelligent architecture

evolution by detecting, quantifying, prioritizing, fixing and predicting design technical debts.

We proposed various approaches and tools based on intelligent computational search

techniques for (a) predicting and detecting multi-level Web services antipatterns, (b) creating an

interactive refactoring framework that integrates refactoring path recommendation, design-level

human abstraction, and code-level refactoring automation with user feedback using interactive

mutli-objective search, and (c) automatically learning reusable and personalized refactoring

strategies for Web services by abstracting recurring refactoring patterns from Web service releases.

 xvi

Based on empirical validations performed on both large open source and industrial services

from multiple providers (eBay, Amazon, FedEx and Yahoo), we found that the proposed

approaches advance our understanding of the correlation and mutual impact between service

antipatterns at different levels, revealing when, where and how architecture-level anti-patterns the

quality of services. The interactive refactoring framework enables, based on several controlled

experiments, human-based, domain-specific abstraction and high-level design to guide automated

code-level atomic refactoring steps for services decompositions. The reusable refactoring strategy

packages recurring refactoring activities into automatable units, improving refactoring path

recommendation and further reducing time-consuming and error-prone human intervention.

KEYWORDS: Technical debt, Quality of Services, Design Defects, Architecture Evolution, Web

Service Refactoring, Search-based Software Engineering.

 1

Chapter 1 Introduction

1.1 Research Context

1.1.1 Service-oriented Computing

The Service-Oriented Computing (SOC) is becoming the leading edge of modern software

engineering and it is increasingly adopted in the software industry. Services are, in general,

provided by third-parties who only expose services interfaces to the outer world. These services

are commonly treated as “black-boxes” with abstract interfaces constituting the only visible part

of the system. The interfaces are the main source of interactions with the user to adopt the services

in real-world applications. Thus, poorly designed service interfaces may have a negative effect on

all these applications using the services. A well-designed interface can accelerate project schedules

and make the Service Oriented Architecture (SOA) solution more responsive to business needs.

Indeed, service interfaces with well-defined abstractions and cohesive operations are easy to

comprehend and reuse in business processes [1].

A Web Service is defined according to the W3C (World Wide Web Consortium), as “a

software application identified by a URI, whose interfaces and bindings are capable of being

defined, described, and discovered as XML artefacts. For SOAP web service, its interface is

described as a WSDL (Web service Description Language) document that contains structured

information about the Web service’s location, its offered operations, the input/output parameters,

etc.” A Web service interface corresponds to a WSDL port type, which is the most important

WSDL element. A Web service has at least one interface. This WSDL element describes a Web

 2

service, the operations that can be performed, and the messages that are involved. It can be

compared to a function library (or a module or a class) in a traditional programming language.

In the context of implementing SOA solutions, the structure of a service interface is critical.

Like any other software systems, Web services need to be changed and updated frequently to add

new functionalities in response to client needs [2]. For example, a hotel management Web service

must, over time, offer new features, become more reliable and respond faster. However, these

continuous changes may lead to increase the complexity of the service interfaces and even taking

them away from their original design [2]. This may in turn introduce side effects known as

antipatterns – symptoms of bad design and implementation practices that often lead to several

usability, understandability and maintainability problems as well as runtime errors [3]. YouTube,

eBay, Google, FedEx, PayPal, and many other companies are leveraging these Web Services in a

reusable, distributed and portable fashion that can be invoked by the users [4]. SBSs evolve over

time to meet new requirements or to fix bugs. Such continuous changes may have a negative

impact on the quality of the services.

1.1.2 Web Service Antipatterns

A common bad design practice, i.e., antipattern, that often appear in real-world Web

services is to group together a large number of semantically unrelated operations in a single

interface [3], [5]. Most of existing interfaces tend to cover several distinct core abstractions and

[3]processes, leading to many operations associated with each abstraction. This inappropriate

service modularization will result in poorly designed applications that tend to be hard to use,

implement, maintain and evolve [6]–[8].

Best practice for service design suggests that services should expose their operations in a

modular way, where each module, i.e., interface, defines operations that handle one abstraction at

 3

a time [6], [9]. Service interfaces will consequently exhibit low coupling and high cohesion [10].

Low coupling means that a service interface is independent to other interfaces, allowing an

effective reuse. Cohesion refers to how strongly related the operations themselves are. High

cohesion means that the service operations are related as they operate on the same, underlying core

abstraction.

Service’s providers always try to improve the quality of their service interface descriptions

to ensure best practice of third-party reuse [3]. Although this observation might sound obvious,

developers tend to take little care of their service WSDL descriptions as several researchers have

pointed out [5] Search-based web service antipatterns detect [3], [11]. Most of these existing

descriptions are designed in only one interface regrouping all the operations together.

Web service bad design practices and antipatterns have been recently studied, and different

approaches have been proposed to discover Web service interfaces suffering from bad design

practices [3], [11]–[13]. However, fixing these antipatterns is still unexplored and it is a manual,

complex, time-consuming and error-prone task. Indeed, designing a service interface with the right

number of interfaces, i.e., port types, and an appropriate assignment of operations to port types is

a non-trivial task especially when developers are under pressure and stress to meet several release

deadlines [5], [14], [15]. In fact, the number of operation combinations to explore is exponentially

high, leading to a large and complex search space.

Unlike the area of object oriented design [16]–[25], there has been recently few studies

focusing on the study of bad design practices for web services interface [3], [11], [13], [26]. The

vast majority of these work relies on declarative rule specification. In these settings, rules are

manually defined to identify the key symptoms that characterize an interface design defect using

combinations of mainly quantitative metrics. For each possible interface design defect, rules that

 4

are expressed in terms of metric combinations need high calibration efforts to find the right

threshold value for each metric. Another important issue is that translating symptoms into rules is

not obvious because there is no consensual symptom-based definition of design defects [13]. These

difficulties explain a large portion of the high false-positive rates reported in existing research [11].

Recently, a heuristic-based approach based on genetic programming [3] is used to generate design

defects detection. However, such approaches require a high number of interface design defect

examples (data) to provide efficient detection rules solutions. In fact, design defects are not usually

documented by developers. In addition, it is challenging to ensure the diversity of the examples to

cover most of the possible bad-practices.

1.1.3 Web Service Refactoring

Software refactoring is defined by Fowler [27] as “the process of changing the internal

structure of a software to improve its quality without altering the external behavior”. Refactoring

is recognized as an essential practice to improve software quality. Dudney et al. [10] have defined

an initial catalog of refactoring operations for Web services including Interface Partitioning,

Interface Consolidation, Bridging Schemas or Transforms and Web Service Business Delegate.

Despite being commonly used in the Object-Oriented Programming (OOP) paradigm and widely

supported by OOP integrated development environments (IDEs), refactoring is still unexplored in

the context of service-oriented computing (SOC). In fact, SOC refactoring is not a trivial case of

recoding existing OOP refactoring techniques.

Despite the extensive adoption of Web service technologies, very few studies has been

proposed for the first step of the refactoring process which is the detection of antipatterns [26].

Indeed, the vast majority of existing work in Web services antipattern detection merely attempts

to provide definitions and/or the key symptoms that characterize common antipatterns. Recent

 5

works [11], [12] rely on a declarative rule-based language to specify antipattern symptoms at a

higher-level of abstraction using combinations of quantitative (metrics), structural, and/or lexical

information. However, in an exhaustive scenario, the number of possible antipatterns to be

characterized manually and formulated with rules can be large. To make the situation worse, it is

difficult to find a consensus to characterize and formulate such symptoms. For these reasons, the

detection task is still mainly a manual, time-consuming and subjective process.

1.2 Research Contributions

Figure 1 summarizes the different contributions of this work, published in 11 venues (3

journals: IEEE Transaction on Services Computing [28], ACM Transactions on Internet

Technology [29], and ACM Transactions on the Web [30], and 8 conferences: 3*ICWS2017 [31]–

[33], 1*ICSOC2017 [34], 2*ICSOC2016 [35], [36], 1*ICWS2016 [37], 1*MEDES2015 [38])

related to the prediction, detection and correction of Web services design defects based on various

intelligent computational search and machine learning techniques. In the following, we will

summarize the aims of each contribution.

 6

Figure 1 Overview of the proposed contributions

1.2.1 Contribution 1: Detection of Web Service Design Defects

Several quality metrics can be used to capture the structural and semantic attributes of the

Web services, and can be a reliable indicator of the quality of design [12]. These quality indicators

can then be used to quantitatively estimate and reflect the design signatures of Web Services

architecture in terms of many metrics. The antipatterns detection process usually involves finding

the fragments of the design which violate these metrics. In this contribution, we used a set of static

and Web service and dynamic QoS metrics [39]. Static metrics aim at measuring the structural

properties of Web services in both the interface (WSDL) and code levels, whereas QoS metrics

aim at invoking the Web services and measuring different properties, e.g., response time.

Many metric combinations are possible, so the detection rules generation process is, by

nature, a combinatorial optimization problem. The number of possible solutions quickly becomes

huge as the number of metrics and possible threshold values increases. A deterministic search is

not practical in such cases, and hence the use of heuristic search is warranted. The dimensions of

 7

the solution space are set by the metrics, their threshold values, and logical operations between

them, e.g., union (metric1 OR metric2) and intersection (metric1 AND metric2). A solution is

determined by assigning a threshold value to each metric.

The manual definition of rules to identify maybe difficult and can be time-consuming. The

main issue with Web service antipattern detection is that there is no general consensus on how to

decide if a particular design violates a quality heuristic. Indeed, there is a difference between

detecting symptoms and asserting that the detected situation is an actual antipattern. Deciding

which Web services are antipattern candidates heavily depends on the interpretation of each

analyst. In some contexts, an apparent violation of a design principle may be consensually accepted

as normal practice. For example, a translation Web service1 may have in its interface only a single

operation translates which is responsible for translating text from one language to another

language. Although this service might be designed properly, from a strict antipattern definition, it

may be considered as a fine-grained Web service.

Another inherent problem is related to the definition of threshold values when dealing with

quantitative information. Indeed, there is no general agreement on extreme manifestations of Web

service antipatterns [13]. That is, for each antipattern, rules that are expressed in terms of metrics

need substantial calibration efforts to find the right threshold value for each metric, above which

an antipattern is said to be detected.

To address or circumvent the above-mentioned issues and challenges, we used multi-

objective heuristic-based and bi-level approaches and integrate QoS information to automatically

detect Web service antipatterns.

 8

1.2.2 Contribution 2: Detection of Changes among Service Releases

In contrast to change tracking approaches, state-based refactoring detection approaches aim

to reveal refactorings some posteriori on the base of the two successively modified versions of a

software artifact. The detection of atomic changes on program code has a long history in computer

science as pointed out by [4], but is still an ongoing research topic [40]. In [11], [41], a very recent

approach for detecting refactorings improving several open issues of previous approaches has been

proposed. In particular, REF-FINDER tool is presented which is capable of detecting complex

refactorings, which comprise a set of atomic refactorings using logic-based rules executed by a

logic programming engine.

In this contribution, we propose a genetic algorithm approach [42] to detect composite

changes between multiple Web service releases. Our approach takes as input an exhaustive list of

possible change types, the initial release and the revised one, and generates as output a list of

detected changes in terms of refactorings (composite changes). A solution is defined as the

combination of refactoring operations that should maximize the structural and textual similarity

between the expected new Web service interface release and the generated one after applying the

refactoring sequence on the initial release. Due to the large number of possible solutions, a search-

based method, based on Genetic Algorithms (GA) is used instead of an enumerative one to explore

the space of possible solutions.

1.2.3 Contribution 3: Prediction of Web Services Evolution

Service-based systems heavily depend on the interface of selected services used to

implement specific features. However, service providers do not know, in general, the impact of

their changes, during the evolution Web services, on the applications of subscribers. The

subscribers are reluctant, in general, to use Web services that are risky and not stable [2]. Thus,

 9

analyzing and predicting Web service changes is critical but also challenging because of the

distributed and dynamic nature of services.

We propose a machine learning approach based on Artificial Neural Networks (ANN) [43]

to predict the evolution of Web services interface from the history of previous releases’ metrics.

The predicted interface metrics value are used to predict and estimate the risk and the quality of

the studied Web services. We evaluated our approach on a set of 6 popular Web services including

more than 90 releases. We reported the results on the efficiency and effectiveness of our approach

to predict the evolution of Web services interfaces and provide useful recommendations for both

service providers and subscribers. The results indicate that the prediction results of several Web

service metrics, on the different releases of the 6 Web services, were similar to the expected ones

with very low deviation rate. Furthermore, most of the quality issues of Web service interfaces

were accurately predicted, for the next releases, with an average precision and recall higher than

82%. The survey conducted with a set of developers also shows the relevance of prediction

technique for both service providers and subscribers.

1.2.4 Contribution 4: Recommendation of Web Services Design Refactoring

The structure of a service interface is critical in SOA. However, developers tend to take

little care of their service WSDL descriptions as several researchers have pointed out [3], [5], [11],

[41]. Most of these existing descriptions are designed in only one interface grouping all the

operations together. To this end, Web service bad design practices and antipatterns have been

recently studied, and different approaches found that several of existing Web service interfaces are

suffering from bad design practices and proposed solutions to detect them [3], [11]–[13]. In this

work, we propose three search-based approaches to contribute Web services refactoring research:

 10

 The first approach uses Genetic Algorithm (GA)-based interactive learning algorithm [44]

for Web services interface modularization based on Artificial Neural Networks (ANN) [45]. The

proposed approach is based on the important feedback of the user to guide the search for relevant

Web services modularization solutions using predictive models. To the best of our knowledge, the

use of predictive models has not been used to improve the quality of Web services design. In the

proposed approach, we are modeling the user’s design preferences using ANN as a predictive

model to approximate the fitness function for the evaluation of the Web services modularization

solutions. The user is asked to evaluate manually Web services interface modularization solutions

suggested by a Genetic Algorithm (GA) for few iterations then these examples are used as a

training set for the ANNs to evaluate the solutions of the GA in the next iterations.

The second approach is based on the PCA-NSGA-II methodology [46], aims at finding the

best and reduced set of objective that represents the quality metrics of interest to the domain expert.

A regular multi-objective NSGA-II algorithm [47] with an initial set of exhaustive metrics is

executed for a number of iterations then a PCA component analyzes the correlation between the

different objectives using the execution traces. The number of objectives maybe reduced during

the next iterations based on the PCA results. The process is repeated several times until a maximum

number of iterations is reached to generate a set of non-dominated Web services modularization

solutions.

Finally, a recommendation approach is proposed that dynamically adapts and interactively

suggests a possible modularization, also called refactoring [27], of the Web services interface to

developers and takes their feedback into consideration. Our approach uses an interactive multi-

criteria decision-making algorithm, based on interactive non-dominated sorting genetic algorithm

(NSGA-II) [40], to find a set of good design interface modularization solutions that provide a

 11

trade-off between (1) improving several interface design quality metrics (e.g. coupling, cohesion,

number of portTypes and number of antipatterns), (2) maximizing the satisfaction of the

interaction constraints learnt from the user feedback during the execution of the algorithm, while

(3) minimizing the deviation from the initial design. To find a trade-off between these different

conflicting objectives, there is no single possible modularization solution but a set of optimal, i.e.,

non-dominated, solutions, so-called Pareto front [40]. The challenge at this step is how to choose

one solution from this front to present to the Web service’s user or developer? The traditional

approach is to seek a ‘knee point’ [40] from the front that presents the maximum trade-off between

the different objectives. However, this may ignore the preferences of the user. To address this

issue, we propose to analyze and explore the Pareto front of possible remodularization solutions

interactively and implicitly with the developer.

1.3 Roadmap

The remainder of this thesis is structured as follows: Chapter 2 reviews the related work

on software codes smells, software refactoring approaches, service design defects, detection of

service changes, investigation of service evolution, and service refactoring. Chapter 3 introduces

our contributions for detecting Web Service design defects. Chapter 4 reports our contribution

related to the detection of changes among service releases. Chapter 5 reports our work on the

prediction of software and services architecture evolution. Chapter 6 describes three contributions

related to the recommendation of Web Service Refactoring. Finally, Chapter 7 presents the

conclusions of this dissertation and outlines the future directions to expand our current work.

 12

Chapter 2 State of the Art

2.1 Introduction: Software and Web Service Design Defects

2.1.1 Software Code smells

Code-smells, also called anti-patterns, anomalies, design flaws or bad smells, are problems

resulting from bad design practices and refer to design situations that adversely affect the software

maintenance. According to Fowler [27], bad-smells are unlikely to cause failures directly, but may

do it indirectly. In general, they make a system difficult to change, which may in turn introduce

bugs. Different types of code-smells, presenting a variety of symptoms, have been studied with

the intent of facilitating their detection and suggesting improvement solutions. In [27], the authors

define 22 sets of symptoms of code smells. These include large classes, feature envy, long

parameter lists, and lazy classes. Each code-smell type is accompanied by refactoring suggestions

to remove it. In this work, we focus on the following seven code-smell types to evaluate our

approach:

• Blob: This is found in designs where one large class monopolizes the behavior of a system

(or part of it), and the other classes primarily encapsulate data. It is a large class that

declares many fields and methods with a low cohesion and has almost no parents and no

children.

• Data Class: This is a class that contains only data and performs no processing on these

data. It is typically composed of highly cohesive fields and accessors.

 13

• Spaghetti Code: This is a code with a complex and tangled control structure. This code-

smell is characteristic of procedural thinking in object-oriented programming. Spaghetti

Code is revealed by classes with no structure, declaring long methods with no parameters,

and utilizing global variables. Names of classes and methods may suggest procedural

programming. Spaghetti Code does not exploit and prevents the use of object-orientation

mechanisms, polymorphism, and inheritance.

• Functional Decomposition: This occurs when a class is designed with the intent of

performing a single function. This is found in code produced by non-experienced object-

oriented developers.

• Schizophrenic class: This occurs when a public interface of a class is large and used non-

cohesively by client methods i.e., disjoint groups of client classes use disjoint fragments of

the class interface in an exclusive fashion.

• Shotgun Surgery: This occurs when a method has a large number of external operations

calling it, and these operations are spread over a significant number of different classes. As

a result, the impact of a change in this method will be large and widespread.

• Feature Envy: This is found when a method heavily uses attributes and data from one or

more external classes, directly or via accessor operations. Furthermore, in accessing

external data, the method is intensively using data from at least one external capsule.

2.1.2 Web Service Design Defects

A SOAP or Restful Web service has at least one interface. For example, a typical SOAP

Web service interface corresponds to a WSDL port type, which is the most important WSDL

element. This WSDL element describes a Web service, the operations that can be performed, and

 14

the messages that are involved. It can be compared to a function library (or a module or a class) in

a traditional programming language.

Antipatterns are symptoms of poor design and implementation practices that describe bad

solutions to recurring design problems. They often lead to software which is hard to maintain and

evolve [48]. Different types of antipatterns presenting a variety of symptoms have been recently

studied with the intent of improving their detection and suggesting improvements paths [10], [11],

[13]. Web service interface antipatterns/defects are defined as bad design choices that can have a

negative impact on the interface quality such as maintainability, changeability and

comprehensibility which may impacts the usability and popularity of services [10], [13]. They can

be also considered as structural characteristics of the interface that may indicate a design problem

that makes the service hard to evolve and maintain, and trigger refactoring [4]. In fact, most of

these defects can emerge during the evolution of a service and represent patterns or aspects of

interface design that may cause problems in the further development of the service. In general,

they make a service difficult to change, which may in turn introduce bugs. It is easier to interpret

and evaluate the quality of the interface design by identifying different defects definition than the

use of traditional quality metrics. To this end, recent studies defined different types of Web

services design defects [4], [10], [13]. In our experiments, we focus on the eight following Web

service defect types:

• God object Web service (GOWS): implements a high number of operations related to

different business and technical abstractions in a single service.

• Fine grained Web service (FGWS): is a too fine-grained service whose overhead

(communications, maintenance, and so on) outweighs its utility.

 15

• Chatty Web service (CWS): represents an antipattern where a high number of operations

are required to complete one abstraction.

• Data Web service (DWS): contains typically accessor operations, i.e., getters and setters.

In a distributed environment, some Web services may only perform some simple

information retrieval or data access operations.

• Ambiguous Web service (AWS): is an antipattern where developers use ambiguous or

meaningless names for denoting the main elements of interface elements (e.g., port types,

operations, messages).

• Redundant PortTypes (RPT): is an antipattern where multiple portTypes are duplicated

with the similar set of operations.

• CRUDy Interface (CI): is an antipattern where the design encourages services the RPC-

like behavior by declaring create, read, update, and delete (CRUD) operations, e.g.,

createX(), readY(), etc.

• Maybe It is Not RPC (MNR): is an antipattern where the Web service mainly provides

CRUD-type operations for significant business entities.

We choose these defect types in our experiments because they are the most frequent and

hard to detect [3], [11], [26], cover different maintainability factors, due to the availability of defect

examples and to compare the performance of our detection technique to existing studies [3][11].

However, the proposed approach in this work is generic and can be applied to any type of defects.

The defects detection process consists in finding interface design fragments that violate structural

or semantic properties such as the ones related to coupling and complexity. In this setting, internal

attributes used to define these properties, are captured through several metrics, and properties are

expressed in terms of valid values for these metrics. The list of metrics is described in Table 1.

 16

Table 1 List of quality metrics

Metric Name Definition

NPT Number of port types

NOD Number of operations declared

NAOD Number of accessor operations declared

NOPT Average number of operations in port types

ANIPO Average number of input parameters in operations

ANOPO Average number of output parameters in operations

NOM Number of messages

NBE number of elements of the schemas

NCT Number of complex types

NST Number of primitive types

NBB Number of bindings

NBS Number of services

NPM Number of parts per message

NIPT Number of identical port types

NIOP Number of identical operations

COH Cohesion

COU Coupling

AMTO Average meaningful terms in operation names

AMTM Average meaningful terms in message names

AMTMP Average meaningful terms in message parts

AMTP Average meaningful terms in port-type names

ALOS Average length of operations signature

ALPS Average length of port-types signature

ALMS Average length of message signature

In the following, we introduce some issues and challenges related to the detection of the

Web service defects. Overall, there is no consensus on how to decide if a design violates a quality

heuristic. In fact, there is a difference between detecting symptoms and asserting that the detected

situation is an actual design defect. Another issue is related to the definition of thresholds when

dealing with quantitative information. For example, the GOWS defect detection involves

information such as the interface size as illustrated in Figure 2. Although we can measure the size

of an interface, an appropriate threshold value is not trivial to define. An interface considered large

in each service/community of users could be considered average in another. The generation of

detection rules requires a large defect example set to cover most of the possible bad-practice

 17

behaviors. Defects are not usually documented by developers (unlike bugs report and object-

oriented design). Thus, it is time-consuming and difficult to collect defects and inspect manually

large Web services. In addition, it is challenging to ensure the diversity of the defect examples to

cover most of the possible bad-practices then using these examples to generate good quality of

detection rules.

Figure 2 A god object Web service (GOWS) example

2.2 Detection of Web Service Design Defects

2.2.1 Software Code Smell Detection

The code-smell detection process consists in finding code fragments that violate structural

or semantic properties such as the ones related to coupling and complexity. In this setting, internal

attributes used to define these properties, are captured through software metrics, and properties are

 18

expressed in terms of valid values for these metrics. This follows a long tradition of using software

metrics to evaluate the quality of the design including the detection of code-smells. The most

widely-used metrics are the ones defined by Chidamber and Kemerer [49]. In this work, we use

variations of these metrics and adaptations of procedural ones as well including: Weighted

Methods per Class (WMC), Response for a Class (RFC), Lack of Cohesion of Methods (LCOM),

Number of Attributes (NA), Attribute Hiding Factor (AH), Method Hiding Factor (MH), Number

of Lines of Code (NLC), Coupling Between Object classes (CBO), Number of Association (NAS),

Number of Classes (NC), Depth of Inheritance Tree (DIT), Polymorphism Factor (PF), Attribute

Inheritance Factor (AIF), and Number of Children (NOC). Kessentini et al. [22] allows detecting

code-smells using metric-based detection rules independently to their severity, risk or importance

and without predicting the evolution of the code smells. Detection rules are expressed in terms of

metrics and threshold values. Each rule detects a specific defect type and is expressed as a logical

combination of a set of quality metrics/threshold values. These detection rules are

generated/learned from real instances of code-smells using genetic algorithm.

One of the well-known development activities that can help fix code-smells and reduce the

increasing complexity of a software system is refactoring. Fowler [27] defines refactoring as a

disciplined technique for restructuring an existing body of code, altering its internal structure

without changing its external behavior. The idea is to reorganize variables, classes and methods to

facilitate future adaptations and extensions. This reorganization is used to improve different

aspects of software-quality such as maintainability, extensibility, reusability, etc. [50]. For these

precious benefits on design quality, some modern integrated development environments (IDEs),

such as Eclipse, NetBeans, and Refactoring Browser, provide semi-automatic support for applying

the most commonly used refactorings, e.g., move method, rename class, etc. However,

 19

automatically suggesting/deciding where and which refactorings to apply is still a real challenge

in software engineering.

2.2.2 Web Service Design Defect Detection

Comparing to object-oriented code smell, Web service antipattern is a relatively new field.

Few works have proposed to address the problem of SOA antipatterns [10] was the first book

related to this topic in the literature, it provides informal definitions of a list of Web service

antipatterns. Later, Rotem-Gal-Oz described the symptoms of a set of SOA antipatterns in [4].

Then, [13] describes seven popular antipatterns which violate the SOA principles [42], [51], [52]

provide a set of guidelines for service providers to avoid bad practices while writing WSDL

documentations and able to locate eight bad practices in writing WSDL for Web services. Beside

the definition and guidelines of service antipattern, there are also several studies related to the

detection part. Moha et al. proposed SODA [53], a rule-based approach for SCA systems (Service

Component Architecture) in . Then, [11] extended this work for service antipatterns in SODA-W.

Similar to DECOR [54], the proposed approach rely on a declarative rule specification using a

DSL to identify the key antipattern symptoms of antipatterns. In another work [55], authors created

and reviewed a repository of 45 general antipatterns in SOA, and aim to help developers

understand and avoid potential problems. [56] has proposed an approach to prevent antipattern

during the phase of WSDL documentation generation. Recently, several search-based approaches

have been proposed. [12] uses genetic programming to generate detection rules based on the

interface metrics of service antipattern examples, and later extend in [3] which use cooperative

parallel evolutionary algorithms and brings the code-level metrics into the process.

The first limitation of exsiting work is lack of alternative solutions based on conflict

objectives(e.g. generalirity and correctness) and users’ preference. Second, the detection rules are

 20

generated based on the exsiting services, the antipattern examples are limited to study. It is difficult

to find the best detection rule without generating artificial defects due to the limited training set.

Another limitation of the state-of-the-art approaches is the limited use of dynamic QoS metrics to

measure service quality, more specifically, only response time is being used in [3]. However, in

the dynamic environment of Web services, the QoS performance is critical to both sides of the

service provider and user. The information extracted which is only based on code-level or

structural-level is not enough to understand the full characteristics of Web services. Therefore, the

Web service antipattern detection approaches in the literature are not able to provide a

comprehensive service antipattern detection framework.

2.3 Detection of Changes among Service Releases

Fokaefs et al. [57] used the VTracker tool to calculate the minimum edit distance between

two trees representing two WSDL files. The outcome of the tool is the percentage of interface

changes such as added, changed and removed elements among the XML models of two WSDL

interfaces. Romano et al. [2] proposed a similar tool called WSDLDiff that can identify fewer types

of change than VTracker that may help to analyze the evolution of a WSDL interface without

manually inspecting the XML changes. Aversano et al. [58] analyzed the relationships between

sets of services change during the service evolution based on formal concept analysis. The focus

of the study is to extract relationships among services.

Several studies have been proposed to measure the similarity between different Web

services to search for relevant ones or classify them but not to analyze their evolution. Xing et al.

[59] suggested a tool, called UMLDiff to detect differences between different UML diagram

versions to understand their evolution. Zarras et al. [60] detected evolution patterns and regularities

 21

by adapting Lehman’s laws of software evolution. The study was focused only on Amazon Web

Services (AWS).

Based on this overview of existing work in the area of Web services evolution, the problem

of predicting the evolution of Web services was not addressed before. In addition, the use of

machine learning algorithms in Web services was limited to the classification of Web Services and

their messages into ontologies [61]. These existing machine learning-based studies are not

concerned with the analysis of the releases within the same Web service but more about mining

different Web services (one release per service) to classify them in order to help the composition

of services process for the subscribers based on their requirements.

2.4 Recommendation of Software and Web Service Refactoring

2.4.1 Search-based Software Refactoring Recommendation

Software refactoring is defined by Fowler [27] as “the process of changing the internal

structure of a software to improve its quality without altering the external behavior”. Refactoring

is recognized as an essential practice to improve software quality. Dudney et al. [10] have defined

an initial catalog of refactoring operations for Web services including Interface Partitioning,

Interface Consolidation, Bridging Schemas or Transforms and Web Service Business Delegate.

Despite being commonly used in the Object-Oriented Programming (OOP) paradigm and widely

supported by OOP integrated development environments (IDEs), refactoring is still unexplored in

the context of service-oriented computing (SOC). In fact, SOC refactoring is not a trivial case of

recoding existing OOP refactoring techniques.

Several studies are proposed in the literature to address the refactoring problem. We focus

mainly in this related work on existing search-based refactoring work. These studies are based on

the use of mono, multi and many-objective optimization techniques. The GA was the most used

 22

metaheuristic search algorithm according to a recent survey [62] and recently there has been also

many other algorithms such as NSGA-II [40] and NSGA-III [46]. Hence, we classify those

approaches into two main categories: (1) mono-objective approaches, and (2) multi/many-

objective ones.

In the first category, the majority of existing work combines several metrics in a single

fitness function to find the best sequence of refactorings. In [63], Qayum et. al. considered the

problem of refactoring scheduling as a graph transformation problem. They expressed refactorings

as a search for an optimal path, using Ant colony optimization, in the graph where nodes and edges

represent respectively refactoring candidates and dependencies between them. Recently,

Kessentini et. al. [22] have proposed a single-objective combinatorial optimization using genetic

algorithms to find the best sequence of refactoring operations that improve the quality of the code

by minimizing as much as possible the number of design defects detected on the source code. Kilic

et. al. [64] explore the use of a variety of population-based approaches to search-based parallel

refactoring, finding that local beam search could find the best solutions.

In the second category of work, Harman et. al. [65] have proposed a search-based approach

using Pareto optimality that combines two quality metrics, CBO (coupling between objects) and

SDMPC (standard deviation of methods per class), in two separate fitness functions. The authors

start from the assumption that good design quality results from good distribution of features

(methods) among classes. Their Pareto optimality-based algorithm succeeded in finding good

sequence of move method refactorings that should provide the best compromise between CBO and

SDMPC to improve code quality. Ó Cinnéide et. al. [66] have proposed a multi-objective search-

based refactoring to conduct an empirical investigation to assess some structural metrics and to

explore relationships between them. To this end, they have used a variety of search techniques

 23

(Pareto-optimal search, semi-random search) guided by a set of cohesion metrics. Furthermore,

Ouni et al. [67] have proposed a new multi-objective refactoring to find the best compromise

between quality improvement and semantic coherence using two heuristics related to the

vocabulary similarity and structural coupling.

2.4.2 Web Service Refactoring

One of the first attempts to address service interface refactoring was by Athanasopoulos et

al. [5] (Greedy). The approach was able to improve the cohesion of the Web service interface.

However, the approaches limitation is not being able to perfectly adjust to the developers’ needs

[5]. The reasons could be ignoring the coupling between interfaces which results in much cohesive

but highly connected interfaces, and the greedy algorithm provides only one specific

remodularization solution with fixed interface size which might be not suitable for the developers.

In another study, Mateos et al. [42] and Rodriguez et al. [51], [52] have proposed a set of guidelines

for the providers of Web service to avoid introducing antipattern while constructing the WSDL

files. Based on the heuristics, the authors detected eight bad practices happens while writing the

WSDLs.

A lot of efforts has been devoted to refactoring of object-oriented (OO) applications. My

contributions to this domain contain refactorings that are similar in OO systems, such as Extract

Class which employs metrics to split a large class into smaller, more cohesive [27]. Bavota et al.

[51], [52] have proposed an approach for software refactoring to split a large class into smaller

cohesive classes using structural and semantic similarity measures. Fokaefs et al. [68] proposed an

automated refactoring approach to Extract Class based on a hierarchical clustering algorithm to

locate cohesive subsets of class methods and attributes. However, the Extract Class refactoring is

not applicable in the context of Web services, because of the development paradigm, used

 24

technologies and metrics are different. For example, Web service source code is not publicly

available typically. The Web service providers only expose their interfaces to the clines, compare

to general software refactoring, the main challenge is that less information can be extracted or

gathered; this is also a key reason that we introduce client application releases.

2.5 Conclusion

In this Chapter, several related works are described, as well as their limitations. To

summarize, Table 2 reports the limitations of the existing work. These limitations are addressed

by my research works, and detailly reported in the following chapters.

Table 2 State of the art summary

Existing Work Main Limitations Problem Domain

Rotem-Gal-Oz et

al. [4]
• Manual support to detect antipatterns

• Limited to three types of antipatterns

• Limited set of quality metrics to describe the

symptoms
Detection Service

Antipatterns

Rodriguez et al.

[41]

Ouni et al. [3]
• Limited to interface-level metrics

• Aggregating several conflicting quality

metrics and objectives

• Limited training set and types of antipatterns

and metrics

Palma et al. [11]

Fokaefs et al. [68]
• Limited to the detection of atomic changes

(not complex refactorings)

• Based only on structural similarities

• Limited types of changes to detect

Detection of

Service changes
Aversano et al. [58]

Xing et al. [59]

Athanasopoulos et

al. [5]
• Used only cohesion as a metric to evaluate the

refactoring solutions

• Used only one type of refactoring to

decompose portTypes.

• Generate only one decomposition solution and

do not support the consideration user

preferences.

Web Service

Refactoring
Ouni et al. [69]

 25

Chapter 3 Detection of Web Service Design Defects

3.1 Multi-objective Web Service Design Defect Detection

3.1.1 Introduction

Web services must be carefully designed and implemented to adequately fit in the required

system’s design whilst achieving good quality of services [13]. Indeed, there is no exact recipe to

follow for proper service design. A set of guiding quality principles for service-oriented design

exists, including such principles as service flexibility, operability, composability, and loose

coupling. However, the design of services is strongly influenced by the context, environment and

other decisions the service designers take, and such factors may lead to violations of quality

principles. The presence of programming patterns associated with bad design and programming

practices, known as antipatterns, are indications of such violations [70]. Furthermore, it is widely

believed that such antipatterns lead to various maintenance and evolution problems including an

increased bug rate, fragile design and inflexible code.

Despite the extensive adoption of Web service technologies, very few studies has been

proposed for the first step of the refactoring process which is the detection of antipatterns [26].

Indeed, the vast majority of existing work in Web services antipattern detection merely attempts

to provide definitions and/or the key symptoms that characterize common antipatterns. Recent

works [11], [12] rely on a declarative rule-based language to specify antipattern symptoms at a

higher-level of abstraction using combinations of quantitative (metrics), structural, and/or lexical

 27

information. However, in an exhaustive scenario, the number of possible antipatterns to be

characterized manually and formulated with rules can be large. To make the situation worse, it is

difficult to find a consensus to characterize and formulate such symptoms. For these reasons, the

detection task is still mainly a manual, time-consuming and subjective process.

To address the above-mentioned limitations, we propose in this work a multi-objective

search-based approach for the generation of antipatterns detection rules from both bad and well-

designed service examples. The process aims at finding the optimal combination of quality metrics,

from an exhaustive list of possible metric combinations, that: 1) maximizes the coverage of a set

of antipattern examples collected from different systems; and 2) minimizes the detection of

examples of good-design practices. In fact, it is difficult to ensure that the used design defect

examples cover all possible bad-design practices. Thus, we used good-design practices as another

objective to detect antipatterns that are not similar to the well-designed service examples and

design defect examples. To this end, a multi-objective genetic programming (MOGP) [71] is used

to generate the antipatterns detection rules that find trade-offs between the two above-mentioned

objectives. MOGP is a powerful evolutionary metaheuristic which extends the generic model of

learning to the space of programs [71].

To validate our proposal, we present an empirical evaluation of our approach on a

benchmark of 415 Web services from ten different application domains and we considered 8

common Web service antipattern types. We compared our multi-objective approach with random

search, an existing mono-objective technique [3], [12] and a rule-based approach [11] not based

on heuristic search techniques. Statistical analysis demonstrates the efficiency of our approach in

detecting Web service antipatterns, on average, with a precision score of 94% and a recall score of

 28

92%. To the best of our knowledge, this is the first work to use multi-objective evolutionary

algorithms for the detection of Web service antipatterns.

3.2.1 Multi-Objective Genetic Programming

Genetic Programming (GP) is a powerful evolutionary metaheuristic which extends the generic

model of learning to the space of programs [71]. Differently to other evolutionary approaches, in

GP, population individuals are themselves programs following a tree-like structure instead of fixed

length linear string formed from a limited alphabet of symbols. GP can be seen as a process of

program induction that allows automatically generating programs that solve a given task. Most

exiting work on GP makes use of a single objective formulation of the optimization problem to

solve using only one fitness function to evaluate the solution. Differently to single-objective

optimization problems, the resolution of Multi-Objective Optimization Problems (MOPs) yields a

set of trade-off solutions called non-dominated solutions and their image in the objective space is

called the Pareto front.

Figure 3 High level pseudo code for MOGP

A high-level view of MOGP is depicted in Figure 3. The algorithm starts by randomly creating an

initial population 𝑃𝑜 of individuals encoded using a specific representation (line 1). Then, a child

 29

population 𝑄𝑜 is generated from the population of parents 𝑃𝑜 (line 2) using genetic operators

(crossover and mutation). Both populations are merged into an initial population 𝑅𝑜 of size 𝑁 (line

5). Fast non-dominated-sort [40] is the technique used by MOGP to classify individual solutions

into different dominance levels (line 6). Indeed, the concept of non-dominance consists of

comparing each solution 𝑥 with every other solution in the population until it is dominated (or not)

by one of them. According to Pareto optimality: “A solution 𝑥1 is said to dominate another solution

𝑥2 , if 𝑥1 is no worse than 𝑥2 in all objectives and 𝑥1 is strictly better than 𝑥2 in at least one

objective”. Formally, if we consider a set of objectives 𝑓𝑖 , 𝑖 ∈ 1. . 𝑛 , to maximize, a solution 𝑥1

dominates 𝑥2 :

The whole population that contains 𝑁 individuals (solutions) is sorted using the dominance

principle into several fronts (line 6). Solutions on the first Pareto-front 𝐹0 get assigned dominance

level of 0 Then, after taking these solutions out, fast-non-dominated-sort calculates the Pareto front

𝐹1 of the remaining population; solutions on this second front get assigned dominance level of 1,

and so on. The dominance level becomes the basis of selection of individual solutions for the next

generation. Fronts are added successively until the parent population 𝑃𝑡+1 is filled with 𝑁

solutions (line 8). When NSGA-II must cut off a front 𝐹𝑖 and select a subset of individual solutions

with the same dominance level, it relies on the crowding distance to make the selection (line 9).

This parameter is used to promote diversity within the population. This front 𝐹𝑖 to be split, is sorted

in descending order (line 13), and the first (𝑁 − |𝑃𝑡+1|) elements of 𝐹𝑖 are chosen (line 14). Then

a new population 𝑄𝑡+1 is created using selection, crossover and mutation (line 15). This process

will be repeated until reaching the last iteration according to stop criteria (line 4).

 30

3.1.2 Multi-Objective Optimization and NSGA-II

An optimization problem consists in searching for an optimal or near-optimal solution

within a predefined search space where the goal is to maximize or minimize a quality function

called objective function. As opposed to single-objective optimization problems where we are

looking for a single optimal solution, the resolution of a multi-objective problem (MOP) yields a

set of compromise solutions, called non-dominated solutions, and their image in the objective

space is called the Pareto front. In what follows, we give some background definitions related to

this topic:

Definition - MOP. An MOP consists in minimizing or maximizing a set of objective

functions under some constraints [40]. An MOP could be expressed as:

where M is the number of objective functions, P is the number of inequality constraints, Q

is the number of equality constraints, and correspond to the lower and upper bounds of the

variable . A solution satisfying the (P+Q) constraints is said to be feasible and the set of all

feasible solutions defines the feasible search space denoted by Ω. In this formulation, we consider

a minimization MOP since maximization can be easily turned to minimization based on the duality

principle by multiplying each objective function by -1. The resolution of a MOP consists in

approximating the whole Pareto front.

Definition - Pareto optimality. A solution is Pareto optimal if there does not exist

any solution x such that fm(x)< fm(x*) for all m.





















.1

1 0)(

1 0)(

)](),...,(),([)(21

,...,nixxx

,...,Q;kxh

,...,P;jxg

xfxfxfxfMin

U
ii

L
i

k

j

T
M

L
ix U

ix

ix ix

*x

 31

The definition of Pareto optimality states that is Pareto optimal if no feasible vector

exists which would improve some objective without causing a simultaneous worsening in at least

another one. Other important definitions associated with Pareto optimality are essentially the

following:

Definition - Pareto dominance. A solution u = (u1,u2,..., un) is said to dominate another

solution v = (v1,v2,...,vn) (denoted by) if and only if is partially less than .

In other words, we have and where .

Definition - Pareto optimal set. For a MOP , the Pareto optimal set is

.

Definition - Pareto optimal front. For a given MOP and its Pareto optimal set ,

the Pareto front is .

Several methods were proposed in the literature to solve MOPs. Due to their population-

based nature, Evolutionary Algorithms (EAs) have shown their effectiveness and efficiency in

providing a well-converged and well-diversified approximation of the Pareto front independently

of its geometrical nature which is not the case for classical mathematical methods. Among the

most used Multi-Objective EAs (MOEAs), we cite NSGA-II, SPEA2, IBEA and MOEA/D. Since

the most used MOEA within the SBSE community is NSGA-II [40], we choose to use it in this

study.

NSGA-II is one of the most used and effective MOEAs. It begins by generating an

offspring population from a parent one by means of variation operators (crossover and mutation)

such that both populations have the same size. After that, it ranks the merged population (parents

and children) into several non-dominated layers, called fronts, as depicted by Figure 3. Non-

*x x

)()(vfuf )(uf)(vf

 Mm ,...,1 )()(vfuf mm   Mm ,...,1 )()(vfuf mm 

)(xf

 )()'(,' * xfxfxxP 

)(xf *P

 *PxxfPF ),(*

 32

dominated solutions are assigned a rank of 1 and constitute the first layer. Non-dominated solutions

according to the population truncated of the layer 1 are assigned a rank of 2 and constitute the layer

2. This process is continued until the ranking of all parent and children individuals. After that, each

solution is assigned a diversity score, called crowding distance, front wise. This distance

corresponds to the half of the perimeter of the cuboid having the two closest neighboring solutions

to the considered individual as vertices. It is important to note that extreme solutions are assigned

an infinite crowding score since they are of great importance for diversity. The fitness in NSGA-

II is not a scalar value. In fact, it is a couple (rank, crowding distance). Solutions having better

ranks are emphasized. Among solutions having the same rank (belonging to the same layer),

solutions having larger crowding distances are emphasized since they are less crowded than the

others. Once all individuals of the merged population are assigned a rank and a diversity score, we

perform the environmental selection to form the parent population for the next generation. Indeed,

solutions belonging to the best layers are selected. Figure 4 illustrates this process where the last

selected layer is the 4th one. Usually, the cardinality of the last layer (layer 4 in Figure 4) is greater

than the number of available slots in the parent population of the next generation. As denoted by

Figure 4, solutions of the 4th layer are selected based on their crowding distance values. In this

way, most crowded solutions are discouraged to remain in the race; thereby emphasizing

population diversification. To sum up, the Pareto ranking encourages convergence and the

crowding factor procedure emphasizes diversity, therefore NSGA-II is an elitist multi-objective

EA which is today the most used metaheuristic in multi-objective applied optimization.

 33

Figure 4 NSGA-II replacement scheme for a bi-objective maximization case.

One of the widely used multi-objective search techniques is NSGA-II [40] that has shown

good performance in solving several software engineering problems [62].

As in Figure 5, the algorithm starts by randomly creating an initial population 𝑃0 of

individuals encoded using a specific representation (line 1). Then, a child population 𝑄0 is

generated from the population of parents 𝑃0 (line 2) using genetic operators (crossover and

mutation). Both populations are merged into an initial population 𝑅0 of size 𝑁 (line 5). Fast-non-

dominated-sort [20] is the technique used by NSGA-II to classify individual solutions into

different dominance levels (line 6). Indeed, the concept of non-dominance consists of comparing

each solution 𝑥 with every other solution in the population until it is dominated (or not) by one of

them. According to Pareto optimality: “A solution 𝑥1 is said to dominate another solution 𝑥2, if 𝑥1

is no worse than 𝑥2 in all objectives and 𝑥1 is strictly better than 𝑥2 in at least one objective”.

Formally, if we consider a set of objectives 𝑓𝑖 , 𝑖 ∈ 1. . 𝑛, to maximize, a solution 𝑥1 dominates 𝑥2.

The whole population that contains 𝑁 individuals (solutions) is sorted using the dominance

principle into several fronts (line 6). Solutions on the first Pareto-front 𝐹0 get assigned dominance

level of 0 Then, after taking these solutions out, fast-non-dominated-sort calculates the Pareto-

front 𝐹1 of the remaining population; solutions on this second front get assigned dominance level

of 1, and so on. The dominance level becomes the basis of selection of individual solutions for the

 34

next generation. Fronts are added successively until the parent population 𝑃𝑡+1 is filled with 𝑁

solutions (line 8). When NSGA-II has to cut off a front 𝐹𝑖 and select a subset of individual

solutions with the same dominance level, it relies on the crowding distance [20] to make the

selection (line 9). This parameter is used to promote diversity within the population. This front 𝐹𝑖

to be split, is sorted in descending order (line 13), and the first (N- |𝑃𝑡+1|) elements of 𝐹𝑖 are chosen

(line 14). Then a new population 𝑄𝑡+1 is created using selection, crossover and mutation (line 15).

This process will be repeated until reaching the last iteration according to stop criteria (line 4).

Figure 5 High level pseudo code for NSGA-II

3.1.3 NSGA-II Adaptation

1) Problem Formulation

The Web service antipatterns detection problem involves searching for the best metric

combinations among the set of candidate ones, which constitutes a huge search space. A solution

of our antipatterns detection problem is a set of rules (metric combination with their thresholds

values) where the goal of applying these rules is to detect design defects in a web service. We

propose a multi-objective formulation of the Web service antipatterns rules generation problem.

Consequently, we have two objective functions to be optimized: (1) maximizing the coverage of

 35

antipattern examples, and (2) minimizing the detection of good design practice examples of Web

services. The collected examples of well-designed Web services and antipatterns are taken as an

input for our approach. Analytically speaking, the formulation of the multi-objective problem can

be stated as follows:

where |𝐷𝐶𝑆(𝑥)| is the cardinality of the set of detected antipatterns by the metric combination 𝑥,

|𝐸𝐶𝑆| is the cardinality of the set of existing antipatterns, and |𝐸𝐷𝐸| is the cardinality of the set of

existing good examples. Once the bi-objective trade-off front is obtained, the developer can

navigate through this front in order to select his/her preferred solution (metric combination).

The basic idea of the algorithm is to explore the search space by making a population of

candidate solutions, also called individuals, and evolve this population towards an “optimal”

solution for the detection of antipatterns. To evaluate the solutions, the fitness functions, as

explained previously, are used. The best solutions (detection rules) will cover the maximum of

anti-pattern examples and a minimum of good design examples of Web services.

In the initialization of the MOGP algorithm, our base of examples is split into ten subsets,

each representing a different application domain, e.g., finance, travel, etc. One subset (WS) is the

test dataset and the remaining subsets (B or GE) are the training datasets (the ground truth). Thus,

MOGP is run to detect antipatterns in the selected subset(WS), which is not of course part of the

training set.

The initial population for MOGP is a set of individuals (I) that stand for possible solutions

representing detection rules (metrics combination). Then, the algorithm explores the search space

 36

and constructs new individuals by combining metrics to generate rules. In each iteration of the

training process, antipatterns are iteratively evaluated using the generated rules. As described

earlier, the process is driven by two fitness functions that calculates the quality of each candidate

solution (detection rule) by comparing the base of examples along with the percentage of covered

well-designed examples. A new population of individuals is generated by iteratively selecting pairs

of parent individuals from population Pop and applying genetic operators to them (crossover and

mutation). We include both the parent and child variants in the new population. We then apply the

mutation operator, with a probability score, for both parent and child to ensure solution diversity;

this produces the population for the next generation. Developers can use the best rules (solution)

to detect potential antipatterns on any new Web service.

2) Solution Approach

In the following, we describe the three main steps of adaptation of the MOGP algorithm to

our problem.

Solution representation:

Candidate solutions to the problem are antipattern detection rules. A solution is represented

as a set of IF-THEN rules, each with the following structure:

IF “Combination of metrics with their thresholds” THEN “antipattern type”

The antecedent of the IF statement combines some metrics and their threshold values using

logic operators (AND, OR). If these conditions are satisfied by a Web service, then it is determined

to be of the antipattern type featuring in the THEN clause of the rule. Figure 6 provides an example.

More formally, each candidate solution S is a sequence of detection rules where each rule is

represented by a binary tree such that:

A. Each leaf node (terminal) L represents a metric (our metric suite described earlier) and its

corresponding threshold, generated randomly.

 37

B. Each internal node (function) N represents a logic operator, either AND or OR.

We will have as many rules as types of antipatterns to be detected. In this work, we focus

on the detection of eight common types as defined in Section II-A.

Evaluation functions:

The solution is evaluated based on the two objective functions defined in the previous

section. Since we are considering a bi-objective formulation, we use the concept of Pareto

optimality to find a set of compromise (Pareto-optimal) solutions. The fitness of a particular

solution in MOGP corresponds to a couple (Pareto Rank, Crowding distance). In fact, MOGP

classifies the population individuals (of parents and children) into different layers, called

nondominated fronts. The output of MOGP is the last obtained parent population containing the

best of the non-dominated solutions found. When plotted in the objective space, they form the

Pareto front from which the user will select his/her preferred antipatterns detection rules solution.

Figure 6 Solution representation example.

3.1.4 Validation

1) Experimental Setup

We designed our experiments to answer the following research questions:

• RQ1: How does our multi-objective approach, MOGP, compare to random search and an

existing mono-objective technique [3]?

• RQ2: To what extent can the proposed approach efficiently detect Web service

antipatterns?

 38

• RQ3: What types of Web service antipatterns does it detect correctly?

• RQ4: How does MOGP perform compared to existing Web service antipattern detection

approach not based on heuristic search [11]?

To evaluate our approach, we collected a set of Web services using different Web service

search engines including eil.cs.txstate.edu/ServiceXplorer, programmableweb.com,

biocatalogue.org, webservices.seekda.com, taverna.org.uk, and myexperiment.org. Table 3

summarizes the collected services. Furthermore, our collected Web services are drawn from ten

different application domains: financial, science, search, shipping, travel, weather, media,

education, messaging and location. All services were manually inspected and validated to identify

antipatterns based on guidelines from the literature [4], [10]. Furthermore, our dataset is available

online [72] to encourage future research in the area of automated detection of Web service

antipatterns. We considered antipattern types range from eight common antipatterns, namely god

object web service (GOWS), fine-grained Web service (FGWS), chatty Web service (CWS), data

Web service (DWS), ambiguous Web service (AWS), redundant port types (RPT), CRUDy

interface (CI), and maybe it is not RPC (MNR). In our study, we employed a 10-fold cross

validation procedure. We split our data into training data and evaluation data. For each fold, one

category of services is evaluated by using the remaining nine categories as a base of examples

(ground-truth). For instance, weather services are analyzed using antipattern instances from travel,

shipping, search, science financial, media, education, messaging, and location services. We use

precision and recall [73] to evaluate the accuracy of our approach. Precision denotes the ratio of

true antipatterns detected to the total number of detected antipatterns, while recall indicates the

ratio of true antipatterns detected to the total number of existing antipatterns. To answer RQ1, we

investigate and report on the effectiveness of MOGP, since one of our primary novelties lies in the

 39

adoption of the multi-objective formulation. To this end, we implemented random search (RS)

with the same fitness functions as MOGP. Indeed, it is important to compare our search technique

to random search, since if an intelligent search method fails to outperform random search, then the

proposed formulation is not adequate. In addition, we compared our multi-objective algorithm to

an existing mono-objective approach where only examples of antipatterns were considered [3]

without the use of positive examples of well-designed Web services. To answer RQ2, we use both

recall and precision to evaluate the efficiency of our approach in identifying antipatterns. To

answer RQ3, we investigated the antipattern types that were detected to find out whether there is

a bias towards the detection of specific antipattern types. To answer RQ4, we compared our

approach with the SODA-W approach of Palma et al. [11]. SODA-W manually translates

antipattern symptoms into detection rules and algorithms based on a literature review of Web

service design. All three approaches are tested on the same benchmark described in Table 3.

Table 3 Web services used in the empirical study.

2) Experiment Results

Results for RQ1. The goal of RQ1 is to investigate how well MOGP performs against

random search and an existing single-objective approach where only antipattern examples are

used. Table 4 and Figure 7 report the comparative results. Over 31 runs, RS did not perform well

 40

when compared to MOGP in terms of precision and recall achieving average values of only 29%

and 31% respectively on the different Web services. The main reason could be related to the large

search-space of possible combinations of metrics and threshold values to explore.

Table 4 MOGP results on the different Web service.

The results achieved by MOGP are also better than the mono-objective approach in terms

of precision and recall. In fact, the single-objective GP technique has an average of 86% and 87%

of precision and recall however MOGP has better scores with 94% of precision and 92% of recall

on the different Web services. These results confirm that an intelligent search is required to explore

the search space and that the use of well-designed We service examples improved the obtained

detection results.

Results for RQ2. The results for RQ2 are presented in Table 4 MOGP results on the

different Web service. The obtained results show that we were able to detect most of the expected

antipatterns in the different categories with a median precision higher than 94%. The higher

precision value for travel and Education (97%) can be explained by the fact that these Web services

are large than the others and contain a high number of operations and complex types that match

the GOWS antipattern. For the We service weather, the precision is the lowest one (91%), but is

still a very acceptable score. This is due to the nature of the antipatterns involved which are

typically data or chatty Web services. Indeed, some false positives are recorded for the DWS and

 41

CWS antipatterns. These antipatterns are likely to be difficult to detect using metrics alone. Similar

interpretations can be made for recall. The obtained results indicate that our approach is able to

achieve a recall of 92%. The highest values were recorded for travel services with 96% where most

of the detected services are GOWS and AWS. The lowest recall score was recorded for the location

service (91%) which is attributable mostly to FGWS. Indeed, location Web services typically

provide one or two operations which falsely matches the symptoms of FGWS.

Results for RQ3. Based on the results of Figure 7, we observe that MOGP does not have a

bias towards the detection of any specific antipattern type. As described the figure, we had an

almost equal distribution of each antipattern type. On some Web services such as weather, the

distribution is not as balanced. This is principally due to the number of actual antipattern types

detected. Overall, all the 8 antipattern types are detected with good precision and recall scores

(more than 88%). Most existing guidelines/definitions [10], [11] rely heavily on the notion of size

to detect antipatterns. This is reasonable for antipatterns like GOWS and FGWS that are associated

with a notion of size, but for antipatterns like AWS, however, the notion of size is less important,

and this makes this type of anomaly hard to detect using structural information. This difficulty

limits the performance of GP in detecting this type of antipattern. Thus, we can conclude that our

MOGP approach detects well all the types of considered antipatterns (RQ3).

Results for RQ4. Figure 8 reports the comparison result of MOGP, Ouni et al. [3], [12],

and SODA-W. While SODA-W shows promising results with an average precision of 71% and

recall of 83%, it is still less than MOGP in all the eight considered antipattern types. We conjecture

that a key problem with SODA-W is that it simplifies the different notions/symptoms that are

useful for the detection of certain antipatterns. Indeed, SODA-W is limited to a set of WSDL

interface metrics, but ignores the source code of the Web service artifacts. In fact, service design

 42

may look promising at the interface level, but can prove to be an antipattern if the source code is

not implemented well. In contrast, our approach is based on both interface and code metrics.

Another limitation of SODA-W is that in an exhaustive scenario, the number of possible

antipatterns to manually characterize with rules can be very large, and rules that are expressed in

terms of metric combinations need substantial calibration efforts to find the suitable threshold

value for each metric. By contrast, our approach needs only some examples of antipatterns to

generate detection rules. Figure 8 also shows that the mono-objective GP [12] provides lower

detection results for the eight studied antipatterns with an average of 72% for both precision and

recall. The lower performance can be explained by the fact that of the mono-objective formulation

is based only on interface metrics that may not be able to capture all possible antipattern symptoms.

Figure 7 Detection results for each

antipattern type

Figure 8 Comparative results of MOGP,

Mono-objective GP and SODA-W

43

In this work, we introduced a new multi-objective approach for the detection of Web

service antipatterns. In our multi-objective adaptation, two fitness functions are used to maximize

the coverage of antipattern examples and minimize the coverage of well-designed Web service

examples. The proposed approach is evaluated on a benchmark of 415 Web services and eight

common Web service antipattern types. Statistical analysis of the obtained results provides

compelling evidence that the proposed multi-objective algorithm outperforms mono-objective

approaches, random search, and a recent state-of-the art approach with a median precision of more

than 94% and a median recall of more than 92%. As future work, we plan to extend the approach

to detect business process antipatterns in SBS in addition to individual Web service antipatterns

and automate the correction, through refactoring, of the detected antipatterns.

3.1.5 Conclusion

In this contribution, we introduced a new multi-objective approach for the detection of

Web Service antipatterns. In our multi-objective adaptation, two fitness functions are used to

maximize the coverage of antipattern examples and minimize the coverage of well-designed Web

service examples. The proposed approach is evaluated on a benchmark of 415 Web services and

eight common Web service antipattern types. Statistical analysis of the obtained results provides

compelling evidence that the proposed multi-objective algorithm outperforms mono-objective

approaches, random search, and a recent state-of-the art approach with a median precision of more

than 94% and a median recall of more than 92%.

In the next section, we extend the approach to Bi-level which is able to generate artificial

design defects to improve the generation process of antipatterns detection rules.

44

3.2 Bi-level Identification of Web Service Defects

3.2.1 Introduction

In the majority of existing works, detection rules are manually defined to identify the key

symptoms that characterize an interface design defect using combinations of mainly quantitative

metrics. For each possible interface design defect, rules that are expressed in terms of metric

combinations need high calibration efforts to find the right threshold value for each metric.

Another important issue is that translating symptoms into rules is not obvious because there is no

consensual symptom-based definition of design defects [74]. These difficulties explain a large

portion of the high false-positive rates reported in existing research [11]. Recently, a heuristic-

based approach based on genetic programming [3] is used to generate design defects detection.

However, such approaches require a high number of interface design defect examples (data) to

provide efficient detection rules solutions. In fact, design defects are not usually documented by

developers. In addition, it is challenging to ensure the diversity of the examples to cover most of

the possible bad-practices.

In this work, we start from the hypothesis that the generation of efficient Web service

defects detection rules heavily depends on the coverage and the diversity of the used defect

examples. In fact, both mechanisms for the generation of detection rules and the generation of

defect examples are dependent. Thus, the intuition behind this work is to generate examples of

defects that cannot be detected by some possible detection solutions then adapting these rules-

based solutions to be able to detect the generated defect examples. These two steps are repeated

until reaching a termination criterion (e.g. number of iterations). To this end, we propose, for the

first time, to consider the Web services defects detection problem as a bi-level one [75], [76]. Bi-

Level Optimization Problems (BLOPs) are a class of challenging optimization problems, which

45

contain two levels of optimization tasks. The optimal solutions to the lower level problem become

possible feasible candidates to the upper level problem.

In our adaptation, the upper level generates a set of detection rules, combination of quality metrics,

which maximizes the coverage of the base of defect examples; and artificial defects are generated

by the lower level. The lower level maximizes the number of generated “artificial” interface

defects that cannot be detected by the rules produced by the upper level. The overall problem

appears as a BLOP task, where for each generated detection rule, the upper level observes how the

lower-level acts by generating artificial Web service interface defects that cannot be detected by

the upper level rule, and then chooses the best detection rule which suits it the most, taking the

actions of the defects generation process (lower level or follower) into account. The main

advantage of our bi-level formulation is that the generation of detection rules is not limited to some

interface defect examples identified manually that are difficult to collect but it allows the prediction

of new interface defect behaviours that are different from those in the base of examples.

The primary contributions of this work can be summarized as follows:

A. The work introduces a novel formulation of the Web services design defects detection as a

bi-level problem.

B. The work reports the results of an empirical study with an implementation of our bi-level

approach. The statistical analysis of our experiments over 30 runs on a benchmark of 415

Web services shows that 8 types of interface design defects were detected with an average

of more than 93% of precision and 98% recall. The results confirm the outperformance of

our bi-level proposal compared to state-of-art Web service design defects detection

techniques [11], [12] and the survey performed by potential users and programmers also

shows the relevance of detected defects.

46

3.2.2 Bi-Level Optimization

Most studied real-world and academic optimization problems involve a single level of

optimization. However, in practice, several problems are naturally described in two levels. These

latter are called BLOPs [75], [76]. In such problems, we find a nested optimization problem within

the constraints of the outer optimization one. The outer optimization task is usually referred as the

upper level problem or the leader problem. The nested inner optimization task is referred as the

lower level problem or the follower problem, thereby referring the bi-level problem as a leader-

follower problem or as a Stackelberg game. The follower problem appears as a constraint to the

upper level, such that only an optimal solution to the follower optimization problem is a possible

feasible candidate to the leader one.

BLOPs are intrinsically more difficult to solve than single-level problems, it is not

surprising that most of existing studies to date has tackled the simplest cases of BLOPs, i.e.,

problems having nice properties such as linear, quadratic or convex objective and/or constraint

functions. In particular, the most studied instance of BLOPs has been for a long time is the linear

case in which all objective functions and constraints are linear with respect to the decision

variables.

3.2.3 Bi-level Approach Overview

As described in Figure 9, our bi-level formulation includes two levels as described in the

previous section. At the upper level, the detection rules generation process has a main objective

which is the generation of detection rules that can cover as much as possible the Web service

defects in the base of examples. The defects generation process has one objective that is

maximizing the number of generated artificial defects that cannot be detected by the detection

rules. The generated defects are dissimilar from the base of well-designed Web services design

47

based on a defined distance using the different metrics. There is a hierarchy in the problem, which

arises from the manner in which the two entities operate. The detection rules generation process

has higher control of the situation and decides which detection rules for the defects generation

process to operate in. It should be noted that in spite of different objectives appearing in the

problem, it is not possible to handle such a problem as a simple multi-objective optimization task.

The reason for this is that the leader cannot evaluate any of its own strategies without knowing the

strategy of the follower, which it obtains only by solving a nested optimization problem.

 Figure 9 Bi-level Web service defects detection overview

The leader (upper level) takes as inputs a base (i.e. a set) of Web service defect examples,

and takes, as controlling parameters, a set of metrics as described in Table 1 and generates as

output a set of detection rules. The rule generation process selects randomly, from the list of

possible metrics, a combination of quality metrics (and their threshold values) to detect a specific

48

defect types. Consequently, the ideal solution is a set of rules that best detect the defects of the

base of examples and those generated by the lower level. For example, the following rule of Figure

10 states that a Web service s satisfying the following combination of metrics and thresholds is

considered as a GOWS defect:

R1: IF (NOD(s)≥17 AND COH(s)≤0.43) OR NCT≥32, THEN s = GOWS.

 Figure 10 Solution representation at the upper level

An upper-level detection rules solution is evaluated based on the coverage of the base of

defect examples (input) and also the coverage of generated “artificial” Web service design defects

by the lower-level problem. These two measures are used to be maximized by the population of

detection rules solutions. The follower (lower level) uses a set of well-designed Web service

examples to generate “artificial” defects based on the notion of deviation from a reference (well-

designed) set of Web services. The generation process of artificial defect examples is performed

using a heuristic search that maximizes on one hand, the distance between generated defects

examples and reference code examples using the list of considered metrics and, on the other hand,

maximizes the number of generated examples that are not detected by the leader (detection rules).

As described in Figure 11, the generated structure of defects is represented as a vector where each

element is a (metric, threshold) pair that characterises the generated Web service.

Figure 11 Solution representation at the lower level.

49

There is no parallelism in our bi-level formulation. The upper level is executed for number

iterations then the lower level for another number of iterations. After that the best solution found

in the lower level will be used by the upper level to evaluate the associated solution (detection

rules), and then this process in repeated several times until reaching a termination criterion (e.g.

number of iterations). Thus, there is no parallelism since both levels are dependent.

Next, we describe our adaptation of bi-level optimization to the Web service defects

detection problem in more details.

3.2.4 Bi-Level Optimization Adaptation

At the upper level, the objective function is formulated to maximize the coverage of Web

services defect examples (input) and also maximize the coverage of the generated artificial Web

service defects at the lower level (best solution found in the lower level). Thus, the objective

function at the upper level is defined as follows:

2

#

det#

2

),(Re),(Pr

WSDefectsartificial

ectsicialWSDefectedArtifamplesWSDefectExSRcallamplesWSDefectExSRecision

fMaximize upper






It is clear that the evaluation of solutions (detection rules) at the upper level depends on the

best solutions generated by the lower level (artificial Web service defects). Thus, the fitness

function of solutions at the upper level is calculated after the execution of the optimization

algorithm in the lower level at each iteration.

At the lower level, for each solution (detection rule) of the upper level an optimization

algorithm is executed to generate the best set of artificial Web service defects that cannot be

detected by the detection rules at the upper level. An objective function is formulated at the lower

level to maximize the number of un-detected artificial defects that are generated and also maximize

the distance with well-designed Web services. Formally,

50














 



ms

j

jjlower mplesferenceExaMDefectArtificialMMinufMaximize
1

)(Re)(

where ms is the number of structural metrics used to compare between artificial defects

and the well-designed web services, M is a structural metric (such as the number of operations,

etc.) and u is the number of artificial defects uncovered by the detection rule solution defined at

the upper level.

For the GP algorithm (upper-level), the mutation operator can be applied to a function node

(metric), or to a terminal node (logical operator) in our tree representation. It starts by randomly

selecting a node in the tree. Then, if the selected node is a terminal (metric), it is replaced by

another terminal (metric or another threshold value); if it is a function (AND-OR), it is replaced

by a new function; and if tree mutation is to be carried out, the node and its sub-tree are replaced

by a new randomly generated sub-tree. For the GA (lower-level), the mutation operator consists

of randomly changing a metric in one of the vector dimension.

Regarding the crossover, two parent individuals are selected at the upper level, and a sub-

tree is picked on each one. Then crossover swaps the nodes and their relative sub-trees from one

parent to the other. This operator must ensure the respect of the depth limits. The crossover

operator can be applied with only parents having the same rule category (defect type to detect).

Each child, thus combines information from both parents. For the GA (lower-level), the crossover

operator allows to create two offspring o1 and o2 from the two selected parents p1 and p2, where

the first k elements of p1 become the first k elements of o1. Similarly, the first k elements of p2

become the first k elements of o2.

3.2.5 Validation

1) Experimental Setup

51

In order to evaluate the feasibility and the performance of our bi-level (BLOP) approach

comparing to existing Web service defects detection approaches, we addressed the following

research questions:

• RQ1: How does BLOP perform to detect different types of Web service defects? The goal

of this research question is to quantitatively assess the completeness and correctness of our

approach.

• RQ2: How do BLOP perform compared to existing mono-level Web service defects

detection algorithms? The goal is to evaluate the benefits of the use of a bi-level approach

in the context of Web service defects detection.

• RQ3: How does BLOP perform compared to the existing Web service defects detection

approaches not based on the use of metaheuristic search?

• RQ4: Can our approach be useful for developers during the development of software

systems?

To evaluate the performance of our approach, we used an existing benchmark [11], [12]

that includes a set of Web services from different categories as described in Table 5.

Table 5 Web services used in the empirical study

Category #services #defects

Financial 94 67

Science 34 3

Search 37 13

Shipping 38 10

Travel 65 28

Weather 42 15

Media 19 14

Education 26 20

Messaging 29 22

Location 31 136

52

We considered the different antipattern types described in chapter 2. We used a 10-fold

cross validation procedure. We split our data into training data and evaluation data. For each fold,

one category of services is evaluated by using the remaining nine categories as training examples.

We use the two measures of precision and recall evaluating the accuracy of our approach and to

compare it with existing techniques [11], [12]. Precision denotes the ratio of true antipatterns

detected to the total number of detected antipatterns, while recall indicates the ratio of true

antipatterns detected to the total number of existing antipatterns.

To answer RQ1, we use both recall and precision to evaluate the efficiency of our approach

in identifying antipatterns. We also investigated the Web service defect types that were detected

to find out whether there is a bias towards the detection of specific Web service defect types.

To answer RQ2, we investigate and report on the effectiveness of BLOP comparing to

existing approaches. We implemented random search (RS) with the same used fitness functions

used at the two levels. If an intelligent search method fails to outperform random search, then the

proposed formulation is not adequate. In addition, we compared our bi-level algorithm to an

existing mono-level and mono-objective approach where only examples of defects were

considered [11] without the use of the lower level.

To answer RQ3, we compared our approach with the SODA-W approach of Palma et al.

[11]. SODA-W manually translates Web services defect symptoms into detection rules based on a

literature review of Web service design. All three approaches are tested on the same benchmark

described in Table 7.

To answer RQ4, we used a post-study questionnaire that collects the opinions of developers

on our detection tool and Web service defects. To this end, we asked 31 software developers,

including 17 professional developers working on the development of services-based application

53

and 14 graduate students from the University of Michigan. The experience of these subjects on

web development and Web services ranged from 2 to 16 years. All the graduate students have an

industrial experience of at least 2 years with large-scale systems especially in automotive industry.

2) Parameters Tuning

We performed a set of experiments using several population sizes: 30, 40 and 50. The

stopping criterion was set to 500,000 fitness evaluations. We used a high number of evaluations

as a stopping criterion since our bi-level approach requires involves two levels of optimization.

Each algorithm was executed 30 times with each configuration and then comparison between the

configurations was performed based on precision and recall using the Wilcoxon test with a 95%

confidence level (α = 5%). The other parameters setting were fixed by trial and error and are as

follows: (1) crossover probability = 0.6; mutation probability = 0.4 where the probability of gene

modification is 0.2. Both lower-level and upper-level are run each with a population of 40

individuals and 50 generations.

3) Experiment Results

The results for the first research question RQ1 are presented in Table 6. The obtained

results show that we were able to detect most of the expected antipatterns in the different categories

with a median precision higher than 96%. The highest precision value for Science (100%) can be

explained by the fact that these Web services contain the lowest number of Web service defects.

For the Web service Location, the precision is the lowest one (89%), but is still an acceptable

score. It could be explained by the nature of the antipatterns involved which are typically data or

chatty Web services. These antipatterns are likely to be difficult to detect using metrics alone.

Similar observations are valid for the recall. The obtained results indicate that our approach is able

to achieve an average recall of more 93%. The highest values (after the Science category) were

54

recorded for Location services with 98% where most of the expected defects are detected but with

the lowest precision. The lowest recall score was achieved the Financial services (92%). Indeed,

these Web services contain the highest number of expected defects to be detected. Figure 12 and

Figure 13 confirm that our detection rules can detect different types of Web service defects

with almost similar scores of precision and recall. Thus, the quality of the detection rules are good

for almost all the defect types considered in our experiements. Overall, all the 8 antipattern types

are detected with good precision and recall scores (more than 89%). This could be explained by

the diverse set of generated defects by the lower level leading to a better coverage of possible

defects to detect. This ability to identify different types of Web service defects underlines a key

strength to our approach. Most other existing detection techniques rely heavily on the notion of

size to detect defects. This is reasonable considering that some Web service defects like the GOWS

are associated with the notion of size. For defects like AWS, however, the notion of size is less

important, and this makes this type of defect hard to detect using structural information. Thus, we

can conclude that our BLOP approach detects well all the types of considered antipatterns (RQ1).

The goal of research questions RQ2 and RQ3 is to investigate how well BLOP performs

against random search (RS), an existing mono-level and single-objective approach (GP) where

only defect examples are used (without the consideration of the lower-level algorithm), and an

existing detection tool (SODA-W) not based on computational search. Figure 12 and

Figure 13 report the average comparative results. Over 30 runs, RS did not perform well

when compared to BLOP both in terms of precision and recall achieving average around 30% on

the different Web services. The main reason could be related to the large search-space of possible

combinations of metrics and threshold values to explore, and the diverse set of Web service defects

to detect. Furthermore, the results achieved by BLOP are also better than the mono-objective

55

approach in terms of precision and recall. In fact, the single-objective GP technique has an average

of 86% and 87% of precision and recall however BLOP has better scores with an average of more

than 93% of precision and recall on most of the different Web services. These results confirm that

an intelligent search is required to explore the search space and that the use of the two levels

improved the obtained detection results.

Table 6 Median precision and recall results based on 30 runs

Category Precision Recall

Financial 96 92

Science 100 100

Search 97 94

Shipping 98 96

Travel 94 96

Weather 93 97

Media 98 94

Education 96 96

Messaging 94 97

Location 89 98

Figure 12 Median precision value over 30 runs on all the 10 Web service categories using the

different detection techniques with a 95% confidence level (α < 5%)

56

While SODA-W shows promising results with an average precision of 71% and recall of

83% (Figure 12 and

Figure 13), it is still less than BLOP in all the eight considered defect types. We conjecture

that a key problem with SODA-W is that it simplifies the different notions/symptoms that are

useful for the detection of certain antipatterns. Indeed, SODA-W is limited to a smaller set of

WSDL interface metrics comparing to our approach. In an exhaustive scenario, the number of

possible antipatterns to manually characterize with rules can be large, and rules that are expressed

in terms of metric combinations need substantial calibration efforts to find the suitable threshold

value for each metric. However, our approach needs only some examples of defects to generate

detection rules.

Figure 13 Median recall value over 30 runs on all the 10 Web service categories using the

different detection techniques with a 95% confidence level (α < 5%)

57

Figure 14 The impact of the number of Web service defect examples on the quality of the

results (Precision on the Financial Web services).

One of the advantages of using our BLOP adaptation is that the developers do not need to

provide a large set of examples to generate the detection rules. In fact, the lower-level optimization

can generate examples of Web service defects that are used to evaluate the detection rules at the

upper level. Figure 14 shows that BLOP requires a low number of manually identified defects to

provide good detection rules with reasonable precision scores. The existing mono-level work of

Ouni et al. [3] (GP) require a higher number of defect examples than BLOP to generate good

quality of detection rules. We can conclude, based on the obtained results that our BLOP approach

outperforms, in average, an existing mono-level search technique [3] and an approach not based

on heuristic search [26] (response to RQ2 and RQ3).

To answer RQ4, subjects were first asked to fill out a pre-study questionnaire containing

five questions. The questionnaire helped to collect background information such as their role

within the company, their programming experience, their familiarity with Web services and web-

based applications. The first part of the questionnaire includes questions to evaluate the relevance

of some detected Web service defects using the following scale: 1. Not at all relevant; 2. Slightly

relevant; 3. Moderately relevant; and 4. Extremely relevant. If a detected Web service defect is

58

considered relevant then this is mean that the developer considers that it is important to fix it. The

second part of the questionnaire includes questions for those defects that are considered at least

“moderately relevant”, we asked the subjects to specify their usefulness based on the following

list: 1. Refactoring guidance; 2. Quality assurance; 3. Bug prediction; 4. Web service stability; and

4. Web service selection. During the entire process, subjects were encouraged to think aloud and

to share their opinions, issues, detailed explanations and ideas with the organizers of the study and

not only answering the questions.

Figure 15 The relevance of detected Web service defects evaluated by the subjects

Figure 16 The usefulness of detected Web service defects evaluated by the subjects

Figure 15 illustrates that only less than 16% of detected Web service defects are considered

not at all relevant by the developers. Around 67% of the defects are considered as moderately or

59

extremely relevant by the developers. This confirms the importance of the detected Web service

defects for developers that they need to fix them for a better quality of their systems. It is also

important to evaluate the usefulness of the detected Web service defects for the users. Figure 16

shows that the main usefulness is related to the Web services selection. In fact, most of the

developers of service-based systems that we interviewed found that the detected defects give

relevant advices about which service to select when several options are available. The users prefer,

in general, to select services that are stable and have lower risk to include quality issues or bugs.

However, we believe that we cannot generalize the results of our survey due to the limited number

of participants.

3.2.6 Conclusion

In this work, we have proposed a bi-level evolutionary optimization approach for the

problem of Web service defects detection. The upper-level optimization produces a set of detection

rules, which are combinations of quality metrics, with the goal to maximize the coverage of not

only a defect examples base but also a lower-level population of artificial defects. The lower-level

optimization tries to generate artificial Web service defects that cannot be detected by the upper-

level detection rules, thereby emphasizing the generation of broad-based and fitter rules. The

statistical analysis of the obtained results over an existing benchmark have shown the

competitiveness and the outperformance of our proposal in terms of precision and recall over a

single-level genetic programming [3] and a non-search-based approach [11].

The next chapter will extend our detection methods by considering dynamic QoS metrics

of Web services.

60

3.3 On the Use of Quality of Service for Detecting Bad Design Practices

3.3.1 Introduction

Quality of service (QoS) is a combination of several service qualities or properties, such as

response time and availability. QoS has long been a major concern in areas, such as real-time

application [77], middle-ware [78], [79], and networking [80], [81]. Organizations in modern

markets, such as e-commerce activities, require QoS management [82]. With the right control of

QoS, the quality service product can fulfill client expectations and achieve customer satisfactions.

In this work, nine common QoS metrics are used to identify refactoring opportunities.

The common idea of previously mentioned or developed techniques is to generate detection

rules, mainly based on the interface or code-level metrics of the bad-designed Web services. These

metrics are extracted from the interface or the code skeleton of the Web service. Though these

techniques, developers can evaluate the design quality based on the very limited static information

exposed by the Web service provider.

Beside design quality of Web services, another important concept is called quality of

service(QoS). It refers to the non-functional aspects of Web service. The non-functional attributes

of QoS, e.g., response time, availability and reliability, have become the major concerns in the

management of Web services [83], [84]. The service clients also compare QoS measurements to

select from the Web services with similar functionalities. An acceptable QoS of the service is

considered same importance as desired functional results [85].

In the real world, developers usually seek for the Web services that have not only a well-

designed structure, but also an outstanding overall QoS performance. Such services can achieve

non-functional requirements with less effort to implement or maintain. However, to the best of our

knowledge, all the existing antipattern detection techniques of the Web service do not take into

61

consideration the QoS metrics. Without the real-time quality measurements of Web service, the

detection of best refactoring opportunities could be hard to find. Furthermore, every service has

its own business concept and purpose, so their exposed interface could be very different. The

refactoring opportunity detection that only validates the static information could be not accurate.

This issue can be addressed by introducing the dynamic QoS metrics.

In this work, we propose an antipattern detection approach based on the QoS measurement

and the structural information of Web service. This work is an extension of our previous

publication in the Proceedings of the 23rd International Conference on Web Services as follows.

We propose a novel approach for detecting Web service refactoring opportunities based on

the dynamic QoS and the static interface/code metrics. In our approach, multi-objective algorithm

NSGA-II [40] is implemented to generated the best detection rule sets that maximize the detection

of Web service antipattern examples and minimize the detection of well-designed Web service

design examples.

We extend our initial approach which is based on the static input of the web service

examples by introducing dynamic QoS metrics. We introduce 9 QoS metrics namely, response

time, availability, throughput, successability, reliability, compliance, best practices, latency,

documentation. Manual inspection and survey of our previous work show, some detected

antipatterns from the services with a high QoS performance do not cause difficulties and don’t

consider as antipattern to the users. These Web services are still preferred to use by the developers.

On the other hand, some refactoring opportunities that can’t be generalized perfectly by the current

metric types since there are no considerations of the non-functional behaviors.

We perform an empirical study of our approach on 500 Web services from a QoS

benchmark. We evaluated how well our approach can detect refactoring opportunities with the

62

state-of-the-art techniques [12], [26], [35], [37] that uses static structural metrics. Statistical

analysis demonstrates the accuracy of our approach in service refactoring opportunities detection,

with a precision score of 91% and a recall score of 85%.

3.3.2 Motivating Example

Figure 17 An example of god object Web service provided by Oracle Taleo.

In this section, we illustrate a real-world example of god object Web service(GOWS)

antipattern provided by Oracle Taleo1. Oracle Taleo is a famous talent acquisition service which

enables companies to easily source, recruit or manage talents. The antipattern in this example,

1

 Oracle Taleo: https://tbe.taleo.net/

63

GOWS, has a key characteristic that it implements uncohesive operations of many core business

or/and technical abstractions. Figure 17 shows the interface2 of Oracle Taleo which contains a

large amount of operations for different business abstractions. In this example, total of 127

operations are implemented within a single port type. These operations represent different

functionality aspect of the service, such as administration, employee management, task

information, interview management, job entry, job allocation, and so on. For instance,

()createUser is an administrative operation that creates new authorized user of the service,

()kgroundChecupdateBack attempts to update the background check data for employee

management, while ()sitiontesByRequigetCandida lists the potential candidates who fit for a

specific requisition. These operations are desired and used by different service users, e.g.,

companies who want to hire and companies who want to provide talents.

From the QoS perspective, Taleo service also behaves as GOWS. According to the QWS

dataset3, there is only a little documentation (i.e. description tags) to help developers understand

all the operations of Taleo service. Furthermore, the Taleo service takes long (

mslatency 232.46=) to process the request, and the availability of the services is relatively low

(40% of the error messages to total messages). Overall, these behaviors of GOWS, could cause

difficulties of reuse or reduce the practical value of the service.

For the service clients, it is hard to know what is the appropriate design or performance of

the Web service. On the other hand, the antipatterns are hard to avoid by the service providers, due

to the changing requirements or human factors/resource of the development. In fact, the services

2

 Oracle Taleo Interface: https://tbe.taleo.net/wsdl/WebAPI.wsdl

3
 The QWS Dataset:http://www.uoguelph.ca/ qmahmoud/qws/

64

that contain more useful functionalities, could have a higher probability to certain antipatterns (e.g.

GOWS in our example). Therefore, it is important to find the solution for service clients to detect

antipatterns efficiently based on the programming and QoS metrics.

3.3.3 Collection of Metric Suite

Quality metrics can be used to extract the semantic and structural attributes of the Web

services. These quality indicators can then be used to quantitatively track and evaluate the design

patterns of Web Services architecture. The antipatterns detection process usually involves finding

the fragments of the design which violate these metrics. In our previous work [35], we used a set

of static Web service metrics from interface and code level, and one dynamic metrics, namely

response time [11]. The static metrics aim at measuring the structural information of Web services

in different levels. Table 7 describes all of the metrics that are being used in this work.

For the dynamic level, the response time was valuable to prove the concept of using QoS

metric for us. However, it is not enough to measure full dynamic behaviors of the services. For

instance, in the motivating example of Figure 18, the Oracle Taleo service has an acceptable

response time of ms442.53 . The response time includes network traffic time and latency time

which is the time taken for service to process the request. However, Taleo suffers from a high

latency time of ms232.46 compares to the others. This situation means that even though the

service has good facilities and network configurations to provide a reasonable response time, it

still suffers from high process time due to the GOWS antipattern, and by only using response time

metric, this information can not be reflected in the metric suite. To better detect the antipattern of

web services from dynamic Internet environment, we extend the dynamic metric suite to 9

parameters in this work. The dynamic and static metrics we used in this work are described as

follow:

65

1) Web service QoS metrics

To detect antipattern from the QoS aspect, we introduced 9 popular metrics from the

literature [85]–[87]. Documentation, compliance, and best practices are static metrics extracted

based on interface level to extend our static metrics, they measure the usability of the web service

interface from QoS aspect. Response, availability, throughput, successability, reliability and

latency are dynamic metrics which measure the web service overall performance and experience.

In this work, we use the QWS dataset, a widely used QoS benchmark in field of Web service and

service composition [87]–[90]. Commercial benchmark tools are used to extract the parameters

and each service was tested over a ten-minute period for three consecutive days.

Table 7 The collection of metrics used for service defect detection.

Metric Name Definition Metric Level

Response Time taken to send a request and receive a response (ms) QoS

Availability Number of successful invocations/total invocations (%) QoS

Throughput Number of invocations for a given time (invokes/sec) QoS

Successability Number of response / number of request messages (%) QoS

Reliability Ratio of number of error messages to total messages (%) QoS

Compliance The extent to which a WSDL follows specification (%) QoS

Best Practices The extent to which a service follows WS-I Basic (%) QoS

Latency Time taken for the server to process a given request (ms) QoS

Documentation Measure of documentation (e.g. description tags) (%) QoS

ALPS Average length of port types signature Interface

COH Cohesion Interface

COUP Coupling Interface

NAOD Number of accessor operations declared Interface

NCO Number of CRUD operations Interface

NOD Number of operations declared Interface

NOPT Average number of operations in port types Interface

NPT Number of port types Interface

RAOD Ratio of accessor operations declared Interface

ALOS Average length of operations signature Interface

AMTO Average number of meaningful terms in operation names Interface

ANIPO Average number of input parameters in operations Interface

ANOPO Average number of output parameters in operations Interface

NPO Average number of parameters in operations Interface

ALMS Average length of message signature Interface

AMTM Average number of meaningful terms in message names Interface

66

NOM Number of messages Interface

NPM Average number of parts per message Interface

AMTP Average number of meaningful terms in port type names Interface

NCT Number of complex types Interface

NCTP Number of complex type parameters Interface

NST Number of primitive types Interface

RPT Ratio of primitive types over all defined types Interface

Ca Afferent couplings Code

CAM Cohesion Among Methods of Class Code

CBO Coupling between object classes Code

Ce Efferent couplings Code

DAM Data Access Metric Code

DIT Depth of Inheritance Tree Code

LCOM Lack of cohesion in methods Code

LCOM3 Lack of cohesion in methods Code

LOC Lines of Code Code

MFA Measure of Functional Abstraction Code

MOA Measure of Aggregation Code

NOC Number of Children Code

NPM Number of Public Methods Code

RFC Response for a Class Code

WMC Weighted methods per class Code

AMC Average Method Complexity Code

CC The McCabe’s cyclomatic complexity Code

2) Web service interface-level (WSDL) metrics

 There are fifteen metrics used in this work from the interface level. These metrics defined

in the literature [6], [11], [12], [91] measure design concepts from interface type, message,

operation and Port type levels. Most metrics are calculated directly based on the information of

Web service interface description file. For AMTO, AMTM, and AMTP, they are implemented by

comparing the tokenized identifiers of ever operation, port type and message with lexical database,

WordNet4.

3) Web service code-level metrics

4

 WordNet: http://wordnet.princeton.edu/

67

 Web service only exposes the interface for clients to use while the source code is not

available to access. In this work, code-level metrics [92], [93] are extracted from the service code

skeletons which are generated by JAX-WS5 (a Java API) for XML Web services. The code-level

metrics used in this work are defined by Chidamber and Kemerer [49]. The ckjm tool6 is used to

extract these metric to reflect design quality from a deeper level of Web service.

The detection rules generated by our approach are composited by the metrics mentioned

above. The dimensions of the solution space are set by the metrics associated with greater/less

than, their threshold values, and logical operations between them, e.g., union (

bmetricORametric <2>1) and intersection (bmetricANDametric <2>1). A

solution is a composited logical expression by multiple metrics, e.g.,

)<2<2(>1 bmetricORbmetricANDametric . By nature, this is a combinatorial

optimization problem with a large search base(number of possible solutions is huge). A heuristic

search algorithm is desired in this problem. Furthermore, since we also try to generate detection

rules that can satisfy different detection strictness, multi-objective evolutionary algorithm -

NSGA-II [40].

3.3.4 Solution Approach

1) Problem Statement

Efficient identification of refactoring opportunities is beneficial to the service clients and

providers. However, there is no general consensus on how to decide if a specific design is a

violation of the quality principles. Design patterns that contain antipattern symptoms, may not

5

 JAX-WS: http://docs.oracle.com/javase/6/docs/technotes/tools/share/wsimport.html

6
 ckjm tool: http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/

68

necessarily be an actual antipattern to the clients [12]. The reason is that every service

user/provider has different understandings, requirements or contexts. For instance, some Web

services focus to provide single business service to convenient their client (e.g., translation,

weather, and calculation service). These services might be designed properly, but they still have a

high chance to be classified as fine-grained Web service (FGWS) due to the size of service.

One major challenge of antipattern detection is to find the suitable metric combination to

define the antipattern. Single metric can’t represent the full characteristic of any antipattern. Also,

manual work to find the metric composition is time-consuming and could have bias. Based on the

antipattern symptoms in the literature [10], [11], [94], many work [11], [12], [35], [36], [95] have

been proposed to find detection rules based on the interface-level/code-level metrics. These static

metrics provide quantitative information of the design. However, transferring natural description

to detection rules is difficult and could be subjective. By using only the static metrics, the detection

rules could have less practical value. In fact, most client users treat QoS performance and

functionalities of Web service as major concerns [83], [96].

Another challenge is to find the right threshold value for each metric of detection rule. A

threshold value is needed for quantitative metrics to transform the description to detection rules.

Similar to the previous challenge, there is no general opinion on the degrees of antipattern. To

make it worse, after introducing more metrics of QoS perspective, this NP-hard problem by nature

is getting more complex.

The final challenge raises when the detection problem gets subjective and complicated.

The detection rules generated by most existing approaches are fixed results, in another word, there

is only one detection method for each antipattern. Since there is no “best” result due to the various

requirements or background of the users, it’s common that different users may feel the result is too

69

strict or too flexible. For instance, a general detection rule of GOWS is not suitable for the users

who usually deal with complex Web services. On the other hand, a general FGWS detection rule

is not preferred by the developers who look for light-weight services for composition. However,

the users can’t have an alliterative choice based on their preference or need.

To address or circumvent the above-mentioned challenges, we introduce new QoS metrics

to this problem, and propose a multi-objective heuristic-based approach which automatically

detects Web service antipatterns and generates solutions for different preferences as detailed in the

next sub-section.

2) Solution Approach Overview

Given a set of service metrics and their value ranges, there are many ways in which the

rule with metric combination can be combined and leading to different detection results. This

problem is an NP-hard problem by nature, therefore it should be suited to a meta-heuristic search-

based approach [15], [65], [97]. Also, our problem requires a search for a solution which balances

the objectives to generate rules suitable for different scenarios.

Figure 18 shows our approach to the QoS-aware Web service refactoring opportunities

identification problem. It targets to explore the large search space and finds a set of optimal

detection rules, by combining metrics and their threshold values. The output is a set of detection

rules which are the optimal solutions to the two conflict objects of the search-based algorithm

70

Figure 18 QoS-aware detection approach overview

The approach takes two sets of Web service examples: one set contains service antipattern

examples and another has well-designed service examples. These example sets are selected from

the QWS dataset7, which includes a set of 2,507 Web services and their QWS measurements. We

took a sample of 500 services from this dataset, and manually inspect and validate the antipatterns

of these services based on the existing guidelines. The approach processes and calculates the

metrics of each service in the sets through: (i) QoS Evaluation: measures real-time metrics from

the services or documentation metrics from the interface file, (ii) Interface Analysis, parses the

interface source though tree walking up the XML hierarchy to extract the Web service structure

data (e.g., operation, message, and input/output), then calculates the interface level metrics, and

(iii) Code Analysis, extracts the Web service code skeleton and uses typical object-oriented metrics

to evaluate. The metric suite used in this work, which contains a total of 49 metrics, is described

in the previous section.

7 The QWS Dataset: http://www.uoguelph.ca/~qmahmoud/qws/

71

Then, the metric data of two service example sets are passed to multi-objective algorithm

among with service metric types and threshold ranges. The search-based algorithm - NSGA-II

[40], generates, evaluates and selects antipattern detection rules based on the following objectives:

(i) Maximizing detection number of the service antipatterns, and (ii) Minimizing the detection

number of well-designed services. The details of this step and algorithm are described next.

3) Problem Adaptation

To adapt a search-based algorithm to a specific problem, the following elements should be

defined: (i) solution representation and the generation of initial population, (ii) fitness function to

evaluate candidate solutions according to each objective, (iii) Evolutionary operators to generate

new individuals using genetic operators (crossover and mutation). In the following, we describe

how we formulate the problem and these elements.

1) Solution Representation:

The candidate solutions we seek in this problem are the antipattern detection rules. Each

solution is a logical expression, and the antipattern is detected while the condition in the logical

expression is satisfied.

The logical expression is encoded in a tree-based structure and connects every metric with

its threshold value using a logic operator (“AND” or “OR”). If the expression is satisfied by a Web

service, then it is determined to be of the antipattern type associated with this solution. A solution

is randomly generated at the beginning, and can be “mutated” by itself or “crossovered” with

another solution to generate new ones. Figure 19 provides an example of a candidate solution.

Formally, each candidate solution is a sequence of detection rules where each rule is represented

by a binary tree such that:

72

Figure 19 Example of NSGA-II solution representation

• The Root R and each internal node N represents a logic operator to connect other nodes

or leaf, either AND or OR .

• Each leaf node L represents a metric (from the metrics described in section 3.3) and its

corresponding threshold (generated randomly among the range of the metric).

Each solution represents a detection rule for one specific type of service defects, and each

execution of the approach only generate the solution set which is used for one antipattern. In this

work, we focus on detecting eight popular types as defined in Chapter 2.

2) Fitness Functions:

The quality of each solution is determined by the fitness functions in multi-objective

problems. Each fitness function evaluates one objective by calculating a specific value that is

desired to be either minimized or maximized for a solution. In this problem, we aim to optimize

the following two finesse functions: (i) Maximizing the coverage of antipattern examples. (ii)

Minimizing the detection of good design practice examples of Web services. The collected

examples of well-designed Web services and antipatterns and the metrics of these services are

taken as the input of NSGA-II. In algorithm iterations, each solution (detection rule) is applied to

73

both example sets, and evaluated by the fitness functions. Analytically speaking, the formulation

of the multi-objective problem can be state as follows:



























2

||)(||

||||||)(||

||||

||||||)(||

=)(min

2

||||

||||||)(||

||||

||||||)(||

=)(max

2

1

xDCS

EGExDCS

EGE

EGExDCS

xf

DCS

ECSxDCS

ECS

ECSxDCS

xf

where is the cardinality of the set of detect antipatterns by the solution , is the cardinality of the

set of antipattern examples, and is the cardinality of the set of well-designed service examples.

These two fitness functions drive the algorithm to search for the optimal solutions by comparing

the list of detected antipatterns with the expected ones from the base of examples along with the

percentage of covered well-designed examples. Once the bi-objective trade-off Pareto front is

generated, service developers/users can select preferred detection rule from the best solution rules

to detect potential antipatterns on any new Web service.

3) Evolutionary Operators:

Evolutionary algorithms deploy change operators to generate new solutions in each

iteration. Except the initial population is randomly generated, all other candidate solutions are

generated by applying change operators to the existing ones. These generated solutions can explore

the search space, potentially and eventually, increase the diversity and approach to better solutions.

We use crossover and mutation operators in this work to produce offspring solutions.

 Mutation Operator:

 The mutation operator is used to apply minor random change into one parent solution.

This operator promotes the algorithm into the location of the search space that would not be

reachable through recombination alone and avoids the convergence of the population towards a

74

few elite solutions. In our adaptation, the mutation operator first picks a random node of the parent

solution. Then, if a non-leaf node is selected, the operator simply replace it by another possible

function (e.g., replace “AND” by “OR”). If a leaf node is selected, the mutation operator assigns

either a new threshold value for the existing metric, or a new metric with a new random threshold

value to replace the leaf completely. Figure 20 shows an example of mutation, the highlighted leaf

(6<NOD) of 1Parent is selected and replaced by a new metric (8.2>CBO) to generate new

solution 1Child .

Figure 20 Example of mutation

 Crossover Operator

In population-based algorithms, the crossover operator is using more than one solution to

create the new and different solutions, e.g., re-combining solutions into ones. In our approach, we

use a single, random cut-point crossover to generate offspring solutions. Two cut-points are

selected randomly in two parents, more specifically, two non-leaf nodes of the solutions. Then all

the relative sub-trees from the cut-point nodes are swapped to generate new solutions to perform

crossover action. Therefore two new solutions are created after the crossover. An example of

crossover is described in Figure 21, two highlighted sub-trees are selected and swapped from

1Parent and 2Parent , then two new solutions, 1Child and 2Child are generated.

75

Figure 21 Example of crossover

3.3.5 Validation

1) Experimental Setup

To validate our approach, experiments are designed to answer the following research

questions:

• RQ1. To what extent does QoS dynamic metric improve the antipattern detection of Web

services?

• RQ2. How does our multi-objective approach compare to random search and mono-

objective search-based algorithm?

• RQ3. How does approach perform compared to other existing Web service antipattern

detection approaches [3], [26]?

76

To evaluate our approach, we select a popular QoS benchmark, the QWS dataset8 which

includes a set of 2,507 Web services and their QWS measurements. We randomly selected a

sample of 500 available services from the dataset, extract their interface file and code skeleton,

and manually inspect and validate the antipatterns of these services based on the existing

guidelines [4], [10]. To avoid possible biases in the empirical study, we select services covered

different sizes, QoS performance, and application categories (such as financial, science, travel,

weather, and so on). Table 8 summarizes the selected Web services.

Table 8 Overview of 500 Web services used in the empirical study

 NOD NOM NCT Response Latency Availability Throughput Reliability

Max 231 462 287 3768.33 ms 1991 ms 100% 41.2/sec 89%

Min 1 1 0 46.05 ms 0.33 ms 9% 0.2/sec 33%

Average 14.43 30.44 21.40 343.10 ms 52.84 ms 84.81% 8.01/sec 68.21%

In this work, we validate our approach on eight common antipattern types, namely, god

object web service (GOWS), fine-grained Web service (FGWS), chatty Web service (CWS), data

Web service (DWS), ambiguous Web service (AWS), redundant port types (RPT), CRUDy

interface (CI), and maybe it is not RPC (MNR) as described. We use 10-fold cross-validation

method to evaluate our approach. For the services in each fold, are used to test the detection rule

set generated by examples in other nine folds. Therefore, in the experiments, 450 services are

selected as training examples(ground-truth) to execute the algorithm, and rest 50 services are used

as the test set. Precision and recall [65] are used to evaluate the accuracy and effectiveness of our

approach. Precision represents the ratio of true antipatterns detected to the total number of detected

antipatterns, and recall denotes the ratio of true detected antipatterns to the total number of real

antipatterns in the test set. Since our approach generates a solution set, we evaluate on all generated

8 The QWS Dataset: http://www.uoguelph.ca/~qmahmoud/qws/

77

detection rules and record the one with highest average precision and recall to compare. During

the piratical implementation of our approach, the users can select based on their preference to

better detect the defects.

While comparing different search-based evolutionary algorithms, changing parameters

could lead to completely different results (e.g., low number of iteration). To ensure fair

comparisons, we used same parameters for the all the evolutionary algorithm experiments as

following: 300=SizePopulation , 1000=onMaxIterati , 10=SolutionMaxDepth ,

0.8=crossoverR , 0.1=mutationP . We used a high number of population size due to the size of

search space and solution combination, a small population size leads to low diversity in our

approach. Also for the mutation probability is relatively high (compare to applications of NSGA-

II in other fields), to ensure the good convergence.

To answer RQ1, we investigate the effectiveness of using QoS metrics on different types

of service antipattern, since this is one of the main novelties in our work. To this end, we compared

the results of our approach, with the results of the approach using the same algorithm, settings, and

training/testing sets, but only use interface-level and code-level metrics as described.

To answer RQ2, we investigate the efficiency of using NSGA-II and our problem

formulation. We compared our approach to random search and mono-objective genetic algorithm.

Since another novelty of our approach is using multi-objective optimization search-based

techniques, it’s important to compare with the random search (RS) to prove the adaptation is

adequate [98]. Therefore, we implemented a random search using same training and test sets.

Further more, an genetic algorithm is implemented with an aggregated fitness function (average

of our two fitness functions) to validate if our multi-objective approach is able to improve the

detection process.

78

To answer RQ3, we compared our approach with state-of-the-art detection approaches: a

search-based approach from [3] and SODA-W of [26]. All three approaches were tested on the

same services examples described in Table 8.

2) Experiment Results

The goal of RQ1 is to investigate the importance of QoS metric in detecting service

antipattern. We executed both approaches (with and without QoS metrics) 5 times for the each

fold of the validation (total of 50 runs). Figure 22 report the comparative results. With same

experiment settings, our multi-objective approach with QoS metrics performs slightly better than

the one with only static metrics. The average precision is improved from 91.4% to 93.2% , while

recall is improved is 89.4% to 91.6% . For antipattern types that have negative impacts on the

service performance such as GOWS and MNR, the QoS metrics improved the accuracy service.

However, for few antipattern types such as AWS, DWS, and RPT, the precision and recall remain

the same because these antipatterns don’t affect the QoS parameters of the service. Thus, the QoS-

aware approach shows effectiveness in detecting antipatterns that are related to the service

dynamics. Furthermore, by observing result of our approach on different types of antipatterns. We

had high precision and recall score very equally for all eight types of antipatterns. By using QoS

metrics related to real-time performance like latency and availability, we manage to have

promising detection results in antipatterns like FGWS, MNR and GOWS, especially for FGWS

we reached 100% precision for all the tests. The reason is that these antipatterns have substantial

impacts to service performance and signatures on the structural documentation as well. While

checking lower scores for few types like AWS which is more related to human understandability

issue, we managed to identify most of them by using parameters like AMTO, AMTM, and AMTP.

However, it’s in general hard to detect only by the design or QoS metrics.

79

Figure 22 Comparative results of multi-objective approaches with and without QoS metrics

The result of RQ2 is presented in Figure 23. Over 50 runs for 8 types of antipatterns, the

random search (RS) didn’t perform well, the average precision is 26.2%, and average recall is

27.3%. The main reason to this is obvious, which is the very large search space of this problem

due to the high possible combinations of metrics with possible thresholds. While comparing to

result of our approach in the figure, this shows we made a success evolutionary adaptation to

antipattern detection problem. Furthermore, comparing our approach with the mono-objective

genetic algorithm (GA), the results were close due to the same evolutionary steps, problem

adaptation, and solution representation in the algorithm. The average precision and recall for GA

were 84.8% and 84.1%, and the experiments also show that there is no obvious bias to any specific

antipattern type. However, QoSMO outperforms GA significantly in average, while QoSMO can

generate at least one better solution than the solution of GA in each single test. The reason is

mainly due to the limitation of GA is only able to handle this problem as mono-objective and

output one solution which is limited by the single fitness function. As the conclusion to this

research question, our approach outperforms GA and RS and proves to be a success use of multi-

objective evolutionary algorithms.

80

Figure 23 Comparative results of QoSMO, GA and RS

Results for RQ3. Figure 24 reports the comparison study of our approach (QoSMO), PE-

A [3], SODA-W [26]. PE-A performs well an average precision of 88.8% and a recall of 90.0%,

it’s one of the best state-of-the-art algorithms we tested. However, it’s still less than QoSMO in

detecting 7 types of antipatterns and performs same as QoSMO in detecting AWS. PE-A is using

a cooperative parallel model to combine GA and GP, it’s limited by using non-QoS metrics and

mono-objective search algorithms. Serval antipatterns are easier to detect using QoS metric as we

describe in RQ1, and mono-objective approach may produce a solution that has a certain bias in

optimizing an aggregated fitness function. SODA-W also has good results with an average

precision of 69.8% and recall of 77.9%. The limitations of this work include the ones we mentioned

earlier for PE-A, and not considering the source code of the service artifacts. These two levels of

metrics reflect the design of different layers, and both layers are necessary to evaluate the static

assessment of service design. Also, PE-A uses an exhaustive approach, which could limit the result

by the large search base. Different from PE-A and SODA-W, our approach using not only both

static metrics, but also QoS metrics to evaluate the real-time performance of the services and multi-

objective approach to better manage the challenge for the larger search space.

81

Figure 24 Comparative results of QoSMO, PE-A and SODA-W

External threats may exist because in this work, we did not evaluate our approach on all

possible antipattern types. However, the eight types of Web service antipatterns we employed

constitute a broad representative set of standard and frequent defects. In addition, we did not yet

generalize our approach for other service types such as RESTful services. It is also possible to

extend the work for other domains such as mobile apps to validate the generality of our approach.

Construct threats: This type of threats is caused by the relationship between theory and

what is observed. A possible threat is related to the antipattern examples that are being used to

train/validate the approach, as the users may not agree with classified antipatterns. As we

mentioned early, there is no general consensus on how a specific design violates the quality

principles. This is indeed one key motivation to use multi-objective search-based approach to

generate a set of solutions for users to choose from based on their preferences. In our experiments,

the standard metrics such as precision and recall are used to validate the proposed approach, these

metrics are widely used in validating code smell detection tools. As part of our future work, we

may need to conduct a survey with developers to study the relevance of detected antipatterns.

82

3.3.6 Conclusion

We introduced a search-based multi-objective approach to generated detection rule

solutions as a composition of QoS, Interface, and code metrics. In our multi-objective adaptation,

two fitness functions are used to maximize the coverage of antipattern examples and minimize the

coverage of well-designed Web service examples. The proposed approach is evaluated on 500

Web services of a QoS benchmark and eight common Web service antipattern types. The empirical

study shows that proposed QoS-aware antipattern detection outperforms our previous multi-

objective approach and other state-of-the-art approaches with an average precision score of 94%

and a recall of 93%.

83

Chapter 4 Detection of Changes among Service Releases

4.1 Introduction

Systems implemented based on Web services depend on the interface that only shows the

list of available operations/features to the subscribers. The users of the services would be

discouraged to integrate a new release of an existing Web service if major changes are introduced.

In fact, they have to introduce changes to their implementation of the system to be coherent with

the new service. Thus, it is critical to provide support for developers to better understand the

introduced changes to the services. Some recent studies were proposed to understand the evolution

of Web services especially at the interface level [2], [51], [57], [59].

The majority of the changes in a web service interface typically affect the systems of its

subscribers. Thus, it is important for subscribers to estimate the risk of using a specific service and

compare its evolution to other services offering the same features in order to reduce the effort of

adapting their applications in the next releases. Subscribers prefer to use, in general, Web services

that are stable with a low risk to include bugs and introduce major revisions in the future. Thus, a

support to compare between multiple releases of a service may help the developers to select the

best service in terms of stability between multiple competing ones.

In this work, we propose a genetic algorithm approach [99] to detect composite changes

between multiple Web service releases. Our approach takes as input an exhaustive list of possible

change types, the initial release and the revised one, and generates as output a list of detected

changes in terms of refactorings (composite changes). A solution is defined as the combination of

84

refactoring operations that should maximize the structural and textual similarity between the

expected new Web service interface release and the generated one after applying the refactoring

sequence on the initial release. Due to the large number of possible solutions, a search-based

method, based on Genetic Algorithms (GA) is used instead of an enumerative one to explore the

space of possible solutions.

We evaluated our approach on a set of 6 popular Web services including more than 110

releases. We report the results on the efficiency and effectiveness of our approach to detect changes

of the evolution of Web services interfaces. The results indicate that the detection results of several

Web service metrics, on the different releases of the 6 Web services, were correct with an average

precision and recall respectively higher than 86% and 89%.

4.2 Approach

4.2.1 Overview

As described in Figure 25, the proposed approach takes as input two or more Web service

releases, and as controlling parameters, an exhaustive list of Web service refactoring operations.

The approach generates a set of refactoring applications that represents the evolution from the

initial release to the target one. The process of detecting Web service changes between two releases

can be viewed as the search mechanism that finds the best way to combine refactoring operations

of the exhaustive list of possible refactorings, in such a way to maximize the structural and

semantic/textual similarity between the initial and target releases when applying the detected

refactorings on the initial one.

85

Figure 25 Genetic algorithms for the detection of changes among multiple releases

Due to the large number of possible refactoring solutions between the Web service releases,

we consider changes detection as an optimization problem. The algorithm explores a large search

space. In fact, the search space is determined not only by the number of possible refactoring

combinations, but also by the order in which they are applied. To explore this search space, we use

a mono-objective Genetic Algorithm. This algorithm and its adaptation to our problem are

described in the next section.

4.2.2 Adaptation

Genetic Algorithm (GA) is a population-based metaheuristic inspired by Darwinian

Theory. The basic idea is to explore the search space by evolving a population of solutions for a

pre-specified number of generations. The algorithm next gives the pseudo-code of a canonic elitist

GA. The Elitism concept consists that a sub-optimal solution could not be favored for survival

over a better one. Its basic iteration is as follows. A parent population P is generated (by

environmental selection except for the initialization step where it is produced randomly) and each

of its individuals is evaluated. Once the evaluation step is performed, we fulfill the mating pool by

selecting parents from P. These selected parents are then subject to genetic operators (crossover

and mutation) in order to generate an offspring population Q. Once offspring individuals are

evaluated, P and Q are merged to form the population U. We perform now environmental selection

on U by selecting fittest individuals and thereby we generate the parent population for the next

86

generation. Elitism is then ensured by saving best individuals coming from parent population P

and offspring population Q in each generation of the algorithm. Once the termination criterion is

met, the GA returns the best (fittest) individual from P.

GA pseudo-code

1: P0 ← random_initialization()

2: P0 ← evaluate(P0)

3: t ← 0;

4: while (NOT termination_condition) do

5: Parents ← parent_selection(Pt)

6: Qt ←genetic_operators(Parents)

7: Ut ← merge (Pt, Qt)

8: Pt+1 ←environmental_selection(Ut)

9: t ← t+1;

10: end

11: s ← fittest(Pt)

12: return s

4.2.3 Solution Representation

One key issue when applying a search-based technique is to find a suitable mapping

between the problem to solve and the techniques to use, i.e., in our case, detecting Web service

changes. The ith individual (solution) represents a combination of refactoring operations to apply.

The order of applying refactorings corresponds to their position in the vector (referred to as

dimension number in the following). In addition, the execution of the refactorings is respecting

pre- and postconditions to avoid conflicts and semantic inconsistencies. Furthermore, it has to be

noted that the same type of refactoring operation could be applied several times in the same

solution (but to different interface elements). The list of considered refactoring types in our

experiments and their controlling parameters are the following:

87

1. ExtractOperation (name of source operation, name of the new operation, list of
operation parameters to move);

2. MoveOperation (name of source port type, name of the target port type, name of the
operation);

3. MergeOperations(name of the first operation, name of the second operation, etc.);
4. AddOperation(operation name, operation parameters);
5. RemoveOperation(operation name, operation parameters);
6. RenameOperation(operation name, new name);
7. AddParameter(operation name, parameter name);
8. RemoveParameter(operation name, parameter name);
9. RenameParameter(operation name, parameter name, new name);
10. AddPortType(port type name);
11. RemovePortType(port type name);
12. RenamePortType(port type name, new name).

Initial Population Generation. To generate an initial population, we start by defining the

maximum vector length including the number of refactorings. The vector length is proportional

with the number of refactorings to use for detecting Web service changes. Sometimes, a high

vector length does not mean that the results are more precise, but that only a few refactorings are

sufficient to detect changes. These parameters can be specified either by the user or chosen

randomly. Thus, the individuals have different vector length (structure). Then, for each individual

we randomly assign one refactoring, with its parameters, to each dimension. The generated

solutions (refactoring combination) are applied to the initial release of the Web service to generate

a new one. Then, the new generated Web service will be evaluated by the fitness function to check

its similarity with the expected release.

88

Table 9 List of considered structural metrics

Metric Name Definition

NPT Number of port types

NOD Number of operations declared

NAOD Number of accessor operations declared

NOPT Average number of operations in port types

ANIPO Average number of input parameters in operations

ANOPO Average number of output parameters in operations

NOM Number of messages

NBE number of elements of the schemas

NCT Number of complex types

NST Number of primitive types

NPM Number of parts per message

COH Cohesion

COU Coupling

AMTO Average meaningful terms in operation names

AMTM Average meaningful terms in message names

AMTMP Average meaningful terms in message parts

AMTP Average meaningful terms in port-type names

ALOS Average length of operations signature

ALPS Average length of port-types signature

ALMS Average length of message signature

4.2.4 Fitness Functions

The fitness function quantifies the quality of the proposed detection solutions. The goal is

to define an efficient and simple fitness function in order to reduce the computational complexity.

The proposed function is based on two main components:

• Maximizing structural similarities between the initial and target Web service interface

elements

• Maximizing the syntactic/textual similarities between the initial and target Web service

interface elements

In this context, we define the fitness function to maximize as:

89

n

eimSyntacticSeimStructureS

f

n

i
ii

*2

)()(
1








where n is the number of Web service interface elements. We treat both components of the

fitness function with an equal importance and we normalized it in the range of [0, 1].

The structural similarity is calculated using the metrics defined in Table I, whereas the goal

is to minimize the difference between the metric values of matched source and target elements.

Thus, this similarity is defined as follows:












t

j
jiji

t

j
jiji

i

tqmsqmMax

tqmsqm

eimStructureS

1
,,

1
,,

),(

1)(

where t is the number of target Web service interface elements matched to source Web

service interface elements ei; sqm (for ei) and tqm (for the matched element(s)) are the average

metrics values used to characterize the structure as described in Table 9.

The syntactic similarity SyntacticSim(ei) of a source Web service interface element ei

corresponds to the weighted sum of each vocabulary used to calculate the similarity between ei

and the target Web service interface elements matched to ei. Hence, the syntactic similarity of a

solution corresponds to the average of syntactic coherence for each source Web service interface

element:

t

eeSynHomog

eimSyntacticS

t

k
ki

i


 1

),(

)(

90

where SynHomog(ei, ek) is the average of syntactic measures applied between the source

Web service interface element ei and the matched Web service interface element ek of the new

release.

We start from the assumption that the vocabulary that is used for naming the interface

elements is borrowed from the respective domain terminology and then we determine which part

of the domain properties is encoded by an element. Thus, two interface elements could be

syntactically similar if they use a similar/common vocabulary. The vocabulary of an element

includes names of port types, operations, parameters, etc. This similarity could be interesting to

consider when searching for correspondences between the two initial and expected interfaces. We

are using two measures to approximate the syntactic homogeneity between metamodel elements:

(1) cosine similarity [100] and (2) the Normalized Levenshtein Edit Distance [101].

4.2.5 Change Operators

Several change operators are used as part of the adapted GA.

1) Selection.

To select the individuals that will undergo the crossover and mutation operators, we used

the stochastic universal sampling (SUS), in which the probability of selection of an individual is

directly proportional to its relative fitness in the population. SUS is a random selection algorithm

which gives higher probability to be selected to the fittest solutions while still giving a chance to

every solution. For each iteration, we use SUS to select individuals (population_size/2) from

population Pn for the next population Pn+1. These selected individuals (upper half of the ranking)

will “give birth” to new individuals (substituting the lower half of the ranking) using the crossover

operator.

91

2) Crossover.

When two parent individuals are selected, a random cut point is determined to split them

into two sub-vectors. The crossover operator selects a random cut-point in the interval [0,

min_{length}] where min_{length} is the minimum length between the two parent chromosomes.

Then, crossover swaps the sub-vectors from one parent to the other. Thus, each child combines

information from both parents. This operator must enforce the length limit constraint by

eliminating randomly some refactoring operations.

For each crossover, two individuals are selected by applying the SUS selection. Even

though individuals are selected, the crossover happens only with a certain probability. The

crossover operator allows creating two offspring P1’ and P2’ from the two selected parents P1 and

P2. It is defined as follows. A random position k is selected. The first k refactorings of P1 become

the first k elements of P1’. Similarly, the first k refactorings of P2 become the first k refactorings

of P2’.

3) Mutation.

The mutation operator consists of randomly changing one or more dimensions (refactoring)

in the solution (vector). Given a selected individual, the mutation operator first randomly selects

some positions in the vector representation of the individual. Then the selected dimensions are

replaced by other refactoring. Furthermore, the mutation can only modify the controlling elements

of some positions without replacing the refactoring by a new one.

When applying the mutation and crossover, we used also a repair operator to delete

duplicated refactorings after applying the crossover and mutation operators.

92

4.3 Validation

1) Experimental Setup

In order to evaluate the ability of our changes detection framework to efficiently detect the

refactorings applied between multiple Web service releases, we conducted a set of experiments

based on six widely used Web services. In this section, we first present our research questions, the

experiments setup and then describe and discuss the obtained results.

We defined the following two research questions that address the applicability and

performance of our Web services changes detection approach. The two research questions are as

follows:

• RQ1: To what extent can our approach detect correctly the composite changes applied

between multiple releases of Web services?

• RQ2: How does our approach perform comparing to techniques just based on either

structural or textual similarities?

To answer these two research questions, the quality of the results was measured by two

methods: automatic correctness (AC) and manual correctness (MC). Automatic correctness consist

of comparing the detected changes to the reference ones, operation by operation using precision

(AC-P) and recall (AC-R). AC method has the advantage of being automatic and objective.

However, since different refactoring combinations exist that describe the same evolution (different

changes but same target Web services interface), AC could reject a good solution because it yields

different refactoring operations from reference ones. To account for those situations, we also use

MC which manually evaluates the detected changes, here again operation by operation. The

precision corresponds to the number of correct refactorings divided by the total number of

93

generated refactorings. The recall is the number of correct refactorings divided by the number of

expected ones.

To answer RQ2, we compared our approach that combines both structural and textual

measures into one fitness function to two different techniques. The first technique, ST, is based

also on a GA algorithm but using only the structural measures. The second technique, TE, used a

GA algorithm but only based on cosine similarity and edit distance measures.

We selected these 6 Web services for our validation because different releases of their

WSDL interface are publicly available and belong to different categories. Table 10 provides some

descriptive statistics about these six Web services:

• Amazon EC2: Amazon Elastic Compute Cloud is a web service that offers resizable

compute capacity in the cloud. In this study we have considered a total of 44 releases from

2006 until 2014.

• Amazon Simple Queue Service (Amazon SQS) offers reliable hosted queues for storing

messages exchanged between computers. We considered in our study a total of 6 releases.

• Fedex Track service offers accurate update of the status of shipments. We used 10 releases

from this Web service.

• FedEx Ship Service: Ship Service provides functionalities for managing package

shipments and their options. A total of 17 releases are considered in our experiments from

this Web service.

• FedEx Rate Service: the Rate Service provides the shipping rate quote for a specific service

combination depending on the origin and destination information supplied in the request.

We used 18 releases for our prediction algorithm.

94

• Amazon Mechanical Turk Requester: it is a web service that provides an on-demand,

scalable, human workforce to complete jobs that humans can do better than computers such

as recognizing objects in photos. We used 15 releases developed between 2005 until 2012.

Table 10 Web service statistics

Web Service Name # Releases Average number of changes per release

Amazon EC2 44 13

Amazon Mechanical Turk 15 11

Amazon Simple Queue 6 9

FedEx Rate Service 18 16

FedEx Ship Service 17 21

FedEx Track Service 10 14

Since metaheuristic algorithms are stochastic optimizers, they can provide different results

for the same problem instance from one run to another. For this reason, our experimental study is

performed based on 30 independent simulation runs for each problem instance and the obtained

results are statistically analyzed by using the Friedman test with a 99% confidence level (α = 1%).

In fact, we computed the p-value of the ST and TE results with GA ones. In this way, we could

decide whether the superior performance of GA to one of each of the others (or the opposite) is

statistically significant or just a random result.

2) Experiment Results

Results for RQ1. Figure 26 summarizes the outcome for the first research question. Most

of the Web service changes were detected accurately on the different Web services with an average

precision higher than 86% as described in Figure 26. For Fedex Track service and Fedex Rate

service, the precision is the highest with more than 88%. This could be related to the lower number

of changes to detect comparing to other services. For Amazon EC2, the precision is also high with

more than 86% even that this service has a higher number of changes to detect comparing to several

95

other Web services. This confirms that our detection results are independent from the number of

changes to detect.

The same observations are valid for the recall. Fedex Track Service and Amazon

Mechanical Turk have the highest recall with more than 90% but still they have a good precision

higher than 83%. This may confirm that the precision and recall were both acceptable for the

different services. Overall, the recall results were better than the precision. This could be explained

by the fact that our optimization algorithm is based on the use of heuristics (fitness functions) to

estimate the similarity between the generate interface and the expected one of the new release.

Thus, some flexibility is introduced based on this estimation of structural and textual similarities

which may explain the lower precision comparing to the recall on the different Web services.

Figure 26 also confirms that the manual correctness MC of the detected changes is the

highest on all the Web services comparing to the automatic correctness based on both precision

and recall. This could be explained by the fact that there are multiple ways to describe the changes

between the different Web service releases.

To answer the first research question, our approach is able to detect the changes during the

evolution of Web service with a high accuracy.

96

Figure 26 Median precision, recall and manual correctness of detected refactorings by our GA

approach based on 30 independent runs.

Results for RQ2. Based the AC and MC measures, Figure 27 show that the solutions

provided by GA have the highest manual and automatic correctness values on all the Web services

comparing to the two other approaches that just use either structural (ST) and textual (TE)

similarities. In fact, the average AC value for GA is 88% and it is lower than 80% for all the

remaining algorithms on all the Web services. The same observation is valid for MC, GA has the

highest MC average value with 90% while the remaining algorithms their MC average is lower

than 82%. Based on these results, it is also interesting to note that there is no correlation between

the number of refactorings to detect and the correctness values. More precisely, we sort AC and

MC of the different approaches based on the number of refactorings for each Web service. From

this data, we conclude that AC and MC are not necessarily affected negatively by a larger number

of refactorings to detect. Thus, we can conclude that our proposal shows a good scalability and is

not affected negatively by the number of refactorings.

Overall the obtained results of the TE approach is better than the ST ones based on the

different measures. This may confirm the importance of considering semantics similarity when

97

detecting changes between Web services. The results confirm that both textual and structural

similarities are complementary based on the outperformance of our tehcniques.

In conclusion, we answer RQ2, the results support the claim that our GA formulation

provides the best compromise between the structural and textual similarities when detecting

changes between multiple Web service releases.

Figure 27 Comparison between the median precision, recall and manual correctness of detected

refactorings by the different approaches based on 30 independent runs.

3) Threats to Validity

Conclusion validity is concerned with the statistical relationship between the treatment and

the outcome. We used the Wilcoxon rank sum test on 30 runs with a 99% (α < 0.05) confidence

level to test if significant differences existed between the measurements for different treatments.

This test makes no assumption that the data is normally distributed and is suitable for ordinal data,

so we can be confident that the statistical relationships we observed are significant.

Internal validity is concerned with the causal relationship between the treatment and the

outcome. The parameter tuning of our genetic algorithm is important. In fact, different results can

be obtained with different parameter settings such number of iterations, stopping criteria, etc. We

98

need to evaluate in our future work the impact of different parameters on the quality of the results

(parameters sensitivity) in terms of precision, recall and manual correctness.

Construct validity is concerned with the relationship between theory and what is observed.

Most of what we measure in our experiments are standard metrics such as precision, recall, etc.

that are widely accepted as good proxies for quality evaluation. The metrics used for structural and

syntactic similarities can be extended using additional ones such as number of detected

refactorings. Additional experiments are required in future work to evaluate the impact of number

of used metrics on the quality of the results. Another limitation is related to the use of Wordnet to

find synonyms of the name of service elements such as operations which is not usually feasible

due to the limited words/vocabulary considered in Wordnet. We will investigate in our future work

the adaptation of other dictionaries on the quality of our results.

External validity refers to the generalizability of our findings. In this study, we performed

our experiments on different widely used Web services belonging to different domains and with

different sizes in terms of expected changes and number of operations. However, we cannot assert

that our results can be generalized to other services. Future replications of this study are necessary

to confirm our findings.

4.4 Conclusion

In this work, we proposed an approach to detect changes during the evolution of Web services.

Our approach, based on genetic algorithms, takes as input an exhaustive list of possible change

types, the initial release and the revised one, and generates as output a list of detected changes in

terms of composite changes, and not atomic ones. A solution is defined as the combination of

refactoring operations that should maximize the structural and textual similarity between the

expected new Web service interface release and the generated one after applying the refactoring

99

sequence on the initial release. We evaluated our approach on a set of 6 popular Web services

including more than 110 releases. We reported the results on the efficiency and effectiveness of

our approach to detect changes of the evolution of Web services interfaces in terms of precision

and recall.

100

Chapter 5 Prediction of Software and Service Defects

5.1 On the Use of Time Series for Software Refactoring Recommendation

5.1.1 Introduction

During software maintenance and evolution, software systems undergo continuous

changes, through which new features are added, bugs are fixed, and business processes are adapted

constantly. However, this may in turn introduce poor design effects and make systems more

complex. This complexity leads to significantly reduced productivity, decreased system’s

performance, increased fault-proneness, more costly software and even canceled projects. Many

studies reported that software engineers spend around 60% of their time in understanding the code

and that software maintenance activities consume up to 90% of the total cost of a typical software

project.

This high cost could potentially be greatly reduced by providing automatic or semi-

automatic solutions to increase their understandability, adaptability, and extensibility, to avoid and

fix bad-design practices. A widely used technique to improve the overall quality of systems is

refactoring which improves design structure while preserving the overall functionalities and

behavior .

A variety of refactoring work has been proposed in the literature [27], [62], [64], [65], [67],

[102], [103]. In general, refactoring is performed through two main steps: 1) detection of code

fragments that need to be improved (e.g., code-smells) and 2) identification of refactoring solutions

to achieve this goal. The first step is well covered in the literature, and there exists a growing

101

number of techniques to identify code-smells [27]. Once detected, not all code-smells have equal

effects and importance. In general, developers need to start by fixing the higher risk code-smells.

However, in the literature, the majority of existing contributions proposes manual or semi-

automated refactoring solutions that can be applied to fix particular types of code-smells (e.g.

blobs, spaghetti code, etc.) or to improve some quality metrics (e.g., cohesion, coupling, etc.)

without taking into consideration the importance/risk of the code-smells to fix. Furthermore, some

code smells could become more and more risky if they are not fixed as early as possible. For

example, a blob defect (a large class with high number of responsibilities) is difficult to fix if it

was not detected early. However, existing refactoring studies did not consider the impact of

refactoring solutions on future releases of the system when not all the detected code smells were

fixed.

In this work, we introduce a novel approach to support automated refactoring suggestions

for correcting not only existing code smells but also the code fragments that may contain quality

issues in the next releases. Hence, we formulated the refactoring suggestion problem as a

combinatorial optimization problem to find the near-optimal sequence of refactorings from a large

number of possible refactorings.To this end, we propose to combine the use of search-based

software engineering with time series [104] to recommend good refactoring strategies in order to

manage technical debt. We used a multi-objective algorithm, based on NSGA-II [40], to generate

refactoring solutions that maximize the correction of important and riskiest quality issues, and

minimize the effort. For these two fitness functions, we adapted time series forecasting to estimate

the impact of the generated refactorings solution on future releases of the system by predicting the

evolution of the remaining code smells in the system, after refactoring, using different quality

metrics. We evaluated our approach on one industrial project and a benchmark of 4 open source

102

systems. The results confirm the efficiency of our technique to provide better refactoring

management compared to several existing refactoring techniques [54], [65], [103], [105].

5.1.2 Time Series Forecasting

A time series [104] is a sequence of data points that are typically measured at successive

equally-spaced time instants. Examples of time series are global temperature, ocean tides, daily

closing value, etc. A time series is either used for analysis or forecasting. Analysis means

extracting meaningful statistics and characteristics of the data; while forecasting means building a

model to predict future values based on previously observed values. In this work, we are interested

in forecasting. A time series model is a stochastic process that can have different models. Some of

the most used ones are the AR (Auto-Regressive) model, the MA (Moving-Average) model, and

the ARMA (Auto-Regressive Moving-Average) one. The hybridization of these three models has

yielded the ARIMA (Auto-Regressive Integrated Moving Average) model, which is one of the

most used models in the literature [106]. Motivated by the interesting results of ARIMA in

previous Software engineering applications [107]–[110], we chose to use it in this work. [107]–

[110], we choose to use it in this work.

By definition, the ARIMA (p, d, q) model consists of a combination of AR(p), MA(q), and

ARMA(p, q) where p is the order of the autoregressive component, d is the order of the differenced

component, and q is the order of the moving average component. An autoregressive model of order

p views the present value of the series as the linear regression of the previous p values, whereas a

moving average model of order q is conceptually a line regression of the current value of the series

against previous white noise error terms. The ARMA (p, q) model is obtained by combining AR

and MA. If a time series is not stationary, this time series need to be differenced before applying

ARMA (p, q).

103

The ARIMA modelling strategy usually follows four steps as described by Figure 28.

These steps are the following:

1) Identification

This step consists in plotting the time series and some related measures such as the mean,

the range, the ACF (Auto-Correlation Factor), and the PACF (Partial Auto-Correlation Factor).

The different plots allow understanding the nature of the series changes over time. The ACF

represents the correlation, at specific lags, between the residuals of the data. If the lag terms persist

in the ACF plots, it indicates inertia in the series. Such series can be differenced to remove this

effect. While identifying non-stationary series, the ACF and PACF of the difference are studied,

to ensure that the persistence of ACF due to non-stationary nature does not lead to incorrect

identification. A non-stationary series can be converted to a stationary series by differencing

(taking the difference (Yt – Yt-1)).

2) Estimation

The ARIMA model is mathematically stated by the following equation:

where B is the backward shift operator, , is the backward difference, is a

white noise, and and are polynomials of order p and q respectively. We can observe that

the model is composed with different parts: (1) an auto-regressive (AR(p)) part

, an integrating part , and a moving average (MA(q)) part

. The estimation step consists in estimating the parameters of equation

(1) (i.e, and). The most used estimation methods are the least square method and the

maximum likelihood one.

tqt

d

p BxB )()(

1 yy xBx B 1 t

p q

p

pp BB   ...1 1

1
ddI )(

q

qq BB   ...1 1

1

p q

104

3) Diagnostic checking

This step consists in assessing the goodness of the model in fitting the data. If the model

well fits the data, the residuals of the model behave as an independent identically distributed

sequence with a mean of zero and a variance of one. That is, the residual sequence should

correspond to a white noise; otherwise, the model needs to be improved. The χ2 testing on the

residual sequence is commonly used in this step.

4) Application

Once the ARIMA (p, d, q) model is built, we can use this model to make a prediction of a

future quantity or to explain actual data trends. In this work, we are interested in prediction (i.e.,

forecasting). Generally, there are two ways to make forecasting: (1) static forecasting and (2)

dynamic forecasting. Static forecasting computes a sequence of one-step forecasting values using

the actual values rather than the forecasted ones for lagged dependent variables. Dynamic

forecasting calculates multi-step forecast values at once. Previously forecasted values for the

lagged dependent variable are used in forming forecasts of the current value. In this work, we used

the static forecasting. For our problem, the Time Series prediction process consists of three main

steps: the metrics extraction, the model definition and prediction of the future value of the metrics.

In our case, the features represent the quality metrics values of the system after refactoring and the

output of the model is the new values of the metrics in the new release if the given refactoring

solution was applied. Of course, the quality of our prediction depends mainly on the size of the

training set which is, in our case, the previous releases of a system. To this end, we selected in our

experiments systems containing an extensive set of previous releases.

In the next sub-section, we describe the adaption of NSGA-II to our problem and how the

Time Series algorithm was combined with that multi-objective algorithm.

105

Figure 28 ARIMA steps: Box-Jenkins methodology

5.1.3 Approach Overview

The goal of our approach is to generate the best refactoring sequence that improves the

quality of the design and minimize the effort. Therefore, we use a multi-objective optimization

algorithm to compute an optimal sequence of refactorings in terms of finding trade-offs between

these two objectives. The first objective represents the main novelty of this work since we consider

the prediction of code smells evolution when evaluating refactoring solutions. Thus, the main goal

is to reduce not only the number of existing code smells but also to fix risky code fragments that

can become severe code smells to fix in future releases. The second objective minimizes the

number of code smells to fix before the next release to reduce the effort. The general structure of

our approach is sketched in Figure 29.

106

Figure 29 Multi-objective model refactoring: overview

The search-based process takes as inputs the list of 23 possible types of refactoring, the

code smells detection rules from the previous work of Kessentini et al [22], a list of metrics to

predict the evolution of code smells after refactoring, and the system to refactor. The process of

generating a solution can be viewed as the mechanism that finds the best refactorings sequence

among all possible solutions that optimize the above two conflicting objectives. The size of the

search space is determined not only by the number of refactoring but also by the order in which

they are applied. Due to the large number of possible refactoring combinations and the two

conflicting objectives to optimize, we considered the refactoring problem as a multi-objective

problem. In order to predict the evolution of the quality metrics after refactoring, we used a

machine learning algorithm based on Time Series, taking as input the code smells detection rules,

the system after applying the refactoring solution and a set of training data composed of the metrics

values of the previous releases. It generates as output the predicted metrics value for the next

release after refactorings along with the number of code smells that will be created in the future

releases based on the prediction.

107

5.1.4 NSGA-II Adaptation

1) Solution representation

To represent a candidate solution (individual), we used a vector representation. Each

vector’s dimension represents a refactoring operation. Thus, a solution is defined as a long

sequence of refactorings applied to different parts of the system. When created, the order of

applying these refactorings corresponds to their positions in the vector. In addition, for each

refactoring, a set of controlling parameters are stored in the vector, e.g., actors and roles are

randomly picked from the class diagram to be refactored and stored in the same vector. An example

of a solution is given in Figure 30.

move method (Person, Employee, calculateExperience(int))

move field (Employee, Company, salary)

extract class (FinanceDept, Company, id, numberEmployee (int,))

Figure 30 Representation of an NSGA-II individual

After the generation of the refactoring solutions, it is important to guarantee that they are

feasible and that they can be legally applied. For example, to apply the refactoring operation move

method, a number of necessary preconditions should be satisfied, e.g., Person and Employee

should exist and should be classes; calculateExperience(int) should exist and should be a method;

the classes Person and Employee should not be in the same inheritance hierarchy; the method

calculateExperience(int) should be implemented in Person; the method signature of

calculateExperience(int) should not be present in class Employee. As postconditions, Person,

Employee and calculateExperience(int) should exist; calculateExperience(int) declaration should

be in the class Employee; and calculateExperience(int) declaration should not exists in the class

Person.

2) Fitness functions

108

After creating a solution, it should be evaluated using fitness functions. Since we have two

objectives to optimize, we are using two different fitness functions to include in our NSGA-II

adaptation. We used the following fitness functions: Number of detected and predicted code smells

after applying the refactoring solution. More formally, this fitness function is composed as

following: , where dCS represents the number of detected code smells after

applying the refactoring solution on the system. pCS is the number of predicted code smells (on

the system after refactoring) in the next release using Time Series. The code smells are detected

using the rules defined by Kessentini et al. [22]: Effort E (number of changes to introduce in the

system): Number of refactorings composing the solution (size).

3) Genetic operators

To better explore the search space, the crossover and mutation operators are defined. For

crossover, we use a single, random, cut-point crossover. It starts by selecting and splitting at

random two parent solutions. Then crossover creates two child solutions by putting, for the first

child, the first part of the first parent with the second part of the second parent, and, for the second

child, the first part of the second parent with the second part of the first parent. This operator must

ensure that the length limits are respected by eliminating randomly some refactoring operations.

Each child combines some of the refactoring operations of the first parent with some ones of the

second parent. In any given generation, each solution will be the parent in at most one crossover

operation.

The mutation operator picks randomly one or more operations from a sequence and replaces

them by other ones from the initial list of possible refactorings. After applying genetic operators

(mutation and crossover), we verify the feasibility of the generated sequence of refactoring by

checking the pre and post conditions. Each refactoring operation that is not feasible due to

pCSdCSNCS 

109

unsatisfied preconditions will be removed from the generated refactoring sequence. The new

sequence is considered valid in our NSGA-II adaptation if the number of rejected refactorings is

less than 5% of the total sequence size.

5.1.5 Validation

1) Experimental Setup

Our study aims at addressing the two research questions outlined below.

• RQ1: (Usefulness) To what extent can the proposed approach improve the quality?

• RQ2: (Comparison to state-of-the-art) To what extent can the proposed approach improves

the results of refactoring suggestion using the prediction of code smells component

compared to existing work that do not use it [22], [65], [68]?

To answer RQ1, we validate the proposed refactoring solutions to improve the quality of

the system by evaluating their ability to improve the different maintainability objectives defined

by the QMOOD model [111] related to reusability, flexibility, understandability, functionality,

extendibility, and effectiveness. The improvement in quality can be assessed by comparing the

quality before and after refactoring independently to the number of fixed design defects.

We have also asked a group of five software engineers (graduate students in Software

Engineering) to manually evaluate the best refactoring solutions. To this end we define the

following precision metric MP (Manual precision) defined as the number of good refactorings

divided by the total number of recommended refactoring:

gsrefactorin proposed#

gsrefactorin g# ood
MP 

To answer RQ2, we compared our refactoring results with two existing search-based

refactoring techniques and one tool not based on Heuristic search by the mean of JDeodorant [22],

110

[65], [68]. All these techniques did not consider the prediction of quality issues when

recommending refactorings.

Our study considers model fragments extracted from four open source projects and one

industrial project: FindBugs, JFreeChart, Hibernate, Pixelitor and JDI-Ford. Table 11 summarizes

the statics related to these systems. JDI-Ford is a system provided by our industrial partner the IT

department at Ford Motor Company. It is Java-based software system that helps Ford Motor

Company analyze useful information from the past sales of dealerships data and suggests which

vehicles to order for their dealer inventories in the future. JDI is a highly structured and several

versions were proposed by software engineers at Ford during the past 10 years. We selected these

systems for our validation because they range from medium to large-sized open source projects

that have been actively developed over the past 10 years, and include a large number of design

defects and previous releases. In addition, these open source systems were analyzed by previous

work [22], [54], [102], [105].

Parameter setting has a significant influence on the performance of a search algorithm on

a particular problem instance. For this reason, for each algorithm and for each system, we perform

a set of experiments using several population sizes: 50, 100, 200, 300 and 500. The stopping

criterion was set to 100000 evaluations for all algorithms in order to ensure fairness of comparison.

The other parameters’ values were fixed by trial and error and are as follows: (1) crossover

probability = 0.8; mutation probability = 0.5 where the probability of gene modification is 0.3;

stopping criterion = 100000 evaluations.

Since metaheuristic algorithms are stochastic optimizers, they can provide different results

for the same problem instance from one run to another. For this reason, our experimental study is

performed based on 31 independent simulation runs for each problem instance and the obtained

111

results are statistically analyzed by using the Wilcoxon rank sum test [112] with a 99% confidence

level (α = 1%).

Table 11 Systems studied

We note that the mono-objective algorithm provides only one refactorings solution, while

NSGA-II generates a set of non-dominated solutions. In order to make meaningful comparisons,

we select the best solution for NSGA-II using a knee point strategy. The knee point corresponds

to the solution with the maximal trade-off between the two objectives. We use the trade-off

“worth” metric proposed by Rachmawati and Srinivasan to find the knee point. This metric

estimates the worthiness of each non-dominated merging solution in terms of trade-off between

our conflicting objectives. After that, the knee point corresponds to the solution having the

maximal trade-off “worthiness” value.

2) Experiment Results

Results for RQ1. As described in Figure 31, after applying the proposed refactoring

operations by our approach (NSGA-II), we found that, in average, all the quality attributes of

QMOOD were improved on all the five studied systems. It is clear that the understandability and

extendibility attributes were improving better than all other quality attributes. This can be

explained by the nature of code smells that were fixed. Moreover, to ensure the efficiency and

usefulness of our approach, we verified manually the feasibility of the different proposed

refactoring sequences for each system. We applied the proposed refactorings using Eclipse. Some

Systems Releases #Classes
#Smells

(last release)

JFreeChart From v0.9.6 to v1.0.13 960 84

FindBugs From v1.2.1 to v 3.0.1 1907 118

Hibernate From v4.0.0 to v4.2.18 1,004 124

Pixelitor From v0.1 to v1.1.2 564 73

JDI-Ford From v2.1 to v5.8 638 88

112

semantic errors (programs behavior) were found. When a semantic error is found manually, we

consider the operations related to this change as a bad recommendation. We calculate a correctness

precision score MP (ratio of possible refactoring operations over the number of proposed

refactoring) as one of the performance indicators of our algorithm. Figure 32 shows also that an

average of more than 80% of refactorings are feasible confirming the correctness of the

recommended refactorings.

We have evaluated the ability of our approach to reduce the number of refactorings to apply

while maximising the quality. Figure 33 describes that NSGA-II proposed a reasonable number of

refactings to apply, lower than 200, on the different systems. Another interesting observation is

that the number of suggested refactorings was correlated with the number of code smells to fix on

the different systems.

To sum up, we can conclude based on the results of Figure 31 that our approach succeeded

in improving the design quality not only by fixing the majority of detected code smells in the

system (as a fitness function to maximize) but also by improving the user understandability, the

reusability, the flexibility, as well as the effectiveness of the refactored design.

Figure 31 QMOOD quality attributes median values

113

Figure 32 The manual refactoring precision (RP) median values

Figure 33 The number of refactorings median values

Results for RQ2. As described in Figure 31, Figure 32, and Figure 33, it is clear that our

proposal outperforms the different existing techiques. Figure 31 shows that our approach improves

the quality of the design with a better quality attributes value comparing to all existing approaches

considered in our experiements. In terms of behavior preservation it is clear that our approach

provides much more feasible refactorings than existing approachges for all the systems as

described in Figure 32. Figure 33 shows that our proposal requires less effort to apply the best

solutions on all the systems than existing approaches. In fact, all the other existing techniques are

not considering the minimization of the size of a refactoring solution. We found that an explanation

of the outperformance of our technique is that the recommended refactorings by NSGA-II fixed

114

not only the majority of existing code smells but also several code fragments that contain some

early symptomps of code smells that were predicted using the Time Series algorithm.

Usually in the optimization research field, the most time consuming operation is the

evaluation step. In fact, all the algorithms under comparison were executed on machines with Intel

Xeon 3 GHz processors and 8 GB RAM. Figure 8 illustrates the obtained average CPU times of

all algorithms on the systems. We note that the results presented in this figure were analyzed by

using the same previously described statistical analysis methodology. In fact, based on the obtained

p-values regarding CPU times, the NSGA-II provides a comparable execution time to the

remaining techniques as highlighted through Figure 34. This observation could be explained by

the fact that a multi-objective algorithm requires, in general, a higher execution time than a mono-

objective one. In addition, the use of Time Series to evaluate the refactoring solutions is another

reason of the higher execution time. However, we can consider that an average of less than 25

minutes of difference between the execution time of our algorithm and existing work is not an

issue especially that refactoring is not a real-time problem. For example, developers can execute

our tool overnight.

Figure 34 Average execution time on all the systems

115

5.1.6 Conclusion

This work presented a novel multi-objective refactoring approach taking into consideration

multiple criteria to suggest good and feasible refactoring solutions to improve the design quality

while reducing the effort. The suggested refactorings preserve the behavior of the design to

restructure and consider the impact of fixing code smells in the system using several quality

metrics. Our search-based approach succeeded to find the best trade-off between these criteria.

Thus, our proposal produces more meaningful refactorings in comparison to some of those

discussed in the literature. Moreover, the proposed approach was empirically evaluated on several

open-source systems and one industrial project, and compared successfully to an existing approach

not based on heuristic search.

5.2 Prediction of Web Services Defects and Evolution

5.2.1 Introduction

Service-based systems heavily depend on the interface of selected services used to

implement specific features. However, service providers do not know, in general, the impact of

their changes, during the evolution Web services, on the applications of subscribers. The

subscribers are reluctant, in general, to use Web services that are risky and not stable [2]. Thus,

analyzing and predicting Web service changes is critical but also challenging because of the

distributed and dynamic nature of services. As a consequence, recent studies were proposed to

understand the evolution of Web services especially at the interface level [2], [51], [57].

We use, in this contribution, the changes collected from previous Web service releases to

address the following problems. Most of the changes in a web service interface typically affect the

systems of its subscribers. Thus, it is important for subscribers to estimate the risk of using a

specific service and compare its evolution to other services offering the same features in order to

116

reduce the effort of adapting their applications in the next releases. Subscribers prefer to use, in

general, Web services that are stable with a low risk to include bugs and introduce major revisions

in the future. In addition, the prediction of interface changes may help web service providers to

better manage available resources (e.g. programmers’ availability) and efficiently schedule

required maintenance activities to improve the quality of developed services. In fact, the prediction

of Web service changes can be used to identify potential quality issues that may occur in the future

releases. Thus, it is easier to fix these quality issues as early as possible before that they become

more complex.

In this work, we propose a machine learning approach based on Artificial Neural Networks (ANN)

[43] to predict the evolution of Web services interface from the history of previous releases’

metrics. The predicted interface metrics value is used to predict and estimate the risk and the

quality of the studied Web services. We evaluated our approach on a set of 6 popular Web services

including more than 90 releases. We report the results on the efficiency and effectiveness of our

approach to predict the evolution of Web services interfaces and provide useful recommendations

for both service providers and subscribers. The results indicate that the prediction results of several

Web service metrics, on the different releases of the 6 Web services, were similar to the expected

ones with very low deviation rate. Furthermore, most of the quality issues of Web service

interfaces were accurately predicted, for the next releases, with an average precision and recall

higher than 82%. The survey conducted with a set of developers also shows the relevance of

prediction technique for both service providers and subscribers.

5.2.2 Approach Overview

As described in Figure 35, our technique takes as input the previous releases of the Web

service interfaces to predict its evolution, an exhaustive list of metrics to predict, and a list of

117

detection rules to detect potential future quality issues, called Web service antipatterns, based on

the predicted metrics. Our approach generates as output the set of predicted evolution metrics

values and possible future quality issues for the next release.

Figure 35 Prediction approach: overview

Our prediction model is based on machine learning algorithm using Aritificial Neural

Network (ANN) model. In the following we describe the ANN adaptation to our Web services

evolution prediction problem.

5.2.3 Artificial Neural Network Model

Artificial Neural Network (ANN): ANN models are mathematical models inspired by the

functioning of nervous systems [113]–[116], which are composed by a number of interconnected

entities, the artificial neurons. ANNs are based on learning which is a characteristic of adaptive

systems which are capable of improving their performance on a problem as a function of previous

experience [116]. An ANN builds a map between a set of inputs and the corresponding outputs.

This model can deal with non-linear regression analysis with noisy signals and incomplete data.

In this work, we used a Multi-Layer Perception ANN (MLP-ANN) [113]. It is well-known that

MLP-ANNs are universal approximators, which makes them attractive for modeling black-box

functions for which little information about their form is known. The output of each neuron is

expressed as follows:

118

where w denotes the weight vector, a is the input vector, b is the bias, is the activation function,

and n is the number of neurons in the hidden layer. A hidden neuron influences the network outputs

only for those inputs that are near to its center, therefore requiring an exponential number of hidden

neurons to cover entirely the input space. For this reason, it is suggested that MLP-ANN are

suitable for problems with a small number of inputs like our prediction of Web services evolution

problem.

5.2.4 Artificial Neural Network Adaptation

We applied the ANN as being among the most reliable predictive models, especially, in

the case of noisy and incomplete data. Its architecture is chosen to be a multilayered architecture

in which all neurons are fully connected; weights of connections have been, randomly, set at the

beginning of the training. Regarding the activation function, the sigmoid function is applied [43]

as being adequate in the case of continuous data. The network is composed of three layers: the first

layer is composed of p input neurons. Each neuron is assigned the value . The hidden layer is

composed of a set of hidden neurons. The learning algorithm is an iterative algorithm that allows

the training of the network. Its performance is controlled by two parameters. The first parameter

is the momentum factor that tries to avoid local minima by stabilizing weights. The second factor

is the learning rate which is responsible of the rapidity of the adjustment of weights.

Learning process. Before the learning process, the data used in the training set should be

normalized. In our case, we choose to apply the min-max technique since it is among the most

accurate techniques according to [117]. In our adaptation, we used the following list of metrics

from the literature [12] to predict for the next Web service releases, as described in Table 12.














 



n

i

ii bawy

1





ktx

119

Table 12 Web service interface metrics used

Metric Name Definition

NPT Number of port types

NOD Number of operations declared

NAOD Number of accessor operations declared

NOPT Average number of operations in port types

ANIPO Average number of input parameters in operations

ANOPO Average number of output parameters in operations

NOM Number of messages

NBE number of elements of the schemas

NCT Number of complex types

NST Number of primitive types

NBB Number of bindings

NBS Number of services

NPM Number of parts per message

NIPT Number of identical port types

NIOP Number of identical operations

COH Cohesion

COU Coupling

AMTO Average meaningful terms in operation names

AMTM Average meaningful terms in message names

AMTMP Average meaningful terms in message parts

AMTP Average meaningful terms in port-type names

ALOS Average length of operations signature

ALPS Average length of port-types signature

ALMS Average length of message signature

During the learning process, our ANN solutions are represented as follows: let us denote

by O the matrix that includes numerical values related to the set of metrics to predict. O is

composed of n lines and p columns where n is equal to the number of metrics to predict and p is

equal to the number of steps (releases).



























npnn

p

p

xxx

xxx

xxx

O

...

.

.

.

.

.

.

.

.

.

.

.

.

...

...

21

22221

11211

120

Learning technique. There are several learning algorithms, depending on whether the ANN

model is linear or non-linear. Our MLP model utilizes a supervised learning technique called back-

propagation (BP) for training the network. MLP is a modification of the standard linear perceptron

and can distinguish data that are not linearly separable. BP is one of the most popular and common

training procedures used, that is described in depth in the literature [43]. Our BP neural network

has been trained with moderate values for the learning rate (α) and momentum (μ). The weights

are recalculated every time a training vector is presented to the network. The exit strategy or the

termination condition for the network is based on the sum square error until it reaches a certain

threshold assigned prior to running the network. Our implementation is based on the Weka9

framework with it default configuration.

5.2.5 Validation

1) Experimental Setup

In order to evaluate the ability of our prediction framework to efficiently predict the

evolution trends of Web services, we conducted a set of experiments based on six widely used

Web services. In this section, we first present our research questions, the experiments setup and

then describe and discuss the obtained results. Finally, we discuss some threats related to our

experiments.

We defined the following three research questions that address the applicability,

performance, and the usefulness of our Web services prediction approach. The three research

questions are as follows:

• RQ1: To what extent can our approach predict correctly the evolution of Web services?

• RQ2: To what extent can our approach predict Web service quality issues?

9 http://www.cs.waikato.ac.nz/ml/weka

121

• RQ3: Can our prediction results be useful for developers?

To answer RQ1, we calculated the deviation between the actual expected metrics value and

the predicted ones using our ANNs algorithm on different Web service releases. To this end, we

considered the list of metrics described in the previous section. The error rate is defined as follows:

iii EMPMSMratee ),(_ ,

where PM is the predicted metric value using ANNs and EM is the expected value. We calculated

the error rate for one and many steps (releases) over time for every of the considered Web services.

To answer RQ2, we calculated precision and recall scores to compare between the predicted Web

services antipatterns and the expected ones:

]1,0[
nsantipatter expected

 nsantipatter expected nsantipatter predicted
RC 


recall

]1,0[
nsantipatter predicted

 nsantipatter expected nsantipatter predicted
PR precision 




We considered five types of antipatterns from the literature [11]: Multi-service (MS: a

service implementing many operations), Nano-service (NS: too-fine grained service), Chatty-

service (CS: a service including many fine-grained operations), Data-service (DS: a service

including only data access operations) and Ambiguous service (AS: a service including ambiguous

names of operations). More details about existing Web service antipatterns can be found in the

following references [11]. We used the manually defined rules in [12] to detect the predicted and

actual Web service antipatterns.

To answer RQ3, we used a post-study questionnaire that collects the opinions of developers

on our prediction results. We also wished to assess how these results may help developers working

on services-based applications. To this end, we asked 24 software developers, including 11

developers working in a Web development startup and providing some Web services for customers

122

from the automotive industry sector. The remaining participants are 13 graduate students (8 MSc

and 5 PhD students) in Software Engineering at the University of Michigan-Dearborn. 9 out the

13 students are working either full-time or part-time programmers in Software industry. All the

participants are volunteers and have a minimum of 2 years’ experience as a developer. The

participants were first asked to fill out a pre-study questionnaire containing five questions. The

questionnaire helped to collect background information such as their role within the company,

their programming experience, their familiarity with Web services and service-based applications.

In addition, all the participants attended one lecture about Web service antipatterns and passed five

tests to evaluate their performance to evaluate the design of Web services using quality metrics.

We selected these 6 Web services for our validation because different releases of their WSDL

interface are publicly available and belong to different categories. Table 13 Web service statistics

provides some descriptive statistics about these six Web services:

• Amazon EC2: Amazon Elastic Compute Cloud is a web service that offers resizable

compute capacity in the cloud. In this study we have considered a total of 44 releases from

2006 until 2014.

• Amazon Simple Queue Service (Amazon SQS) offers reliable hosted queues for storing

messages exchanged between computers. We considered in our study a total of 6 releases.

• Fedex Track service offers accurate update of the status of shipments. We used 10 releases

from this Web service.

• FedEx Ship Service: The Ship Service provides functionalities for managing package

shipments and their options. A total of 17 releases are considered in our experiments from

this Web service.

123

• FedEx Rate Service: The Rate Service provides the shipping rate quote for a specific

service combination depending on the origin and destination information supplied in the

request. We used 18 releases for our prediction algorithm.

• Amazon Mechanical Turk Requester: it is a web service that provides an on-demand,

scalable, human workforce to complete jobs that humans can do better than computers such

as recognizing objects in photos. We used 15 releases developed between 2005 until 2012.

Table 13 Web service statistics

Web Service Name # Releases Average number of Antipatterns

Amazon EC2 44 134

Amazon Mechanical Turk 15 61

Amazon Simple Queue 6 21

FedEx Rate Service 18 17

FedEx Ship Service 17 82

FedEx Track Service 10 44

2) Experiment Results

Results for RQ1. Figure 36,

Figure 37 and Figure 38 summarize the outcome for the first research question. Most of the

Web service metrics were predicted accurately on the different Web services with an average

error rate lower than 2.8 as described in

Figure 37. For FedEx Track service and FedEx Rate service, the average error rate is the

highest. This could be related to the lower training set comparing to the other services. For Amazon

EC2, the metrics were predicted with a minimum deviation score of 2.1 due to the large training

set available for this service. However, Amazon Simple Queue has one of the lowest deviation

score of 1.8. This confirms that our prediction results are independent from the size of the Web

services to evaluate and the training data.

124

Figure 37 shows more detailed results of the average error rate by metric. The results

clearly support the claim that our results are independent from the type of metric to predict.

However, the error rate depends on the range of every metric. For example, it is expected that the

number of operations per service may get the highest error rate since the variation of this metric is

high and its range is larger than the other metrics.

Figure 38 describes the ability of our algorithm to predict the metrics value not only for the

next release but for up-to the next 5 releases. In fact, the obtained results on the different Web

services (except Amazon Simple Queue, not considered due to the limited number of releases)

clearly show that the error rate for the 5th upcoming release is minimal with a score less than 4.5.

To answer the first research question, our approach is able to predict the evolution of Web service

metrics with a high accuracy.

Figure 36 Average error rate (e_rate) on the different Web services

125

Figure 37 Average error rate (e_rate) per metric on the different Web services

Figure 38 Average error rate (e_rate) of the different metrics on the Web services

(except Amazon Simple Queue) per prediction step

Results for RQ2. Figure 39, Figure 40 and Figure 41 summarize our findings. Overall, most

of the expected quality issues (Web service antipatterns) for the next release were identified as

described in Figure 39. Our prediction algorithm was able to detect Web service antipatterns on

the different services with an average precision and recall respectively higher than 84% and 86%.

For FedEx Ship service and Amazon Mechanical Turk, the precision is higher than for the other

126

systems with more than 88%. This can be explained by the fact that these systems are smaller than

others and contain a lower number of antipatterns to predict. For FedEx Rate Service, the precision

is also high (around 82%), i.e., most of the predicted antipatterns are correct. This confirms that

our precision results are independent from the size of the Web services to evaluate. For Amazon

EC2, the precision is one of the lowest (81%) but still acceptable. Amazon EC2 contains a high

number of ambiguous services that are difficult to detect using metrics.

The same observations are valid for the recall. The average recall on the six Web services was

higher than 86%. For Fedex Track service and Amazon EC2, the precision is higher than for the

other systems with more than 90%. This can be explained by the fact that these systems are using

more training data than others. For FedEx Ship Service, the precision is also high (around 81%),

thus the impact of the size of the training data was not high on the quality of the prediction results.

An interesting observation is that the obtained precision and recall scores are conflicting since the

services with the highest precision scores received the lowest recall. However, both scores are

acceptable for all the Web services.

One key strength of our technique is the ability to predict quality issues not only for the

next release but for up-to the next 5 releases as described in Figure 41. In fact, the obtained results

clearly show that both precision and recall are still high for all the Web services when predicting

quality issues for the 5th upcoming release with an average higher than 73%. We did not consider

in our evaluation the Amazon Simple Queue due to the limited number of available releases.

To summarize, it is clear based on the obtained results that our approach predicts Web service

quality issues with a high accuracy.

127

Figure 39 Average precision and recall of the predicted antipatterns on the different Web

services

Figure 40 Average precision and recall per antipattern type on the different Web services

128

Figure 41 Average precision and recall on the Web services (except Amazon Simple Queue)

per prediction step

Results for RQ3. To answer RQ3, we used a post-study questionnaire to the opinions of the

participants about their experience in using our prediction tool and results. The questionnaire asked

participants to rate their agreement on a Likert scale from 1 (complete disagreement) to 5

(complete agreement) with the following statements:

• The predicted metrics value is useful to estimate the risk and cost of using a specific Web

service and may help the developer to select the best service based on his preferences.

• The predicted quality issues may help developers and managers to better schedule

maintenance activities and reduce the cost of fixing these issues.

The agreement of the participants was 4.6 and 4.8 for the first and second statements

respectively. This confirms the usefulness of our prediction results for the developers considered

in our experiments.

The remaining questions of the post-study questionnaire were about the benefits and also

limitations (possible improvements) of our prediction approach. We summarize in the following

the feedback of the developers. Most of the participants mention that our results may help

129

developers of the service providers to decide when to refactor their Web service implementations.

For example, they can consider to perform some refactorings when the prediction results show that

the quality issue may become much more severe after few releases such as a multi-service

antipattern. Thus, the developers liked the functionality of our tool that helps them to identify

refactoring opportunities as early as possible.

The participants found our tool helpful for also the developers of Service-based

applications. In fact, the majority of the participants mention that they consider the stability and

quality of services as important criteria to select a Web service when several options are available.

The non-stability of a service may negatively impact their systems in the future and it is maybe an

indication that the used service includes many bugs explaining several new releases. Furthermore,

the subject liked the prediction of antipatterns feature since it is easier for them to evaluate the

quality of Web services in next releases based on the number of antipatterns rather than analyzing

a set of metrics.

The participants also suggested some possible improvements to our prediction approach.

Some participants believe that it will be very helpful to extend the tool by adding a new feature to

automatically calculate the risk, cost and benefits of using different possible Web services. Another

possibly suggested improvement is to use some visualization techniques to evaluate the evolution

of the We services to easily estimate their stability.

3) Threats to Validity

Conclusion validity is concerned with the statistical relationship between the treatment and

the outcome. The parameter tuning of the ANNs used in our experiments creates a threat that we

need to evaluate in our future work. The parameters' values used in our experiments are found by

trial-and-error. However, it would be an interesting perspective to design an adaptive parameter

130

tuning strategy for our approach so that parameters are updated during the execution in order to

provide the best possible performance.

Internal validity is concerned with the causal relationship between the treatment and the

outcome. We used a set of manually defined rules for the detection of possible future quality issues

in the next releases [19]. However, the obtained results depend on the used rules and some of the

predicted quality issues may not be important antipatterns to fix by the service provider’s

developers.

Construct validity is concerned with the relationship between theory and what is observed.

To evaluate the relevance of our prediction results, we interviewed a group of developers. For the

selection threat, the participant diversity in terms of experience could affect the results of our study.

We addressed the selection threat by making sure that all the participants have almost the same

experience in web development and familiarity with Web services. For the fatigue threat, we did

not limit the time to fill the questionnaire and we also sent the questionnaires to the participants

by email and gave them the required time to complete each of the required tasks.

External validity refers to the generalizability of our findings. In this study, we performed

our experiments on six widely used Web services belonging to different domains and having

different sizes. However, we cannot assert that our results can be generalized to other Web services,

and to other practitioners. Future replications of this study are necessary to confirm our findings.

In addition, our study was limited to the use of specific metrics. Future replications of this study

are necessary to confirm our findings.

5.2.6 Conclusion

We proposed, in this contribution, an approach to predict the evolution of Web services. In

fact, it is maybe important for subscribers to estimate the risk of using a selected service and

131

compare its evolution to other possible services offering the same features. Furthermore, the

prediction of future changes may help web service providers to better manage available resources

and efficiently schedule required maintenance activities to improve the quality. In this work, we

propose to use machine learning, based on Artificial Neuronal Networks, for the prediction of the

evolution of Web services interface design. To validate the proposed approach, we collected

training data from quality metrics of previous releases from 6 Web services. The validation of our

prediction techniques shows that the predicted metrics value, such as number of operations, on the

different releases of the 6 Web services were similar to the expected ones with a very low deviation

rate. In addition, most of the quality issues of the studied Web service interfaces were accurately

predicted, for the next releases, with an average precision and recall higher than 82%. The survey

conducted with developers also shows the relevance of prediction technique for both service

providers and subscribers.

132

Chapter 6 Recommendation of Web Service Refactoring

6.1 Context

The Service-Oriented Architecture (SOA) [118], [119] is a modern development paradigm

that changes the way of software design, implementation, and management process. It enables

enterprises to adapt to new requirements efficiently and utilize the existing services provided by

others conveniently. Most of the common products of SOAs are based on Web services. A Web

service is a self-describing software application that can be invoked on the internet using a set of

standards (SOAP, REST, etc.) [120]. Nowadays, there are many companies aim to extend their

business and accessibilities by providing Web services to their clients, such as FedEx, PayPal,

YouTube, and Twitter. They only need to expose the interface of the services and its description

(such as WSDL document) to the clients, so clients’ application can communicate and interact

with the Web services.

Similar to traditional software, the interface of Web services carries the duty of interaction

with its customers and maintain the binding between them. However, a Web service with one

single interface may be composited by others [121] and have many different clients. Though the

evolution of the Web services, context, environment and business process may lead them to

violations of quality principles [4]. Such violations may present with bad design and programming

practice, known as antipatterns [13], [94]. As a service provider, these antipatterns can cause

problems such as fragile design, bug rate, and inflexible code. As clients of the service, they need

to spend more time to understand the service, maintain activities and avoid creating antipatterns in

their code.

133

Furthermore, the client applications and the Web services that they invoke with can be both

changed over time due to new requirements or management. As a consequence, these changes can

lead to a high cost of testing and reduce the maintainability of client applications [5]. Again, since

the Web services interface and descriptions are provided to all clients at once as the same format,

most of the clients do not need all the functionalities, but they still have to go through the same

documentation and access through the same interfaces with others. This unnecessary work could

lead to extra cost and development time.

To address this issue, we propose fived solutions in this chapter to recommend

remodularization of Web service interface based on the client’s preference and quality metrics.

The recommendations will help clients by giving them different options to create their own

subinterfaces, to increase the usability, understandability, and maintainability of their application.

From the other hand, Web service provider can preserve the original service interface to other

clients, and at the same time use this approach to customize their product to increase their most

valuable customer satisfaction by creating additional interface though one or more new interfaces.

6.2 Web service Interface Refactoring

Modularity. The service interface modularity can be defined as the degree to which the

operations of a service belong together and well partitioned into cohesive interfaces. A proper

modularization of design leads to a service which is easier to use, design, develop, test, maintain,

and evolve. The importance of design modularity was best articulated by David et al. [91]:

“Perhaps the most widely accepted quality objective for design is modularity.” Although

modularity tends to be a subjective concept, measuring the degree of modularization of a software

design can be achieved through two quality measures: cohesion and coupling [122].

134

Refactoring. Software refactoring is defined by Fowler [27] as “the process of changing

the internal structure of software to improve its quality without altering the external behavior.”

Refactoring is recognized as an essential practice to improve software quality. Dudney et al. [10]

have defined an initial catalog of refactoring operations for Web services including Interface

Partitioning, Interface Consolidation, Bridging Schemas or Transforms and Web Service Business

Delegate. Despite being widely used in the Object-Oriented Programming (OOP) paradigm and

supported by OOP integrated development environments (IDEs), refactoring is still unexplored in

the context of service-oriented computing (SOC). In fact, SOC refactoring is not a trivial case of

recoding existing OOP refactoring techniques.

To the best of our knowledge, there is no tool currently supports developers in refactoring

decision making with Web services interface based on their application releases. Our approachs

proposed in this diserrtation, defines and supports three WSDL refactoring operations based on

literature [4], [10]:

• Interface Partitioning: This refactoring decomposes a large, multi-abstraction interface

into multiple interfaces that each represents a distinct abstraction.

• Interface Consolidation: This refactoring merges a set of interfaces that collectively

implement a complete, single abstraction. Different service interfaces that operate against

the same abstraction are merged into one interface that represents a single cohesive

abstraction.

• Move Operation: This refactoring moves an operation from one interface to another one.

It implies deciding what the core abstraction should be and moving the operations that do

not fit that abstraction to some other interface(s).

135

Table 14 Adopted refactorings of Web service

Table 14 presents the set of parameters, pre and post-conditions required for each of our adopted

refactorings [123].

To illustrate some of the issues related to service interface remodularization, let’s consider

a real-world web service example, Amazon Simple Storage Service (Amazon S3). AmazonS3 is

object storage with a simple web service interface to store and retrieve data from the web, its main

interface design extracted from its latest version10 is described in Figure 42. This interface enables

Amazon S3’s main functionalities and communications between clients and Amazon S3 such as

creating a new bucket for the storage - CreateBucket(), putting objects into storage – PutObject(),

and setting object access control protocol - SetObjectAccessControlPolicy().

A history of a client application releases is described in Figure 42 Motivating example

(Amazon S3). Originally, it is an application created to analyze and track Amazon S3 access log

and control policy and based on Amazon S3. In Version 4, ListBuck() and DeleteBucket() are added

to the application, so that the users can delete useless bucket. In Version 11, the users can access

data through GetObject() and GetObjectExtended() and delete useless object in the bucket.

Despite that Amazon S3 is a small and straightforward service, it is still obvious to notice

that the interface of it exposes different functionalities that do not belong together including bucket

management, object management, access control policy and access log operations. This design

10 http://docs.aws.amazon.com/AmazonS3/latest/API/APISoap.html

136

makes the service hard to understand and reuse by the developers from industrials. Potential

developers may need to understand the whole API documentation just to find few operations

needed by their implementation. Furthermore, whenever there is an update of the service interface,

developers have to read, re-implement, test and configure for all operations because they are all in

one interface.

A better SOA design practice could consider partitioning the AmazonS3 interface into

appropriately-sized, cohesive and loosely coupled interfaces that related to the management of

queue attributes, such as four sub-interfaces related to “bucket management”, “object

management”, “access control management” and “log management”. Furthermore, to make sure

the new interface is suitable to the client and easy to use by the developers, the study of the client

releases is needed to find the connection and favor between the operations. Learning from the first

release of the client application, operations of “access control management” and “log

management” are favored to use together; “Bucket Management” and “Object management” can

be in separate interfaces since related operations are invocated in later releases separately. Figure

42 (on the right) shows one best-decomposed interfaces solution for the client user; it’s composed

of three sub-interfaces related to “Access control and log management”, “Bucket Management”

and “Object Management”. In addition, the new interface is built based on the evolution of client

application; this can make client developers easier to test or update their application in the future.

Thus the reusability, maintainability, and even performance of Web service can be improved

through good decomposition design.

137

Figure 42 Motivating example (Amazon S3)

6.3 Web Service Interface Remodularization Using Multi-Objective

Optimization

6.3.1 Approach Overview

Given a set of service operations there are many ways in which the module boundaries can

be drawn leading to different possible modularizations of the service abstractions. The problem is

a graph partitioning problem, which is known to be NP hard and therefore seems suited to a

metaheuristic search-based approach [15], [124].

Figure 43 shows the overall architecture of the Multi-Ojbective approach(WSIRem) to the

Web service interface remodularization problem. WSIRem aims at exploring a large search space

to find a set of optimal remodularization solutions, by grouping together all collections of

operations that have high cohesion into separate interfaces. WSIRem takes as input a Web service

interface WSDL file/url to be improved. Then, WSIRem parses the WSDL sources by tree walking

138

up the XML hierarchy. It then analyses the parsed WSDL through 1) a structural analysis to extract

both sequential and communicational operations similarity, and 2) a semantic analysis in order to

extract semantic relationships between operations. The extracted information will be used in an

optimization process based on the non-dominated sorting genetic algorithm (NSGA-II) [40]to

generate remodularization solutions. An optimal modularization solution should find the best

trade-off between the following objectives (i) maximizing cohesion, (ii) minimizing coupling, (iii)

maximizing the number of interfaces, and (iv) minimizing the number of operations per interface.

As output, the result of WSIRem should be a set of interfaces, one for each distinct abstraction, and

each one containing the complete set of operations that operates on that abstraction.

To manipulate instances of this kind, WSIRem start by (i) creating a set of new empty

interfaces, and (ii) assigning each operation to a unique interface. A modularization solution should

assign each operation to exactly one interface, and has no empty interfaces. Then, WSIRem uses

NSGA-II in order to find the best modularization solution that provide the best trade-off between

our four objective functions.

Figure 43 Overall WSIRem architecture

139

6.3.2 Web Service Interface Modularization Metrics

We define the Web service interface Modularization ℳ as a decomposition of the set of

operations O into a set of service interfaces si, where each interface represents a WSDL port type

PT, i.e., a container of operations. We define the interface size, size(si), by the number of its

operations. Consider a Web service with set of operations 𝑂 = {𝑜𝑝1, 𝑜𝑝2, . . . , 𝑜𝑝𝑛} where 𝑛 is the

number of operations in the service. The set of possible modules, i.e., interfaces, is represented by

ℳ = {𝑠𝑖1, 𝑠𝑖2, . . . , 𝑠𝑖𝑚 where 𝑚 is the number of service interfaces, and each interface has its

unique number 1,2, . . . , 𝑚. A possible modularization solution for this problem is defined by the

decision variables 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}f, where 𝑥𝑖 = 𝑠𝑖 indicates that 𝑜𝑝𝑖 belongs to interface 𝑠𝑖.

Figure 48 shows a service interface modularization example. A simple solution 𝑋 =

{1,2,3,1,3,2,2}, for example, denotes a modularization of seven operations into three service

interfaces. Operations 𝑜𝑝1 and 𝑜𝑝4 are in service interface 𝑠𝑖1 , 𝑜𝑝2 , 𝑜𝑝6 and 𝑜𝑝7 in 𝑠𝑖2 , and

finally 𝑜𝑝3 and 𝑜𝑝5 are in 𝑠𝑖3. Moreover, different service operation dependencies exist in order

to implement the required functionalities by the service. An appropriate modularization should

maximize the cohesion within an interface while minimize coupling between interfaces. Interface

Cohesion

Cohesion is a widely used metric in SOC to measure how strongly related are the operations

of a service interface [5], [6], [125]. WSIRem employs three commonly used interface cohesion

metrics that will drive the remodularization search process: sequential, communicational, and

conceptual cohesion. Our cohesion metrics focus on interface-level relations, as service

implementation is typically not provided by the service providers. Similarly, we do not consider

information concerning the usage of operations by clients, as this information is mostly influenced

by the specific scenario where the service is used.

140

A. Lack of Sequential Cohesion (𝐿𝑜𝐶𝑠𝑒𝑞):

The sequential similarity 𝑆𝑠𝑒𝑞 between two operations quantifies the sequential category of

cohesion [6]. Two operations are deemed to be connected by a sequential control flow if the output

from an operation is the input for the second operation, or vice versa. Formally, let 𝑜𝑝1, 𝑜𝑝2 ∈ 𝑠𝑖,

two operations belonging to an interface 𝑠𝑖, then 𝑆𝑠𝑒𝑞 is defined as follows:

𝑆𝑠𝑒𝑞(𝑜𝑝1, 𝑜𝑝2) =
𝑀𝑆(𝐼(𝑜𝑝1), 𝑂(𝑜𝑝2)) + 𝑀𝑆(𝑂(𝑜𝑝1), 𝐼(𝑜𝑝2))

2

where 𝐼(𝑜𝑝) and 𝑂(𝑜𝑝) refer to the input and output messages of the operation 𝑜𝑝, respectively;

and 𝑀𝑆(𝐼(𝑜𝑝1), 𝑂(𝑜𝑝2)) is the function that returns the message similarity between two messages

𝐼(𝑜𝑝1) and 𝑂(𝑜𝑝2).

Message similarity (MS). Two messages are similar if they have common parameters, or

similar types of parameters. To calculate MS of two messages 𝑚1 and 𝑚2, our approach is based

on the average of:

• The number of common subtrees: it corresponds to the sum of the orders of common

bottom-up subtrees of 𝑚1 and 𝑚2, divided by the order of the message that results from

the union of 𝑚1 and 𝑚2, as defined in [125].

• The number of common primitive types: it corresponds to the Jaccard similarity between

𝑚1 and 𝑚2, i.e., the ratio of common primitive types in 𝑚1 and 𝑚2, divided by the union

of primitive types of 𝑚1 and 𝑚2.

By combining these two measures, MS aims at capturing message similarity. The more

two messages share common primitive types, the more they are likely to be related.

141

B. The Lack of sequential cohesion 𝐿𝑜𝐶𝑠𝑒𝑞 of an interface 𝑠𝑖 is defined as the complement of

the average 𝑆𝑠𝑒𝑞 of all pairs of operations belonging to the interface 𝑠𝑖 [40]. Formally,

𝐿𝑜𝐶𝑠𝑒𝑞 is defined as follows:

𝐿𝑜𝐶𝑠𝑒𝑞(𝑠𝑖) = 1 −

∑
∀(𝑜𝑝𝑖,𝑜𝑝𝑗)∈𝑠𝑖

𝑜𝑝𝑖≠𝑜𝑝𝑗

𝑆𝑠𝑒𝑞(𝑜𝑝𝑖,𝑜𝑝𝑗)

|𝑠𝑖|×(|𝑠𝑖|−1)

2

C. Lack of Communicational Cohesion (𝐿𝑜𝐶𝑐𝑜𝑚)

The Communicational Similarity 𝑆𝑐𝑜𝑚 between two operations quantifies the

communicational category of cohesion [6]. Two service operations are deemed to be connected by

a communication similarity, if they share (or use) common parameter and return types, i.e., both

operations are related by a reference to the same set of input and/or output data. Formally, let 𝑚1

and 𝑚2, two operations, then 𝑆𝑐𝑜𝑚 is defined as follows:

𝑆𝑐𝑜𝑚(𝑜𝑝1, 𝑜𝑝2) =
𝑀𝑆(𝐼(𝑜𝑝1), 𝐼(𝑜𝑝2)) + 𝑀𝑆(𝑂(𝑜𝑝1), 𝑂(𝑜𝑝2)

2

where 𝐼(𝑜𝑝) and 𝑂(𝑜𝑝) refer to the input and output messages of the operation 𝑜𝑝, respectively;

and 𝑀𝑆(𝐼(𝑜𝑝1), 𝐼(𝑜𝑝2)) is the function that returns the message similarity between two messages

𝐼(𝑜𝑝1) and 𝐼(𝑜𝑝2).

D. The Lack of communicational cohesion 𝐿𝑜𝐶𝑐𝑜𝑚 of an interface 𝑠𝑖 is defined as the

complement of the average 𝑆𝑐𝑜𝑚 of all pairs of operations belonging to the interface 𝑠𝑖

[40]. Formally, 𝐿𝑜𝐶𝑐𝑜𝑚 is defined as follows:

𝐿𝑜𝐶𝑐𝑜𝑚(𝑠𝑖) = 1 −

∑∀(𝑜𝑝𝑖,𝑜𝑝𝑗)∈𝑠𝑖

𝑜𝑝𝑖≠𝑜𝑝𝑗

𝑆𝑐𝑜𝑚(𝑜𝑝𝑖 , 𝑜𝑝𝑗)

|𝑠𝑖| × (|𝑠𝑖| − 1)
2

E. Lack of Semantic Cohesion (𝐿𝑜𝐶𝑠𝑒𝑚)

142

The Semantic Similarity 𝑆𝑠𝑒𝑚 between two operations quantifies the conceptual category

of cohesion. We define a concrete refinement of the conceptual cohesion, as it is regarded as the

strongest cohesion metric [9].

𝑆𝑠𝑒𝑚 is based on the meaningful semantic relationships between two operations, in terms

of some identifiable domain level concept. We expand the existing definition to get more

meaningful sense of the semantic meanings embodied in the operation names. To this end, we

perform a lexical analysis on operation signature. Our lexical analysis consists of the four

following steps:

a) Tokenization. The operation names are tokenized using a camel case splitter where each

name is broken down into tokens/terms based on commonly used coding standards.

b) Filtering. We use a stop word list to cut-off and filter out all common English words11 from

the extracted tokens. Typically, these words are irrelevant to the implemented concept.

Such words carry a very low information value and can negatively affect the semantic

similarity process as they have no direct relation to the business abstraction domain.

c) Lemmatization. This is a morphological process that transforms each word to its basic form

(i.e., lemma). This process aims at reducing a word to its basic form in order to group

together the different inflected forms of a basic word so they can be analyzed as a same

word. Hence, different forms of words that may have similar meanings are grouped

together and handled as identical word. For example, the verb ‘to pay’ may appear as ‘pay’,

‘paid’, ‘paying’, ‘payment’, ‘payments’. The base form, ‘pay’ is then the lemma of all these

11

 http://www.textfixer.com/resources/common-english-words.txt

143

words. To do so, we use Stanford’s CoreNLP12 to find the base forms of all extracted

words.

d) Vocabulary expansion. To enhance the effectiveness of the semantic similarity, we

considered WordNet13 , a widely used lexical database that groups words into sets of

cognitive synonyms, each representing a distinct concept. We use WordNet to enrich and

add more informative sense to the extracted bag of words for each operation. For example,

the word customer can be used with different synonyms (e.g., client, purchaser, etc.), but

pertaining to a common domain concept.

To capture semantics or textual similarity between two bags of words 𝐴 and 𝐵 extracted

from two operations 𝑜𝑝1 and 𝑜𝑝2 respectively, we use the cosine of the angle between both vectors

representing 𝐴 and 𝐵 in a vector space using tf-idf (term frequency-inverse document frequency)

model. We interpret term sets as vectors in the n-dimensional vector space, where each dimension

corresponds to the weight of the term (tf-idf) and thus n is the overall number of terms. Formally,

the 𝑆𝑠𝑒𝑚 between 𝑜𝑝1 and 𝑜𝑝2 corresponds to the cosine similarity of their two weighted vectors

𝐴 and 𝐵⃗⃗ and defined as follows:

𝑆𝑠𝑒𝑚(𝑜𝑝1, 𝑜𝑝2) = 𝑐𝑜𝑠𝑖𝑛𝑒(𝐴, 𝐵⃗⃗) =
𝐴 ⋅ 𝐵⃗⃗

∥ 𝐴 ∥×∥ 𝐵⃗⃗ ∥

F. The Lack of semantic cohesion 𝐿𝑜𝐶𝑠𝑒𝑚 of an interface 𝑠𝑖 is defined as the complement of

the average 𝑆𝑠𝑒𝑚 of all pairs of operations belonging to the interface 𝑠𝑖. Formally, 𝐿𝑜𝐶𝑠𝑒𝑚

is defined as follows:

12

 nlp.stanford.edu/software/corenlp.shtml

13
 wordnet.princeton.edu

144

𝐿𝑜𝐶𝑠𝑒𝑚(𝑠𝑖) = 1 −

∑∀(𝑜𝑝𝑖,𝑜𝑝𝑗)∈𝑠𝑖

𝑜𝑝𝑖≠𝑜𝑝𝑗

𝑆𝑠𝑒𝑚(𝑜𝑝𝑖 , 𝑜𝑝𝑗)

|𝑠𝑖| × (|𝑠𝑖| − 1)
2

G. Lack of Cohesion (𝐿𝑜𝐶)

The 𝐿𝑜𝐶 metric covers all possible aspects of service interface cohesion as captured by the

previously defined metrics 𝐿𝑜𝐶𝑠𝑒𝑞 , 𝐿𝑜𝐶𝑐𝑜𝑚 and 𝐿𝑜𝐶𝑠𝑒𝑚 . Thus, it quantifies the total (overall)

cohesion of a service interface. 𝐿𝑜𝐶 of an interface 𝑠𝑖 is defined as follows:

𝐿𝑜𝐶(𝑠𝑖) = 𝑤𝑠𝑒𝑞 ∗ 𝐿𝑜𝐶𝑠𝑒𝑞(𝑠𝑖) + 𝑤𝑐𝑜𝑚 ∗ 𝐿𝑜𝐶𝑐𝑜𝑚(𝑠𝑖) + 𝑤𝑠𝑒𝑚 ∗ 𝐿𝑜𝐶𝑠𝑒𝑚(𝑠𝑖)

where 𝑤𝑠𝑒𝑞 + 𝑤𝑐𝑜𝑚 + 𝑤𝑠𝑒𝑚 = 1 and their values denote the weight of each similarity measure.

Interface Coupling

Although best service design practice suggests that operations in service interface should

be cohesive, e.g., operate on the same set of data, however, some interactions can arise between

different service interfaces. This is because, typically, operations of a service may contribute to

either single business abstractions or some other semantically meaningful concepts such as a data

entity or another abstraction in the problem domain, and therefore coupling between service

interfaces is sometimes unavoidable.

We define the Coupling metric between two service interfaces 𝑠𝑖1 and 𝑠𝑖2 as the average similarity

between all possible pairs of operations from 𝑠𝑖1 and 𝑠𝑖2. Formally, the coupling, 𝐶𝑝𝑙, is defined

as follows:

𝐶𝑝𝑙(𝑠𝑖1, 𝑠𝑖2) =
∑∀𝑜𝑝𝑖∈𝑠𝑖1,∀𝑜𝑝𝑗∈𝑠𝑖2 𝑆𝑖𝑚(𝑜𝑝𝑖 , 𝑜𝑝𝑗)

|𝑠𝑖1| × |𝑠𝑖2|

where |𝑠𝑖1| denotes the number of operations in the interface 𝑠𝑖1, and 𝑆𝑖𝑚(𝑜𝑝𝑖, 𝑜𝑝𝑗) is defined as

the weighted sum of the different operations similarity measures defined in the previous section:

𝑆𝑖𝑚(𝑜𝑝𝑖, 𝑜𝑝𝑗) = 𝑤𝑠𝑒𝑞 ∗ 𝑆𝑠𝑒𝑞(𝑜𝑝𝑖, 𝑜𝑝𝑗) + 𝑤𝑐𝑜𝑚 ∗ 𝑆𝑐𝑜𝑚(𝑜𝑝𝑖, 𝑜𝑝𝑗) + 𝑤𝑠𝑒𝑚 ∗ 𝑆𝑠𝑒𝑚(𝑜𝑝𝑖 , 𝑜𝑝𝑗)

145

6.3.3 NSGA-II Adaptation

To adapt a search algorithm to a specific problem, the following elements should be

defined: (i) solution representation and the generation of initial population, (ii) fitness function to

evaluate candidate solutions according to each objective, (iii) change operators to generate new

individuals using genetic operators (crossover and mutation). In the following we describe these

element.

A. Solution representation

In our problem, a candidate solution is a service modularization, i.e., a set of interfaces,

each exposes a set of cohesive operations. A valid solution should have each interface contains at

least two operations, and each operation should exist in one interface. To this end, we adopt the

label-based integer encoding [126] where a candidate solution is represented as an integer array

of 𝑛 positions, where 𝑛 is the total number of operations available in a service. Each position

corresponds to a specific operation. The integer values in the array represent the interface to which

the operations belong. For instance, the modularization example in

Figure 44 is encoded as shown in Figure 45 where the operations 𝑜𝑝 1, 4 and 5 belong to

the same service interface 𝑠𝑖 labeled with 1; operations 2,6, 8 and 9 belong to the interface 2, and

operations 3 and 7 belong to the interface 3.

Figure 44 An example of Web service interfaces remodularization solution.

146

Figure 45 An example of a solution encoding

To create the initial population, we first define the parameter 𝑚𝑖𝑛𝑆𝑖𝑧𝑒 as minimum number

of operations per interface. Then, create a number of interfaces completely random where a max

number of interfaces (
𝑛

𝑚𝑖𝑛𝑆𝑖𝑧𝑒
) is fixed. Then, for each interface, (𝑚𝑖𝑛𝑆𝑖𝑧𝑒) operations of the Web

service are randomly assigned to it make sure the all the interfaces has at least (𝑚𝑖𝑛𝑆𝑖𝑧𝑒)

operations. Then, for the rest of the operations, we assign each one of them randomly to any of the

interfaces. Furthermore, for this problem, we fixed 𝑚𝑖𝑛𝑆𝑖𝑧𝑒 at 2, as typically a core business

abstraction requires at least two operations.

B. Objective Functions

 The quality of each candidate modularization solution is defined by a fitness function that

evaluates multiple objective and constraint dimensions. Each objective dimension refers to a

specific value that should be either minimized or maximized for a solution to be considered

“better" than another solution. In our approach, we optimize the following four objectives:

Cohesion: The cohesion objective function is a measure of the overall cohesion of a

candidate interface modularization. This objective function corresponds to the average

cohesion score of each interface in a Modularization ℳ and is computed as follows:

 𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛(ℳ) = 1 −
∑∀𝑠𝑖∈ℳ 𝐿𝑜𝐶(𝑠𝑖)

|ℳ|

where 𝐿𝑜𝐶(𝑠𝑖𝑖) denotes the total interface lack of cohesion given by equation 10, and |ℳ| is the

total number of interfaces in the modularization ℳ.

Coupling: The coupling objective function measures the overall coupling among interfaces

in a modularization ℳ. This objective function corresponds to the average coupling score

147

between all possible pairs interfaces in a the modularization ℳ in a service and is

calculated as follows:

 𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔(ℳ) =

∑∀(𝑠𝑖𝑖,𝑠𝑖𝑗)∈ℳ

𝑠𝑖𝑖≠𝑠𝑖𝑗

𝐶𝑝𝑙(𝑠𝑖𝑖,𝑠𝑖𝑗)

|ℳ|×(|ℳ|−1)

2

where 𝐶𝑝𝑙(𝑠𝑖𝑖 , 𝑠𝑖𝑗) denotes the coupling between the interfaces 𝑠𝑖𝑖 and 𝑠𝑖𝑗 given by equation 9,

and |ℳ| is the total number of interfaces in the modularization ℳ.

Typically, coupling among service interfaces should be minimized as this indicates that each

interface covers separate functionality aspects.

Number of interfaces (NI): This objective function refers to the total number of interfaces

in the modularization ℳ.

 𝑁𝐼(ℳ) = |ℳ|

The number of interfaces should be maximized in order to avoid having all operations in a single

large interface.

Average number of operations per interface (AOI): The average number of operations

per interface in a modularization ℳ ought to be minimized to aim at appropriately, equal-

sized interfaces.

 𝐴𝑂𝐼(ℳ) =
∑∀𝑠𝑖∈ℳ 𝑆𝑖𝑧𝑒(𝑠𝑖)

|ℳ|

where 𝑆𝑖𝑧𝑒(𝑠𝑖) returns the number of operations in the interface 𝑠𝑖.

One can notice that these objective functions are conflicting by nature making service

interface remodularzation more challenging to find the best balance between coupling and

cohesion. On the other hand, decreasing the average number of operations per interface (AOI)

might result in a large number of interfaces (NI), leading to several scattered core abstractions.

This makes service interface modularization a non-trivial decision-making task for developers.

148

Population-based search algorithms deploy crossover and mutation operators to improve the

fitness of the solutions in the population in each iteration. Change operators such as crossover and

mutation aim to drive the search towards near-optimal solutions, i.e., remodularizations.

 The crossover operator is responsible for creating new solutions based on already existing

ones, e.g., re-combining solutions into ones. In our adaptation, we use a single, random cut-point

crossover to construct offspring solutions. It starts by selecting and splitting at random two-parent

solutions. Then crossover creates two child solutions by putting, for the first child, the first part of

the first parent with the second part of the second parent, and vice versa for the second child. An

example of crossover is depicted in Figure 46.

Figure 46 Crossover operator

 The mutation operator is used to introduce slight random changes into candidate solutions.

This operator guides the algorithm into areas of the search space that would not be reachable

through recombination alone and avoids the convergence of the population towards a few elite

solutions. With Web service interface remodularization, we use a mutation operator that picks at

random one or more positions from their integer array and replaces them by other ones randomly

as shown is Figure 47.

149

Figure 47 Mutation operator

 Note that, to be valid, crossover and mutation operators should ensure that (i) each

operation is assigned to a unique interface, and (ii) each interface should contain more than one

operation (𝑚𝑖𝑛𝑆𝑖𝑧𝑒 = 2). In addition, when applying crossover and mutation operators we ensure

the validity of the solution using a repair function that eliminates the redundancy when assigning

operations to the interfaces. Thus, we ensure that an operation is not assigned to two interfaces at

the same time after applying the change operators.

Figure 48 An example of Web service interface modularization.

Problem complexity. Finding the best partitioning of operations into cohesive service

interfaces is not an obvious task for developers as the number of possible partitions can be very

large causing a combinatorial explosion. The search space tends to be enormous as the number of

possible partitions is given by:

150

𝐵𝑛+1 = ∑𝑛
𝑘=0 (

𝑛
𝑘

) 𝐵𝑘

where 𝐵𝑛, counts the number of different possibilities of how a given set of 𝑛 operations can be

divided into interfaces. The order of the partitions, i.e., interfaces, as well as the order of the

operations within an interface do not need to be considered. For instance, consider the

AmazonEC2PortType Web service which exposes 87 operations in the version 2010. To find the

right interface partitioning for AmazonEC2PortType, the number of combinations of its 87

operations, a developer need to explore 𝐵87 ≈ 6.39 × 1098 possible ways to create interfaces. Due

to this huge search space, an exhaustive search is unsuitable. Instead, a heuristic search maybe

efficient for this kind of combinatorial problems [15], [62].

where 𝑤𝑠𝑒𝑞 + 𝑤𝑐𝑜𝑚 + 𝑤𝑠𝑒𝑚 = 1 and their values denote the weight of each similarity measure.

6.3.4 Validation

1) Experimental Setup

The purpose of this study is to investigate how well our WSIRem approach provides

modularization solutions and compare it with available state-of-the-art approach by

Athanasopoulos et al. [5]. All the materials used in our study as well as the raw results are publicly

available in a comprehensive replication package14.

To the best of our knowlege, Athanasopoulos et al. [5] is the only existing technique that

attempt to automate the service interface remodularization. In the rest of the work we refer by

Greedy to denote the approach proposed in [5]. Greedy is a cohesion-based approach that

14 Data: http://sel.ist.osaka-u.ac.jp/~ali/WSIRem.

http://sel.ist.osaka-u.ac.jp/~ali/WSIRem

151

iteratively split a service interface using a greedy algorithm without considering the coupling

between the generated interfaces.

Our empirical study is performed through three types of evaluations:

• Evaluation with design metrics: we evaluate the impact of the suggested remodularizations

by our approach on the interface design quality in terms of cohesion, coupling and

modularity.

• Evaluation with interface partitioning correctness: We compare our remodularization

results with those manually performed by developers in terms of precision and recall. The

goal is to see if our technique can actually identify new abstractions which were improperly

embedded in the original interface.

• Evaluation with developers: We asked independent developers to evaluate each of the

modularizations provided by our approach, and give more qualitative feedback. For each

evaluation, we present the research questions we set out to answer:

RQ1: To what extent can WSIRem improve the service interface design quality?

RQ2: Does WSIRem able to identify appropriate partitioning of distinct business

abstractions?

RQ3: Does WSIRem result in ‘useful’ interface remodularization solutions from a

developer’s point of view?

2) Experiment Results

To evaluate our approach, we conducted our experiment on a benchmark of 22 real-world

services provided by Amazon15 and Yahoo16. We selected services that are identified as god object

Web service antipatterns [5], [11] with interfaces exposing at least 10 operations. We chose these

15 http://aws.amazon.com/
16 developer.searchmarketing.yahoo.com/docs/V6/reference/

152

Web services because their WSDL interfaces are publicly available, and they were previously

studied in the literature [5], [57]. Table 15 presents our used benchmark. We chose these Web

services because their WSDL interfaces are publicly available, and they were previously studied

in the literature [5], [57].

Table 15 Experimental benchmark overview.

To answer RQ1, we assess the design improvement that a candidate remodularization suggested

by SIM will bring to the service comparing to Greedy [5]. Historically, software engineers have

conceived metric suites as valuable tools to estimate the quality of their software artifacts [6],

[125], [127]. Our evaluation is based on Cohesion, Coupling, and Modularity metrics. For

Cohesion, we use the complement of the average of three widely used lack of cohesion metrics:

153

lack of sequential cohesion (𝐿𝑜𝐶𝑠𝑒𝑞), lack of communicational cohesion (𝐿𝑜𝐶𝑐𝑜𝑚), and lack of

semantic cohesion (𝐿𝑜𝐶𝑠𝑒𝑚). Coupling refers to the average coupling values between all possible

pairs of interfaces. Finally, Modularity evaluates the balance between coupling and cohesion by

combining them into a single measurement. The aim is to reward increased cohesion with a higher

Modularity score and to punish increased coupling with a lower Modularity score. It has been

proved that the higher the value of Modularity, the better the quality of the modularization [128].

The Modularity metric is computed as the average of the overall cohesion and coupling.

 For each of these three metrics, we report the quality improvement (QI), i.e., the difference

value before and after remodularization, 𝑄𝐼𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛, 𝑄𝐼𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔, and 𝑄𝐼𝑀𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦.

Figure 49 reports the results achieved by both WSIRem and Greedy in terms of cohesion, coupling

and modularity. We expected an increase of cohesion (desired effect) due to the split of different

operations exposed in the original interface. However, we also expected an increase of coupling

(side effect), since splitting an interface into several interfaces typically results in an increment of

the total dependencies between these interfaces. For these reasons coupling and cohesion should

be measured together to make a proper judgment on the complexity and quality of the identified

interfaces, using our Modularity metric.

154

Figure 49 Quality improvements achieved by WSIRem and Greedy in terms of cohesion,

coupling and modularity.

155

Looking at Figure 49a, we can see that, for almost all the interfaces, the cohesion is greatly

improved by both approaches. In particular, the improvement achieved by Greedy is better than

WSIRem. However, Figure 49b shows the achieved cohesion improvement increased the coupling

results. Indeed, this is natural as the original service has a single interface (thus its Coupling = 0).

Consequently, any interface partitioning will result in some connections between interfaces due to

the semantic similarity that is unlikely to be equals to zero and due to some shared (primitive) data

types in messages. As reported in Figure 49b, WRIRem is able to remarkably reduce the coupling

for all the services. Improvement of cohesion usually comes at the expense of increase in coupling

and vice versa.

We assume that a candidate remodularization is a good design solution if the improvement

of cohesion is significantly greater than the deterioration of coupling. This balance is captured by

the Modularity metric as reported in Figure 49c. For the 22 services, interesting modularity

improvements was achieved by WSIRem with an average of 0.08, while Greedy approach turns

out to be less effective with an average of 0.04. Furthermore, we noticed that Greedy produced

three modularizations for AmazonS3 (I7), AutoScalingPorType (I11) and AccountService (I16)

with deteriorated modularity due to the high coupling resulted in the new interfaces.

To answer RQ2, we asked a group of independent developers to manually decompose each

of the studied interfaces in order to identify groups of operations that represent distinct core

abstractions. The abstractions identified by the developers were considered as the ground truth,

allowing the calculation of the precision and recall of our approach.

We compute the precision and recall scores as follows: where TP (True Positive)

corresponds to an interface identified by the independent developer and also by the proposed

approach; FP (False Positive) corresponds an interface identified by the proposed developer, but

156

not by the independent expert; FN (False Negative) corresponds to an interface identified by the

independent developer, but not by the proposed approach.

Note that we computed TP, FP and FN at a fine-grained level, meaning that the interface

identified by the proposed approach and by the independent developer should match with a Jaccard

similarity of at least 80% in terms of their operations.

Our evaluation involved 14 independent volunteer participants including 6 industrial

developers and 8 graduate students in Software Engineering (3 MSc and 5 PhD candidates). We

first gathered information about the participant’s background. All participants are familiar with

service-oriented development and SOAP Web services with an experience ranging from 4 to 9

years. The participants were unaware of the techniques WSIRem and Greedy neither the particular

research questions, in order to guarantee that there will be no bias in their judgment.

Table 16 and Figure 50 report the results for RQ2 in terms of number of generated

interfaces, precision and recall of each of WSIRem and Greedy. As it can be observed from the

table and figure, for the 22 services, WSIRem had an average interface split (i.e., (modularization

size) of 6.04, an average precision of 73% and an average recall of 77% comparing the manual

modularizations performed by developers. We consider that these values of precision and recall

are high since a deviation between the proposed solution and the manual one may not be an

indication of some wrong recommendations but it could be just another possible good solution. In

fact, there is no single good remodularization solutions but multiple ones. On the other hand, we

noticed that Greedy tends to produce more split interfaces with an average of 8.22, but smaller

interfaces. Indeed, smaller interfaces tend to have higher cohesion. This resulted in low precision

and recall with an average of 27% and 33%, respectively. We noticed that, Greedy generated in

many cases, several interfaces with only one operation. Such finegrained interfaces will make the

157

service more complex and severely limit its reusability as core abstractions will be split into several

small and scattered interfaces.

Table 16 Comparison results of WSIRem and Greedy in terms of (a) number of generated

interfaces, (b) precision and (c) recall.

158

Figure 50 Boxplots for the comparison results of WSIRem and Greedy in terms of (a) numer

of generated interfaces, (b) precision and (c) recall.

We noticed that all fourteen participants were able to identify more independent, and

sometimes completely disconnected interfaces from the original interface. These interfaces are

usually the best candidates for split since they present core abstractions and do not bare strong

dependency from the rest of the original interface. Another interesting observation was that

WSIRem successfully identified remodularization solutions with 100% of precision and recall in 7

out of the 22 services while Greedy succeeded to do so only twice. On the other hand, Greedy

turns out to completely fail in identifying correct remodularization in 4 cases out of 22 with 0% of

precision and recall. Finally, we identify a main drawback of the Greedy approach from our

perspective, that driving Web service interface modularization with only cohesion metrics would

not be enough, and coupling, size of interfaces is as important as cohesion for good service

interface design.

To answer RQ3, we asked our fourteen participants involved in RQ2 to evaluate the

usefulness of three remodularization solutions, for each of the 22 cases: (i) the remodularization

provided by WSIRem, (ii) the remodularization provided by Greedy, and (iii) a random

159

remodularization. The random remodularization option is considered as a ‘sanity check’ to make

sure whether participants have seriously answered this study, as a random remodularization does

not make sense.

To this end, we used a survey hosted in eSurveyPro 17 , an online Web application.

Specifically, for each modularization solution, we provide a high-level description of each service

interfaces before and after remodularization using UML classes. Then, the participants were asked

to answer the following question for each remodularization solution: “Does the new

modularization improve the understandability of the service?” Possible answers follow a five-

point Likert scale [53] to express their level of agreement: 1: Strongly disagree, 2: Disagree, 3:

Neutral, 4: Agree, 5: Fully agree. Note that the Web application used for our survey allowed our

participants to save and complete the study in multiple rounds within a maximum of 7 days

available to respond. At the end of the 7 days we collected the 14 complete questionnaires.

Figure 51 and Table 17 report the results achieved by our study for the developer’s

assessment. Looking at Table 17, we can see that for all the studied services, the participants rated

the WSIRem remodulations with an average score of 3.81, an average of 2.59 for the Greedy

approach, while an average of 1.51 was recorded was recorded for the random remodularizations.

This provides evidence that the remodularization solutions suggested by WSIRem are more

adjusted to developers needs than those of Greedy. Moreover, on top of the 22 cases, participants

identified two services, GeographicalDictionaryService and AutoScalingPortType where the

original interface is relatively understandable even without remodularization, but they suggested

that an early remodularization would be interesting to avoid potential difficulties in future service

releases with additional operations.

17 http://www.esurveyspro.com

160

Table 17 Developer’s evaluation of the interface remodularizations for WSIRem, Greedy, and

random modularization for each service.

161

Figure 51 Developer’s evaluation of the interface remodularizations for WSIRem, Greedy, and

random modularization.

It is worth to note that during the evaluation, we discovered some common operations

provided by different services provided by Amazon. For example, we found that

AmazonVPCPortType and AmazonEC2PortType have several common operations including

CreateVpc(), DescribeVpcs(), DeleteVpc(), DeleteVpnConnection(), CreateVpnGateway() and

DeleteVpnGateway(). More interestingly, some generated interfaces from both

AmazonVPCPortType and AmazonEC2PortType expose exactly the same operations. Although

this redundancy can be related to some business constraints, best design practice in SOC suggests

that common core abstraction can be implemented in separate service, making them easier to

maintain, evolve and reuse.

An interesting point here was that the participants confirmed that the interfaces suggested

by WSIRem tend to be more appropriately sized and describe distinct abstractions with less overlap.

We asked one of the participants to comment on his decision for the generated Amazon EC2

interfaces, his answer was: “This new interface structure is more understandable to me, as it was

162

previously very difficult to follow and understand a bench of 87 operations exposed in a single

interface. I strongly recommend the original provider to restructure his service, to allow the

service to be reused more effectively”.

Moreover, we noticed that in most of the cases, Greedy approach tend to split core abstractions

into many interfaces. For instance, in the Amazon EC2 interface, operations related to image

management was dispersed through many other interfaces: operations RegisterImage() and

DescribeImages() are assigned to a new interface, DescribeImageAttribute() is in another

interface, CreateImage() is in another interface, ResetImageAttribute(), DeregisterImage() and

ModifyImageAttribute() are in another interface along with other unrelated operations [5].We

asked another participant comment on this remodularization, his answer was: “Such scattered

abstractions will result in several connections between interfaces for no benefit as a large number

of suggested interfaces are not representing core abstractions”. On the other hand, most of the

identified interfaces expose operations related to different core abstractions. For instance, for the

same Amazon EC2 service, a suggested interface by Greedy contains DetachVolume(),

AttachVolume() and DescribeInstanceAttribute(). Results show that this design is unlikely to be

desirable for developers. Moreover, the obtained results suggest that coupling is as important

metric as cohesion to drive Web service interface remodularization.

6.4 History-based Service Interface Remodularization Using Many-Objective

Optimization

6.4.1 Many-Objective Search-Based Problem

Recently many-objective optimization has attracted great attention in Evolutionary Multi-

objective Optimization (EMO) which is one of the most active research areas in evolutionary

163

computation [129]. By definition, a many-objective problem is a multi-objective problem with a

number of objectives greater than three. Mathematically, it could be formulated as follows:





















.1

1 0)(

1 0)(

3 ,)](),...,(),([)(21

,...,nixxx

,...,Q;kxh

,...,P;jxg

MxfxfxfxfMin

U

ii

L

i

k

j

T
M

where M is the number of objective functions and is strictly greater than 3, P is the number of

inequality constraints, Q is the number of equality constraints, 𝑥𝑖
𝐿 and 𝑥𝑖

𝑈 correspond to the lower

and upper bounds of the decision variable 𝑥𝑖 (i.e., 𝑖th component of 𝑥). A solution 𝑥 satisfying

the (P + Q) constraints is said to be feasible, and the set of all feasible solutions defines the

feasible search space denoted by Ω.

In this formulation, all the considered objectives are to be minimized, since maximization

can be easily turned to minimization based on the duality principle. Over the two past decades,

several Multi-Objective Evolutionary Algorithms (MOEAs) have been proposed with the hope to

work with any number of objectives M. Unfortunately, it has been demonstrated that most MOEAs

are ineffective in handling such type of problems. For example, NSGA-II [40], which is one of the

most popular MOEAs, compares solutions based on their non-domination ranks. Solutions with

best ranks are emphasized in order to converge to the Pareto front. When M > 3, only the first rank

may be assigned to every solution as almost all population individuals become non-dominated

with each other [130], [131]. Without a variety of ranks, NSGA-II cannot keep the adequate search

pressure in high dimensional objective spaces.

In this work, our problem requires a search for a solution which balances multiple

objectives and constraints to achieve near optimal or optimal results. This search can be fastidious

and requires a labor-intensive human activity. Search-based many-objective techniques have

provided new ways, based on heuristics, transforming many-objective problems from human-

164

based search to machine-based search techniques. Thus, the use of heuristics can guide the

automated search and avoid the tedious human-in-the-loop manual activities. However, even in

software engineering field, many currently existing techniques lack scalability to meet the

demands of high dimensional solutions. According to a recent survey by Harman [132], most

software engineering problems are naturally multi-objective. However, they are mostly handled

from a mono-objective perspective. For software engineering problems, multi-objective

optimization techniques have been proposed in a few works [15], [65], [67]. To the best of our

knowledge no on has applied many-objective techniques to solve Web service remodularization

problem.

We investigate, in this work, the applicability of many-objective techniques for the Web

service remodularization problem where five objectives are considered to find the most suitable

remodularization suggestions for developers.

6.4.2 Approach Overview

Figure 52 shows our approach overview to the History-based Web service interface

remodularization problem. It targets to explore a large search space and find a set of optimal

remodularization solutions, by grouping together all collections of operations that have high

cohesion and history preference into separate interfaces. The approach takes two inputs: an

interface WSDL file/URL of the Web service to be improved and the source code of a series of

client application releases. First, parsing the WSDL sources though tree walking up the XML

hierarchy to extract the Web service structure data (e.g., operation, message, and input/output).

Then, Code analysis module extracts all of the Web service operations being used in the first

release and its release date, as well as the added operations in the other releases and their release

dates by scanning all versions of input source code files. The extracted information from first two

165

steps will be used in an optimization process based on the non-dominated sorting genetic algorithm

(NSGA-III) to generate remodularization solutions. During the execution of the NSGA-III, it

generates new interface design, evaluates and select them based on 1) a structural analysis to

calculate both sequential and communicational operations similarity, 2) a semantic analysis to

calculate semantic relationships between operations, 3) a history-based analysis to calculate the

history-preference score.

An optimal modularization solution should find the best trade-off between the following

objectives (i) maximizing history-based similarity, (ii) maximizing cohesion, (iii) minimizing

coupling, (iv) maximizing the number of interfaces, and (v) maximizing the number of operations

per interface.

As output, the result should be a set of interfaces; each interface is a new distinct design of

the same operations/functionalities of the input Web service.

Figure 52 Solution encoding

To manipulate instances of this kind, at the beginning of NSGA-III, it starts by (i) creating

a random size of new empty interfaces, and (ii) for each interface, selects randomly two operations

from all the operations then remove it from the queue. (iii) Assign the rest of the operations one

by one into the interfaces randomly. A modularization solution should include all the operations

166

in different interfaces, and there is no interfaces have less than two operations. Then, the algorithm

starts to find the best modularization solution set that provides the best trade-off between our four

objective functions.

In order to measure how Web service remodularization interfaces are suitable to the client

application, we introduce two metrics, Operation Similarity and Invocation Time Scale to validate

the correlation between the remodularization solution and evolution of the client application. A

good Web interface design should respect the invocation usage of the client application and the

change history of the client application so that the client developers fell comfort to understand or

convenient to use the new interfaces. In this work we include the metrics listed in Chapter 6.3.2

(page 139), as well as the following metrcis:

A. Operation Similarity (OS)

Operation Similarity is a metric defined by us to quantify the similarity between interface

and history of operation invocations of the client application. It’s important that the interface

remodularization should respect the client usage and their change history. Because of client

developers understand the code and changes most of the time, if the design of Web service is

similar, they should spend less time to understand and fell easy to maintain the usage of the Web

service. In Figure 42, Access control and log management are added in the first release together,

so it’s cohesive and easier to understand to group them together as in one interface for the

developers.

Definition (Operation Similarity (OS)). The operations of one interface should contain more

changes that are made one release to be easier to understand or use by the developers. Formally,

to one interface 𝑠𝑖, the OS is defined as follows:

𝑂𝑆(𝑠𝑖) = 𝑚𝑎𝑥
∀(𝑑𝑖∈𝐻𝑂𝐼)

(
|𝑑𝑖 ⋂ 𝑠𝑖 |

|𝑑𝑖|
)

167

Where 𝐻𝑂𝐼 refers to the history of operation invocations, 𝑑𝑖 represents the groups of Web service

operations that are being introduced separetly during the evolution of the application. Initially, 𝑑0

represents the invocated operations of first client release, 𝑑𝑖 where 𝑖 > 0 represents the changes

introduced considering the previous release. If there is no new operations invoked in one release

regarding to the Web serivce, there is no 𝑑𝑖 generated for that version. For example, in Figure 42,

at 4th release, we generate 𝑑1 =(𝐷𝑒𝑙𝑒𝑡𝑒𝐵𝑢𝑐𝑘𝑒𝑡, 𝐿𝑖𝑠𝑡𝐵𝑢𝑐𝑘).

B. Invocation Time Scale (ITS)

Invocation time scale quantifies the time gap between the operations in one interface

regarding the evolution timeline. The motivation of defining this metric is to make the most use of

release history and make up the limitation of 𝑂𝑆. During the evolution of software, the changes

that are made in longer time gap tends to represent different funtionailties. Therefore, we decide

to calculte the operations time gap within one interfaces, if the operations were introduced in client

application during a large time scale, it means this interface tends to be less cohesive in the view

of client developers. Also, the operation similairty could have its weakness, because if we put

opertions of different 𝑑𝑖 together in one interface, the score is 1 which is the best possbile score,

but obviouly, this is not respecting the modular design best practices. By introducing this metrcis,

we can guide the algorithm search and solve this limitation.

Definition (Invocation Time Scale (ITS)). Invocation Time Scale is the degree at which

operations of one interface shares same introduced time. Formally, to one interface 𝑠𝑖, the ITS is

defined as follows:

𝐼𝑇𝑆(𝑠𝑖) =
𝑇𝐿𝑎𝑠𝑡 − 𝑇𝐹𝑖𝑟𝑠𝑡

𝑇𝑀𝑎𝑥

where 𝑇𝐿𝑎𝑠𝑡 and 𝑇𝐹𝑖𝑟𝑠𝑡 refer to the release time of the first and last version of client applications

that have introduced at lease one opertion of 𝑠𝑖 at the time. TMax represents the maxium time

168

difference, in most cases is the time scale from first input release date to the last one. For example,

in Figure 42, “BuckManage” interface only contains operations that are being introduced during

Version 4, so 𝑇𝐿𝑎𝑠𝑡 = 𝑇𝐹𝑖𝑟𝑠𝑡 = 𝑇𝑉4, 𝑇𝑀𝑎𝑥= 488 (days) and 𝐼𝑇𝑆(𝐵𝑢𝑐𝑘𝑀𝑎𝑛𝑎𝑔𝑒) = 0 (days).

6.4.3 NSGA-III and Problem Adaptation

A. NSGA-III, Many-Objective Optimization Algorithm

NSGA-III is a recent many-objective algorithm proposed by [46]. The basic framework

remains similar to the original NSGA-II algorithm with significant changes in its selection

mechanism. Figure 53 shows the pseudo-code of the NSGA-III procedure for a particular

generation t. First, the parent population Pt (of size N) is randomly initialized in the specified

domain, and then the binary tournament selection, an offspring population Qt is created by

applying crossover and mutation operators to Pt. Thereafter, both populations are combined and

sorted according to their domination level and the best N members are selected from the combined

population to form the parent population for the next generation. The fundamental difference

between NSGA-II and NSGA-III is the niche preservation operation: Unlike NSGA-II, NSGA-III

starts with a set of reference points Zr. The set of uniformly distributed reference points is generated

using the method of [133] which is well-detailed and described in [134].

After the non-dominated sorting, all acceptable front members and the last front Fl that

could not be completely accepted are saved in a set St. Members in St/Fl have selected right away

for the next generation. However, the remaining members are selected from Fl such that the desired

diversity is maintained in the population. Original NSGA-II uses the crowding distance measure

for selecting a well-distributed set of points, however, in NSGA-III the supplied reference points

(Zr) are used to select these remaining members. To accomplish this, objective values and reference

points are first normalized so that they have an identical range. Thereafter, orthogonal distance

169

between a member in St and each of the reference lines (joining the ideal point, i.e., the vector

composed of 7 zero and a reference point) is computed. The member is then associated with the

reference point having the smallest orthogonal distance. Next, the niche count ρ for each reference

point, defined as the number of members in St/Fl that are associated with the reference point, is

computed for further processing. The reference point having the minimum niche count is identified

and the member from the last front Fl that is associated with it is included in the final population.

The niche count of the identified reference point is increased by one and the procedure is repeated

to fill up population Pt+1.

It is meaningless that a reference point may have one or more population members

associated with it or need not have any population member associated with it. Let us denote this

niche count as ρj for the j-th reference point. We now devise a new niche-preserving operation as

follows. First, we identify the reference point set Jmin = {j: argminj (ρj)} having minimum ρj. In

case of multiple such reference points, one (j*Jmin) is chosen at random. If ρj* = 0 (meaning that

there is no associated Pt+1 member to the reference point j*), two scenarios can occur. First, there

exist one or more members in front Fl that are already associated with the reference point j*. In

this case, the one having the shortest perpendicular distance from the reference line is added to

Pt+1. The count ρj* is then increased by one. Second, the front Fl doesn’t have any member

associated with the reference point j*. In this case, the reference point is excluded from further

consideration for the current generation. In the event of ρj* ≥ 1 (meaning that already one member

associated with the reference point exists), a randomly chosen member, if exists, from front Fl that

is associated with the reference point Fl is added to Pt+1. If such a member exists, the count ρj* is

incremented by one. After ρj counts are updated, the procedure is repeated for a total of K times to

increase the population size of Pt+1 to N.

170

NSGA-III procedure at generation t

Input: H structured reference points Zs, parent population Pt

Output: Pt+1

00:

01:

02:

03:

04:

05:

06:

07:

08:

09:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

 Begin

 St ← Ø, i ← 1;

 Qt ← Variation (Pt);

 Rt ← Pt Qt;

 (F1, F2, ...) ← Non-dominationed_Sort (Rt);

 Repeat

 St ← St  Fi; i ← i+1;

 Until | St | ≥ N;

 Fl ← Fi; /*Last front to be included*/

 If | St | = N then

 Pt+1 ← St;

 Else

 Pt+1 ←
1
1




l
j Fj;

 /*Number of points to be chosen from Fl*/

 K ← N – |Pt+1|;

 /*Normalize objectives and create reference set Zr*/

 Normalize (FM; St; Zr; Zs);

 /*Associate each member s of St with a reference point*/

 /*π(s): closest reference point*/

 /*d(s): distance between s and π(s)*/

 [π(s), d(s)] ← Associate (St, Zr);

 /*Compute niche count of reference point rZj */

 ρj ←  lFtSs /
((π(s) = j) ? 1 : 0);

 /*Choose K members one at a time from Fl to construct Pt+1*/

 Niching (K, ρj, π(s), d(s), Zr, Fl, Pt+1);

 End If

 End

Figure 53 Pseudo-code of NSGA-III main procedure

B. Fitness Functions

The quality of each candidate modularization solution is defined by a fitness function that

evaluates multiple objective and constraint dimensions. Each objective dimension refers to a

specific value that should be either minimized or maximized for a solution to be considered

“better" or “worse” than another solution. In our approach, we optimize the following five fitness

functions:

1) History-based similarity (HS). The history-based similarity measures the overall similarity

of a candidate interface ℳ to the developer preference based on the application release history.

171

This fitness function is composed by the operation similarity score and invocation time scale

of each interface in a remodularization ℳ. It’s computed as follows:

𝐻𝑆(ℳ) =
∑∀𝑠𝑖∈ℳ

𝑂𝑆(𝑠𝑖) + (1 − 𝐼𝑇𝑆(𝑠𝑖))
2

|ℳ|

Where 𝑂𝑆(𝑠𝑖) and 𝐼𝑇𝑆(𝑠𝑖) are the score of operation similarity and invocation time scale score

given by the equation 2 and 3, and |ℳ| is the total number of interfaces in modularization ℳ.

2) Cohesion. The cohesion fitness function is a measure of the overall cohesion of a candidate

interface modularization. This fitness function corresponds to the average cohesion score of

each interface in a Modularization ℳ and is computed as follows:

𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛(ℳ) = 1 −
∑∀𝑠𝑖∈ℳ 𝐿𝑜𝐶(𝑠𝑖)

|ℳ|

where 𝐿𝑜𝐶(𝑠𝑖𝑖) denotes the total interface lack of cohesion given by equation 10, and |ℳ| is the

total number of interfaces in the modularization ℳ.

3) Coupling. The coupling fitness function measures the overall coupling between operations

among all interfaces in a modularization ℳ. This fitness function corresponds to the average

coupling score between all possible pairs interfaces in the modularization ℳ in a service and

is calculated as follows:

𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔(ℳ) =

∑∀(𝑠𝑖𝑖,𝑠𝑖𝑗)∈ℳ

𝑠𝑖𝑖≠𝑠𝑖𝑗

𝐶𝑝𝑙(𝑠𝑖𝑖 , 𝑠𝑖𝑗)

|ℳ| × (|ℳ| − 1)
2

where 𝐶𝑝𝑙(𝑠𝑖𝑖 , 𝑠𝑖𝑗) denotes the coupling between the interfaces 𝑠𝑖𝑖 and 𝑠𝑖𝑗 given by equation 11,

and |ℳ| is the total number of interfaces in the modularization ℳ.

172

Typically, coupling among service interfaces should be minimized as this indicates that each

interface represents separate functionality aspects.

4) Number of interfaces (NI). Number of interfaces fitness function refers to the total number

of interfaces in the modularization ℳ.

𝑁𝐼(ℳ) = |ℳ|

The number of interfaces should be maximized in order to avoid having all operations in a single

large interface.

5) Average number of operations per interface (AOI). The average number of operations per

interface in a modularization ℳ:

𝐴𝑂𝐼(ℳ) =
∑∀𝑠𝑖∈ℳ 𝑆𝑖𝑧𝑒(𝑠𝑖)

|ℳ|

Where 𝑆𝑖𝑧𝑒(𝑠𝑖) returns the number of operations in the interface 𝑠𝑖. This fitness functiong ought

to be maximized to avoid having too many interfaces and over-splitting the Web services. aim at

appropriately, equal-sized interfaces.

One can notice that the first three objective functions are conflicting by nature making

service interface remodularization more challenging to find the best balance between coupling and

cohesion. On the other hand, looking at the last two fitness function, decreasing the average

number of operations per interface (AOI) might result in a large number of interfaces (NI), leading

to several scattered core abstractions. By introducing these two conflicting fitness functions, the

solution set’s diversity is increased regarding interface numbers. In another word, our service

interface remodularization approach provides solutions with more interface size choices to the

developers while providing the design that is cohesive and easier to understand or reuse by them.

C. Evolutionary Operators

173

Population-based search algorithms require evolutionary operators to improve the fitness

functions of the solutions in the population at each iteration. Evolutionary operators such as

crossover and mutation aim to promote the search towards to the optimal solutions, in our case, to

the best remodularizations. The evolutionary operators are used to creating new solutions based

on the existing one/ones.

The crossover operator is using more than one solution to create the new and different

solutions, e.g., re-combining solutions into ones. In our adaptation, we use a single, random cut-

point crossover to construct offspring solutions. The cut-point selects and splits at random two-

parent solutions. Then to perform crossover action, swap the first or second part of the solutions,

so that two new child solutions are created based on the existing two. An example of crossover is

depicted in Figure 54.

Figure 54 An example of crossover.

The mutation operator is used to introduce minor random changes into the parent solution.

This operator promotes the algorithm into the location of the search space that would not be

reachable through recombination alone and avoids the convergence of the population towards a

few elite solutions. With Web service interface remodularization, we define two types of mutation

operator to guide the search. The first mutation operator that picks at random one or more positions

from their integer array and replaces them by other ones randomly. The second mutation operator

174

picks two random positions with different integer then swap them. The first operator is same as

moving one or more operations to a new interface, while the second operator is equal to swap two

operations in the different interfaces. The examples of these two operators are in Figure 55. These

two mutation operators are randomly () selected to perform during the mutation stage.

Figure 55 The examples of mutation.

Note that, to be valid, crossover and mutation operators should ensure that (i) each

operation is assigned to a unique interface, and (ii) each interface should contain more than one

operation (𝑚𝑖𝑛𝑆𝑖𝑧𝑒 = 2). If any child solution is failed to pass the validation, a new

crossover/mutation operator should be applied to the parent solutions. In addition, when applying

crossover and mutation operators we ensure the validity of the solution using a repair function that

eliminates the redundancy when assigning operations to the interfaces. Thus, we ensure that an

operation is not assigned to two interfaces at the same time after applying the change operators.

6.5 Improving Web Services Design Quality Using Heuristic Search and

Machine Learning

The evolution of Web services may have a negative impact on the design quality of the

interface by concatenating many non-cohesive operations that are semantically unrelated. The

Web services interface design becomes unnecessarily complex for users to find relevant operations

to be used in their services-based systems. An example of well-known interface design defect is

175

the God object Web service (GOWS) [10], [12]. GOWS implements many operations related to

different business and technical abstractions in a single service interface leading to low cohesion

of its operations and high unavailability to end users because it is overloaded. Indeed, the

modularization process of how operations should be exposed through a service interface can have

an impact on the performance, popularity and reusability of the service and it is not a trivial task.

Recently, several studies provided solutions to improve the design of Web service

interfaces for the users/subscribers [1], [2], [5], [12], [35], [69]. However, most of these studies

addressed the problem of the detection of design defects of Web services interface based on

declarative rule specification and not the correction step to fix these design defects. In these

existing techniques, Web services modularization solutions are evaluated based on the use of

quality metrics. However, the evaluation of the design quality is subjective and difficult to

formalize using quality metrics with the appropriate threshold values due to several reasons.

Several challenges could be discussed around the modularization of Web services

interface. First, there is no consensus about the definition of Web services design defects [10],

[35], [135], [136] also called antipatterns, due to the various user behaviors and contexts. Thus, it

is difficult to formalize the definitions of these design violations in terms of quality metrics then

use them to evaluate the quality of a Web service modularization solution. Second, existing studies

do not include the user in the loop to analyze the suggested modularization solutions and give their

feed-back during the design improvement process. Third, the computational complexity of some

Web services quality metrics is expensive thus the defined fitness function to evaluate proposed

Web services design changes can be expensive. Fourth, deciding on how to decompose/modularize

an interface is subjective and difficult to automate since it is required to integrate the feedback of

users during the modularization process Finally, quality metrics can just evaluate the structural

176

improvements of the design after applying the suggested interface changes but it is difficult to

evaluate the semantic coherence of the design without an interactive user interpretation.

We propose, in this work, a Genetic Algorithm (GA)-based learning algorithm [44] for

Web services interface modularization based on Artificial Neural Networks (ANN) [45]. The

proposed approach is based on the important feedback of the user to guide the search for relevant

Web services modularization solutions using predictive models. To the best of our knowledge, the

use of predictive models has not been used to improve the quality of Web services design. In the

proposed approach, we are modeling the user’s design preferences using ANN as a predictive

model to approximate the fitness function for the evaluation of the Web services modularization

solutions. The user is asked to evaluate manually Web services interface modularization solutions

suggested by a Genetic Algorithm (GA) for few iterations then these examples are used as a

training set for the ANNs to evaluate the solutions of the GA in the next iterations.

We evaluated our approach on a set of 82 real-world Web services, extracted from an

existing benchmark [5], [12]. Statistical analysis of our experiments shows that our interactive

approach performed significantly better than the state-of-the-art modularization techniques [5],

[69] in terms of design improvements and fixing design defects. The primary contributions of this

work can be summarized as follows:

This contribution introduces a novel way to modularize and improve the design quality of

Web services using interactive predictive modeling optimization. The proposed technique supports

the adaptation of interface design solutions based on the user without the need to use specific

design quality metrics. To the best of our knowledge, we propose the first approach to interactively

generate a modularized Web services interface using predictive modeling techniques.

177

The section reports the results of an empirical study on an implementation of our approach. The

obtained results provide evidence to support the claim that our proposal is more efficient, on

average, than existing Web services modularization techniques based on 82 real-world services.

6.5.1 Approach

As described in Figure 56, our approach takes as input the Web services interface to

modularize, list of possible operators (decompose a port Type or merge port Types or move

operations) and the number of user’s interactions during the search process. It generates as output

the best sequence of design changes/operators that improves the quality of the Web service

interface. Our approach is composed of two main components: the interactive component (IGA)

and the learning module (LGA).

The algorithm starts first by executing the IGA component where the designer evaluates

the modularization solutions manually generated by a genetic algorithm (GA) [44] for a number

of iterations. The user evaluates the feasibility and the efficiency/quality of the suggested

suggestions one by one since each modularization solution is a sequence of change operator

(decompose or merge or move). Thus, the user classifies all the suggested design changes

(modules) as good or not one by one based on his preferences and gives the different port Types

values between 0 and 1.

After executing the IGA component for a number of iterations, all the evaluated solutions

by the user are considered as training set for the second component LGA of the algorithm. The

LGA component executes an Artificial Neural Network (ANN) to generate a predictive model to

approximate the evaluation of the interface modularization solutions in the next iteration of the

GA. Thus, our approach does not require the definition of a fitness function. Alternatively, the

LGA incorporates many components to approximate the unknown target function f . Those

178

components are the training set, the learning algorithm and the predictive model. For each new

sequence of refactoring
1kX , the goal of learning is to maximize the accuracy of the evaluation 1ky

. We applied the ANN as being among the most reliable predictive models, especially, in the case

of noisy and incomplete data. Its architecture is chosen to be a multilayered architecture in which

all neurons are fully connected; weights of connections have been, randomly, set at the beginning

of the training. Regarding the activation function, the sigmoid function is applied [45] as being

adequate in the case of continuous data. The network is composed of three layers: the first layer is

composed of p input neurons. Each neuron is assigned the value ktx . The hidden layer is composed

of a set of hidden neurons. The learning algorithm is an iterative algorithm that allows the training

of the network. Its performance is controlled by two parameters. The first parameter is the

momentum factor that tries to avoid local minima by stabilizing weights. The second factor is the

learning rate which is responsible of the rapidity of the adjustment of weights.

Figure 56 Approach overview

6.5.2 Problem Adaptation

A. Training Set and Data Normalization

179

Before the learning process, the data used in the training set should be normalized. In our

case, we choose to apply the Min-max technique since it is among the most accurate techniques.

We used the following data representation to the GA-based learning problem using ANN for

software refactoring. Let us denote by E the training set of the ANN. It is composed of a set of

couples that represent the refactoring sequence and its evaluation.

   nkyXyXyXyXyXE nnkk ..1,),(),...,,(),..,,(),,(),,(332211 

kX is an interface refactoring sequence represented as
   ptxxxxX kpktkkk ..1,,...,,...,, 21  .

ky is the evaluation associated to the kth refactoring sequence in the range  1..0ky .

Let’s denote by O the matrix that includes numerical values related to the set of

refactorings and by Y the vector that contains numerical values representing Xk’s evaluations. O

is composed of n lines and p columns where n is equal to the number of refactoring sequences and

p is equal to the number of solutions.



























npnn

p

p

xxx

xxx

xxx

O

...

.

.

.

.

.

.

.

.

.

.

.

.

...

...

21

22221

11211

 



























ny

y

y

Y

.

.

.

2

1

B. Change operators

In each search algorithm, the variation operators play the key role of moving within the

search space with the aim of driving the search towards optimal solutions. For the crossover, we

use the one-point crossover operator. It starts by selecting and splitting at random two parent

solutions. Then, this operator creates two child solutions by putting, for the first child, the first part

of the first parent with the second part of the second parent, and vice-versa for the second child. It

is important to note that in multi-objective optimization, it is better to create children that are close

to their parents to have a more efficient search process. For mutation, we use the bit-string mutation

180

operator that picks probabilistically one or more modularization operations from its or their

associated sequence and replaces them by other ones from the initial list of possible refactorings.

When applying the change operators, different pre- and post-conditions are checked to ensure the

applicability of the newly generated solutions such as removing redundant operations or conflicts

between operations such as assigning the same operation to two different port types.

6.5.3 Validation

1) Experimental Setup

To evaluate the ability of our Web services modularization framework to generate a good

design quality, we conducted a set of experiments based on 82 real-world web services as described

in Table 18. the obtained results are subsequently statistically analyzed with the aim of comparing

our proposal with a variety of existing fully-automated approaches. In this section, we first present

our research questions and then describe and discuss the obtained results.

A. Research Questions

We defined three research questions that address the applicability, performance in comparison to

existing fully-automated Web services modularization approaches [5], [69] and the usefulness of

our approach. The three research questions are as follows:

• RQ1: To what extent can our approach recommend relevant Web services design

improvements?

• RQ2: How does our interactive formulation perform compared to fully-automated Web

services restructuring techniques?

• RQ3: Can our approach be useful for the users of Web services (the developers of service-

based systems)?

181

To answer these research questions, we considered the best interface design restructuring solutions

recommended by our approach. To answer RQ1, it is important to validate the proposed

modularization solutions on the different Web services highlighted in Table 18. We asked a group

of developers, as detailed in the next section, to manually modularize the design of the different

interfaces considered in our experiments. Then, we calculated precision and recall scores to

compare between the generated design and the expected one:

]1,0[
portTypes suggested

 portTypes expected portTypes suggested
PRprecision 




]1,0[
portTypes expected

 portTypes expected portTypes suggested
RC 


recall

When calculating the precision and recall, we consider a two port types are similar if they

contain the same operations. We divided the participants in groups to make sure that they do not

use our tool on the Web services that they are asked to manually modularize.

Another metric that we considered for the quantitative evaluation is the percentage of fixed

design antipatterns (NF) by the proposed modularization solution. The detection of design

antipatterns after applying a modularization solution is performed using the detection rules of our

previous work [3]. Formally, NF is defined as

]1,0[
nsantipatter design#

 nsantipatter desing fixed#
NF

For the qualitative validation, we asked groups of potential users of our Web services

modularization tool to evaluate, manually, whether the suggested interface design modularizations

are feasible and efficient at improving the quality of Web services interface design. We define the

metric Manual Correctness (MC) to mean the number of meaningful Web services interface

refactorings divided by the total number of recommended refactorings by our tool. MC is given by

the following equation:

182

operations tionmodulariza proposed#

operations tionmodulariza correct#
MC

To answer RQ2, we compared our approach to two other existing fully-automated Web

services decomposition techniques [5], [69]. Ouni et al. [69] proposed an approach to decompose

Web services using graph partitioning to improve cohesion. Similarly, Athanasopoulos et al. [5]

used a greedy algorithm to decompose the interface based on cohesion as well. All these existing

techniques are fully-automated and do not provide any interaction with the developers to update

their solutions towards a desired design. We also compared the running time T of the proposed

algorithm comparing to fully automated techniques. Thus, we used the metrics PR, RC, T and NF

to perform the comparisons.

To answer RQ3, we used a post-study questionnaire that collects the opinions of Web

service developers on our tool as described in the next section. Thus, we asked these participants

to use both our tool and the automated framework proposed by Ouni et al. [3] on different sets of

Web services. The participants were asked to make changes, when appropriate, to the final solution

of the automated approach of Ouni et al. [3]. Thus, we can check whether the interactive

component of the proposed interactive approach makes a real contribution, or whether the same

effect can be attained by just fixing the output of the automated remodularization approaches. We

measured the time spent by the developers on using our interactive approach and the automated

techniques. Then, we compared between the outcomes of the survey questions for both interactive

and fully automate techniques.

183

Table 18 Web service statistics

Web Service Provider #services #operations (min, max)

FedEx 19 (13, 36)

Amazon 16 (16, 93)

Yahoo 18 (11, 41)

Ebay 12 (13, 37)

Microsoft 17 (11, 59)

We extracted a set of 82 well-known Web services from an existing benchmark [3], [5] as

detailed in Table 18. All studied services are widely used in different contexts and provided by

Amazon, FedEx, Ebay, Microsoft and Yahoo, five major Web service providers. We selected these

Web services for our validation because they range from medium to large-sized interfaces, which

have been actively developed and changed over several years. Our study involved 36 participants

from the University of Michigan to use and evaluate our tool. Participants include 27 master

students in Software Engineering and 9 Ph.D. students in Software Engineering. All the

participants are volunteers and familiar with Web services and refactoring in general. The

experience of these participants on programming ranged from 3 to 17 years. 19 out of the 36

participants are currently active programmers as well in software industry with a minimum

experience of 3 years. Participants were first asked to fill out a pre-study questionnaire containing

nine questions. The questionnaire helped to collect background information such as their role

within the company, their programming experience, their familiarity with Web services. As part

of the Software Quality Assurance graduate course, all the participants attended two lectures about

Web services design quality, modularization and passed five tests to evaluate their performance to

evaluate and suggest interface design modularization solutions.

As described in Table 19, we formed 6 groups. Each of the 6 groups is composed by 6

participants. summarizes the survey organization including the list of Web services and the

algorithms evaluated by each of the groups. The groups were formed based on the pre-study

184

questionnaire and the tests result to make sure that all the groups have almost the same average

skills. Consequently, each group of participants who accepted to participate in the study received

a questionnaire, a manuscript guide to help them to fill the questionnaire, the tools and results to

evaluate the Web services design. Since the application of remodularization solutions is a

subjective process, it is normal that not all the developers have the same opinion. In our case, we

considered the majority of votes to determine if suggested solutions are correct or not.

Table 19 Survey organization

Groups Web Services

Group 1 FedEx

Group 2 Amazon

Group 3 Yahoo

Group 4 Ebay

Group 5 Microsoft, Ebay

Group 6 FedEx, Yahoo

We executed three different scenarios. In the first scenario, we asked every participant to

manually modularize a set of Web services. As an outcome of the first scenario, we calculated the

differences between the recommended modularizations and the expected ones (manually

suggested by the users/developers). The evaluate the fixed Web services design antipatterns, we

focus on the ones defined. In the second scenario, we asked the users to manually evaluate the

recommended solution by our algorithm. We performed a cross-validation between the groups to

avoid the computation of the MC metric being biased by the developer’s feedback. In the third

scenario, we collected their opinions of the participants based on a post-study questionnaire that

will be detailed before in this section. The participants were asked to justify their evaluation of the

solutions and these justifications are reviewed by the organizers of the study.

Parameter setting influences significantly the performance of a search algorithm. For this

reason, for each algorithm and for each Web service, we perform a set of experiments using several

185

population sizes: 20, 30 and 50. We limited the interaction with the user in our approach to a

maximum of 30. The stopping criterion was set to 1000 evaluations for all algorithms to ensure

fairness of comparison. The other parameters’ values were fixed by trial and error and are as

follows: (1) crossover probability = 0.5; mutation probability = 0.2 where the probability of gene

modification is 0.1. Each algorithm is executed 30 times with each configuration and then the

comparison between the configurations is done using the Wilcoxon test. To achieve significant

results, for each couple (algorithm, Web service), we use the trial and error method to obtain a

good parameter configuration.

Since metaheuristic algorithms are stochastic optimizers, they can provide different results

for the same problem instance from one run to another. For this reason, our experimental study is

based on 30 independent simulation runs for each problem instance of the automated approaches

and the obtained results are statistically analyzed by using the Wilcoxon rank sum test with a 95%

confidence level (α = 5%). The latter tests the null hypothesis, H0, that the obtained results of two

algorithms are samples from continuous distributions with equal medians, against the alternative

that they are not, H1. The p-value of the Wilcoxon test corresponds to the probability of rejecting

the null hypothesis H0 while it is true (type I error). A p-value that is less than or equal to α (≤

0.05) means that we accept H1 and we reject H0. However, a p-value that is strictly greater than α

(> 0.05) means the opposite. In fact, for each problem instance, we compute the p-value obtained

by comparing existing studies results with our approach ones. In this way, we determine whether

the performance difference between our technique and one of the other approaches is statistically

significant or just a random result. The results presented were found to be statistically significant

on 30 independent runs of the fully-automated approaches using the Wilcoxon rank sum test with

a 95% confidence level (α < 5%) as detailed in the next sub-section.

186

B. Experiment Results

Results for RQ1. As described in Figure 57 and Figure 58, we found that a considerable

number of proposed port types, with an average of more than 81% in terms of precision and recall

on all the 82 Web services, were already suggested manually (expected refactorings) by the users

(software development team). The achieved recall scores are slightly higher, in average, than the

precision ones since we found that some of the port types suggested manually by developers do

not exactly match the solutions provided by our approach. In addition, we found that the slight

deviation with the expected port types is not related to incorrect ones but to the fact that different

possible modularization solutions could be optimal.

We evaluated the ability of our approach to fix several types of interface design antipatterns

and to improve the quality. Figure 59 depicts the percentage of fixed code smells (NF). It is higher

than 82% on all the Web services, which is an acceptable score since users may not be interested

to fix all the antipatterns in the interface. We reported the results of our empirical qualitative

evaluation in Figure 60 (MC). As reported in Figure 60, most of the Web services modularization

solutions recommended by our interactive approach were correct and approved by developers. On

average, for the different Web services, 88% of the created port types and applied changes to the

initial design are considered as correct, improve the quality, and are found to be useful by the

software developers of our experiments. Thus, we found that the slight deviation with the expected

design is not related to incorrect changes but to the fact that the developers have different

scenarios/contexts in using the different operations.

To summarize and answer RQ1, the experimentation results con-firm that our interactive

approach helps the participants to re-structure their Web service interface design efficiently by

finding the relevant portTypes and improve the quality of all the 22 Web services.

187

Results for RQ2. Figure 57, Figure 58, Figure 59, and Figure 60 confirm the average

superior performance of our interactive learning GA approach compared to the two existing fully

automated Web service modularization techniques [3], [5]. Figure 60 shows that our approach

provides significantly higher manual correctness results (MC) than all other approaches having

MC scores respectively between 41% and 62%, on average as MC scores on the different Web

services. The same observation is valid for the precision and recall as described in Figure 57 and

Figure 58. The outperformance of our technique in terms of percentage of fixed defects, as

described in Figure 59, can be explained by the fact that the main goal of existing studies is not to

mainly fix these defects (not considered in the fitness function by the work of Ouni et al. [3]).

In conclusion, our interactive approach provides better results, on average, than all existing

fully-automated Web services modularization techniques (answer to RQ2).

Results for RQ3. To further analyze the obtained results, we have also asked the

participants to take a post-study questionnaire after completing the different validation and tasks

using our interactive approach and the two techniques considered in our experiments. The post-

study questionnaires collected the opinions of the participants about their experience in using our

approach compared to fully-automated tools. The post-study questionnaire asked participants to

rate their agreement on a Likert scale from 1 (complete disagreement) to 5 (complete agreement)

with the following statements: (1) The interactive interface modularization recommendations

using our predictive modeling approach are a desirable feature to improve the quality of Web

services interface. (2) The interactive manner of recommending modularization solutions by our

GA learning approach is a useful and flexible way to consider the user perspective compared to

fully-automated tools.

188

Figure 57 Median precision (PR)

Figure 58 Median recall (RC) value

Figure 59 Median number of fixed Web service defects (NF) value

Figure 60 Median manual correctness (MC) value

189

Figure 61 Median execution time (T), including user interaction

The agreement of the participants was 4.6 and 4.2 for the first and second statements

respectively. This confirms the usefulness of our approach for the users of our experiments. The

remaining questions of the post-study questionnaire were about the benefits and the limitations

(possible improvements) of our interactive approach.

We summarize in the following the feedback of the users. Most of the participants mention

that our approach is much faster and easy to use compared to the manual restructuring of the

interface since they spent a long time with manual changes to create port types and move

operations. Thus, the developers liked the functionality of our tool that helps them to modify a port

type based on the recommendations. Some participants believe that it will be very helpful to extend

the tool by adding a new feature to decompose multiple services into interfaces based on the

dependency between them. Another possibly suggested improvement is to consider the users

invocation data to restructure the interface.

In our evaluation, we considered measuring the time spent by the different developers to

use our tool and automated Web services modularization techniques [3], [5]. We allowed the user

to fix the solutions proposed by the automated tools to reach an acceptable design. Figure 61 shows

the average results of the execution time of the different tools per Web service including the

interaction time. The developers found that automated techniques generate solutions that require a

190

lot of effort to inspect and manually adjust the proposed design. All developers expressed a high

interest in the idea of the interactive tool that can incorporate their preferences by evaluating

manually very few solutions.

6.6 Improving Web Services Design Quality Using Dimensionality Reduction

Techniques

6.6.1 Introduction

In this work, we start from the hypothesis that there may be correlations among any two

or more objectives (e.g. quality metrics) that are used to evaluate Web service modularization

solutions. Our approach, based on the PCA-NSGA- II methodology [40], [137],aims at finding the

best and reduced set of objectives that represents the quality metrics of interest to the domain

expert. A regular multi-objective NSGA-II algorithm [40] with an initial set of exhaustive metrics

is executed for a number of iterations then a PCA component analyzes the correlation between the

different objectives using the execution traces. The number of objectives maybe reduced during the

next iterations based on the PCA results. The process is repeated several times until a maximum

number of iterations is reached to generate a set of non-dominated Web services modularization

solutions.

6.6.2 Approach

The general structure of the proposed approach is described in Figure 62. The approach

takes as inputs a set of quality metrics, several Web services refactoring types, and a Web service

to refactor. The first component consists of a regular execution of NSGA-II during a number of

iterations. During this phase, NSGA-II [40] will try to find the non-dominated solutions balancing

191

the initial set containing all the objectives such as improving the quality metrics of the service and

minimizing the number of refactorings in the proposed solutions.

After a number of iterations, the second component of the algorithm is executed to analyze

the execution traces of the first component (solutions and their evaluations), using PCA [138], to

check the correlation between the different objectives. When a correlation between two or more

objectives is detected, only one of them is selected for future iterations of the first component.

Then, the first component is executed again with the new objective set.

The whole process of these two components continue until a maximum num- ber of iterations

is reached. A set of non-dominated refacotoring solutions are proposed to the users with the reduced

objectives set to select the best Web service refactorings sequence based on his or her preferences.

Figure 62 The proposed approach

6.6.3 NSGA-II Adaptation

Objective space dimensionality reduction approaches assume that given a multi-objective

problem with M objectives, there is a subset of the objectives that are correlated. To the best of

our knowledge, very few methodologies have been developed for multi-objective evolutionary

algorithms towards the reduction of the number of objectives [46].

Saxena et al. proposed two dimensionality reduction methodologies based on Principal

Component Analysis (PCA). Their methodology considers both linear and nonlinear solutions

[46]. The authors demonstrated that the methodology have some vulnerabilities in finding Pareto-

192

optimal front in a 10-objective problem. In [137] a more robust objectives selection approach was

proposed to improve the performance of both non-linear and linear dimensionality reduction. Not

only these methodologies can be utilized before and after execution of the MOEA, but the

computation of the PCA is straightforward for the multi-objective optimization problem. In this

work, we apply the linear PCA dimensionality reduction technique to the multi/many-objective

software refactoring problem using NSGA-II. In the remainder of this work, PCA refers to linear

PCA unless specified otherwise.

PCA is posed as an eigenvalue-eigenvector problem: the data is recorded over a population

of individuals of size N generated and used in the NSGA-II algorithm. This data consists of

measurement of all the objective function used in the NSGA-II, and represented as a matrix

 TMfffF ,,,= 21  . A column  TiNiii fff ,,,= 21 f is the vector representing values for the

i th objective over the N individuals, and each entry ijf of if is the value of the i -th

objective for the j -th individual in the population. In this notation,)(T is the matrix transpose

operator, and M is the number of objectives.

PCA is performed using the correlation or covariance matrix of the standardized dataset

 TM21 xxxX ,,,=  . This means each entry iiijij fx )/(=  , where i and i are the

sample mean and standard deviation of if , respectively. Consequently, every row of X centered

at zero, and has unit standard deviation. The correlation matrix is given by equation 1, and

algorithm 3.2 gives an high-level view of the objective reduction procedure.

 T

M
XXR

1
=

193

A. Refactoring solution representation

 A solution consists of a sequence of n interface change operations assigned to a set of port

types. A port type could contain one or many operations but an operation could be assigned to only

one port type. A vector-based representation is used to cluster the different operations of the

original interface, taken as input from the WSDL file description, into appropriate interfaces, i.e.,

port types. Figure 63 describes an example of 5 operations assigned to two port types. As output,

a vector representation is automatically translated by our tool into a graphical interface of the

modularized Web service.

Figure 63 Solution representation example

B. Change operators

In each search algorithm, the variation operators play the key role of moving within the

search space with the aim of driving the search towards optimal solutions. For the crossover, we

use the one-point crossover operator. It starts by selecting and splitting at random two parent

194

solutions. Then, this operator creates two child solutions by putting, for the first child, the first part

of the first parent with the second part of the second parent, and vice versa for the second child. It

is important to note that in multi-objective optimization, it is better to create children that are close

to their parents to have a more efficient search process. For mutation, we use the bit-string mutation

operator that picks probabilistically one or more refactoring operations from its or their associated

sequence and replaces them by other ones from the initial list of possible refactorings.

When applying the change operators, different pre- and post-conditions are checked to

ensure the applicability of the newly generated solutions such as removing redundant operations

or conflicts between operations such as assigning the same opera-tion to two different port types.

C. Objective functions and solution evaluation

We used the 11 quality attributes that are defined in Table 1 along with the number of

refactorings in the solutions (solution size) as fitness functions of our algorithm. The initial

iterations of NSGAII-PCA will use all the 12 fitness functions as input then the algorithm will

reduce the number of objectives by mining the execution traces (the solutions and their

evaluations).

6.6.4 Validation

1) Experimental Setup

We designed our experiments to address the following research questions:

• RQ1.: To what extent can the proposed dimensionality reduction approach

recommends useful Web service refactorings?

• RQ2.: To what extent does the proposed dimensionality reduction approach reduce the

number of objectives while recommending useful refactorings?

195

• RQ3.: How does the proposed dimensionality reduction approach perform compared

to other existing Web services modularization techniques not based on computational

search [1, 11]?

To answer RQ1., we considered both automatic and manual validations to evaluate the

usefulness of the proposed Web service refactorings. For the automatic validation we compared

the proposed Web service refactorings with the expected ones. The expected refactorings are

suggested by users (e.g. subjects of our study) to fix existing Web service design defects as detailed

later.

[0,1]
||

||
= 



factoringsbservicereexpectedWe

factoringsbservicereexpectedWesefactoringebservicersuggestedW
RE recall

[0,1]
||

||
= 



sefactoringsuggestedr

factoringsbservicereexpectedWesefactoringebservicersuggestedW
RE precision

For the manual validation, we asked groups of potential users of our tool to manually

evaluate whether the suggested refactorings are feasible and efficient at improving the services

quality and achieving their maintainability objectives. We define the metric Manual Correctness

(MC) that corresponds to the number of meaningful refactorings divided by the total number of

suggested refactorings. MC is given by the following equation:

 [0,1]
||

||
= 

sefactoringebservicersuggestedW

factoringsbservicererelevantWe
MC ectnessmanualcorr

 We have also evaluated the ability of our approach to fix design defects, detailed in Section

2, using the measure NF that corresponds to the number of fixed defects divided by the total

number of defects. The defects are detected using a set of rules defined in our previous work [3].

196

To answer RQ2, we compared the number of objectives (NOB), precision, recall and

manual correctness of our approach to a regular multi-objective algorithm (NSGAII) using the

same fitness functions adaptation.

To answer RQ3, We compared our results with a recent state-of-the art approaches by [5],

[69]. Athanasopoulos et al. proposed a Web service refactoring approach based on a greedy

algorithm to refactor and split Web service interfaces based on different cohesion measures. Ouni

et al. proposed a graph decomposition approach for Web services remodularization using coupling

and cohesion metrics.

To answer all the above research questions, we conducted our experiment on a benchmark

of 22 real-world services provided by Amazon18 and Yahoo19. We selected services with interfaces

exposing at least 10 operations. We chose these Web services because their WSDL interfaces are

publicly available, and they were previously studied in the literature [5], [57]. Table 20 presents

our used benchmark.

Our evaluation involved 14 independent volunteer participants including 6 industrial

developers and 8 graduate students. In particular, 3 senior developers from Browser Kings20, 3

developers from Accunet Web Services21, 3 MSc and 5 PhD candidates in Software Engineering.

We first gathered information about the participant’s background. All participants are familiar with

service-oriented development and SOAP Web services with an experience ranging from 4 to 9

years. The participants were unaware of the techniques to be evaluated neither the particular

research questions, in order to guarantee that there will be no bias in their judgment.

18

 http://aws.amazon.com/
19

 developer.searchmarketing.yahoo.com/docs/V6/reference/
20

 http://www.browserkings.com
21

 http://www.accunet.us

197

Table 20 Amazon and Yahoo benchmark overview

Service interface Provider

AutoScalingPortType Amazon

MechanicalTurkRequesterPortType Amazon

AmazonFPSPorttype Amazon

AmazonRDSv2PortType Amazon

AmazonVPCPortType Amazon

AmazonFWSInboundPortType Amazon

AmazonS3 Amazon

AmazonSNSPortType Amazon

ElasticLoadBalancingPortType Amazon

MessageQueue Amazon

AmazonEC2PortType Amazon

KeywordService Yahoo

AdGroupService Yahoo

UserManagementService Yahoo

TargetingService Yahoo

AccountService Yahoo

AdService Yahoo

CompaignService Yahoo

BasicReportService Yahoo

TargetingConverterService Yahoo

ExcludedWordsService Yahoo

GeographicalDictionaryService Yahoo

We performed a set of experiments using several population sizes: 30, 40 and 50. The

stopping criterion was set to 100,000 fitness evaluations. Each algorithm was executed 30 times

with each configuration and then comparison between the configurations was performed based on

precision and recall using the Wilcoxon test with a 95% confidence level (5= %). The other

parameters setting were fixed by trial and error and are as follows: (1) crossover probability = 0.4;

mutation probability = 0.7 where the probability of gene modification is 0.1.

2) Experiment results

We reported the results of our empirical qualitative evaluation in Figure 64 (MC). As

reported in Figure 64, most of the Web services modularization solutions recommended by our

approach were correct and approved by developers. On average, for the different Web services,

198

78% of the created port types and applied changes to the initial design are considered as correct,

improve the quality, and are found to be useful by the software developers of our experiments. The

highest MC score is 84% and was achieved for the Web service GeographicalDictionary, while

the lowest score was 67% for AmazonVPCPortType. Thus, this finding indicates that the results

are independent of the size of the Web services and the number of recommended changes to the

initial design.

Since the manual correctness MC metric just evaluates the correctness and not the

relevance of the recommended solutions, we also compared the proposed modularization changes

with some expected ones defined manually by the different groups for the different Web services.

Figure 65 and Figure 66 summarize our findings. We found that a considerable number of proposed

port types, with an average of more than 76% in terms of precision and recall, were already created

by the users manually (expected port types). The recall scores are higher than precision ones since

we found that the port types sug-gested manually by developers could be further decomposed, if

necessary. This was confirmed by the qualitative evaluation (MC). In addition, we found that the

slight deviation with the expected design is not related to incorrect changes but to the fact that the

developers have different scenarios/contexts in using the different operations.

We evaluated also the ability of our approach to fix several types of design defects and to

improve the service interface design quality as described in Figure 67 that depicts the percentage

of fixed defects (NF). It is higher than 77% on all the 22 Web services, which is an acceptable

score since developers may reject or modify some design changes that fix some de-fects because

they do not consider some of them as very important (their goal is not to fix all design defects in

the Web service interface) or because they wanted to focus on improving the cohesion and

199

minimize coupling. Some Web service interfaces, such as AmazonFWSInboundPortType, have a

higher percentage of fixed code smells with an average of more than 83%.

To summarize and answer RQ1, the experimentation results confirm that our approach

helps the participants to restructure their Web service interface design efficiently by finding the

relevant portTypes and improve the quality of all the 22 Web services.

Figure 64 Median manual correctness value

200

Figure 65 Median precision value over 30 runs

Figure 66 Median recall value over 30 runs

Results for RQ2. Figure 68shows that our approach significantly reduced the number of

objectives when executed on all the systems. The number of objectives were reduced to only four

201

in several services. The reduced objectives may show the importance of coupling and cohesion

when identifying refactoring recommendations since they were identified in all the 22 services

after the reduction of objectives.The number of changes was also selected for all the services after

the reduction step. Combined with the results of RQ1, it is clear that the proposed NSGAII-PCA

formulation successfully reduced the number of objectives while generating useful Web services

refactoring recommendations.

Figure 67 Median number of fixed design defects value

202

Figure 68 Median number of objectives value over 30 runs

Results for RQ3. Figure 64, Figure 65, Figure 66, and Figure 67 confirm the average superior

performance of our approach compared to the two existing fully automated Web service

modularization techniques [1, 11] and also the multi-objective approach combining all the metrics

together without the use of the PCA component. Figure 64 shows that our approach provides

significantly higher manual correctness results (MC) than all other approaches having MC scores

respectively between 48% and 64%, on average as MC scores on the different Web services. The

same observation is valid for the precision and recall as described in Figure 65, Figure 66. The

outperformance of our technique in terms of percentage of fixed defects, as described in Figure

67, can be explained by the fact that the main goal of existing studies is not to mainly fix these

defects. Existing work are mainly limited to the coupling and cohesion metrisc which may not be

sufficient to guide the modularization of Web services. In conclusion, our approach provides better

results, on average, than all existing fully-automated Web services modularization techniques

(answer to RQ3).

3) Threats to Validity

203

Threats to Validity. We identify, in the following, several factors that may affect the

validity of our study. A possible threat to construct validity can be related to the set of ground truth

to calculate precision and recall with refactorings performed manually by developers. A possible

threat to construct validity can be related to the set of ground truth to calculate precision and recall

with refactorings performed manually by developers. An external threat can be related to the

studied services. Although we used 22 real-world Web services provided by Amazon and Yahoo,

from different application domains and ranging from 10 to 87 operations, we cannot generalize

our results to other services and other technologies, e.g., REST services. As part of our future

work, we plan to test our approach with an extended benchmark of Web services.

An internal threats to validity can be related to the knowledge and expertise of the human

evaluators. Inadequate knowledge could lead to limited ability to assess the quality of an interface.

We mitigate this threat by selecting participants having from 4 to 9 years experience with service-

oriented development and familiar with SOAP Web services. Moreover, to avoid bias in the

experiment none of the authors have been involved in this evaluation. In addition, we randomized

the ordering in which the MOWSIR , Athanasopoulos et al. and random refactorings were shown

to participants, to mitigate any sort of learning or fatigue effect.

6.6.5 Conclusion

In this work, we proposed a dimensionality reduction approach for multi-objective Web

services remodularization that adjusts the number of considered objectives during the search for

near optimal solutions. The execution traces of the multi-objective algorithm are analyzed using a

PCA component to find potential correlation between the objectives (e.g. quality metrics). To

evaluate the effectiveness of our tool, we conducted a human study on a set of users who evaluated

the tool and compared it with the state-of-the-art Web services modularization techniques. Our

204

evaluation results provide strong evidence that our technique successfully reduced the initial set

of large number of objectives/quality metrics. The results also show that our approach outperforms

several of existing Web services modularization techniques, not based on heuristic search.

6.7 Interactive Design of Web Services Interface Refactoring

6.7.1 Introduction

The decision on how to decompose/modularize an interface is subjective and difficult to

automate since it is required to integrate the feedback of users during the modularization process.

In addition, the history of interactions between the users and the current Web service interface

could be important to understand the dependency between the operations and generate a well-

designed interface [1]. However, these aspects related to the users’ feedback, when improving the

quality of services interface, were not considered by existing studies.

In this work, we propose a recommendation approach that dynamically adapts and

interactively suggests a possible modularization, also called refactoring [27], of the Web services

interface to developers and takes their feedback into consideration. Our approach uses an

interactive multi-criteria decision-making algorithm, based on interactive non-dominated sorting

genetic algorithm (NSGA-II) [105],to find a set of good design interface modularization solutions

that provide a trade-off between (1) improving several interface design quality metrics (e.g.

coupling, cohesion, number of portTypes and number of antipatterns), (2) maximizing the

satisfaction of the interaction constraints learnt from the user feedback during the execution of the

algorithm, while (3) minimizing the deviation from the initial design. To find a trade-off between

these different conflicting objectives, there is no single possible modularization solution but a set

of optimal, i.e., non-dominated, solutions, so-called Pareto front [40]. The challenge at this step is

how to choose one solution from this front to present to the Web service’s user or developer? The

205

traditional approach is to seek a ‘knee point’ [40] from the front that presents the maximum trade-

off between the different objectives. However, this may ignore the preferences of the user. To

address this issue, we propose to analyze and explore the Pareto front of possible remodularization

solutions interactively and implicitly with the developer.

Our algorithm starts by finding the most frequently-occurring remodularization operations

among the set of non-dominated solutions. Based on this analysis, a complete interface

remodularization solution is chosen from the front that best matches the most frequently-occurring

operations, i.e., the solution that best represents the entire front. The recommended modularization

operations are then ranked and suggested to the developer one by one. The developer can approve,

modify or reject each suggested modularization such as moving operations between port types, or

merging/splitting port types. Each action by the developer participates to guide the search process

towards a desired solution. For example, if the user rejects to apply a modularization operation,

the search process will subsequently avoid reconsidering it when creating new solutions. NSGA-

II will continue to execute in the new modified context to repair and evolve the set of good

remodularization solutions based on the feedback received from the Web services developer.

We evaluated our approach on a set of 22 real-world Web services, provided by Amazon

and Yahoo. Statistical analysis of our experiments shows that our dynamic interactive Web

services interface modularization approach performed significantly better than the state-of-the-art

modularization techniques [5], [69]. The primary contributions of this work can be summarized as

follows:

The work introduces a novel interactive way to modularize and improve the quality of Web

services using interactive dynamic multi-objective optimization. The proposed technique supports

the adaptation of interface design solutions based on the user feedback while improving several

206

quality attributes while minimizing the deviation from the initial design. To the best of our

knowledge, we propose the first approach to interactively generate a modularized Web services

interface.

The work reports the results of an empirical study on an implementation of our approach.

The obtained results provide evidence to support the claim that our proposal is more efficient, on

average, than existing Web services modularization techniques based on a benchmark of 22 real-

world services. The work also evaluates the relevance and usefulness of the suggested interface

design improvements for Web service users.

6.7.2 Approach

A. Approach Overview

The goal of our approach is to propose a new dynamic interactive way for users to refactor

their Web services interface de-sign. The general structure of our approach is sketched in Figure

69. Our technique comprises two main components. The first component consists of an offline

phase. It is executed first in the background when the developer uploads the WSDL file to analyze.

During this phase, the multi-objective algorithm, NSGA-II [40], is executed for several iterations

to find the non-dominated solutions balancing the three following objectives:

• Objective 1 maximizes the interface design quality, which corresponds to minimize the

number of design antipatterns and improve design quality metrics (coupling and cohesion),

• Objective 2 maximizes the satisfaction of the constraints learnt from the user interaction,

• Objective 3 minimizes the number of introduced changes to modify the Web service design

and port types.

The output of this first step of the offline phase is a set of Web services remodularization

solutions that optimize the above three objectives. As explained in Algorithms 1 and 2, the second

207

step of the offline phase explores this Pareto front in an intelligent manner using our algorithm to

rank recommended changes based on the common features between the non-dominated solutions.

In our adaptation, we assume true the hypothesis that the most frequently occurring

remodularization operations in the non-dominated solutions are the most relevant ones for

developers and can fix several antipattern types. Thus, the output of this second step of the offline

phase is a set of ranked solutions based on this frequency score.

Figure 69 Approach overview

The second component of our approach is an online phase to manage the interaction with

the user. It dynamically updates the list of interaction constraints based on the feedback of the

developer. This feedback can be to accept/apply or modify or reject some of the suggested design

changes. Thus, the goal is to guide, implicitly, the exploration of the search space of possible Web

services modularization solutions. Since the interactions constraints are updated dynamically, our

interactive algorithm allows the implicit move between non-dominated solutions of the Pareto

front. The list of constraints that could be learnt will be discussed in the next section. For example,

when a user accepts a port type then the operations of that port type should stay together in the

208

next interactions of the algorithm, but new operations could be moved to that port type. Another

interaction option for the user is to specify desired values of the different metrics then the multi-

objective algorithm will try to restructure the design of the interface to reach these desired values.

The interaction algorithm will be explained later in more details.

After several interactions, users may have modified or rejected a high number of suggested

design changes or have introduced several new changes manually. Whenever the users stop the

Web service design modularization session by closing the suggestions window, the first

component of our approach is executed again on the background to update the last set of non-

dominated modularization solutions by continuing the execution of NSGA-II based on the three

objectives defined in the first component as described in Algorithm 1 and the new constraints

summarizing the feedback of the user. In fact, we consider the rejected port types or operations by

the developer as constraints to avoid generating solutions containing similar port types in the next

iterations to avoid putting together again the operations of that rejected port types in the next

iterations of the algorithm. This may lead to reducing the search space and thus a fast convergence

to better interface modularization solutions. Of course, the next iterations of NSGA-II take as input

the updated version of the interface after the interactions with users. The whole process continues

until the developers decide that there is no necessity to restructure the Web service anymore. The

outcome of the proposed approach that consists of the modularization of the Web service interface

should have an impact on the implementation of the operations as well. In fact, the operations that

are grouped together into one sub-interface may give an indication that they should be

implemented within the same module. Thus, the proposed interface modularization could help the

services developer to improve the cohesion and coupling of their implementation of services

operation.

209

B. Interactive NSGA-II

Most real world optimization problems encountered in practice involve multiple criteria to

be considered simultaneously. These criteria, also called objectives, are often conflicting. Usually,

there is no single solution that is optimal with respect to all these objectives at the same time, but

rather many different designs exist which are incomparable per se. Consequently, contrary to

Single-objective Optimization Problems (SOPs) where we look for the solution presenting the best

performance, the resolution of a multi-objective optimization (MOP) yields a set of compromise

solutions presenting the optimal trade-offs between the different objectives. When plotted in the

objective space, the set of compromise solutions is called the Pareto front. The resolution of a

MOP yields a set of trade-off solutions, called Pareto optimal solutions or non-dominated

solutions, and the image of this set in the objective space is called the Pareto front. Hence, the

resolution of a MOP consists in approximating the whole Pareto front.

In this work, we adapted one of the widely used multi-objective search algorithms called

NSGA-II and integrated our interactive component to it. NSGA-II is a powerful search method

stimulated by natural selection that is inspired from the theory of Darwin. Hence, the basic idea of

NSGA-II is to make a population of candidate solutions evolve toward the near-optimal solution

in order to solve a multi-objective optimization problem. NSGA-II is designed to find a set of

optimal solutions, called non-dominated solutions, also Pareto set. A non-dominated solution is

the one which provides a suitable compromise between all objectives without degrading any of

them. As described in Algorithm 1, the first step in NSGA-II is to create randomly a population P0

of individuals encoded using a specific representation. Then, a child population Q0 is generated

from the population of parents P0 using genetic operators such as crossover and mutation. Both

populations are merged into an initial population R0 of size N. As a consequence, NSGA-II starts

210

by generating an initial population based on a specific representation that will be discussed later,

using the exhaustive list of interface operations given as input as mentioned in the previous section.

Thus, this population stands for a set of possible solutions represented as sequences of portTypes

(including the operations) which are selected and combined. After a number of iterations, the best

solution (interface design modularization) will be presented to the user to get his feedback then

the algorithm will continue to execute taking into consideration the new learnt interaction

constraints.

To summarize, the main NSGA-II loop goal is to make a population of candidate solutions

evolve toward the best clustering of interface operations into portTypes, i.e., the sequence that

minimizes the coupling, number of antipatterns, number of portTypes and number of interface

changes, and maximizes the cohesion and the satisfaction of the interaction constraints. During

each iteration t, an offspring population Qt is generated from a parent population Pt using genetic

operators (selection, crossover and mutation). Then, Qt and Pt are assembled to create a global

population Rt. Then, each solution Si in the population Rt is evaluated using our three fitness

functions. We describe in the next sections, the different steps of adaption of the interactive NSGA-

II algorithm to our problem.

C. Fitness Function

The generated solutions are evaluated using three fitness functions as detailed in the

following.

Objective 1: Maximize the Web services design quality metrics. This fitness function is

defined as the average of three measures. The first measure is the number of design antipatterns

that can be detected using the rules defined in our previous work in Chapter 3. The second measure

is the cohesion that corresponds to the degree to which the operations exposed in a service interface

211

conceptually belong together. We used, in this work, the definition of cohesion described before

which is based on communicational and textual similarities between the operations within the same

port type based on cosine similarity and call-graphs. The third measure is coupling within a service

measures the relationships between implementation elements belonging to the same service .

Service interface coupling is a measure of how strongly a service interface is connected to or relies

on other service interfaces. We used the existing definition of coupling based on the similarity

between the operations within the same port type and the number of calls to other operations in

different port types. The reason of not treating quality objectives separately are related to redcuing

the execution time and the number of non-dominated solutions (especially for an interactive

approach), and also the performance of NSGA-II when the number of objectives becomes high.

Objective 2: Maximize the interaction-based function. This function maximizes the

satisfaction of the constraints learnt from the interaction with user or minimizes the distance with

the desired metrics, if specified by the user as described in Figure 69. In case that the user did not

specify these desired values then we just ignore this component of the fitness function.

Furthermore, the user has four other types of interaction, as described in Figures 5 and 6, that

correspond to accept a portType, reject a portType, move operation(s) and delete operation(s).

Each of these user actions will generate a set of constraints for the exploration of the search space.

When a port type is accepted, the list of operations in that port type should stay together in the next

iterations but new operations could be added to the port type. When a port type is rejected by the

user, a constraint is generated to avoid regrouping together again these operations into the same

port type. The application of a move operation action will generate a constraint to keep the moved

operation in the targeted port type in the next iterations. When an operation is deleted, a constraint

212

will be generated to avoid putting again that operation in the source port type in the next iterations.

Formally, the second fitness function to minimize is defined as follows:

This second fitness function is composed by two components. The first component is to

minimize the distance between the desired metrics value specified by the user (e.g. coupling,

cohesion, number of portTypes, etc.) and the actual values of the solution to evaluate. The second

component is to maximize the number of satisfied interaction constraints over the total number of

learnt constraints.

Objective 3: Minimize the number of changes comparing to the initial design. The designer

may have some preferences regarding the degree of the deviation with the initial design of the

interface. Thus, we formally define the fitness function as the following:

The number of design changes is calculated based on the number of differences between

the two vector representations of the initial design and the generated one, i.e. the number of

operations of the new design assigned to different port types compared to the initial design.

213

Figure 70 The proposed Web services design modularization tool

D. Interactive Recommendations

The first step of the interactive component is executed as described in Algorithm, to

investigate if there are some common patterns among the generated non-dominated refactoring

solutions. The algorithm checks if the optimal refactoring solutions have some common features

such as similar refactoring operations among most or all the solutions, and a specific common

order/sequence in which to apply the refactorings. Such information will be used to rank the

suggested refactorings for developers using the following formula:

Algorithm. The ranking procedure to manage the interactions with the developer (online phase)
Input
RNS: Ranked Non-dominated SolutionSet
Output
M: Map of refactorings along with their occurrences.
Begin
Applied-Refactorings ← Ø;
Rejected-Refactorings ← Ø;
For i=1 to |RNS| do
 ref[i] ← 0;
End for
/* Main loop to suggest refactorings one by one to the user*/
While |Rejected-Refactorings|< α do
/* Select index of the the solution with highest rank*/
 index ← Max-Rank(RNS);

214

 d ← User-Decision(RNSindex,ref[index]);
/* If the user has applied or modified the operation*/
 If (d = True) then
 Applied-Refactorings ← Applied-Refactorings ∪ RNSindex,ref[index];
/* If the user has rejected the operation*/
 else
 Rejected-Refactorings ← Rejected-Refactorings ∪ RNSindex,ref[index];
 End if
 ref[index] ← ref[index] + 1;
/* Update solutions indexes */
 For i=1 to |RNS| do
 Update-Rank(RNSi; Applied-Refactorings,Rejected-Refactorings)
End While
End

where Rx,y is the refactoring operation number x (index in the solution vector) of solution

number y, and n is the number of solutions in the front. Si is the solution of index i. All the solutions

of the Pareto front are ranked based on the score of this measure applied to every solution.

Figure 71 User interactions

Once all Pareto front solutions are ranked, the second step of the interactive process is

executed as described in Figure 70. The refactorings of the best solution, in terms of ranking, are

recommended to the developer based on their order in the vector. Then, the ranking score of the

solutions is updated automatically after every feedback (interaction) with the developer. Our

interactive algorithm proposes three levels of interaction as described in Figure 70. The developer

can check the ranked list of refactorings and then apply, modify or reject the refactoring. If the

developer prefers to modify the refactoring, then our algorithm can help them during the

modification process as described in Figure 71. In fact, our tool proposes to the developer a set of

215

recommendations to modify the refactoring based on the history of changes applied in the past and

the semantic similarity between the port types and operations. For example, if the developer wants

to modify a move operation refactoring then, having specified the source port type to move, our

interactive algorithm automatically suggests a list of possible target port types ranked based on the

history of changes and semantic similarity. This is an interesting feature of our approach since

developers often know which operation to move, but find it hard to determine a suitable target port

type. The same observation is valid for the remaining refactoring types. Another action that the

developers can select is to reject/delete a refactoring from the list. After every action selected by

the developer, the ranking is updated based on the feedback using the following formula:

Where Si is the solution to be ranked, the first component consists of the sum of the ranks

of its operations as explained previously and the second component will take the value of 1 if the

recommended refactoring operation was applied by the developer, or -1 if the refactoring operation

was rejected or 0.5 if it was partially modified by the developer. We selected 0.5 as a threshold

since most of the operations have very few parameters (up-to two parameters) that could be

modified. The recommended refactorings will be adjusted based on the updated ranking score.

It is important to note that we calculate the ranking score for each non-dominated solution

using our ranking measure and then the solution with the highest score is presented refactoring by

refactoring to the developer. In fact, refactorings tend to be dependent on one another, thus it is

important to ensure the coherence of the recommended solution. After several modified or rejected

refactorings, the generated Pareto front of refactoring solutions by NSGA-II needs to be updated

since the original interface was modified. Thus, the ranking of the solutions will change after every

interaction. If many refactorings are rejected, the NSGA-II algorithm will continue to execute

while taking into consideration all the feedback from developers as constraints to satisfy during

216

the search. The rejected refactorings should not be considered as part of the newly generated

solutions and the new Web service interfaces after refactoring will be considered in the input of

the next iteration of the NSGA-II.

In a non-interactive Web services refactoring approach, the set of refactorings, suggested

by the best-chosen solution, needs to be fully executed to reach the solution’s promised results.

Thus, any changes applied to the set of refactorings such as changing or skipping some of them

could deteriorate the resulting design quality. In this context, the goal of this work is to cope with

the above-mentioned limitation by granting to the developer’s the possibility to customize the set

of suggested refactorings either by accepting, modifying or rejecting them. The novelty of this

work is the approach’s ability to consider the developer’s interaction, in terms of introduced

customization to the existing solution, by conducting a local search to locate a new solution in the

Pareto Front that is nearest to the newly introduced changes. We believe that our approach may

narrow the gap that exists between automated and manual Web services refactoring techniques. It

allows the developer to select the refactorings that best match his/her design preferences.

6.7.3 Validation

1) Experimental Setup

We defined three research questions that address the applicability, performance in

comparison to existing fully-automated Web services modularization approaches [5], [69], and the

usefulness of our interactive multi-objective approach. The three research questions are as follows:

• RQ1: To what extent can our approach recommend relevant Web services design

improvements?

• RQ2: How does our interactive formulation perform compared to fully-automated Web

services restructuring techniques [5], [69]?

217

• RQ3: Can our approach be useful for the users of Web services (the developers of service-

based systems)?

To answer these research questions, we considered the best interface design restructuring

solutions recommended by our approach after interactions with the developers as described in the

previous section. To answer RQ1, it is important to validate the proposed modularization solutions

on the different Web services highlighted in Table 22. We asked a group of developers, as detailed

in the next section, to manually modularize the design of the different interfaces considered in our

experiments. Then, we calculated precision and recall scores to compare between the generated

design and the expected one:

When calculating the precision and recall, we consider a two port types are similar if they

contain the same operations. We divided the participants in groups to make sure that they do not

use our tool on the Web services that they are asked to manually modularize.

Another metric that we considered for the quantitative evaluation is the percentage of fixed

design antipatterns (NF) by the proposed modularization solution. The detection of design

antipatterns after applying a modularization solution. Formally, NF is defined as:

For the qualitative validation, we asked groups of potential users of our Web services

refactoring tool to evaluate, manually, whether the suggested interface design refactorings are

feasible and efficient at improving the quality of Web services interface design. We define the

metric Manual Correctness (MC) to mean the number of meaningful refactorings divided by the

218

total number of recommended refactorings by our tool. The MC metric is computed after the user

interaction is completed. In fact, the number of correct refactorings includes the number of design

refactorings applied by developers when using our tool, since they can either apply, modify or

reject a refactoring recommendation (e.g. created port type). MC is given by the following

equation:

To avoid the computation of the MC metric being biased by the developer’s feedback, we

asked the developers to manually evaluate the correctness of the recommended refactorings on the

Web services that they did not refactor using our tool.

We considered also some other useful metrics to answer RQ1 that count the percentage of

Web service refactorings that were accepted (NAC) or rejected (NRE) or applied with some

modifications (NMO). Formally, these metrics are defined as:

To answer RQ2, we compared our approach to two other existing fully-automated Web

services decomposition techniques [5], [69]. Ouni et al. [69] proposed an approach to decompose

Web services using graph partitioning to improve cohesion. Similarly, Athanasopoulos et al. [5]

used a greedy algorithm to decompose the interface based on cohesion as well. All these existing

techniques are fully-automated and do not provide any interaction with the developers to update

their solutions towards a desired design. Thus, we used the metrics PR, RC, and NF to perform the

comparisons.

219

To answer RQ3, we used a post-study questionnaire that collects the opinions of Web

service developers on our tool as described in the next section. Thus, we asked these participants

to use both our interactive tool and the automated framework proposed by Ouni et al. [5] on

different sets of Web services. The participants were asked to make changes, when appropriate, to

the final solution of the automated approach of Ouni et al. [5]. Thus, we can check whether the

"online phase" of the proposed interactive approach makes a real contribution, or whether the same

effect can be attained by just fixing the output of the automated remodularization approaches.

Then, we compared between the outcomes of the survey questions for both interactive and fully

automate techniques.

Table 21 Studied Web service interfaces

Service interface Provider #operations

AutoScalingPortType Amazon 13

MechanicalTurkRequesterPortType Amazon 27

AmazonFPSPorttype Amazon 27

AmazonRDSv2PortType Amazon 23

AmazonVPCPortType Amazon 21

AmazonFWSInboundPortType Amazon 18

AmazonS3 Amazon 16

AmazonSNSPortType Amazon 13

ElasticLoadBalancingPortType Amazon 13

MessageQueue Amazon 13

AmazonEC2PortType Amazon 87

KeywordService Yahoo 34

AdGroupService Yahoo 28

UserManagementService Yahoo 28

TargetingService Yahoo 23

AccountService Yahoo 20

AdService Yahoo 20

CompaignService Yahoo 19

BasicReportService Yahoo 12

TargetingConverterService Yahoo 12

ExcludedWordsService Yahoo 10

220

We used a benchmark of 22 well-known Web services as detailed in Table 21. All studied

services are widely used in different contexts and provided by Amazon and Yahoo, two major

Web service providers. We selected these Web services for our validation because they range from

medium to large-sized projects, which have been actively developed and changed over several

years. Our study involved 24 participants from the University of Michigan to use and evaluate our

tool. Participants include 16 master students in Software Engineering and 8 Ph.D. students in

Software Engineering. All the participants are volunteers and familiar with Web services and

refactoring in general. The experience of these participants on programming ranged from 2 to 19

years. 11 out of the 24 participants are currently active programmers as well in software industry

with a minimum experience of 2 years. Participants were first asked to fill out a pre-study

questionnaire containing twelve questions. The questionnaire helped to collect background

information such as their role within the company, their programming experience, their familiarity

with Web services. In addition, all the participants attended one lecture about Web services design

quality, modularization and passed five tests to evaluate their performance to evaluate and suggest

interface design modularization solutions.

As described in Table 22, we formed 4 groups. Each of the four groups is composed by 6

participants. Table 22 summarizes the survey organization including the list of Web services and

the algorithms evaluated by each of the groups. The groups were formed based on the pre-study

questionnaire and the tests result to make sure that all the groups have almost the same average

skills. Consequently, each group of participants who accepted to participate in the study received

a questionnaire, a manuscript guide to help them to fill the questionnaire, the tools and results to

evaluate the Web services design. Since the application of remodularization solutions is a

subjective process, it is normal that not all the developers have the same opinion. In our case, we

221

considered the majority of votes to determine if suggested solutions are correct or not. We

performed a cross-validation between the groups to avoid the evaluation will be biased by the

developer’s feedback. Thus, the subjects within the same group evaluated only the desiring

obtained with the feedback of individual of other groups.

Table 22 Survey organization

Groups Web Services Algorithms / Approaches

Group 1 i1-i5
Interactive approach

Ouni et al. [4]

Athanasopoulos et al. [5]

Group 2 i6-i10

Group 3 i11-i16

Group 4 i17-i22

We executed three different scenarios. In the first scenario, we asked every participant to

manually modularize a set of Web services. As an outcome of the first scenario, we calculated the

differences between the recommended modularizations and the expected ones (manually

suggested by the users/developers). To evaluate the fixed Web services design antipatterns, we

focus on the ones defined. In the second scenario, we asked the users to manually evaluate the last

recommended solution by our algorithm after the interaction with the user. We performed a cross-

validation between the groups to avoid the computation of the MC metric being biased by the

developer’s feedback. In the third scenario, we collected their opinions of the participants based

on a post-study questionnaire that will be detailed before in this section. The participants were

asked to justify their evaluation of the solutions and these justifications are reviewed by the

organizers of the study.

Parameter setting influences significantly the performance of a search algorithm. For this

reason, for each algorithm and for each Web service, we perform a set of experiments using several

population sizes: 20, 30, 50, 100 and 200. The stopping criterion was set to 50,000 evaluations for

all algorithms to ensure fairness of comparison. The other parameters’ values were fixed by trial

222

and error and are as follows: (1) crossover probability = 0.6; mutation probability = 0.3 where the

probability of gene modification is 0.2; stopping criterion = 50,000 evaluations. Each algorithm is

executed 30 times with each configuration and then the comparison between the configurations is

done using the Wilcoxon test. To achieve significant results, for each couple (algorithm, Web

service), we use the trial and error method to obtain a good parameter configuration.

Since metaheuristic algorithms are stochastic optimizers, they can provide different results

for the same problem instance from one run to another. For this reason, our experimental study is

based on 30 independent simulation runs for each problem instance and the obtained results are

statistically analyzed by using the Wilcoxon rank sum test with a 95% confidence level (α = 5%).

The latter tests the null hypothesis, H0, that the obtained results of two algorithms are samples

from continuous distributions with equal medians, against the alternative that they are not, H1. The

p-value of the Wilcoxon test corresponds to the probability of rejecting the null hypothesis H0

while it is true (type I error). A p-value that is less than or equal to α (≤ 0.05) means that we accept

H1 and we reject H0. However, a p-value that is strictly greater than α (> 0.05) means the opposite.

In fact, for each problem instance, we compute the p-value obtained by comparing existing studies.

results with our approach ones. In this way, we determine whether the performance difference

between our technique and one of the other approaches is statistically significant or just a random

result. The results presented were found to be statistically significant on 30 independent runs using

the Wilcoxon rank sum test with a 95% confidence level (α < 5%) as detailed in the next section.

The Wilcoxon rank sum test verifies whether the results are statistically different or not;

however, it does not give any idea about the difference in magnitude. To this end, we used the

Vargha-Delaney A measure which is a non-parametric effect size measure. In our context, given

the different performance metrics (such as PR, RC, NF, MC, etc.), the A statistic measures the

223

probability that running an algorithm B1 (interactive NSGA-II) yields better performance than

running another algorithm B2 (such as [69].). If the two algorithms are equivalent, then A = 0.5.

In our experiments, we have found the following results: a) On small Web services our approach

is better than all the other algorithms based on all the performance metrics with an A effect size

higher than 0.91; and b) On large Web services, our approach is better than all the other algorithms

with an A effect size higher than 0.84.

2) Results and Discussions

Results for RQ1. As described in Figure 73 and Figure 74, we found that a considerable

number of proposed port types, with an average of more than 80% in terms of precision and recall

on all the 22 Web services, were already suggested manually (expected refactorings) by the users

(software development team). The achieved recall scores are slightly higher, in average, than the

precision ones since we found that some of the port types suggested manually by developers do

not exactly match the solutions provided by our approach. In addition, we found that the slight

deviation with the expected port types is not related to incorrect ones but to the fact that different

possible modularization solutions could be optimal.

We evaluated the ability of our approach to fix several types of interface design antipatterns

and to improve the quality. Figure 75 depicts the percentage of fixed code smells (NF). It is higher

than 79% on all the 22 Web services, which is an acceptable score since users may not be interested

to fix all the antipatterns in the interface. Some Web services, such as AmazonSNSPortType, has a

higher percentage of antipatterns with an average of more than 86%. This can be explained by the

fact that this Web service interface includes a lower number of antipatterns than others.

We reported the results of our empirical qualitative evaluation in Figure 72 (MC). As

reported in Figure 72, most of the Web services modularization solutions recommended by our

224

interactive approach were correct and approved by developers. On average, for the different Web

services, 89% of the created port types and applied changes to the initial design are considered as

correct, improve the quality, and are found to be useful by the software developers of our

experiments. The highest MC score is 94% and was achieved for the Web service

GeographicalDictionary, while the lowest score was 79% for AmazonVPCPortType. Thus, this

finding indicates that the results are independent of the size of the Web services and the number

of recommended changes to the initial design.

Since the manual correctness MC metric just evaluates the correctness and not the

relevance of the recommended solutions, we also compared the proposed modularization changes

with some expected ones defined manually by the different groups for the different Web services.

Figure 73 and Figure 74 summarize our findings. We found that a considerable number of proposed

port types, with an average of more than 84% in terms of precision and recall, were already created

by the users manually (expected port types). The recall scores are higher than precision ones since

we found that the port types suggested manually by developers could be further decomposed, if

necessary. This was confirmed by the qualitative evaluation (MC). In addition, we found that the

slight deviation with the expected design is not related to incorrect changes but to the fact that the

developers have different scenarios/contexts in using the different operations.

225

Figure 72 Median manual correctness (MC) value over 30 runs

Figure 73 Median precision (PR) value over 30 runs

We evaluated also the ability of our approach to fix several types of design antipatterns and

to improve the service interface design quality as described in Figure 75 that depicts the percentage

of fixed antipatterns (NF). It is higher than 83% on all the 22 Web services, which is an acceptable

score since developers may reject or modify some design changes that fix some antipatterns

226

because they do not consider some of them as very important (their goal is not to fix all design

antipatterns in the Web service interface) or because they wanted to focus on improving the

cohesion and minimize coupling. Some Web service interfaces, such as

AmazonFWSInboundPortType, have a higher percentage of fixed code smells with an average of

more than 90%. This can be explained by the fact that these Web services include a higher number

of design antipatterns than others. We have also considered three other evaluation metrics NMO

(percentage of modified portTypes), NRE (percentage of rejected portTypes) and NAC (percentage

of accepted portTypes) to evaluate the efficiency of our interactive approach. We collected this

data using a feature that we implemented in our tool to record all the actions performed by the

developers during the remodularization sessions. Figure 76 shows that, on average, more than 81%

of the recommended portTypes were accepted by the developers. In addition, an average of 9% of

the recommended refactorings were modified by the developers, while 11% of the suggested

refactorings were rejected by the developers. Thus, our recommendation tool successfully

suggested a good set of design changes to apply.

Figure 74 Median recall (RE) value over 30 runs

227

To summarize and answer RQ1, the experimentation results confirm that our interactive

approach helps the participants to restructure their Web service interface design efficiently by

finding the relevant portTypes and improve the quality of all the 22 Web services.

Figure 75 Median number of fixed Web service antipatterns (NF) value over 30 runs

Results for RQ2. Figure 72, Figure 73, Figure 74, and Figure 75 confirm the average

superior performance of our interactive approach compared to the two existing fully automated

Web service modularization techniques. Figure 72 shows that our approach provides significantly

higher manual correctness results (MC) than all other approaches having MC scores respectively

between 48% and 61%, on average as MC scores on the different Web services. The same

observation is valid for the precision and recall as described in Figure 73 and Figure 74. The

outperformance of our technique in terms of percentage of fixed antipatterns, as described in

Figure 75, can be explained by the fact that the main goal of existing studies is not to mainly fix

these antipatterns (not considered in the fitness function by the work of Ouni et al.).

Overall the superior performance of our interactive approach can be explained by several

factors. First, existing studies use only structural indications (quality metrics) to evaluate the

228

remodularization solutions and thus a high number of changes may lead to a semantically

incoherent Web services design. Our approach reduces the number of semantic incoherencies

when suggesting refactorings and during the interaction with the developers. Second, the ranking

component of our approach improved the quality of the suggested refactoring solutions by using

an interactive approach as compared to a regular NSGA-II where the developers need to select one

solution from the Pareto front that cannot be updated dynamically. Third, existing work are mainly

limited to the cohesion metric which may not be sufficient to guide the modularization of Web

services.

In conclusion, our interactive approach provides better results, on average, than all existing

fully-automated Web services modularization techniques (answer to RQ2).

Figure 76 Median percentage of accepted (NAC), modified(NMO) and rejected(NRE)

portTypes over 30 runs

Results for RQ3. To further analyze the obtained results, we have have also asked the

participants to take a post-study questionnaire after completing the different validation and tasks

using our interactive approach and the two techniques considered in our experiments. The post-

study questionnaires collected the opinions of the participants about their experience in using our

approach compared to fully-automated tools. The post-study questionnaire asked participants to

229

rate their agreement on a Likert scale from 1 (complete disagreement) to 5 (complete agreement)

with the following statements:

The interactive dynamic interface modularization recommendations are a desirable feature

to improve the quality of Web services interface.

The interactive manner of recommending modularization solutions by our approach is a

useful and flexible way to consider the user perspective compared to fully-automated tools.

The agreement of the participants was 4.9 and 4.6 for the first and second statements

respectively. This confirms the usefulness of our approach for the users of our experiments. The

remaining questions of the post-study questionnaire were about the benefits and the limitations

(possible improvements) of our interactive approach.

We summarize in the following the feedback of the users. Most of the participants mention

that our interactive approach is much faster and easy to use compared to the manual restructuring

of the interface since they spent a long time with manual changes to create port types and move

operations. Thus, the developers liked the functionality of our tool that helps them to modify a port

type based on the recommendations.

Another important feature that the participants mention is that our interactive approach

allows them to take the advantages of using multi-objective optimization without the need to learn

anything about optimization and exploring explicitly the Pareto front to select one “ideal” solution.

The implicit exploration of the Pareto front in an interactive fashion represents an important

advantage of our tool along with the dynamic update of the recommended design. The participants

also suggested some possible improvements to our interactive approach. Some participants believe

that it will be very helpful to extend the tool by adding a new feature to decompose multiple

230

services into interfaces based on the dependency between them. Another possibly suggested

improvement is to consider the users invocation data to restructure the interface.

3) Threats to Validity

Conclusion validity is concerned with the statistical relationship between the treatment and

the outcome. The parameter tuning of the different computational search algorithms used in our

experiments creates another internal threat that we need to evaluate in our future work. The

parameters' values used in our experiments are found by trial-and-error. However, it would be an

interesting perspective to design an adaptive parameter tuning strategy for our approach so that

parameters are updated during the execution to provide the best possible performance. In addition,

our multi-objective formulation treats the different types of quality metrics such as coupling and

cohesion with the same weight in terms of complexity when calculating one of the fitness

functions. However, some quality metrics can be more important than others when evaluating a

Web service design but we considered both coupling and cohesion as equally important. The same

observation is valid for the different types of considered design antipatterns. Another threat is

related to the use of our previous work to detect antipatterns which may include few false positive.

However, this threat may not have a high impact on the validity of the results since the different

proposed refactorings were manually validated by the participants but some of the rejected

recommendations by the developer are related to the detected antipatterns.

Internal validity is concerned with the causal relationship between the treatment and the

outcome. We dealt with internal threats to validity by performing 30 independent simulation runs

for each problem instance. This makes it highly unlikely that the observed results were caused by

anything other than the applied multi-objective approach. The second internal threat is related to

the variation of correctness and speed between the different groups when using our approach and

231

the other tools. In fact, our approach may not be the only reason for the superior performance

because the participants have different programming skills and familiarity with Web services and

tools. To counteract this, we assigned the developers to different groups per their programming

experience to reduce the gap between the different groups and we also adapted a counter-balanced

design.

Construct validity is concerned with the relationship between theory and what is observed.

The different developers involved in our experiments may have divergent opinions about the

recommended modularizations in terms of correctness and readability. We considered in our

experiments the majority of votes from the developers. For the selection threat, the participant

diversity in terms of experience could affect the results of our study. We addressed the selection

threat by giving a lecture and examples of Web services modularization already evaluated with

arguments and justification.

External validity refers to the generalizability of our findings. In this study, we performed

our experiments on eight different widely used Web services belonging to different domains and

having different sizes. However, we cannot assert that our results can be generalized to other Web

service, and to other technologies or practitioners. Future replications of this study are necessary

to confirm our findings. Further empirical studies are also required to deeply evaluate the

performance of the interactive NSGA-II using the same problem formulation. The first threat is

the limited number of participants and evaluated Web services, which externally threatens the

generalizability of our results. In addition, our study was limited to the use of specific refactoring

types and types of design antipatterns. Future replications of this study are necessary to confirm

our findings. Another external threat is the current applicability of the proposed tool only on

232

WSDL interfaces. However, the proposed approach is generic and can be adapted as part of our

future work to RESTfull since REST is nowadays widely used to implement services.

6.7.4 Conclusion

We proposed, in this work, an interactive recommendation tool for Web services interface

design modularization that dynamically adapts and suggests design changes to developers based

on their feedback and three objective functions. Our interactive approach allows users to benefit

from search-based tools without explicitly involving any knowledge about optimization and multi-

objective optimization algorithms. In fact, the exploration of the non-dominated refactoring

solutions is implicitly performed based on the interaction with the users. The feedback received

from the users is used to reduce the search space and converge to better design modularization

solutions.

233

Chapter 7 Conclusion and Future work

7.1 Conclusion

To summarize the contributions related to the detection of Web service design defects

(chapter 3), we introduced multi-objective and bi-level approaches for this problem. We used

interface, code-level metrics, and also introduced QoS metrics for the first time to this problem.

We designed fitness functions to guide the search to cover most of the antipatterns example and

the minimum of good design practices example. We validated all contributions on over 400 real-

world web-services with a median precision and recall over 90% for all three contributions.

In the work around the detection of changes among service releases (chapter 4), we

proposed an approach to detect changes during the evolution of Web services. Our genetic

algorithm approach generates a list of detected changes in terms of composite changes, and not

atomic ones. We evaluated our approach on a set of 6 popular Web services including more than

110 releases. We reported the results on the efficiency and effectiveness of our approach to detect

changes of the evolution of Web services interfaces in terms of precision and recall.

For the prediction of service evolution (chapter 5), we propose to use machine learning,

based on Artificial Neuronal Networks, to forecast the evolution of Web services interface design.

To validate the proposed approach, we collected training data from quality metrics of previous

releases from 6 Web services. The validation of our prediction approach shows that the predicted

metric's value, such as the number of operations, on the different releases of the 6 Web services

were similar to the expected ones with a very low deviation rate. Furthermore, most of the quality

234

issues of the studied Web service interfaces were accurately predicted, for the next releases, with

an average precision and recall higher than 82%.

Finally, we proposed many techniques to automatically recommend better service designs

(chapter 6). The proposed multi-objective and many objective search-based approaches generate

new service designs based on many quality fitness functions (e.g. interface quality, history-based

similarity, user preferences and so on). We introduce machine learning techniques to solve the

increasing complexity of search algorithm. An interactive method is also introduced to better

evolve the solutions based on user feedback. The feedback received from the users is used to

reduce the search space and converge to better design modularization solutions. Finally, we

evaluated our work on over 20 major services provided by Amazon and Yahoo, the statistical and

survey results show high effectiveness and efficiency of our approaches.

To conclude, this dissertation introduced, using search-based and machine learning

algorithms, various approaches to find, predict and correct the Web Services design problems. For

the methodologies presented in this work, we have applied machine learning techniques to

interpret, understand or predicted the service evolution; multi-objective evolutionary algorithms

to search the solutions of defined issue; and objective reduction, bi-level and interactive

methodologies to reach better convergence to desired solutions. To the best of our knowledge, this

thesis is the first to apply these technologies to solve these problems in the Web Service filed and

addresses the problem of refactoring Web services. Based on the validation results, we have

outperformed state-of-the-art technologies using various evaluation metrics on existing

benchmarks.

235

7.2 Future Work

We plan to extend the detection approach to identify business process and work flow

antipatterns in SBS. We also intend to automate the process of service compositions/selection

while avoiding antipatterns and improve QoS performance. Future work of Web service prediction

involves the validation of our prediction technique with additional metrics, Web services and

developers to conclude about the general applicability of our methodology. Furthermore, we plan

to extend the prediction approach by defining new risk measures based on the predicted metrics

value. In addition, we will study of the impact of predicted quality issues on the usability and

popularity of Web services over time.

In our future work for services refactoring, we are planning to validate our technique with

additional objectives and Web services in order to conclude about the general applicability of our

methodology. Furthermore, we are planning to adapt our dimensionality reduction approach to

others problems such as Web services composition. Another future research direction related to

our work is to integrate the developers in the loop when reducing the number of objectives to either

select which one to eliminate or revise the fitness function formulation (aggregating the

objectives).

Finally, we will investigate the use intelligent-based approaches to combine search-based

algorithms and machine learning to address large-scale services composition challenges. Most

exsiting large software sytems use multiple layers of work flows while each layer involve the

compostion of many micro services which are in general hard to evaluate, evolve, or merge with

new features. We plan to abstract such system into a structured representation and treat each

service and software compoent as a dimension within that structure. Then, we will define new

metrics and objectives to evaluate the performance of the micro-services component.

236

 237

Bibliography

[1] M. Perepletchikov, C. Ryan, and K. Frampton, “Cohesion metrics for predicting

maintainability of service-oriented software,” in Proceedings - International Conference on

Quality Software, 2007, pp. 328–335.

[2] D. Romano and M. Pinzger, “Analyzing the evolution of web services using fine-grained

changes,” in Proceedings - 2012 IEEE 19th International Conference on Web Services,

ICWS 2012, 2012, pp. 392–399.

[3] A. Ouni, M. Kessentini, K. Inoue, and M. O. Cinneide, “Search-Based Web Service

Antipatterns Detection,” IEEE Trans. Serv. Comput., vol. 10, no. 4, pp. 603–617, Nov.

2015.

[4] A. Rotem-Gal-Oz, SOA Patterns. Manning Publications, 2012.

[5] D. Athanasopoulos, A. V. Zarras, G. Miskos, V. Issarny, and P. Vassiliadis, “Cohesion-

Driven Decomposition of Service Interfaces without Access to Source Code,” IEEE Trans.

Serv. Comput., vol. 8, no. 4, pp. 550–5532, 2015.

[6] P. Mikhail, R. Caspar, and T. Zahir, “The Impact of Service Cohesion on the Analyzability

of Service-Oriented Software,” IEEE Trans. Serv. Comput., vol. 3, no. 2, pp. 89–103, 2010.

[7] D. Romano and M. Pinzger, “A Genetic Algorithm to Find the Adequate Granularity for

Service Interfaces,” in Services (SERVICES), 2014 IEEE World Congress on, 2014, pp.

478–485.

[8] R. Haesen, M. Snoeck, W. Lemahieu, and S. Poelmans, “On the definition of service

granularity and its architectural impact,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

2008, vol. 5074 LNCS, pp. 375–389.

[9] M. Perepletchikov, C. Ryan, K. Frampton, and H. Schmidt, “Formalising service-oriented

design,” J. Softw., vol. 3, no. 2, pp. 1–14, 2008.

[10] B. Dudney, J. Krozak, K. Wittkopf, S. Asbury, and D. Osborne, J2EE Antipatterns. John

Wiley & Sons, 2003.

[11] F. Palma, N. Moha, G. Tremblay, and Y.-G. Guéhéneuc, “Specification and Detection of

SOA Antipatterns in Web Services,” in Software Architecture, Springer, 2014, pp. 58–73.

[12] A. Ouni, R. G. Kula, M. Kessentini, and K. Inoue, “Web service antipatterns detection using

genetic programming,” in Proceedings of the 2015 on Genetic and Evolutionary

Computation Conference - GECCO ’15, 2015, pp. 1351–1358.

[13] J. Král and M. Žemlička, “Popular SOA antipatterns,” in Computation World: Future

Computing, Service Computation, Adaptive, Content, Cognitive, Patterns,

ComputationWorld 2009, 2009, pp. 271–276.

[14] H. Masoud and S. Jalili, “A clustering-based model for class responsibility assignment

problem in object-oriented analysis,” J. Syst. Softw., vol. 93, pp. 110–131, 2014.

[15] W. Mkaouer et al., “Many-Objective Software Remodularization Using NSGA-III,” ACM

Trans. Softw. Eng. Methodol., vol. 24, no. 3, pp. 1–45, 2015.

[16] U. Mansoor, M. Kessentini, M. Wimmer, and K. Deb, “Multi-view refactoring of class and

 238

activity diagrams using a multi-objective evolutionary algorithm,” Softw. Qual. J., p. 1,

2015.

[17] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó Cinnéide, “Recommendation

system for software refactoring using innovization and interactive dynamic optimization,”

in Proceedings of the 29th ACM/IEEE international conference on Automated software

engineering - ASE ’14, 2014, pp. 331–336.

[18] S. Kalboussi, S. Bechikh, M. Kessentini, and L. Ben Said, “Preference-based many-

objective evolutionary testing generates harder test cases for autonomous agents,” in

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 2013, vol. 8084 LNCS, pp. 245–250.

[19] A. Ouni, M. Kessentini, and H. Sahraoui, “Search-based refactoring using recorded code

changes,” in Proceedings of the European Conference on Software Maintenance and

Reengineering, CSMR, 2013, pp. 221–230.

[20] S. Bechikh, M. Kessentini, L. Ben Said, and K. Ghédira, “Preference Incorporation in

Evolutionary Multiobjective Optimization: A Survey of the State-of-the-Art,” in Advances

in Computers, vol. 98, 2015, pp. 141–207.

[21] M. Boussaa, W. Kessentini, M. Kessentini, S. Bechikh, and S. Ben Chikha, “Competitive

coevolutionary code-smells detection,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

2013, vol. 8084 LNCS, pp. 50–65.

[22] M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, and A. Ouni, “Design defects

detection and correction by example,” in IEEE International Conference on Program

Comprehension, 2011, pp. 81–90.

[23] M. Kessentini, A. Bouchoucha, H. Sahraoui, and M. Boukadoum, “Example-based

sequence diagrams to colored petri nets transformation using heuristic Search,” Model.

Found. Appl., pp. 156–172, 2010.

[24] M. Kessentini, P. Langer, and M. Wimmer, “Searching models, modeling search: On the

synergies of SBSE and MDE,” in Proceedings of the 1st International Workshop on

Combining Modelling and Search-Based Software Engineering, 2013, pp. 51–54.

[25] M. Kessentini, M. Wimmer, H. Sahraoui, and M. Boukadoum, “Generating transformation

rules from examples for behavioral models,” in Proceedings of the Second International

Workshop on Behaviour Modelling: Foundation and Applications, 2010, p. 2.

[26] N. Moha et al., “Specification and Detection of SOA Antipatterns,” Springer, Berlin,

Heidelberg, 2012, pp. 1–16.

[27] M. Fowler and K. Beck, Refactoring : improving the design of existing code. Addison-

Wesley, 1999.

[28] H. Wang, M. Kessentini, and A. Ouni, “Interactive Refactoring of Web Service Interfaces

Using Computational Search,” IEEE Trans. Serv. Comput. To Appear.

[29] H. Wang, A. Ouni, M. Kessentini, S. Bouktif, and I. Katsuro, “A Hybrid Approach for

Improving the Design Quality of Web Service Interfaces,” ACM Trans. Internet Technol.

To Appear.

[30] H. Wang, M. Kessentini, and K. Gaaloul, “A Search-based approach to History-based Web

Service Interface Remodularization,” ACM Trans. Web, To Appear.

[31] H. Wang, M. Kessentini, T. Hassouna, and A. Ouni, “On the Value of Quality of Service

Attributes for Detecting Bad Design Practices,” in 2017 IEEE International Conference on

Web Services (ICWS), 2017, pp. 341–348.

 239

[32] M. Kessentini and H. Wang, “Detecting Refactorings among Multiple Web Service

Releases: A Heuristic-Based Approach,” in 2017 IEEE International Conference on Web

Services (ICWS), 2017, pp. 365–372.

[33] M. Kessentini, H. Wang, J. T. Dea, and A. Ouni, “Improving Web Services Design Quality

Using Heuristic Search and Machine Learning,” in 2017 IEEE International Conference on

Web Services (ICWS), 2017, pp. 540–547.

[34] H. Wang and M. Kessentini, “Improving Web Services Design Quality Using

Dimensionality Reduction Techniques,” in International Conference on Service-Oriented

Computing, 2017, pp. 499–507.

[35] H. Wang, M. Kessentini, and A. Ouni, “Bi-level Identification of Web Service Defects,” in

International Conference on Service-Oriented Computing, 2016, pp. 352–368.

[36] H. Wang, M. Kessentini, and A. Ouni, “Prediction of web services evolution,” in

International Conference on Service-Oriented Computing, 2016, vol. 9936 LNCS, pp. 282–

297.

[37] H. Wang, A. Ouni, M. Kessentini, B. Maxim, and W. I. Grosky, “Identification of Web

Service Refactoring Opportunities as a Multi-objective Problem,” in 2016 IEEE

International Conference on Web Services (ICWS), 2016, pp. 586–593.

[38] H. Wang, M. Kessentini, W. Grosky, and H. Meddeb, “On the use of time series and search

based software engineering for refactoring recommendation,” in Proceedings of the 7th

International Conference on Management of computational and collective intElligence in

Digital EcoSystems - MEDES ’15, 2015, no. October, pp. 35–42.

[39] S. W. Choi, J. S. Her, and S. D. Kim, “QoS metrics for evaluating services from the

perspective of service providers,” in Proceedings - ICEBE 2007: IEEE International

Conference on e-Business Engineering - Workshops: SOAIC 2007; SOSE 2007; SOKM

2007, 2007, pp. 622–625.

[40] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic

algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, 2002.

[41] M. Crasso, J. M. Rodriguez, A. Zunino, and M. Campo, “Revising WSDL Documents: Why

and How,” Internet Comput. IEEE, no. 5, pp. 48–56.

[42] C. Mateos, M. Crasso, A. Zunino, and J. Coscia, “Avoiding WSDL bad practices in code-

first web services,” SADIO Electron. J. Informatics, 2012.

[43] S. Haykin, “Neural networks-A comprehensive foundation,” New York: IEEE Press.

Herrmann, M., Bauer, H.-U., & Der, R, vol. psychology. p. pp107-116, 1994.

[44] M. Mitchell, “An introduction to genetic algorithms,” Comput. Math. with Appl., vol. 32,

no. 6, p. 133, 1996.

[45] T. Jayalakshmi and A. Santhakumaran, “Statistical Normalization and Backpropagation for

Classification,” Int. J. Comput. Theory Eng., vol. 3, no. 1, pp. 89–93, 2011.

[46] K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using

reference-point-based nondominated sorting approach, Part I: Solving problems with box

constraints,” IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 577–601, 2014.

[47] K. Deb and D. K. Saxena, “Searching for Pareto-optimal solutions through dimensionality

reduction for certain large- dimensional multi-objective optimization problems Searching

For Pareto-Optimal Solutions Through Dimensionality Reduction for Certain Large-

Dimensional Multi-Object,” 2006 IEEE Congress on Evolutionary Computation, no.

March. 2006.

[48] M. V. Mäntylä and C. Lassenius, “Subjective evaluation of software evolvability using code

 240

smells: An empirical study,” in Empirical Software Engineering, 2006, vol. 11, no. 3, pp.

395–431.

[49] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object Oriented Design,” IEEE

Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, 1994.

[50] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. Da Fonseca, “Performance

assessment of multiobjective optimizers: An analysis and review,” IEEE Transactions on

Evolutionary Computation, vol. 7, no. 2. pp. 117–132, 2003.

[51] J. M. Rodriguez, M. Crasso, C. Mateos, and A. Zunino, “Best practices for describing,

consuming, and discovering web services: A comprehensive toolset,” Softw. - Pract. Exp.,

vol. 43, no. 6, pp. 613–639, 2013.

[52] J. M. Rodriguez, M. Crasso, A. Zunino, and M. Campo, “Automatically detecting

opportunities for web service descriptions improvement,” in IFIP Advances in Information

and Communication Technology, 2010, vol. 341 AICT, pp. 139–150.

[53] M. Nayrolles, F. Palma, N. Moha, and Y.-G. Guéhéneuc, “Soda: A Tool Support for the

Detection of SOA Antipatterns,” in Service-Oriented Computing - ICSOC 2012 Workshops,

vol. 7759, A. Ghose, H. Zhu, Q. Yu, A. Delis, Q. Sheng, O. Perrin, J. Wang, and Y. Wang,

Eds. Springer Berlin Heidelberg, 2013, pp. 451–455.

[54] N. Moha and Y. Guéhéneuc, “DECOR: A method for the specification and detection of

code and design smells,” … , IEEE Trans., vol. 36, no. 1, pp. 20–36, 2010.

[55] M. A. Torkamani and H. Bagheri, “A Systematic Method for Identification of Anti-patterns

in Service Oriented System Development,” Int. J. Electr. Comput. Eng., vol. 4, no. 1, p. 16,

2014.

[56] C. Mateos, M. Crasso, A. Zunino, and J. L. O. Coscia, “Detecting WSDL bad practices in

code–first Web Services,” Int. J. Web Grid Serv., vol. 7, no. 4, pp. 357–387, 2011.

[57] M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia, and A. Lau, “An Empirical Study on

Web Service Evolution,” in 2011 IEEE International Conference on Web Services, 2011,

pp. 49–56.

[58] L. Aversano, M. Bruno, M. Di Penta, A. Falanga, and R. Scognamiglio, “Visualizing the

Evolution ofWeb Services using Formal Concept Analysis,” in Eighth International

Workshop on Principles of Software Evolution (IWPSE’05), 2005, pp. 57–60.

[59] Z. Xing and E. Stroulia, “UMLDiff: An Algorithm for Object-Oriented Design

Differencing,” Proc. 20th IEEE/ACM Int. Conf. Autom. Softw. Eng. - ASE ’05, p. 54, 2005.

[60] A. V. Zarras, P. Vassiliadis, and I. Dinos, “Keep calm and wait for the spike! insights on

the evolution of amazon services,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

2016, vol. 9694, pp. 444–458.

[61] M. Klusch, P. Kapahnke, and I. Zinnikus, “SAWSDL-MX2: A machine-learning approach

for integrating semantic web service matchmaking variants,” in 2009 IEEE International

Conference on Web Services, ICWS 2009, 2009, pp. 335–342.

[62] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based Software Engineering: Trends,

Techniques and Applications,” ACM Comput. Surv., vol. 45, no. 1, p. 11:1--11:61, 2012.

[63] F. Qayum and R. Heckel, “Local search-based refactoring as graph transformation,” in

Proceedings - 1st International Symposium on Search Based Software Engineering, SSBSE

2009, 2009, pp. 43–46.

[64] H. Kilic, E. Koc, and I. Cereci, “Search-Based Parallel Refactoring Using Population-Based

Direct Approaches,” Search Based Softw. Eng., vol. 6956, pp. 271–272, 2011.

 241

[65] M. Harman and L. Tratt, “Pareto optimal search based refactoring at the design level,” in

Proceedings of the 9th annual conference on Genetic and evolutionary computation -

GECCO ’07, 2007, p. 1106.

[66] M. Ó Cinnéide, L. Tratt, M. Harman, S. Counsell, and I. Hemati Moghadam, “Experimental

assessment of software metrics using automated refactoring,” in Proceedings of the ACM-

IEEE international symposium on Empirical software engineering and measurement -

ESEM ’12, 2012, p. 49.

[67] A. Ouni, M. Kessentini, H. Sahraoui, and M. S. Hamdi, “The Use of Development History

in Software Refactoring Using a Multi-Objective Evolutionary Algorithm,” Proc. 15th

Annu. Conf. Genet. Evol. Comput., no. July, pp. 1461–1468, 2013.

[68] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “Identification and application

of Extract Class refactorings in object-oriented systems,” J. Syst. Softw., vol. 85, no. 10, pp.

2241–2260, 2012.

[69] A. Ouni, Z. Salem, K. Inoue, and M. Soui, “SIM: An automated approach to improve web

service interface modularization,” in Proceedings - 2016 IEEE International Conference on

Web Services, ICWS 2016, 2016, pp. 91–98.

[70] T. Erl, SOA Design Patterns. Prentice Hall PTR, 2009.

[71] B. K. Giri, J. Hakanen, K. Miettinen, and N. Chakraborti, “Genetic programming through

bi-objective genetic algorithms with a study of a simulated moving bed process involving

multiple objectives,” Appl. Soft Comput., vol. 13, no. 5, pp. 2613–2623, 2013.

[72] “Experimental data,” WSantipatterns. [Online]. Available: https://github.com/ouniali/.

[Accessed: 14-Aug-2015].

[73] W. B. (William B. Frakes and R. (Ricardo) Baeza-Yates, “Information retrieval : data

structures & algorithms,” Inf. Retr. Boston., p. 504, 1992.

[74] J. Krai and M. Zemlicka, “The Most Important Service-Oriented Antipatterns,” in Software

Engineering Advances, 2007. ICSEA 2007. International Conference on, 2007, p. 29.

[75] J. F. Bard, Practical bilevel optimization: algorithms and applications, vol. 30. Springer

Science & Business Media, 2013.

[76] B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel optimization,” Ann. Oper.

Res., vol. 153, no. 1, pp. 235–256, 2007.

[77] D. D. Clark, S. Shenker, and L. Zhang, “Supporting real-time applications in an Integrated

Services Packet Network: architecture and mechanism,” Sigcomm’92, pp. 14–26, 1992.

[78] S. Frølund and J. Koistinen, “Quality-of-service specification in distributed object systems,”

Distrib. Syst. Eng., vol. 5, no. 4, p. 179, 1998.

[79] M. A. Hiltunen, R. D. Schlichting, C. A. Ugarte, and G. T. Wong, “Survivability through

customization and adaptability: The Cactus approach,” in Proceedings - DARPA

Information Survivability Conference and Exposition, DISCEX 2000, 2000, vol. 1, pp. 294–

307.

[80] R. L. Cruz, “Quality of Service Guarantees in Virtual Circuit Switched Networks,” IEEE J.

Sel. Areas Commun., vol. 13, no. 6, pp. 1048–1056, 1995.

[81] L. Georgiadis, R. Guérin, V. Peris, and K. N. Sivarajan, “Efficient network QoS

provisioning based on per node traffic shaping,” IEEE/ACM Trans. Netw., vol. 4, no. 4, pp.

482–501, 1996.

[82] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut, “Quality of service for workflows

and web service processes,” Web Semant., vol. 1, no. 3, pp. 281–308, 2004.

[83] D. A. Menascé, “QoS issues in web services,” IEEE Internet Comput., vol. 6, no. 6, pp. 72–

 242

75, 2002.

[84] A. Benveniste, “Composing Web Services in an Open World: QoS Issues,” in Quantitative

Evaluation of Systems, 2008. QEST ’08. Fifth International Conference on, 2008, p. 121.

[85] M. C. Jaeger, G. Rojec-Goldmann, and G. M??hl, “QoS aggregation for Web service

composition using workflow patterns,” in Proceedings - IEEE International Enterprise

Distributed Object Computing Workshop, EDOC, 2004, pp. 149–159.

[86] S. Ran, “A model for web services discovery with QoS,” ACM SIGecom Exch., vol. 4, no.

1, pp. 1–10, 2003.

[87] G. V. Bochmann, B. Kerhervé, H. Lutfiyya, M. V. M. Salem, and H. Ye, “Introducing qos

to electronic commerce applications,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

2001, vol. 2040, pp. 138–147.

[88] F. Mardukhi, N. NematBakhsh, K. Zamanifar, and A. Barati, “QoS decomposition for

service composition using genetic algorithm,” Appl. Soft Comput., vol. 13, no. 0, p. , 2013.

[89] K. Christos, D. C. Vassilakis, E. Rouvas, and D. P. Georgiadis, “QoS-driven adaptation of

BPEL scenario execution,” in 2009 IEEE International Conference on Web Services, ICWS

2009, 2009, pp. 271–278.

[90] G. Fan, H. Yu, L. Chen, and D. Liu, “Petri net based techniques for constructing reliable

service composition,” in Journal of Systems and Software, 2013, vol. 86, no. 4, pp. 1089–

1106.

[91] R. Sindhgatta, B. Sengupta, and K. Ponnalagu, “Measuring the Quality of Service Oriented

Design,” ICSOC-ServiceWave 2009, vol. 5900, pp. 485–499, 2009.

[92] J. L. O. Coscia, M. Crasso, C. Mateos, and A. Zunino, “Estimating Web Service interface

quality through conventional object-oriented metrics,” CLEI Electron. J., vol. 16, no. 1,

2013.

[93] R. Marinescu, “Detection strategies: Metrics-based rules for detecting design flaws,” in

IEEE International Conference on Software Maintenance, ICSM, 2004, pp. 350–359.

[94] J. Král and M. Žemlička, “Crucial Service-Oriented Antipatterns,” Int. J. Adv. Softw., vol.

2, no. 1, pp. 160–171, 2009.

[95] F. Palma, “Specification and Detection of SOA Antipatterns,” in 2014 IEEE International

Conference on Software Maintenance and Evolution, Springer, 2014, pp. 670–670.

[96] H. Zheng, W. Zhao, J. Yang, and A. Bouguettaya, “QoS Analysis for Web Service

Composition,” 2009 IEEE Int. Conf. Serv. Comput., vol. 2, no. 1, pp. 235–242, 2009.

[97] J. Durillo and J. García-Nieto, “Multi-objective particle swarm optimizers: An experimental

comparison,” 5th Int. Conf. EMO 2009, pp. 495–509, 2009.

[98] M. Harman and B. F. Jones, “Search-based software engineering,” Inf. Softw. Technol., vol.

43, no. 14, pp. 833–839, 2001.

[99] P. Moscato and others, “On evolution, search, optimization, genetic algorithms and martial

arts: Towards memetic algorithms,” Caltech Concurr. Comput. program, C3P Rep., vol.

826, p. 1989, 1989.

[100] R. Baeza-Yates and B. Ribeiro-Neto, “Modern information retrieval,” New York, vol. 9, p.

513, 1999.

[101] L. Yujian and L. Bo, “A normalized Levenshtein distance metric,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 29, no. 6, pp. 1091–1095, 2007.

[102] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and D. Poshyvanyk,

“Detecting bad smells in source code using change history information,” in 2013 28th

 243

IEEE/ACM International Conference on Automated Software Engineering, ASE 2013 -

Proceedings, 2013, pp. 268–278.

[103] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE Trans. Softw. Eng., vol.

30, no. 2, pp. 126–139, 2004.

[104] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis: Forecasting &

Control. 1994.

[105] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. ’O Cinn’eide, “High

Dimensional Search-based Software Engineering: Finding Tradeoffs Among 15 Objectives

for Automating Software Refactoring Using NSGA-III,” Proc. 2014 Conf. Genet. Evol.

Comput., no. June, pp. 1263–1270, 2014.

[106] B. Schelter, M. Winterhalder, and J. Timmer, “Handbook of Time Series Analysis,” Time,

vol. 1, p. 496, 2006.

[107] U. Raja, D. P. Hale, and J. E. Hale, “Modeling software evolution defects: a time series

approach,” J. Softw. Maint. Evol. Res. Pract., vol. 21, no. 1, pp. 49–71, 2009.

[108] C. Couto, P. Pires, M. T. Valente, R. S. Bigonha, and N. Anquetil, “Predicting software

defects with causality tests,” J. Syst. Softw., vol. 93, pp. 24–41, 2014.

[109] G. Canfora, M. Ceccarelli, L. Cerulo, and M. Di Penta, “Using multivariate time series and

association rules to detect logical change coupling: An empirical study,” in IEEE

International Conference on Software Maintenance, ICSM, 2010.

[110] G. Antoniol, G. Casazza, M. Di Penta, and E. Merlo, “Modeling clones evolution through

time series,” in IEEE International Conference on Software Maintenance, ICSM, 2001, pp.

273–280.

[111] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented design quality

assessment,” IEEE Trans. Softw. Eng., vol. 28, no. 1, pp. 4–17, 2002.

[112] W. H. Kruskal and W. A. Wallis, “Use of Ranks in One-Criterion Variance Analysis,” J.

Am. Stat. Assoc., vol. 47, no. 260, pp. 583–621, 1952.

[113] M. . Gardner and S. . Dorling, “Artificial neural networks (the multilayer perceptron)—a

review of applications in the atmospheric sciences,” Atmos. Environ., vol. 32, no. 14–15,

pp. 2627–2636, 1998.

[114] W. G. Cobourn, L. Dolcine, M. French, and M. C. Hubbard, “A comparison of nonlinear

regression and neural network models for ground-level ozone forecasting.,” J. Air Waste

Manag. Assoc., vol. 50, no. 11, pp. 1999–2009, 2000.

[115] E. Agirre, G. Ibarra, A. Anta, and L. J. R. Barron, “Evaluation of a multilayer perceptron

based model to forecast O 3 and NO 2 hourly levels,” Environ. Model. Softw., vol. 21, no.

2, pp. 430–446, 2006.

[116] H. A. Simon, “Why Should Machines Learn?,” in Machine Learning: An Artificial

Intelligence Approach, 1983, pp. 25–37.

[117] L. Al Shalabi, Z. Shaaban, and B. Kasasbeh, “Data Mining: A Preprocessing Engine,” J.

Comput. Sci., vol. 2, no. 9, pp. 735–739, 2006.

[118] M. Endrei et al., “Patterns: Service-Oriented Architecture and Web Services,” Contract,

vol. 1, pp. 17–42, 2004.

[119] T. Erl, Service-Oriented Architecture: Concepts, Technology, and Design. Pearson

Education India, 2005.

[120] T. H. Noor, Q. Z. Sheng, S. Zeadally, and J. Yu, “Trust management of services in cloud

environments: Obstacles and solutions,” ACM Comput. Surv., vol. 46, no. 1, pp. 1–30, 2013.

[121] M. P. Papazoglou, “Service -oriented computing: Concepts, characteristics and directions,”

 244

in Proceedings - 4th International Conference on Web Information Systems Engineering,

WISE 2003, 2003, pp. 3–12.

[122] D. Budgen, “Design patterns: Magic or myth?,” IEEE Softw., vol. 30, no. 2, pp. 87–90,

2013.

[123] D. Webster, P. Townend, and J. Xu, “Interface refactoring in performance-constrained web

services,” in Proceedings - 2012 15th IEEE International Symposium on

Object/Component/Service-Oriented Real-Time Distributed Computing, ISORC 2012,

2012, pp. 111–118.

[124] K. Praditwong, M. Harman, and X. Yao, “Software module clustering as a multi-objective

search problem,” IEEE Trans. Softw. Eng., vol. 37, no. 2, pp. 264–282, 2011.

[125] D. Athanasopoulos and A. V. Zarras, “Fine-grained metrics of cohesion lack for service

interfaces,” in Proceedings - 2011 IEEE 9th International Conference on Web Services,

ICWS 2011, 2011, pp. 588–595.

[126] E. R. Hruschka, R. J. G. B. Campello, A. A. Freitas, and A. C. P. L. F. de Carvalho, “A

survey of evolutionary algorithms for clustering,” IEEE Trans. Syst. Man Cybern. Part C

Appl. Rev., vol. 39, no. 2, pp. 133–155, 2009.

[127] M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari, “Coupling Metrics for Predicting

Maintainability in Service-Oriented Designs,” in 2007 Australian Software Engineering

Conference (ASWEC’07), 2007, pp. 329–340.

[128] K. J. Stewart, D. P. Darcy, and S. L. Daniel, “Opportunities and challenges applying

functional data analysis to the study of open source software evolution,” Stat. Sci., vol. 21,

no. 2, pp. 167–178, 2006.

[129] K. Deb and H. Jain, “Handling many-objective problems using an improved NSGA-II

procedure,” in 2012 IEEE Congress on Evolutionary Computation, CEC 2012, 2012.

[130] V. Khare, X. Yao, and K. Deb, “Performance Scaling of Multi-objective Evolutionary

Algorithms,” in Evolutionary Multi-Criterion Optimization, EMO 2003, 2003, vol. 2632,

no. JULY, pp. 376–390.

[131] Z. Wang, K. Tang, and X. Yao, “Multi-objective approaches to optimal testing resource

allocation in modular software systems,” IEEE Trans. Reliab., vol. 59, no. 3, pp. 563–575,

2010.

[132] M. Harman, “Software engineering meets evolutionary computation,” Computer (Long.

Beach. Calif)., vol. 44, no. 10, pp. 31–39, 2011.

[133] I. Das and J. E. Dennis, “Normal-Boundary Intersection: A New Method for Generating the

Pareto Surface in Nonlinear Multicriteria Optimization Problems,” SIAM J. Optim., vol. 8,

no. 3, pp. 631–657, 1998.

[134] M. Asafuddoula, T. Ray, and R. Sarker, “A decomposition based evolutionary algorithm

for many objective optimization with systematic sampling and adaptive epsilon control,” in

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 2013, vol. 7811 LNCS, pp. 413–427.

[135] M. Kessentini, R. Mahaouachi, and K. Ghedira, “What you like in design use to correct bad-

smells,” Softw. Qual. J., vol. 21, no. 4, pp. 551–571, 2013.

[136] U. Mansoor, M. Kessentini, B. R. Maxim, and K. Deb, “Multi-objective code-smells

detection using good and bad design examples,” Softw. Qual. J., vol. 25, no. 2, pp. 529–

552, 2017.

[137] D. K. Saxena, J. A. Duro, A. Tiwari, K. Deb, and Q. Zhang, “Objective reduction in many-

objective optimization: Linear and nonlinear algorithms,” IEEE Trans. Evol. Comput., vol.

 245

17, no. 1, pp. 77–99, 2013.

[138] J. E. Jackson, A User’s Guide to Principal Components, vol. 43. 1991.

