
UNIVERSITY OF MICHIGAN 

  

 

 

Working Paper 
 

Modeling and Measuring Scale Attraction Effects: An 
Application to Charitable Donations 

 

 
Kee Yuen Lee 

Hong Kong Polytechnic University 
 

 
Fred M. Feinberg 

Stephen M. Ross School of Business  
University of Michigan 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Ross School of Business Working Paper 

Working Paper No. 1380 
July 2017 

 
 

This paper can be downloaded without charge from the  
Social Sciences Research Network Electronic Paper Collection: 

http://ssrn.com/abstract=3142650 
 



 Electronic copy available at: https://ssrn.com/abstract=3142650 

 

 

 

Modeling and Measuring Scale Attraction Effects: 

An Application to Charitable Donations  

 

 

Kee Yeun Lee and Fred M. Feinberg* 

 

 

 

 

_______________ 

Kee Yeun Lee (keeyeun.lee@polyu.edu.hk) is Assistant Professor of Marketing, Hong Kong Polytechnic 
University, and Fred M. Feinberg (feinf@umich.edu) is Joseph Handleman Professor of Marketing, Ross 
School of Business, and Professor of Statistics, University of Michigan. The authors would like to thank 
Jihoon Cho, Arnaud De Bruyn, Pierre Desmet, Rich Gonzalez, and Mike Palazzolo for helpful comments, 
as well as the Michael R. and Mary Kay Hallman Fellowship and the Asian Centre for Branding & 
Marketing at Hong Kong Polytechnic University for their support. This article is based on the first 
author’s dissertation. Under review at Journal of Marketing Research. All comments welcome; please do 
not quote or distribute. 

 

  



 Electronic copy available at: https://ssrn.com/abstract=3142650 

1 
 

Modeling and Measuring Scale Attraction Effects: 

An Application to Charitable Donations 

 

Abstract 

 

Charities seeking donations typically employ an “appeals scale,” a roster of suggested 

amounts presented to potential donors, along with an “Other” category. Yet little is known about 

how the amounts comprising appeals scales affect whether a donation is made and, if so, jointly 

exert “pull” on its magnitude. Availing of multi-year panel data and a field experiment, we 

develop a model accounting for individual level donation incidence, amount, and appeals scale 

attraction effects. The model incorporates heterogeneity across donors in both upward and 

downward scale point attraction, as well as in donation patterns (e.g., seasonality), and 

accommodates multiple operationalizations of internal and external referents to summarize the 

effects of prior donation history and scale points, respectively. 

Overall results suggest that scale points do exert substantial attraction effects; that these 

vary markedly across donors; that they are in fact referent-based effects; that donors are more 

easily persuaded to give less than more; and that, while all scale points exert pull, influence 

wanes with distance. The modeling framework applies not only in donation contexts, but 

whenever an ordered categorical scale is used to collect data regarding an underlying latent 

response.  

  



2 
 

Introduction  

Charities are, collectively, among the largest global financial entities. The National 

Center for Charitable Statistics lists over a million public charitable organizations in the United 

States alone, with $1.65 trillion in collective revenue, more than Wal-Mart, ExxonMobil, 

Berkshire Hathaway, and Apple combined, fully 5.3% of GDP.1 Solicitations for donations have 

become a part of everyday life, with requests being made at stores, workplaces, through the mail, 

various traditional media, and increasingly online (e.g., e-mail, websites, social networks). 

Private citizens have been generous to charities, with over 95% of US households donating per 

annum in one form or another. To help guide potential donors to both decide to give, and to give 

generously, charities commonly present them with an “appeals scale”; Figure 1 presents three 

such scales, used for recent funding drives by the United Way (the largest US charity, with over 

$3B in annual donations), Wikipedia, and the UN Foundation. Each features the most common 

sort of appeals scale: a series of specific donation amounts, along with “Other” (i.e., an option to 

donate whatever amount one wishes). Donors can thereby choose to give some amount not listed 

on the scale, including amounts outside the range of listed values, or not at all. 

Because donors can – and do, as detailed later empirically – avail of an Other amount of 

their own choosing, one might question why “rational” donors would comply, choosing one of 

the pre-established scale points instead of some other amount. Regardless, the mere presence of a 

scale might “pull” donors upwards or downwards (hopefully the former) from what they might 

have donated otherwise. Such questions are of practical concern for charities, who wish to 

enhance donation drive effectiveness, and so need to assess appeals scale effects accurately. 

Despite their ubiquity in charitable requests and fundraising, there is a lack of model-

                                                            
1 As per 2013, the most recent year for which comprehensive statistics are available, and adopted throughout for 

consistency (http://nccs.urban.org/statistics/quickfacts.cfm). 
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based guidance as to how appeals scales affect individual donor behavior. Part of the problem in 

providing such guidance is the need for household-level, longitudinal data on both charitable 

requests and outcomes – “whether” and “how much” – which charities typically possess, along 

with a (suitably heterogeneous) statistical model for scale attraction effects, which they typically 

do not. Here, we formulate and estimate such a model, one that incorporates heterogeneity in 

individual-level “scale attraction” effects, seasonal variation in giving, and an interrelated 

account for whether and how much to give, calibrated on the results of a field experiment and 

donation history panel data from a French charity.  

The remainder of the paper is organized as follows. We first provide a concise overview 

of prior literature on scale attraction, donation behavior, reference effects, and related areas. We 

then describe our empirical application, develop the model, and present both empirical results 

and model comparisons, followed by general conclusions and potential for additional research. 

Literature Review  

The contextual effects of scale presentation on responses have been intensively examined 

in social psychology over the past two decades. Schwarz’s (1999) comprehensive review 

suggests that features of research instruments – question wording, format, and scaling, among 

others – can substantially affect respondents’ self-reported behaviors and attitudes, echoing 

earlier findings summarized by Podsakoff and Organ (1986). In particular, response scales often 

act as far more than a simple “measurement device,” serving as reference frames that influence 

responses (Schwarz et al. 1991).  

It has long been observed that manipulating information on prior donations from others 

can strongly affect donation behavior (Reingen 1982), as Shang et al. (2008) and Shang and 

Croson (2009, 2013) found in a variety of fundraising field tests. Several studies have addressed 
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the role of request size on donation behavior (amount and compliance) in laboratory and field 

data (Doob and McLaughlin 1989, Fraser et al. 1988, Schibrowsky and Peltier 1995, Weyant and 

Smith 1987). Although contexts and methods vary across them, these studies largely confirm 

scale manipulation effects, yet differ as to whether they affect donation likelihood, donation 

amount, or both. De Bruyn and Prokopec (2013), in reviewing this literature, emphasize both the 

lack of convergence in empirical studies of donation incidence and frequency (e.g., p. 500), and 

also the importance of individual-level summaries of prior donation behavior, noting that a 

“...few studies have acknowledged differences in internal reference points... but they have only 

done so on the segment level.” In marketing specifically, such reference effects are a cornerstone 

and have been supported empirically in dozens of studies (Kalyanaram and Winer 1995 and 

Mazumdar, Raj, and Sinha 2005 provide extensive reviews for reference pricing, specifically). 

We make especial use of one of the key findings from this literature: that two distinct 

kinds of referents – internal and external – play a role in choice decisions. In donation contexts, 

as discussed extensively by De Bruyn and Prokopec (2013), the former can be characterized by 

what the donor “intends” to give, the latter by what the donor is asked to. Specifically, the 

internal referent is an unobservable that must be inferred from other information (e.g., past 

donation behavior), while external referents are presented at the time of the request via the 

appeals scale. Both types of referent were extensively tested and verified by Mayhew and Winer 

(1992) in the context of frequently-purchased consumer goods, and modeled, using an 

asymmetric response function concordant with Prospect Theory, by Hardie, Johnson, and Fader 

(1993), whose formulation we discuss later. 

By contrast, perhaps owing to the lack of individual-specific histories, prior accounts of 

appeals scale manipulation have led to a range of non-consistent results. For example, Weyant 
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and Smith (1987) found no significant difference in the average donation amount between the 

“smaller request” and “larger request” conditions, only in donation rate. Yet Doob and 

McLaughlin (1989) suggested, that when the “larger request” is beyond what donors can accept 

(e.g., outside a latitude of acceptance; Kalyanaram and Little 1994), it exerts negligible effect: 

when lower amounts were substituted in the “larger request” condition, there was a significant 

difference in the average donation amount, but none in rate. Two points are relevant here: first, 

this one change in referent reversed the pattern of substantive results; and, second, researchers 

should consider, or model, the picture painted jointly by donation incidence and amount. 

Another potential source of inconsistencies involves parametric heterogeneity. Most 

previous studies could avail only of aggregate data (e.g., control / experimental group, or 

segment level; e.g., Desmet and Feinberg 2003) to assess the mean scale manipulation effect 

across conditions, potentially diluting the estimated effect of scale manipulation. In this regard, 

De Bruyn and Prokopec (2013) were exceptional in having obtained each donor’s prior donation 

before the field experiment, using it a proxy for the donor’s internal referent. Despite this 

advance, the one-shot, before/after nature of their data precludes incorporating both dynamics 

and “unobserved” parametric heterogeneity, which likewise plagues all prior studies relying on 

cross-sectional data. By contrast, a panel of individual donors provides a superior and dynamic 

platform to detect and measure scale effects. Panel data further enables us to build up an account 

of individual donors’ internal referents over time, as well as provide a fully heterogeneous 

account of scale attraction effects.  

Lastly, no published study employing scale manipulation has provided a unified account 

of both donation incidence and donation amount. Presuming whether to donate and how much to 

donate are unrelated can introduce well-known measurement errors (e.g., Wachtel and Otter 
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2013). An especially appealing framework is a Type II Tobit model, which comprises accounts 

of both incidence and a conditional output of interest (e.g., amount donated). Type II Tobit 

models have been deployed to analyze disparate contingent consumer decisions (e.g., Ying et al. 

2006 for recommendation provision and positivity, Ascarza and Hardie 2013 for usage and 

retention, Shi and Zhang 2014 for store visit and spending, etc.), with the connection between 

incidence and amount measured by a correlation parameter. Although not involving scale 

manipulation specifically, Donkers et al. (2006) and Van Diepen et al. (2009) used such a model 

in donation contexts, but with somewhat conflicting results regarding correlation; we return to 

this point later when discussing our own results. In the Conclusion, we discuss a number of 

behavioral theories that could in principle be assessed using the proposed model coupled with 

appropriate experimental data; given the nature of our field experiment, we do not engage in 

such testing here, but do indicate when our findings are consistent with prior frameworks. 

Data description  

Our data were provided by a French charity that conducted a large-scale field experiment 

as part of a national fundraising campaign. The charity holds three fund-raising drives a year, at 

Easter, June, and Christmas. Data were collected for 10 periods in total, and consist of 

household-level records for the appeals scale presented to donors, whether a donation was made 

and, if so, the donation amount. Donation appeals were made by door-to-door canvassing (and so 

results pertain to this relatively high involvement method) to “regular” donors, who had always 

been approached that way in the past; subjects were partitioned into two groups (“levels” 1 and 2) 

according to their average donation amounts over the two years prior to the start of the 

experiment. Household-averaged donations in the level 1 and 2 groups fall within 100 FF–199 
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FF and 200 FF–399 FF, respectively.2  

The charity sought to better understand the role of appeals scales in donation behavior, so 

manipulated it in an experiment using random assignment. Throughout, scales (see Table 1) all 

consisted of five suggested amounts, as well as an “Other” category, which allowed donors to 

give what they wished. The same scale (90, 150, 250, 500, 1000 FF) was used for all subjects for 

the first 8 periods of the data, and thereby helps establish a baseline. The scale was then altered 

for all subjects in period 9, then again for half in period 10, where different “test scales” were 

used in groups 1 (lower level) and 2 (higher). 

[TABLE 1 ABOUT HERE] 

The charity thereby implemented a 2 × 2 design: (prior donation) “level 1” or “level 2” × 

random assignment to either a “standard” or “test” appeals scale in period 10.3 It is important to 

note that the charity was collecting real donations, and therefore did not have the luxury of 

‘optimally’ designing scales for experimental purposes, such as orthogonalizing (e.g., some 

donors asked for less than they were accustomed to), including extreme values, and the like. 

Thus, the points comprising the “test” scale for the level 2 (higher prior) donation group were, 

quite sensibly for a field test, higher than those for the level 1 group, and potentially constitute a 

source of endogeneity. We will explore this possibility in the sequel, by estimating the model 

separately on each group and comparing individual inferences via a multivariate Cramer test. 

Four hundred households in each of the four “cells” were randomly selected for analysis. 

Table 2 presents descriptive statistics for each, average donation amount (per household and per 

occasion), and yield rate. Level 1 and 2 differ substantially in per-household and in per-occasion 

                                                            
2 The charity judges regularity based on donor frequency (number of donations in past two years) and recency 

(periods since last donation). The distinction was applied both prior to and throughout the data window. 
Currency is French Francs (FF), trading during the collection window at approximately 7 to the US dollar.  

3 The scale was changed twice (periods 9 and 10) for those in each of the test groups (Level 1 and Level 2), which 
helps identify both parametric heterogeneity and the effects of referents on the individual level. 
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average donation amounts (p < .0001); this is unsurprising, as the baseline donation amount was 

used by the charity to partition donors into different levels. However, yield rates are remarkably 

similar across the four groups, with all between 63% and 69% (differences all ns). Moreover, 

average observed donation fails to differ across the standard and test scales, within a donation 

level (1: 144.7 standard vs. 148.8 test, p > .2; or 2: 268.6 standard vs. 275.4 test, p > .5). One 

might conclude that there were no effects attributable to the use of the test scale. As the 

forthcoming analysis will show, such a conclusion based on aggregate metrics is not only 

premature, but highly misleading. 

[TABLES 2 AND 3 ABOUT HERE] 

Table 3 suggests a clear (aggregate) seasonal pattern in both yield rate and average 

donation amount: people give more, and more often, at Easter than during June or Christmas. 

The difference in yield rates is striking – nearly ¾ of respondents donate at Easter (an important 

holiday in France), while just under ¼ do at the other times of year – and these proportions are 

nearly identical in the level 1 and 2 donation groups (the latter, by construction, has higher 

donation amounts across the board). Holding aside any aggregate patterns, there is nonetheless 

sizable variation in household-level donation profiles, with many households showing a strong 

preference for giving at particular times of year; this will manifest in the forthcoming model as 

substantial heterogeneity in seasonality.  

“Model-Free” Evidence of Appeals Scale Effects 

Before building a model, one should ascertain whether there is a phenomenon worth 

modeling. Table 4 presents “model-free” evidence that quantities manifest unusually strongly 

when they appear on the scale, vs. when they do not; specifically, all points appearing on either 

the Standard or Test Scales, for Levels 1 and 2, separately, for the experimental period (10).  
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[TABLE 4 ABOUT HERE] 

For Level 1, the clearest evidence for scale attraction effects can be seen when the 

‘unusual’ amount of 120FF is substituted for 100FF: whereas only 0.2% of respondents donated 

120FF when it did not appear on the (Standard) scale, 18.4% did when it was among the five 

suggested amounts (p < 0.001 by Fisher’s exact test); a similar difference (0% vs. 6.9%; p < 

0.001) is apparent for the 180FF quantity. Both of these are sensible test values, given the 

~140FF average donation for the Level 1 group (see Table 2). For Level 2 donors, where the 

average is ~270FF, we might expect similar effects for larger values slotted into the Test scale. 

And this is precisely what we find: at 200FF (2.6% Standard vs. 18.8% Test; p < 0.001) and 

350FF (1.2% Standard vs. 10.6% Test; p < 0.001). Something analogous happens when a value 

is removed from the Standard scale, for example 150FF in either Level 1 (17.8% Standard vs. 5.4% 

Test; p < 0.001) or Level 2 (7.2% Standard vs. 1.8% Test; p < 0.001). 4 By contrast for all values 

included on both scales, as well as choosing not to give – that is, “None”, 250FF, 500FF in Level 

1, and “None”, 500FF in Level 2 – pairwise differences are all ns (p > .5 in all five cases). 

Thus, it seems fair to conclude that the appeals scale points succeed in “relocating” mass 

in the PDF for donation amounts. But this fails to answer several critical questions: Are all 

donors equally susceptible to scale effects?; Do all points ‘pull’ equally well?; Is the pull 

stronger upwards or downwards?; What is the role of prior donation history?; Are these truly 

reference effects?; among others. To answer these basic questions requires that one go beyond 

summary “model free” metrics and fashion a model calibrated on the individual histories of 

many households. Although we are not the first to examine appeals scales in individual 

donations (e.g., De Bruyn and Prokopec 2013), the model is indeed the first, to our knowledge, 

                                                            
4 This holds whenever the amount given was over 0.5%. That is, the proportions of 350 & 1000 (Level 1) and 750 & 

1000 (Level 2) are not significantly different, but this is due to the very small numbers of “large” donations.  
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that attempts to quantify appeals scale attraction effects. The presentation will therefore be 

suitably general, although the discussion will largely be tailored to our specific context of 

charitable donations. 

Model Development  

Internal and External Referents 

The model hinges on two constructs, as discussed previously and at length in the review 

of the literature by Mazumdar, Raj, and Sinha (2005): that, for a particular donor, each request 

can be associated with both an internal referent (ݎூ), which the analyst can relate to prior 

donation history, and external scale-point-based referents (ݎா); if an appeals scale contains 

multiple points, we denote the kth as ݎா,௞. 

A key modeling task is appropriately summarizing the effects of both the internal (IR) 

and external (ER) referents. Both admit different operationalizations, which can be empirically 

tested for a given model via standard fit metrics. Prior literature offers several options for IR, 

including most recent prior value (e.g., Krishnamurthi et al. 1992) and variously weighted 

amalgams of past realizations (e.g., the summary in Table 1 of Briesch et al. (1997). We test five 

such specifications, two specifically tailored to account for seasonal donation variations: the 

average of all prior observed donation amounts (IR-1); the last observed donation amount (IR-2); 

the average observed donation amount at the same time of year (IR-3); and the last observed 

donation amount at the same time of year (IR-4), and a geometrically-smoothed version (IR-5) 

that estimates the relative weight (α) on the last observed value (i.e., equation 3 of Mazumdar et 

al. 2005). Note that IR-2 is a special case of IR-5, with α = 1. These should be viewed not as 

mental constructs, which is in any case unverifiable, but as univariate autoregressive summary 

measures of past donation history, among which we will select the empirically best-fitting. 
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That the external reference (ER) points are observable might make them appear simple, 

or simpler, to account for. This might be so were there only a single requested amount. But, in 

practice, there are several, and so it is unclear how they exert their “joint pull”: perhaps the 

extremes are differentially noticed, or discounted; or only those nearest the internal referent have 

any influence; or some summary measure of all points (like the average or median); or 

something else entirely.5 De Bruyn and Prokopec (2013) speak directly to such weighting 

schemes, finding “leftmost anchor” exerted the strongest pull; this echoed a prediction of 

Schibrowsky and Peltier (1995), but is contrary to, for example, extremeness aversion (Simonson 

and Tversky 1992). We therefore consider a wide range of possibilities in the absence of prior 

theory to suggest how a group of referents exert collective influence, an intriguing open issue 

that our data and model may help address. Specifically, we test whether influence is exerted by: 

all scale points (ER-1); the two points closest the internal referent (ER-2); the largest and the 

smallest points (ER-3); the median (i.e., middle) point (ER-4); the mean of all points (ER-5); and 

all scale points with various weighting schemes, equally (e.g., with relative weights 1-1-1-1-1; 

ER-6); in a V-shape (3-2-1-2-3; ER-7); inverse-V (1-2-3-2-1; ER-8); increasing (1-2-3-4-5; ER-

9); and decreasing (5-4-3-2-1; ER-10).  

Modeling Scale Attraction Effects  

If the appeals scale “pulls” donors’ internal referents towards the presented external ones, 

these separate pulls can cumulate in their effects. A simple metric for scale point influence is its 

“compliance degree,” which we describe next. 

                                                            
5 Ideally, one would be able to estimate “weights” on each of the scale points, and do so heterogeneously across 

donors. Given donation histories and incidence rates in real charitable data, however, one must choose battles 
carefully in terms of where to place heterogeneity. Detailed simulations suggest that recovering more than four 
heterogeneous parameters for our data is precarious (in line with the findings of Andrews, Ainslie, and Currim 
2008), and we reserve these for the crucial constructs of scale attraction and seasonality. 
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1. Compliance Degree  

We define ܦܥ௞, “compliance degree” of the kth external reference point as the 

proportional increase (or decrease) from a donor’s internal reference point (ݎூ) to an external 

one (ݎா,௞). Specifically (with DA = Donation Amount received): 

௞ܦܥ  ൌ ሺܣܦ െ ா,௞ݎூሻ/ሺݎ െ   (1)	ூሻݎ

For example, if a donor has (latent) internal referent $100, but is asked for $300 and partly 

complies by giving $150, ܦܥ௞ୀଵ = ($150 - $100) / ($300 - $100) = 25%. That is, the donor 

“came up 25%” from a $100 baseline. It is convenient to define the distance, ݀௞, between the kth 

external and the internal referent as a (positive) ratio:  

 	݀௞ ൌ ா,௞ݎ‖ െ   (2)	ூݎ/‖ூݎ

This allows both compliance degree and pulling amount (described later) to be expressed as 

dimensionless quantities, which in turn helps to unify the model; for example, comparing a donor 

planning to give $10, but gave $20, to one planning to donate $100, but asked for $200. 

We model both upward and downward “compliance degree curves”, which satisfy three 

properties: (1) ܦܥ௞ ൎ 1 for ݀௞ ൎ 0: “Maximal compliance occurs near donors’ internal 

referents”; (2) ܦܥ௞	decreases monotonically in ݀௞: “Compliance is worse for requests further 

from the internal referent”; and (3) ܦܥ௞ ൒	0: “Compliance can’t be worse than zero.” Properties 

1 and 2 suggest donation is highly responsive to asking for amounts close to what was ‘planned’ 

(the internal referent), but increasingly less so for distant amounts. Property 3 simply suggests 

that requests can be ignored, but do not literally repel donors from a scale point.  

Among the many ways to specify compliance degree curves satisfying these three 

properties, we select a translated gamma kernel function, for two reasons. First, it provides a 

parsimonious, yet flexible, functional form; this is important for a heterogeneous account to be 
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identified, given the small number of responses per donor during the data window. Second, the 

gamma kernel enables the pulling amount curves (described later) to follow a non-multimodal, 

yet flexibly-shaped, distribution. Specifically: 

௞ܦܥ	  	ൌ 	 ;	ሻߠ/ሺെ݀௞݌ݔ݁ ߠ	 ൌ ቊ	
expሺߚ௎ሻ , ா,௞ݎ ൒ ூݎ

expሺߚ஽ሻ , ா,௞ݎ ൏ ூݎ
 (3) 

where ߠ ൐ 0 is the gamma kernel scale parameter; shape parameter is set at 1.6 When ݎா,௞ ൒  ,ூݎ

we have an “upward” compliance degree curve, and otherwise a “downward” one. Since the 

scale parameter (ߠ) must be positive, we specify ߚ௎	or	ߚ஽ ൌ ݈݊ሺߠሻ, where ߚ௎and ߚ஽are the 

“upward” and “downward” parameters in (3). Note that ߚ௎	= ߚ஽ does not imply identical 

upward and downward curves, because the domain of the downward curve is bounded by 100%, 

since one cannot give less than zero (i.e., a 100% decrement).  

Although our model is novel in its account of scale attraction effects, specifically, it is 

hardly the first to accommodate asymmetric (i.e., upward and downward) reference effects in an 

empirical context. Hardie, Johnson, and Fader (1993) built a model that explicitly encoded the 

possibility of different weighting of both price and quality deviations (from one’s last purchase) 

in utility, estimating the model on packaged goods. Our formulation, while similar in some 

respects, further accounts for the role of multiple external referents (the appeals scale), a variety 

of internal referent specifications, nonlinearity in utility, latent correlation in incidence and 

amount, and a more flexible (hierarchical Bayesian) account of “unobserved” heterogeneity. 

  

                                                            
6 Fixing the shape parameter at 1 yields a non-negative, monotonically decreasing, convex curve (with regard to the 

origin), satisfying properties 1-3. Numerous simulations showed recovery of two parameters (both scale and 
shape) was very poor, suggesting weak identification in data generated to resemble ours. Note that there are 
three sources of heterogeneity identification: (1) standard (MVN) distributional assumptions about the 
heterogeneity distribution; (2) between- group and within-donor scale variations; and (3) the nature of the 
internal and external referents, which each take multiple forms. 
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2. Pulling Amount  

The pulling amount	ሺܲܣ௞ሻ	is the size of effect exerted by a scale point, the product of 

compliance degree and distance between the internal (ݎூ) and the kth external referent (ݎா,௞): 

௞ܣܲ	  	ൌ ௞ܦܥ	 ൈ ா,௞ݎ|| െ  ூ|| (4)ݎ

Pulling amount captures a trade-off between asking for too little and too much: If a charity asks 

for just a bit more than the internal referent, compliance (ܦܥ௞) may be high, but the potential 

surplus (||ݎா,௞ െ  ூ||) is small. Conversely, asking for too much leads to low compliance andݎ

large surplus. This trade-off (where the extremes are literally zero) guards against ‘highly 

influential’ scale points being placed too close or too far from internal referents.  

Equation (4) implies that both “upward” and “downward” pulling curves also follow a 

gamma kernel, with shape parameter 2 and scale parameters exp	ሺߚ௎ሻ and exp	ሺߚ஽ሻ. As depicted 

in Figure 2, these curves can take a variety of shapes: the upward pulling curve has domain 

ሾ0,∞ሻ, is unimodal (and thus has a unique maximum), with zero at the origin and asymptoting to 

zero for large d (for any ߚ௎ሻ. The domain of the downward pulling amount curve is [0,1]; it is 

unimodal (with unique maximum) if ߚ஽ ൏ 0, and is monotonically increasing otherwise (with 

maximum at 1). These internal maxima map bijectively to {ߚ௎,  ஽}, and so provide anߚ

equivalent projection of the parameters onto a meaningful metric: which upward and downward 

scale amounts (proportions above the internal referent) provide the strongest expected deviations. 

Appendix C derives closed-form expressions for these, which we will use for graphical purposes.  

[FIGURES 2 AND 3 ABOUT HERE] 

3. Accumulating Scale Attraction Effects  

Because real appeals scales invariably comprise multiple points, their effects need to be 

somehow combined. Figure 3 illustrates the “accumulated pulling amount” accruing from 

multiple scale points; to match our empirical application, five external referents – three greater, 
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two lesser – are depicted, with upward and downward curves on either side of the graph. 

Because the charity did not change scales many times across the 10 periods (nor within 

each of the four donation groups), identifying interactions among scale points is not possible. 

Thus, the effect of each scale point is modeled separately. This is partly mitigated by the 

weighted-averaging schemes explored for the “accumulated pulling amount”, or APA. In general: 

	ܣܲܣ	  ൌ ∑ ௞௄ݓ
௞ୀଵ ൈ ௞ܫ 	ൈ ௞ܫ	;௞ܣܲ ൌ ቊ

1, ா,௞ݎ	݂݅ ൒ ூݎ

െ1, ா,௞ݎ	݂݅ ൏ 	ூݎ
 (5) 

Summing the scale pulls (i.e., ݓ௞ ൌ 1) is simple and intuitive, but has a shortcoming in the 

effect of including additional scale points (not testable here, as the charity fixed this at 5). For 

example, given internal referent 50, the APA of the four-point scale {9, 11, 99, 101} would be 

about twice as strong for the two-point scale {10, 100}, which seems unrealistic. Averaging 

௞ݓ) ൌ 1/k) addresses this, but raises other problems. For example, if a donor is asked for $2000 

when the planned amount is $100, the real effect of such a “distant ask” might be negligible. 

However, equal weighting suggests a sizable effect, which again seems unrealistic. A simple 

rescaling, i.e., 	ݓ௞ ൌ ௉஺ೖ

∑ ௉஺ೖ಼
ೖసభ

 , addresses both issues, while retaining proportionality. As 

mentioned previously, data limitations (indeed, for any data likely to be available in a charity-

based study) precluded measuring ݓ௞, leading to empirically testing the 10 weighting schemes 

of ER-1 through ER-10.  

General Model (Type II Tobit) 

We outline the general model structure, which affords a “dimensionless” account of pulling 

effects, so that heterogeneity can be specified across the log-scale for donation amount. As 

discussed, a Type II Tobit jointly accounts for donation incidence (“selection”) and amount: 
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∗௦ݕ	  ൌ ܺ௦ߚ௦ ൅ ߳௦  (6) 

	 ∗௔ݕ	 ൌ ݈݊ሺݎூ ൅ ሻܣܲܣ ൅ ܺ௔ߚ௔ ൅ ߳௔,	where:	

	 ௦ݕ	 ൌ 1, if	ݕ௦∗ ൒ 0; 	0	otherwise	

	 ௔ݕ	 ൌ ,∗௔ݕ if	ݕ௦ ൌ 1; 	unobserved	otherwise		

	 	ሺ߳௦, ߳௔ሻ~	ܸܰܤሺ0, ;	ఢሻߑ ఢߑ	 ൌ ൤
1 ߪߩ
ߪߩ ଶߪ

൨  

The subscripts i and t (for donor and time) are suppressed, and ܺ௦ and ܺ௔ are covariates in the 

selection (s) and amount (a) equations, respectively, which we detail below.  

In the amount equation, ݕ௔∗ denotes the log of the latent donation amount, which is 

observed only when a donation is made, that is, when ݕ௦ = 1, which occurs when the latent 

variable ݕ௦∗ ൒ 0. The errors (߳௦, ߳௔) are bivariate normal, with variance of ߳௦ fixed to 1 for 

identification. It is important to note that we model the logarithm of donation amount, for several 

reasons: first, it allows ߳௔ to be plausibly homoscedastic; second, it allows all effects in the 

amount equation to enter multiplicatively; and third, it allows for coefficient heterogeneity to act 

on a dimensionless quantity, which we address in detail shortly.  

The amount equation (for ݕ௔∗) contains two deterministic components. The first is the 

sum of a donor’s internal referent (ݎூ) and the accumulated pulling amount (APA), which can be 

positive or negative. The second is all factors (ܺ௔ߚ௔) that affect the donation, other than those 

stemming from the appeals scale. Scale-based effects do not appear directly in the selection 

equation, because in our data all scales used were set in “reasonable” ranges for every donor 

(recall that these were real donors, and the charity was reluctant to alienate them with 

unrealistically high requests, or lose funds with low ones). The appeals scale exercises influence 

on donation incidence via the correlation, ߩ. [A model was estimated allowing for scale effects in 

selection; the APA coefficient in selection was ns.] 
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Explanatory variables and Heterogeneity 

1. Explanatory variables 

Selection equation 

The selection equation contains three types of explanatory variable (ܺ௦), which we detail 

subsequently: seasonal indicators, (log of) prior donation, and “level” fixed effects. Table 3 

reveals strong aggregate seasonal variation in donation likelihood, by far highest at Easter. Three 

dummies – Easter ( ௜ܺ௧
ா), June ( ௜ܺ௧

௃ ), Christmas ( ௜ܺ௧
஼) – represent when the request occurred. The 

log of (1+ amount the donor gave on the last request), donated ௜ܺ௧
௟௔௚, is included to examine 

carryover effects, and is 0 when no donation takes place.7  

Although Table 3 suggests only modest differences in yield rate between the “larger” 

(level 2) and “smaller” (level 1) donation groups, we include a Level dummy ( ௜ܺ
௟௘௩௘௟) among the 

selection covariates, to allow for potential differences in baseline donation likelihood after 

accounting for seasonal patterns. Coefficients for the three seasonal dummies, the log-donation 

lag, and the level dummy, are denoted ߚா, ߚ௜
௃, ߚ௜

஼, ߚ௟௔௚, and ߚ௟௘௩௘௟,௦, respectively. In the 

experiment, donors were randomly assigned to receive either a Standard or a Test appeals scale 

(during period 10), so no dummies were entered for this difference (in either selection, or 

amount). Doing so failed to improve fit, in any case, so we do not discuss these again. 

Amount Equation  

Based on examination of the data and unimproved fit of models including them, seasonal 

dummies are not included in the amount equation; the somewhat higher amounts indicated at 

Easter in Table 3, for example, will be well-explained by other covariates, like lags in setting 

“internal” referents (such as in IR-3 and IR-4). The data suggested great household variation in 

                                                            
7 Replacing the log-donation lag with an indicator for whether one donated in the previous period led to poorer in-

sample fit, possibly reflecting that the continuous variable (log-donation) carries additional information. 
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when to give, not how much; and that household-level seasonal variation in amount (not 

incidence) is small for most donors. Lastly, although donation amount is mainly predicted by a 

donor’s internal referent and scale effects, a level dummy ( ௜ܺ
௟௘௩௘௟) is included to account for the 

difference in baseline donation amount between the two groups, denoted ߚ௟௘௩௘௟,௔ . 

Heterogeneity  

It is critical to incorporate “unobserved” heterogeneity, which we do in several ways. 

First, we model heterogeneity in the seasonal dummies for the June and Christmas coefficients 

௜ߚ)
௃ and ߚ௜

஼).8 Importantly, since the model intends to capture scale attraction effects, the two 

“pulling” parameters (ߚ௜
௎and ߚ௜

஽) in the amount equation are heterogeneous. If for example ߚ௜
௎ 

were homogeneous, each donor is presumed equally ‘elastic’ in being cajoled upwards. Our 

results will in fact strongly weigh against this presumption. To test implications across models at 

the individual level, we will use a multivariate generalization of the Kolmogorov-Smirnov test, 

the Cramér-von Mises statistic, on the individual-level joint posteriors for ሼߚ௜
௎, ௜ߚ

஽ሽ. 

Our formulation therefore specifies four heterogeneous parameters, to be recovered from 

the relatively short data window of 7 occasions, roughly 3 of which resulted in donations, on 

average. Although this may appear ambitious, simulations showed good recovery for all four 

heterogeneous parameters, and excellent recovery of the others.  

Estimation 

The full model (see appendix A) is estimated using Markov chain Monte Carlo methods. 

Data augmentation (Tanner and Wong 1987) essentially converts the model to a Bayesian 

Hierarchical Seemingly Unrelated Regression. We obtain posterior draws via Metropolis-within-

                                                            
8 Extensive simulations for data generated using the proposed model failed to recover the true parameters (mean and 

covariance matrix) for ሼߚ௜
ா, ௜ߚ

௃, ௜ߚ
஼ሽ heterogeneous. Restricting the most common donation period (Easter, with a 

>70% yield rate) to be homogeneous led to nearly perfect parameter recovery. In short, almost all households 
give at Easter at least occasionally, but there is large variation in giving patterns for Easter and June. 
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Gibbs algorithms: Gibbs sampling if the full conditional of a parameter block is of known form, 

and Metropolis-Hastings, with a random walk proposal (Chib and Greenberg 1995), otherwise. 

We set diffuse priors for all parameters of interest; detailed procedures appear in Appendix B. 

All estimates are based on 100,000 draws. We discard the first 50,000 draws for burn-in, and use 

the last 50,000 (thinned to every tenth) to calculate posterior densities. Trace plots and standard 

diagnostics indicated convergence of all key parameters. 

Results  

Model selection was based on LPML (log pseudo-marginal likelihood) which, as noted 

by Chen et al. (2008) works particularly well for GLM-type models, and more generally by Chen 

and Kim (2008). For brevity, we only present full estimation results for the model with IR-1 

(average of all observed donation amounts) and ER-1 (all scale points), as these provided the 

best fit compared with all possible combinations of the other internal and external references 

point formulations (i.e., IR 2-5 and ER 2-10). Table 5 summarizes posterior means and standard 

errors for all parameters. Detailed model comparison statistics appear in Table 6.  

[TABLES 5 AND 6 ABOUT HERE] 

Error Correlation in Selection and Amount equations 

The mean of the marginal posterior for the error correlation, ρ = -0.454, between 

selection and amount is negative, and the 95% highest density region (-0.516, -0.385) is far from 

zero. This suggests that unmeasured factors influencing selection are correlated with those 

influencing amount, and operate in opposite directions. For example, a donor might, for some 

“latent” reason, be saving up to give a larger donation, lowering frequency and raising amount; 

or, conversely, may compensate for not having given for a while with a larger donation. The size 

of the correlation is moderate: neither close to 0 nor to 1. This differs from findings in previous 
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research using related model formulations; for example, Donkers et al. (2006) found the 

correlation to be very slightly negative (-0.033; p < .001), while Van Diepen et al. (2009) found 

it to be large and positive, with  a 99% credible interval of (0.946, 0.970). Very small 

correlations may fail to correct for potential selection biases, or could reflect substantial, 

independent sources of error in each equation. Conversely, a large correlation might suggest 

nontrivial variables omitted in both equations. It is difficult to generalize such results, since our 

model accounts for scale attraction effects, while prior ones do not. We did, however, find 

significant, moderate, negative values of ρ across a very wide range of candidate models, 

indicating that error correlation needs to be accounted for in our data.  

We note in closing that ρ is a residual correlation, and is distinct from any “model-free”, 

observable correlation that might exist in the data, like between number and amount of donations 

made. This latter sort of correlation is computed across donors, but ρ could be assessed even for 

a single donor, if his/her donation history were long enough. Lastly, ρ is theoretically and 

empirically distinct from scale attraction effects per se: for example, although not having given 

in (say) the first two periods may make it more likely one will donate in the third (or donate 

more in the third), it should not make it more likely that one will move closer to a scale point. 

Selection: Seasonality 

Comparing the Easter coefficient (0.708) to the (heterogeneous) ones for June and 

Christmas (-0.505 and -0.993, respectively) accords with the observation that giving was much 

more likely for Easter, on average. There is a substantial seasonal heterogeneity: the SDs of 

individual-level parameters for June and Christmas are 0.390 and 0.777, respectively. The large 

(0.714) correlation between these individual-level parameters largely reflects the fact that June 

and Christmas yield rates are both low (Table 3) and a high proportion of donors gave at neither 
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time; nevertheless, the concordance of the model’s parameters with aggregate benchmarks is 

reassuring. 

Level Dummies and Lagged Log-Amount  

The level dummy is moderately significant (mean 0.108, SE 0.032) in selection, but 

strongly positive in amount (mean 0.260, SE 0.013). So, as aggregate statistics suggest, level 2 

donors give far more than those in level 1, but with modest difference in yield rates. The 

coefficient of the log-donation lag in selection is significantly negative (mean -0.123, SE 0.006), 

indicating that a larger donation amount last time leads to being less likely to give at all this time. 

“Pulling Effects”: Gamma Kernel Parameters in Donation Amount 

The values of ߚ௜
௎	and	ߚ௜

஽ determine each donor’s degree of compliance (“pull”) to the 

scale points above and below the internal referent. Because the domains of the two compliance 

curves differ, we should not compare ߚ௜
௎ directly to ߚ௜

஽. Figure 4A in some sense encapsulates 

our main results: the upward and downward pulling parameters (posterior means of ߚ௜
௎	and	ߚ௜

஽) 

for each donor. There is clearly a good deal of heterogeneity, indicating differing degrees of 

susceptibility to the appeals scale, despite only modest differences in prior donation behavior. 

That is, although these donors may seem similar in terms of observed donation behavior, they 

apparently are not in terms of how swayed they are by the appeals scale. 

[FIGURE 4 ABOUT HERE] 

By allowing a bivariate density for (ߚ௜
௎, ௜ߚ

஽), the model helps assess overall scale 

compliance. Specifically, we find a substantial correlation (0.446) in these values, suggesting 

that donors who are “upward compliant” tend to be “downward compliant” as well. There is no a 

priori reason to expect these should be correlated at all, let alone positively, and we believe this 

finding to be the first of its kind. As mentioned previously, the bivariate density for (ߚ௜
௎, ௜ߚ

஽) 
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maps to the joint distribution of maximal pulling amounts (see Appendix C), those scale values 

associated with the strongest overall effects; we do not call these “optimal”, since a large 

downward pull is to be avoided. Heterogeneity in (ߚ௜
௎, ௜ߚ

஽) leads to substantial variation in 

maximally effective scale values. The model suggests that the scale point with maximal upward 

pull, which varies across donors, ranges from 57.2% to 245.5%, with a mean of 94.9%, above 

one’s internal referent, which seems reasonable.9 This substantial variation has an important 

implication: that it may be possible to substantially increase donations by personalizing an 

appeals request, based on each donor’s history, although such dynamic optimization is nontrivial, 

and has similarly stringent data history requirements. 

Figure 4B translates the model’s key substantive findings into the context of the original 

data, specifically: How much does the maximally-effective “ask” value (either up or down) pull 

from the internal referent? It depicts, across donors, this maximal percentage increase and 

decrease (see appendix C for derivation), allowing a direct comparison of upward vs. downward 

scale attraction “strengths”; this was not sensible using the information on (ߚ௜
௎, ௜ߚ

஽) in Figure. 4A, 

given their different domains of operation.  Maximum percentage increases range from 21.1% to 

90.3% (mean = 34.9%; SD = 5.4%); decreases from 31.2% to 94.5% (mean = 82.0%; SD = 

3.1%). These means suggest, unsurprisingly, that donations are more readily deflected downward 

than upward. Figure 10 suggests that the maximum percentage decrease is greater than the 

analogous increase for most donors: 81.6% of the donors lie above the diagonal (dotted) line.10 

This is nonetheless reminiscent of the asymmetric effects in Desmet and Feinberg (2006), whose 

lack of individual-level data precluded any distributions across donors, and De Bruyn and 

                                                            
9 Discussions with a large university’s fundraising team suggested that the success of such “upping” dropped nearly 

to zero when appeals hit 200% above a donor’s typical or last donation amount. 
10 This hypothesis about “up” vs. “down” differences can be tested. For our 1600 participants, “down > up” for 

1494/1600 = 93.4% based on 90% HDRs; and for 648/1600 = 40.5% based on 95% HDRs.   
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Prokopec (2013), who only had one-shot (i.e., “before” and “after”) data unsuited to modeling 

heterogeneity or carryover effects. 

Model comparisons  

The model and data together provide clear evidence of scale-based effects on the distribution of 

donations. But one might reasonably question whether these were strongly dependent on the 

particular form of the model, five of its elements in particular: 1) internal reference point 

specification; 2) external reference point specification; 3) including correlation (Type II Tobit), 

seasonality, and scale effects; 4) incorporating response heterogeneity; and, perhaps most 

important, (5) whether the scale should operate as reference effects at all, as opposed to merely 

summary covariates. We examine each of these in some detail, to assess relative “contribution” 

to overall model fit, comparing the five internal referent specifications (IR-1-5) and ten external 

reference formulations (ER-1-10), as described in the model development section.11 We refer to 

the model with all the aforementioned components – internal and external referents; error 

correlation; seasonality; heterogeneity – as the “full model”. Alternative models include those 

lacking: error correlation (“no correlation”), scale effects (“no scale effect”), both (“simple 

regression”), various forms of heterogeneity (i.e., homogenous seasonality, homogenous scale 

effects, and both), and reference effects altogether (“no reference effects”), as explained below.  

Owing to short donation histories (which preclude ‘squandering’ an entire year for 

prediction purposes), we compare fit in-sample, assessed via LPML, mean absolute deviation 

(MAD) and root mean square error (RMSE) for donation amount predictions; these appear in 

Table 6. The proposed model (“full” with IR-1, ER-1) provides a better fit than all alternatives 

via the LPML measure, and very nearly so using MAD and RMSE, surpassed  only by geometric 

                                                            
11 For IR-3, IR-4, if we don’t observe donation at a certain time of year in the initialization period (first full year, or 

three data points), we initialize using the mean of the all observed amounts in each group. 
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smoothing (with an optimal smoothing carryover near 0.4); moreover, including error correlation 

and scale effects improves fit regardless of internal reference formulation (IR1-5) and the 

inclusion of heterogeneity.12  

Table 6 also allows us to judge relative contribution to overall model fit: scale effects 

easily best both correlation and seasonality. For example, failing to account for scaling effects 

(“no scale effect”) inflates RMSE approximately 20% (i.e., to 0.335 from 0.279); the 

corresponding figure for removing correlation alone is ~2.5%. Dropping heterogeneity entirely 

entailed a ~6% RMSE decrease (to 0.297), but only ~0.7% of this was attributable to seasonality 

(RMSE = 0.281). These comparisons suggest that scale attraction effects may explain more 

variation in giving than those typically modeled in prior donation research combined, although 

only additional applications can verify whether this holds generally. 

In terms of internal reference point specification, IR-1, the average of all prior donation 

amounts appeared to dominate across the board, based on LPML. The degree of dominance was 

nontrivial, as high as 7.1% in RMSE; to our knowledge, such a test of ‘internal’ referents is 

unprecedented in donation contexts. Given this pattern of results, we restrict our attention to the 

“full” model with IR-1, and the lower portion of Table 7 summarizes fits of the ten external 

reference specifications (ER 1-10) for this model. ER-1, with all five scale points included, 

clearly dominates, by RMSE degrees ranging from 8% (vs. ER-4, for the median scale point) to 

66% (vs. ER-9), for linearly increasing emphasis on higher scale points. We hesitate to term this 

a general finding in the absence of data capable of assessing these weights (perhaps even 
                                                            
12 Estimates and fit statistics for all alternative models are available from the authors. Although RMSE and MAD are 

computed here across the entire posterior, model selection is based on the appropriate Bayesian criterion, 
LPML. If the former two are used instead, the geometric smoothing model, IR-5, is slightly superior for some 
values, including the “best” one of α ≈ 0.4. To check whether the IR-5 specification had different substantive 
implications, we recalculated the individual-level joint posteriors ሼβ୧

୙, β୧
ୈሽ and compared them to those from IR-

1 via Cramér-von Mises statistics, using the cramer package in R. At the .05 level of significance, none of the 
1600 participants showed significant differences; we therefore conclude, based on that and visual inspection of 
all model results, that IR-1 and IR-5 are substantively highly similar for these data. 
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heterogeneously) via estimation, but the degree of advantage for ER-1 over the other nine 

alternatives is at the very least suggestive, and differs from De Bruyn and Prokopec’s (2013) 

finding that the lowest scale point exerts the strongest influence (e.g., ER-10: RMSE = 0.377, or 

a 35% increase), although their empirical setting was somewhat different. 

Regardless, the “full” model with IR-1 and ER-1 was verified to provide the best fit to 

the data among the 2 × 2× 2 × 2 × 5 × 10 (scale effects?; scale effect heterogeneity?; seasonality 

heterogeneity?; error correlation?; IR1-5; ER1-10) design. However, this precludes the 

possibility that the scale effects were not reference effects, which we take up next.  

Division into Levels 1 and 2   

As reported earlier, the charity divided prior donors for the experiment in its customary 

manner, based on prior donation amounts. This is entirely sensible, given the potential for loss, 

and even the carefully randomized study of De Bruyn and Prokopec (2013) “...constructed a 

customized appeal scale for each donor, tailored to both his/her last donation and the assigned 

experimental condition”, introducing a potential for endogeneity. However, as Dorotic et al. 

(2014) report in the context of Loyalty Programs (LP), “From discussions with the LP manager, 

we know that only the frequency of the mailings is endogenous; its timing is not set based on 

individual behavior,” and so they can “easily correct for the endogeneity”.  In our study, timing 

of requests is fixed and identical across groups (Levels 1 and 2; Standard and Test), and only 

groupwise manipulations (i.e., for Levels 1 and 2 separately) are involved. It is possible to 

simply re-estimate the model for each Level alone: while this reduces statistical power, it ensures 

that the results for each individual are informed only by the scale used in that individual’s group 

(which cannot be ensured in the hierarchical Bayes set-up used to analyze the Level groups 

together). We focus on the main quantities of interest, individual-level estimates of the pulling 
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effects, (ߚ௜
௎, ௜ߚ

஽), and test each of the 800 Level 1 and 800 Level 2 individual’s bivariate 

posterior from the “Levels estimated separately” model to those previously obtained: none of the 

1600 showed significant differences at the .05 level.  

Testing against Non-Referential Scale Effects 

The model-free evidence presented at the outset strongly suggests that respondents do 

react to the presence of the appeals scale, even though they have the option of ignoring it and 

donating whatever amount they want, or nothing at all. We assessed the importance of scaling 

effects in our model by estimating a nested version with the scaling removed entirely (Table 6, 

“no scaling effects”). But this raises the question of whether the hallmark of reference effects – 

(potentially asymmetric) pulling up and down, relative to a referent – is actually present in our 

data. The proposed model (6) is for the deviation between the donation amount and ݈݊ሺݎ௜௧
ூ ൅

 ௜௧ሻ, the internal referent adjusted for (asymmetric) pulling effects. Another possibility is toܣܲܣ

retain summary measures of both IR and ER, but without reference effects, specifically. This 

entails removing ܣܲܣ௜௧ entirely, and instead including among the regressors (i.e., along with 

௟௘௩௘௟,௔ߚ ௜ܺ
௟௘௩௘௟) summary measures of the appeals scale points (i.e., ER-1-10), heterogeneously.13  

It is possible to compare these results (for all possible configurations of IR and ER) via 

LPML; in every case, the results are inferior to the proposed model (i.e., the “full” model, with 

IR-1 and ER-1). For the basis of explicit comparison, we replicated all the results of Table 6 for 

this revised model, and LPML ranges from -23419 (for IR-1, ER-2) to a best value of -22842 

(for IR-1, ER-3), compared to the proposed model’s best value -21968 (for IR-1, ER-1). {MAD, 

RMSE} were fairly stable for the “no reference effects” models, hovering near {0.298, 0.226} vs. 

{0.279, 0.210} for the proposed model. That this revised “scale effects, but no reference effects” 

                                                            
13 We are grateful to an anonymous reviewer for pointing out this distinction, and suggesting this explicit model as a 

basis of comparison. 
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model makes use of the same data and identical operationalizations of both IR and ER, yet fits 

less well across the board – approximately 10% in log-donation, based on MAD – lends credence 

to the documents pulling effects being reference effects, specifically.  

Conclusion 

Charities have long relied on appeals scales as cornerstones of their donation requests, 

setting them based on experience and enlightened guesswork. By contrast, the model developed 

here offers a heterogeneous, joint account of donation incidence and amount, while accounting 

for the asymmetric effect of the appeals scale. Moreover, different specifications for internal and 

external reference point theories can be assessed via model comparison.  

Results suggest that variation across donors in scale attraction effects can be substantial. 

Such a finding depends critically on the availability of donation histories, explaining its absence 

from prior studies. A moderate, significantly negative, correlation between donation incidence 

and amount indicates the potential pitfalls of providing separately accounts, echoing similar 

results long-accepted in brand choice (e.g., Lattin and Bucklin 1991). In terms of internal and 

external referents, we found that the mean of the previous donation amounts (internal referents) 

and including all points in an appeals scale (external referents) offered the best fit with our data, 

compared with a wide variety of alternatives, as suggested by prior literature (e.g., Briesch et al. 

1997). The developed model can apply well beyond the domain of charitable requests, to any 

situation where different interval or ordered categorical scales are used. Indeed, it may be 

possible to leverage the model to not only detect, but correct for, many of the sorts of scaling 

artifacts widely documents by consumer researchers (e.g., Schwartz 1991, 1999). 

Field studies of this nature entail inevitable limitations. Charities are less concerned with 

optimal experimental practice than in gaining some degree of insight that doesn’t risk substantial 
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losses. In our study, for example, appeals scale amounts roughly tracked prior donation level in 

each segment, instead of being orthogonalized or randomized. Second, lack of substantial within-

donor appeals scale variation allowed us only to test various weighting schemes, as opposed to 

estimating the scale points’ relative influence, let along heterogeneously. Third, the optimal 

number of points can only be ascertained if these were systematically varied. And finally, 

because the appeals scales used by the study both historically and in the experiment contained 

only ‘reasonable’ amounts, effects of extreme scale points, such as ignoring them or even of 

alienating donors, await verification. Despite these data limitations, the model showed clear and 

strong evidence for scale attraction effects, in both upward and downward directions, and that the 

degree of attraction varied nontrivially across donors.  

We have knowingly avoided trying to engage in tight tests of specific behavior theories 

that, suitably interpreted, might make specific predictions about which scale points would be 

relatively influential. A prime example is Configural Weight Theory (e.g., Birnbaum et al. 1992), 

which suggests that a scale’s point’s influence depends on how it compares, typically ordinally, 

with other points and external anchors. Tests of such theories, including range theory (e.g., 

Janiszewski and Lichtenstein 1999), extremeness aversion (e.g., Simonson and Tversky 1992), 

etc., await tighter controls than are typically available in field data, as well as specific 

mathematical formulations amenable to statistical estimation on individual-level data, although 

some progress has been made on that front, e.g., for the compromise effect (Kivetz, Netzer, and 

Srinivasan 2004). 

Some of the data limitations suggest clear directions for future experimental and field 

research. First and foremost would be some scheme for orthogonalizing appeals scale amounts 

across various donor groups, as well as the number of points on the scale; this would allow 
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aspects of the scales themselves, like median and range, to be not merely measured in terms of 

influence, but optimized. Future research might also identify subtleties of weighting: do some 

respondents ignore endpoints, while others anchor on them? Experiments could similarly include 

extreme scale points, to see whether they are ignored entirely, lead respondents not to donate at 

all, or something more subtle. Lastly, the present data set could not address the persistence of 

scale attraction effects, specifically, the degree to which they may be self-correcting, which 

informs whether external anchors can effectively increase total contribution over a planning 

horizon, what fundraisers refer to as “laddering”; assessing such issues rigorously would likely 

require multiple independent scale manipulations in a field setting. Regardless, any such data 

could be analyzed through variants of the basic framework employed here, and would help 

validate cross-study norms about scale point attraction effects, as well as tentatively suggest 

individual-level directional or variational changes in appeals scale design. 
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Figure 2: Pulling Amount Curves  

 

Figure 3: Pulling amounts owing to multiple scale (external reference) points 

Note:  IR normalized to 100 on Y-axis 

 

 

  



35 
 

Figure 4A: Gamma “pulling” parameters (up and down) for each donor 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4B: Maximum achievable pulling up and down proportions for each donor 
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Table 1: Appeals Scales used in the Field Experiment 

Appeals scale in periods 1-8 (all subjects) 

All Donors 90 FF 150 FF 250 FF 500 FF 1000 FF Other 

Appeals scale in period 9 (all subjects) 

All Donors 100 FF 150 FF 250 FF 500 FF 1000 FF Other 

Appeals scales in period 10, Standard and Test Scales 
Standard: 

Levels 1 and 2 
100 FF 150 FF 250 FF 500 FF 1000 FF Other 

Test: Level 1 120 FF 180 FF 250 FF 350 FF 500 FF Other 

Test: Level 2 120 FF 200 FF 350 FF 500 FF 750 FF Other 

 

 

 

 

Table 2: Period 10 (Experiment) Average Donation Amounts and Frequencies 

Prior donation level Scales Yield rate 
Average observed 

donations (FF) 

1 
Standard 63.3% 143.7 

Test 62.5% 148.7 

2 
Standard 65.3% 268.6 

Test 68.6% 275.5 
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Table 3: Yield Rate and Average Amount of Observed Donations across Seasons 

  
Level 1 Level 2 

Easter June Christmas Easter June Christmas 

Yield rate 71.9% 19.5% 21.7% 73.3% 20.1% 24.3% 

Average 
donation per 

occasion 
139.1 125.3 126.9 258.8 217.2 206.6 

 

 

 

Table 4: Proportion of Donations at Amounts* on Standard or Test Scales, Period 10 

 

Level 1 
Standard  

Level 1 
Test  

Level 2 
Standard  

Level 2 
Test 

Scale 
Point 

% 
Scale 
Point 

% p-value
Scale 
Point 

% 
Scale 
Point 

% p-value

 100* 18.6% 100 07.3% 0.000  100* 02.6% 100 01.6% 0.450 
120 00.2%  120* 18.4% 0.000 120 00.1%  120* 02.9% 0.000 

 150* 17.8% 150 05.4% 0.000  150* 07.2% 150 01.8% 0.000 
180 00.0%  180* 06.9% 0.000 200 02.6%  200* 18.8% 0.000 

 250* 05.1%  250* 04.4% 0.743  250* 026.7% 250 09.1% 0.000 
350 00.0%  350* 00.3% 1.000 350 01.2%  350* 10.6% 0.000 

 500* 00.3%  500* 00.3% 1.000   500* 05.3%  500* 04.4% 0.627 
 1000* 00.0% 1000 00.0% 1.000  750 00.0%  750* 00.3% 1.000 

None 49.4% None 50.2% 0.832  1000* 00.3% 1000 00.2% 1.000 

 Other 08.6% Other 06.8% 0.342 None 44.1% None 42.2% 0.618 

 Other 09.9% Other 08.1% 0.373 

 
* Starred amounts are those appearing on either scale (Standard or Test) within-Level. 
  p-values all stem from Fisher’s Exact test for equality of proportions. 
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Table 5: Parameter Estimates for Full Model 

Coefficient mean SE 95% HDR 

H
om

og
en

eo
u

s 

correlation (ρ) -0.454 0.033 (-0.516, -0.385) 

sd of log amount (σ)  0.299 0.004 (0.291, 0.307) 

Easter dummy (βE) 0.708 0.026 (0.657, 0.757) 

level dummy in selection (βlevel,s) 0.108 0.032 (0.047, 0.166) 

log amount lag in selection (βlag) -0.123 0.006 (-0.136, -0.110) 

level dummy in amount (βlevel,a) 0.260 0.013 (0.235, 0.287) 

H
et

er
og

en
eo

u
s 

pulling up (βi
U) -0.063 0.039 (-0.146, 0.007) 

pulling down (βi
D) 1.630 0.225 (1.245, 2.127) 

June dummy (βi
J) -0.505 0.041 (-0.583, -0.425) 

Christmas dummy (βi
C) -0.993 0.049 (-1.090, -0.901) 

sd of pulling up  0.330 0.022 (0.291, 0.378) 

sd of pulling down 0.943 0.127 (0.726, 1.213) 

sd of June 0.390 0.048 (0.308, 0.497) 

sd of Christmas 0.777 0.060 (0.655, 0.895) 

corr(June & Christmas) 0.714 0.083 (0.540, 0.871) 

corr(pulling up & pulling down) 0.446 0.095 (0.243, 0.612) 

corr(June & pulling up) -0.002 0.035 (-0.070, 0.065) 

corr(June & pulling down) 0.002 0.035 (-0.066, 0.070) 

corr(Christmas & pulling up) 0.003 0.034 (-0.064, 0.070) 

corr(Christmas &  pulling down) 0.003 0.035 (-0.067, 0.070) 
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Table 6: Model Fit Statistics (LPML, RMSE, MAD) for Various {IR, ER} Specifications 
and Restrictions, Computed over Model Posteriors 
 

 

Internal Referent Specification (with ER-1) LPML RMSE MAD 

IR-1 (average of all prior donations) -21968 0.279 0.210 
IR-2 (last donation) -22482 0.299 0.221 
IR-3 (average of same-season donations) -22372 0.288 0.212 
IR-4 (last same-season donation) -22558 0.294 0.222 
IR-5: (geometrically smoothed, α = 0.4) -22125 0.277 0.207 

IR-1 Model with Restrictions:       
  No correlation (ρ = 0) -22063 0.286 0.215 
  No scale effect -23095 0.335 0.226 
  Simple regression -23110 0.335 0.224 
  Heterogeneous scale effect only -22307 0.281 0.211 
  Heterogeneous seasonality only  -22972 0.295 0.216 
  Homogeneous scale effect and seasonality -22716 0.297 0.218 

 
 

External Referent Specification (with IR-1) LPML RMSE MAD 

ER-1 (all scale points) -21968 0.279 0.210 
ER-2 (two points closest to IR) -22498 0.304 0.221 
ER-3 (largest and smallest points) -22567 0.326 0.222 
ER-4 (median scale point) -22339 0.301 0.223 
ER-5 (mean of all scale points) -22445 0.316 0.218 
ER-6 (equal weight: {1,1,1,1,1}) -22365 0.325 0.255 
ER-7 (V-shaped: {3,2,1,2,3}) -22704 0.321 0.252 
ER-8 (Inverse V: {1,2,3,2,1}) -22247 0.336 0.264 
ER-9 (Increasing: {1,2,3,4,5}) -22615 0.463 0.375 
ER-10 (Decreasing: {5,4,3,2,1}) -22313 0.377 0.294 
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Appendices A - C 

A. Full Model Specification 

As discussed above, we can write the entire model as follows (i = donor; t = time): 

௜௧ݕ	
௦∗ ൌ ாߚ ௜ܺ௧

ா ൅ ௜ߚ
௃

௜ܺ௧
௃ ൅ ௜ߚ

஼
௜ܺ௧
஼ ൅ ௟௔௚ߚ ௜ܺ௧

௟௔௚ ൅ ௟௘௩௘௟,௦ߚ ௜ܺ
௟௘௩௘௟ ൅ ߳௜௧

௦ 	 

௜௧ݕ	
௔∗ ൌ ݈݊ሺݎ௜௧

ூ ൅ ௜௧ሻܣܲܣ ൅ ௟௘௩௘௟,௔ߚ ௜ܺ
௟௘௩௘௟ ൅ ߳௜௧

௔ , where: 

௜௧ݕ	
௦ ൌ 1, if	ݕ௜௧

௦∗ ൒ 0; 	0	otherwise	

௜௧ݕ	
௔ ൌ ௜௧ݕ

௔∗ ൌ lnሺ݀݊݋݅ݐܽ݊݋	ݐ݊ݑ݋݉ܽሻ , if	ݕ௜௧
௦ ൌ 1; 	unobserved	otherwise	

௜௧ܣܲܣ	 ൌ ෍ݓ௜௧
௞

௄

௞ୀଵ

ൈ ௜௧ܫ
௞ ൈ ௜௧ܣܲ

௞ 	; ௜௧ݓ	
௞ ൌ

௜௧ܣܲ
௞

∑ ௜௧ܣܲ
௞௄

௞ୀଵ
, ௜௧ܫ
௞ ൌ ቊ

1, ௜௧ݎ	݂݅
ா,௞ ൒ ௜௧ݎ

ூ

െ1, ௜௧ݎ	݂݅
ா,௞ ൑ ௜௧ݎ

ூ 	
 

௜௧ܣܲ	
௞ 	ൌ ௜௧ܦܥ	

௞ ൈ ௜௧ݎ||
ா,௞ െ ௜௧ݎ

ூ || 

௜௧ܦܥ	
௞ 	ൌ ݌ݔ݁ ቆെ

݀௜௧
௞

௜ߠ
ቇ	; ௜ߠ	 ൌ ቊ

exp	ሺߚ௜
௎ሻ, ௜௧ݎ

ா,௞ ൒ ௜௧ݎ
ூ

exp	ሺߚ௜
஽ሻ, ௜௧ݎ

ா,௞ ൑ ௜௧ݎ
ூ
, ݀௜௧

௞ ൌ
௜௧ݎ||

ா,௞ െ ௜௧ݎ
ூ ||

௜௧ݎ
ூ  

	ሺ߳௜௧
௦ 	, ߳௜௧

௔ ሻ	~	ܸܰܤሺ0, ;	ఢሻߑ ఢߑ	 ൌ ൤
1 ߪߩ
ߪߩ ଶߪ

൨ 

,∆൫ܸܰܯ~௜ߚ	 ௜ߚ	ఉ൯,whereߑ ൌ ሺߚ௜
௃, ௜ߚ

஼, ௜ߚ
௎, ௜ߚ

஽ሻ	 

Note that the internal reference point, ݎ௜௧
ூ , for donor i can change over the course of the 

experiment, and is subscripted accordingly, as is the kth external reference point for a donor i at 

time t, ݎ௜௧
ா,௞. Again, the variance of ߳௦ is fixed to 1 for identification. Finally, the vector of 

heterogeneous parameters (ߚ௜) follows a multivariate normal distribution with mean ߤఉ and full-

rank covariance matrix ߑఉ. 
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B. MCMC Algorithm and Priors 

Here we present the prior distributions and sampling algorithm used in estimation. Because the 

requirement that setting error variance of the binary probit model (for donation incidence) be set 

to one ruins useful conjugacy properties, we instead make random draws from the unidentified 

space, as suggested by Edwards and Allenby (2003), and report post-processed estimates. Below, 

we specify ߑఢ in the unidentified space as ߑఢ ൌ ൤
௦ଶߪ ௔ߪ௦ߪߩ

௔ߪ௦ߪߩ ௔ଶߪ
൨. 

1. Data Augmented Likelihood 

ෑෑሾሺ

୘

୲ୀଵ

୬

୧ୀଵ

௜௧ݕ
௦∗, ௜௧ݕ

௔∗ሻ|ߚ௛, ,௜ߚ ఢሿߑ ൈෑሾ	ߚ௜|
௡

௜ୀଵ

,ఉߤ  ఉሿߑ

where ߚ௛ ൌ ሺߚா, ,௟௔௚ߚ ,௟௘௩௘௟,௦ߚ ௜ߚ ௟௘௩௘௟,௔ሻ is a vector of homogeneous parameters andߚ ൌ

ሺߚ௜
௃, ௜ߚ

஼, ௜ߚ
௎, ௜ߚ

஽ሻ	is a vector of heterogeneous parameters. 

2. Prior Distribution 

We use proper but diffuse priors. 

,ܯሺܸܰܯ~௛ߚ (1) ܸሻ,where	ܯ ൌ ૙, ܸ ൌ 10ସܫ 

,ചఀߥ൫ܹܫ~ఢߑ (2) ܸఀ ച
൯, where	ఀߥച ൌ 5, ܸఀ

ച
ൌ  ܫ5

ഥ,߂ሺܸܰܯ~߂ (3) ,ሻܣ where	∆തൌ ૙, ܣ ൌ 10ସܫ 

,ഁఀߥሺܹܫ~ఉߑ (4) ܸఀ ഁ
ሻ, where	ఀߥച ൌ 7, ܸఀ

ച
ൌ  ܫ7

3. Posterior Distribution 

ෑෑሾሺ

୘

୲ୀଵ

୬

୧ୀଵ

௜௧ݕ
௦∗, ௜௧ݕ

௔∗ሻ|ߚ௛, ,௜ߚ ఢሿߑ ൈෑሾ	ߚ௜|
௡

௜ୀଵ

,ఉߤ ఉሿߑ ൈ ሾߚ௛|M, Vሿ ൈ ,ఢหνఀചߑൣ Vఀ ച
൧ ൈ ሾΔ|Δ,ഥ Aሿ

ൈ ሾߑఉ|ഁఀߥ, Vఀ ഁ
ሿ 

4. Sampling Algorithm 
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Step 1. Draw ݕ௜௧
௦∗ and ݕ௜௧

௔∗ (Data augmentation step) 

ሾሺݕ௜௧
௦∗, ௜௧ݕ

௔∗ሻ|ݕ௜௧
௦ , ௜௧ݕ

௔ , ,௛ߚ ,௜ߚ  ఢሿߑ

1. If ݕ௜௧
௦ ൌ 1 then ݕ௜௧

௔  is observed. We set ݕ௜௧
௔∗ ൌ ௜௧ݕ

௔  and draw ݕ௜௧
௦∗ from the truncated normal 

distribution below: 

ܶܰ ቀߚா ௜ܺ௧
ா ൅ ௜ߚ

௃
௜ܺ௧
௃ ൅ ௜ߚ

஼
௜ܺ௧
஼ ൅ ௟௔௚ߚ ௜ܺ௧

௟௔௚ ൅ ௟௘௩௘௟,௦ߚ ௜ܺ
௟௘௩௘௟ ൅ ఘఙೞ

ఙೌ
௜௧ݕൣ

௔ െ ሺ݈݊ሺݎ௜௧
ூ ൅ ௜௧ሻܣܲܣ ൅

௟௘௩௘௟,௔ߚ ௜ܺ
௟௘௩௘௟ሻ൧, ሺ1 െ ௦ଶቁߪଶሻߩ , ௜௧ݕ

௦∗ ൒ 0  

2. If ݕ௜௧
௦ ൌ 0 then ݕ௜௧

௔  is not observed. We draw ሺݕ௜௧
௦∗, ௜௧ݕ

௔∗ሻ by following steps 

a. Draw ݕ௜௧
௦∗ from ܶܰ൫ߚா ௜ܺ௧

ா ൅ ௜ߚ
௃

௜ܺ௧
௃ ൅ ௜ߚ

஼
௜ܺ௧
஼ ൅ ௟௔௚ߚ ௜ܺ௧

௟௔௚ ൅ ௟௘௩௘௟,௦ߚ ௜ܺ
௟௘௩௘௟, ,௦ଶ൯ߪ ௜௧ݕ

௦∗ ൏ 0 

b. Draw ݕ௜௧
௔∗ conditional on ݕ௜௧

௦∗ from normal distribution below: 

ܰ ቀ݈݊ሺݎ௜௧
ூ ൅ ௜௧ሻܣܲܣ ൅ ௟௘௩௘௟,௔ߚ ௜ܺ

௟௘௩௘௟ ൅ ఘఙೌ
ఙೞ
௜௧ݕൣ

௦∗ െ ሺߚா ௜ܺ௧
ா ൅ ௜ߚ

௃
௜ܺ௧
௃ ൅ ௜ߚ

஼
௜ܺ௧
஼ ൅ ௟௔௚ߚ ௜ܺ௧

௟௔௚ ൅

௟௘௩௘௟,௦ߚ ௜ܺ
௟௘௩௘௟ሻ൧, ሺ1 െ   ௔ଶቁߪଶሻߩ

Step 2. Draw ߚ௜ 

ሾߚ௜|ߚ௛, ,ఢߑ ,߂ ఉሿߑ ∝ෑሾሺݕ௜௧
௦∗, ௜௧ݕ

௔∗ሻ|ߚ௛, ,௜ߚ ఢሿߑ
்

௧ୀଵ

ൈ ሾߚ௜|߂,  ఉሿߑ

The full conditional distribution is also of unknown form. Therefore, we use a Metropolis-

Hastings algorithm with a normal random walk proposal to make draws. 

Step 3. Draw ߚ௛ 

ሾߚ௛|ሼߚ௜ሽ, ఢሿߑ ∝ 	ෑෑሾሺ

்

௧ୀଵ

௡

௜ୀଵ

௜௧ݕ
௦∗, ௜௧ݕ

௔∗ሻ|ߚ௛, ,௜ߚ ఢሿߑ ൈ ሾߚ௛|ܯ, ܸሿ 

Again, we use a Metropolis-Hastings algorithm with a normal random walk proposal to make 

draws. 

Step 4. Draw ߑఢ 
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ሾߑఢ|ߚ௛, ሼߚ௜ሽሿ ∝ ∏ ∏ ሾሺ்
௧ୀଵ

௡
௜ୀଵ ௜௧ݕ

௦∗, ௜௧ݕ
௔∗ሻ|ߚ௛, ,௜ߚ ఢሿߑ ൈ ,ചఀߥఢหߑൣ ܸఀ ച

൧ ∝

∏ ∏ ሺ൬ܸܰܤ
௜௧ݕ
௦∗

௜௧ݕ
௔∗൰ |

்
௧ୀଵ

௡
௜ୀଵ ቆ

ாߚ ௜ܺ௧
ா ൅ ௜ߚ

௃
௜ܺ௧
௃ ൅ ௜ߚ

஼
௜ܺ௧
஼ ൅ ௟௔௚ߚ ௜ܺ௧

௟௔௚ ൅ ௟௘௩௘௟,௦ߚ ௜ܺ
௟௘௩௘௟

݈݊൫ݎ௜௧
ூ ൅ ௜௧൯ܣܲܣ ൅ ௟௘௩௘௟,௔ߚ ௜ܺ

௟௘௩௘௟ ቇ , ఢሻߑ ൈ ,ചఀߥሺܹܫ	 ܸఀ ച
ሻ  

ሾߑఢ|ߚ௛, ሼߚ௜ሽሿ~	ܹܫሺߥ෤ఀച, ෨ܸఀ ച
ሻ 

where ߥ෤ఀച ൌ ചఀߥ ൅ ݊ܶ, 

෨ܸఀ
ച
ൌ ܸఀ

ച
൅෍෍ቆ

௜௧ݕ
௦∗ െ ൫ߚா ௜ܺ௧

ா ൅ ௜ߚ
௃

௜ܺ௧
௃ ൅ ௜ߚ

஼
௜ܺ௧
஼ ൅ ௟௔௚ߚ ௜ܺ௧

௟௔௚ ൅ ௟௘௩௘௟,௦ߚ ௜ܺ
௟௘௩௘௟൯

௜௧ݕ
௔∗ െ ൫݈݊ሺݎ௜௧

ூ ൅ ௜௧ሻܣܲܣ ൅ ௟௘௩௘௟,௔ߚ ௜ܺ
௟௘௩௘௟൯

ቇ

்

௧ୀଵ

௡

௜ୀଵ

ൈቆ
௜௧ݕ
௦∗ െ ሺߚா ௜ܺ௧

ா ൅ ௜ߚ
௃

௜ܺ௧
௃ ൅ ௜ߚ

஼
௜ܺ௧
஼ ൅ ௟௔௚ߚ ௜ܺ௧

௟௔௚ ൅ ௟௘௩௘௟,௦ߚ ௜ܺ
௟௘௩௘௟

௜௧ݕ
௔∗ െ ሺ݈݊ሺݎ௜௧

ூ ൅ ௜௧ሻܣܲܣ ൅ ௟௘௩௘௟,௔ߚ ௜ܺ
௟௘௩௘௟ሻ

ቇ
்

 

Step 5. Draw ∆ 

ൣ∆หሼߚ௜ሽ, ఉ൧ߑ ∝ෑሾߚ௜|
௡

௜ୀଵ

∆, ఉሿߑ ൈ ሾ∆|̅߂, ሿܣ ∝ ܰܯ ௡ܸ௞ሺܤ∗|ሾܼ ⊗ ,∗∆௞ሿܫ ௡ܫ	 ⊗ ఉሻߑ ൈ ܰܯ ௡ܸ௞ሺ∆∗|߂,ഥ  ሻܣ

where ߚ௜ is a vector of length k, 

ܤ ൌ

ۏ
ێ
ێ
ۍ
ଵߚ
்

ଶߚ
்

∶
ے௡்ߚ
ۑ
ۑ
ې
, ௡௞ൈଵܤ

∗ ൌ ,ሻ்ܤሺܿ݁ݒ ܼ ൌ

ۏ
ێ
ێ
ۍ
ଵߡ
்

ଶߡ
்

∶
ے௡்ߡ
ۑ
ۑ
ې
, ∆∗ൌ  ሺ∆்ሻܿ݁ݒ

ൣ∆∗หሼߚ௜ሽ, ܰܯ~ఉ൧ߑ ௡ܸ௞ሺ∆∗|߂ሚ,  ሚሻܣ

where ߂ሚ ൌ ሚ൫ൣܼܣ ⊗ ఉߑ
ିଵ൧ܤ௡௞ൈଵ

∗ ൅ ,൯߂ଵ̅ିܣ ሚܣ ൌ ሾሺ்ܼܼሻ⊗ ఉߑ
ିଵ ൅  ଵሿିଵିܣ

Step 6. Draw ߑఉ 

ሾߑఉ|ሼߚ௜ሽ, ሿ߂ 	∝ෑሾߚ௜|
௡

௜ୀଵ

∆, ఉሿߑ ൈ ሾߑఉ|ഁఀߥ, ܸఀ ഁ
ሿ ∝ ܰܯ	 ௡ܸ௞ሺܤ|ܼ∆, ఉሻߑ,௡ܫ ൈ ,ഁఀߥ|ఉߑሺܹܫ ܸఀ ഁ

ሻ 

ሾߑఉ|ሼߚ௜ሽ, ,෤ఀഁߥሺܹܫ~ሿ߂ ෨ܸఀ ഁ
ሻ 

where ߥ෤ఀഁ ൌ ഁఀߥ ൅ ݊, ෨ܸఀ
ഁ
ൌ ܸఀ

ഁ
൅ ሺܤ െ ܼ∆ሻ்ሺܤ െ ܼ∆ሻ 
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C. Maximum Achievable Proportions: Upward (% Increase) and Downward (% Decrease) 

1. Upward pulling amount. When ݎா ൒  :௎ is given byܣܲ ூ, the upward pulling amountݎ

௎ܣܲ ൌ exp ൬െ
݀௎
ߠ
൰ ሺݎா െ ,ூሻݎ ݀௎ ൌ

ாݎ

ூݎ
െ 1, ௎ߠ ൌ expሺߚ௎ሻ	 

The scale point with maximum upward pulling amount (ݎா∗) can be calculated by solving the 

first order condition for ܲܣ௎ with respect to ݎா.  

∗ாݎ ൌ ሺߠ௎ ൅ 1ሻݎூ ൌ ሺexpሺߚ௎ሻ ൅ 1ሻݎூ 

At the scale point ݎா∗, the incremental ratio in distance (݀௎
∗ ሻ is determined to be exp	ሺߚ௎ሻ; and 

the maximum incremental ratio in amount as follows:  

exp ൬െ
݀௎
∗

expሺߚ௎ሻ
൰ ሺݎா∗ െ ூݎ/ூሻݎ ൌ exp	ሺߚ௎ െ 1ሻ 

2. Downward pulling amount. When 0 ൑ ாݎ ൑  :஽ followsܣܲ ூ, the downward pulling amountݎ

஽ܣܲ ൌ exp ൬െ
݀஽
ߠ
൰ ሺݎூ െ ,ாሻݎ ݀஽ ൌ 1 െ

ாݎ

ூݎ
, ஽ߠ ൌ expሺߚ஽ሻ	 

The scale point with maximum downward pull (ݎா∗) can be obtained by solving the first order 

condition for ܲܣ஽ with respect to ݎா. [Note that there is a corner solution if ߚ஽ ൐ 0] 

∗ாݎ ൌ ൜
ሺ1 െ ூݎ஽ሻߠ ൌ ሺ1 െ expሺߚ஽ሻሻݎூ, ஽ߚ ൑ 0	
0, ஽ߚ																																																							 ൐ 0	

 

At the scale point ݎா∗, the decremental ratio in distance (݀஽
∗ ሻ is determined to be 

൜
expሺβୈሻ , βୈ ൑ 0
1, 														βୈ ൐ 0

		, 

And the maximum decremental ratio in amount is as follows: 

ە
ۖ
۔

ۖ
expۓ ൬െ

݀஽
∗

expሺߚ஽ሻ
൰ ሺݎூ െ ூݎ/ா∗ሻݎ ൌ expሺെ1ሻ െ expሺβୈሻ , βୈ ൑ 0

exp ൬െ
݀஽
∗

expሺߚ஽ሻ
൰ ሺݎூ െ ூݎ/ா∗ሻݎ ൌ exp ൬െ

1
expሺβୈሻ

൰ , βୈ ൐ 0
 


