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Abstract 

The Hydrocephalus Association Posthemorrhagic Hydrocephalus Workshop was held on July 25 and 26, 2016 at 
the National Institutes of Health. The workshop brought together a diverse group of researchers including pediatric 
neurosurgeons, neurologists, and neuropsychologists with scientists in the fields of brain injury and development, 
cerebrospinal and interstitial fluid dynamics, and the blood–brain and blood–CSF barriers. The goals of the workshop 
were to identify areas of opportunity in posthemorrhagic hydrocephalus research and encourage scientific collabora-
tion across a diverse set of fields. This report details the major themes discussed during the workshop and research 
opportunities identified for posthemorrhagic hydrocephalus. The primary areas include (1) preventing intraventricular 
hemorrhage, (2) stopping primary and secondary brain damage, (3) preventing hydrocephalus, (4) repairing brain 
damage, and (5) improving neurodevelopment outcomes in posthemorrhagic hydrocephalus.
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Background
The Hydrocephalus Association hosted a workshop on 
July 25 and 26, 2016 at the National Institutes of Health, 
Neuroscience Center, to build research capacity and 
identify areas of opportunity for research around post-
hemorrhagic hydrocephalus (PHH). The Hydrocephalus 
Association was founded in 1983 by parents of children 
with hydrocephalus and developed a research program 
in 2009. Since then the Association has committed over 
$7 million to research, making it the largest non-profit, 
non-governmental funder of hydrocephalus research 
in the United States. The mission of the Hydrocephalus 

Association is to promote a cure for hydrocephalus and 
improve the lives of those affected by the condition. The 
Association strives to accomplish this mission by col-
laborating with patients, caregivers, researchers and 
industry, raising awareness, and funding innovative, high 
impact research to prevent, treat, and ultimately cure 
hydrocephalus.

The 2016 Hydrocephalus Association PHH Workshop 
was developed through the Hydrocephalus Association 
PHH Initiative, a multiyear initiative focused on increas-
ing research efforts focused on PHH. The workshop 
agenda was developed by the workshop planning com-
mittee which was led by Hydrocephalus Association staff 
and included both an investigator in the Hydrocephalus 
Clinical Research Network (HCRN) and a family member 
of a person with hydrocephalus. The workshop brought 
together a diverse group of researchers including pediat-
ric neurosurgeons, neurologists, and neuropsychologists 
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together with scientists in the fields of brain injury and 
development, cerebrospinal and interstitial fluid dynam-
ics, and the blood–brain and blood–CSF barriers. 
Workshop attendees also included Hydrocephalus Asso-
ciation staff and family members of people affected by 
hydrocephalus.

The primary focus of the workshop was on PHH of 
prematurity, although PHH can develop at any age, 
including in utero, after preterm birth, and in children 
and adults who have had a brain hemorrhage [1]. PHH 
develops after intraventricular extension of a hemorrhage 
[intraventricular hemorrhage, (IVH)] (Fig. 1). IVH grade 
(I–IV) is classified according to the extension (periven-
tricular germinal tissue, ventricle, parenchyma) of hem-
orrhage and presence of ventricular dilation according to 
the Papile scale [2]. Both the source of the hemorrhage 
(e.g. periventricular vs. choroid plexus) and the degree of 
tissue injury related to the extension of the hemorrhage 
are linked to outcomes. Neonatal IVH occurs in up to 
25% of preterm neonates [3–12] and results in hydro-
cephalus in 10% of these neonates, including 25% of neo-
nates with grade III/IV IVH [13]. 38% of neonates with 
PHH require long term CSF diversion; the remaining 
either die or do not require a permanent shunt [13].

Advances in neonatology have improved survival rates 
for preterm neonates in recent decades [14]. In the early 
1980 s, the rates of IVH decreased from 40–50 to 20% for 
premature neonates < 1500  g [15, 16]. However, for pre-
mature neonates 500–750  g, the rate of IVH remained 
high at 40–50% [15, 17, 18], and the trend in recent years 
shows a relative increase in IVH rates [13, 19, 20]. In 
the United States, the incidence of PHH of prematurity 

after IVH remained steady (8–10%) between 2000 and 
2010; however, annual admissions for both IVH and 
PHH increased approximately 60% during the same time 
period [13]. The increase in IVH and PHH comes despite 
a recent decline in overall premature birth rate between 
2007 and 2010 [13, 21].

PHH of prematurity is a common form of pediatric 
hydrocephalus, accounting for 20% of the shunted hydro-
cephalus cases in the United States [22] and is associated 
with significant morbidity and mortality [13]. This report 
details the major themes and the research opportunities 
discussed during the 2016 Hydrocephalus Association 
Posthemorrhagic Hydrocephalus Workshop. The views 
and recommendations in this report were developed 
by the listed authors and subsequently distributed to all 
workshop attendees for commentary. All feedback was 
then discussed and integrated into the report.

PHH of prematurity
PHH of prematurity is a common and particularly 
insidious form of pediatric hydrocephalus [22]. During 
the workshop, an overview of our current knowledge 
about PHH risks, pathophysiology, and treatments was 
presented.

Maternal and neonatal risk and protective factors
Many maternal factors can alter the risk of IVH in pre-
mature neonates. Some protective factors are related to 
health care including access to prenatal care, adminis-
tration of antenatal corticosteroid regimens, and cesar-
ean delivery [23]. Maternal health care disparities likely 
interact with other factors such as maternal race and 

Fig. 1  Cranial Ultrasounds of Premature Infant after IVH. a Cranial ultrasound performed in a 5 day old 24 week gestation male showing grade 
IV intraventricular hemorrhage with intraventricular extension. b Cranial ultrasound performed in the same infant 12 days later showing interval 
development of hydrocephalus
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education level which have also been associated with risk 
of IVH in preterm neonates. Unexpectedly, preeclampsia 
has been associated with a decreased risk of IVH [23–28].

Neonates born at term rarely develop IVH or PHH 
[29]. For premature neonates, the risk of IVH, and sub-
sequently PHH, increases with decreased gestational age 
and weight [7, 13, 14]. Furthermore, the development of 
PHH is directly related to IVH grade, with over 75% of 
PHH patients having Grade III/IV IVH [13]. Male sex is 
also associated with an increased risk of PHH. Prenatal 
infection, specifically chorioamnionitis, can increase the 
risk of IVH and is related to gestational age [5, 23, 30–
35]. Asian ethnicity seems to be protective [36].

Physiological risk factors
Premature neonates are especially vulnerable to IVH 
within the subependymal germinal matrix, a highly vas-
cularized region consisting of neural and glial precursor 
cells [19, 30, 37, 38]. During early development, the ger-
minal matrix undergoes rapid cellular proliferation and 
angiogenesis, but the thickness of the germinal matrix 
peaks and subsequently declines after 24 gestational 
weeks and is nearly absent by 36–37 gestational weeks 
[3, 19, 39–41]. This corresponds to the time-dependent 
risk of developing IVH and subsequent PHH. At develop-
mental time points when premature birth is survivable, 
the germinal matrix is located along the walls of the lat-
eral ventricles, primarily within the ganglionic eminence 
and over the developing caudate nucleus.

In preterm neonates, the germinal matrix is suscepti-
ble to hemorrhaging due to the immaturity of the vascu-
lature, [3, 15, 19, 39, 42, 43] and sudden fluctuations in 
cerebral blood flow due to respiratory and hemodynamic 
instability [37, 38, 44]. The combination of immature vas-
culature and rapid changes in cerebral blood flow may 
lead to rupture of the germinal matrix vasculature and 
IVH [3, 19, 30].

Pathophysiology of PHH
Hydrocephalus represents an alteration in fluid balance 
within the brain and cranial cavity. It is traditionally 
held that under normal conditions cerebrospinal fluid 
(CSF) is primarily secreted into the cerebral ventricles 
by the choroid plexus (site of the blood–CSF barrier) and 
moves via bulk flow through the ventricular system and 
subarachnoid space before being absorbed at the arach-
noid villi/granulations although it should be noted that 
these develop at about week 35 and 39, respectively [45]. 
In addition, some fluid secretion into brain parenchyma 
occurs across the cerebral microvasculature (site of the 
blood–brain barrier) and through Virchow-Robins spaces 
(also recently termed the “glymphatic” system) at the 
surface of the cerebral cortex in animal models [46–48]. 

Parenchymal interstitial fluid also enters the cerebral ven-
tricles across the ependymal lining [49]. CSF can also be 
absorbed via cranial nerve lymphatics [50–52] and may 
pass retrogradely into cerebral microvessels [53–57]. An 
increase in CSF production or reduction in CSF absorp-
tion may result in ventriculomegaly if the system cannot 
compensate for the changes.

Secondary injury mechanisms occur following ventric-
ulomegaly (reviewed in [58–60]). A detailed discussion of 
these secondary mechanisms is beyond the scope of this 
manuscript, but they include cerebral (mostly periven-
tricular) edema, demyelination, axonal degeneration and 
impaired axoplasmic transport in periventricular white 
matter, cerebral hypoxia and ischemia, reduced metabo-
lite levels, altered blood–brain and blood–CSF barriers, 
loss of cilia and junctional complexes on ependymal cells, 
ependymal denudation, changes in aquaporin channels, 
and altered neurodevelopmental trophic factors. These 
cytopathologies are found in most forms of congenital 
and acquired hydrocephalus and most likely overlap with 
the pathogenetic mechanisms involved in PHH.

As detailed above, the pathophysiology of hydrocepha-
lus is multifactorial in nature, and the precise mecha-
nisms underlying PHH of prematurity remain unclear 
[3]. PHH is traditionally thought to occur due to impedi-
ments in the CSF flow or absorption pathways. Acute, 
obstructive hydrocephalus can occur soon after IVH and 
may be due to blood physically blocking the most-narrow 
portions of the CSF spaces, i.e. the cerebral aqueduct, the 
foramina of Monro, the outlets of the fourth ventricle, or 
the subarachnoid spaces.

Multiple theories have been proposed to explain the 
development of “communicating” hydrocephalus after 
IVH including blockage of the arachnoid villi and arach-
noid granulations due to microthrombi [61] or scarring 
[62]. Other theories include the CSF bulk flow hypothesis 
and the hydrodynamic theory. These theories are based on 
postulated changes in pressure gradients within the CSF or 
CSF and vascular systems, respectively [63, 64]. Few studies, 
however, have been conducted to test any of these theories.

Surprisingly, there have also been very few studies 
addressing the impact of IVH on the choroid plexus [65]. 
One recent study reports CSF hypersecretion occurs after 
IVH in a rodent model. This hypersecretion is caused by 
an upregulation in choroid plexus Na/K/Cl cotransporter 
activity associated with Toll-like receptor 4 activation [66].

In contrast, there is much evidence that IVH dam-
ages the ependymal cells that line the cerebral ventricles. 
Alterations in this CSF–brain interface may impact bulk 
fluid flow via ciliopathy and disrupt neurodevelopment 
by exposing the subventricular zone to CSF. An emerg-
ing mechanism appears to involve impaired junctional 
proteins, such as N-cadherin and connexin that not only 
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provide structure for the ependymal lining of the ven-
tricles but also influence progenitor cell proliferation, 
migration, and differentiation [67–70]. Recent evidence 
from preterm neonates with PHH also indicates that the 
neurogenic niche is compromised following IVH [71], 
and this primary effect could subsequently evolve into a 
type of hydrocephalus ex vacuo, in which the ventricles 
expand subsequent to impaired neurogenesis and neu-
ronal differentiation [71].

Current treatments for PHH of prematurity
Treatments for PHH of prematurity fall into one of three 
categories: temporary non-surgical, temporary surgi-
cal, and permanent surgical. Temporary non-surgical 
treatments, including thrombolytic agents and diuretics, 
have been tested [72–77]; however, none of these inter-
ventions are currently recommended for use in neonates 
with PHH [78]. Temporary surgical treatments include 
ventricular access devices (VADs), external ventricular 
drains (EVDs), ventriculosubgaleal (VSG) shunts, and 
lumbar punctures. All four temporary surgical treat-
ments are options in the management of PHH [79]; 
however, lumbar puncture is only recommended for 
immediate short-term removal of CSF [78]. Serial lumbar 
punctures are not recommended [78, 80].

Emerging treatments include endoscopic lavage with 
early removal of IVH. In one study, Schulz et al. reported 
a decrease in the rates of hydrocephalus and need for 
permanent shunt placement [81]. However, this treat-
ment remains under investigation and long-term out-
comes remain unclear.

If hydrocephalus persists despite temporary CSF diver-
sion, placement of a ventriculoperitoneal (VP) shunt has 
been the treatment of choice. VP shunting has been the 
mainstay of long-term surgical management of hydro-
cephalus for over six decades. However, VP shunts fre-
quently fail. In children, approximately 30-50% of shunts 
fail within the first 2 years [82–84] and 80% of shunt fail 
within 4  years [83], necessitating revision, externaliza-
tion, or removal, all of which have associated costs and 
complications. Endoscopic third ventriculostomy (ETV), 
with or without choroid plexus cauterization (ETV-CPC), 
is an alternative treatment option and can obviate the 
need for a shunt. However, for treating PHH, the success 
rate in children less than 1 year of age is approximately 
50% [85–90]. Evaluations of long-term neurological out-
comes of ETV-CPC or ETV versus shunt are ongoing.

Review of clinical trials
Past clinical trials inform future clinical, translational, 
and basic science research. The workshop, reviewed 
clinical trials conducted in both premature neonates and 
adults with intracranial hemorrhage to identify areas of 

promise and obstacles that limit our ability to interpret 
and compare results.

Interventions that alter risk of IVH
Premature and/or (extremely) low birth weight neo-
nates are vulnerable populations at risk for multiple co-
morbidities such as IVH and neurological deficits. To 
improve survival rates and decrease such co-morbidities, 
interventions based on a variety of biological mecha-
nisms have been tested and adopted by the medical com-
munity. These interventions can be broadly grouped into 
antenatal interventions, birth-related procedural inter-
ventions, and postnatal interventions (Table 1).

Antenatal interventions include administration of 
corticosteroids, phenobarbital, magnesium sulfate, and 
vitamin K. Antenatal corticosteroids administration is 
perhaps the most established intervention and has been 
shown to reduce severe grades of IVH as well as reduce 
mortality and respiratory distress syndrome [91, 92]. In 
extremely premature infants, improved outcomes in neo-
natal mortality and neurodevelopmental outcomes were 
dose dependent with an indication that these results were 
mediated by reduced rates of severe IVH [93]. Antena-
tal vitamin K administration also reduced IVH risk dur-
ing the first 7 days of life in a small randomized trial [94]; 
however, an earlier meta-analysis concluded that ante-
natal vitamin K did not reduce risk of IVH or improve 
neurodevelopmental outcomes [95]. A recent meta-anal-
ysis indicated that, antenatal magnesium sulfate did not 
reduce the rates of IVH in preterm infants but may have 
beneficial effects on the rates of moderate to severe cer-
ebral palsy [96]. In addition, antenatal phenobarbital had 
no effect on IVH risk in preterm infants (NCT00009620; 
[97, 98]).

Procedural interventions occurring at or close to the 
time of birth include mode of delivery and the timing 
of umbilical cord clamping. In many studies compar-
ing vaginal and cesarean deliveries in preterm and very 
low birth weight infants, there did not appear to be IVH 
risk reduction associated with one form of delivery over 
the other [99–101]. By contrast, a study showed planned 
cesarean delivery is associated with a reduced risk of IVH 
in extremely preterm infants compared to vaginal deliv-
ery and emergency cesarean delivery [102]. A study com-
paring both antenatal corticosteroid administration and 
cesarean delivery reported that antenatal corticosteroid 
administration independently reduced IVH risk [103]. 
The choice of immediate/early vs. delayed cord clamp-
ing balances the desire to have neonatologists care for 
the preterm infant as soon as possible compared with 
the thought that additional blood flow from the placenta 
(placental transfusion) may minimize IVH and decrease 
the need for subsequent transfusions. An early study 
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and a meta-review appeared to show a reduction in IVH 
with delayed clamping [104, 105], although subsequent 
primary and meta-analysis studies showed no difference 
in the rate of IVH [106–108]. Encouraging, there may 
be some neurological and motor benefits to the infants 
when examined after 18 months [106].

Postnatal interventions that decrease the risk of IVH, 
but may not improve long-term neurological outcomes, 
include treatment with prophylactic indomethacin, ibu-
profen, inositol, or ethamsylate [31, 109–114]. Early indo-
methacin or ibuprofen decreased IVH rates in preterm 
and very low birth weight infants [115–120]. In addi-
tion, indomethacin reduced the incidence of patent duc-
tus arteriosus and the risk of severe periventricular and 
intraventricular hemorrhage, although rates of shunted 
hydrocephalus were not changed (NCT00009646; [120]). 
Inositol treatment reduced the risk of severe IVH as well 
as neonatal deaths, infant deaths, and retinopathy of pre-
maturity [121–125]. In a systematic review of ethamsylate 
treatment in preterm and very low birth rate infants, 
Hunt and Hey found lower rates of IVH in treated infants 
who were born at less than 35  weeks gestation [113]. 
However, there were no differences in neonatal mortality 
or neurodevelopmental outcomes at 2 years.

Other postnatal interventions, such as inhaled nitrous 
oxide, phenobarbital, prophylactic surfactant, and corti-
costeroids, have had no effect on IVH rates [5, 126–129] 
but some were associated with other positive outcomes 
[5, 126, 128]. In contrast, multiple interventions for pre-
mature neonates increase the risk of IVH, which include 
red blood cell transfusions and rapid volume expansion 
[130–132]. Encouragingly, vitamin E supplementation 
in preterm infants reduces the risk of germinal matrix/
intraventricular hemorrhage in a meta-analysis of 26 
studies, though there was an associated higher risk of 
sepsis [133].

Neonatal interventions to stop development 
of progressive PHH
Pharmaceutical agents, drainage and irrigation of the 
ventricles, and temporizing devices have been tested to 
stop the development or progression of PHH after IVH. 
In these studies, the primary outcome is usually perma-
nent shunt placement.

To date, pharmaceutical treatments have not been 
effective in stopping the development of PHH or its neu-
rological disability [78, 134, 135]. These therapies include 
the use of diuretics to reduce CSF production [76, 77, 
136] and fibrinolytic agents. The International Posthem-
orrhagic Ventricular Dilation (PHVD) Drug Trial Group 
tested acetazolamide plus furosemide treatment. In that 
trial, the combination resulted in higher rates of morbid-
ity and did not decrease the need for a permanent shunt 

placement [76]. At the 1  year follow up, there was no 
difference in shunt placements but the group did report 
an increase in neurological morbidity [77]. A defini-
tive Cochrane database review by Whitelaw et  al. [43] 
and another study reported no difference in mortality or 
permanent shunt placement [78, 137]. Intraventricular 
thrombolytic agents, including recombinant tissue plas-
minogen activator (rtPA) [138], streptokinase [73, 75, 
139], and urokinase [140], have been tested but are also 
not recommended for clinical use [78]. The two rand-
omized studies testing streptokinase reported no differ-
ence in rates of shunt dependent hydrocephalus and also 
increased concerns about the development of meningitis 
and secondary IVH [75, 139].

Recently, a phase one clinical trial for the use of 
PNEUMOSTEM®, human umbilical cord blood derived 
mesenchymal stem cells, in preterm infants with 
grade III–IV IVH was completed. The primary out-
come is unexpected death or anaphylactic shock and 
the secondary outcome is death or the development of 
shunt dependent hydrocephalus; results are pending 
(NCT02274428). The same group is now enrolling infants 
in a follow up study (NCT02673788). In related work, 
multiple clinical trials are underway or being analyzed to 
determine the effects of mesenchymal stem cells on the 
development of bronchopulmonary dysplasia in preterm 
infants (NCT01828957; NCT01897987; NCT02381366; 
NCT0244396).

In contrast to pharmaceutical treatments, trials that 
have attempted to physically wash out blood and other 
substances have shown more positive results [72, 141, 
142]. Drainage and irrigation of the ventricles in the 
DRIFT (Drainage, Irrigation, and Fibrinolytic Therapy) 
randomized control trial did not decrease mortality or 
the need for permanent shunt insertion at 6  months, 
and the study was stopped early due to an increase the 
incidence of secondary intraventricular bleeding [72]. 
However, at 2 years, the DRIFT group had reduced rates 
of severe cognitive disability and death compared to the 
standard care group [141]. These results underscore the 
need for long term cognitive assessments in addition to 
near term outcomes such as shunt placement.

At this time, short-term temporizing procedures are 
often the first step in the clinical treatment of PHH, since 
the longevity of the condition may still be in question 
and, from a technical standpoint, the size of the neonate 
may preclude longer-term strategies such as permanent 
CSF shunting. Temporary surgical treatments include 
VADs, EVDs, VSG shunts, and lumbar punctures. Many 
studies have compared these treatment options but no 
clear results have emerged (reviewed in [78, 143, 144]). 
A recent prospective cohort study by the Hydrocepha-
lus Clinical Research Network (HCRN) reported no 



Page 8 of 22Koschnitzky et al. Fluids Barriers CNS  (2018) 15:11 

difference in the rate of permanent shunt placement 
between EVDs or VSG shunts (SOPHH, NCT01480349) 
[145].

In future studies, morbidity, mortality, permanent 
shunt placement, and infection risk should all be consid-
ered as important factors. However, the timing of these 
interventions may have a greater impact on outcomes 
than the type of treatment. In one study, early treatment 
(based on ventricular index) with either reservoir place-
ment or lumbar puncture was safe, effective, resulted in 
lower rates of permanent shunt placement, and reduced 
moderate-to-severe disability [146]. The results of a ran-
domized control trial, the Early versus Late Ventricular 
Intervention Study (ELVIS, NCT00875758), are currently 
being analyzed.

Lessons from adult intracerebral and intraventricular 
hemorrhage clinical trials
In adults, IVH occurs as an extension of an initial intrac-
erebral hemorrhage (ICH) with IVH occurring in about 
40% of ICH cases [147, 148]. IVH size and degree of 
extension through the ventricular system predict poor 
outcomes and mortality [11, 149, 150]. Hydrocepha-
lus develops in two-thirds of adult IVH cases and is an 
independent risk factor for poor neurological outcome 
[11, 12]. While both neonatal and adult IVH arise from 
parenchymal hemorrhage, the underlying causes dif-
fer between premature neonates (rupture of immature 
germinal matrix blood vessels) and adults (e.g., hyper-
tension, amyloid angiopathy, anti-coagulant use; [151]). 
However, information from IVH in adults may inform 
neonatal studies.

In adults, ICH/IVH treatment has focused on three 
main approaches: limiting bleeding, clot removal, and 
reducing secondary brain injury. Hemostatic therapy 
(e.g., Factor VIIa, FAST trial NCT00127283; Tranexamic 
acid, TRAIGE trial, NCT02625948; platelet transfu-
sion, PATCH trial, NCT02187120) and reducing blood 
pressure (e.g., ATACH, NCT01176565; INTERACT, 
NCT00716079) have undergone clinical trials to limit 
continued bleeding (clot expansion) in the early phase 
(< 24 h) after ICH. Although some of these studies have 
reported statistically significant effects on limiting bleed-
ing, there has yet to be definitive evidence of improved 
outcomes [152–160].

The second therapeutic approach has centered on 
parenchymal or intraventricular clot removal. For ICH, 
standard surgical evacuation has not shown statistical 
benefit (e.g. STICH II trial, NCT01320423) and there is 
interest in using minimally invasive surgery (MIS) with 
or without tissue rtPA to lyse the clot (MISTIE II trial, 
NCT01827046; ICES trial, NCT00224770; ENRICH trial, 
NCT02880878) [161–163]. Evidence indicates that MIS 

is safe but whether it improves outcomes after ICH is still 
uncertain [162].

As in the premature population, a number of trials 
for adult ICH patients with IVH have combined EVD 
placement with administration of thrombolytic agents. 
A number of systematic meta-analyses have reported 
decreased mortality using this combination versus exter-
nal ventricular drain (EVD) alone [164, 165]. Khan et al. 
[165] also reported a reduction in permanent shunt 
placement with the combination therapy while a non-
significant reduction was reported by Gaberel et al. [164]. 
The recent large CLEAR III trial (NCT00784134) evalu-
ated EVD with rtPA administration vs. EVD with saline 
in IVH patients. There was no significant improvement 
in the primary outcome measure (modified Rankin 
Score), but there was a significant reduction in mortality 
compared to EVD + saline [166]. There is debate about 
whether the particular thrombolytic (urokinase vs. rtPA) 
used to remove the clot is important [164, 165]. Two 
subsequent meta-analyses have been performed which 
include the results of the CLEAR trial [167, 168]. Wang 
et al. [88] reported that benefit of intraventricular throm-
bolysis (IVT) + EVD vs. EVD alone is limited to a reduc-
tion in mortality at the expense of an increased number 
of survivors with moderately-severe to severe disability; 
subgroup analyses did not suggest an advantage of uroki-
nase over rtPA. In a recent meta-analysis and systematic 
review, Baker et  al. [167] reported that intraventricular 
thrombolytic therapy for IVH resulted in reduced mor-
tality and potentially better functional outcomes as meas-
ured by the modified Rankin Scale or Glasgow outcome 
scale.

Other newer minimally invasive approaches to adult 
IVH studied in small clinical trials include endoscopic 
surgery and controlled lumbar drainage for prevention 
of permanent shunt dependency. A randomized trial of 
combined IVT with lumbar drainage vs. IVT alone for 
prevention of permanent shunt dependency after ICH 
with severe IVH was stopped following interim analysis 
after 30 patients due to significant efficacy of the tested 
intervention [169]. A meta-analysis comparing neu-
roendoscopic surgery combined with EVD versus com-
bination EVD plus IVT reported significant benefits in 
survival, functional outcomes, hematoma evacuation 
rates, and need for shunt placement in favor of endo-
scopic techniques [170]. These promising techniques 
will require large-scale validation with standardized 
protocols.

Compared to cerebral ischemia [171], there have been 
relatively few clinical trials of neuroprotectants to reduce 
ICH/IVH-induced secondary brain injury including 
hydrocephalus [151, 152]. As yet, those trials have not 
shown any statistical benefit. Iron, from hemoglobin, is 
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one potential clot-derived neurotoxic factor [151]. Cur-
rently, there is a phase II clinical trial for deferoxamine, 
an iron chelator (iDEF; NCT02175225) and minocycline 
(MACH; NCT01805895, [172]), an anti-inflammatory 
agent that also chelates iron [173]. Additional promis-
ing therapies tested in small pilot clinical trials include 
fingolimod, which may reduce progression of perihema-
tomal edema [174], and transcription factor peroxisome 
proliferator-activated receptor gamma (pioglitazone) 
which augments phagocytosis and modulates oxidative 
stress and inflammation (SHRINC; NCT00827892) [175].

With the exception of early clot expansion, where there 
is little data in the neonate, there are similarities in the 
approaches being examined in the adult and neonate. It is 
hoped that information from each age group may help in 
devising better ways for hematoma removal and reducing 
the impact of clot-induced, or derived, harmful factors.

Workshop recommendations: key areas 
for research and intervention
The development of PHH of prematurity involves a series 
of events resulting in multiple, simultaneous injury pro-
cesses. Correctly predicting who is at risk, determining 
key time-points and targets for early interventions, and 
understanding the long-term effects of PHH are essential 
for preventing, minimizing, or reversing the development 
of hydrocephalus and improving long-term outcomes. 
During the workshop, key areas for research and inter-
ventions were identified and discussed (Fig. 2).

Early identification
To optimize clinical management, it is essential to iden-
tify the premature neonates who are at highest risk of 
developing IVH and subsequently PHH. This is a key area 
for future research (Table  2). Many demographic and 
physiological factors are associated with IVH and PHH, 
but there are currently no established predictive models 
of PHH [176–180]. Predicting IVH and PHH with a high 
degree of sensitivity and specificity will improve clinical 
management and prognostication of high risk neonates 
and could be an essential component in the develop-
ment and testing of new therapies. Identified biomarkers 
may provide insights to the pathophysiology of PHH and 
provide new therapeutic targets to prevent or minimize 
the condition. These tools could also be used as selec-
tion criteria for clinical trials testing the efficacy of new 
therapies.

Prevention of hemorrhage
Premature neonates are uniquely susceptible to germi-
nal matrix hemorrhage (GMH) and the germinal matrix 
vasculature is a major target for research (Table  3). 
Determining the tolerance of the germinal matrix to 

fluctuations in cerebral blood flow and the interplay 
between respiratory and cardiac instability and cerebral 
blood flow will help guide clinical management of prema-
ture neonates to reduce the risk of GMH. In addition, a 
more in depth understanding of germinal matrix devel-
opment and physiology will provide new targets for pro-
phylactic therapies aimed at strengthening or otherwise 
modifying the germinal matrix to make it less susceptible 
to hemorrhage. Determining how these therapies affect 
corticogenesis is a critical component and potential bar-
rier to success.

Key Areas for Research and Interven
on
Prior to 
Hemorrhage

Following
Hemorrhage

Following
Hydrocephalus

Early Iden�fica�on of at 
risk infants (Table 2) 

Preven�ng Hemorrhage
(Table 3) 

Preven�ng Blood-induced 
Injury (Table 4)

Preven�ng Secondary 
Injury (Table 5)

Targe�ng Brain Fluid 
Dynamics (Table 6)

Improving Brain 
Development & Long-
Term Outcomes (Table 7)

Improving 
Clinical Prac
ce

Improving Clinical 
Management & Clinical 
Trial Design (Table 8)

Fig. 2  Key areas for research and intervention. A schematic of the key 
areas for research and intervention identified during the workshop

Table 2  Early identification: research targets

Identifying genetic risk factors

Identifying susceptibility/risk factors of IVH and PHH

Identify diagnostic, prognostic, predictive, and monitoring biomarkers 
(e.g., molecular, cellular, imaging biomarkers)

Developing a prognostic scale
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Prevention of blood‑induced injury
Once IVH occurs, blood and blood-derived products 
cause damage to the surrounding tissue. Developing 
methods to reduce such injury is a major research target 
(Table 4). Multiple labs have already identified key blood 
components, such as iron and lysophosphatidic acid 
(LPA), that can independently cause ventriculomegaly 
and progressive hydrocephalus [3, 67, 181–186]. Deter-
mining the mechanism(s) of action on both the ventricu-
lar ependyma and choroid plexus epithelia may allow the 
development of targeted therapies, such as iron chelation, 
LPA receptor antagonism, or reducing LPA production. 
Ependymal damage after IVH may be a cause of further 
injury by allowing blood and blood components direct 
access to underlying tissue and by affecting fluid flow 
within the brain [71]. As stated earlier, the choroid plexus 
is the site of the blood–CSF barrier and the primary site 
of CSF secretion. Alterations in either of these functions 
may exacerbate brain injury and alter fluid dynamics in 
the brain after IVH [66].

Careful time-series experimentation will be required 
to determine if there is a critical time window post-IVH 
in which these therapies are effective and if the timing 
can be achieved in a clinical setting. In addition, early 
blood evacuation with or without the use of thrombo-
lytic agents may reduce damage and improve outcomes. 
Forthcoming results from the ELVIS trial should help 
clinical decision making. Active clearance of the blood 
clot remains a promising avenue for research. It may also 
be possible to speed up endogenous processes, such as 
macrophage clearance of the clot, that do not result in 
the release of additional blood products.

Prevention of secondary injury
Prevention or reduction of secondary injury pro-
cesses and the damage caused by hydrocephalus are 

active areas of research, with multiple research targets 
(Table 5), and may have broad implications for prevent-
ing or minimizing the effects of hydrocephalus for many 
etiologies. Immediately after hemorrhage, blood coagu-
lation begins through a cascade that activates thrombin 
[187, 188] and results in subarachnoid fibrosis and dis-
ruption of cerebrospinal fluid dynamics [58, 189–194]. 
Modulation of neuro-inflammatory pathways has thus 
been suggested as a strategy for mitigating the effects 
of IVH and potentially preventing the development 
of PHH. CSF levels of interleukin (IL)-1β, IL-6, IL-8, 
IL-18, transforming growth factor (TGF)-β1 and -β2, 
tumor necrosis factor (TNF)-α, and other cytokines and 
chemokines have all been implicated in PHH [194–200]. 
In a recent study by Habiyaremye et  al. [201], XCL-1 
was decreased in the CSF of neonates with PHH. Lev-
els of CCL-19, IL-1α, IL-1β, IL-12, and CCL-3 were ele-
vated but only absolute CCL-19 levels correlated with 
levels of CSF nucleated cells, neutrophils, and lympho-
cytes [201]. In addition, non-protein bound iron likely 
remains a source of injury well after the initial bleed [3, 
182, 185, 202].

Recent studies have focused on reducing subarach-
noid fibrosis and periventricular astrogliosis by targeting 
inflammatory and other signaling cascades and have had 
positive results in animal models [194, 203–205]. Other 
neuroprotective attempts to modulate calcium cytopa-
thology have shown limited improvements [134, 206, 
207]. As opposed to molecular targets, the results of the 
DRIFT trial suggest that ventricular drainage and irriga-
tion to remove toxic substances, such as free iron and 
pro-inflammatory cytokines, provides long-term ben-
efits [141]. To date, this is the only intervention that has 
improved outcomes in PHH in a randomized trial.

For treatment of both blood-induced injury and sec-
ondary injuries, the specificity of the compounds, mode 
of administration, dosing, toxicity, and proof of target 
engagement will become extremely important as thera-
pies move toward first in human trials (see section: 
“Moving basic science discoveries into clinical prac-
tice”). The identification of potential therapeutic agents 
would be accelerated if appropriate in vitro preparations 
were developed that could be used for high-throughput 
screening of new or repurposed compounds.

Table 3  Preventing hemorrhage: research targets

Determining the tolerance of the germinal matrix to respiratory and 
cardiac instability

Understanding the development of the germinal matrix

Understanding the physiology of the blood/ventricular barrier of the 
germinal matrix

Determining how to modify the germinal matrix vasculature without 
altering corticogenesis

Table 4  Preventing blood-induced injury: research targets

Identifying mechanisms of toxicity

Elucidating the effects of IVH on ventricular ependymal and choroid 
plexus epithelium

Developing targeted therapeutics

Determining how to clear the blood clot rapidly and safely

Table 5  Preventing secondary brain injury: research tar-
gets

Therapeutic modulation of neuroinflammation

Preventing fibrosis

Preventing ependymal damage

Minimizing edema
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Targeting brain fluid dynamics
IVH in premature neonates can result in altered brain 
fluid dynamics and hydrocephalus. Increased intracranial 
pressure (ICP) and hydrocephalus can cause additional 
damage through hypoxia, ischemia, and mechanical 
stress [58, 207–214]. This damage is especially apparent 
in white matter tracts [214–221]. Temporizing devices 
and permanent shunting can, at least partially, relieve 
these insults, but are only implemented after ventricu-
lomegaly is apparent. Non-surgical methods that alter 
CSF dynamics could be used at earlier time points in iso-
lation or later in conjunction with temporizing devices. 
Current targets for these interventions include phar-
maceutical reduction of CSF production by the choroid 
plexus (reviewed in [134, 222]), increased CSF absorp-
tion (e.g., increase absorption through aquaporin chan-
nels [223–225], especially following IVH [226], as well as 
cranial nerve lymphatics [227]), and improved CSF flow 
(e.g., enhancement of natural processes that repair motile 
cilia). This list, however, also highlights the need for a 
better understanding of the choroid plexus response after 
IVH, alternative routes of CSF production and absorp-
tion, and the role of motile cilia in the development of 
hydrocephalus after hemorrhage. Strengthening cell–cell 
junctions between ependymal cells might also prevent or 
delay ventriculomegaly by maintaining ependymal integ-
rity and increasing the total resistance of the ependymal 
layer [71, 228].

Although much research is still needed on CSF dynam-
ics (Table 6), IVH and subsequent injury may also impact 
interstitial flow within the brain parenchyma. The 
recently proposed brain glymphatic system describes 
a pathway for fluid movement between CSF and brain 
parenchyma and within the parenchyma itself [229]. How 
IVH affects such movement is an important research 
question.

Understanding brain development and long‑term 
outcomes after IVH
Premature neonates with Grade III or IV IVH are at a 
higher risk of poor neurodevelopmental and cognitive 
outcomes than preterm neonates without IVH or who 
have Grade I or II IVH [7, 230]. It is not clear if the devel-
opment of progressive hydrocephalus significantly adds 

to this burden [30], but it is likely that the injury mech-
anisms involved in the development of PHH overlap 
with those related to neurodevelopmental and cognitive 
outcomes.

For the PHH population, improving long-term neu-
rodevelopmental and cognitive outcomes is very impor-
tant and should be a primary focus in clinical trials [231]. 
Understanding how blood products, destruction of 
the ependymal layer, and inflammatory processes alter 
brain maturation will be important for the development 
of rehabilitation strategies. Normalized brain develop-
ment and function after therapeutic interventions could 
serve as additional markers of efficacy beyond the pri-
mary outcome measure of permanent shunt placement. 
For example, recent findings of altered CSF proteins 
[129–131, 152] and impaired adherens junctions in dis-
rupted ventricular and subventricular zones [71] could 
be targeted and have long-lasting neurodevelopmental 
consequences. In the near term, ventricular drainage 
and irrigation may minimize the secondary damage that 
occurs soon after and in the months following a brain 
bleed, minimizing the need for additional therapies [141].

Improving functional outcomes is a priority for the 
hydrocephalus community and must become a priority in 
research [231]. Longitudinal clinical studies are needed 
to investigate the long-term neurobehavioral outcomes 
of PHH, ranging from the infant/toddler stage through 
adulthood. For patients with shunted hydrocephalus, it 
is important to study the longer term, cumulative effects 
of altered CSF dynamics along with periodic brain com-
pression and increased ICP due to shunt malfunction on 
cognition and other measures of quality of life. Other 
areas of particular interest include the impact of non-sur-
gical (e.g., occupational, speech, physical therapies) and 
surgical (CSF shunt management) treatments. For such 
long-term studies, the development of optimal psycho-
metric and imaging-based instruments is a logical prior-
ity. Research priorities in relation to brain development 
and long-term outcomes after IVH are given in Table 7.

Improving clinical management and clinical trials
Focus on the clinical management of preterm neonates 
has intensified in recent years in parallel with advances in 
obstetrics and newborn medicine. Identifying and imple-
menting best practices as well as testing the benefit, or 
lack thereof, of new techniques and therapies is an essen-
tial part of this process. However, in published work, sub-
stantial variability exists in the study populations as well 
as diagnosis and treatment thresholds, making compari-
sons between studies difficult.

Standardizing clinical protocols through quality 
improvement methodologies and/or clinical trials has 
become a priority for the field but more work needs to 

Table 6  Fluid dynamics: research targets

Understanding and targeting CSF fluid production

Understanding and targeting alternative routes for CSF absorption

Understanding and targeting CSF and brain interstitial fluid flow

Understanding changes in barrier function after IVH

Understanding and targeting ependymal cell–cell junctions
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be done. An early report from the HCRN demonstrated 
substantial variation in the treatment of PHH, even 
within this coordinated network [232]. In 2014, evidence-
based guidelines for the management of PHH were pub-
lished and provided specific recommendations while 
also identifying larger areas of uncertainty [78]. Wellons 
et al. [145] recently published the results of the HCRN’s 
Shunting Outcomes in Post-Hemorrhagic Hydrocepha-
lus (SOPHH), which compared two of the most common 
neurosurgical treatments for PHH, and, while no differ-
ence was found between the two treatments, SOPHH 
provides an excellent starting point for standardizing the 
diagnosis and treatment of PHH [145].

Study protocols also need to be standardized. Cur-
rently, research groups use different study populations 
and inclusion criteria (e.g., preterm vs. very preterm, 
low birth weight, very low birth weight, or IVH grade) as 
well as different diagnosis and treatment thresholds. As 
a first step, common classification data including gesta-
tional age at birth, weight at birth, and IVH grade should 
be collected in every study and, when possible, standard 
inclusion and exclusion criteria should be used.

Establishing standardized criteria for PHH diagnosis 
and treatment thresholds (e.g., physical criteria, ventric-
ular size parameters, CSF and imaging biomarkers, etc.) 
will also help simplify the interpretation of comparative 
effectiveness research examining available treatments 
(e.g., CSF shunting versus ETV ± CPC) and studies test-
ing emerging therapeutics. Outcome measures (e.g., ven-
triculomegaly, progressive hydrocephalus, symptomatic 
hydrocephalus, or permanent shunt placement) also need 
to be standardized and used consistently.

Standardizing clinical management and study pro-
tocols for preterm neonates is essential as new surgical 
and non-surgical strategies are developed. With power-
ful, multi-institutional and multi-dimensional clinical 
trial infrastructure, the collective efforts of committed 
investigators can be leveraged to address critical clinical 
questions relevant to the diagnosis and treatment of PHH 
over both the short- and long-term. Research priorities in 
relation to clinical management and clinical studies after 
IVH are given in Table 8.

Moving basic science discoveries into clinical 
practice
The workshop was designed to identify areas of oppor-
tunity and spur research efforts for PHH of prematurity, 
but the ultimate goal is to prevent IVH and PHH of pre-
maturity or prevent associated brain injury. The process 
of moving basic science discoveries into clinical trials 
and then standard clinical practice, however, is slow and 
inefficient. During the workshop, participants identified 
multiple areas that could be improved and opportunities 
to speed up the transition from basic research to clinical 
trials.

Choosing the appropriate model
There is a wide range of animal models used for research 
in PHH of prematurity and germinal matrix hemorrhage 
(reviewed in [233, 234]), and no single animal model 
will be suitable for all biological questions. Most studies 
involve experimental induction of IVH in mice [67, 191, 
235], rats [182, 185, 202, 236–243], rabbits [244–250], 
cats [251], dogs [252, 253], sheep [254], and pigs [255–
258]. While the majority of these in  vivo studies have 
employed intraventricular injection of whole blood or 
blood products, others have used alternative approaches 
[67, 247, 259–261]. In vitro models of IVH have also been 
used [262, 263]. Before studies begin, animal models 
should be reviewed to determine the model most suitable 
for the outcomes being measured, the clinical relevance 
of each model, and whether multiple animal models will 
be needed if the initial studies are positive [233, 234]. In 

Table 7  Brain development and  long-term outcomes 
after IVH: research targets

Determining if PHH is associated with worse long-term neurodevelop-
mental, cognitive, and motor deficits compared to IVH and prematurity

Determining how damage to motile and primary cilia affects brain 
development

Understanding how cell proliferation from the ventricular and subven-
tricular zones are altered after IVH

Identifying and targeting the mechanisms responsible for changes in cell 
proliferation

Linking neurodevelopmental and cognitive deficits to altered brain 
function

Developing targeted rehabilitation strategies for preterm neonates with 
IVH and PHH.

Determining mechanisms of tissue repair after PHH and how to enhance 
it

Determining the benefits of stem cell therapies on long-term outcomes

Determining impact of non-surgical interventions on long-term out-
comes

Developing optimal psychometric and imaging-based instruments

Table 8  Clinical management and clinical trials: targets

Developing standardized management and treatment protocols

Implementing standardized management and treatment protocols

Collecting common classification data (e.g., gestational age at birth, birth 
weight)

Using common study inclusion/exclusion criteria when possible

Developing standardized diagnosis criteria/definitions

Developing standardized treatment criteria/definitions

Developing standardized outcome measures/definitions
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addition, experimental parameters such as mode of IVH 
induction, intraventricular volume changes, and develop-
mental age of animal models should be addressed when 
interpreting the results.

Streamlining preclinical research
There is a paucity of studies on non-surgical therapies in 
PHH and one goal is to increase this number and move 
these therapies into clinical trial. However, the litera-
ture is littered with clinical trials that proved to be costly 
failures. To avoid these mistakes, it is imperative that 
investigators conduct preclinical research at the high-
est standards of scientific rigor and demonstrate robust 
reproducibility. It is difficult for one lab or investiga-
tor to conduct all of the experiments necessary, but it is 
possible to streamline these efforts through the use of 
standardized protocols and active collaboration. In addi-
tion, publication of negative data would benefit the entire 
research community.

In addition to the success or failure of an experiment or 
series of experiments, there are other common stumbling 
blocks in the development of novel treatments. Many are 
related to the compound itself including its safety profile, 
metabolism, and tissue distribution. Mode of delivery can 
also prevent promising therapies from moving forward. 
On the business side, compound manufacturing, licens-
ing, and commercialization are issues in which many 
investigators are not versed but can prevent a therapy 
from coming to market [264, 265]. Early identification 
of these issues can help investigators design meaningful 
translational studies.

Available resources for preclinical research
Private and public organizations provide useful resources 
to guide preclinical research. The Operation Brain 
Trauma Therapy (OBTT) consortium has published 
a framework for preclinical drug screening and could 
be a useful model for PHH research [266]. In addition, 
the National Institutes of Health (NIH) have devel-
oped general guidelines to improve scientific rigor and 
reproducibility (https://www.nih.gov/research-training/
rigor-reproducibility/principles-guidelines-reporting-
preclinical-research). The RIGOR guidelines and Stroke 
Therapy Academic Industry Roundtable (STAIR) recom-
mendations have been developed for preclinical studies 
focused on stroke therapies [267–269]. These guidelines 
and recommendations are highly applicable to PHH 
research.

The National Institute of Neurological Disorders and 
Stroke (NINDS) has also developed programs to stream-
line preclinical therapeutic development (https://www.
ninds.nih.gov/Current-Research/Research-Funded-
NINDS/Translational-Research). For early-stage 

development, NINDS has created the IGNITE (Innova-
tion Grants to Nurture Initial Translational Efforts) Pro-
gram that include: (1) funding opportunities for assay 
development and screening potential therapeutic agents, 
(2) therapeutic agent characterization (pharmacokinet-
ics, pharmacodynamics and in  vivo efficacy studies for 
small molecules, biologics and biotechnology products 
and (3) the development and validation of animal mod-
els, model systems and/or pharmacodynamic markers. 
Additional information about this program can be found 
here: https://www.ninds.nih.gov/Current-Research/
Research-Funded-NINDS/Translational-Research/
Funding-Programs-Researchers/IGNITE.

For later-stage biologic and biotechnology products, 
NINDS has established the CREATE Bio (Cooperative 
Research to Enable and Advance Translational Enter-
prises for Biologics) program that includes an optimiza-
tion track (agent optimizations) and a development track 
(IND enabling and optional small first in human Phase 1 
clinical trials) funding opportunities (https://www.ninds.
nih.gov/Current-Research/Research-Funded-NINDS/
Translational-Research/CREATE-BIO). For later-stage 
drug development, NIH established the NIH Blueprint 
Neurotherapeutics Network (BPN) providing support for 
small molecule discovery and development (https://neu-
roscienceblueprint.nih.gov/bpdrugs/).

The Food and Drug Administration (FDA) also provides 
guidelines for good laboratory practices (GLP) which 
need to be followed for medical product development 
for preclinical trials (http://www.accessdata.fda.gov/
scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=58). 
Researchers should understand the guidelines and work 
with their institutions to establish GLP practices early in 
the drug development process. Resources are also avail-
able through the Alzheimer’s Drug Discovery Foundation 
that cover topics from central nervous system drug dis-
covery through commercialization (https://www.science-
exchange.com/group/addf-access/resources#catList).

Conducting clinical trials
Conducting clinical trials in PHH of prematurity pre-
sent a number unique challenges. Extreme prematurity, 
very low birthweight, and medical comorbidities as well 
as often complex social issues all contribute to the vul-
nerability of this population. Thus, clinical studies must 
be held to the highest standards of good clinical practice 
(GCP), institutional human research protection offices, 
and federal agencies such as the NIH and FDA.

Despite its high prevalence within newborn medicine 
and hydrocephalus in general, PHH is relatively uncom-
mon at any individual institution. Multi-institutional 
platforms are therefore critical to conducting meaning-
ful human studies research in PHH. In addition to the 
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HA-supported HCRN, the NIH has worked to develop 
infrastructure for clinical studies for conditions like PHH. 
NINDS established the Network for Excellence in Neuro-
science Clinical Trials (NeuroNext) that consists of one 
Clinical Coordinating Center (CCC), a Data Coordinat-
ing Center (DCC), and 25 Clinical Sites located through-
out the United States (https://www.neuronext.org/). The 
standardized and accessible infrastructure of NeuroNext 
was designed to efficiently and rapidly conduct explora-
tory phase I and II clinical trials as well as biomarker vali-
dation studies.

Through the National Center for Advancing Trans-
lational Sciences (NCATS), the NIH also has impor-
tant resources for early and late phase studies designed 
to repurpose drugs developed for other conditions 
(https://ncats.nih.gov/preclinical/repurpose). For exam-
ple, the Molecular Libraries Small Molecule Repository 
(MLSMR) has over 350,000 compounds. Taking advan-
tage of these resources can accelerate the process of ther-
apy development.

Role of the Hydrocephalus Association
The HA can play a central role in accelerating hydro-
cephalus research by serving as a link between the two 
HA-supported clinical networks, the Hydrocepha-
lus Clinical Research Network (HCRN.org) and Adult 
HCRN (AHCRN.org), the basic and translational 
researchers involved with the HA Network for Discov-
ery Science (HANDS, HANDS.hydroassoc.org), and the 
patient community through the HA Patient Powered 
Interactive Engagement Registry (HAPPIER, hydroas-
soc.org/happier). HANDS is designed to support basic 
and translational research by directly funding research 
studies, building shared infrastructure, and convening 
workshops and conferences. HANDS is also a platform 
for improving communication between researchers and 
developing new research collaborations. HAPPIER is a 
patient reported database. The survey data generated 
through HAPPIER can be used by researchers. In addi-
tion, researchers can work with HA to send out new sur-
veys and also to recruit patients for clinical trials. The HA 
will continue to develop and modify research programs 
to best serve the hydrocephalus research community as 
well as continue advocacy efforts to increase the avail-
ability of federal funding for hydrocephalus research.

Conclusions
Intraventricular hemorrhage and posthemorrhagic 
hydrocephalus is a potentially devastating condition in 
premature neonates with no effective non-surgical thera-
pies. The Hydrocephalus Association Posthemorrhagic 
Hydrocephalus Workshop identified many important 

areas for future research to help produce a pathway for 
reducing the occurrence and effects of PHH.
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