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Purpose  

 To study the variability in volume change estimates of pulmonary nodules due to 

segmentation approaches used across several algorithms and to evaluate these effects 

on the ability to predict nodule malignancy. 

 

Methods  

 We obtained 100 patient image datasets from the National Lung Screening Trial 

(NLST) that had a nodule detected on each of two consecutive low dose computed 

tomography (LDCT) scans, with an equal proportion of malignant and benign cases (50 

malignant, 50 benign). Information about the nodule location for the cases was provided 

by a screen capture with a bounding box and its axial location was indicated. Five 

participating Quantitative Imaging Network (QIN) institutions performed nodule 

segmentation using their preferred semi-automated algorithms with no manual 

correction; teams were allowed to provide additional manually corrected segmentations 

(analyzed separately). The teams were asked to provide segmentation masks for each 

nodule at both time points. From these masks, the volume was estimated for the nodule 
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at each time point; the change in volume (absolute and percent change) across time 

points was estimated as well. 

      We used the concordance correlation coefficient (CCC) to compare the similarity of 

computed nodule volumes (absolute and percent change) across algorithms. We used 

Logistic regression model on the change in volume (absolute change and percent 

change) of the nodules to predict the malignancy status, the area under the receiver 

operating characteristic curve (AUROC) and confidence intervals were reported. 

Because the size of nodules was expected to have a substantial effect on segmentation 

variability, analysis of change in volumes was stratified by lesion size, where lesions 

were grouped into those with a longest diameter of <8mm and those with longest 

diameter ≥ 8mm.  

 

Results  

 We find that segmentation of the nodules shows substantial variability across 

algorithms, with the CCC ranging from 0.56 to 0.95 for change in volume (percent 

change in volume range was [0.15 to 0.86] ) across the nodules. When examining 

nodules based on their longest diameter, we find the CCC had higher values for large 

nodules with a range of [0.54 to 0.93] among the algorithms, while percent change in 

volume was [0.3 to 0.95]. Compared to that of smaller nodules which had a range of [-

0.0038 to 0.69] and percent change in volume was [-0.039 to 0.92].  The malignancy 

prediction results showed fairly consistent results across the institutions, the AUC using 

change in volume ranged from 0.65 to 0.89 (Percent change in volume was 0.64 to 

0.86) for entire nodule range. Prediction improves for large nodule range (≥ 8mm) with 

AUC range 0.75 to 0.90 (percent change in volume was 0.74 to 0.92). Compared to 

smaller nodule range (<8mm) with AUC range 0.57 to 0.78 (percent change in volume 

was 0.59 to 0.77).  

 

 

Conclusions  

 We find there is a fairly high concordance in the size measurements for larger nodules 

(≥8mm) than the lower sizes (<8mm) across algorithms. We find the change in nodule 
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volume (absolute and percent change) were consistent predictors of malignancy across 

institutions, despite using different segmentation algorithms. Using volume change 

estimates without corrections shows slightly lower predictability (for two teams). 

 

 

 

 

 

 

 

 

 

 

 

1. INTRODUCTION 

 Lung cancer is the leading cause of cancer deaths in the US (1). However, early 

detection with low dose CT (LDCT) was shown to reduce lung cancer specific mortality 

by the National Lung screening Trial (NLST) (2). These effects are also being 

investigated in another ongoing international effort, the Dutch-Belgian randomized lung 

cancer (NELSON) Trial (3).  Specifically, the results of NLST study showed a 20% 

relative reduction in lung cancer related mortality compared with screening using chest 

radiography (4). This resulted the Center for Medicare and Medicaid Services (CMS) to 

recommend the use of low dose CT for lung cancer screening (5).  Other organizations, 

such as the American College of Radiology (ACR) followed suite to provide resources to 

those centers wishing to perform imaging  studies (6). Though the use of LDCT led to 

the detection of more nodules compared to chest radiographs, and which may aid early 

diagnosis of lung cancer, but the trial also showed higher incidence of false positives 

(7).     

Identification of a nodule on an LDCT screening exam can represent a positive 

image finding based on the size of the nodule, which may then be followed up by a 
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secondary confirmation procedure to determine malignancy of the nodule. To date 

clinically, screen detected positivity is based on size of the nodule; for example in the 

ACR Lung CT Screening Reporting and Data System (Lung-RADS), solid nodules with 

a diameter <6mm are considered to be negative, risk cannot be ascertained or Lung-

RADS category 1(8) . Estimating the size of these lung nodules during the screening 

intervals is an important clinical factor in the determination of patient’s follow-up 

procedure. Recent studies have shown the utility of tumor volume as a better estimator 

of tumor growth (9) and it has shown to be more useful than the conventional 

unidimensional (diameter) measurements. It has been suggested that doubling time 

based on nodule volume may also be used as a predictive measure of malignancy (10). 

Recently doubling time was used to suggest a  risk stratification for screening patients 

(11).   

 It is essential to accurately measure the nodule size, which can have direct 

clinical implications, including the selection of treatment procedures. There have been 

many studies that focused on nodule size estimation in the past (12, 13), which 

investigated the bias and variability issues in the size measurements. 

In an effort to quantify variability among different segmentation algorithms to delineate 

the nodules identified over two screening intervals, we proposed a multi-institutional 

study with members of the Quantitative Imaging Network (QIN) to estimate variability in 

size/volume estimation using their preferred methods using current advancements in 

segmentation methods.  We hypothesize that any fixed biases that may exist in single 

time point segmentations for a method would be offset with a subsequent segmentation 

and computing change estimates, in size/volume for a nodule. 

 

In this study, we used the data from the National Lung Screening Trial (NLST) 

and assembled a cohort of patients with nodules that were identified across screening 

time points (7,8). We had five participating sites (MCC/USF: Moffitt Cancer 

Center/University of South Florida, CUMC: Columbia University Medical Center, 

UMICH: University of Michigan, DFCC: Dana Farber Cancer Center, UCLA: University 

of California at Los Angeles) that used different segmentation algorithms for performing 

the nodule delineation, and two additional sites participating with their analytics 
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expertise (SU:Stanford University, MGH:Massachusetts General Hospital). The teams 

were allowed to use local expertise and preferred segmentation procedures and report 

back the segmentation masks. 

 In our analysis we evaluated similarity in the segmentations by computing the 

concordance correlation on the volume and change in volume estimations across the 

five participants. We then built independent prediction model using logistic regression to 

relate volume change and percent volume change estimates obtained from the 

segmentation masks to the nodules malignancy status. We then compared ability of 

each site’s volume estimates (and change in volume) to predict the malignancy using 

Area Under the receiver operating characteristic Curve or AUC. We further divided the 

cohort based on nodule size ranges (baseline size ≥ 8mm, < 8mm) and repeated the 

predictive analysis based on the nodule volumes and change in volumes across time. 

Our study work flow is shown in Figure 1  with an example pulmonary nodule across 

time points. 

2. MATERIAL AND METHODS  

 

2.1 NLST Study Design and data access  

   The National Lung Screening Trial was the largest clinical trial in the U.S with an 

enrollment of 53,439 participants, of which half the population was randomly assigned 

to LDCT study arm and the other half was randomized to chest radiography. The 

participants were between 55 to 74 years of age and were high risk individuals that 

were either current or former smokers with a 30+ pack-year smoking history (former 

smokers had to have quit smoking in the last 15 years).  These participants were 

enrolled across 33 U.S institutions and were screened at baseline (T0) and annually for 

two additional years (T1 and T2).  For those participants randomized to the CT arm of 

the study, a low dose lung cancer screening CT was performed according to a specified 

imaging protocol (14). The study defined a positive screen as a non-calcified nodule 

(NCN) ≥ 4mm in diameter. The NLST radiologist reported the location, composition 

(solid, part-solid, ground-glass), margin and other observed characteristics for all 

identified nodules.  

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



7 
 

This article is protected by copyright. All rights reserved 

  The patient records from the NLST were obtained from the CDAS (Cancer Data 

Access System) and the imaging data through the TCIA (The Cancer Imaging Archive), 

after starting a study protocol at the Moffitt Cancer Center. All the participants of the 

study were added to the protocol and the participants of the study executed a data 

transfer agreement (DTA) at their respective institutions with the National Cancer 

Institute (NCI). The study was approved by the University of South Florida’s Institutional 

Review Board (IRB) to lead the investigation at Moffitt Cancer Center and each of the 

participating institutions obtained de-identified patient records, which waives the need 

for individual institutional review.  

 

2.2 Interval Challenge Study Cohort  

    We identified 100 subjects with nodules identified on CT scans at baseline and follow 

up, making a total of 200 CT image datasets. Each selected case had at least one 

nodule that met the NLST protocol guidelines (≥ 4mm) (2). In our study, we selected 

equal number of cases that were confirmed to be cancer and those confirmed to be 

non-cancerous or nodule-positive benign (50 cancer subjects and 50 benign subjects). 

Our resident radiologists verified the NLST provided information for the entire cohort 

used for the study. The cases included in the study were followed across available 

screening intervals and were verified the location on the scan. We selected one nodule 

per patient that had largest measured diameter following the NLST study criteria (≥ 

4mm).  For the benign cases, we used the baseline and the follow up scans to identify 

stable (non-growing) nodules in the cohort. The nodule size distribution is shown in 

Table 1 .  

    The identified nodule in the study cohort was provided to the participants with an axial 

slice location (need not be the center) and an identifying box over the nodule. The 

clinical diagnosis and exact coordinates including nodule centers were not disclosed. 

This was done to avoid potential bias in the segmentation procedures between 

participants. The teams were asked to segment the nodules in each of the 100 cases 

using their preferred segmentation approach. We allowed fully automated or semi-

automated procedures for this effort, where no restriction was placed on the seeding 

information for the teams respective algorithms. We did not allow complete manual 
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segmentation procedure in this study. Each participating site agreed to submit at least 

one set of segmentation results without any manual editing of the resulting nodule 

contours. Sites were provided an option to submit additional results where editing of the 

nodule boundaries was allowed and these were analyzed separately. Figure 1b  shows 

two sample patients with diagnosed cancer and benign nodules at two consecutive time 

intervals.  

 

 

  2.3 Multi -Institutional Collaborative Study  

All the participants were part of the quantitative imaging network (QIN) funded 

institutions. Because of the diversity of available tools and approaches, the study group 

collaboratively reached agreement on several key technical details and procedures to 

facilitate the study’s goals. These included agreeing on image data format (DICOM), 

case and nodule information provided to participants (as described above), 

segmentation procedures allowed (as described above), annotation formats allowed 

(DICOM-SEG and NIFTI) as well as an analysis study document describing the study 

analyses to be performed. Although there are number of medical imaging formats being 

available (15). As part of these agreed on procedures, the organizing team withheld the 

diagnostic information and provided approximate location (need not be nodule center) to 

the participants to avoid undue biases in region delineation. The group maintained a 

project description document that outlined the study goals, with an analysis plan. This 

document was hosted on a shared platform at the NCIPHUB (URL below). The teams 

had regular teleconferences to allow interaction among the participants and to follow up 

on the group effort. We first conducted a dry run to make sure the input data and output 

results are compatible across the teams. After successful completion of the trial run, 

data for the cohort was released with screen shots of the nodules and the description on 

the data with the time line.  The teams challenge (or dry run) was conducted and the 

results of the effort were reported back to the NCIPHUB project page. The details of the 

challenge have been made available at the URL: 

https://nciphub.org/publications/20/versions?v=1,while the original data and the 
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delineations are restricted to the participants who executed the National Cancer 

Institute’s Data Transfer Agreement. 

 

2.4 Nodule Segmentation Software and Size Measurement  

We allowed the participating teams to decide on the segmentation procedures. 

Most of the participants had existing research efforts at their respective institutions that 

involved lung nodule segmentation on CT image data. We describe a brief overview of 

the approaches used by each of the participants including any known limitations for their 

approaches.  

Team 1: the first team used semi-automated segmentation procedure customized to 

institutional need based on a commercial medical imaging suite (16), the method needs 

a seed point. The single click segmentation procedure was expanded to ensemble 

procedure to cover the volume region of the nodule, which was done to cover the 

heterogeneous region. There are known challenges with the segmentation method, 

especially when the nodule is attached to pleural wall or the vessel structure. In this 

study we did not correct the semi-automated segmentation output. The procedure has 

been tested and shown an improved performance compared to conventional method 

(radiologist delineation and the level set method).   

Team 2: the second team employed a semi-automatic segmentation algorithm that was 

implemented on the Chest Imaging Platform (CIP) on the 3D Slicer, version 4.5 (17, 18). 

The segmentation algorithm is based on a level-set front propagation from a seed point 

located at the centroid of each nodule. The propagated segmentation was constrained 

to prevent including non-nodular tissues, such as chest wall, airway walls, or regions 

that resembled vessel-like structures. Recently, it was demonstrated that the CIP 

segmentation algorithm can potentially reduce physician workload in nodule 

segmentation by providing reliable preliminary contours as starting point. However, 

manual adjustment of the CIP segmentation may be needed for small nodules and part-

/non-solid nodules with poorly defined boundaries. In this study the automatic output 

was not corrected.  

Team 3: the third team used their in-house segmentation algorithm that has been 

developed based on active contour method and integrated into an imaging analysis 
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platform built upon an open source Weasis (19, 20). The algorithm required the user to 

specify a region-of-interest enclosing the lesion to initiate the segmentation. A marker-

controlled watershed transform was then applied with automatically derived internal and 

external markers, followed by the geometric active contour with a strengthened potential 

well and a volume-preserving mean curvature flow term to evolve the contour to the 

final location. There was no correction allowed for the computer-generated 

segmentation results.  

An experienced radiologist reviewed the computer-generated tumor contours 

overlapped on the axial planes.   Using the editing tools integrated into their Weasis-

based imaging platform, corrected suboptimal contour segments were obtained. The 

team provided additional manual corrected results along with semi-automated 

segmentation boundary.  

Team 4: This team used essentially a semi-automated contouring method. In this 

approach, the user clicks on a voxel located inside the tumor of interest and then drags 

a line to the outside of the tumor (to the background). The voxels along that line are 

sampled and a histogram of intensities (Hounsfield Units) is created. A statistical 

method is employed to determine the threshold that best separates the two distributions 

(tumor and background) in that histogram. Once that threshold is determined, the 

software employs a 3-D (or if selected a 2-D) seeded region growing using the initial 

voxel selected as the point inside the tumor and the threshold determined from the 

histogram analysis. The workflow is such that each contour is automatically stored in a 

database linked to the experiment along with metadata such as patient id, contouring 

individual’s id, etc. Each contoured object has a unique id that is linked to the series uid 

(unique DICOM identifier) to maintain its identity. The software also provides several 

user editing tools such as adding and erasing voxels from the contour, etc. Therefore 

this team provided both the semi-automated segmentation results with no editing as 

well as an additional set of results that employed manual editing of the semi-automated 

segmentation boundary. 

Team 5: The system designed by Team 5 segmented the nodule from its surrounding 

structured background in a local volume of interest identified by a user-input box. Image 

segmentation is then performed automatically with a three-dimensional (3D) active 
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contour (AC) method. The 3D AC model is based on two-dimensional AC with the 

addition of three new energy components to take advantage of 3D information: (a) 3D 

gradient, which guides the active contour to seek the object surface, (b) 3D curvature, 

which imposes a smoothness constraint in the z direction, and (c) mask energy, which 

penalizes contours that grow beyond the pleura or lung field boundary.  The lung field 

segmentation method is designed to be fully automatic; however, if the segmentation is 

unsuccessful they are manually corrected.  Other than the user-input seeding, actual 

nodule region identification is fully automatic. In this reporting, the nodule regions were 

not edited after the run.  Details of the methodology are deferred to the team’s 

publication. 

We decided to maintain anonymity of the participating teams to its algorithm 

choices, so as to avoid any unfair inference of this study results to the individual group’s 

activity. The individual teams published references for the segmentation algorithms are 

collectively provided (17-19, 21-27). We used the LDCT images along with segmented 

masks provided by the teams to compute the volume of the nodule (in pixel units and 

mm3

The analysis plan that was developed to accomplish the study goals was the 

following: (a) The comparison of  segmentations among teams was performed by 

calculating the DICE coefficient (

) and change in volume (absolute and percent change). The nodule measurements 

were carried out by one analysis team, based on the submitted segmentation masks 

this would avoid any biases in volume computations. 

28) between the teams segmentation masks, across 

the patients; (b) The volume comparisons were determined by computing volume from 

the segmentation masks submitted by each team across the study population; (c) the 

change in volume comparisons were carried out by computing volumes difference 

across the time interval for each patient using the masks submitted by each team 

across the study population; both absolute change in volume and percent change in 

volume were evaluated; (d) the predictive analysis was carried out to relate volume 

change (absolute and percent change) to subject’s clinical diagnosis 

(benign/malignant).  For these studies, an ROC analysis was performed using the 

volume change as the predictor and the performance was measure by computing AUC 

and confidence limits for the predictor; (e) finally, dependency due to nodule size was 
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evaluated. The cohort was stratified by the nodule’s longest diameter (small (< 8) and 

larger (≥ 8 mm),at baseline ) and the analyses related to concordance of volume 

change estimates and prediction analyses were repeated.  Figure 2  shows a 

representative nodule segmented by different algorithms in two consecutive screening 

time interval. 

 

2.5 Comparison of Segmentation Methods  

In this preliminary effort, we compared different semi-automated segmentation 

algorithms, operator expertise used by five research institutions to segment nodules 

across two consecutive time points. We proposed to compare tumor volume change 

estimates against single time point size or volume estimates, as the change measures 

by definition would offset any fixed biases that may exist in the methodologies followed 

by the teams.  

In this effort, two teams (Team 1 and Team 2) used single seed point to initiate 

the algorithm, while others used a line (Team 4) or a 2D-box (Team 3, Team 5) to 

contain the nodule region of interest. Team 1 used a single click and populated multiple 

seed point across different slices.  Two other teams (Team 3 and 5) used active contour 

as their underlying segmentation approach with different set of customized initialization 

and region convergence procedures.  

Team 2’s prior work has shown the CIP segmentations had excellent agreement 

for large nodules with the expert radiologist drawn segmentation. But the CIP algorithm 

has not been optimized for smaller nodules and the regions often included normal 

surrounding tissues. We find Team 2’s segmentation shows good concordance with 

other teams for large nodules (≥ 8mm) and moderate concordance correlation for 

smaller nodules (<8mm). 

 Team 3 and Team 4 use manual over read on their semi-automated 

segmentation workflow. Comparing un-corrected segmentations between them showed 

lower concordance compared to other teams. The concordance between Team 3 and 4 

improves using their corrected segmentations.  

Inference of these methods poses significant challenges in comparing 

methodologies as each approach poses competing merits. In our approach, we 
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compared the change in volume estimates against the diagnostic truth, which provides 

utility in the clinical imaging measurements.  Table 2  contrasts different teams’ 

segmentation algorithms and seeding requirements.  

 

 

3. RESULTS 

The size characteristics of the nodules for the selected 100 cases are presented 

in Table 1 . The cohort demonstrates that the cases are not only were evenly distributed 

by patient diagnosis (cancer, not cancer), but they were evenly distributed between the 

smaller (< 8mm diameter) group and the larger (≥8mm diameter) nodule sized group. 

This table also shows that the smaller nodules tended to be benign, but were not 

exclusively so.  

In terms of the overall agreement of segmentation results, Figure 3a  

demonstrates that overall we found moderate overlap in the results across all teams 

with a mean DICE coefficient of 0.48 [Range: 0.12 to 0.97]. Figure 3b&c  shows some 

examples of comparing segmentation results between: (i) two semi-automated methods 

and (ii) two semi-automated methods without manual editing.  For all the cases and 

segmentation methods, we computed the tumor volume across time points and 

compared the absolute and percent change in volumes. The Table 3  shows the 

concordance correlation coefficients for the study teams across all the nodules, 

regardless of size. Using absolute volume, we find a concordance correlation across all 

possible team comparison range between 0.56-0.95 with a median value of 0.83. We 

find the concordance correlation decreased to a range of 0.15-0.89, with a median of 

0.55 for percent volume change. When the manually corrected segmentation was 

removed, the concordance correlation for absolute volume change ranged between 

0.56-0.89 with a median of 0.80. While the percent volume change ranged from 0.15-

0.83 with a median value of 0.44.  

To evaluate the effects of nodule size on the results, we repeated the analysis to 

compare volume estimates across time intervals for nodules less than 8mm in longest 

diameter and greater than or equal to 8mm measured at baseline. Table 3B  shows that 

we find the concordance correlation for <8mm, ranged between -0.0038-0.385 for 
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absolute volume with a median of 0.3 and a range of -0.039-0.59 with a median of 0.29 

for percent volume change. Removing manually corrected cases, the absolute volume 

ranged between -0.0038-0.27 with a median of 0.26. The percent volume ranged 

between -0.039-0.38 with a median of 0.27. For larger nodules (≥8mm diameter), Table 

3C shows the concordance improves, with the absolute volume values ranged between 

0.54-0.85 with a median of 0.85, while the percent volume ranged between 0.3-0.78 

with a median of 0.75.  When the manually corrected cases were removed the 

concordance for absolute volume ranged 0.54-0.80 with a median of 0.78, while percent 

volume ranged 0.3-0.67 with a median of 0.61.  

We then repeated the analysis by partitioning the cohort with diagnostic labels as 

shown in Tables 3 (D&E) . For benign nodules the absolute volume change had a 

concordance ranged between 0.48-0.91 with a median of 0.8, while percent volume was 

between 0.099-0.11 with a median of 0.059. After manual correction the concordance, 

the correlation ranged between 0.4-0.82 with a median of 0.76 for absolute volume. The 

percent volume change ranged between 0.028-0.11 with a median of 0.037. While for 

malignant nodules, the absolute volume estimates concordance range between 0.55-

0.87 with a median of 0.86. The percent volume measure did not show any 

improvement, which had a range of 0.12-0.63 with a median of 0.5. 

 The volumes estimate does not improve after removing manually corrected 

cases, the absolute volume ranged 0.55-0.81 with a median of 0.797, while the percent 

volume ranged between 0.12-0.51 with a median of 0.5. Figure 4  shows comparison of 

volume estimates between two selected sites. 

We used change in volume estimates, both absolute change and percent 

change, for the teams to predict the malignancy status of the nodules. For absolute 

volume change, the area under the receiver operator curve ranged between 0.65-0.89 

across methods. For percent change in volume, the prediction scores ranged between 

0.64-0.86 across methods. For the cohort of nodules <8mm, the AUC was between 

0.57-0.80 for absolute volume and the AUC was in the range between 0.59-0.77 for 

percent volume. While for the larger nodules (longest diameter ≥ 8mm), the AUC 

ranged between 0.75-0.9 using absolute volume and using percent volume the AUC 

ranged between 0.74-0.89. Detailed prediction results are presented in Table 4 . The 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



15 
 

This article is protected by copyright. All rights reserved 

Figure 5  shows the AUC using absolute volume and percent volume computed 

between the screening intervals for the teams. 

 When considering the entire nodule size range, Team 1 and 2 showed 

statistically comparable AUCs with overlapping confidence range [0.78, 0,86] and [0.73, 

0.83]. Team 3A’s (corrected) AUC was superior to any other teams with a confidence 

limits of [0.86, 0.92], while their uncorrected AUC showed slightly lower performance 

that was comparable with other teams [0.82, 0.90]. Team 4’s corrected estimates’ AUC 

was in the range of [0.79, 0.87], while their uncorrected AUC showed lower average 

AUC with a confidence range of [0.59, 0.71]. Team 5’s average AUC was in the middle 

compared to others uncorrected estimates, with confidence limits of [0.72, 0.83]. It is 

interesting to note that, most semi-automated AUC’s showed slightly superior 

performance compared to radiologist delineated contours, whose average AUC was 

0.78 with a confidence range of [0.73, 0.83]. When nodule sizes were restricted to 

smaller size (<8mm), Team 1, 3 and 5’s predictor AUC confidence ranges are 

comparable. Teams 2 and 4 AUC performances were lower compared to other teams.  

 

4. DISCUSSION 

In this retrospective study we compared the segmentation results across five 

different institutions with varied algorithmic approaches to delineate the pulmonary 

nodules in screening setting. We evaluated the concordance between the participating 

teams’ estimates of nodule volume change across two time intervals and used the 

measure to predict the malignancy status. We then compared prediction results using 

the individual volume change estimates obtained from the segmentations provided by 

the institutions. There have been number of studies that showed volume of pulmonary 

nodules to be a better estimate to assess growth over time and few studies have shown 

its ability to predict malignancy (27, 31, 32). 

In our current study, we find the concordance of absolute volume across time 

points between the teams (median of 0.83) is better than the percent volume change, 

median concordance of 0.55. While the concordance drops further (0.80 for absolute 

volume and 0.44 percent volume) after removing manually corrected cases. The 

segmentation difference across time points is higher in the percent volume change 
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compared to absolute volume change, which we believe is exacerbated by a factor 

defined by the in-plane and inter-slice resolution.  As expected the concordance across 

teams was lower for smaller nodules (< 8mm), median value between teams was 0.31 

and 0.29 for absolute and percent volume change, respectively. This was expected as 

the delineation of missed or added boundaries is greater for smaller nodules, where a 

region of about 16x16 pixels (about 0.5x0.5 mm, in-plane resolution) is relatively smaller 

regions, which increases the probability of errors.  As expected, the concordance 

between the teams is higher for larger size nodules of ≥8mm (median between teams 

was 0.85 and 0.75 for absolute volume and % volume change). We find the 

concordance between the teams is lower for benign nodules (median between the 

groups of 0.8), while it improves for malignant nodules (median between the groups of 

0.86). It is clear that the malignant nodules are larger in size compared to benign ones 

(see Table 1 ).  

The Federal Drug Administration (FDA) sponsored studies have created lung 

phantom with artificial nodules of different shapes for the community to compare size 

estimates (33). Recently these nodules were given to a clinical radiologist to assess the 

sizes and volume estimation, a variability of 3.9 to 28% has been reported, they have 

shown a higher variability for smaller nodules (34). Interestingly the authors report a 

repeatability coefficient in the size estimation to be in the range of 6.2% to 40%. 

We further use the volume change estimates from each of the teams to assess 

the malignancy prediction. We find the prediction AUC was high (median of 0.82) using 

all the nodules, while the AUC was slightly lower for smaller size (<8mm) nodules, 

median AUC of 0.8 compared to large size nodules (≥8mm), median AUC of 0.84. We 

find most teams were able to predict malignancy with fairly higher AUC, though the 

concordance correlation of volume change between the groups shows a wide range.  

   Estimation the volume of pulmonary nodules across centers with varied 

imaging expertise, algorithms and software implementation has been a persistent issue 

in medical imaging. In a recent community driven challenge (35) organized by 

Quantitative Imaging Biomarker Alliance (QIBA), proposed to use phantoms as their 

study subjects. The study reports eighty-four percent of volume measurement were 

within 15% of the true volume and the variability ranges from 66% to 93% across 
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algorithms. While the 61% of volume 

Our study effort was motivated by the clinical use of the tumor measurement, 

especially change in volume across time points which may be relevant for screening 

exams. There is certainly high clinical benefit to find concordance in measuring change 

in volume estimate across institutions that use different delineation algorithms. We used 

real patient images with no true estimate of tumor volume.  

measurements for all tumors ranged from 37% to 

84%. QIBA study claims algorithm type did not affect bias substantially and reports 

algorithm precision was notably better as tumor size increases and worsen when the 

nodules were  irregular. They also report 18.4 % overall repeatability coefficient for their 

study. 

The community could also benefit in adopting variability standards in the use of 

outcome prediction that was reported by comparing different sites, expertise and with 

the use of imaging algorithms tested on a diverse patient cohorts obtained from the 

NLST trial. The teams agreed on certain limitations in the group effort. These included 

allowing multiple independent user inputs to seed segmentation algorithms as well as   

allowing variability in the location and size of the seeds (length of the bounding box, 

length of the seed line). 

 

Best Practices for volume measurements and lessons learnt:   

• It is important to avoid biases in size and volume measurements. Some common 

biases include use of any clinical diagnostics and or radiological observational 

intuition prior to delineate the region of interest. In a clinical setting, most focus is 

to improve true positive detection. Prior diagnostic information strongly impact 

true assessment of nodules size or volume measurements.   

• Most often clinical radiologists are influenced by the nodules shape 

characteristics. Recently, some of these shape characteristics have been used to 

provide clinical risk decision (36). It becomes imperative that region of interest is 

delineated prior to assessment of shape characteristics.  

• Some known variations are attributed to the segmentation algorithms and the 

imaging suites methodologies, which show differences due to numerical rounding 

and different ways to deal with boundary voxels.  
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• Variability due to nodules morphology, density variation (including nodule solidity) 

affects the segmentation algorithms performance.  

• There are few others variability sources caused by scanner parameters and 

reconstruction methods which influence the image intensity. Where small 

regional difference could lead to large size/volume changes. 

 

5. CONCLUSION 

 

In this study we compared the volume assessment of pulmonary nodules across two 

screening interval between five institutions. We find a range of concordance between 

institutions that used varied software and clinical expertise. We find that prediction of 

malignancy shows acceptable values across institutions. The nodules predictions 

across the teams are higher for larger nodules compared to smaller nodules. We find 

variability in volume change is well reproducible across algorithms (median 

concordance over 0.75). 

CONFLICT OF INTEREST 

YB, AB, JKC, LH, JZ, HY, SY, HA, DC, KC, HPC, CF, AG, DG: None to disclose. 

BZ: no conflicts related to this study. Receives royalties from Varian Medical Systems 

and Keosys Medical Imaging companies 

MMG: no conflicts related to this study. UCLA Department of Radiology has a Master 

Research Agreement with Siemens Healthineers, Erlangen, Germany 

SN: no conflicts related to this study. Consultant in Carestream Inc, Scientific advisor 

for: EchoPixel Inc, Fovia Inc, Radlogic,Inc.   

RJG:  no conflicts related to this study. Investor in Health myne Inc. Moffitt cancer center 

has research agreement with Health Myne.  

 

ACKNOLEDGEMENTS  

The study teams are thankful to the National Cancer Institute’s Quantitative Imaging 

Network initiative, program managers, support staff, The Cancer Imaging Archive 

(TCIA), The NCIP-Hub, all of which provided the necessary collaborative platform for 

the study. 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



19 
 

This article is protected by copyright. All rights reserved 

The study teams are grateful to the funding support received through various agencies 

that funded the research time for the investigators. 

• CUMC group acknowledge support received through: R01 CA149490, U01 

CA140207, and U24 CA180927. 

• SU group acknowledge support received through: U01 CA187947, R01 

CA160251. 

• MCC/USF group acknowledge support received through: U01 CA 143062, 

2KT01 State of Florida Department of Health and U24 CA180927. 

• DFCC/BWC/HMC group acknowledge support received through: U24CA194354. 

• UCLA group acknowledge support received through: U01CA181156  

• UMICH group acknowledges support received through: LH, KC and HPC are 

supported in part by NIH/NCI (U01CA179106). Large part of the general 

Michigan segmentation and feature extraction pipeline was developed under the 

support of NIH award number R01 CA93517 (PI: Heang-Ping Chan). 

• MGH/BWH group acknowledge support received through: U24 CA180927. 

REFERENCES 

1. Cancer Statistics at CEER.  2016; Available from: https://seer.cancer.gov/. 

2. Aberle DR, Berg CD, Black WC, et al. The National Lung Screening Trial: 

overview and study design. Radiology. 2011;258(1):243-53. 

3. Baecke E, de Koning HJ, Otto SJ, van Iersel CA, van Klaveren RJ. Limited 

contamination in the Dutch-Belgian randomized lung cancer screening trial (NELSON). 

Lung Cancer. 2010;69(1):66-70. 

4. Aberle DR, Adams AM, Berg CD, et al. Reduced lung-cancer mortality with low-

dose computed tomographic screening. The New England journal of medicine. 

2011;365(5):395-409. 

5. CMS. Centers-for-Medicare and Medicaid Services.  2015; Available from: 

https://www.cms.gov/medicare-coverage-database/details/nca-decision-

memo.aspx?NCAId=274. 

6. Radiology ACo. Lung Imaging Resource.  2014; Available from: 

https://www.acr.org/Quality-Safety/Resources/Lung-Imaging-Resources. 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

https://seer.cancer.gov/�
https://www.cms.gov/medicare-coverage-database/details/nca-decision-memo.aspx?NCAId=274�
https://www.cms.gov/medicare-coverage-database/details/nca-decision-memo.aspx?NCAId=274�
https://www.acr.org/Quality-Safety/Resources/Lung-Imaging-Resources�


20 
 

This article is protected by copyright. All rights reserved 

7. Patz EF, Jr., Pinsky P, Gatsonis C, et al. Overdiagnosis in low-dose computed 

tomography screening for lung cancer. JAMA internal medicine. 2014;174(2):269-74. 

8. Radiology ACo. Lung CT Screening Reporting and Data System (Lung-RADS). 

Available from: http://www.acr.org/Quality-Safety/Resources/LungRADS. 

9. Mehta HJ, Ravenel JG, Shaftman SR, et al. The Utility of Nodule Volume in the 

Context of Malignancy Prediction for Small Pulmonary Nodules. Chest. 2014;145(3):464-

72. 

10. Ko JP, Berman EJ, Kaur M, et al. Pulmonary Nodules: Growth Rate Assessment 

in Patients by Using Serial CT and Three-dimensional Volumetry. Radiology. 

2012;262(2):662-71. 

11. Henschke CI, Yankelevitz DF, Yip R, et al. Lung cancers diagnosed at annual CT 

screening: volume doubling times. Radiology. 2012;263(2):578-83. 

12. Armato SG, 3rd, McLennan G, Bidaut L, et al. The Lung Image Database 

Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed 

reference database of lung nodules on CT scans. Med Phys. 2011;38(2):915-31. 

13. Petrick N, Kim HJ, Clunie D, et al. Comparison of 1D, 2D, and 3D nodule sizing 

methods by radiologists for spherical and complex nodules on thoracic CT phantom 

images. Academic radiology. 2014;21(1):30-40. 

14. Cagnon CH, Cody DD, McNitt-Gray MF, Seibert JA, Judy PF, Aberle DR. 

Description and implementation of a quality control program in an imaging-based 

clinical trial. Academic radiology. 2006;13(11):1431-41. 

15. Larobina M, Murino. L. Medical Image File Formats. Journal of digital imaging. 

2014;27(2). 

16. Schonmeyer R, Athelogou M, Sittek H, et al. Cognition Network Technology 

prototype of a CAD system for mammography to assist radiologists by finding similar 

cases in a reference database. International journal of computer assisted radiology and 

surgery. 2011;6(1):127-34. 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

http://www.acr.org/Quality-Safety/Resources/LungRADS�


21 
 

This article is protected by copyright. All rights reserved 

17. Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D Slicer as an Image Computing 

Platform for the Quantitative Imaging Network. Magnetic resonance imaging. 

2012;30(9):1323-41. 

18. Raul San Jose E, James CR, Rola H, Jorge O, Alejandro AD, George RW. Chest 

Imaging Platform: An Open-Source Library and Workstation for Quantitative Chest 

Imaging.  C66 LUNG IMAGING II: NEW PROBES AND EMERGING 

TECHNOLOGIES: American Thoracic Society, 2015; p. A4975-A. 

19. Tan Y, Schwartz LH, Zhao B. Segmentation of lung lesions on CT scans using 

watershed, active contours, and Markov random field. Med Phys. 2013;40(4):043502. 

20. Weasis. Weasis Open source tools.  2017; Available from: 

https://dcm4che.atlassian.net/wiki/display/WEA/Home. 

21. Gu Y, Kumar V, Hall LO, et al. Automated Delineation of Lung Tumors from CT 

Images Using a Single Click Ensemble Segmentation Approach. Pattern recognition. 

2013;46(3):692-702. 

22. Way TW, Hadjiiski LM, Sahiner B, et al. Computer-aided diagnosis of pulmonary 

nodules on CT scans: segmentation and classification using 3D active contours. Med 

Phys. 2006;33(7):2323-37. 

23. Brown MS, McNitt-Gray MF, Pais R, et al. CAD in clinical trials: current role and 

architectural requirements. Comput Med Imaging Graph. 2007;31(4-5):332-7. 

24. Caselles V, Kimmel R, Sapiro G. Geodesic Active Contours. International Journal 

of Computer Vision. 1997;22(1):61-79. 

25. Krishnan K, Ibanez L, Turner WD, Jomier J, Avila RS. An open-source toolkit for 

the volumetric measurement of CT lung lesions. Optics Express. 2010;18(14):15256-66. 

26. Yip SSF, Parmar C, Blezek D, et al. Application of the 3D slicer chest imaging 

platform segmentation algorithm for large lung nodule delineation. PLOS ONE. 

2017;12(6):e0178944. 

27. Zhao YR, van Ooijen PM, Dorrius MD, et al. Comparison of three software 

systems for semi-automatic volumetry of pulmonary nodules on baseline and follow-up 

CT examinations. Acta radiologica (Stockholm, Sweden : 1987). 2014;55(6):691-8. 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

https://dcm4che.atlassian.net/wiki/display/WEA/Home�


22 
 

This article is protected by copyright. All rights reserved 

28. Dice L. Measures of the Amount of Ecologic Association Between Species. 

Ecological society of america. 1945;26(3):297-302. 

29. Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D Slicer as an image computing 

platform for the Quantitative Imaging Network. Magnetic resonance imaging. 

2012;30(9):1323-41. 

30. ITK. Imaging ToolKit.  2017; Available from: https://itk.org/. 

31. Han D, Heuvelmans MA, Oudkerk M. Volume versus diameter assessment of 

small pulmonary nodules in CT lung cancer screening. Translational lung cancer 

research. 2017;6(1):52-61. 

32. Liang M, Yip R, Tang W, et al. Variation in Screening CT-Detected Nodule 

Volumetry as a Function of Size. AJR Am J Roentgenol. 2017:1-5. 

33. Gavrielides MA, Zeng R, Kinnard LM, Myers KJ, Petrick N. Information-

theoretic approach for analyzing bias and variance in lung nodule size estimation with 

CT: a phantom study. IEEE transactions on medical imaging. 2010;29(10):1795-807. 

34. Li Q, Gavrielides MA, Sahiner B, Myers KJ, Zeng R, Petrick N. Statistical analysis 

of lung nodule volume measurements with CT in a large-scale phantom study. Med 

Phys. 2015;42(7):3932-47. 

35. Athelogou M, Kim HJ, Dima A, et al. Algorithm Variability in the Estimation of 

Lung Nodule Volume From Phantom CT Scans: Results of the QIBA 3A Public 

Challenge. Academic radiology. 2016;23(8):940-52. 

36. McWilliams A, Tammemagi MC, Mayo JR, et al. Probability of cancer in 

pulmonary nodules detected on first screening CT. The New England journal of 

medicine. 2013;369(10):910-9. 

 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

https://itk.org/�


 

This article is protected by copyright. All rights reserved 

 

Table 1. Pulmonary nodule characteristics for the patient cohort across the screening time 

points.  

 

 

Categories 

(Longest 

diameter*) 

Total Cancer+ Benign+ 

Baseline 

(T0) 

Follow-

Up (T1) 

Baseline 

(T0) 

Follow-

Up (T1) 

Baseline 

(T0) 

Follow-

Up (T1) 

All Nodules 100 100 50 50 50 50 

< 8mm 50 44 18 9 32 35 

≥ 8mm 50 56 32 41 18 15 

       

*Based on Team 3A’s size estimates.  
+ 

Based on diagnosis at follow-up time point (T1). 
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Table 2. Comparison of segmentation algorithms used by the participating teams with 

respective initialization requirement and reported comments. 

    

# Institutions Segmentation Inputs Software Reported Remarks 

1 Team 1 Single click seeding. 

Automatically creates 

multiple clicks across  slices. 

Custom routines on 

Commercial platform 

(16) 

May include 

additional regions 

when nodules 

attached to pleura. 

Need manual over 

read. 

2 Team 2 Single click seeding, 

automatically finds the 

centroid in a 3D region. 

Open Source, 3D 

Slicer (29)  

Known issues with 

small nodules. Need 

manual over read 

3 Team 3 2D box region Custom routines 

based on C/C++. 

Manual over read 

needed in some 

situations. 

4 Team 4 Click and drag to: (a) create Custom routines, It needs manual over 
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a seed point and (b) a line 

which is used to determine 

the threshold separating 

object from background. 

based on ITK tools 

(30). 

read and editing. 

5 Team 5 2D box region Custom routines 

based on ITK tools 

(30). 

Manual over read in 

some situations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Concordance in the volume change computation between two consecutive screening 

time instances measured as absolute volume and percent volume change, compared across the 

teams. Categorized based on baseline size range and diagnosis at follow-up: a) All sizes b) 

Below 8mm, c) Above 8bm, d) malignant nodule and e) benign nodules. Concordance is 

measured by concordance correlation coefficient. 
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A) All size rage 

CCC on Absolute Volume  (All Sizes) 

  

Team 5 

 

Team 4  Team 3 Team 2 

 

Team 1 

 None With 

Correcti

on 

None With 

Correction 

Team 1  0.88 0.66 0.95 0.85 0.89 0.74 1 

Team 2  0.82 0.56 0.75 0.83 0.77 1 0.74 

Team 3 

 

A 

(With 

Correction) 0.92 0.76 0.92 0.94 1 0.77 0.89 

B (None) 0.89 0.67 0.89 1 0.94 0.83 0.85 

Team 4 

 

A  

(With 

Correction) 0.89 0.71 1 0.89 0.92 0.75 0.95 

B (None) 0.78 1 0.71 0.67 0.76 0.56 0.66 

Team 5  1 0.78 0.89 0.89 0.92 0.82 0.88 

 

 

 

 

CCC on Percent Volume  (All Sizes) 

 Team 5 

 

Team 4  Team 3 Team 2 

 

Team 1 

 None With 

Correcti

on 

None With 

Correction 

Team 1  0.83 0.24 0.78 0.55 0.8 0.46 1 

Team 2  0.44 0.32 0.47 0.28 0.42 1 0.46 

Team 3 

 

A 

(With 

Correction) 0.89 0.3 0.82 0.89 1 0.42 0.8 
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B (None) 0.55 0.15 0.63 1 0.89 0.28 0.55 

Team 4 

 

A (With 

Correction) 0.86 0.55 1 0.63 0.82 0.47 0.78 

B (None) 0.59 1 0.55 0.15 0.3 0.32 0.24 

Team 5  1 0.59 0.86 0.55 0.89 0.44 0.83 

 

 

B) < 8mm  

CCC on Absolute Volume  (< 8mm) 

 Team 5 

 

Team 4  Team 3 Team 2 

 

Team 1 

 None With 

Correct

ion 

None With 

Correction 

Team 1  0.34 0.15 0.47 0.23 0.3 0.068 1 

Team 2  

0.037 

-

0.003

8 0.056 0.061 0.038 1 0.068 

Team 3 

 

A (With 

Correction) 0.61 0.34 0.5 0.61 1 0.038 0.3 

B (None) 0.64 0.27 0.5 1 0.61 0.061 0.23 

Team 4 

 

A (With 

Correction) 0.69 0.24 1 0.5 0.5 0.056 0.47 

B (None) 0.38 1 0.24 0.27 0.34 -0.0038 0.15 

Team 5  1 0.38 0.69 0.64 0.61 0.037 0.34 

 

 

 

 

 

CCC on Percent Volume  (< 8mm) 

 Team 5 

 

Team 4  Team 3 Team 2 

 

Team 1 

 None With 

Correct

None With 

Correction 
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ion 

Team 1  

0.92 

0.001

8 0.73 0.29 0.83 0.46 1 

Team 2  

0.24 

-

0.039 0.22 0.074 0.29 1 0.46 

Team 3 

 

A  

(With 

Correction) 0.88 

-

0.004 0.72 0.88 1 0.29 0.83 

B (None) 

0.47 

-

0.015 0.5 1 0.88 0.074 0.29 

Team 4 

 

A  

(With 

Correction) 0.75 0.032 1 0.5 0.72 0.22 0.73 

B (None) 0.15 1 0.032 -0.015 -0.004 -0.039 0.0018 

Team 5  1 0.15 0.75 0.47 0.88 0.24 0.92 

 

 

 

 

 

C) Long Diameter, ≥ 8mm 

CCC on Absolute Volume  (≥ 8mm) 

 Team 5 

 

Team 4  Team 3 Team 2 

 

Team 1 

 None With 

Correctio

n 

None With 

Correction 

Team 1  0.85 0.59 0.93 0.81 0.86 0.74 1 

Team 2  0.85 0.54 0.76 0.85 0.79 1 0.74 

Team 3 

 

A (With 

Correcti

on) 0.89 0.7 0.9 0.92 1 0.79 0.86 

B 

(None) 0.86 0.6 0.85 1 0.92 0.85 0.81 

Team 4 A (With 0.85 0.64 1 0.85 0.9 0.76 0.93 
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 Correcti

on) 

B 

(None) 0.73 1 0.64 0.6 0.7 0.54 0.59 

Team 5        1 0.73 0.85 0.86 0.89 0.85 0.85 

 

 

 

 

 

 

CCC on Percent Volume  (≥ 8mm) 

 Team 5 

 

Team 4  Team 3 Team 2 

 

Team 1 

 Non

e 

With 

Correction 

None With 

Correction 

Team 1  0.75 0.3 0.8 0.61 0.76 0.55 1 

Team 2  0.8 0.58 0.77 0.81 0.86 1 0.55 

Team 3 

 

A (With 

Correction) 0.88 0.6 0.88 0.89 1 0.86 0.76 

B (None) 0.73 0.46 0.75 1 0.89 0.81 0.61 

Team 4 

 

A (With 

Correction) 0.95 0.69 1 0.75 0.88 0.77 0.8 

B (None) 0.67 1 0.69 0.46 0.6 0.58 0.3 

Team 5  1 0.67 0.95 0.73 0.88 0.8 0.75 

 

 

 

 

 

 

D) All Benign Cases 

CCC on Absolute Volume  (Benign Nodules) 
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 Team 

5 

 

Team 4  Team 3 Team 2 

 

Team 1 

 None With 

Correction 

None With 

Correction 

Team 1  0.92 0.75 0.94 0.89 0.96 0.63 1 

Team 2  0.67 0.48 0.63 0.62 0.62 1 0.63 

Team 

3 

 

A(With 

Correction) 0.95 0.8 0.95 0.95 1 0.62 0.96 

B (None) 0.89 0.91 0.78 1 0.95 0.62 0.89 

Team 

4 

 

A(With 

Correction) 0.92 0.71 1 0.91 0.95 0.63 0.94 

B (None) 0.77 1 0.72 0.78 0.8 0.48 0.75 

Team 5  1 0.77 0.92 0.89 0.95 0.67 0.92 

 

 

 

 

 

 

CCC on Percent Volume  (Benign Nodules) 

 Team 5 

 

Team 4  Team 3 Team 2 

 

Team 1 

 None With 

Correcti

on 

None With 

Correction 

Team 1  0.21 0.0034 -0.052 0.037 0.32 0.019 1 

Team 2  

-0.11 

-

0.0096 -0.0096 0.15 -0.036 1 0.019 

Team 3 

 

A(With 

Correction) 0.16 0.059 0.059 0.21 1 -0.036 0.32 

B (None) 0.22 0.45 0.45 1 0.21 0.15 0.037 

Team 4 

 

A (With 

Correction) 0.14 0.018 1 0.45 0.059 -0.0096 -0.052 

B (None) 0.1 1 0.018 -0.0081 0.042 -0.072 0.0034 

Team 5  1 0.14 0.14 0.22 0.16 -0.11 0.21 
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E) All Malignant Cases 

 

CCC on Absolute Volume  (Malignant Nodules) 

 Team 5 

 

Team 4  Team 3 Team 2 

 

Team 1 

 None With 

Correction 

None With 

Correction 

Team 1  0.86 0.61 0.94 0.83 0.87 0.75 1 

Team 2  0.86 0.55 0.78 0.88 0.81 1 0.75 

Team 3 

 

A  

(With 

Correcti

on) 0.9 0.71 0.91 0.93 1 0.81 0.87 

B 

(None) 0.88 0.62 0.87 1 0.93 0.88 0.83 

Team 4 

 

A (With 

Correcti

on) 0.87 0.68 1 0.87 0.91 0.78 0.94 

B 

(None) 0.76 1 0.68 0.62 0.72 0.55 0.61 

Team 5  1 0.76 0.87 0.88 0.9 0.86 0.86 
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CCC on Percent Volume  (Malignant Nodules) 

 Team 5 

 

Team 4  Team 3 Team 2 

 

Team 1 

 None With 

Correction 

None With 

Correction 

Team 1  0.83 0.23 0.75 0.49 0.77 0.51 1 

Team 2  0.51 0.66 0.52 0.27 0.48 1 0.51 

Team 3 

 

A (With 

Correctio

n) 0.89 0.3 0.8 0.89 1 0.48 0.77 

B (None) 0.51 0.12 0.57 1 0.89 0.27 0.49 

Team 4 

 

A (With 

Correctio

n) 0.85 0.59 1 0.57 0.8 0.52 0.75 

B (None) 0.63 1 0.59 0.12 0.3 0.66 0.23 

Team 5  1 0.63 0.85 0.51 0.89 0.51 0.83 

 

 

 

 

Table 4.  Prediction performance (Area under the curve, AUC) of malignant nodule 

characterization using volume estimates (absolute volume change & percent volume change) 

obtained from segmentations provided by the teams. Results categorized based on a) All sizes 

b) Below 8mm, c) Above 8mm.  

a) All size rage 

ROC Characterization : 

 Absolute Volume  Percent Volume 

 AUC (95% 

CI) 

#sample

s 

AUC (95% CI) #sample

s 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t
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Team 1  0.82 

[0.78, 0.86] 100 

0.82 

[0.78, 0.86] 

100 

Team 2  0.78 

[0.73, 0.83] 100 

0.73 

[0.68,0.78] 

98 

Team 3 

 

A (With 

Correcti

on) 

0.89 

[0.86,0.92] 100 

0.86 

[0.82,0.90] 

100 

B 

(None) 

0.86 

[0.82,0.90] 100 

0.82 

[0.78,0.86] 

100 

 

Team 4 

 

A (With 

Correcti

on) 

0.83 

[0.79,0.87] 100 

0.82 

[0.78,0.86] 

100 

B 

(None) 

0.65 

[0.59,0.71] 80 

0.64 

[0.58,0.70] 

80 

Team 5  0.76 

[0.73, 0.83] 100 

0.76 

[0.72,0.81] 

100 

Longest Diameter  

Radiologist 

Measured 

0.78  

[0.73,0.83] 

   0.81  

[0.85, 0.77] 

 

b) Diameter < 8mm 

ROC Characterization : 

 Absolute Volume  Percent Volume 

 AUC #samples AUC #samples 

Team 1  0.80 50 0.77 50 

Team 2  0.63 49 0.60 49 

Team 3 

 

A  

(With 

Correction) 0.78 50 

0.75 50 

B (None) 0.80 50 0.77 50 

Team 4 

 

A (With 

Correction) 0.76 50 

0.77 50 

B (None) 0.57 39 0.59 39 

A
u
th

o
r 

M
a
n
u
s
c
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p
t
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Team 5  0.79 50 0.76 50 

 

 

 

c) Long Diameter ≥ 8mm 

ROC Characterization : 

 Absolute Volume  Percent Volume 

 AUC #samples AUC #samples 

Team 1          0.83 

49 

                           

0.81 

49 

Team 2  0.84 49 0.84 49 

Team 3 

 

With 

Correcti

on 0.90 49 

0.92 49 

None 0.90 49 0.88 49 

Team 4 

 

With 

Correcti

on 0.88 49 

0.89 49 

None 0.75 40 0.74 40 

Team 5  0.81 49 0.76 49 
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Figure 1 .Describes the multi-institutional study, (a) Process work flow of the study and (b) 
Representative patient scans (2D, center slice) at different screening intervals for nodules 
diagnosed to be malignant and benign (non-cancerous ) at follow-up scan. The teams are: 
Moffitt Cancer Center/University of South Florida (MCC/USF), Dana Faber Cancer Center 
(MCC), Columbia University Medical Center (CUMU), and University of California at Los 
Angeles Medical Center (UCLA), University of Michigan Medical Center (UMICH), Stanford 
University (SU), and Massachusetts General Hospital (MGH). 
 

 
 
 

 

                     
 

 

 

 
 

(a) 

(b) 
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Figure 2. Segmentation boundary obtained by different semi-automated methods used by the 
pteams shown for a representative nodule across two screening time points. Examples show a) 
malignant nodule and b) benign nodules. 
 

(a)

 (b) 
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Figure  3.  Similarity between segmentations, quantitatively measured by DICE coefficients, a) 
All groups, b) two groups using semi-automated method, c) two groups using semi-automated 
methods without manual correction.  
 
a)  All groups 
 

 
 

 
b)  Two sample team’s comparison: DICE (Team1 Vs Team 4A) 
 

 

 
    
c)  Two sample team’s comparison (without manual over read): DICE (Team 4B Vs 
Team  3B). 
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Figure 4 .  Comparison of volume estimate between the teams using scatter plots and 
difference plots (Bland-Altman plot): a) Between Team 2 and Team 4B, b) Team 1 Vs Team 4A. 
 

(a)  
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(b) 
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Figure 5.  Receiver operator curves (ROC) across teams to predict nodules malignancy using, 
a) percent volume change and b) absolute volume change. 
 

a) Using percent volume 

 
 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

 
 
 
 

ROC Curves for Percent Volume Change Classification, Benign vs. 
Malignant 
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b) Absolute volume 

 
  

 

ROC Curves for Absolute Volume Change  Classification, Benign vs. 
Malignant 
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