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Web Appendix A. HALT-C Trial

Web Appendix A.1 Analysis data description

HCV cirrhosis patients are at high risk for HCC and are recommended to undergo regular

surveillance. Within the HALT-C Trial, 427 patients were diagnosed with cirrhosis at the

baseline biopsy. We excluded 18 patients not diagnosed with HCC but with less than 12

months of follow-up. Our analysis dataset consists of 361 control patients who were not

diagnosed with HCC during a median follow-up period of 78 months (range 15-109 months)

and 48 confirmed HCC cases. In Web Figure 1, we illustrate the subsets of patients in the

HALT-C Trial and the biomarkers measured during follow-up. We have local laboratory

tests for AFP at all the patient visits. DCP was measured at a central laboratory as part

of an ancillary study, which used stored samples collected during the first 42 months post-

randomization as per the trial protocol. We excluded biomarker data from visits that took

place during the last 12 months of follow-up in the controls to ensure that they did not have

HCC when biomarker data was collected.

[Web Figure 1 about here.]

In Web Figure 2 and 3 we plot the individual trajectories of AFP and DCP, respectively,

for all 48 HCC cases in the analysis cohort. In Web Figure 4 and 5 we plot the individual

trajectories of AFP and DCP, respectively, in 48 randomly selected patients that have at

least 12 months of follow-up and do not develop HCC during the study.

[Web Figure 2 about here.]

[Web Figure 3 about here.]

[Web Figure 4 about here.]

[Web Figure 5 about here.]
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Web Appendix A.2 Exploratory data analysis

The structure of our proposed model was based on initial exploratory data analysis of AFP

and DCP in cases and controls from the HALT-C Trial. In Web Figure 6, we plot the

histograms of the distribution of AFP and DCP before and after logarithmic transfromations

in control patients from the HALT-C Trial. In our model we assume that these transformed

markers have a normal distribution.

[Web Figure 6 about here.]

Next we evaluated whether the patient specific mean biomarker levels in the absence of

disease, θik, were correlated. For each control patient in the HALT-C Trial we calculated

their average log(AFP) and log(DCP+1) values. In Web Figure 7, we observe that there is

minimal correlation between the mean log(AFP) and log(DCP+1) levels in control patients.

Therefore we conclude that a simpler model that does not specify a joint prior for θik is

suitable for our analysis.

[Web Figure 7 about here.]

Next we considered the biomarker levels within two years of clinical diagnosis in HCC cases

in the HALT-C Trial. For each patient we fitted a simple linear model for both log(AFP)

and log(DCP+1) when patients had two or more observations within the two years prior to

clinical diagnosis. The subject specific slope is a rough estimate of γik for each biomarker.

In Web Figure 8, we observe that there is minimal correlation between the slopes log(AFP)

and log(DCP+1) levels in case patients with sufficient data. Therefore we conclude that a

simpler model that does not specify a joint prior for γik is suitable for our analysis.

[Web Figure 8 about here.]
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In the HALT-C analysis, we chose the values of the hyperparameters in the prior distribu-

tions for the biomarker specific parameters during exploratory analysis and they are listed

in Web Table 1.

The hyperparameters for µθ1 and µθ2 were chosen after fitting a linear mixed model for

AFP and DCP respectively in control patients from the HALT-C Trial. The hyperparameters

for µγ1 and µγ2 were chosen by examining the trajectories of AFP in HALT-C HCC cases

within two-years prior to clinical diagnosis (see Web Figure 8). The hyperparameters for

µτ1 and µτ2 were chosen to reflect prior knowledge that HCC is a fast growing cancer and

therefore on average we expect mean onset to be within 1 year prior to clinical diagnosis. For

στ1 and στ2, we set the hyperparameters to have the prior expected value of 0.75 such that all

the values in the support (2 years prior to clinical diagnosis) of the changepoint parameter

τ have non-negligible prior probability. For σθk and σγk (k = 1, 2), the hyperparameters

we have chosen encourage similar values for slope and intercepts across subjects (note that

these priors concentrate on very small values). We note that in Web Figure 18, the posterior

distribution for most of these parameters are not concentrated around values that have

high prior probability overall highlighting the weak influence of the hyperparameters on the

posterior inference.

[Web Table 1 about here.]

Web Appendix A.3 MCMC Convergence

[Web Figure 9 about here.]

[Web Figure 10 about here.]

Web Appendix A.4 Model assessment

[Web Figure 11 about here.]

[Web Figure 12 about here.]



4 Biometrics, December 2016

[Web Figure 13 about here.]

Web Appendix A.5 Prior sensitivity

The sensitivity of the results to the prior distributions was assessed by evaluating how the

mean posterior probability of an AFP and DCP changepoint varied in the 48 HCC cases

as the prior distributions for the parameters ηI , µI , µγ and µτ were changed. The posterior

probability of a changepoint is an important component of the model fit that affects the

performance of the screening algorithm. In Figures 3-6, we plot the posterior probability of

an AFP and DCP changepoint under three different prior distributions for each parameter.

For the MRF parameter ηI , our assumed prior is a Beta distribution with mean of 0.1.

In Web Figure 14, we consider Beta priors for ηI where the mean is 0.5 and 0.8 while

keeping the standard deviation similar to that of the assumed prior (SD=0.042). As we

increase the mean of the prior for ηI , there is little effect on the posterior probability of a

changepoint for those patients with a very low posterior probability of a changepoint to start

with. For those with a high posterior probability of a changepoint for one marker, increasing

parameter ηI increases the posterior probability of a changepoint for the other marker. This

is expected since we are increasing the strength of the connection between the markers. For

those with borderline values, a higher prior mean for ηI pulls both posterior probabilities of

a changepoints upwards.

For the other MRF parameter µI , we evaluated how the posterior probabilities of a

changepoint varied when the mean of the Beta prior of the logistic transformation of µI

was decreased to 0.4 or increased to 0.6, while keeping the standard deviation of the Beta

prior similar. In Web Figure 15 we see that for µI , there is more sensitivity in the posterior

probability of changepoints to the changes but the rankings of the patients are mostly

preserved. Spearman’s rank correlation was 0.994-0.997 for the posterior probability of an

AFP changepoint and 0.945-0.967 for the posterior probability of a DCP changepoint.
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In Web Figure 16 we observe that the posterior probability of changepoints are highly

sensitive to the prior of µγ. When we decreased the mean of the prior to 2 the posterior

probability of changepoints for AFP and DCP increased and conversely when we increased

the mean of the prior to 3.5 the posterior probability of changepoints for AFP and DCP

decreased. The inverse relationship is expected since a flatter slope would potentially apply

to more HCC cases. The choice of prior for the slope parameters in most studies of this

type is very important since it is rare to have sufficient data on cases to estimate these

well. The rankings of the patients for the posterior probability of an AFP changepoint are

preserved (Spearman’s rank correlation: 0.990-0.995) but that is not the case for the posterior

probability of an DCP changepoint (Spearman’s rank correlation: 0.618-0.845). Since we have

reduced follow-up for DCP, we expect that the prior selection is even more important for

this marker.

For µτ (Web Figure 17), we decreased the mean of the prior to 0.5 and increased it to 1.5.

In most patients we observed minimal sensitivity of the posterior probability of changepoints

to these changes.

[Web Figure 14 about here.]

[Web Figure 15 about here.]

[Web Figure 16 about here.]

[Web Figure 17 about here.]

[Web Figure 18 about here.]

Web Appendix A.6 Cross-validated analysis

[Web Figure 19 about here.]

For each method, we calculate the time of the first positive screen during the entire

screening period, within two years of clinical diagnosis and within one year of clinical



6 Biometrics, December 2016

diagnosis. In Web Table 2-4, the (i, j)th entry corresponds to the empirical mean percentage

of times the ith method has a positive screen first and the (j, i)th entry to the empirical mean

percentage of times the jth method has a positive screen first. The empirical mean percentage

of times where the ith and the jth methods have a positive screen at the same time is 100 -

(i, j)th entry - (j, i)th entry. For each comparison, we have highlighted (bold text) the higher

percentage.

[Web Table 2 about here.]

[Web Table 3 about here.]

[Web Table 4 about here.]

Web Appendix B. Methods

Web Appendix B.1 Markov Chain Monte Carlo Procedure: Computational Algorithm

Step 0: Initialize parameters:

(1) θ
(0)
k = {θ(0)ik , i = 1, . . . , N}, k = 1, . . . , K

(2) µ
(0)
θk , k = 1, . . . , K

(3) σ
2(0)
θk , k = 1, . . . , K

(4) σ
2(0)
k , k = 1, . . . , K

(5) I
(0)
k = {I(0)ik , i = n0 + 1, . . . , N}, k = 1, . . . , K

(6) µ
(0)
I

(7) η
(0)
I

(8) γ
(0)
k = {γ(0)ik , i = n0 + 1, . . . , N : Iik = 1}, k = 1, . . . , K

(9) µγk, k = 1, . . . , K

(10) σ2
γk, k = 1, . . . , K

(11) τ
(0)
k = {τ (0)ik , i = n0 + 1, . . . , N : Iik = 1}, k = 1, . . . , K



Screening with Multiple Longitudinal Biomarkers 7

Step 1-S: Update parameters for s ∈ {1, . . . , S} and s∗ = 1 + 3(s− 1).

(1) Update µθk, k = 1, . . . , K: Sample µ
(s)
θk from N(µ0k∗ , σ

2
0k∗), where µ0k∗ =

σ
2(s−1)
θk

σ
2(s−1)
θk +Nσ2

0k

µ0k+

σ2
0k

σ
2(s−1)
θk +Nσ2

0k

∑N
i=1 θ

(s−1)
ik and σ2

0k∗ =
σ
2(s−1)
θk σ2

0k

σ
2(s−1)
θk +Nσ2

0k

.

(2) Update σ2
θk, k = 1, . . . , K: Sample σ

2(s)
θk from IG(aθ∗k , bθ∗k), where aθ∗k = aθk + N/2 and

bθ∗k = bθk + 1
2

∑N
i=1(θ

(s−1)
ik − µ(s)

θk )2.

(3) Update σ2
k, k = 1, . . . , K: Sample σ

2(s)
k from IG(aσk , bσk), where aσk = 1

2

∑N
i=1 Ji, bσk =

1
2

∑N
i=1

∑Ji
j=1(Yijk − θ∗ijk)2 and

θ∗ijk =

 θ
(s−1)
ik if Di = 0 or (Di = 1 and I

(s∗−1)
ik = 0)

θ
(s−1)
ik + γ

(s∗−1)
ik (tij − τ (s

∗−1)
ik )+ if Di = 1 and I

(s∗−1)
ik = 1

(4) Update µI :

(a) Generate µ∗I from its proposal distribution JµI (µI |µ
(s−1)
I ) = N(µ

(s−1)
I , δ2µI ).

(b) Compute acceptance ratio

log(r) = min

[
log

{
P (I(s

∗−1)|µ∗I , η
(s−1)
I )P (µ∗I |p1, p2)

P (I(s∗−1)|µ(s−1)
I , η

(s−1)
I )P (µ

(s−1)
I |p1, p2)

}
, 0

]
= min[log{P (I(s

∗−1)|µ∗I , η
(s−1)
I )}+ log{P (µ∗I |p1, p2)} − log{P (I(s

∗−1)|µ(s−1)
I , η

(s−1)
I )}

− log{P (µ
(s−1)
I |p1, p2)}, 0]

where P (I|µI , ηI) =
n∏

i=n0+1

exp

{
µI

(
K∑
k=1

Iik

)
+ ηI

(
K−1∑
k=1

K∑
k′=k+1

IikIik′

)}
× c

and c−1 =
∑
Ĩ∈I

exp

{
µI

(
K∑
k=1

Ĩk

)
+ ηI

(
K−1∑
k=1

K∑
k′=k+1

ĨkĨk′

)}
for I = All possible combinations of vector Ĩ with binary Ĩk

and P (µI |p1, p2) = PBeta

{
exp(µI)

1 + exp(µI)

∣∣∣∣ p1, p2} ∣∣∣∣ ddµI exp(µI)

1 + exp(µI)

∣∣∣∣
= PBeta

{
exp(µI)

1 + exp(µI)

∣∣∣∣ p1, p2} exp(µI)

{1 + exp(µI)}2

(c) Generate u ∼ Uniform(0, 1). If log(u) < log(r) set µ
(s)
I = µ∗I ; otherwise set µ

(s)
I =

µ
(s−1)
I

(5) Update ηI :
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(a) Generate η∗I from its proposal distribution JηI (ηI |η
(s−1)
I ) = Beta(ã, b̃), where ã and

b̃ are chosen so that the mean and variance of the Beta distribution are η
(s−1)
I and

δ2ηI respectively.

(b) Compute acceptance ratio

log(r) = min

[
log

{
P (I(s

∗−1)|µ(s)
I , η∗I )P (η∗I |p3, p4)

P (I(s∗−1)|µ(s)
I , η

(s−1)
I )P (η

(s−1)
I |p3, p4)

JηI (η
(s−1)
I |η∗I )

JηI (η
∗
I |η

(s−1)
I )

}
, 0

]
= min[log{P (I(s

∗−1)|µ(s)
I , η∗I )}+ log{P (η∗I |p3, p4)} − log{P (I(s

∗−1)|µ(s)
I , η

(s−1)
I )}

− log{P (η
(s−1)
I |p3, p4)}+ log{JηI (η

(s−1)
I |η∗I )} − log{JηI (η∗I |η

(s−1)
I )}, 0]

(c) Generate u ∼ Uniform(0, 1). If log(u) < log(r) set η
(s)
I = η∗I ; otherwise set η

(s)
I =

η
(s−1)
I

(6) Update µγk, k = 1, . . . , K: Sample µ
(s)
γk fromN(µ1k∗ , σ

2
1k∗), where µ1k∗ =

σ
2(s−1)
γk

σ
2(s−1)
γk +nIkσ

2
1k

µ1k+

σ2
1k

σ
2(s−1)
γk +nIkσ

2
1k

∑nIk
i=1 log(γ

(s∗−1)
ik ), σ2

1k∗ =
σ
2(s−1)
γk σ2

1k

σ
2(s−1)
γk +nIkσ

2
1k

and nIk =
∑N

i=n0+1 I
(s∗−1)
ik .

(7) Update σ2
γk, k = 1, . . . , K: Sample σ

2(s)
γk from IG(aγ∗k , bγ∗k), where aγ∗k = aγk + nIk/2,

bγ∗k = bγk + 1
2

∑nIk
i=1{log(γ

(s∗−1)
ik )− µ(s)

γk}2 and nIk =
∑N

i=n0+1 I
(s∗−1)
ik .

(8) Update µτk, k = 1, . . . , K:

(a) Generate µ∗τk from its proposal distribution Jµτk(µτk|µ
(s−1)
τk ) = N(µ

(s−1)
τk , δ2µτk).

(b) Compute acceptance ratio

log(r) = min

[
log

{
P (τ

(s∗−1)
k |µ∗τk, σ

2(s−1)
τk )P (µ∗τk|µ2k, σ

2
2k)

P (τ
(s∗−1)
k |µ(s−1)

τk , σ
2(s−1)
τk )P (µ

(s−1)
τk |µ2k, σ2

2k)

}
, 0

]
= min[log{P (τ

(s∗−1)
k |µ∗τk, σ

2(s−1)
τk )}+ log{P (µ∗τk|µ2k, σ

2
2k)}

− log{P (τ
(s∗−1)
k |µ(s−1)

τk , σ
2(s−1)
τk )} − log{P (µ

(s−1)
τk |µ2k, σ

2
2k)}, 0]

(c) Generate u ∼ Uniform(0, 1). If log(u) < log(r) set µ
(s)
τk = µ∗τk; otherwise set µ

(s)
τk =

µ
(s−1)
τk

(9) Update σ2
τk, k = 1, . . . , K:

(a) Generate σ2∗
τk from its proposal distribution Jσ2

τk
(σ2

τk|σ
2(s−1)
τk ) = TN[0,∞](σ

2(s−1)
τk , δ2στk).
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(b) Compute acceptance ratio

log(r) = min

[
log

{
P (τ

(s∗−1)
k |µ(s)

τk , σ
2∗
τk)P (σ2∗

τk|aτk, bτk)
P (τ

(s∗−1)
k |µ(s)

τk , σ
2(s−1)
τk )P (σ

2(s−1)
τk |aτk, bτk)

Jσ2
τk

(σ
2(s−1)
τk |σ2∗

τk)

Jσ2
τk

(σ2∗
τk|σ

2(s−1)
τk )

}
, 0

]
= min[log{P (τ

(s∗−1)
k |µ(s)

τk , σ
2∗
τk)}+ log{P (σ2∗

τk|aτk, bτk)} − log{P (τ
(s∗−1)
k |µ(s)

τk , σ
2(s−1)
τk )}

− log{P (σ
2(s−1)
τk |aτk, bτk)}+ log{Jσ2

τk
(σ

2(s−1)
τk |σ2∗

τk)} − log{Jσ2
τk

(σ2∗
τk|σ

2(s−1)
τk )}, 0]

(c) Generate u ∼ Uniform(0, 1). If log(u) < log(r) set σ
2(s)
τk = σ2∗

τk; otherwise set σ
2(s)
τk =

σ
2(s−1)
τk

(10) Update each θik, i = 1, . . . , N and k = 1, . . . , K:

• IfDi = 0, sample θ
(s)
ik fromN(µθk∗ , σ

2
θk∗), where µθ∗k =

σ
2(s)
k

σ
2(s)
k +Jiσ

2(s)
θk

µ
(s)
θk +

σ
2(s)
θk

σ
2(s)
k +Jiσ

2(s)
θk

∑Ji
j=1 Yijk

and σθ∗k =
σ
2(s)
k σ

2(s)
θk

σ
2(s)
k +Jiσ

2(s)
θk

.

• IfDi = 1 and I
(s∗−1)
ik = 0, sample θ

(s)
ik fromN(µθk∗ , σ

2
θk∗), where µθ∗k =

σ
2(s)
k

σ
2(s)
k +Jiσ

2(s)
θk

µ
(s)
θk +

σ
2(s)
θk

σ
2(s)
k +Jiσ

2(s)
θk

∑Ji
j=1 Yijk and σ2

θ∗k
=

σ
2(s)
k σ

2(s)
θk

σ
2(s)
k +Jiσ

2(s)
θk

.

• IfDi = 1 and I
(s∗−1)
ik = 1, sample θ

(s)
ik fromN(µθk∗ , σ

2
θk∗), where µθ∗k =

σ
2(s)
k

σ
2(s)
k +Jiσ

2(s)
θk

µ
(s)
θk +

σ
2(s)
θk

σ
2(s)
k +Jiσ

2(s)
θk

∑Ji
j=1{Yijk − γ

(s∗−1)
ik (tij − τ (s

∗−1)
ik )+} and σ2

θ∗k
=

σ
2(s)
k σ

2(s)
θ

σ
2(s)
k +Jiσ

2(s)
θ

.

(11) Update I, γ and τ .

(a) Update each Iik, i = n0 + 1, . . . , N and k = 1, . . . , K:

If I
(s∗−1)
ik = 0,

(1) Generate γ∗ik from its prior log(γik) ∼ N(µ
(s)
γk , σ

2(s)
γk )

(2) Generate τ ∗ik from its prior τik ∼ TN[di−τ∗k ,di](di − µ
(s)
τk , σ

2(s)
τk )
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(3) Compute acceptance ratio

log(r) = min

[
log

{
P (Yik|Iik = 1, θ

(s)
ik , σ

2(s)
k , γ∗ik, τ

∗
ik)

P (Yik|Iik = 0, θ
(s)
ik , σ

2(s)
k )

πik
1− πik

}
, 0

]
= min[log{P (Yik|Ii = 1, θ

(s)
ik , σ

2(s)
k , γ∗ik, τ

∗
ik)}

− log{P (Yik|Iik = 0, θ
(s)
ik , σ

2(s)
k )}+ log{πik} − log{1− πik}, 0]

where πik =
exp

{
µ
(s)
I + η

(s)
I

(∑
k′<k I

(s∗)
ik′ +

∑
k′>k I

(s∗−1)
ik′

)}
1 + exp

{
µ
(s)
I + η

(s)
I

(∑
k′<k I

(s∗)
ik′ +

∑
k′>k I

(s∗−1)
ik′

)}
(4) Generate u ∼ Uniform(0, 1). If log(u) < log(r) set I

(s∗)
ik = 1, γ

(s∗)
ik = γ∗ik, and

τ
(s∗)
ik = τ ∗ik; otherwise set I

(s∗)
ik = 0.

If I
(s∗−1)
ik = 1,

(1) Compute acceptance ratio

log(r) = min

[
log

{
P (Yik|Iik = 0, θ

(s)
ik , σ

2(s)
k )

P (Yik|Iik = 1, θ
(s)
ik , σ

2(s)
k , γ

(s∗−1)
ik , τ

(s∗−1)
ik )

1− πik
πik

}
, 0

]
= min[log{P (Yik|Iik = 0, θ

(s)
ik , σ

2(s)
k )}

− log{P (Yik|Iik = 1, θ
(s)
ik , σ

2(s)
k , γ

(s∗−1)
ik , τ

(s∗−1)
ik )}

+ log{1− πik} − log{πik}, 0]

where πik =
exp

{
µ
(s)
I + η

(s)
I

(∑
k′<k I

(s∗)
ik′ +

∑
k′>k I

(s∗−1)
ik′

)}
1 + exp

{
µ
(s)
I + η

(s)
I

(∑
k′<k I

(s∗)
ik′ +

∑
k′>k I

(s∗−1)
ik′

)}
(2) Generate u ∼ Uniform(0, 1). If log(u) < log(r) set I

(s∗)
ik = 0, otherwise set

I
(s∗)
ik = 1, γ

(s∗)
ik = γ

(s∗−1)
ik , and τ

(s∗)
ik = τ

(s∗−1)
ik .

(b) Update each γik, i ∈ {i = n0 + 1, . . . , N : I
(s∗)
ik = 1} and k = 1, . . . , K:

(1) Generate log(γ∗ik) from its proposal distribution

Jγik(γik|γ
(s∗)
ik ) = N(log(γ

(s∗)
ik ), δ2γk).
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(2) Compute acceptance ratio

log(r) = min

[
log

{
P (Yik|I(s

∗)
ik = 1, θ

(s)
ik , σ

2(s)
k , γ∗ik, τ

(s∗)
ik )

P (Yik|I(s
∗)

ik = 1, θ
(s)
ik , σ

2(s)
k , γ

(s∗)
ik , τ

(s∗)
ik )

P (γ∗ik|µ
(s)
γk , σ

2(s)
γk )

P (γ
(s∗)
ik |µ

(s)
γk , σ

2(s)
γk )

Jγik(γ
(s∗)
ik |γ∗ik)

Jγik(γ
∗
ik|γ

(s∗)
ik )

}
, 0

]
= min[log{P (Yik|I(s

∗)
ik = 1, θ

(s)
ik , σ

2(s)
k , γ∗ik, τ

(s∗)
ik )}

− log{P (Yik|I(s
∗)

ik = 1, θ
(s)
ik , σ

2(s)
k , γ

(s∗)
ik , τ

(s∗)
ik )}

+ log{P (γ∗ik|µ
(s)
γk , σ

2(s)
γk )} − log{P (γ

(s∗)
ik |µ

(s)
γk , σ

2(s)
γk )}

+ log{Jγik(γ
(s∗)
ik |γ

∗
ik)} − log{Jγik(γ∗ik|γ

(s∗)
ik )}, 0]

(3) Generate u ∼ Uniform(0, 1). If log(u) < log(r) set γ
(s∗+1)
ik = γ∗ik, I

(s∗+1)
ik = 1 and

τ
(s∗+1)
ik = τ

(s∗+1)
ik ; otherwise set γ

(s∗+1)
ik = γ

(s∗)
ik , I

(s∗+1)
ik = 1 and τ

(s∗+1)
ik = τ

(s∗)
ik .

(c) Update each τik, i ∈ {i = n0 + 1, . . . , N : I
(s∗+1)
ik = 1} and k = 1, . . . , K

(1) Generate τ ∗ik from its proposal distribution Jτik(τik|τ
(s∗+1)
ik ) = TN[di−τ∗k ,di](τ

(s∗+1)
ik , δ2τk).

(2) Compute acceptance ratio

log(r) = min

[
log

{
P (Yik|I(s

∗+1)
ik = 1, θ

(s)
ik , σ

2(s)
k , γ

(s∗+1)
ik , τ ∗ik)

P (Yik|I(s
∗+1)

ik = 1, θ
(s)
ik , σ

2(s)
k , γ

(s∗+1)
ik , τ

(s∗+1)
ik )

P (τ ∗ik|µ
(s)
τk , σ

2(s)
τk )

P (τ
(s∗+1)
ik |µ(s)

τk , σ
2(s)
τk )

Jτik(τ
(s∗+1)
ik |τ ∗ik)

Jτik(τ
∗
ik|τ

(s∗+1)
ik )

}
, 0

]
= min[log{P (Yik|I(s

∗+1)
ik = 1, θ

(s)
ik , σ

2(s)
k , γ

(s∗+1)
ik , τ ∗ik)}

− log{P (Yik|I(s
∗+1)

ik = 1, θ
(s)
ik , σ

2(s)
k , γ

(s∗+1)
ik , τ

(s∗+1)
ik )}

+ log{P (τ ∗ik|µ
(s)
τk , σ

2(s)
τk )} − log{P (τ

(s∗+1)
ik |µ(s)

τk , σ
2(s)
τk )}

+ log{Jτik(τ
(s∗+1)
ik |τ ∗ik)} − log{Jτik(τ ∗ik|τ

(s∗+1)
ik )}, 0]

(3) Generate u ∼ Uniform(0, 1). If log(u) < log(r) set τ
(s∗+2)
ik = τ ∗ik, γ

(s∗+2)
ik = γ

(s∗+1)
ik

and I
(s∗+2)
ik = 1; otherwise set τ

(s∗+2)
ik = τ

(s∗+1)
ik , γ

(s∗+2)
ik = γ

(s∗+1)
ik and I

(s∗+2)
ik = 1.
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Web Appendix B.2 Posterior risk calculations

For the (N + 1)th patient at screening time tij, the posterior risk of disease given their

screening history is:

P (DN+1 = 1|YN+1)

P (DN+1 = 0|YN+1)
=
P (YN+1|DN+1 = 1)

P (YN+1|DN+1 = 0)
× P (DN+1 = 1)

1− P (DN+1 = 1)

=

∏K
k=1 P (YN+1,k|DN+1 = 1)∏K
k=1 P (YN+1,k|DN+1 = 0)

× P (DN+1 = 1)

1− P (DN+1 = 1)

where YN+1,k = {Y(N+1)j′k, j
′ = 1, . . . , j} and YN+1 = {YN+1,k, k = 1, . . . , K}. Each of the

components is calculated in the following algorithm:

Draw S samples from posterior distribution of the biomarker specific and Markov random

field parameters: σ2
k, µθk, σ

2
θk, µγk, σ

2
γk, µτk, σ

2
τk, for k = 1, . . . , K and µI and ηI . For each

patient i, at each time tij

• Calculate P{(Yi1k, . . . , Yijk)|Di = 0} for each k = 1, . . . , K.

– For each of the S posterior samples, draw θik from its predictive distribution N(µθk, σ
2
θk).

– For each of the S samples, calculate the joint probability of (Yi1k, . . . , Yijk) given θik and

σ2
k:
∏j

j′=1 φ
(
Yij′k−θik

σk

)
.

– Average the joint probabilities over the S samples to get an estimate of

P{(Yi1k, . . . , Yijk)|Di = 0}.

• For each of the S posterior samples, draw Ii from its predictive distribution MRF (µI , ηI).

• For each of the S posterior samples, draw an imputation of the unknown clinical diagnosis

time di from it’s empirical distribution in the study data.

• Calculate P{(Yi1k, . . . , Yijk)|Di = 1} for each k = 1, . . . , K.

– For each of the S posterior samples, draw θik from its predictive distribution N(µθk, σ
2
θk).

– Extract the S posterior samples of Iik.

– For each of the S samples, if Iik = 0

· Calculate the joint probability of (Yi1k, . . . , Yijk) given θik and σ2
k:
∏j

j′=1 φ
(
Yij′k−θik

σk

)
.
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– Or if Iik = 1

· Draw log(γik) from its predictive distribution N(µγk, σ
2
γk).

· Draw τik from its predictive distribution TN[di−τ∗k ,di](di − µτk, σ
2
τk).

· Calculate the joint probability of (Yi1k, . . . , Yijk) given θik, γik, τik and σ2
k:∏j

j′=1 φ
(
Yij′k−θik−γik(tij−τik)+

σk

)
.

– Average the joint probabilities over the S samples to get an estimate of

P{(Yi1k, . . . , Yijk)|Di = 1}.

Web Appendix C. Simulations

[Web Table 5 about here.]

[Web Table 6 about here.]

Web Appendix C.1 Alternative methods under consideration

Univariate fully Bayesian screening algorithm

The univariate fully Bayesian (uFB) screening algorithm proposed by Skates et al. (2001)

assumes that a single biomarker levels vary randomly around a constant mean in the absence

of disease and after disease onset, the biomarker may or may not change over time. Our

proposed methodology reduces to that of Skates et al. (2001) when there is only a single

marker (i.e. K=1). For completeness we include the uFB model here.

For control patients, with Di = 0, the biomarker level is assumed to randomly fluctuate

around a constant mean θi1 and follows the model

Yij1 = θi1 + εij1,

where εij1 ∼ N(0, σ2
1). For cases, with Di = 1, we define an unobserved indicator Ii1 to

distinguish between the two possible models for the marker. If Ii1 = 0, then we assume
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that the marker level does not increase after disease onset and follows the same model as

control patients, i.e Yij1 = θi1 + εij1. If Ii1 = 1, then we assume the marker level randomly

fluctuates around a constant mean θi1 until an unobserved change-point time τi1, after which

the biomarker level increases linearly at a rate of γi1 with model

Yij1 = θi1 + γi1(tij − τi1)+ + εij1,

where (.)+ indicates the positive part of the expression.

We assume the uninformative Jeffreys’ prior, 1/σ2
1, for the variability of the biomarker. The

constant mean biomarker level θi1 is assumed to be normally distributed with mean µθ1 and

variance σ2
θ1. The case-specific random effect for the rate γi1 is assumed to be log-normally

distributed, i.e. log(γi1) ∼ N(µγ1, σ
2
γ1). The change-point time τi1 is assumed to occur within

τ ∗1 years prior to diagnosis di. The parameter τ ∗1 is fixed and reflects the known preclinical

behavior of the disease. In the case of HCC, which is a fast growing cancer, τ ∗1 is set to be

2 years and the onset of HCC is assumed to be at most 2 years prior to clinical diagnosis

of HCC. Therefore the change-point time τi1 is assumed to follow a truncated normal (TN)

distribution with lower bound di− τ ∗1 , upper bound di, mean di−µτ1 and variance σ2
τ1. Ii1 is

assumed to follow a Bernoulli distribution with parameter π1. Note that the Markov Random

Field prior that we use in the proposed joint model reduces to a Bernoulli distribution with

parameter π1 = exp(µI)/{1 + exp(µI)} when K = 1.

Univariate parametric empirical Bayes screening algorithm

The univariate parametric empirical Bayes (uEB) screening algorithm proposed by McIntosh

and Urban (2003) defines a patient and screen specific threshold that incorporates both the

prior screening history of the patient and a model for the biomarker behavior in control

patients. In control patients, with Di = 0, the biomarker level is assumed to randomly

fluctuate around a constant mean θi1 and follows a hierarchical distribution:
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Yij1|θi1 ∼ N(θi1, σ
2
1)

θi1 ∼ N(µθ1, σ
2
θ1)

I.e. given the patient-specific mean θi1, the transformed biomarker levels Yij1 are independent

and identically distributed with mean θi1 and variance σ2
1 and θi1 itself is normally distributed

with mean µθ1 and variance σ2
θ1. The within-subject variance σ2

1 and between-subject variance

σ2
θ1 are key measures that effect the performance of the PEB algorithm. Yij can be centered

and rescaled to simply the derivation. Let Zij = (Yij1 − µθ1)/
√
σ2
1 + σ2

θ1. Then

Zij|µi ∼ N(µi, 1−B1)

µi ∼ N(0, B1)

where B1 =
σ2
θ1

σ2
1 + σ2

θ1

.

Note that a simple calculation verifies that the marginal distribution of Zij is the standard

normal distribution.

The standard threshold (ST) approach ignores prior screening history of the patient and

instead uses the same threshold for all patients. One possible approach for determining this

threshold is to use the above model, which describes the transformed biomarker distribution

in the control population, to specify a threshold that controls the population-wide false

positive rate (FPR). Since Zij is assumed to follow a standard normal distribution, then

Pr(Zij > z1−f0) = f0 where z1−f0 is the 100(1 − f0) percentile of the standard normal

distribution. Therefore, using the standard threshold screening rule, patient i has a positive

screen at the jth screening visit if Zij > z1−f0 .

If the patient’s mean biomarker level (µi) were known, we could define an individually

tailored screening rule that still ensures the population-wide FPR is not more than f0 since

given µi, (Zij − µi)/
√

1−B1 follows a standard normal distribution. Therefore Pr{(Zij −
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µi)/
√

1−B1 > z1−f0 |µi} = f0 and patient i has a positive screen at the jth screening visit if

Zij > µi + z1−f0
√

1−B1.

However µi is not known, so instead we use the parametric empirical Bayes (PEB) estimate

of this parameter. This estimate, denoted by µ̂ij, is a weighted average of the population

mean (which is 0 in this case) and the sample average of the patients screening history. The

PEB screening rule then indicates a positive screen for patient i at the jth screening visit if

Zij > µ̂ij + z1−f0
√

1−B1Bj, (1)

where µ̂ij = 0 ∗ (1−Bj) + Z̄ij ∗Bj, Z̄ij = 1
j−1
∑j−1

j′=1 Zij′ and Bj =
σ2
θ1

σ2
1/(j−1)+σ2

θ1
.

To implement the PEB screening algorithm, we require estimates for the parameters µθ1,

σ2
1 and σ2

θ1. These can be obtained by fitting a linear mixed model with a random intercept

in the control patients from the training data. We then apply the PEB screening rule to all

the screenings conducted in the validation data.

Independent multivariate fully Bayesian screening algorithm

The independent multivariate fully Bayesian (mFB-I) screening algorithm incorporates all

K biomarkers into the model but assumes the markers are independent (i.e. there is no MRF

prior to connect the biomarkers). Instead the priors for each indicator Iik are assumed to

be independent Bernoulli distributions with parameter πk, for k = 1, . . . , K. The rest of the

model remains the same (see Section 3 of the main manuscript).

Web Appendix C.2 Additional Simulation Results

[Web Table 7 about here.]

[Web Table 8 about here.]

[Web Table 9 about here.]

The patient-level sensitivity is defined to be the percentage of detectable cases with a

positive screen after disease onset (italicized diagonal of Web Table 10 contains the empirical
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mean ROC(0.1) based on this definition of sensitivity). For each method, we calculate the

time of the first positive screen after disease onset. In Web Table 10, the (i, j)th entry

corresponds to the empirical mean percentage of times the ith method has a positive screen

first and the (j, i)th entry to the empirical mean percentage of times the jth method has

a positive screen first among the detectable cases. The empirical mean percentage of times

where the ith and the jth methods have a positive screen at the same time is 100 - (i, j)th entry

- (j, i)th entry. For each comparison, we have highlighted (bold text) the higher percentage.

[Web Table 10 about here.]

In our model, we assume that the variance of each biomarker (σ2
k, k = 1, .., K) is constant

and not subject to change. We evaluated the impact of this assumption in a series of simu-

lation studies where we generated data that included increasing variability in the biomarker

after the changepoint in HCC cases but left our model (as described in Section 3) unchanged.

The simulation study adapted Scenario A to generate the data and assumed that in controls

and HCC cases with no changepoint, σ2
k, k = 1, .., K is constant. In HCC cases with a

changepoint, we assumed the standard deviation of each marker increases linearly with rate

δk, k = 1, .., K. The results for Scenario A (δk = 0, k = 1, .., 3), Scenario E (δk = 0.1,

k = 1, .., 3), Scenario F (δk = 0.1, k = 1, .., 3), and Scenario G (δk = 0.1, k = 1, .., 3) are

presented in Table 11. The increasing variability has minimal impact on the performance of

the joint multivariate fully Bayesian screening approach which assumes constant variance.

Therefore while it may be important to consider a model that allows for a corresponding

changepoint in the variance of the biomarker in other scenarios, it is beyond the scope of our

current project and simulation studies show that our results are robust to our assumption

in biomarker trajectories that mimic those observed in the HALT-C Trial.

[Web Table 11 about here.]
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Cirrhosis	  at	  baseline	  biopsy	  (N=427)	  
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(N=48)	  

No	  cirrhosis	  at	  baseline	  biopsy	  (N=621)	  

No	  HCC,	  
<12m	  
follow-‐up	  
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HALT-‐C	  Trial	  Design	  

Web Figure 1. Standards for Reporting of Diagnostic accuracy (STARD) flow diagram
and follow-up schedule in the HALT-C Trial. In our analysis dataset (highlighted in red), we
have 361 patients with no HCC and 48 confirmed HCC datasets.
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Web Figure 2. AFP trajectories for all 48 HCC cases in our analysis cohort.
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Web Figure 3. DCP trajectories for all 48 HCC cases in our analysis cohort.
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analysis cohort.



Screening with Multiple Longitudinal Biomarkers 23

Years from end of follow−up

lo
g(

D
C

P
+

1)

0

2

4

6

8

10

−8 −6 −4 −2

Subject 49 Subject 50

−8 −6 −4 −2

Subject 51 Subject 52

−8 −6 −4 −2

Subject 53 Subject 54

−8 −6 −4 −2

Subject 55

Subject 56 Subject 57 Subject 58 Subject 59 Subject 60 Subject 61

0

2

4

6

8

10
Subject 62

0

2

4

6

8

10
Subject 63 Subject 64 Subject 65 Subject 66 Subject 67 Subject 68 Subject 69

Subject 70 Subject 71 Subject 72 Subject 73 Subject 74 Subject 75

0

2

4

6

8

10
Subject 76

0

2

4

6

8

10
Subject 77 Subject 78 Subject 79 Subject 80 Subject 81 Subject 82 Subject 83

Subject 84 Subject 85 Subject 86 Subject 87 Subject 88 Subject 89

0

2

4

6

8

10
Subject 90

0

2

4

6

8

10
Subject 91

−8 −6 −4 −2

Subject 92 Subject 93

−8 −6 −4 −2

Subject 94 Subject 95

−8 −6 −4 −2

Subject 96
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Web Figure 6. Distribution of AFP and DCP before and after logarithmic transforma-
tions in control patients from the HALT-C Trial.
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Web Figure 11. Model goodness of fit for AFP and DCP slopes in controls from the
HALT-C Trial
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Web Figure 12. Model goodness of fit for AFP and DCP trajectories in four HCC cases
from the HALT-C Trial.
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Web Figure 13. Examining the residuals (εijk) for AFP and DCP in HCC cases (left
column) and controls (right column) from the HALT-C Trial. There is no evidence of a time
trend in the residuals.
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Web Figure 14. Sensitivity Analysis: ηI . The posterior probabilities for each HCC case
are connected with gray line.
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are connected with gray line.
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Web Figure 16. Sensitivity Analysis: µγ. The posterior probabilities for each HCC case
are connected with gray line.
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are connected with gray line.
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Web Figure 18. Posterior distribution for each parameter in the model. The prior
distributions are overlayed (solid line).
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Web Figure 19. Cross-valiated ROC curve for mFB-J: joint multivariate fully bayesian
(solid black line), mFB-I: independent multivariate fully bayesian (grey line), uFB: univariate
fully bayesian (solid red line for AFP and solid blue line for DCP) and uEB: parametric
empirical bayes (dashed red line for AFP and dashed blue line for DCP).
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AFP (k=1) DCP (k=2) AFP (k=1) DCP (k=2)

µθk N(2, 0.1) N(3, 0.1) σ2
θk IG(2, 0.05) IG(2, 0.05)

[1.380, 2.620] [2.380, 3.620] [0.009, 0.206] [0.009, 0.206]
µγk N(log(16), 0.05) N(log(16), 0.05) σ2

γk IG(4, 0.1) IG(4, 0.1)
[2.332, 3.208] [2.332, 3.208] [0.011, 0.092] [0.011, 0.092]

µτk N(1, 0.1) N(1, 0.1) σ2
τk IG(10, 6.19) IG(10, 6.19)

[0.380, 1.620] [0.380, 1.620] [0.362, 1.291] [0.362, 1.291]

Web Table 1
Prior distributions of AFP and DCP specific parameters in the joint model. The 2.5th and 97.5th percentiles for

each distribution is given below in brackets.
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mFB-J mFB-I uFB AFP uFB DCP uEB AFP uEB DCP

mFB-J · 25.00 33.00 52.00 29.00 68.00
mFB-I 24.50 · 35.50 49.00 23.50 59.00
uFB AFP 20.00 31.00 · 48.00 24.00 62.00
uFB DCP 36.50 29.00 41.50 · 45.50 44.50
uEB AFP 26.50 29.00 28.50 48.00 · 60.00
uEB DCP 19.00 19.00 29.50 16.50 27.50 ·

Web Table 2
Percentage of times each method has a positive screen first in the HALT-C Trial. The (i, j)th entry corresponds to
the cross-validated percentage of times the ith method has a positive screen first. mFB-J: joint multivariate fully
Bayesian, mFB-I: independent multivariate fully Bayesian, uFB: univariate fully Bayesian and uEB: parametric

empirical Bayes
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mFB-J mFB-I uFB AFP uFB DCP uEB AFP uEB DCP

mFB-J · 4.50 16.50 46.30 4.50 40.74
mFB-I 6.00 · 16.50 45.37 6.50 39.81
uFB AFP 8.00 10.50 · 47.22 8.00 41.67
uFB DCP 12.04 9.26 25.00 · 8.33 2.78
uEB AFP 29.00 29.50 33.00 52.78 · 47.22
uEB DCP 34.26 31.48 36.11 37.96 25.00 ·

Web Table 3
Percentage of times each method has a positive screen first within 2-years of clinical diagnosis in the HALT-C Trial.

The (i, j)th entry corresponds to the cross-validated percentage of times the ith method has a positive screen first.
mFB-J: joint multivariate fully Bayesian, mFB-I: independent multivariate fully Bayesian, uFB: univariate fully

Bayesian and uEB: parametric empirical Bayes
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mFB-J mFB-I uFB AFP uFB DCP uEB AFP uEB DCP

mFB-J · 4.50 10.50 50.93 12.50 44.44
mFB-I 4.00 · 10.50 42.59 12.50 36.11
uFB AFP 6.00 6.50 · 47.22 10.00 43.52
uFB DCP 13.89 10.19 23.15 · 16.67 0.00
uEB AFP 18.50 21.00 20.50 55.56 · 39.81
uEB DCP 29.63 25.93 29.63 34.26 25.93 ·

Web Table 4
Percentage of times each method has a positive screen first within 1-years of clinical diagnosis in the HALT-C Trial.

The (i, j)th entry corresponds to the cross-validated percentage of times the ith method has a positive screen first.
mFB-J: joint multivariate fully Bayesian, mFB-I: independent multivariate fully Bayesian, uFB: univariate fully

Bayesian and uEB: parametric empirical Bayes
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Parameter Scenario A Scenario B Scenario C

σ2
1 0.23 0.23 0.23
µθ1 2.43 2.43 2.43
σ2
θ1 0.79 0.79 0.79
µγ1 1.87 0.87 1.87
σ2
γ1 1.61 0.3 0.3
µτ1 1.05 1.05 1.05
σ2
τ1 0.82 0.82 0.82

σ2
2 1.35 1.35 1.35
µθ2 3.10 3.10 3.10
σ2
θ2 0.80 0.80 0.80
µγ2 1.92 0.92 0.92
σ2
γ2 0.05 0.05 0.05
µτ2 0.56 0.56 0.56
σ2
τ2 0.58 0.58 0.58

σ2
3 0.80 0.80 0.80
µθ3 2.75 2.75 2.75
σ2
θ3 0.79 0.79 0.79
µγ3 1.00 0.65 0.65
σ2
γ3 0.20 0.10 0.10
µτ3 0.75 0.75 0.75
σ2
τ3 0.70 0.70 0.70

µI 0.15 0.15 0.15
ηI 0.1 0.1 0.1

Web Table 5
Fixed parameter values used in simulation study to generate data.
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Marker (1) (k=1) Marker (2) (k=2) Marker (3) (k=3)

µθk N(2, 0.1) N(3, 0.1) N(2, 0.1)
σ2
θk IG(2, 0.05) IG(2, 0.05) IG(2, 0.05)
µγk N(log(16), 0.05) N(log(16), 0.05) N(log(16), 0.05)
σ2
γk IG(4, 0.1) IG(4, 0.1) IG(4, 0.1)
µτk N(1, 0.1) N(1, 0.1) N(1, 0.1)
σ2
τk IG(10, 6.19) IG(10, 6.19) IG(10, 6.19)

exp(µI)
1+exp(µI)

∼ Beta(30, 30)

ηI ∼ Beta(5, 45)

Web Table 6
Prior distributions for the joint model parameters that were used in all scenarios of the simulations.
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Scenario D

Biomarker mFB-J mFB-I uFB uEB ST

(1)
78.38 (0.46) 78.77 (0.42)

63.43 (0.49) 62.90 (0.50) 49.33 (0.52)
(2) 60.18 (0.54) 59.48 (0.54) 53.07 (0.53)
(3) 54.79 (0.54) 54.79 (0.52) 44.34 (0.53)

Web Table 7
Summary of simulation results in 200 studies: empirical mean ROC(0.1) (empirical standard error of the mean).
mFB-J: joint multivariate fully Bayesian, mFB-I: independent multivariate fully Bayesian, uFB: univariate fully

Bayesian, uEB: parametric empirical Bayes and ST: single threshold
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Scenario A

Biomarker mFB-J mFB-I uFB uEB ST

(1)
81.75 (0.41) 81.67 (0.41)

67.75 (0.49) 66.61 (0.50) 51.28 (0.56)
(2) 64.20 (0.56) 63.03 (0.51) 55.48 (0.52)
(3) 58.58 (0.52) 58.41 (0.49) 46.88 (0.50)

Scenario B

Biomarker mFB-J mFB-I uFB uEB ST

(1)
72.21 (0.46) 71.75 (0.47)

63.97 (0.48) 64.18 (0.47) 45.01 (0.53)
(2) 54.52 (0.54) 54.56 (0.55) 44.81 (0.49)
(3) 55.83 (0.54) 54.82 (0.52) 41.97 (0.55)

Scenario C

Biomarker mFB-J mFB-I uFB uEB ST

(1)
77.96 (0.43) 77.63 (0.42)

70.91 (0.47) 69.35 (0.47) 55.91 (0.49)
(2) 54.55 (0.51) 55.08 (0.55) 45.20 (0.51)
(3) 56.18 (0.54) 54.71 (0.46) 42.22 (0.50)

Scenario D

Biomarker mFB-J mFB-I uFB uEB ST

(1)
78.62 (0.44) 78.82 (0.42)

63.67 (0.48) 62.99 (0.50) 49.36 (0.52)
(2) 60.26 (0.52) 59.39 (0.52) 52.92 (0.51)
(3) 54.77 (0.53) 54.67 (0.51) 44.28 (0.51)

Web Table 8
Summary of simulation results in 200 studies: empirical mean sensitivity corresponding to threshold established in

training data (empirical standard error of the mean). mFB-J: joint multivariate fully Bayesian, mFB-I: independent
multivariate fully Bayesian, uFB: univariate fully Bayesian, uEB: parametric empirical Bayes and ST: single

threshold.
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Scenario A

Biomarker mFB-J mFB-I uFB uEB ST

(1)
87.40 (0.08) 87.48 (0.08)

88.46 (0.07) 88.36 (0.07) 88.55 (0.13)
(2) 88.71 (0.07) 88.65 (0.07) 88.64 (0.10)
(3) 89.13 (0.07) 89.03 (0.07) 89.04 (0.10)

Scenario B

Biomarker mFB-J mFB-I uFB uEB ST

(1)
88.32 (0.08) 88.36 (0.07)

88.69 (0.08) 88.61 (0.07) 88.91 (0.13)
(2) 89.47 (0.07) 89.31 (0.07) 89.30 (0.10)
(3) 89.36 (0.07) 89.34 (0.07) 89.25 (0.11)

Scenario C

Biomarker mFB-J mFB-I uFB uEB ST

(1)
87.78 (0.08) 87.81 (0.08)

88.30 (0.07) 88.16 (0.07) 88.21 (0.13)
(2) 89.49 (0.07) 89.24 (0.07) 89.30 (0.09)
(3) 89.41 (0.07) 89.36 (0.07) 89.30 (0.10)

Scenario D

Biomarker mFB-J mFB-I uFB uEB ST

(1)
87.46 (0.08) 87.36 (0.08)

88.40 (0.07) 88.32 (0.08) 88.43 (0.13)
(2) 88.86 (0.07) 88.74 (0.07) 88.74 (0.10)
(3) 89.19 (0.07) 89.06 (0.07) 89.07 (0.11)

Web Table 9
Summary of simulation results in 200 studies: empirical mean specificity corresponding to threshold established in

training data (empirical standard error of the mean). mFB-J: joint multivariate fully Bayesian, mFB-I: independent
multivariate fully Bayesian, uFB: univariate fully Bayesian, uEB: parametric empirical Bayes and ST: single

threshold.
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mFB-J mFB-I uFB (1) uFB (2) uFB (3) uEB (1) uEB (2) uEB (3)

mFB-J 77.49 2.30 31.32 41.17 48.32 29.85 40.04 47.00
mFB-I 2.24 77.48 31.06 41.15 48.05 29.89 40.08 46.89
uFB (1) 5.82 5.38 53.15 35.46 37.96 5.37 34.66 37.80
uFB (2) 6.87 6.77 26.17 46.98 32.04 25.42 4.79 31.07
uFB (3) 6.72 6.56 21.43 24.40 39.87 20.78 24.06 5.28
uEB (1) 13.75 13.86 15.14 40.98 43.57 59.19 38.69 41.52
uEB (2) 13.77 13.71 31.18 14.72 38.22 28.84 53.78 35.54
uEB (3) 13.37 13.38 27.18 30.50 16.00 24.81 28.14 47.20

Web Table 10
Percentage of times each method has a positive screen first after disease onset in Scenario A of the simulation study.
The (i, j)th entry corresponds to the empirical mean percentage of times the ith method has a positive screen first.

The (i, i)th corresponds to the empirical mean ROC(0.1) of the ith method after disease onset. mFB-J: joint
multivariate fully Bayesian, mFB-I: independent multivariate fully Bayesian, uFB: univariate fully Bayesian and

uEB: parametric empirical Bayes.
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