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Abstract 

Host-derived matrix metalloproteinases (MMPs) and bacterial proteases mediate destruction of 

extracellular matrices and supporting alveolar bone in periodontitis. The Treponema denticola 

dentilisin protease induces MMP-2 expression and activation in periodontal ligament (PDL) 

cells, and dentilisin-mediated activation of pro-MMP-2 is required for cellular fibronectin 

degradation. Here we report that T. denticola regulates MMP-2 expression through epigenetic 

modifications in the periodontium. PDL cells were treated with epigenetic enzyme inhibitors 

before or after T. denticola challenge. Fibronectin fragmentation, MMP-2 expression and 

activation were assessed by immunoblot, zymography and qRT-PCR, respectively. Chromatin 

modification enzyme expression in T. denticola-challenged PDL cells and periodontal tissues 

were evaluated using gene arrays. Several classes of epigenetic enzymes showed significant 

alterations in transcription in diseased tissue and T. denticola-challenged PDL cells. T. denticola-

mediated MMP-2 expression and activation were significantly reduced in PDL cells treated with 

inhibitors of aurora kinases and histone deacetylases. In contrast, DNA methyltransferase 

inhibitors had little effect, and inhibitors of histone acetyltransferases, methyltransferases and 

demethylases exacerbated T. denticola-mediated MMP-2 expression and activation. Chronic 

epigenetic changes in periodontal tissues mediated by T. denticola or other oral microbes may 

contribute to the limited success of conventional treatment of chronic periodontitis and may be 

amenable to therapeutic reversal. 
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Introduction 

Periodontitis, a bacterially-mediated chronic inflammatory disease of the tissues supporting 

the tooth is one of the most common inflammatory diseases in humans and it can adversely affect 

systemic health (Armitage, 2004, Armitage, 2008). National surveys show that the majority of 

adults suffer from mild-to-moderate periodontitis, with up to 15% of the population being 

affected by severe forms at some stage in their lives (Pihlstrom et al., 2005). Periodontitis causes 

largely irreversible destruction of the periodontal tissues, and in advanced stages, tooth loss, 

speech and masticatory problems, and an overall reduced quality of life. Moreover, the systemic 

burden of periodontitis on different organs has been investigated. It has been reported that 

periodontal infections can adversely predispose to coronary heart diseases (Stewart et al., 2016), 

ischemic strokes (Leira et al., 2016), poor glycemic control (Garcia et al., 2015), preterm labor, 

low-birth-weight delivery (Sitholimela et al., 2013), and pulmonary diseases (Prasanna, 2011). 

These systemic effects have been attributed to either direct bacterial invasion or modulation of 

specific host inflammatory and tissue destructive mediators (Williams et al., 2008).  

Destruction of the periodontal extracellular matrices (ECM) and detrimental changes in the 

cellular elements of the periodontal ligament occur as a result of disruption of normal tissue 

homeostatic processes. One of these disrupted processes is regulation of host-derived matrix 

metalloproteinases (MMP) that are both directly and indirectly involved in periodontal tissue 

breakdown. Destruction of the ECM in periodontitis results in the release of fibronectin (FN) 

fragments, which are considered markers of periodontal disease status (Huynh et al., 2002). 
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Evidence from in vitro studies further indicate that these FN fragments, induce several 

detrimental effects, including induction of apoptosis and suppression of osteoblast differentiation 

of periodontal ligament cells (Kapila et al., 1996, Kapila et al., 1998, Kapila et al., 1999, Jee et 

al., 2004, Dai et al., 2005, Ghosh et al., 2008, Joseph et al., 2010), thereby further potentiating 

disease progression.   

MMPs are synthesized in latent form, then activated through proteolytic cleavage to expose 

the catalytic site of the MMP enzyme. MMP activation is primarily extracellular, though 

intracellular activation is reported in certain cases (Nagase, 1997, Murphy et al., 1999). MMPs 

are synthesized at low basal levels for maintenance of homeostatic processes; however their 

levels and activation are typically increased during disease (Mittal et al., 2016). In addition to 

their role in remodeling the ECM and basement membrane during various physiologic processes, 

MMPs are implicated in a wide range of pathologic processes, including cardiovascular 

(Azevedo et al., 2014), pulmonary (Navratilova et al., 2016, Pardo et al., 2016), renal (Aresu et 

al., 2011, Charitaki et al., 2016), and gastrointestinal diseases (Medina et al., 2004), cancer 

(Endres et al., 2016, Ligi et al., 2016, Liu et al., 2016, Lukaszewicz-Zajac et al., 2016, 

Pietruszewska et al., 2016) and inflammatory diseases, such as periodontitis (Shinkarenko et al., 

2013, Nissinen et al., 2014). 

MMP-2, one of several MMPs involved in tissue homeostasis and remodeling, is 

constitutively expressed by periodontal ligament cells as pro-MMP-2 (Kapila et al., 1996). Thus, 

control of the process or rate of activation of MMP- 2 has been proposed as a key regulatory step 
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in periodontal tissue homeostasis (Madsen et al., 2013, Mosig et al., 2013, Borkham-Kamphorst 

et al., 2015). Activation of pro-MMP-2 is promoted by proteolytic cleavage by the membrane 

type-1-MMP (MT1-MMP/MMP-14) (Nagase, 1997, Murphy et al., 1999, Zucker et al., 2003). 

Extracellular MMP activities are controlled by the blockage of autolytic MMP activation or by 

endogenous proteinase inhibitors, such as tissue inhibitors of MMPs (TIMPs) (Nagase et al., 

2006, Brew et al., 2010). Regulation of the proteolytic activity of MMP-2 is dependent on the 

balance between MT1-MMP/TIMP-2 (Shofuda et al., 1998, Hernandez-Barrantes et al., 2001, 

Oyarzun et al., 2010). This mechanism of MMP-2 activation by an MT1-MMP–TIMP-2 

complex has been well recognized in other systems (Strongin et al., 1995, Butler et al., 1998, 

Kinoshita et al., 1998).  Disturbances in that balance may result in excessive tissue degradation 

associated with inflammatory diseases (Ejeil et al., 2003). 

T. denticola along with Porphyromonas gingivalis and Tannerella forsythia become prevalent 

in late stages of subgingival biofilm formation and comprise the bacterial “red complex” that is 

considered pathogenic in the etiology of periodontal disease (Socransky et al., 1998). While our 

understanding of the periodontal disease microbiome has greatly increased, the “red complex” 

bacteria continue to be recognized as important pathogens in the disease process. Oral 

spirochetes including T. denticola often predominate in periodontal disease, though they are 

typically below detectable levels in healthy gingival plaque (Choi et al., 1994, Ellen et al., 2005). 

The levels of T. denticola increase with the severity of periodontitis, underscoring its major role 

in the disease (Simonson et al., 1988, Yoshida et al., 2004). 
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Recognized virulence factors of T. denticola include the acylated serine protease complex 

(dentilisin; PrtP complex; CTLP/chymotrypsin-like protease) that degrades gelatin, laminin and 

various serum components and bioactive peptides (Uitto et al., 1988, Grenier et al., 1990, 

Makinen et al., 1995). The dentilisin complex contributes to T. denticola adherence and 

cytotoxic effects on epithelial cells and fibroblasts (Ellen et al., 1994, Mathers et al., 1996, 

Fenno et al., 1998), penetration of epithelial tissue (Chi et al., 2003), and it may play a role in 

complement-mediated bactericidal activity (McDowell et al., 2009) and complement evasion 

(McDowell et al., 2011). Of particular relevance to the current study, we previously 

demonstrated that dentilisin proteolytic activity induces activation of pro-MMP-2 in cultured 

PDL cells, and that activated MMP-2 is required for cleavage of cellular FN into fragments 

similar to those observed in gingival crevicular fluid from periodontal lesions (Miao et al., 

2011). Furthermore, transcription and expression of MT1/MMP and TIMP-2 increased in 

response to T. denticola challenge (Miao et al., 2014). Taken together, these properties suggest 

important links between the T. denticola protease activity and regulation of the cellular and 

tissue processes that result in periodontal tissue destruction. 

Epigenetics is defined as heritable and potentially reversible changes in gene expression 

without alterations in the DNA sequence (Goldberg et al., 2007, Waddington, 2012). Such 

modifications are not only associated with diseases but are also essential for the incorporation 

and integration of endogenous and environmental signals in cells. Epigenetic status can be 

affected by environmental factors, such as, nutrients, toxins, infections, and hypoxia with 
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subsequent up- or down-regulation of specific gene expression patterns (Barros et al., 2009, 

Safronova et al., 2010, Bayarsaihan, 2011, Yin et al., 2011). Emerging evidence suggests that 

epigenetic modifications play a major role in inflammatory diseases, including periodontal 

disease (Barros et al., 2014). Several factors that mediate periodontal disease pathogenesis, 

including bacteria and their byproducts, smoking, and diabetes, induce marked epigenetic 

changes in tissue components (Offenbacher et al., 2008, Khansari et al., 2009, Medzhitov et al., 

2009, Yin et al., 2011, Razzouk et al., 2013, Martinez et al., 2014, Pasquier et al., 2015). For 

example, chronically inflamed periodontal tissues demonstrated an increased methylation of 

CpG-rich regions of the PTGS2/COX2 promoter compared to healthy periodontal tissues (Zhang 

et al., 2010). Also, there is marked hypomethylation of the IL8 promoter in oral epithelial cells 

of subjects with Generalized Aggressive Periodontitis compared to control subjects (Andia et al., 

2010). Emerging studies suggest that microbial pathogens, including oral species such as 

Porphyromonas gingivalis, induce epigenetic modifications in host cells (reviewed in (Niller et 

al., 2017)). We recently identified potential epigenetic links between T. denticola and genes in 

PDL cells involved in activation of MMP-2 (Miao et al., 2014). Thus, T. denticola may mediate 

epigenetic modifications that regulate MMP-2 activation and subsequent ECM degradation in the 

periodontium.  

Epigenetic modifications are potentially reversible, and, therefore, a thorough understanding 

of these changes may identify new therapeutic targets for disease management. The aim of this 

study was to investigate T. denticola’s ability to chronically activate MMP expression through 
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epigenetic modifications in periodontal ligament cells/tissues, and to examine potential 

therapeutic approaches for reversal/modification of these changes. 

 

Results 

T. denticola chronically upregulates expression of MMP-2, MT1-MMP and TIMP-2, 

with concomitant fibronectin fragmentation. To determine the long-term effects of a brief 

exposure to T. denticola on MMP-2 expression in host cells, PDL cells were briefly challenged 

with T. denticola, then MMP-2 expression and MMP-2 activation in long-term cultures with 

daily medium changes were assessed by gelatin zymography and qRT-PCR. As shown in Fig. 

1A, PDL cells constitutively expressed basal levels of pro-MMP-2 with minimal activation for 

maintenance of homeostatic functions. However, challenge with T. denticola triggered both 

chronic increased MMP-2 expression (pro-MMP2) and activation (active MMP-2) in PDL cells. 

Following a 2h exposure to T. denticola, dentilisin activity (visible as a ~100kDa band on the 

zymogram, Fig. 1A) persisted within these cultures throughout the experiment, though it was 

detected at greatly reduced levels at days 9 and 12. Expression and activation levels of MMP-2 

were chronically sustained for up to 12 days, with minor reductions in the levels of activated 

MMP-2 on days 9 and 12 (Fig. 1A). T. denticola-mediated increases in MMP-2 expression and 

activation were mirrored by concomitant fibronectin fragmentation throughout the experiment 

(Fig. 1B).  
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The chronic effects of T. denticola on MMP-2 expression in PDL cells were regulated at the 

transcriptional level. MMP-2 mRNA levels were upregulated for up to 12 days as assessed by 

qRT-PCR (Fig. 1C). Given that the MT1-MMP/TIMP-2 complex is a well-known regulator of 

MMP-2 activation, MT1-MMP and TIMP-2 expression were examined in T. denticola 

challenged periodontal ligament cells in long-term cultures. Expression of the MT1-

MMP/TIMP-2 complex was also chronically upregulated by the T. denticola challenge, 

mirroring the changes induced in MMP-2 transcriptional expression (Fig. 1C).  

T. denticola levels and MMP-2 transcription are elevated in periodontal disease. 

Examination of human tissues from periodontally diseased and healthy sites confirmed the 

association between T. denticola and elevated MMP-2 expression in diseased tissues. Human 

tissue specimens from periodontally diseased sites exhibited elevated levels of T. denticola 

concomitant with elevated levels of MMP-2 mRNA expression compared with healthy sites (Fig. 

2). Tissue specimens from healthy sites exhibited negligible levels of T. denticola and low levels 

of MMP-2 expression. Low levels of MMP-2 expression in healthy tissues are consistent with 

the low basal levels of MMP-2 expression necessary for homeostatic functions within the 

periodontium, while increased MMP-2 expression is consistent with dysbiotic alterations of 

periodontal homeostasis in disease. 

Expression of genes encoding chromatin modification enzymes are significantly altered 

in periodontal disease. To further examine the role of epigenetics in periodontal disease, the 

major chromatin modification enzymes that might be involved in the disease process (Table S1) 
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were assessed via a focused gene array. Applying a “2-fold change” as a threshold value, we 

found that several chromatin modification enzymes were significantly altered in diseased 

periodontal tissue specimens compared to healthy control tissues (Fig. 3A, B and Table S2). The 

most significantly altered enzymes were the histone methyltransferases (HMTs) and histone 

deacetylases (HDACs), including PRMT8 and HDAC11, which exhibited a significant down-

regulation. Other enzymes, especially those related to SET Domain proteins, histone 

acetyltransferases (HATs), and histone phosphorylation kinases showed significant up-

regulation, such as SETD4, ESCO1, ESCO2, and AURKB. Other significantly altered enzymes 

included HATs, HDACs, histone ubiquitinases, DNA demethylases (DDMs) and histone 

demethylases (HDMs), and DNA methyltransferases (DNMTs).  

T. denticola significantly alters expression of genes encoding chromatin modification 

enzymes in PDL cells. To examine the potential role of epigenetics in the T. denticola-mediated 

upregulation of MMP-2 expression, a focused gene array was employed to study all major 

epigenetic chromatin modification enzymes that might be involved in this process (Table S1). 

Applying a “2-fold change” as a threshold value, we found that T. denticola-challenged PDL 

cells exhibited significantly decreased levels of all major chromatin modification enzymes (and 

Fig. 3C, D and Table S3). No chromatin modifying enzymes assayed showed increased 

expression (data not shown). The most significantly down-regulated enzymes included aurora 

kinases, which mediate histone phosphorylation, and HMTs. Specifically, within these classes of 

enzymes, the most downregulated enzymes included Aurora Kinase B and EHMT2. Other 
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significantly downregulated enzymes included HATs, histone deacetylases (HDAC), histone 

ubiquitinases, DNA (DDM) and histone demethylases (HDM), and DNMTs.  

Inhibitors of histone kinase/aurora kinase, DNMT and HDAC block T. denticola-

mediated increases in MMP-2 activity and expression in PDL cells. Given the broad 

landscape of epigenetic changes mediated by T. denticola on PDL cells and the changes 

exhibited in diseased tissues, targeted approaches were employed to examine the role of 

representative members of each major class of epigenetic enzymes (Table 1) in the process of 

MMP-2 modulation and FN fragmentation in T. denticola-challenged PDL cells.  

Pretreatment of PDL cells with the histone kinase/phosphorylation inhibitor, PF-03814735, 

inhibited the potential increase in MMP-2 activation and expression mediated by T. denticola 

(Fig. 4 A to C). Pretreatment with PF-03814735 also prevented the transcriptional increase in the 

MMP-2 activator complex, MT1-MMP /TIMP-2, and FN fragmentation mediated by the T. 

denticola challenge. This aurora kinase inhibitor exhibited a dose-response effect in terms of 

preventing the changes in MMP-2 expression and activation. At the highest dose tested, PF-

03814735 also suppressed MMP-2 expression and activation in control cells. All enzyme 

inhibitor concentrations were selected in ranges that did not alter proliferation or induce 

cytotoxicity in PDL cells (data not shown). 

Prevention of the potential increase in MMP-2 activation and expression mediated by T. 

denticola was also achieved by pretreatment of PDL cells with Azacytidine (AZA), a DNMT 

inhibitor (Fig. 5 A to C). AZA had a dose-response effect, inhibiting increases in MMP-2 
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expression and activation, MT1-MMP/TIMP-2 expression, and fibronectin fragmentation 

mediated by the T. denticola challenge. In contrast, epigallocatechin gallate (EGCG), a different 

DNMT inhibitor with a broad spectrum of activity that includes inhibition of HATs, had 

considerably less effect than AZA. At the highest concentration tested, EGCG had only minor 

effects on T. denticola-mediated MMP-2 activation and TIMP-2 expression, but this did not 

result in modulation of FN fragmentation (Fig. 6 A to C).  

Examination of HDAC inhibitors Apicidin and Trichostatin revealed that pretreatment with 

these two inhibitors at the highest doses tested (1 µM and 0.1 µM, respectively) also inhibited 

the T. denticola-mediated increase in MMP-2 expression and activation as well as that of its 

activator complex, MT1-MMP/TIMP-2. However, as with EGCG, neither of these inhibitors 

affected FN fragmentation (data not shown).  

HMT, HDM and HAT inhibitors exacerbate T. denticola-mediated increases in MMP-2 

expression and activity in PDL cells. Inhibitors of histone demethylases (HDM), histone 

methyltransferases (HMT), and histone acetyltransferases (HAT) were not effective in 

preventing the T. denticola-mediated increases in pro-MMP-2 expression and activation. 

Treatment with Curcumin, a HAT inhibitor, resulted in moderately increased expression of pro-

MMP-2, but significantly decreased its MMP-2 activation in a dose-dependent manner (Fig. 7A). 

In contrast, the HDM inhibitor, Tranylcypromine, HCl (TCP) and the HMT inhibitor, BIX 

01295/ trihydrochloride hydrate further augmented the T. denticola-mediated increases in MMP-

2 expression and activation in PDL cells (Fig. 7B, C). 
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Inhibitors of histone phosphorylation and histone deacetylase reverse T. denticola-

mediated increases in MMP-2 activity and expression in PDL cells. An important remaining 

question was whether existing epigenetic modifications on periodontal ligament cells mediated 

by T. denticola could be reversed in a post-treatment scenario. To this end, periodontal ligament 

cells were first challenged with T. denticola then the same enzyme inhibitors tested above were 

employed to address this question. In agreement with the pretreatment results, post-treatment of 

T. denticola challenged PDL cells with three different epigenetic enzyme inhibitors reversed the 

effects on MMP-2 expression and activation: the histone kinase inhibitor, PF-03814735 (Fig. 

8A) and the HDAC inhibitors apicidin (Fig. 8B) and trichostatin (Fig. 8C).  

It is important to note that the results of the pre- and post-challenge inhibition experiments 

should not be compared in parallel because of different sample collection times used. In the pre-

treatment experiments, samples were collected after 3 days of a T. denticola (2-hour exposure) 

challenge, whereas in the post-challenge treatment experiments, the samples were collected 2 

hours to 4 days after a T. denticola (2 hour exposure) challenge, depending on the inhibitor used. 

Similarly, in contrast to the pre-challenge enzyme inhibition experiments, no decrease in FN 

fragmentation was observed in post-challenge inhibition experiments (data not shown), 

presumably because the MMP-2-mediated fragmentation process had begun before addition of 

enzyme inhibitors. 

 

Discussion 
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ECM destruction, a key event in the pathogenesis of periodontitis, is mediated by host-derived 

enzymes such as MMP-2 that are involved in ECM homeostasis and remodeling. Strong 

evidence has accumulated over the past two decades that bacterial components, including 

proteases and lipopolysaccharides, are key factors contributing to dysregulation of ECM 

homeostasis. It is of particular interest that activation of pro-MMP-2, which is constitutively 

expressed in PDL cells, is required for the fragmentation of cellular FN that is typically seen in 

periodontal disease (Miao et al., 2011). Thus, identifying factors that control MMP-2 expression 

or activation can help us better understand and modulate periodontal disease pathogenesis.  

T. denticola is a member of a very complex microbiota involved in the pathogenesis of 

periodontal diseases. MMP-2 production and activation is a major event in the pathogenesis of 

these diseases via its role in extracellular matrix destruction. The T. denticola dentilisin protease 

plays an important role in the up-regulation and activation of MMP-2 in PDL cells (Miao et al., 

2011, Miao et al., 2014), thereby promoting further ECM destruction and release of fibronectin 

fragments, which have deleterious effects on the periodontal environment (Kapila et al., 1996, 

Kapila et al., 1999, Kapila et al., 2002, Jee et al., 2004, Dai et al., 2005, Tafolla et al., 2005, 

Ghosh et al., 2008, Joo et al., 2008, Joseph et al., 2010, Miao et al., 2011, Miao et al., 2014, 

Pereira et al., 2014). The oral spirochete T. lecithinolyticum is also reported to activate MMP-2, 

as are P. gingivalis and A. actinomycetemcomitans (Choi et al., 2001, Chang et al., 2002, Song et 

al., 2003). The molecular mechanism(s) involved remain unstudied or unresolved for these 

species.  
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T. denticola dentilisin activity was present for several days in PDL cell conditioned medium, 

long after the brief (2 hour) challenge, washing and multiple changes of growth medium. This is 

consistent with our prior reports (Miao et al., 2011, Miao et al., 2014) and is likely due to 

persistent adherence of T. denticola to PDL cells, though we cannot yet rule out potential 

downstream effects of previously documented uptake of T. denticola by PDL cells (Miao et al., 

2014) and gingival epithelial cells (Shin et al., 2012, Jo et al., 2014, Inagaki et al., 2016). 

Importantly, while dentilisin activity levels decreased steadily over time, MMP-2 and its 

activating complex, MT1-MMP and TIMP-2, were clearly expressed and activated through the 

12th day of culture. These data confirm our previous results that dentilisin is an important factor 

in the activation of pro-MMP-2 (Miao et al., 2011). Additionally, in agreement with our earlier 

findings (Miao et al., 2014), the current data show that T. denticola chronically activates MMP-

2, in concert with MT1-MMP and TIMP-2 expression up to 12 days. Importantly, degradation of 

cellular FN in PDL cell cultures is dependent on MMP-2 activation, which is the result of T. 

denticola dentilisin activity (Miao et al., 2011). The persistent fibronectin fragmentation in these 

samples may help explain the chronicity of tissue destruction mediated by bacterial proteases 

during periodontal disease pathogenesis.  

Previous studies showed that T. denticola has the ability to adhere to and be internalized by 

several different host cells, including gingival epithelial cells, PDL cells, and polymorphonulear 

leukocytes (Ding et al., 1997, Konermann et al., 2012, Shin et al., 2012, Miao et al., 2014). It 

should be noted that, unlike other oral pathogens, such as Porphyromonas gingivalis which 
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exhibits a cellular-invasive phenotype (Lamont et al., 1995), there is no reported evidence that T. 

denticola survives in the intracellular environment. Taken in aggregate, these results and the 

findings from this study, support the concept that the alteration of the PDL cells towards a 

destructive phenotype is a consequence of exposure to T. denticola. These data are consistent 

with evidence from other inflammatory diseases pointing toward an epigenetic role in the 

pathogenic process. We hypothesized that epigenetic mechanisms may imprint the periodontium 

and set in motion the process of chronic periodontal tissue destruction.  

Mechanisms of epigenetic modifications include, histone acetylation, histone methylation, 

DNA methylation, positioning of histone variants, and gene regulation by non-coding micro 

RNAs (miRNAs) (Bayarsaihan, 2016, Herceg, 2016, Perkins et al., 2016). Several enzymes are 

involved in these mechanisms including; histone acetyltransferases (HATs), histone deacetylases 

(HDACs), histone methyltransferases (HMTs), histone demethylases (HDMs), histone 

phosphorylases, and DNA methyltransferases (DNMTs).  

Perturbing the balance between acetylation/deacetylation or methylation/demethylation is 

profoundly associated with numerous diseases including developmental abnormalities, cancer 

and chronic inflammatory conditions (Bird, 2002, Barros et al., 2009). Epigenetic modifications 

are potentially reversible; therefore, a thorough understanding of these changes may identify new 

therapeutic targets for disease management. Using gene arrays that target chromatin modification 

enzymes, our data provides the first evidence that T. denticola mediates downregulation of many 

of these enzymes in PDL cells. In similar studies, P. gingivalis lipopolysaccharides were shown 
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to downregulate many chromatin modification enzymes in cultured oral keratinocytes (de 

Camargo Pereira et al., 2013) and change the expression of multiple miRNAs in PDL cells (Du 

et al., 2016). However, since T. denticola-dependent MMP-2 activation requires dentilisin 

proteolytic activity (Miao et al., 2011), it is likely that the molecular mechanisms responsible for 

this downregulation differ from those driven by P. gingivalis lipopolysaccharides. Specific 

mechanisms by which T. denticola or its dentilisin protease may regulate epigenetic enzyme 

expression are under study in our laboratories.  

The association between T. denticola and periodontitis has been reported in numerous studies 

(Simonson et al., 1988, Sakamoto et al., 2001, Asai et al., 2002, Yoshida et al., 2004). 

Consistent with the existing literature, we found that T. denticola levels were significantly 

elevated in human tissue specimens from periodontally diseased sites compared with healthy 

sites, as measured by qPCR normalized to human GAPDH (data not shown). To date, studies of 

the role of epigenetic modifications in periodontal disease have focused on DNA methylation 

patterns in genes involved in inflammatory responses (Barros et al., 2014). The present study 

used gene array approaches to examine healthy and diseased periodontal tissues, revealing for 

the first time significant alterations in the expression of several chromatin modification enzymes 

in diseased tissues. Although expression levels of some enzymes (such as Aurora Kinase B) 

differed in the gene array of the PDL cells compared to the tissues, this likely reflects the fact 

that tissues exhibit the net expression of diverse cell types that comprise the periodontium, as 
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well as the net effects of the diverse oral microbiome on the periodontium, and net effects of 

other epigenetic effectors, including smoking and medications. 

Different inhibitors show promise in reversing epigenetic changes in the context of our study 

and in other reports. Chronic T. denticola-mediated MMP-2 expression and activation were 

decreased in T. denticola challenged PDL cells either pre- or post-treated with inhibitors of 

histone phosphorylases, histone deacetylases (HDACs), and DNA methyltransferases (DNMTs). 

This indicates that T. denticola induces epigenetic changes mediated by histone phosphorylation, 

histone deacetylation, or DNA methylation pathways. Specifically, pre- or post-treatment 

inhibition of histone phosphorylation in PDL cells using PF-03814735 significantly prevented or 

reversed the T. denticola-mediated increase in MMP-2 and the MT1-MMP/TIMP-2 complex. 

This study is the first to show the effect of inhibition of histone phosphorylation on MMP-2 

expression in PDL cells. In a broader context, PF has been used in phase I clinical trials for the 

treatment of advanced solid tumors (Jani et al., 2010, Schoffski et al., 2011).  

Inhibition of HDACs using Apicidin and/or Trichostatin was also effective in preventing or 

reversing the T. denticola-mediated effects on the expression of MMP-2 in PDL cells. Similar 

data were obtained by other studies investigating the effect of Trichostatin on MMP-2 expression 

in murine fibroblasts (Ailenberg et al., 2002). Trichostatin was further shown to decrease MMP-

2 and MMP-9 expression in murine heart cells (Mani et al., 2015) and in human esophageal 

squamous cell carcinoma cells (Wang et al., 2013). Trichostatin, in combination with SAHA, 

was reported to inhibit the respiratory syncytial virus (RSV)-mediated increase in HDAC2 
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expression with resultant decrease in airway inflammation and oxidative stress in vivo (Feng et 

al., 2016). Apicidin was also reported to inhibit the expression of MMP-2 in different cancer 

cells (Kim et al., 2000, Park et al., 2011, Ahn et al., 2012). On the other hand, inhibition of 

DNMTs using AZA showed a reduction in the expression of MMP-2 and its activating complex, 

while the use EGCG was not effective in this process.  

Our results are consistent with those in other studies reporting that AZA causes a down-

regulation of MMP-2 and MMP-9 expression in cultured esophageal squamous cell carcinoma 

cells (Liu et al., 2014) and breast cancer cells (Chang et al., 2014b) respectively. AZA was 

approved by the U. S. Food and Drug Administration (FDA) for treatment of myelodysplastic 

syndromes (Nebbioso et al., 2012). It was also investigated in many clinical trials for treatment 

of several disorders, including hematological and neoplastic disorders (Liu et al., 2005, Mirza et 

al., 2010, Chen et al., 2012). Regarding the effect of EGCG on MMP-2 expression in our study, 

the data are inconsistent with other studies, which reported the ability of EGCG to inhibit MMP-

2 in different cancer cells (Chang et al., 2014a, Nowakowska et al., 2016). This inconsistency 

may be due to the use of different cell types, different concentrations of EGCG, or both. 

Concentrations higher than 10 µM were toxic to PDL cells as examined by cell proliferation and 

cytotoxicity assays (data not shown). Due to the weak effect of EGCG on the expression of 

MMP-2, we did not test its effects in a post-challenge scenario. 

Negative consequences of using epigenetic enzyme inhibitors are possible, as seen in the 

current study. Specifically, some inhibitors, namely those inhibiting HDM with TCP and those 
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inhibiting HMT with BIX 01295, further increased MMP-2 expression and activation. Although 

TCP and BIX are thought to mediate opposite actions, namely BIX inhibits histone methylation 

and TCP promotes histone methylation, both increased MMP-2 expression and activation. Thus, 

due to these undesirable effects, BIX and TCP were not evaluated further in post-challenge 

scenarios. There are no previous studies investigating their effect on expression of MMPs. 

However, Pereira et al. showed that increases in MMP-2 expression were stimulated by 

decreases in histone methylation in the context of the MMP-2 promoter (Pereira et al., 2014). 

Additionally, in another study, the MMP-1, 3, 9, and 13 genes were shown to be actively 

transcribed in rheumatoid arthritis-derived synovial fibroblasts, and this transcription correlated 

with an elevation in H3K4me3 and suppression of H3K27me3 in the MMP promoter genes 

(Araki et al., 2016). These studies, which both showed increases in MMP-2 expression despite 

different degrees of histone methylation, can be explained by the fact that activation or 

repression of gene expression by histone modifications/methylations depends on the type of 

lysine being modified and the degree of its methylation. For example, H3K4me, H3K36me, or 

H3K79me are associated with transcriptional activation (Jenuwein et al., 2001, Zhang et al., 

2001, Barski et al., 2007, Guenther et al., 2007, Koch et al., 2007, Kouzarides, 2007), whereas 

H3K9me, H3K27me, or H4K20me are implicated in gene repression (Jenuwein et al., 2001, 

Nakayama et al., 2001, Talbert et al., 2006, Barski et al., 2007, Kouzarides, 2007).  

The HAT inhibitor curcumin also increased the expression of MMP-2 but significantly 

inhibited its activation. The effect of curcumin in decreasing MMP-2 and MMP-9 expression 
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levels was reported in cancer cells, such as squamous cell carcinoma and osteoclastoma (Cao et 

al., 2015, Lee et al., 2015). Additionally, in vivo studies in humans and animals demonstrated 

curcumin’s effectiveness in decreasing the severity of periodontal diseases (Elburki et al., 2014, 

Nagasri et al., 2015, Bakir et al., 2016, Elburki et al., 2016). Curcumin has been investigated in 

many clinical trials for treatment of several disorders, such as ulcerative colitis (Baliga et al., 

2012), breast cancer (Nagaraju et al., 2012), pancreatic cancer (Veeraraghavan et al., 2011), and 

diabetes (Abdel Aziz et al., 2012). Additional investigation into the role of curcumin in MMP 

activation and regulation in periodontal diseases is further warranted, given these reports and the 

current study findings. 

In summary, T. denticola plays a key role in the transcriptional regulation of MMP-2 and its 

activating complex MT1-MMP/TIMP-2 in PDL cells. T. denticola also mediates alterations of 

chromatin modification enzyme expresssion in PDL cells, and an array of epigenetic 

modifications are associated with periodontally diseased tissues. Furthermore, inhibition of 

enzymes that mediate epigenetic modifications can prevent T. denticola-mediated increases in 

MMP-2, MT1-MMP, and TIMP-2 in PDL cells. These inhibitors can also reverse the T. 

denticola-mediated effects on MMP-2 and its activating complex in PDL cells. These data 

indicate that T. denticola mediates its effects on MMP-2 activation through epigenetic 

modifications in these cells. This knowledge can be useful as a first step toward the development 

of novel targeted therapeutics for the treatment of periodontal diseases.  
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Materials and Methods 

Periodontal ligament (PDL) cell culture. As described previously, the primary culture of 

PDL cells was obtained via the direct cell outgrowth method by isolating cells from the PDL 

tissue around the middle third of extracted healthy human teeth (Scanlon et al., 2011, Tanaka et 

al., 2011). Cells were maintained in minimal essential medium-α (MEM-α) augmented with 10% 

fetal bovine serum (FBS), 1% penicillin/streptomycin (P/S), and 1% amphotericin B (Gibco, 

Grand Island, NY, USA) in a humid atmosphere with 95% air and 5% CO2 at 37°C. Cell 

outgrowths were passaged when they reached confluency. Cells passaged three to six times were 

used for experimentation. The cell counting kit-8 (Dojindo, Rockville, MD, USA) was used for 

assaying PDL cell proliferation and cytotoxicity at different time intervals in response to 

different concentrations of the inhibitors used in the study (data not shown). Protocols involving 

the collection and use of human teeth and PDL cells/tissue were approved by the Health Sciences 

Institutional Review Board of the University of Michigan.  

Human periodontal tissues. Periodontal tissues were obtained by collecting the tissues 

around the coronal third of the roots of extracted periodontally-involved teeth and healthy teeth, 

both from the posterior mandibular region. Periodontal status was diagnosed clinically by testing 

for bleeding on probing of the gingival sulcus and periodontal pocket depth measurements. The 

samples were collected from six different periodontitis patients and six healthy subjects. The 

collection and use of human teeth and PDL tissues was approved by the Health Sciences 

Institutional Review Board of the University of Michigan. 
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Culture of Treponema denticola. Treponema denticola ATCC 35405 was grown as 

described previously under anaerobic conditions at 37°C in New Oral Spirochete (NOS) broth 

medium (Haapasalo et al., 1991, Fenno, 2005). Purity of spirochete cultures was confirmed by 

darkfield microscopy prior to use in experiments.  

Challenge of PDL cells with Treponema denticola. PDL cells were prepared in MEM-α free 

of serum and antibiotics. The bacteria in broth culture were collected by centrifugation, then re-

suspended in serum- and antibiotic-free MEM-α to an optical density of 0.1 at 600 nm, such that 

the cellular density was approximately 2.4×108 cells/ml. 

T. denticola in serum-and antibiotic-free MEM-α was added to the test group of PDL cells 

(T. denticola group) at a multiplicity of infection (MOI) = 100, whereas only MEM-α was added 

to the control group. Both groups were then incubated for two hours at 37°C in 5% CO2-

containing air. After the two-hour challenge, PDL cells were washed three times with PBS and 

incubated for the planned time periods in serum-and antibiotic-free MEM-α with daily medium 

changes as described previously (Miao et al., 2011). Subsequently, the culture conditioned 

medium and cell lysates were collected, RNA was extracted from the cell lysates, and all 

samples were stored at ˗80°C for further investigations.  

Pre-challenge inhibition of epigenetic chromatin modification enzymes in PDL cells, 

Different inhibitors of epigenetic chromatin modification enzymes (listed in Table 1) were 

obtained and prepared according to the manufacturer’s instructions, then brought to the desired 

concentrations via dilution in serum- and antibiotic-free MEM-α. With the exception of 
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tranylcypromine (EMD Millipore, Temecula, CA, USA), all enzyme inhibitors were purchased from 

Sigma Aldrich (St. Louis, MO, USA). 

PDL cells were treated with the indicated concentrations of the enzyme inhibitors either as 

single agents or in combinations, and incubated for the indicated times with daily culture 

medium replacement. The cells were then challenged with T. denticola at an MOI of 1:100 for 2 

hours, washed, and incubated for three days in serum- and antibiotic-free MEM-α with daily 

culture medium refreshment. At the end of this incubation period, conditioned culture medium 

and cell lysates were harvested and stored at -80°C for further investigations.  

Post-challenge inhibition of epigenetic chromatin modification enzymes in PDL cells. For 

the post-challenge experiments, the PDL cells were first challenged with T. denticola as 

described before, then treated with the indicated concentrations of the inhibitors either as single 

agents or in combinations for certain periods. At the end of the treatment period, the conditioned 

culture medium and cell lysates were harvested and stored at -80°C for further investigations. All 

experiments were repeated at least three times and each experiment was performed in triplicate. 

Gelatin zymography. Culture supernatants were concentrated approximately 10-fold in 

Amicon centrifugal concentrators (10,000-molecular-weight cutoff; Millipore) and total protein 

concentration was measured using the BCA protein assay kit (Thermo Scientific, Rockford, IL, 

USA) normalized to an albumin standard. Equivalent protein concentrations from each sample 

were mixed with non-reducing sample buffer (0.25 M tris-base, 40% glycerol, 0.8% SDS, and 

0.05% bromophenol blue stain in distilled deionized water/ddH2O at pH 6.8) and loaded into 8% 
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polyacrylamide gels co-polymerized with 0.4% SDS and 0.2% gelatin. Samples were 

electrophoretically resolved on gelatin-containing gels at 125 V for 110 minutes at 4°C. Gels 

were then washed twice for 15 minutes under continuous agitation using renaturation/washing 

buffer (2.5% v/v Triton-X100 and 0.05 M Tris-base in ddH2O at pH 7.5) to eliminate SDS and 

promote the renaturation of MMP enzymes. Subsequently, gels were incubated in 

developing/incubation buffer (0.05 M Tris-base, 0.15 M sodium chloride, 0.01 M calcium 

chloride, and 0.02% sodium azide in ddH2O at pH 7.5) for 30 minutes under agitation, then the 

buffer was replaced and gels incubated for 16-20 hours at 37°C. After that, gels were stained 

using filtered Coomassie Brilliant blue stain for one or two hours under agitation. Destaining of 

the gels was performed using a methanol/acetic acid destaining buffer (40% methanol and 10% 

acetic acid in ddH2O) until the bands on the gel appeared clear. Zymograms were scanned and 

the densitometry of the gelatinolytic activity represented by the clear bands was analyzed using 

ImageJ software (NIH, USA). Brightness and contrast levels of zymogram images were slightly 

adjusted for publication only.  

Immunoblotting. Equivalent protein samples consisting of 10 fold concentrates of PDL cell 

culture conditioned media were standardized as described above, subjected to standard SDS-

PAGE (4-12% polyacrylamide gels; Invitrogen, Carlsbad, CA, USA) and transferred to PVDF 

membranes using standard techniques. The membranes were exposed to a rabbit polyclonal anti-

fibronectin IgG (Santa Cruz, Dallas, TX, USA) primary antibody diluted 1:2000 in TBST 

solution for 2 hours at room temperature followed by a horseradish peroxidase (HRP)-conjugated 
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goat anti-rabbit IgG secondary antibody (Santa Cruz, Dallas, TX, USA) diluted 1:10,000 in 

TBST for 1 hour at room temperature with agitation. Western blots using anti-GAPDH 

antibodies were used to further confirm equal protein loading (data not shown). Blots were 

developed using the SuperSignal® West Pico kit (ThermoFischer Scientific, Pittsburgh, PA, 

USA) and scanned for digitization. 

Quantitative reverse transcriptase PCR (qRT-PCR). qRT‐PCR was performed to assess 

the transcriptional levels of MMP-2, MT1-MMP, and TIMP-2 in PDL cells. Cell lysates were 

collected and the RNA was extracted and purified using the RNeasy® mini kit (Qiagen, Valencia, 

CA, USA) according to the manufacturer’s instructions. Reverse transcription of the RNA into 

cDNA was then performed using the SuperScript™ II RT kit (Invitrogen, Carlsbad, CA, USA). 

The cDNA was then amplified by qPCR using the TaqMan® Universal PCR Master Mix 

(Invitrogen, Carlsbad, CA, USA)” on a ViiA™ 7 Applied Biosystems® PCR system. The 

following TaqMan® human probes were used; MMP-2 (Hs01548727_m1), MT1-MMP 

(Hs01037003_g1), TIMP-2 (Hs00234278_m1), and GAPDH (Hs03929097_g1) (Invitrogen, 

Carlsbad, CA, USA). The cycle threshold (Ct) values were obtained, analyzed and the 

quantitative expression of target genes in challenged PDL cells was normalized to GAPDH and 

compared to the control cells using the 2−ΔΔCT
 method (Livak et al., 2001), applying a minimum 2 

fold change in expression as the cut off.   

Similar methodology was utilized to assess the levels of MMP-2 transcription and the levels 

of T. denticola in human periodontal tissue samples. Periodontal tissue specimens were collected 
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by scraping the most coronal portion of the tissue around the roots of extracted healthy and 

periodontally-diseased teeth. Total RNA was extracted from healthy and diseased periodontal 

tissue specimens and cDNA was generated. Target genes were amplified using TaqMan® 

Universal PCR Master Mix (Invitrogen, Carlsbad, CA, USA). Tissue sample human genome 

content was normalized using a custom TaqMan® primer/probe set for GAPDH 

(Hs03929097_g1; Invitrogen, Carlsbad, CA, USA). T. denticola 16S rRNA was amplified in 

parallel using the SYBR® Green PCR Master Mix (Invitrogen, Carlsbad, CA, USA) with the 

following primer set: 16SrRNA-987F AGGGATATGGCAGCGTAGCA and 16SrRNA-1077R 

TTGCGGGACTTAACCCAACA.  

Quantitative reverse transcription (qRT-PCR) gene micro-array. qRT-PCR arrays were 

used to assess the transcriptional levels of the main epigenetic chromatin modification enzymes 

in cultured PDL cells and in periodontal tissues using the RT2 Profiler PCR Array kit (Qiagen, 

Valencia, CA, USA) to assay transcription of the genes listed in Table S1. Periodontal tissue 

specimens were collected by scrapping the most coronal portion of the tissue around the roots of 

extracted healthy and periodontally-diseased teeth. RNA was extracted and purified from PDL 

cell cultures using the RNeasy® Mini kit, while extraction and purification of RNA from 

periodontal tissues was achieved using the RNeasy® Protect Mini kit (Qiagen, Valencia, CA, 

USA) according to the manufacturer’s protocol. Reverse transcription of RNA into cDNA was 

performed using the RT2 First Strand Kit (Qiagen, Valencia, CA, USA). The target genes were 

then amplified using the RT2 Profiler PCR Array kit and RT2 SYBR® Green Master mix 
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(Qiagen, Valencia, CA, USA) on a ViiA™ 7 Applied Biosystems® PCR system. Applying a 

minimum 2 fold change in expression as the cut off, Ct values were analyzed and the quantitative 

expression of the genes of interest in T. denticola-challenged PDL cells was normalized to 

supplied housekeeping genes; β-actin, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-

2-microglobulin, Hypoxanthine phosphoribosyltransferase-1, and large ribosomal protein-P0 and 

then compared to expression levels in unchallenged PDL cells and the healthy tissues (Livak et 

al., 2001). 

Statistical analysis. The data were analyzed using the statistical software SPSS® v.22 (IBM, 

Armonk, NY, USA). Results were evaluated by a one-way ANOVA when comparing more than 

two groups, whereas the student’s t-test was used when comparing two groups. p < 0.05 was 

considered significant, whereas p < 0.001 was considered highly significant. 
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  Table 1. Chemical agents used to target chromatin modification enzymes. 

Compound Target enzyme 
Concentrations 

(µM) Treatment 
period Source References 

Low High 

Inhibition of DNA methyltransferases (DNMT)    

5-Azacytidine - DNMT  1 5 4 days * 

(Chernov et 
al., 2009, 
Zhang et 
al., 2011, 
Hassler et 
al., 2012) 

(−)-Epigallocatechin 
gallate (EGCG) 

- DNMT  
- HAT: 

P300, CBP, 
PCAF, 
TIP60 

5 10 2 days * 

(Achour et 
al., 2013, 

Saldanha et 
al., 2014) 

Inhibition of Histone Deacetylases (HDACs) 

Trichostatin A - HDAC 0.05 0.1 4 days * 

(Mogal et 
al., 2006, 
Chang et 
al., 2012) 

Apicidin - HDAC 0.5 1 1 day * 

(Ahn et al., 
2012, 

Bauden et 
al., 2015) 

Inhibition of Histone phosphorylation 

PF-03814735 - AURK A 
- AURK B  0.25 0.5 2 days * (Hook et 

al., 2012) 

Inhibition of Histone Acetyltransferases (HATs)    

Curcumin - HATs 25 50 2 hours * 

(Balasubr
amanyam 

et al., 
2004, Ahn 

et al., 
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2012) 

Inhibition of Histone Methyltransferases (HMTs) 
   

BIX 01294      - HMT G9a 0.5 1 2 days * (Kubicek et 
al., 2007) 

Inhibition of Histone Demethylases (HDMs) 

Tranylcypromine, HCl 
(TCP) 

- Monoamine 
oxidase A/B  

Histone LSD1/2  

2 5 4 days # 
(Nebbioso 

et al., 2012) 

* Sigma-Aldrich, St. Louis, MO, USA 

# EMD Millipore, Temecula, CA, USA 
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FIGURE LEGENDS 

 

Figure 1. T. denticola mediates chronic expression and activation of MMP-2, MT1-MMP, 

and TIMP-2 in PDL cells, with subsequent fragmentation of cellular fibronectin. Cultured 

PDL cells were challenged with T. denticola (Td) at MOI = 100 or media control for two hours, 

then incubated for 3, 6, 9, and 12 days with daily medium changes. The experiments were 

repeated three times in triplicate. Data were analyzed using one-way ANOVA. (*) represents p < 

0.05 compared to the same time point in the control group. (#) represents p < 0.001 compared to 

the same time point in the control group. 

Panel A: A representative gelatin zymogram of PDL cell conditioned medium showing the 

gelatinolytic activity of pro-MMP-2 (72-kDa), active MMP-2 (64-kDa), and Td dentilisin (100-

kDa). The left 4 lanes represent the control unchallenged PDL cells and the right 4 lanes 

represent the Td-challenged PDL cells. The bar chart below represents the densitometric 

analysis of gelatinolytic activity in the zymograms using ImageJ™-NIH software. The Y-axis 

represents fold-gelatinolytic activity of the pro-MMP-2, active MMP-2, and dentilisin relative 

to unchallenged control at day 3. The X-axis represents different time points. 

Panel B: A representative immunoblot of PDL cell culture supernatants probed with a 

polyclonal anti-fibronectin antibody showing FN fragmentation in conditioned medium from 

Td-challenged PDL cells.  
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Panel C: Transcript levels of MMP-2, MT1-MMP, and TIMP-2 in PDL cells at different time 

points after challenge with Td or media control assayed by qRT-PCR. The Y-axis represents 

fold-expression level of each gene relative to unchallenged control at day 3. The X-axis 

represents different time points. 

Figure 2. Elevated MMP-2 mRNA and T. denticola in diseased periodontal tissue. Levels of 

T. denticola 16S rRNA and MMP-2 mRNA in tissue specimens from periodontally diseased or 

healthy sites were assayed by qRT-PCR. The Y-axis represents levels of each RNA in 

periodontitis specimens relative to healthy specimens. The X-axis represents the source of tissue 

specimens. Data were analyzed using Student’s t-test. (#) represents p < 0.001 compared to 

healthy tissue. 

Figure 3. Transcription of multiple chromatin modification enzymes is altered in both 

periodontally diseased tissue and in T. denticola-challenged PDL cells. Transcription levels 

of 87 chromatin modification enzymes were examined by qRT-PCR using RNA extracted from 

healthy and diseased periodontal tissues (Panels A and B, respectively) and from PDL cell 

lysates collected 9 days after Td challenge as described in Fig. 1 (Panels C and D, respectively).  

Panels A and C: Scatter blots showing the transcriptional level of chromatin modification 

enzymes in periodontally diseased tissues relative to healthy tissue controls (Panel A) and in 

Td-challenged PDL cells relative to unchallenged control cells (Panel C). The Y-axis 

represents expression level of different enzymes relative to healthy tissue (Panel A) or 

This article is protected by copyright. All rights reserved.



58 
 

unchallenged control cells (Panel C). The X-axis represents normalized expression of the 

respective control group. 

Panels B and D: Bar-charts showing the significantly downregulated chromatin modification 

enzymes in periodontally diseased tissues relative to healthy tissue controls (Panel B) and in 

Td-challenged PDL cells relative to unchallenged control cells (Panel D). The Y-axis 

represents the fold-expression/downregulation level of enzymes relative to unchallenged 

controls. The X-axis represents different chromatin modification enzymes, with enzyme type 

grouped by color. 

 

Figure 4. Inhibition of histone phosphorylation using PF-03814735 results in decreased 

expression and activation of MMP-2, MT1-MMP and TIMP-2, and decreased fibronectin 

fragmentation in T. denticola-challenged and control PDL cells. Cultured PDL cells were pre-

treated with 0.25 or 0.5 µM PF-03814735 (PF) for two days. The cells were then challenged with 

T. denticola (Td) at MOI = 100 or media control for two hours then incubated for three days. The 

conditioned medium and cell lysates were collected for zymography, western blotting, and qRT-

PCR. The experiments were repeated three times in triplicate. Data were analyzed using one-way 

ANOVA. (*) represents p < 0.05 compared to the “0” concentration in the same group. (#) 

represents p < 0.001 compared to the “0” concentration in the same group. 

Panel A: Densitometric analysis of pro-MMP-2 (72kDa) and active MMP-2 (64kDa) detected 

by gelatin zymography. The X-axis represents different concentrations of histone 
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kinase/phosphorylation inhibitor, PF-03814735 (PF) in the control and Td groups. The Y-axis 

represents fold-gelatinolytic activity of the pro-MMP-2 and active MMP-2 relative to 

unchallenged and untreated controls. 

Panel B: A representative immunoblot of PDL cell culture supernatants probed with a 

polyclonal anti-fibronectin antibody showing FN fragmentation in conditioned medium from 

Td-challenged PDL cells, control and PF-treated. 

Panel C: Bar chart showing transcript levels of MMP-2, MT1-MMP and TIMP-2 in the control 

and PF-treated PDL cells as determined by qRT-PCR. The Y-axis represents fold-expression 

level of each gene relative to unchallenged and untreated controls. The X-axis represents 

different concentrations of PF in the control and Td groups. 

 

Figure 5. Inhibition of DNA methyltransferases using AZAcytidine (AZA) result in 

decreased expression and activation of MMP-2, MT1-MMP and TIMP-2, and decreased 

fibronectin fragmentation in T. denticola-challenged and control PDL cells. Cultured PDL 

cells were pre-treated with 1 or 5 µM AZA for four days. The cells were then challenged with T. 

denticola (Td) at MOI = 100 or media control for two hours then incubated for three days. The 

conditioned medium and cell lysates were collected for zymography, western blotting, and qRT-

PCR. The experiments were repeated three times in triplicate. 

Panel A: Densitometric analysis of pro-MMP-2 (72kDa) and active MMP-2 (64kDa) detected 

by gelatin zymography. The X-axis represents different concentrations of DNA 
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methyltransferases inhibitor Azacytidine (AZA) in the control and Td groups. The Y-axis 

represents fold-gelatinolytic activity of the pro-MMP-2 and active MMP-2 relative to 

unchallenged and untreated controls. Data were analyzed using one-way ANOVA. (*) 

represents p < 0.05 compared to the “0” concentration in the same group. (#) represents p < 

0.001 compared to the “0” concentration in the same group. 

Panel B: A representative immunoblot of PDL cell culture supernatants probed a polyclonal 

anti-fibronectin antibody showing FN fragmentation in conditioned medium from Td-

challenged PDL cells, control and AZA-treated. 

Panel C: Bar chart showing transcript levels of MMP-2, MT1-MMP and TIMP-2 in the control 

and AZA-treated PDL cells as determined by qRT-PCR. The Y-axis represents fold-expression 

level of each gene relative to unchallenged and untreated controls. The X-axis represents 

different concentrations of AZA in the control and Td groups. 

 

Figure 6. Inhibition of DNA methyltransferases using epigallocatechin gallate (EGCG) 

mediate a decrease in MMP-2 activation, an increase in TIMP-2 transcription and minimal 

decrease in fibronectin fragmentation in Td-challenged PDL cells. Cultured PDL cells were 

pre-treated with 5 or 10 µM EGCG for two days before being challenged with T. denticola (Td) 

at MOI = 100 or media control for two hours, then incubated for three days. The conditioned 

medium and cell lysates were collected for zymography, western blotting, and qRT-PCR. The 

experiments were repeated three times in triplicate. Data were analyzed using one-way ANOVA. 
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(*) represents p < 0.05 compared to the “0” concentration in the same group. (#) represents p < 

0.001 compared to the “0” concentration in the same group. 

Panel A: Densitometric analysis of pro-MMP-2 (72kDa) and active MMP-2 (64kDa) 

detected by gelatin zymography. The left 3 lanes represent the control group (unchallenged 

PDL cells) and the right 3 lanes represent the Td group (Td-challenged PDL cells). The cells 

in both groups were treated with indicated concentrations of EGCG. The X-axis represents 

different concentrations of EGCG in the control and Td groups. The Y-axis represents fold-

gelatinolytic activity of pro-MMP-2 and active MMP-2 relative to unchallenged and 

untreated controls.  

Panel B: A representative immunoblot of PDL cell culture supernatants probed with a 

polyclonal anti-fibronectin antibody showing FN fragmentation in conditioned medium from 

Td-challenged PDL cells, control and EGCG-treated. 

Panel C: Bar chart showing transcript levels of MMP-2, MT1-MMP and TIMP-2 in the 

control and ECGC-treated PDL cells as determined by qRT-PCR. The Y-axis represents 

fold-expression level of each gene relative to unchallenged and untreated controls. The X-

axis represents different concentrations of ECGC in the control and Td groups.  

Figure 7. Inhibition of different chromatin modification enzymes mediate alterations in 

levels of expression and activation of MMP-2 in Td-challenged and control PDL cell 

cultures. PDL cells were pre-treated with enzyme inhibitors at the indicated concentrations as 

follows: curcumin (histone acetyltransferase inhibitor) for two hours (A), 0.5 µM and 1 µM BIX-
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01294 (histone methyltransferase inhibitor) for two days (B), and 2 µM and 5 µM 

tranylcypromine/TCP (histone demethylase inhibitor) for four days (C). The cells were then 

challenged with T. denticola (Td) at MOI = 100 or media control for two hours, then incubated 

for three days. The conditioned medium and cell lysates were collected for zymography. Shown 

are densitometric analyses of pro-MMP-2 (72kDa) and active MMP-2 (64kDa) detected by 

gelatin zymography. The X-axis represents different concentrations of enzyme inhibitors in the 

control and Td groups. The Y-axis represents fold-gelatinolytic activity of the pro-MMP-2 and 

active MMP-2 relative to unchallenged and untreated controls. Panels: A, curcurmin (Cr); B, 

BIX-01294 (BIX); C, tranylcypromine (TCP). The experiments were repeated three times in 

triplicate. Data were analyzed using one-way ANOVA. (*) represents p < 0.05 compared to the 

“0” concentration in the same group. (#) represents p < 0.001 compared to the “0” concentration 

in the same group. 

Figure 8. Inhibitors of histone phosphorylases and deacetylases reverse T. denticola-

mediated increases in MMP-2 activity and expression in PDL cells. Cultured PDL cells were 

challenged with T. denticola (Td) at MOI = 100 or media control for two hours, incubated for 

three days in serum- and antibiotic-free MEM-α with daily culture medium refreshment, then 

treated with the following enzyme inhibitors: (Panel A) 0.25 or 0.5 µM PF-03814735 (PF) for 

two days; (Panel B) 0.5 or 1 µM apicidin for one day; (Panel C) 0.05 or 0.1 µM trichostatin A 

(TsA) for four days. The conditioned medium and cell lysates were collected for zymography, 

western blotting, and qRT-PCR. The left portion of each panel shows densitometric analysis of 
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pro-MMP-2 (72kDa) and active MMP-2 (64kDa) detected by gelatin zymography. The X-axis 

represents different concentrations of the indicated inhibitor in the control and Td-challenged 

cultures. The Y-axis represents fold-gelatinolytic activity of the pro-MMP-2 and active MMP-2 

relative to unchallenged and untreated controls. The right panel shows transcript levels of MMP-

2, MT1-MMP and TIMP-2 in the control and inhibitor-treated PDL cells as determined by qRT-

PCR. The Y-axis represents fold-expression level of each gene relative to unchallenged and 

untreated controls. The X-axis represents different concentrations of PF in the control and Td 

groups. The experiments were repeated three times in triplicate. Data were analyzed using one-

way ANOVA. (*) represents p < 0.05 compared to the “0” concentration in the same group. (#) 

represents p < 0.001 compared to the “0” concentration in the same group. 
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Figure 1 
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Figure 2 
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Figure 4 
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Figure 7 
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Figure 8 
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