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Abstract
Obesity-related changes in adipose tissue leukocytes, in particular adipose tissue macrophages

(ATMs) and dendritic cells (ATDCs), are implicated in metabolic inflammation, insulin resistance,

and altered regulation of adipocyte function. We evaluated stromal cell and white adipose tis-

sue (WAT) expansion dynamics with high fat diet (HFD) feeding for 3–56 days, quantifying ATMs,

ATDCs, endothelial cells (ECs), and preadipocytes (PAs) in visceral epididymal WAT and subcuta-

neous inguinalWAT. To better understandmechanisms of the early response to obesity, we evalu-

ated ATM proliferation and lipid accumulation. ATMs, ATDCs, and ECs increased with rapidWAT

expansion, with ATMs derived primarily from a CCR2-independent resident population. WAT

expansion stimulated proliferation in resident ATMs and ECs, but not CD11c+ ATMs or ATDCs.

ATM proliferation was unperturbed in Csf2- and Rag1-deficient mice with WAT expansion. Addi-

tionally, ATM apoptosis decreased withWAT expansion, and proliferation and apoptosis reverted

to baselinewithweight loss. Adipocytes reachedmaximal hypertrophy at 28 days ofHFD, coincid-

ing with a plateau in resident ATMaccumulation and the appearance of lipid-laden CD11c+ ATMs

in visceral epididymal WAT. ATM increases were proportional to tissue expansion and adipocyte

hypertrophy, supporting adipocyte-mediated regulation of resident ATMs. The appearance of

lipid-laden CD11c+ ATMs at peak adipocyte size supports a role in responding to ectopic lipid

accumulation within adipose tissue. In contrast, ATDCs increase independently of proliferation

and may be derived from circulating precursors. These changes precede and establish the setting

in which large-scale adipose tissue infiltration of CD11c+ ATMs, inflammation, and adipose tissue

dysfunction contributes to insulin resistance.
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1 INTRODUCTION

Obesity and metabolic syndrome are becoming increasingly preva-

lent, and raise the risk of type 2 diabetes, cardiovascular disease, and

cancer.1,2 Activation of leukocytes and inflammation in adipose tissue

are established links between obesity and development of metabolic

dysfunction.3–6 Adipose tissue macrophages (ATMs) are the predomi-

Abbreviations: ATDC, adipose tissue dendritic cell; ATM, adipose tissuemacrophage; CLSs,

crown-like structures; EC, endothelial cell; eWAT, epididymal white adipose tissue; HFD,

high-fat diet; iWAT, inguinal white adipose tissue; ND, normal diet; PA, preadipocyte; SVC,

stromal vascular cell.

nant leukocyte in lean, metabolically healthy adipose tissue, and accu-

mulate in obesity to constitute up to 40% of the stromal cells.3,7

ATM subtypes are diverse and typically classified along a spectrum

of classical M1-like and alternatively activated M2-like phenotypes.7

Diet-induced obesity in mice stimulates CCR2-dependent accumu-

lation of M1-like CD11c+ ATMs in adipose tissue.8,9 This leads to

the predominance of a proinflammatory phenotype that accumulates

internal lipids and contributes to insulin resistance.9–13 Furthermore,

disrupting polarization of tissue-resident alternatively activatedATMs

contributes to metabolic dysfunction.14–16 These studies support the

importance of M2-like tissue resident ATMs in tissue homeostasis.
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Indeed, ATMs with M2-like profiles are implicated in regulation of

adipocyte hypertrophy and extracellular matrix remodeling, both of

which are important for maintaining metabolically healthy adipose

tissue.17–19 Thus, phenotypic changes in both CD11c+ and resident

ATMs with obesity may together strongly influence adipose tissue

health and contribute to development of insulin resistance.

A better understanding of adaptive and maladaptive responses

to obesity requires investigation of early changes in adipose tissue

and few studies have comprehensively examined adipose tissue stro-

mal cell dynamics with rapid fat accumulation in adult mice. Recruit-

ment from circulating monocytes and self-renewal of resident ATMs

are potential mechanisms for increased ATM quantity in chronic

obesity.20,21 Adipocyte hypertrophy and increased ATM quantity are

observed within 3 days of feeding mice a high-fat diet (HFD), but the

origin of these ATMs is unclear.22 Therefore, how recruitment or self-

renewal contribute to ATMs and other stromal cells in early obesity is

not resolved.

In this study, we sought to address these gaps and understand stro-

mal cell dynamics with short-term nutrient excess in different white

adipose tissue (WAT) depots. In mice fed HFD across a time course

of 3–56 days, ATMs, adipose tissue dendritic cells (ATDCs), and ECs

increased very early in concert with rapid WAT mass expansion. The

ATM increase was due to resident proliferation primarily in visceral

epididymal WAT that did not require CCR2-mediated monocyte infil-

tration, Csf2 (GM-CSF), or presence of adipose tissue lymphocytes.

The quantity of resident ATMs correlatedwith adipocyte hypertrophy,

peaking when adipocyte hypertrophy plateaued, and decreasing with

weight loss. Proliferation was detected in CD11c+ ATMs and ATDCs,

but was largely unchanged with HFD exposure. Furthermore, CD11c+

ATMs became lipid-laden at peak adipocyte size in epididymal WAT,

supporting a role in lipid buffering for this specific ATMpopulation.

2 MATERIALS AND METHODS

2.1 Animals and animal care

Mice used for these experiments included C57BL/6J (WT; Jack-

son Laboratories, Bar Harbor, ME, USA; 000664), B6.129P2(Cg)-

Cx3cr1tm2.1(cre/ERT2)Litt/WganJ (Cx3cr1CreERT, Jackson 021160), floxed-

stop-tdTomato (tdTomato, Jackson 007914), Cx3cr1CreERT:tdTomato

F1 offspring fromhomozygous parent strains,Ccr2−/− (kindly provided

by Dr. Beth Moore), Csf2−/− (GM-CSF−/−, kindly provided by Dr. John

Osterholzer), and B6.129S7-Rag1tm1Mom/J (Rag1−/−, Jackson 002216).

Age-matched mice were within 1 week by date of birth. Male mice

were fed ad libitum a control normal chow diet (ND; 13.4% fat, 5L0D

LabDiet) or HFD (60% calories from fat, Research Diets D12492) for

the indicated amount of time starting at 8–12 weeks old. Tamoxifen

(TAM) (Millipore Sigma, St. Louis, MO, USA; T5648) dissolved in corn

oil was administered to Cx3Cr1CreERT:tdTomato mice twice 48 h apart

at 150 mg/kg by subcutaneous injection behind the hindlimb. PKH26

cell linker kit for phagocytic cell labeling (Millipore Sigma, St. Louis,

MO, USA; PKH26PCL) was used for in vivo labeling of macrophages

following manufacturer instructions, by 500 𝜇l intraperitoneal injec-

tion of a 1 𝜇Mworking solution.23 At sacrifice, Cx3cr1CreERT:tdTomato

mice were perfused with 10 ml saline solution through the left

ventricle to reduce blood cells within tissues. Animals were housed

in a specific pathogen-free facility with a 12 h light/12 h dark cycle

and given free access to food and water. All mouse procedures

were approved by the Institutional Animal Care and Use Committee

(IACUC) at the University of Michigan (Animal Welfare Assurance

Number A3114-01) and in compliancewith the Institute of Laboratory

Animal Research Guide for the Care and Use of Laboratory Animals.

2.2 Tissue and cell isolation

Visceral epididymal (eWAT) and subcutaneous inguinal (iWAT) adipose

tissues were collected and weighed at indicated time points. For

cell isolations, adipose tissue was fractionated and flow cytometry

performed as described.24 Stromal vascular cells (SVCs) were isolated

after a 30 min digestion of finely minced adipose tissue in 1 mg/ml

collagenase II (Millipore Sigma, St. Louis, MO, USA; C6885), followed

by 100 𝜇m straining, NH4Cl RBC lysis, and counting. Blood was

collected from tail tips and placed on ice for 30 min to 1 h until water

lysis of RBCs. Bonemarrowwas collected from hindlimb bones (femur,

tibia, and fibula) by flushing with PBS, thenmade into a single cell solu-

tion followed by RBC lysis. Spleens were removed, washed, pressed

through a 70 𝜇mcell strainer, andmade into a single cell suspension by

pipetting, followed by RBC lysis.

2.3 Flow cytometry

After RBC lysis, mouse cells were blocked for 10 min in Fc block

solution (anti-CD16/32; eBioscience (Thermo Fisher), Waltham, MA

USA), followed by surface (30 min) and intracellular staining (45 min)

with conjugated primary antibodies. For intracellular staining, cells

were additionally fixed and permeabilized for 45 min at room tem-

perature using the Foxp3/Transcription Factor Staining Buffer Set

(eBioscience (Thermo Fisher), Waltham, MA USA; 00-5523-00), and

stained for45minat roomtemperature. SVCswere stainedwithCD45,

CD64, CD11c, and CD31 to stratify ATMs (CD45+CD64+CD11c+/−),

ATDCs (CD45+CD64−CD11c+), preadipocytes (PA; CD45−CD31−),

and endothelial cells (EC; CD45−CD31+). The following antibodies

were used: anti-CD45 (clone 30-F11), anti-CD11c (N418), anti-CD31

(390), anti-Ki67(SolA15), anti-CD3e (145-2C11), anti-Ly6C (HK1.4),

and anti-CD115 (AFS98) (eBioscience (Thermo Fisher), Waltham,

MA USA), and anti-CD64 (X54-5/7.1) (BD Pharmingen (BD Bio-

sciences), San Diego, CA USA and BioLegend, San Diego, CA USA).

Live cells were identified using LIVE/DEAD Fixable Violet or Yel-

low Dead Cell Stain (Life Technologies (Thermo Fisher), Waltham,

MA USA; L34955, L34959). Neutral lipids were detected using Lipid-

TOX Deep Red Neutral Lipid Stain (Life Technologies (Thermo Fisher),

Waltham, MA USA; H34477). Bone marrow and spleen progenitors

were stained and analyzed as described.25 Data from stained cells

were collected using BD FACSCanto II and LSRFortessa flow cytome-

ters, and for Cx3cr1CreERT:tdTomato experiments a BD FACSAria III

sorter was used. Flow cytometry data were analyzed using FlowJo

software v10.1 (TreeStar, Ashland, OR, USA), using manual compen-

sation and fluorescence minus one controls to guide gating within
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each experiment. Initial gates identified CD45+ or CD45− singlets

(Supplemental Fig. S1A).

2.4 Human samples

Human male and female visceral adipose tissue was collected dur-

ing bariatric surgery of patients with obesity (see Fig. 7D) with

Institutional Review Board approval (HUM00074075) from the Uni-

versity of Michigan and Ann Arbor Veterans Administration Hospital.

Tissue was finely minced by hand using surgical scissors (DR Instru-

ments, Bridgeview, IL USA; 4SB), then digested in 1 mg/ml collagenase

II (Life Technologies (Thermo Fisher), Waltham, MA USA; 17101015)

for 1 h and processed as for mouse adipose tissue to obtain single cell

suspensions of SVCs. Cells were then stained with anti-CD45 (HI30)

from eBioscience (Thermo Fisher), Waltham, MA USA, and anti-CD64

(10.1) and anti-CD11c (3.9) from Biolegend, San Diego, CA, USA. Neu-

tral lipids were detected using LipidTOX Deep Red as for mouse cells,

and Bodipy 493/503 (Life Technologies (Thermo Fisher), Waltham,

MA USA; D3922) for imaging flow cytometry. Flow cytometry data

were collected using a BDFACSCanto II flow cytometer and datawere

analyzed as for mouse cells using similar gating (Supplemental Fig.

S1A). Imaging flow cytometry datawere collected on an ImagestreamX

Mark II and analyzed using IDEAS software v6.0 (Amnis).

2.5 Imaging and adipocyte sizing

Confocal imageswere takenwithaZeiss710confocalmicroscope.Adi-

pose tissue samples for adipocyte sizingwere fixed in 10% formalin for

a minimum of 48 h prior to paraffin embedding, H&E staining, and sec-

tioning. Images of sections were collected across at least 4 fields per

condition at 10× magnification, using autofluorescence in a channel

for Texas Red to detect adipocyte cell membrane edges and produce

binary images. ImageJ was then used to automatically identify individ-

ual adipocytes as regions of interest based on autofluorescent edges,

then area was quantified within all regions of interest for each field.

2.6 Statistics

Results are presented as mean ± SEM unless otherwise stated. Dif-

ferences between groups were determined using an unpaired 2-tailed

t-test with Welch’s correction or a 1-way ANOVA with Holm-Sidak’s

multiple comparison test. Significant differences are indicated by sin-

gle asterisk (*) and are by comparison to the ND group unless other-

wise stated. If data failed the Brown-Forsythe test theywere log trans-

formed for analysis. The significance level 𝛼 was set at 0.05. Data were

analyzed using Prism software v7.00 forWindows (GraphPad, La Jolla,

CA, USA).

2.7 Online supplemental material

Two supplemental figures provide our gating strategy and data on SVC

composition and densities (Supplemental Fig. S1), and data in support

of Cre-mediated recombination experiments (Supplemental Fig. S2).

3 RESULTS

3.1 The quantity of ATMs, ATDCs, and ECs increases

with rapidWAT expansion

To determine the effect of early obesity on adipose tissue SVCs, we

fed male mice a 60% HFD ad libitum for 3 days, 7 days, or 14 days

(3d, 7d, 14d). Although total bodyweightwasnot significantly different

between ND- and HFD-fed animals, after 14d, eWAT and iWAT depot

weights increased rapidly with HFD over the time course, doubling by

3d and increasing up to 3-fold in weight by 14d for eWAT (Figs. 1A and

B). As there are no clearly established standards for SVC quantifica-

tion, after flow cytometry we evaluated the “quantity” of SVC types in

the depot (cells per fat pad), “frequency” in SVCs (% of live cells), and

the “density” of cells (cells per gram of WAT mass). The total number

of SVCs per fat pad increased in eWAT by 14d and in iWAT from 3 to

14d (Fig. 1C). To identify changes in the composition of the SVCs dur-

ing this time course, we quantified leukocytes (ATMs and ATDCs), PAs,

and ECs—3 primary stromal cell populations that account for >90% of

the total SVCs (Supplemental Fig. S1B). The quantity of CD45+ leuko-

cytes per fat pad increased by approximately 2-fold after 3d of HFD in

both eWAT and iWAT, however their density was unchanged up to 14d

(Fig. 1C and Supplemental Fig. S1C). This demonstrates that the quan-

tity of adipose tissue leukocytes increases in proportion to the increase

in nutrient deposition and storage in both eWAT and iWAT.

The percentage of total ATMs and ATDCs in SVCs increased at 7d

and 14dHFD in eWAT and iWAT (Figs. 1D and E). As expected, the vast

majority of ATMs were CD11c− representing resident ATMs, which

predominate in lean mice (Fig. 1E). Although the quantity of CD11c−

ATMs per fat pad was increased at all time points in both depots, their

frequency in SVCswas only significantly increased at 14d in eWAT and

only at 7d in iWAT. CD11c+ ATMs in lean mice were a minor popula-

tion representing 10–15% of all ATMs. Their frequency was modestly

elevated at 7d in eWAT, but their total quantity per fat pad was signifi-

cantly elevatedat all timepoints for eWATandat7d for iWAT.Together

these data suggest an increase in both ATM subtypes with rapid WAT

expansion that retains CD11c− ATMs as the dominant ATM subtype.

ATDC frequency increased significantly at 7–14d in both depots

and quantity per fat pad increased at all time points (Figs. 1D and

E). Although ATDC quantity was greater in eWAT compared with

iWAT at all time points, the increase in iWAT ATDCs induced by HFD

was greater, at about 4-fold over ND controls, compared to about

2-fold for eWAT at 3d. Furthermore, although ATDC density was not

different for eWAT, ATDCs density was greater in iWAT at all time

points (Supplemental Fig. S1C), suggesting unique stimuli for ATDC

expansion in iWAT.

Among nonleukocytes, PAs decreased as a frequency of SVCs and

by density in both depots (Fig. 1F and Supplemental Fig. S1C). There

was a nonsignificant trend toward an increase in PA quantity per fat

pad in eWAT, and iWAT PA quantity increased significantly only at 3d.

In contrast, ECs increased in frequency and quantity in both depots

identified as early as 3d of HFD exposure. Altogether, these data show

rapidWATexpansionwithHFD is associatedwith an increase in ATMs,

ATDCs, and ECswithout significant changes in PAs.
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F IGURE 1 Increased ATMs, ATDCs, and endothelial cells (ECs) with rapidWAT expansion.Bodyweights (A) and fat pad weights normalized to
bodyweight (BW) (B) ofmice fedNDor60%HFD for3–14days. (C)Quantity of SVCsandCD45+ leukocytes in eWATand iWAT. (D)Representative
flowplots showingATMandATDC frequencies in eWATand iWAT forNDandmice fedHFD for 7days. (E andF) Frequency andquantity ofCD11c−

ATMs, CD11c+ ATMs, ATDCs, preadipocytes (PAs), and ECs in ND and inmice fed HFD for 3–14 days. *P< 0.05

3.2 ATMaccumulationwith rapidWAT expansion is

not due tomonocyte expansion and is independent of

CCR2

The increase in quantity of ATMs may indicate a contribution from

circulating monocyte precursors that are known to be induced in

obesity.25 We examined monocyte stem cell precursors in the bone

marrow and spleen with short term HFD, but found little change

in hematopoietic progenitors in either tissue, with the exception of

reduced BM pre-GMs at 7–14d (Fig. 2A). CD115+ and Ly6Chi mono-

cytes decreased in bone marrow at 7–14d and in the spleen at 3–

14d. We also observed variability in other bone marrow and spleen

populations suggesting decreases at some time points, including for

CD11b+ andCD11c+ cells, and Ly6G+ neutrophils. Furthermore, upon

examining blood with 7d HFD exposure, we found no changes in

the frequency of blood CD45+ leukocytes, CD115+ or Ly6Chi mono-

cytes, or Ly6G+ neutrophils, and no change in hematopoietic progen-

itors (not shown). Taken together, these data suggest that short-term

HFD induces myeloid cells exit from spleen and bone marrow without

changing their overall frequency in the blood.

This may indicate that monocytes are trafficking to peripheral tis-

sues and CCL2–CCR2 is a well-characterized pathway leading to ATM

accumulation.8,26 To determine the contribution of circulating mono-

cytes and CCR2-dependent trafficking to ATM accumulation with

short-termHFD,weexaminedATMquantity inCcr2−/−mice,which are

deficient in peripheral bloodmonocytes.With 14dHFD, ATMquantity

increased in Ccr2−/− mice to a similar degree asWTmice demonstrat-

ing that this type of ATM accumulation is CCR2 independent (Fig. 2B)

and likely from the resident ATMpool.

To confirm changes in resident ATMs with rapid WAT expansion,

we employed a mouse model with inducible genetic-labeled resident

ATMs in the setting of unlabeled monocytes. Cx3Cr1CreERT:tdTomato

micewere treatedwithTAMto induce expressionof Tomato inmyeloid

cells (Supplemental Fig. S2A). Recombination efficiency was >90% as
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F IGURE 2 Accumulation of ATMs in rapid WAT expansion independent of monocytes and CCR2. (A) Frequencies of monocyte stem cell pre-
cursors in bonemarrow and spleen inNDandmice fedHFD for 3–7 days. (B) eWATweights normalized to bodyweight (BW) andATMquantities in
Ccr2−/− micewere fedNDorHFD for 14 days. (C) Representative flow plots fromCx3cr1CreERT:tdTomatomicewith induced expression of Tomato
in ATMs, 14 weeks after tamoxifen treatment. eWAT and iWAT are shown for mice fed ND or HFD for 14 days. (D) eWAT and iWAT weights and
quantity of Tomato+ ATMswith or without tamoxifen andHFD feeding for 14 days. (E) Phagocyte-specific PKH26 labeling of ATMs inmice fedND
or HFD for 14 days. *P< 0.05

determined by flow cytometry analysis of blood monocytes 5d after

TAM treatment (Supplemental Fig. S2B). Imaging of whole adipose

showed strong YFP and Tomato overlap in the eWAT 12 weeks

after TAM treatment (Supplemental Fig. S2C). 14 weeks after TAM

injection bone marrow and blood monocytes were Tomato− , whereas

30% of the eWAT ATMs were Tomato+ (Supplemental Fig. S2D and

Fig. 2C). Tomato+ SVCs were predominantly ATMs (Supplemental Fig.

S2E). This model allowed us to assess the contribution of circulating

monocytes to the ATM pool with HFD. With 14d HFD, eWAT and

iWAT underwent rapid WAT expansion (Figs. 2C and D). Compared to

ND, HFD-fed mice had increased quantity of Tomato+ ATMs in eWAT

but not iWAT. No change was observed in a small subset of Tomato+

ATDCs (data not shown). This supports an in situ expansion of resident

ATMswith early HFD exposure.

As another approach, we labeled ATMs with the phagocyte specific

PKH26 dye prior to feeding ND or HFD for 14d. ATM proliferation

is measured by serial dilution of the PKH26 dye (Fig. 2E). With 14d

HFD, although ND controls retained PKH26+ ATMs, the vast majority

of ATMs in HFD mice showed a decrease in PKH26 labeling. Overall,

these data support that proliferating tissue-resident ATMs account for

the increase in ATMs with rapid WAT expansion and that circulating

monocytes are not amajor contributor.
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F IGURE 3 Proliferation of CD11c− ATMs and ECs during rapid WAT expansion. (A) Representative flow plots showing Ki67+ (proliferating)
ATMs. (B) Frequency and quantity of proliferating CD11c− ATMs, CD11c+ ATMs, and ATDCs in mice fed ND or HFD for 3–24 days. (C) Represen-
tative flow plots showing frequency of proliferating PAs and ECs inmice fed ND orHFD for 7 days. (D) Frequency and quantity of proliferating PAs
and ECs inmice fed ND or HFD for 3–14 days. *P< 0.05

3.3 CD11c− ATMs and ECs increase quantity by

proliferation during rapidWAT expansion

To directly examine the dynamics of proliferation in ATMs and ATDCs

with rapid WAT expansion, we quantified Ki67+ cells by flow cytom-

etry with 3–14d HFD feeding. The frequency and quantity of Ki67+

ATMs and Ki67+ CD11c− ATMs increased at all time points in eWAT,

but only transiently at 7d in iWAT (Figs. 3A and B). The frequency

of Ki67+ CD11c+ ATMs did not change in eWAT and there was

a minor transient increase at 7d in iWAT, whereas the quantity of

Ki67+CD11c+ ATMs increased at 7–14d for eWAT and at 7d for iWAT

(Fig. 3B). The frequency of Ki67+ ATDCs did not change in eWAT, but

increased at 7–14d in iWAT (Figs. 3A and B), suggesting that theremay

be depot-specific mechanisms contributing to ATDC content.

In contrast to ATMs, the frequency of proliferating PAs transiently

increased at 7d HFD but represented a small proportion of the PA

pool (Figs. 3C and D). By quantity, Ki67+ PAs were increased com-

pared to ND at 3–7d HFD, but remained at low numbers. In contrast,

an increased frequencyofproliferatingECscorrelatedwithan increase

in their overall frequency and quantity over 14d of HFD (Figs. 3C and

D and 1F). Taken together, our data suggest that rapidWAT expansion

induces a strong proliferative response in CD11c− ATMs and ECs that

correlates with their increase in SVCs.

3.4 Weight loss decreases ATMproliferation

We next investigated whether ATM proliferation is permanently

altered by rapidWAT expansion by evaluating the effect of weight loss

induced bywithdrawal of HFD. Three cohorts of mice were generated:

normal diet for 28d (ND),ND for14dand switched toHFD for14d (14d

HFD), and14dHFDandswitched toNDfor14d (14doff) (Fig. 4A). Both

cohorts receiving HFD gained weight with the exposure and the 14d

off mice returned to weights that matched the ND group (Fig. 4B). The

eWATweightswere increasedwith 14dHFD compared toNDand 14d

off mice (Fig. 4C).

ATM frequency, quantity, and proliferating frequency were

increased in the 14d HFD group and in 14d off returned to levels

similar to ND (Figs. 4E and F). To determine whether apoptosis

contributed to the changes in ATM quantity with weight gain and
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F IGURE 4 Weight loss decreases ATM proliferation. (A) Feeding scheme for ND, 14d HFD, and 14d off cohorts. ↓, mice were age matched at
8–9weeks of age for start of HFD. (B andC)Weight gain and eWATweights for each cohort. (D) eWATmean adipocyte size. (E) ATM frequency and
quantity. (F) ATMproliferating frequency. (G) Apoptosis in ATMs,measured by frequency of Annexin V+ cells. (H) Representative histogramof flow
cytometry data showing Annexin V in ATMs and CD45− SVCs. (I and J) Quantity of ATDCs in each cohort and frequency of Annexin V+ ATDCs. (K)
Comparison of Annexin V staining among SVCs. *P< 0.05

loss, we evaluated Annexin V+ ATMs. The frequency of Annexin V+

ATMs was reduced in 14d HFD suggesting that ATM proliferation was

accompanied by a suppression of ATMapoptosis.Weight loss returned

the quantity of apoptotic ATMs back to levels similar to lean mice

(Figs. 4G and H). We further evaluated ATDC quantity and apoptosis.

Similar to ATMs, ATDCs increased with 14dHFD compared to ND and

14d off (Fig. 4I). Although Annexin V+ ATDCs decreased in trend with

14d HFD, there was no significant difference between groups (Fig. 4J).

Comparing across SVCs in lean eWAT, ATMshad the highest frequency

of Annexin V+ cells (Fig. 4K). Taken together, these data indicate that

ATM proliferation is not permanently elevated by diet-induced eWAT

expansion and suggest that weight loss decreases ATM proliferation.

These data also suggest that decreasedATMapoptosis is also a feature

of rapid fat expansion that contributes to ATM accumulation.

3.5 ATMproliferation is not stimulated by lipolysis

and is independent of GM-CSF, T and B cells

We considered several potential mechanisms for ATM proliferation in

early obesity. To explore the possibility that adipocyte lipolysis and

subsequent free fatty acid release stimulates ATM proliferation, we

treated lean mice with a beta 3-adrinergic agonist (CL316,243) for 3d.

No significant changes in ATMquantity or proliferationwere observed

with this treatment (Fig. 5A).

Since GM-CSF can stimulate myeloid cell proliferation and differ-

entiation, we examined ATM proliferation in WT (GM-CSF+/+) and

GM-CSF−/− mice. We found no difference in ATM quantity between

mice, but lower overall ATDC content in GM-CSF−/− mice, consistent

with previous reports27 (Figs. 5B andC). The frequency of proliferating

ATMs and ATDCs was also lower in GM-CSF−/− ND mice (Fig. 5B).

When GM-CSF−/− mice were fed a 14d HFD, we observed rapid WAT

expansion and similar induction of proliferating ATMs as in WT mice

(Fig. 5D). For ATDCs, ND and 14d HFD proliferation was not different

(not shown).

ATM-T cell interactions promote inflammation in adipose tissue.28

To determine whether ATM–T cell interactions affect ATM prolifer-

ation during rapid WAT expansion, we used Rag1−/− mice that lack

mature T and B cells. With 14d HFD, the ATM proliferative response

was intact inRag1−/−mice indicating that T andB cells are not required

forATMproliferation (Fig. 5E). Altogether, thesedata suggest thatGM-

CSF may help maintain proliferation in a steady-state population of

ATDCs. However GM-CSF and T cells are not required for the ATM

proliferative response to rapidWAT expansion.

3.6 Adipocyte size corresponds to peak resident

ATMbut not ATDC quantity

Our weight loss data suggested that resident ATM quantity is regu-

lated proportional to adipocyte hypertrophy in response to HFD. We
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F IGURE 5 ATMproliferation is unchangedwith lipolysis and independent of GM-CSF, T and B cells. (A) Leanmicewere treatedwith vehicle or
thebeta3-adrinergic agonistCL316,243 (CL). Frequency andquantity ofATMsandproliferatingATMswerequantified. (B) Frequency andquantity
of ATMs and ATDCs, and frequency and quantity of proliferating ATMs and ATDCs inWT (GM-CSF+/+) and GM-CSF−/− mice. (C) Representative
flow plots showing the frequency of ATDCs (CD64−CD11c+) in GM-CSF+/+ versus GM-CSF−/− mice. (D and E) eWAT weights and frequency and
quantity of proliferating ATMs in GM-CSF−/− mice (D) and Rag1−/− mice (E) fed ND or HFD for 14 days. *P< 0.05

therefore hypothesized that peak adipocyte size would correlate with

peak resident ATM quantity. To evaluate this, we fed mice a HFD for

up to 56d and examined ATM and ATDC quantity and proliferation.

eWATweights continued to increase beyond 14d and plateaued at 28–

56d (Fig. 6A). Consistent with this, adipocyte hypertrophy also peaked

by 28d and did not change substantially with further HFD feeding

(Figs. 6B and C). This indicates that eWAT adipocytes reach maximum

capacity for lipid storage by 28d of 60%HFD feeding.

CD11c− and CD11c+ ATM frequencies were unchanged in total

stromal cells with 28–56dHFD compared toND. However, their quan-

tities peaked at 28d and remained stable up to 56d (Figs. 1E and 6D).

ForCD11c− ATMs, proliferating frequencywas similarly elevated com-

pared to the early HFD time points, suggesting an early peak in prolif-

eration (Fig. 6E). The quantity of proliferating CD11c− ATMsmirrored

overall quantities, with a peak at 28d that was sustained. For CD11c+

ATMs, an increase in proliferation was observed at 28d, only in eWAT.

ATDCs increased substantially at 28–56d,with stable proliferation fre-

quency (Figs. 6D and E).

Overall, these data suggest that resident ATMs proliferate early

and reach a peak quantity that corresponds to peak adipocyte size at

28d. The maintenance of a higher frequency of proliferating CD11c−

ATMs from 28–56d HFD with no significant increase in overall quan-

tity suggests negative regulation of ATMs. In contrast, CD11c+ ATMs

andATDCs show little relative change in proliferation as adipocyte size

and tissue size increase. However, their increase in quantity points to

recruitment as a primarymechanism.

3.7 Lipid-laden ATMs develop once adipocyte

hypertrophy is maximal

It has been suggested that proinflammatory, M1-like ATMs accumu-

late lipids and contribute to a population of adipose tissue foam cells
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F IGURE 6 Adipocyte size corresponds to peak resident ATM but not ATDC quantity. (A) WAT weight and change in tissue weight in mice fed
ND or HFD for 14–58 days. Upper and lower asterisks indicate significant for eWAT and iWAT, respectively, compared to ND controls. (B) eWAT
adipocyte sizing curve approximations inmice fedNDorHFD for 14–58 days. Inset, mean eWAT and iWAT adipocyte sizes at given time points. (C)
Images showing eWAT adipocyte sizes in mice fed ND or HFD for 14–147 days (seeMaterials andMethods). Scale bar represents 500 𝜇m. (D and E)
Frequency, quantity, and proliferating frequency and quantity of CD11c− ATMs, CD11c+ ATMs, andATDCs inmice fedNDorHFD for 28–56 days.
*P< 0.05

in chronic obesity.11,13,29 However, the early dynamics of ATM lipid

accumulation are unknown. Given the potential role of ATMs in lipid

buffering,13 we hypothesized that the appearance of lipid-laden ATMs

would coincide with peak adipocyte size and that differences in lipid

accumulation in CD11c− and CD11c+ ATMs may highlight their func-

tional differences.

ATM lipid content in mice was assessed using neutral lipid stains

to identify lipidhi populations with 14–56d HFD. In lean mice, the

frequency of lipidhi CD11c+ ATMs was higher than for CD11c− ATMs

and ATDCs in eWAT and iWAT (Figs. 7A and B). By 28d HFD, the fre-

quency of lipidhi CD11c+ ATMs was increased compared to lean mice.

By 56d, when adipocyte hypertrophy has plateaued, both CD11c+ and

CD11c− ATM subsets had increased frequency of lipidhi cells, while

lipidhi ATDCs remained rare. The frequency of lipidhi ATMs did not

increase between 56d and 126d HFD (data not shown), suggesting

that ATMs reached a maximal capacity for lipid storage by 56d. At all

time points, the frequency of lipidhi CD11c− ATMs was significantly

lower than lipidhi CD11c+ ATMs. No increase in lipidhi cells was

observed for ATMs or ATDCs in iWAT. In addition, we found no lipidhi

circulating cells at any time point, indicating that lipid accumulation

occurs within the tissue, and no lipid accumulation was detected in

tissue lymphocytes (data not shown).

We next assessed the overlap between proliferating and lipid-laden

ATMs. An increase in proliferation frequency was observed in lipidlo

ATMswith 28dHFD, whereas no difference in proliferation was found

for lipid-laden ATMs (Fig. 7C). These data are consistent with CD11c−

ATMs as a distinct proliferating subtype that are lower in lipid content.

To corroborate observations of lipid accumulation in mouse

CD11c+ ATMs in human cells, we evaluated human SVCs derived

from omental WAT that was sampled from patients with obesity who
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F IGURE 7 Lipid-laden ATMs develop once adipocyte hypertrophy is maximal. (A) Frequency of lipidhi CD11c− ATMs, CD11c+ ATMs, and
ATDCs in eWAT and iWAT inmice fed ND orHFD for 14–56 days. (B) Representative flow plots of ATMs and the frequency of lipidhi cells as deter-
mined by LipidTOX staining in mice fed ND or HFD for 28–56 days. (C) Frequency of proliferation in lipidlo versus lipidhi mouse ATMs. (D) Lipid
content of omental CD11c− andCD11c+ ATMs in human obesity (n= 33), by flow cytometry to determine frequency of lipidhi cells, and by imaging
flow cytometry to quantify the lipid+ area within each cell. Demographics, measures of metabolic function, comorbid disease, andmedications are
given for the human cohort. HbA1c, glycated hemoglobin. *P< 0.05

were undergoing bariatric surgery. We used neutral lipid stains as for

the mouse cells to detect lipid accumulation. Consistent with mouse

data, flow cytometry analysis of human ATMs across 33 patients

showed that the frequency of lipidhi CD11c+ ATMs was greater

than lipidhi CD11c− ATMs (Fig. 7D). By imaging flow cytometry to

determine the area of lipid accumulation in human ATM subtypes,

we found that many more CD11c+ ATMs had high lipid+ area than

CD11c− ATMs.

Taken together, these data confirm that formation of lipid-laden

ATMs between 28d and 56d HFD indeed coincides with adipocytes

reaching peak size and lipid storage capacity. Furthermore, we found

lipid accumulation in primarily CD11c+ ATMs in mice and humans. In

mice, we found that only eWAT ATMs accumulate lipids at these time

points, highlighting depot-specific responses to HFD.

4 DISCUSSION

Previously ATM proliferation was reported after 70d of HFD expo-

sure and in genetic obesity.20,21 Our data establish proliferation as a

mechanism of resident ATM maintenance much earlier in adipose tis-

sue during rapid WAT expansion with HFD feeding. ATM proliferation
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F IGURE 8 Amodel for stromal cell and tissuedynamics inearlyobesity. (A)Representationsofquantity andproliferation frequency for resident
ATMs, CD11c+ ATMs, and ATDCs (left Y axis), and adipocyte size (right Y axis). (B) An illustration of stromal cell and adipocyte dynamics, with 2
major phases dominating early obesity. Phase I encompasses rapid WAT expansion, resident ATM proliferation and ATDC infiltration. In Phase II,
adipocyte stress at peak size cues ATM lipid accumulation and CD11c+ ATM recruitment

and increased quantity were consistent across several mouse strains,

supporting the importance of resident ATMs during rapidWAT expan-

sion. Rapid proliferation of ATMs is consistentwith other studies of tis-

suemacrophages that self-renewquickly in settings of inflammation.30

In addition, higher proliferation was accompanied by decreased

apoptosis in rapid WAT expansion, and both proliferation and apopto-

sis returned to baseline with weight loss. Lower ATM apoptosis with

short-term HFD feeding fits with prior studies by us and others show-

ing reduced apoptosis with>100dHFD feeding.31,32

Mature lymphocytes were not required for maintenance of ATM

proliferation, consistent with previous reports by us and others show-

ing similar ATM accumulation in Rag1−/− compared with Rag1+/+ with

HFD exposure.22,31 These data fit with ATM-T cell interactions occur-

ring in chronic rather than early obesity, consistent with alterations in

CD8+ and CD4+ adipose tissue T cells that first appear around 56d

of HFD feeding.33–36 GM-CSF was also not required for ATM pro-

liferation. MCP-1 (CCL2) is a proposed regulator of ATM prolifera-

tion in chronic obesity, and is also increased early in HFD feeding.20,22

However, our data in Ccr2−/− mice suggest that the ATM increase is

independent of MCP-1/CCR2 signaling and monocyte recruitment in

early obesity. Themediators of ATM increase during rapidWAT expan-

sion require further investigation, but candidates include IL4, IL6,

andOPN.30,37–43

Adipocyte hypertrophy is observed as early as 3d of HFD and is

associated with elevated chemoattractants and surface expression of

stressmarkers in obesity.22,36,44 Theseobservations support the possi-

bility that adipocyte hypertrophy regulates ATM proliferation. Consis-

tent with this idea, ATM proliferation increased with rapid adipocyte

hypertrophy in early obesity and decreased with weight loss and tis-

sue contraction. Furthermore, peak adipocyte size corresponded to

a peak quantity of resident ATMs at 28d of HFD exposure (Fig. 8A).

The appearance of lipid-laden ATMs after adipocytes reached peak

size supports a role for ATMs in adipose tissue lipid buffering, as sug-

gested by prior studies.11,13,45,46 Although both ATM subtypes accu-

mulated lipids by56dofHFD feeding, their different lipid content high-

lights potential functional differences. BothhumanandmouseCD11c+

ATMs had higher lipid content, which has been previously associated

with anM1-like phenotype and altered regulation of lysosomes.10,11,13

Notably, lipid accumulation occurred prior to large-scale CD11c+ ATM

infiltration that we see at 84d of HFD feeding.9,23

Although CD11c+ ATMs have an established role in adipose tissue

inflammation and metabolic dysfunction in obesity,9,47 less is known
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about the role of resident ATMs in tissue function. Recently, resident

CD206+ ATMs were suggested to inhibit adipogenesis and promote

adipocyte hypertrophy and insulin resistance.17 Thiswould fit with our

data early in HFD feeding at 7–14d, showing increased resident ATM

quantity with no change in PAs (Fig. 1E, Supplemental Fig. S1). In addi-

tion, early and progressive worsening of insulin sensitivity has been

observed over short-term HFD feeding,22 correlating with increased

resident ATMs. Resident ATMs have also been associated with tissue

remodeling and fibrosis in obesity,7,46,48,49 but understanding the full

range of phenotypic changes in resident ATMs requires further study.

In addition, ATDCs may be influential early in obesity in pro-

moting tissue dysfunction, as Ccr7−/− mice that have fewer ATDCs

have metabolic improvement with 8w HFD exposure compared with

Ccr7+/+ mice.26 In contrast to resident ATMs, we found that ATDCs

increased in early obesitywith little change in proliferation. These data

are consistent with previous work showing an increase in ATDCs at

56d of HFD feeding.26 Furthermore, previously we found that ATDCs

with 7d of HFD feeding were CCR2 dependent.26 Taken together, our

data suggest recruitment as a primarymechanism for ATDCaccumula-

tion in early obesity.

Finally, as visceral adipose tissue is associated with obesity-related

sequelae,2 here we contrasted eWAT and iWAT in early obesity. eWAT

gained greater mass and had modestly higher adipocyte size com-

pared with iWAT, consistent with.41,50 Increased resident ATMs and

CD11c+ ATMs, and development of lipid-laden ATMs, were all pri-

marily observed in eWAT in early obesity. In support of depot-specific

responses that occur earlier or exclusively in eWAT, adipogenesis

has been shown at 28d of HFD feeding in eWAT, but not until 84d

in iWAT.51 Although crown-like structures (CLSs) that suggest dying

adipocytes are very rare in the HFD durations we used up to 56d,52,53

longer-term HFD feeding has been shown to promote CLSs earlier in

eWAT compared to iWAT.53

These data help us to understand the sequence of events in early

obesity that precede development of systemic insulin resistance.

Our data suggest a model with two major phases in early obesity

that encompass adipocyte and stromal cell dynamics (Fig. 8B). The

first phase includes rapid WAT expansion by adipocyte hypertrophy.

Depletion of ATMs relative to adipocyte size cues early resident

ATM proliferation, and ATDC recruitment. In the second phase,

adipocyte stress at peak size cues ATM lipid accumulation and recruit-

ment of new CD11c+ ATMs. Recruited CD11c+ ATMs then begin

to contribute to CLSs and inflammation after several weeks of HFD

exposure,21,22 and may participate in ATM-T cell interactions that

potentiate inflammation.

In conclusion, understanding the relationship between adipose

tissue growth and immune cell dynamics provides insight into normal

adipose tissue function, and how normal tissue growth may become

maladaptive in chronic nutrient excess. We find that resident ATMs

and recruited ATDCs predominate in early obesity. Proliferation of

resident ATMs contributes to their increased quantity in concert with

decreased ATM apoptosis in response to adipocyte hypertrophy in the

early phases of HFD feeding. CD11c+ ATMs with high lipid accumula-

tion potential may be recruited earlier in visceral adipose tissue than

subcutaneous as adipocytes reachmaximal lipid storage capacity.
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