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Abstract 
 

Steady State Visual Evoked Potentials (SSVEPs) have been the most commonly utilized Brain 

Computer Interface (BCI) modality due to their relatively high signal-to-noise ratio, high 

information transfer rates, and minimum training prerequisites. Up to date Canonical Correlation 

Analysis (CCA) and its extensions have been widely utilized for SSVEP target frequency 

identification. However, reliable and robust SSVEP identification performance is still a challenge, 

particularly for portable BCI systems operating in an Intensive Care Unit (ICU) department filled 

with various source of noise. As such, I propose an innovative partition-based feature extraction 

method that entails partitioning the score spaces of CCA and Power Spectral Density Analysis 

(PSDA) in three cases, extract efficient descriptors from each partition, then concatenate the 

extracted measures to generate more discriminative fusion spaces. Moreover, I investigate 

transforming the fusion spaces to lower dimensions utilizing Principal Component Analysis (PCA) 

and Linear Discriminant Analysis (LDA). Finally, to validate the proposed method, I compare the 

performance of the partition-based feature extraction and score space fusion method to a well-

established SSVEP identification method based on Multivariate Linear Regression (MLR). The 

experimental results of this investigation report that the proposed method enhances the 

identification performance of the CCA-based BCI system from 63% to 78%. The identification 

performance is further improved to 98% after the discriminative transformation with LDA 

outperforming MLR, which achieved an average overall 86% identification accuracy. As such, the 

proposed method is a promising approach to implement and operate BCI systems in the ICU. 
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Chapter 1: Introduction 
 

Brain Computer Interfaces (BCI) are systems that provide direct communication pathways and/or 

control channels between the user’s brain and external devices (Sagahon-Azua et al. 2017). The 

BCI technology is based on measuring the brain’s neural activity invasively or noninvasively 

utilizing various modalities, such as ElectroEncephaloGraphy (EEG), Magnetoencephalography 

(MEG), near-infrared spectroscopy (NIRS), functional magnetic resonance imaging (fMRI), 

Electrocorticography (ECoG), and intracortical electrode recordings (Bashashati et al. 2007; Coyle 

et al. 2004; Gilja et al. 2011; Hwang et al. 2013; Leuthardt et al. 2004; Mellinger et al. 2007; 

Sitaram et al. 2007; Sitaram, Caria, and Birbaumer 2009). However, EEG-based BCIs have been 

the most commonly utilized systems due to their advantages, such as high temporal resolution, 

portability, noninvasiveness, and low cost (Bashashati et al. 2007; Hwang et al. 2013). EEG is 

essentially a BCI modality that allows recording the electrical potential, which is generated as a 

results of the firing of neurons inside the brain, from the scalp of the head (Niedermeyer, E., & da 

Silva 2005).  

Generally, BCI systems operate by detecting unique brain activity patterns (i.e. neural responses), 

triggered consciously or unconsciously via an external stimuli (Bashashati et al. 2007). As such, 

to recognize those neural responses, BCI systems leverage brain activity patterns, such as selective 

sensation (SS) (Yao et al. 2013), steady state somatosensory evoked potentials (SSSEPs) (Müller-

Putz et al. 2006), P300 evoked potentials (Donchin, Spencer, and Wijesinghe 2000), sensory motor 

rhythm (Wolpaw and McFarland 2004), and steady-state visual evoked potentials (SSVEP) 

(Cheng et al. 2002). The selection of the appropriate brain activity pattern is determined by the 

purpose of the application, the impact of the input features on the information transfer rate (ITR) 

of the system, and finally the required training period. Despite the diversity of brain activity 

patterns, SSVEP has attracted the attention of the BCI research community due to the advantages 

it provides, such as high signal-to-noise  
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ratio (SNR), relatively high ITR, minimum training prerequisites, and the ability to provide a 

reliable communication paradigm to implement noninvasive BCI systems (Chen et al. 2015). 

SSVEP is a recurrent response triggered in the brain, particularly in the occipital and parietal 

regions, when a user focuses their attention on a visual stimulus that flickers with a specific target 

frequency, and is sustained throughout the whole fixation period (Cheng et al. 2002). The SSVEP 

response consists of the actual target frequency in addition to its harmonic frequencies. Thus, 

SSVEP target frequency identification algorithms recognize the frequency components that 

correspond to the visual stimuli allowing SSVEP-based BCI systems to communicate the intended 

commands. In SSVEP-based BCI paradigms, users are exposed to visual stimuli (Citi et al. 2008). 

Each stimuli indicates a corresponding action, such as prosthesis movement, icons and/or alphabet 

letters selection. Typically, users fixate their gaze and focus their attention on a particular stimuli 

while disregarding the others, thus, the brain pattern corresponding to the frequency components 

of the visual stimuli is generated in the user’s brain and is translated as the user’s will to execute 

the desired command (Wolpaw and Wolpaw 2012). 

The architecture of a BCI systems is typically comprised of a number of various modules that 

construct a closed and complete loop between the system’s user and the device they seek to control 

(Müller-Putz 2011; Müller-Putz et al. 2013; Nicolas-Alonso and Gomez-Gil 2012). In the case of 

EEG-based BCI systems, EEG is used to record the neural responses using multiple electrodes that 

are positioned at the scalp of the head. Those electrodes serve to measure and, in turn, record the 

electrical potentials elicited in the user’s brain by the external stimuli. Then, the recorded signal is 

filtered to disregard the irrelevant frequency range, and remove artifacts generated as a result of 

other physiological factors, such as eye blinking, pulse, and blood circulation (Fatourechi et al. 

2007). Following the signal filtering phase, operating a BCI system successfully necessitates a 

feature extraction phase. As such, effective descriptors are extracted from the filtered signal to 

prove or disprove the existence of a phenomenon in the brain’s neural responses. This is achieved 

by interpreting feature spaces of the extracted measures utilizing classifiers and/or a set of 

predetermined rules (Lotte et al. 2007). Thus, once the system determines the user’s mental state 

and makes a decision regarding their brain activity at the time, the output is passed to control 

devices, for instance, a visual display or a prosthesis. 
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1.1 BCI for Intensive Care Unit (ICU) Patients: 
 

The paucity of effective and consistent communication means in hospitals can cause distress for 

doctors and patients, especially for patients in the Intensive Care Unit (ICU). ICU patients are 

voiceless and incapable of communicating their physical and emotional needs verbally (Happ 

2000). 40% of communication efforts were categorized as cumbersome by patients, while more 

than 33% of communication sessions pertaining to expressing pain and/or discomfort were rated 

as futile (Happ et al. 2011). Moreover, 86% of all communication efforts is instigated by the ICU 

medical staff. Thus, patients can therefore experience fear, anxiety, unrecognized pain, and 

discomfort (Carroll 2004; Happ et al. 2011). Additionally, family members and caretakers of ICU 

patients expressed anxiety and distress as well due to their inability to meet the needs of their 

critically ill (Baker and Melby 1996). As such, this can force the hands of the medical staff to 

resort to unnecessary sedative medications, and it might also lead to extended length of stay in the 

ICU department and increased treatment costs (Carroll 2004). Furthermore, the lack of effective 

communication renders the critically-ill patients incapable of being active participants in their 

treatment.  

Typically, communication with critically-ill patients in the ICU is carried out utilizing non-vocal 

means, mainly gestures and lip reading (Leathart 1994; Menzel 1998), both of which are 

ineffective communication approaches (Cronin and Carrizosa 1984; Jablonski 1994; Wagner et al. 

1998). Meanwhile, the utilization of picture boards, where each picture represents a common 

patient need and/or complaint, demonstrated a relative communication improvement amongst the 

medical staff and postoperative mechanically-ventilated patients (Stovsky, Rudy, and Dragonette 

1988). This approach is the closest technique to setting communication standards for voiceless and 

mechanically ventilated patients in the ICU.  

Numerous pilot studies suggested the utilization of computer-based communication that uses gaze 

trackers, blinking detection and finally touch screens to facilitate communication in the ICU 

(Maringelli et al. 2013; Miglietta, Bochicchio, and Scalea 2004). Most of the medical staff, who 

were surveyed in both studies, reported improvements in their ability to address and meet the 

patients’ needs. However, the usage of touch screens in this context might not be efficient for all 

patients, particularly for patients with severe motor disabilities. Moreover, 25% of patients in the 
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ICU are mechanically ventilated and most likely suffer from exhaustion, Neuropathy, and 

Myopathy. This causes a tremendous restriction on their ability to use their hands to utilize touch 

screens for communication purposes (De Jonghe et al. 2002). Additionally, some of these patients 

are awake and fully alert, however, they are locked-in and possess no control on their bodily 

functions, such as critically-ill patients who suffer from severe spinal cord injuries, advanced 

Amyotrophic Lateral Sclerosis (ALS), and strokes (Smith and Delargy 2005). As a result, using 

touch screens for the aforementioned population of patients is futile. Therefore, the utilization of 

BCI systems in the ICU, which are usually used for patient monitoring (Chang and Tsuchida 2014; 

Halford et al. 2015; Park et al. 2016), can facilitate effective and consistent communication 

between patients and their medical staff. This is due to the fact that BCI systems inherently 

interpret the electrical potentials of the brain into computer commands, bypassing the peripheral 

nerves and muscles.  

Numerous efforts investigated employing BCI systems for communication in the ICU for 

critically-ill patients suffering from ALS, severe spinal cord injuries, and stroke (Chaudhary, 

Birbaumer, and Curado 2015; Daly and Huggins 2015; Marchetti and Priftis 2015; Nijboer et al. 

2008; Sellers, Ryan, and Hauser 2014). The utilization of BCI systems in these efforts has been 

investigated during the rehabilitation period following a critical illness or when patients are 

discharged from hospitals and are recovering at home. The BCI systems that were used provided 

text-based communication tools, such as BCI spellers (Tang et al. 2017), outside the ICU 

department. Despite the paramount importance and the intrinsic value of the aforementioned 

rehabilitation-driven communication systems, they are typically slow and relatively cumbersome 

to learn. Moreover, they require extended periods of time to fully master. Nevertheless, the needs 

of patients in the ICU should be communicated and addressed rapidly and reliably, rather than 

through spelling of individual letters to formulate words and sentences. As such, I propose a 

portable BCI system based on visual attention (i.e. SSVEP) to expressive icons rendered on an 

Android tablet screen. Each icon depicts a symbol that illustrates a particular need of an ICU 

patient, such as “I feel pain”, and flickers with a specific target frequency. As such, the BCI system 

can recognize which icon the patient is focusing on based on the target frequency of that particular 

icon (Farooq and Dehzangi 2017; Herrmann 2001). Thus, patients can communicate the desired 

message simply by looking at the icon that illustrates their need and/or complaint. The proposed 
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BCI system is completely noninvasive and poses no risks to patients’ health nor treatment progress. 

Moreover, the EEG recording device connects wirelessly with the Android tablet.    

 

1.2  BCI Technical Challenges: 
 

I. Calibration:  

Subject-specific information is intrinsic to a high and reliable SSVEP identification 

performance. Therefore, to incorporate them into the decision making process, BCI 

systems usually require calibration at the beginning of each recording session. This 

requirement is not only time consuming but is also inconvenient for patients in the ICU. 

As such, the proposed BCI system acquires the subject-specific information throughout the 

feature extraction and predictive model training phases.  

 

II. Precision of the SSVEP paradigm generation:  

SSVEP is essentially a visual attention approach, where patients focus on a specific target 

object amongst multiple target objects, and each object flickers with a specific and fixed 

target frequency. The accuracy of the SSVEP paradigm generation is dictated and largely 

influenced by the hardware specifications of the device on which the SSVEP paradigm is 

generated. The proposed BCI system in this thesis utilizes an Android tablet as a visual 

stimuli so as to accommodate portability. However, the screen refresh rate of the Android 

tablet-based visual stimuli is insufficient. Moreover, the recurrent interruptions of the 

Android operating system also exacerbate the precision of the SSVEP paradigm 

generation. As such, the proposed BCI system utilizes a partition-based feature extraction 

method that alleviates the impact of the imprecise SSVEP paradigm generation on the 

identification performance. 

 

III. Number of target objects:  

Determining the appropriate number of target objects to be rendered on the visual stimuli, 

without overwhelming the screen’s real-estate nor causing interference with the patients’ 

visual perception, is another challenge for SSVEP-based BCI systems in general. As such, 
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the proposed BCI system undertakes a 2-phase divide-and-conquer approach. Initially, the 

system recognizes the patients’ intent to initiate communication. Then, utilizing an 

optimized stimuli flow, the system enables patients to select their need and/or complaint 

effectively.  

 

IV. The non-stationary nature of the EEG signal: 

EEG signals are inherently non-stationary. They typically demonstrate session-to-session 

and subject-to-subject variation due to the inconsistencies of the electrodes-scalp locations 

and the signal quality between 2 different sessions. Additionally, the physiological and 

emotional state of patients are also contributing factors. As such, the proposed BCI system 

exploits the discriminative and complementary information of 2 widely used method for 

SSVEP target frequency identification, Canonical Correlation Analysis (CCA) and Power 

Spectral Density Analysis (PSDA), to capture a higher resolution of the subject-specific 

information embedded within the SSVEP responses to improve the identification 

performance. 
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Chapter 2: Literature Survey and Conventional Solutions 
 

Despite the wide utilization of SSVEP-based BCI systems, and the advantages they offer compared 

to other BCI systems types, reliable SSVEP target frequency identification is still the subject of 

interest for a plethora of scientific investigations.  

(Bin et al. 2009; Hakvoort, Reuderink, and Obbink 2011; Lin et al. 2007; Wang et al. 2006) 

asserted that Canonical Correlation Analysis (CCA), and Power Spectral Density Analysis (PSDA) 

are the most commonly employed target frequency identification methods in SSVEP-based BCI 

systems. While, CCA-based target frequency identification focuses solely on the correlation 

between 2 data sets, PSDA examines the power spectral density of the raw EEG signal. Hence, the 

frequency with the maximum PSD value is identified as the intended target frequency. However, 

PSDA has been overshadowed by CCA for a number of compelling reasons, such as, PSDA’s high 

susceptibility to noise, particularly when utilizing a single channel for data acquisition, and the 

relatively long time windows for sufficient frequency resolution estimation of the spectrum, both 

of which exacerbate the information transfer rates and impair the real-time performance of BCI 

systems (Friman et al. 2007; Lin et al. 2007).  

Wei and colleagues reported that CCA’s performance is more robust than PSDA (Wei, Xiao, and 

Lu 2011), while Wei et al. asserted that CCA is considered state-of-the-art SSVEP target frequency 

identification method (Wei et al. 2013). Nevertheless, despite the promising improvements CCA 

offers, such as the ability to utilize harmonic frequencies, minimal subject variation, and better 

signal-to-noise ratio (SNR) (Bin et al. 2009; Cheng et al. 2002; Gerven et al. 2009; Lin et al. 2007), 

current SSVEP-based BCI technology is still not suitable for real world scenarios, particularly in 

an ICU environment filled with various sources of noise, electrical devices, and distractions, not 

to mention the impact of the technical challenges discussed in Chapter 1 Section 1.2 on the SSVEP 

target frequency identification performance.  
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Numerous scientific efforts investigated different EEG pattern recognition methods (CONG et al. 

2013; Krusienski et al. 2011; Park et al. 2013; Spüler et al. 2014; Wu et al. 2015; Zhang, Zhou, 

Zhao, et al. 2013). Friman and colleagues proposed a Minimum Energy Combination (MEC) 

method, which is similar to Lin’s CCA-based method (Lin et al. 2007), in that, they both utilize 

sine-cosine frequency profile reference templates. As such, this approach ensures multi-channel 

optimization employing spatial filters, and also increases the signal-to-noise ratio. Nevertheless, 

sine-cosine frequency profile reference templates cannot efficiently characterize the discriminative 

information embedded within the SSVEP responses, which leads to lower SSVEP identification 

accuracies (Zhang, Zhou, Jin, et al. 2013). Pan and colleagues introduced a phase-constrained CCA 

approach. In their investigation, they include the phase information, which are obtained from the 

training data, into the reference signals to mitigate the drawback of the sine-cosine reference 

templates (Pan et al. 2011). Zhou et al proposed a Common and Individual Feature Analysis 

(CIFA) method to extract and learn the SSVEP features (Zhou et al. 2016). Their proposed method 

has been demonstrated to outperform CCA. Zhang and colleagues argued that maximizing the 

correlation between the multi-dimensional EEG signal and the sine-cosine reference signals could 

lead to improved SSVEP identification performance. As such, they proposed a Multiway extension 

of CCA (MCCA) (Zhang et al. 2011). Furthermore, Zhang et al proposed the L1-regularized 

method, which is an extension of the MCCA method (L1MCCA) (Zhang, Zhou, Jin, et al. 2013). 

Both MCCA and L1MCCA have been demonstrated to outperform CCA’s SSVEP identification 

performance. Vu and colleagues investigated maximizing the correlation between the collected 

EEG signals and the frequency profile reference templates (Vu, Koo, and Choi 2017), thus, they 

proposed a deep CCA (DCCA) method that entails utilizing deep neural networks to learn the 

nonlinear transformations of 2 datasets into a space where they are highly correlated. In their 

investigation they concluded that DCCA enhances the signal-to-noise ratio and achieves a more 

robust SSVEP identification performance than CCA. However, they observed that these empirical 

results are largely dependent on the experimental conditions and individual subjects.  
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2.1 Canonical Correlation Analysis (CCA): 
 

CCA is a multivariate statistical technique utilized to find pairs of linear combinations (i.e. 

canonical variables) for 2 sets of variables in a way that maximizes the correlation between the 

canonical variables (Lin et al. 2007). After finding the 1st pair of linear combinations, CCA also 

finds the 2nd pair, which has the 2nd highest correlation and is uncorrelated with the 1st pair. The 

process of obtaining the linear combinations persists until the number of the linear combinations 

pairs equals the number of variables in the smaller set. CCA’s coefficients serve to characterize 

the correlation between the 2 sets of variables. 

Conventional correlation methods examine the correlation between 2 variables, whereas CCA 

extends ordinary correlation and investigates the correlation between 2 sets of variables, which is 

more suitable for real-world problems (Harmony et al. 1990; Storch and Zwiers 1999) and it’s 

therefore commonly utilized in statistical and information mining (Friman et al. 2001; Storch and 

Zwiers 1999).  

Assume the multidimensional variables X, Y have linear combinations x = XT Wx and y = YT Wy. 

As such, CCA obtains the weight vectors, Wx and Wy, to maximize the correlation between X, and 

Y as follows: 

                                              𝑚𝑚𝑚𝑚𝑚𝑚𝑤𝑤𝑥𝑥𝑤𝑤𝑦𝑦  𝜌𝜌(𝑋𝑋,𝑌𝑌) =  
𝐸𝐸[𝑥𝑥𝑇𝑇𝑦𝑦]

�𝐸𝐸[𝑥𝑥𝑇𝑇𝑥𝑥]𝐸𝐸[𝑦𝑦𝑇𝑇𝑦𝑦]
                                                  (1)    

                                                                       =
𝐸𝐸[𝑊𝑊𝑥𝑥

𝑇𝑇𝑋𝑋𝑌𝑌𝑇𝑇𝑊𝑊𝑦𝑦]

�𝐸𝐸[𝑊𝑊𝑥𝑥
𝑇𝑇𝑋𝑋𝑋𝑋𝑇𝑇𝑊𝑊𝑥𝑥]𝐸𝐸�𝑊𝑊𝑦𝑦

𝑇𝑇𝑌𝑌𝑌𝑌𝑇𝑇𝑊𝑊𝑦𝑦�
                              (2) 

 

Where the highest canonical correlation is denoted by the maximum value of 𝜌𝜌 taking into account 

Wx and Wy, while projections onto Wx and Wy (i.e. x and y) denote the canonical variants. 

Figure 1  demonstrates the utilization of CCA for target frequency identification, where f1, f2, …, 

fm denote the number of target frequencies, X indicates the raw EEG signal, Y represents the 

frequency profile reference signal comprised of the fundamental target frequency, and its  
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Figure 1. CCA-based target frequency identification 

 

harmonics. The frequency profile reference signal is a pure sinusoidal signal at the intended target 

frequency. As such, for each target frequency the correlation between the EEG signal and the 

frequency profile reference signal is calculated. Subsequently, the frequency from the reference 

signal with the maximum correlation with the EEG signal is identified as the intended target 

frequency the user is focusing on (Lin et al. 2007).  

Both the raw EEG signal and the frequency profile reference signal are utilized as the inputs to 

CCA. Subsequently, the output 𝜌𝜌 is the canonical correlation employed for frequency 

identification as follows: 

                                                               𝑓𝑓 =  𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝜌𝜌𝑖𝑖             𝑖𝑖 = 1, 2, … ,𝑚𝑚                                          (3)  

Where 𝜌𝜌𝑖𝑖 represent the CCA coefficients. 

 

2.2 Power Spectral Density Analysis (PSDA): 
 

PSDA is one of the most commonly used methods for SSVEP target frequency identification 

(Cheng et al. 2002). The method utilizes a Fast Fourier Transform (FFT) to examine the frequency 

spectrum. As such, the frequency with the highest PSD value is recognized as the target frequency. 
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However, this requires the selection of the optimal bipolar lead with high signal-to-noise ratio. In 

other words, the channel with the most significant SSVEP amplitude is selected (Wang et al. 2005).  

 

The signal-to-noise (SNR) ratio is: 

                                                   𝑆𝑆𝑆𝑆𝑆𝑆 = 10𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝑛𝑛𝑛𝑛(𝑓𝑓𝑚𝑚)

∑ 𝑃𝑃(𝑓𝑓𝑚𝑚+𝑘𝑘𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟)+𝑃𝑃(𝑓𝑓𝑚𝑚−𝑘𝑘𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟)𝑛𝑛/2
𝑘𝑘=1

�                                   (4)       

As such, SNR is obtained by the ratio of power 𝑃𝑃(𝑓𝑓𝑚𝑚) to the mean value of the power in 𝑛𝑛 adjacent 

points, while 𝑓𝑓𝑚𝑚 (𝑚𝑚 = 1, 2, … ,𝑀𝑀) denotes the target frequencies and 𝑀𝑀 indicates the number of 

target frequencies. Finally, 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 represents the power spectral density’s frequency resolution.  

The spectrum’s amplitude 𝑃𝑃(𝑓𝑓𝑚𝑚) is computed by: 

      𝑃𝑃(𝑓𝑓𝑚𝑚) = |𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥)|                                                            (5) 

Where 𝑥𝑥 denotes the EEG signals, and 𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) represents the 250-point of Fast Fourier Transform 

(FFT). Thus, since the sampling rate with which the EEG data was collected is 250 Hz, the 

frequency resolution 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 is 250
250

= 1 Hz.  

Hence, SNR can be employed to identify the intended SSVEP target frequency as follows: 

                                        𝑓𝑓 =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆             𝑚𝑚 = 1, 2, … ,𝑀𝑀                                                (6) 
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Chapter 3: Partition-Based Feature Extraction and Score Space 
Fusion 

 

In this chapter, the data acquisition, the experimental setup, and the novel signal processing 

solution are discussed. First the EEG signal is recorded and filtered to remove noise, contaminant 

factors, and irrelevant frequency ranges. Following the calculation of the Canonical Correlation 

Analysis (CCA) coefficients and the Power Spectral Density Analysis (PSDA) power scores, the 

score spaces of both CCA and PSDA are partitioned into 3 different cases. Subsequently, 4 features 

are extracted from CCA’s score space, and 2 features are extracted from PSDA’s score space. Both 

feature spaces are then concatenated to generate more discriminative fusion spaces. 

 

3.1 Data Acquisition and Experimental Setup: 
 

The EEG signals were recorded from 10 healthy subjects, aged between 20-30 years of age. The 

experiment took place in a lab environment and subjects were seated on comfortable chairs 

approximately 20 inches away from a 10.2-inch Liquid Crystal Display (LCD) Android tablet 

screen with a 2560 x 1800 screen resolution (See Figure 2). The Cognionics EEG device was 

utilized to record the EEG signals wirelessly using 8 channels with 250 Hz sampling rate. The 

channels were primarily located on the occipital and parietal areas of the brain as it has been 

established that these areas of the brain contribute significantly to the SSVEP identification 

performance (Lin et al. 2007). After the completion of the data collection process, the EEG signals 

are filtered utilizing a 5th order Butterworth bandpass filter and a 60 Hz notch filter to remove 

noise, contaminant factors, and irrelevant frequency ranges. Subsequently the CCA coefficients 

and the PSDA power scores are calculated. 
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Figure 2. Experimental setup and electrodes location 

 

However, unlike CCA, which generated a 1-dimensional feature space, PSDA generates a feature 

space whose dimensionality equals the number of channels utilized to record the EEG signals, in 

our case PSDA generated an 8-dimensional feature space. Therefore, a channel selection approach 

was implemented to select the channel with the best SSVEP responses for the partitioning process 

as discussed in Chapter 2 Section 2.2. 

 

3.2 Task and The SSVEP Paradigm: 
 

For this investigation, 4 target frequencies, represented by 4 different 600-pixel icons rendered on 

each corner of the tablet’s screen, were utilized. The target frequencies employed in this 

experiment were 10 Hz, 12 Hz, 15 Hz, and 8.5 Hz (See Figure 3). Figure 3 illustrates the 

experimental paradigm utilized during the data collection process. Initially, the system recognizes 

that the subject is focusing on the Call Nurse icon and transitions to the main menu screen. On The 

main menu screen, the 4 target frequencies are represented by 4 different icons rendered on each 

corner of the screen in an effort to minimize any interference with the subjects’ visual perception.  
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Figure 3. The training session's experimental paradigm 

 

The task involved subjects focusing on 1 target frequency at a time, such as 12 Hz which is 

represented by the Pain/Discomfort icon on the top right corner of the screen. If the subject 

transitions to the correct corresponding 12 Hz target frequency screen, the attempt is considered a 

successful call and is labeled (1), otherwise it is considered unsuccessful with a label of (0). Hence, 

subjects are instructed to record 10 successful calls per each target frequency. However, all 

subjects needed more than 10 attempts to record the 10 successful calls (approximately 75 calls 

per subject), generating a dataset size sufficient enough to validate the proposed method and 

evaluate the generalization capabilities of the predictive models. 

 

3.3 CCA and PSDA Score Space Partitioning: 

 
To accommodate portability, the proposed system in this thesis utilizes an Android tablet as visual 

stimuli. However, the SSVEP paradigm generation on the tablet is inaccurate, which in turn 

exacerbates the SSVEP identification performance (See Table 1 and Figure 4). This is mainly  
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attributed to the hardware limitations of the visual stimuli, particularly the insufficient screen 

refresh rate, and the intermittent Android operating system interruptions. s 

 

Table 1. Actual frequency conversion values from Hertz to Milliseconds vs. our system's 
performance over 4 epochs 

 

Table 1 reports the actual time required to render the target objects on the screen throughout 4 

consecutive epochs of a 10-second SSVEP segment. The actual frequency conversion values are 

demonstrated in the 2nd column (i.e. Hz to ms). As such, we observe a discernable divergence as 

the conversion values during various epochs deviate from the desired conversion timing. 

Moreover, Figure 4 illustrates how peaks are not occurring precisely on the intended target 

frequency due to the fact that in different fractions of a second, the rate of the flickering stimuli 

deviates from its original and desired values reported in the 2nd column of Table 1. Therefore, the 

SSVEP identification performance is impaired.  

 

 

 

Target 
Frequencies Hz to ms 1st Epoch 2nd Epoch 3rd Epoch 4th Epoch Average 

8.5Hz 117.647 115.7391 116.913 116.6957 113.2083 115.639 
10Hz 100 98.92308 100.1923 100.1154 100.1538 99.84615 
12Hz 83.3333 82.125 83.5 83.40625 83.40625 83.109375 
15Hz 66.6666 65.71795 66.79487 66.69230769 65.95 66.28878 
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Figure 4. Impact of the insufficient screen refresh rate on the SSVEP identification performance 
 

Additionally, I hypothesize that there are subject-specific information embedded within the 

SSVEP responses on the target frequencies and the non-target frequencies as well (See Figure 5). 

Figure 5 demonstrates the subjective responses in the CCA plot of 2 different subjects over the 

whole frequency range. 

As such, to mitigate the impact of the insufficient screen refresh rate, and the implications of the 

subject variation challenge, and to incorporate the subject-specific information into the training 

phase of the predictive model, I propose exploiting the discriminative and complementary 

information of CCA and PSDA simultaneously via partitioning their score spaces in 3 different 

cases (Farooq and Dehzangi 2017) (See Figure 6):
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Figure 5. Subjective responses demonstrated in the CCA plot of 2 different subjects 

 

1. Partitioning the range that covers the target frequencies into 4 non-overlapping partitions 

(i.e. P2, P4, P6, and P8 highlighted in green). 

2. Partitioning the range that encompasses the non-target frequencies into 5 non-overlapping 

partitions (i.e. P1, P3, P5, P7, and P9). 

3. Partitioning the range that encapsulates both the target and non-target frequencies into 9 

non-overlapping partitions (i.e. P1, P2, …, and P9). 

 

 

Figure 6. Partitioning CCA and PSDA's score spaces 
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Figure 6 illustrates partitioning the frequency range 7 Hz to 17 Hz of both CCA and PSDA’s score 

spaces. The intuition behind the partitioning scheme is to enclose each target frequency within a 

specific partition in order to capture the subject-specific information on and/or near the target 

frequencies. Moreover, the partitioning scheme serves to evaluate whether augmenting the 

extracted measures from the non-target frequency partitions on the features extracted from the 

target frequency partitions enhances the SSVEP identification task (Farooq and Dehzangi 2017). 

 

3.4 Feature Extraction and Score Space Fusion: 
 
Feature extraction is an essential process that allows effective descriptors and informative features 

to be obtained and employed to facilitate subsequent generalization steps. Thus, 4 measures were 

extracted from the CCA score space: 

1. Power:  

Serves to calculate the summation of the absolute squares of the signal’s time-domain 

observations, divided by the length of that signal. Power of a signal can be computed as 

follows:  

                                                𝑃𝑃 =  1
𝑇𝑇
∑ �𝑃𝑃𝑖𝑖𝑖𝑖�

2𝑇𝑇
𝑡𝑡=1 (𝑡𝑡)                                                     (7) 

 

2. Mean:  

Serves to obtain the mean values within each partition, and it’s calculated as follows: 

                                                            

                                                              𝑥̅𝑥 =  
1
𝑁𝑁
�𝑥𝑥𝑖𝑖                                                                                (8)  
𝑁𝑁

𝑖𝑖=1

 

3. Standard deviation:  

Serves to measure and quantify the variation of the EEG data within each partition, and 

it’s calculated as follows:
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                                                    𝜎𝜎 =  �
∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)𝑁𝑁
𝑖𝑖=1
𝑁𝑁 − 1

                                                              (9)   

4. Entropy:  

Serves to compute the temporal distribution of the signal’s energy within each partition as 

follows: 

                                                   𝐸𝐸(𝑠𝑠) =  −  �𝑠𝑠𝑖𝑖2 log(𝑠𝑠𝑖𝑖2)
𝑖𝑖=1

                                                             (10) 

And 2 features were extracted from PSDA’s score space: 

1. Mean 

2. Standard deviation 

This is because PSDA inherently generates the power scores of the signal, which eliminates the 

need to extract them as a feature. Moreover, due to the infinitesimal magnitudes of those power 

scores, extracting entropy as a viable measure was impeded, and it was therefore disregarded. As 

such, the extracted measures are then concatenated together to construct the fusion spaces as 

follows: 

I. 1st partitioning case: 

24-dimesnional fusion space  4 features X 4 partitions from CCA + 2 features X 

4 partitions from PSDA. 

II. 2nd partitioning case: 

30-dimensional fusion space  4 features X 5 partitions from CCA + 2 features X 

5 partitions from PSDA. 

III. 3rd partitioning case: 

54-dimensional fusion space  4 features X 9 partitions from CCA + 2 features X 

9 partitions from PSDA. 

3.5 SSVEP Identification Performance Utilizing The Fusion Spaces: 
 

To evaluate the SSVEP identification performance utilizing the fusion spaces generated from each 

partitioning case, 3 different classifiers were employed; Decision Tree, Linear Support Vector 
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Machine (SVM), and K-Nearest Neighbor (K-NN) with K=1. Furthermore, to validate the 

performance of the predictive models, leave-one-out Cross Validation was used. This entails 

utilizing all samples of the dataset except 1 for the training phase, while the remaining sample is 

used for the testing phase. The process is repeated iteratively until all samples are utilized for 

training and testing. As such, the summation of the prediction performance of each iteration is 

calculated and the average prediction performance is reported as the SSVEP identification 

accuracy.   

 

Table 2 reports the identification performance of the proposed partition-based feature extraction 

and score space fusion method.  

 

Table 2. SSVEP identification accuracies of CCA, PSDA, and the fusion score spaces 

Subject CCA PSDA 

Target Frequency 
Partitions 

Non-Target Frequency 
Partitions Target + Non-Target 

Decision 
Tree SVM KNN Decision 

Tree SVM KNN Decision 
Tree SVM KNN 

1 86% 67% 96% 96% 98% 81% 75% 71% 81% 96% 83% 
2 77% 83% 86% 84% 87% 57% 44% 36% 82% 86% 77% 
3 40% 26% 60% 42% 34% 49% 43% 45% 37% 47% 52% 
4 59% 19% 77% 85% 78% 31% 54% 44% 75% 79% 59% 
5 67% 41% 89% 76% 69% 31% 42% 32% 73% 71% 68% 
6 55% 35% 88% 88% 75% 34% 45% 29% 86% 80% 71% 
7 62% 29% 63% 80% 68% 42% 53% 46% 63% 74% 63% 
8 71% 39% 71% 83% 75% 40% 49% 49% 76% 76% 68% 
9 47% 17% 59% 81% 73% 34% 42% 40% 60% 79% 63% 

10 61% 17% 49% 62% 55% 56% 44% 36% 49% 62% 41% 
Average 63% 37% 74% 78% 71% 46% 49% 43% 68% 75% 65% 

 

From Table 2 we observe that CCA, which represents the BCI system’s performance, achieved an 

average overall identification accuracy of 63%, while PSDA achieved an average overall accuracy 

of 37%. These identification accuracies were improved to 75% utilizing the fusion space 

constructed from the 3rd partitioning case. The performance is further improved to 78% when 

classifying the fusion space generated from the 1st partitioning case utilizing SVM. However, the 



21 
 

identification performance is undermined when classifying the fusion space generated from the 

non-target frequency partitions, achieving 49% utilizing SVM. As such, I conclude that while CCA 

and PSDA carry heterogeneous information, they tend to be complementary in nature. Moreover, 

from the 1st and 3rd partitioning cases, it is evident that the impact of the various challenges that 

have been discussed in Chapter 1 Section 1.2, has been mitigated to a certain degree, concluding 

the validity of the proposed method (Farooq and Dehzangi 2017). Additionally, further analysis 

will disregard the fusion spaces from the non-target frequency partitions (i.e. 2nd partitioning case) 

as their fusion space evidently degrades the SSVEP identification performance.
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Chapter 4: Discriminative Transformation of the Fusion Space 
 

To further enhance the performance of the proposed method, minimize the impact of statistical 

redundancies, reduce the computational complexity, and eliminate the undesired characteristics of 

high dimensional feature spaces, discriminative transformation utilizing Principal Component 

Analysis (PCA), and Linear Discriminant Analysis (LDA) is investigated and discussed in this 

Chapter. 

Figure 7 illustrates the block diagram of the proposed method. After pre-processing the data, the 

score spaces of CCA and PSDA are partitioned in 3 cases to generate the fusion spaces. 

Subsequently, the fusion spaces are transformed to lower dimensions utilizing PCA and LDA. 

 

 

 

 

 

 

 

Figure 7. Block diagram of the proposed method 

 

4.1 Principal Component Analysis (PCA): 

 
PCA is a linear and unsupervised dimensionality reduction method that serves to reduce the 

dimensions of a dataset, while maintaining the essential information. The method also seeks to  
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find directions on which the variance of the dataset is maximized.  

With PCA, datasets are transformed linearly into a lower dimensional and new coordinate 

mapping, where principal components are uncorrelated and are, in essence, linear functions of the 

original observations. Furthermore, in the lower dimensional representation of the dataset, the 

largest variance can be found on the 1st coordinate, and the 2nd largest variance can be found on 

the 2nd coordinate, and so on. This ranking process entails computing the covariance matrix, and 

the eigenvectors and eigenvalues of the covariance matrix as follows: 

                                             Cov(x, y) =
1

n − 1
 � (xi

i
− x)(yi −  y)                                                 (11)  

To simplify the visualization, the 3 axes; x, y, and z are considered. As such, the covariance matrix 
is: 

 

                                             = �
cov(x, x) cov(x, y) cov(x, z)
cov(y, x) cov(y, y) cov(y, z)
cov(z, x) cov(z, y) cov(z, z)

�                                                   (12)   

Assume xi is the eigenvector, whose eigenvalues is denoted by φi. Then, the eigenvectors and 

eigenvalues are computed as follows: 

                                                                     Rxi =  φixi                                                                                                  (13) 

Hence, the rank of the matrix is denoted by the number of eigenvalues of the covariance matrix. 

Table 3 summarizes the SSVEP identification accuracies after applying PCA on the fusion spaces 

to reduce 75% of their dimensionality and maintain 25%. From Table 3 we observe that PCA has 

improved the identification performance from 63% to 72% when classifying the fusion space 

generated from the 3rd partitioning case, utilizing SVM, and further improved the performance to 

78% employing the same classifier to classify the fusion space generated from the 1st partitioning 

case.  
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Table 3. SSVEP identification performance utilizing PCA 

Subject CCA PSDA 
PCA 

Target Frequency Partitions Target + Non Target 
Decision Tree SVM KNN Decision Tree SVM KNN 

1 86% 67% 92% 94% 96% 85% 92% 73% 
2 77% 83% 76% 89% 74% 68% 76% 63% 
3 40% 26% 40% 52% 29% 34% 43% 34% 
4 59% 19% 69% 86% 78% 57% 85% 71% 
5 67% 41% 60% 73% 60% 57% 66% 55% 
6 55% 35% 83% 88% 70% 78% 84% 65% 
7 62% 29% 79% 79% 63% 59% 68% 63% 
8 71% 39% 75% 80% 78% 78% 79% 66% 
9 47% 17% 68% 75% 65% 50% 74% 68% 

10 61% 17% 59% 62% 50% 51% 56% 47% 
Average 63% 37% 70% 78% 66% 62% 72% 61% 

 

However, when comparing the SSVEP identification performance before and after applying PCA 

on the fusion spaces, we note that PCA did not ameliorate the identification performance (See 

Figure 8).  

(a) 1st partitioning case      (b) 3rd partitioning case 

Figure 8. SSVEP identification performance before and after applying PCA on the fusion spaces 
from the 1st and 3rd partitioning cases 
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Figure 8 illustrates the identification performance before and after applying PCA. From Figure 8 

we observe that the 24-dimensional fusion space constructed from the target frequency partitions 

(Figure 8.a) demonstrated similar SVM performance before and after PCA utilization. However, 

Decision Tree and KNN’s performances slightly exacerbated after PCA utilization. On the other 

hand, the 54-dimensional fusion space demonstrated a worse identification performance across all 

3 classifiers after applying PCA (Figure 8.b). 

PCA’s success stems from the fact that the method preserves information while transforming 

datasets to lower dimensions. However, the computational cost of the eigenvectors can be 

impractical in high dimensional spaces due to the proportional nature between the covariance 

matrix and dimensionality of the data samples. As such, from the experimental results we conclude 

that utilizing PCA is not an efficient solution to improve the identification performance. 

 

4.2 Linear Discriminant Analysis (LDA): 
 

LDA is a linear and supervised dimensionality reduction method that aims to transform a dataset 

to a lower dimensional space while maintaining class-separability information. This is achieved 

by finding the axes that maximize the linear class separation utilizing the within-class scatter 

matrix and the between-class scatter matrix, which are computed as follows: 

The within-class scatter matrix: 

Sw =  ∑ 𝑆𝑆𝑖𝑖c
i=1                 (14) 

Where Si indicates the scatter matrix of every class, which is computed as follows: 

𝑆𝑆𝑖𝑖 =  ∑ (𝑥𝑥 − 𝑚𝑚𝑖𝑖)(𝑥𝑥 − 𝑚𝑚𝑖𝑖)𝑇𝑇𝑛𝑛
𝑥𝑥∈𝐷𝐷𝑖𝑖        (15) 

And mi represents the mean vector 

While the between-class scatter matrix is calculated as follows: 

Sb =  ∑ 𝑁𝑁𝑖𝑖(𝑚𝑚𝑖𝑖 − m)c
i=1 (𝑚𝑚𝑖𝑖 − m)T        (16) 

Where m represents the overall mean, whereas mi and Ni indicate the sample mean and the size 

of class i respectively. 
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As such, to obtain the linear discriminants, LDA seeks to find a transformed space where the 

within-class matrix is minimized and the between-class matrix is maximized by solving the 

generalized eigenvalue problem for the matrix 𝑆𝑆𝑤𝑤−1 𝑆𝑆𝑏𝑏 as follows: 

      𝑆𝑆𝑤𝑤−1 𝑆𝑆𝑏𝑏𝑣𝑣 =  𝜆𝜆𝜆𝜆           (17) 

Where v and 𝜆𝜆 represent the eigenvector and the eigenvalue respectively.  

Subsequently, the selection of the linear discriminant for the transformed subspace is achieved 

by sorting the eigenvectors in a decreasing eigenvalue order (i.e. rank the eigenvectors from the 

highest to the lowest in terms of their corresponding eigenvalue) and select the highest k 

eigenvectors to construct a k x d-dimensional eigenvector matrix W.  

Finally, the projection matrix, where the samples are transformed onto the new subspace, is 

calculated as follows: 

   𝑌𝑌 = 𝑋𝑋𝑋𝑋                   (18)  

Where X is a matrix of n samples of size n x d dimensions, and Y is the projection of the n x k-

dimensional samples.  

Table 4 reports the SSVEP identification accuracies after transforming the fusion spaces from the 

1st and 3rd partitioning cases to lower dimensions utilizing LDA. 

Table 4. SSVEP identification performance utilizing LDA 

Subject CCA PSDA 
LDA 

Target Frequency Partitions Target + Non-Target 
Decision Tree SVM KNN Decision Tree SVM KNN 

1 83% 67% 100% 100% 100% 94% 96% 94% 
2 77% 83% 94% 97% 97% 97% 100% 100% 
3 40% 26% 58% 71% 57% 91% 96% 93% 
4 59% 19% 92% 94% 88% 99% 97% 99% 
5 67% 41% 89% 92% 94% 92% 98% 98% 
6 55% 35% 94% 92% 96% 96% 100% 100% 
7 62% 29% 90% 86% 85% 91% 94% 93% 
8 71% 39% 93% 90% 93% 100% 100% 100% 
9 47% 17% 76% 89% 80% 95% 99% 100% 

10 61% 17% 89% 87% 73% 100% 99% 100% 
Average 63% 37% 88% 90% 86% 96% 98% 98% 
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From Table 4 we observe that the identification performance significantly improved to 90% when 

classifying the 24-dimensional fusion space with SVM. The performance is further improved to 

98% when classifying the 54-dimensional fusion space utilizing SVM and KNN.  

As such, we can conclusively infer that LDA outperforms PCA significantly. This is mainly 

because LDA generates linear mappings that maximizes the class separation in the low 

dimensional representation of the data. However, LDA has the tendency to make strong 

assumptions about the dataset, in particular, LDA assumes that the dataset is normally 

distributed, which is an inaccurate assumption for most real-world problems. As such, to ensure 

that LDA’s performance was not impacted as a result of that assumption, the power scores were 

normalized using the natural log transformation (Farooq and Dehzangi 2018). The fusion spaces 

are then transformed to lower dimensions using LDA and then passed to SVM for classification 

(See Figure 9). 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. LDA's performance before and after the log transformation 
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From Figure 9 we observe that the log transformation slightly improves the 24-dimensional fusion 

space, however, the identification performance of the 54-dimensional fusion space remains 

consistent despite the log transformation of the power scores.  

 

4.3 Comparison to Benchmark Systems Utilizing the Discriminative Feature 

Extraction via Multivariate Linear Regression (MLR) Method: 
 

Wang et al suggested a Multivariate Linear Regression (MLR) approach, which was conclusively 

proven to be more robust than CCA (Wang et al. 2016). In their investigation, they transform the 

input space to lower dimensions using PCA, then utilize MLR to find optimally discriminative 

subspaces and extract discriminative features. Subsequently, they feed MLR's discriminative 

subspaces to K-Nearest Neighbor, where k=5, for classification utilizing the hold-one-out cross 

validation. Following the same aforementioned steps, I examined the performance of their 

proposed method on my dataset to draw a more comprehensive comparison between their method, 

and the method proposed in this thesis. 

Table 5 demonstrates the SSVEP identification performance of CCA, LDA, and MLR. From Table 

5 we conclude that while MLR evidently outperforms CCA achieving an overall average 

identification accuracy of 86%, the 24-dimensional fusion space, generated from the 1st 

partitioning case demonstrates a 4% improvement in performance, while the 54-dimensional 

fusion space further improves the performance by 12% achieving an average overall identification 

accuracy of 98% after transforming both fusion spaces utilizing LDA and passing the transformed 

fusion spaces to SVM for classification. 
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Table 5. Comparison of the SSVEP identification performance amongst CCA, LDA, and MLR 

Subjects CCA 
LDA 

MLR 
Target Frequency Partitions Target + Non-Target 

1 83% 100% 96% 67% 
2 77% 97% 100% 89% 
3 40% 71% 96% 87% 
4 59% 94% 97% 87% 
5 67% 92% 98% 94% 
6 55% 92% 100% 90% 
7 62% 86% 94% 85% 
8 71% 90% 100% 82% 
9 47% 89% 99% 94% 

10 61% 87% 99% 85% 
Average 63% 90% 98% 86% 

 

Furthermore, to examine another aspects of the system’s performance in order to evaluate the 

validity of the proposed method, I investigate the information transfer rates (ITR) of CCA, LDA, 

and finally MLR. As such, I follow (Meinicke et al. 2003) to calculate the information transfer 

rates: 

                                          𝐵𝐵 = 𝑡𝑡/60 �𝑙𝑙𝑙𝑙𝑙𝑙2𝑀𝑀 + 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙2𝑃𝑃 + (1 − 𝑃𝑃)𝑙𝑙𝑙𝑙𝑙𝑙2
1 − 𝑃𝑃
𝑀𝑀 − 1�

                           (19)  

Where 𝐵𝐵 indicates the ITR in bits/min, 𝑡𝑡 denotes the trial time, 𝑀𝑀 represents the number of the 

target objects rendered on the visual stimuli, and 𝑃𝑃 indicates the selection probability of the desired 

target object (i.e. accuracy). 

Table 6 summarizes the ITRs of CCA, LDA, and MLR. From Table 6, we note that the average 

overall ITR of MLR across all 10 subjects is 24.1 bits/min. This ITR is slightly improved to 25.1 

bits/min utilizing the LDA-transformed 24-dimensional fusion space, and further improved to 27.3 

bits/min employing the LDA-transformed 54-dimensional fusion space. As such, we can 

decisively infer that the proposed partition-based feature extraction method and discriminative 

fusion space transformation utilizing LDA yielded higher information transfer rates than MLR. 
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Table 6. Information transfer rates (ITRs) of CCA, LDA, and MLR in bits/min 

Subjects CCA 
LDA 

MLR 
Target Frequency Partitions Target + Non-Target 

1 23.3 27.8 26.8 19 
2 21.7 27 27.8 25 
3 11.8 20 26.8 24 
4 16.9 26.2 27 24 
5 19.0 25.7 27.3 26 
6 15.8 25.7 27.8 25 
7 17.7 24.1 26.2 24 
8 20.1 25.2 27.8 23 
9 13.7 24.9 27.6 26 

10 17.4 24.4 27.6 24 
Average 17.7 25.1 27.3 24.1 
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Chapter 5: Conclusion 
 

In this thesis, I addressed and discussed the technical challenges BCI systems face today, 

particularly when operating them in an ICU environment. Moreover, to accommodate portability, 

the BCI system proposed in this thesis utilizes an Android tablet for visual stimulation. However, 

due to the insufficient screen refresh rate and the recurrent Android operating system interruptions, 

the SSVEP identification performance is impaired. As such, to mitigate the impact of the 

aforementioned challenges I proposed a partition-based feature extraction method, which entailed 

partitioning the score spaces of CCA and PSDA, extracting their discriminative and 

complementary information from each partition, and concatenating the extracted measures to 

generate discriminative fusion spaces. The fusion spaces are then transformed to lower dimensions 

utilizing PCA and LDA. Finally, to validate my findings, I drew a comprehensive comparison 

between the proposed method and multivariate linear regression method, which is a well-known 

and established SSVEP identification method. The experimental results demonstrated that the 

proposed method improved the identification performance from CCA’s 63% to 78%. The 

performance is further improved to 98% utilizing LDA, which outperformed MLR’s 86% 

identification accuracy. As such, the proposed partition-based feature extraction and score space 

fusion is a very promising approach to operate BCI systems in the ICU.
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