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Abstract 
 

The use of wearable devices in healthcare and rehabilitation programs is growing exponentially. 

This thesis focuses on wearable sensors and technology used to monitor treatment compliance in 

patients with a medical condition known as Adolescent Idiopathic Scoliosis (AIS). Patients with 

AIS are prescribed to wear a thoracolumbosacral orthosis (TLSO) – a type of back brace, to help 

prevent worsening of their condition. Scoliosis is a medical condition which occurs in adolescents, 

where an individual's spine develops curvature. Adolescent Idiopathic Scoliosis (AIS) occurs in 

children aged 16 years or younger. Brace treatment with TLSO is known as one of the most 

effective non-surgical treatment for scoliosis. The brace is designed to be worn continuously for 

long periods of time without any supervision. Therefore, it is vital to carry out the proper 

procedures for measuring the effectiveness of the treatment, and to accurately evaluate the amount 

of time of the brace being worn. To successfully monitor compliance with brace treatment, a 

wearable multi-modal sensor solution is to be embedded into the patient's brace. This thesis 

proposes an end-to-end system to help improve monitoring brace treatment by continuously 

observing the amount of force inside the brace. In addition to compliance monitoring, my research 

is extended to detecting the patient’s daily activities by implementing a novel data-mining method 

to identify different trends and patterns associated with the activities performed by the patient. 

This thesis attempts to implement wearables in such an application, and anticipates realizing a 

successful relationship between monitoring and improving compliance.
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CHAPTER I: INTRODUCTION 
  

Idiopathic scoliosis is an abnormal curvature of the spine that can worsen throughout growth, 

making it vital for doctors to treat it during the early stages. For that reason, physicians focus on 

skeletally immature adolescents who show signs and symptoms of idiopathic scoliosis. Today, 3% 

of children below the age of 16 years are diagnosed with adolescent idiopathic scoliosis (AIS). 

The severity of scoliosis in a patient is measured by the Cobb angle. The Cobb angle refers to 

magnitude of the spinal curvature as measured on a posteroanterior plain radiograph of the spine. 

In order to ensure that the treatment is successful, it is important to monitor the quality and duration 

of brace wear. The total number of hours of brace wear correlates to the lack of spinal curve 

progression (Rahman et al., 2005; Katz et al., 2010; Weinstein et al., 2013). A braced curve that 

remains ≤45°-50° at skeletal maturity is considered a treatment success, as bracing is no longer 

effective once patients are skeletally mature. Curves that are ≤45°-50°  at skeletal maturity are not 

likely to progress during adulthood (Asher and Burton, 2006). Several studies provided convincing 

evidence about the effectiveness of this treatment given appropriate usage (Sapountzi-Krepia et 

al., 2006). By embedding the brace with force and motion sensors, the duration of brace wear can 

be accurately monitored. The objective is to design a ‘smart brace’ capable of automatically 

monitoring the duration of brace wear, in addition to properly detecting certain activities the patient 

performs.  In this thesis, I designed a system to monitor and evaluate the duration and quality of 

brace wear by correlating the force, acceleration and angular velocity collected by a multi-modal 

sensor solution. With the increase in usage of wearable technology in the health field, the data 

analysis associated with such a device can help doctors monitor the patient’s treatment process.  

 

1.1 Problem Statement 

 

The most common form of treatment of AIS in skeletally immature individuals is a 

thoracolumbosacral orthosis (TLSO) back brace. While the brace does not provide a solution to
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fix the curvature, it helps prevent worsening of the curve throughout the adolescent's growth. If 

progression of the spinal curvature is prevented, then surgery can be avoided and this is considered 

a brace treatment success (Katz et al., 2010). The brace is designed to be worn continuously for 

long periods of time without any supervision. Therefore, it is vital to carry out the proper 

procedures for measuring the effectiveness of the treatment, and to accurately evaluate the amount 

of time of the brace being worn. Prescribed hours of brace-wear ranges from 12 to 23 hours per 

day depending on the severity of the patient’s spinal curve. Both Katz et al. (Katz et al., 2010) and 

Weinstein et al. (Weinstein et al., 2013) have demonstrated a dose-response curve, in which 

duration of brace wear is positively associated with the rate of treatment success. Weinstein et al. 

reported that patients who wore the brace for 0 to 6 hours daily had a success rate of 42%, whereas 

patients who wore the brace for at least 12.9 hours had success rates of 90 to 93%. Therefore, the 

duration and quality of brace wear is an important parameter in the effectiveness of the brace 

treatment. However, monitoring brace compliance is a challenging task. Previous studies have 

demonstrated that when brace wear is accurately monitored with a temperature sensor, adherence 

to brace wear is frequently overestimated (Rahman et al., 2005; Asher and Burton, 2006; Katz et 

al., 2010; Weinstein et al., 2013). Morton et al. found that patients wore the brace for 47% of the 

prescribed time, although physicians, orthotists, parents, and patients estimated that the brace be 

worn for 64%, 66%, 72%, and 75% of the prescribed time, respectively (Morton et al., 2008). Katz 

et al. reported that patients wore the brace for the same number of hours regardless of whether the 

prescribed time was 16 hours or 23 hours (Katz et al., 2010).  As a result, the effectiveness of 

treatment depends on the duration of wear and tightness of the brace. To successfully monitor 

compliance with brace treatment, a wearable multi-modal sensor solution is embedded into the 

patient's brace.  

 

1.2 Monitoring Brace Treatment 

 

This thesis proposes an end-to-end system to help improve monitoring brace treatment by 

continuously observing the amount of force inside the brace. The data provides an accurate and 

valuable insight on the amount of force being exerted by the patient during their regular daily 

activities. A custom-designed hardware solution is fabricated in a TLSO brace for an empirical 
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evaluation. The custom-designed hardware consists of a sensor board, a force sensor, an 

accelerometer and a gyroscope. The force sensor records the force being exerted on the patient's 

back, while the accelerometer and gyroscope generate cues to determine the patient's activities and 

lifestyle. This thesis is extended to detection of the patient’s daily activities by implementing a 

novel data-mining method to identify different trends and patterns associated with the different 

activities performed by the patient. Using machine learning techniques, the model will be designed 

to detect certain pre-defined activities. The main aim is to design a context-aware remote 

monitoring system for ubiquitous evaluation and enhancement of brace treatment compliance of 

AIS patients. In addition to monitoring and evaluating the effectiveness of brace treatment 

pervasively, the thesis aims to provide a statistical insight to the physicians by performing activity 

detection using a motion sensor. Data is collected using the sensors and can be stored on a SD 

card, or uploaded in real-time to a cloud for longitudinal analysis. The data received from the 

wearable sensors will help monitor TLSO brace compliance in an attempt to improve monitoring 

brace treatment. In current practices, physicians lack bio-feedback with respect to remote treatment 

monitoring in patients with AIS. This thesis attempts to implement wearables in such applications, 

and anticipates realizing a successful relationship between monitoring and improving compliance. 

 

1.3 Related Work 

 

Currently, temperature sensors are the only commercially available options for monitoring brace 

compliance in AIS.  The iButton (Maxim Integrated, San Jose, CA) and Orthotimer (Pro-Tech 

Orthopedics, Raynham, MA) are temperature sensors that can be integrated in a TLSO.  Both 

devices periodically measure the inside temperature of the brace. Physicians and orthotists can 

download temperature readings and view daily brace wear patterns using specialized software at 

clinic visits. In the study by Katz et al., authors recorded wear time once the temperature stabilized 

between 90°F and 99°F (Katz et al., 2010). Temperatures were recorded every 15 minutes. Once 

the temperature dropped below 90°F, the wear time for an episode was stopped. Similarly, 

Weinstein et al. recorded temperatures every 15 minutes and considered that the brace was being 

worn when the temperature reached 82.4°F or higher (Weinstein et al., 2013). Although 

temperature sensors have been shown to be effective at monitoring brace compliance in AIS by 



 4 

 

measuring the duration of brace wear, these sensors are unable to monitor the quality of brace wear 

(i.e., whether the brace is being worn correctly, as fitted by the physician and orthotist) (Rahman 

et al., 2005; Asher and Burton, 2006; Katz et al., 2010; Weinstein et al., 2013). A few studies have 

also evaluated the use of pressure sensors to monitor compliance with brace wear in a clinical 

setting (Chase, Bader and Houghton, 1989; Wong et al., 2000; Périé et al., 2003). Lou and 

colleagues have investigated the use of force sensors to monitor compliance with brace wear in 

idiopathic scoliosis (Lou, Hill and Raso, 2010; Lou et al., 2011; Chalmers et al., 2015). However, 

the studies acknowledged that the force data changed (decrease over time) constantly happened 

during the period of the brace treatment. They were unable to determine whether the decrease in 

force was secondary to redistribution of forces in the brace over time. The authors believe that it 

might be due to the fact that force is low resolution data with low degrees of freedom so that I can 

extract more information from the real-life situation and train more robust models.  

 

A system with multiple sensors and multiple modalities would be able to measure higher resolution 

data which has not yet been studied in a clinical setting. Inertial motion sensors have been 

successfully used for ubiquitous activity and motion monitoring applications. The sensors are 

capable of collecting and processing physical activity data continuously, remotely, and in real-time, 

which in turn facilitates design of timely interventions in a variety of applications such as activity 

recognition, activity estimation and joint angle estimation (Robertson et al., 2015; Vikas et al., 

2016) 

 
1.3.1 Compliance Monitoring 

 

To properly evaluate the effectiveness of brace treatment, doctors monitor the duration of brace 

wear, to confirm whether the patient is complying to their prescribed treatment. Depending on the 

severity of the condition, physicians recommend that the brace needs to be worn for up to 23 hours 

a day for the treatment to be effective. A study by Weinstein et al. showed that TLSO treatment 

significantly reduced the curve progression in patients with AIS (Weinstein et al., 2013). They 

found that longer hours of brace wear proved to provide a greater benefit to the patients.  Rahman 

et al. developed a methodology to determine the duration of brace wear by the patient by using a 

temperature sensor (Rahman et al., 2005). The brace was considered to be worn if the temperature 
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recorded was above 26°C. The duration of the brace wear was divided by 23 to calculate the 

percentage of compliance. Temperature sensors are highly sensitive to minor fluctuations and 

temperature changes. These changes can be environmental factors such as changes in overall 

temperature of the weather, or the temperature in an indoors setting. Switching on the air-

conditioner in the house can result in a temperature change. Such uncertainties can result in false 

values. As a result, a temperature sensor can often times over-estimate the duration of brace wear. 

Moreover, it does not provide a reliable measure of brace fit quality. Karol et al. demonstrated that 

patients with AIS who received regular feedback about their compliance with brace wear wore their 

brace for significantly more hours per day as compared to patients who did not receive feedback 

(Karol et al., 2016). In that study, brace wear was monitored using a temperature sensor embedded 

inside the brace. Patients who received their brace wear data at their follow-up appointments with 

the physician had improved compliance. In this thesis, I designed and implemented a reliable 

heuristic method of evaluating the compliance of brace treatment. I used a more robust method by 

segmenting the data to provide an accurate calculation of the compliance of brace treatment. 

 

1.3.2 Activity Detection Motion 

 

There has been extensive research in the areas of activity detection from accelerometer and 

gyroscope readings. Ermes et al. developed a novel method to classify the unsupervised data 

obtained from a 3D accelerometer placed on the subject’s wrist and hip. In addition, data from a 

GPS receiver was recorded and analyzed for activity identification  (Ermes et al., 2008). The total 

classification accuracy achieved was 89%. Ribeiro et al. developed a MHARS or Mobile Human 

activity recognition system to monitor different activities performed by patients (Ribeiro Filho et 

al., 2016). The authors used accelerometer data, heart rate, altitude and body temperature to monitor 

the activities and the patient’s health status. They achieved an accuracy of 86.7% in classifying 

patient data into different activities. Capela et al. designed a unique methodology which takes into 

account the transition between different phases of sitting, standing and lying to detect the three 

activities (Capela, Lemaire and Baddour, 2015). They achieved an accuracy of 96% for sitting, 

98.7% for standing and 100% for lying. Pereira et al. used accelerometers in a mobile phone for 

activity detection. They used different features such as, mean acceleration for each axis, standard 
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deviation and absolute average difference to classify different activities (Pereira et al., 2016). The 

authors achieved an overall accuracy of 91.7%. Bao et al. used a combination of 5 accelerometers 

including four on the limbs and one on the hip to detect different activities (Bao and Intille, 2004). 

They achieved an overall accuracy of 84.6% for activity recognition.  

 

1.4 Overview of the Proposed System 

 

In this thesis, I intend to discover an innovative and effective treatment-monitoring methodology 

by implementing a context-aware remote sensing solution. The objective of the study is to monitor 

compliance of the brace treatment, and also to detect certain activities the patient performs. The 

compliance study indicates the amount of time the patient wore the brace, as compared to the 

duration of wear prescribed by their doctor. In this work, I introduced a new priori decision tree to 

automatically annotate the recorded data based off six different activities consisting of: sitting, 

standing, walking, running, lying and climbing. The effectiveness of the treatment in patients with 

scoliosis is evaluated using a main parameter: 1) Duration for which the brace was worn by the 

patient Data from the force sensor is used to determine the compliance, in addition to the baseline 

force. The proposed solution consists of two stages: 1) remote sensing and data acquisition and 2) 

data mining. For the remote sensing module, I designed and fabricated a sensor board to capture 

data from the patient’s body. The data mining module handles processing and the analytical 

procedure performed on the captured data.  To accomplish the target goal of monitoring brace 

treatment, an end-to-end system has been developed. Fig.1 shows the end-to-end data processing 

instructions. 

 

 

 

Fig. 1 End-to-end data processing system
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CHAPTER II: HARDWARE DESIGN 

 

To provide a reliable and robust method for monitoring compliance in AIS patients, I developed a 

custom-made PCB hardware solution. The hardware design includes a sensor data acquisition 

board, a force sensor, and a motion sensor capable of collecting accelerometer and gyroscope 

values. The equipment is embedded in the brace, and data is continuously collected for analysis.  

 

2.1 Printed Circuit Board (PCB) Design 

 

The sensor board contains an Atmega32u4 Atmel baseband data processor, a 9-axis MEMS MPU-

6050 motion sensor from InvenSense, which communicates using the I2C channel, and a custom-

designed Honeywell FSB1500NSB force sensor placed at the analog channel using a 10-bit 

resolution A/D converter. The design also includes a micro SD card as a data logger and nRF8001 

from Nordic as a Bluetooth low energy module. Figure 2 displays the hardware schematic and 

Figure 3 displays the sensor board that the proposed hardware architecture is implemented. 

 

 

  
 

Fig. 2 Hardware Schematic
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Fig. 3 Printed Circuit Sensor Board  

 

 

The proposed solution consists of our hardware design system embedded in a Boston-type TLSO. 

The motion sensor and force sensor are connected to the PBC, and the system is installed into the 

brace. The TLSO brace is custom-designed to provide the ability of embedding the electronics. 

Fig 4(a) shows the customized brace with direction of axes of the motion sensor. Fig 4(b) 

demonstrates the position of the force sensor inside the customized brace. 

 

 

 
Fig. 4(a) Sensor board embedded in the TLSO & 4(b) Position of force sensor 
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2.2 Research and Development of Force Sensor 

 

Initially, I began the testing process with an off-the-shelf force sensor as shown in Figure 5. Because 

of its square shape, this FSR-406 INTERLINK sensor reads the force being exerted on the entire 

square sensor. Due to the fact that the force is not concentrated and is distributed on a greater surface 

area, I had to use a sensor that measures force applied at a specific point. This provides a more 

accurate value. 

 

Fig. 5 FSR-406 INTERLINK Force Sensor 

 

Certain studies have been carried out on applications in the domain of health-care that use the Force 

Sensitive Resistor (FSR), to measure force at specific point of body. Lukowicz et al. used such a 

sensor to detect a patient’s activity by analyzing the frequency domain of the force data (Lukowicz 

et al., 2006). The main challenge with selecting the appropriate force sensor for this application is 

to ensure that the data being recorded is accurate and consistent. Overnight tests were performed 

on the sensor by placing a fixed amount of weight on the sensor for a number of hours. There was 

a change in reading after a certain amount of time. The fluctuation and inconsistency of the data 

readings did not make this sensor effective for this study. The overnight testing results showed a 

gradual 20% increase in the force being measured over time. Thus, proving that the sensor was not 

stable or consistent. This is similar to the concept of sensor drift, which implies that after a given 

time, certain sensor values begin to drift away from the actual value. To overcome the inconsistency 

of the FSR sensor, I designed a more reliable and accurate custom-made sensor. 
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After conducting detailed research, I decided to use the FSS1500NSB from Honeywell point sensor 

as shown in Fig 6(a). This sensor collects the force reading that is focused at a specific point. It has 

a smaller surface area over which the force is collected as compared to the square sensor shown 

previously. Overnight tests of the point sensor show a great improvement in the stability of force 

readings. There seemed to be very minimal fluctuation with regards to a change in force readings. 

After conducting several overnight tests, it was obvious that the point sensor provided more 

accurate and consistent data. 

 

 

Fig. 6(a) FSS1500NSB sensor and 6(b) PCB for the sensor 

 

After ensuring that this force sensor yielded the expected results, I then used a CMOS amplifier to 

boost the voltage readings from the force sensor. Figure 6(b) shows the PCB for the force sensor, 

including resistors and the amplifier. The FSB1500NSB sensor has a range of measuring force 

between 0 to 15N. Since this is not a significant range for measuring changes in force readings, I 

amplified this range. I used a INA2322 CMOS TI Instrumentation Amplifier with two resistors of 

values, R1=27kΩ and R2=87kΩ, to amplify the numerical value of the force sensor. The amplifier 

circuit is shown in Figure 7. Using this combination of resistors yield in a 21.2 gain factor. This is 

done to provide higher-density and more precise analysis to the physician about changes in force 

readings. Ultimately, the maximum value which can be recorded with the modified force sensor is 

1048. Given that the maximum value the force sensor can output is 15N, using the resistors and 

amplifier yields in an amplification of 70.  
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Fig. 7 TI amplifier circuit 

 

After completion of the PCB design for the sensor, the housing for the PCB was desined using a 

3D model. Figure 8 shows the sensor housing design. This force sensor housing is designed for 

Honeywell FSS Low profile force sensor, and the housing itself can handle more than 5 N force. 

The housing should be thin enough to not cause any discomfort to the patient, and also sturdy 

enough to withstand the abnormal impact.  

 

 

Fig. 8 Sensor Housing Design in a 3D model 

 



 12 

 

2.3 Motion Sensor and Real-time Clock Implementation 

 

To capture the patient’s activities, I decided to use a MPU-6050 motion sensor from InvenSens. 

The MPU-6050 consists of a 3-axis gyroscope, 3-axis accelerometer, and a Digital Motion 

Processor. With its dedicated I2C sensor bus, it directly accepts inputs from an external 3-axis 

compass to provide a complete 9-axis fusion output. The accelerometer provides data associated 

with the speed and acceleration of a patient’s movement. While the gyroscope provides data 

regarding the orientation of the brace. The x-axis readings of the accelerometer indicate upward 

movement of the patient. The y-axis and z-axis readings give sideways and forward movement of 

the patient respectively. 

 
Fig. 9 MPU-6050 Motion Sensor 

 

While collecting data, it is vital to ensure that the data can be used to initially train the model. To 

do so, training data was extracted from the dataset. In order to capture data in real-time, I 

introduced the concept of generating time-stamps in my dataset. To do so, I used a DS1307 RTC 

from Adafruit. The RTC also uses an I2C communication channel, similar to the motion sensor. It 

provides seconds, minutes, hours, day, date, month, and year information. The end of the month 

date is automatically adjusted for months with fewer than 31 days, including corrections for leap 

year. The clock operates in the 12-hour format with the AM/PM indicator. The DS1307 has a built-

in power-sense circuit that detects power failures and automatically switches to the backup supply. 

Fig. 10 shows the RTC used in my design.  
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Fig. 10 DS1307 RTC used for generating time-stamps 
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CHAPTER III: EXPERIMENTS AND DATA ACQUISITION 

 

3.1 Data collection 

 

Data acquisition is a key component to the success and precision of this project. All data collection 

relates to the data being collected from the TLSO worn by the subjects. Force and motion data is 

collected and analyzed. In order to process the data, and make meaningful conclusions based off 

the results, it is vital to ensure that data acquisition is carried out properly and effectively. In this 

study, I collected data in two different experimental scenarios: 1) In-lab testing and 2) Patient 

testing. 

 

3.2 Experimental Scenarios 

 

The in-lab subject and actual patient were asked to perform the pre-defined activities: LIE, SIT, 

SND, WLK, RUN and STR for a duration of 2 minutes each. This data was used to train the model 

for activity detection. The patient was required to wear the brace for 23 hours a day, as prescribed 

by the orthotist. During this time, data was continuously recorded on a secure, digital SD card. The 

patient noted down the timings of specific activities they performed each day in a logbook provided 

to them. This helped me make a connection of the data collected to the activities performed by the 

patient for evaluation purposes. I designed a novel priori decision tree to automatically annotate 

the training data. I specifically employed a decision tree for this purpose in order to benefit from 

interpretability of the resulting model (i.e. rule-base) and use it for high level knowledge 

acquisition. This allows me to detect different activities using the trained classifier/model.
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3.2.1 In-lab Testing 

 

This first test was a controlled/supervised in-lab experiment. In this experiment, the subject was 

asked to perform six different activities (standing, sitting, lying down, walking, running and 

climbing the stairs) for duration of 2 minutes each. The test was repeated for 4 different levels of 

tightness. This allows me to investigate whether there is some similarity in the data patterns from 

which I can establish a certain trend. For each level, the subject performed the activities performed 

lasting 2 minutes each. In total, there were 24 tests conducted with 48 minutes of test data that was 

collected for the patient. Figure 11 illustrates 4 lines on the strap associated with the 4 levels of 

strap tightness named L1, L2, L3 and L4. The tightest level (L4) was the reference brace tightness 

level as fitted by the orthotist for the respective subject. The tightness levels have been defined by 

the orthotist. The remaining markers, L1-L3, are selected to demonstrate several levels of looseness 

that might degrade the effectiveness of the brace treatment. With the above-mentioned setup, I 

aimed to evaluate the ability of the compliance monitoring system to distinguish the appropriate 

tightness from several levels of looseness in the lab environment as a proof of concept. For our data 

acquisition, I set 2 minute sessions for each activity performed at each level of tightness. I started 

with L1 and collected 2 minutes of LIE, SIT, SND, WLK, RUN, and STR. Subsequently, these 

activities were repeated for all other levels of tightness. I collected 4800 samples per data channel 

during each session (sampling rate of 40 Hz). 

 

Fig. 11 4 lines on the strap associated with the 4 levels 
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3.2.2 Patient Testing 

 

I evaluated the monitoring system on a volunteer patient who participated in experiments to 

conduct 26 days of semi-supervised and unsupervised data collection. The patient was a 12-year-

old female who was receiving treatment at the University of Michigan Health System. She was 

asked to write a log of certain activities they performed during the day. Similar to the in-lab testing, 

the patient was also asked to perform the six activities of: LIE, SIT, SND, WLK, RUN, and STR. 

This is considered as semi-supervised data. The patient recorded semi-supervised data for 6 days. 

After the initial period of 13 days, the patient continued to wear the brace for another 13 days. A 

total of 26 days of unsupervised data was collected. I utilized markers and ground truths to examine 

the system in the experimental setup towards automatic detection of the brace wear compliance in 

unsupervised situations. Time and frequency analysis of the observations demonstrated promising 

results in terms of accuracy and reliability of the proposed embedded sensor-based monitoring 

system.
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CHAPTER IV: SENSOR-BASED AUTOMATED MONITORING SYSTEM 

 

To reach the quality measurement with minimum detection error, I employed a two-stage activity 

brace force monitoring design. In the first stage, I segmented the data to monitor compliance, based 

off the force sensor readings. In the second stage, I identified the current subject activity from 6 

pre-defined classes of activities including LIE, SIT, SND, WLK, RUN and STR. This is considered 

as activity-specific monitoring. Activity-specific refers to the concept of identifying the activity 

being performed by the patient at any given time.  

 

4.1 Signal Processing and Filtering 

 

For processing data in such an application, filter design is vital. For the first step, I filtered the data 

received from the motion sensor, which is sampled at 40 Hz, by the means of a 5 Hz Low-Pass 

Filter. This initial filtering process removes common noise and artifacts from the motion data 

recorded from each axis. The data collected from the sensor board via Bluetooth or an SD card is 

fed to the feature extraction module. The priori decision tree uses the features to annotate the semi-

supervised data automatically. The annotated data containing class labels is used to create the 

predictive model. 

The data analysis phase contains two aspects: 1) Determining compliance of brace treatment using 

segmentation, and 2) Activity Detection and Classification. Duration of the brace wear is one of the 

major factors that impacts the treatment of patients with scoliosis. Compliance is important to 

physicians and patients as it provides important information about the patient's ability to wear the 

brace. If the patient has difficulties in wearing the brace, physicians can develop strategies to help 

increase the compliance. 
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4.2 Compliance Monitoring Algorithms 

 

This is measured by segmentation of the data from force sensor to evaluate the total number of 

hours the brace was worn. Segmentation of data correlates to distinguishing the data from when 

the brace was worn, versus when it was not worn. In this paper, I designed a method to segment 

the force sensor data to estimate the duration of brace wear. The segmentation process allows in-

brace data to help train the predictive mode. The force sensor data is divided into windows of 4 

seconds with a window increment of 1 second. In the segmentation by mean process, the average 

force inside the brace is calculated for each window. I divided the patient data into rectangular 

windows of 4 seconds each, assuming that the signal is stationary in that window. The breathing 

pattern of the patient, which is captured from the force sensor, is quasi periodic, with peaks which 

are about 1.5 seconds apart. By choosing a smaller window size of 1 second, it is not possible to 

extract the frequency content of the signal. A larger window may contain more than two different 

activities of the patient and will not generate accurate results. An optimal window size of 4 seconds 

is chosen for the purposes of analysis.  

 

 
 
 

 

 

 

 

 

Fig. 12 Data segmentation by mean for complaince montioring 

 

Ultimately, to calculate the total hours of brace wear, the following formula is used, and computed 

using a MATLAB script: 
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Duration of brace wear =
Number of samples

Sampling Frequecny 
 

 

4.3 Activity Detection System Design 

 

The data analysis process for activity detection is as follows: 1) Feature Extraction:  after 

segmentation, the in-brace data is passed to the feature extraction block. The acceleration is along 

a specific axis for some of the day-to-day activities of the patient. For instance, when the patient 

climbs up or down the stairs, the direction of acceleration lies mainly on the x-axis. When the 

patient walks, the acceleration along z-axis is dominant. These properties and values can help 

distinguish between the two activities. For stationary activities like sitting, standing or lying down, 

orientation of the brace or the angle of rotation of y-axis (pitch), can be used as a discriminative 

feature. The number of footsteps in a 10-second window is another discriminative feature that I 

employed in this work. To improve the identification accuracy of the predictive model, I used three 

features: Resultant x-axis acceleration, the pitch, and number of footsteps in a 10-second window. 

These features are used to train the predictive model. Figure 13 depicts the data modeling process. 

 
 

Fig. 13 Signal processing & Modeling process 
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2) Detection of Footsteps: the number of footsteps is a discriminative feature used to differentiate 

stationary from non-stationary activities. Sitting, standing and lying show no footsteps, as they are 

stationary activities. The number of footsteps is also used to differentiate walking from running.  

3) FFT Analysis: FFT analysis was carried out to help distinguish between different activities such 

as running and walking. The frequency peak for running is achieved at approximately 1.5Hz, 

equivalent to 2 steps/sec. The frequency peak for walking is 1Hz, while the frequency peak for 

sitting was between 0.5Hz to 1Hz. This analysis helped further establish our decision tree to detect 

and distinguish activities.  4) Automatic Annotation using Priori Decision tree. After the number 

of footsteps is detected and the FFT analysis is carried out, I can automatically annotate the semi-

supervised data using a priori decision tree. The decision tree is depicted in Figure 14. In the 

decision tree, I used four features: 1) Number of footsteps in a 10-second window, 2) Peak of the 

FFT in a 10-second window, 3) X-axis acceleration and 4) Orientation of the brace which is 

measured by the angle of rotation of y-axis (normalized pitch). 5) Classification: This can be 

depicted in Figure 13. I used 10-fold cross-validation and employ a fine KNN classifier with 

different values of K. I also use a complex decision tree classifier, and a SVM classifier with a 

Gaussian Kernel for activity identification.  
 

 
 

Fig. 14 Context prediction model and features 
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Furthermore, I used the following equations to compute the following features: 

 

• Resultant Acceleration: 

 

 
 

• Resultant gyroscope values: 

 

 
 

• Pitch:  

 
 

4.4 Experimental Results 

 

In this work, I implemented a multi-modal sensor monitoring solution including a custom designed 

multi-sensor board and a data processing algorithm suite with a two-stage classification design to 

accurately detect the quality of brace wear. I incorporated inertial motion sensing capability that 

can capture valuable patient activity and motion information for activity segmentation. Then, 

multiple force sensor data is recorded and analyzed for activity specific to brace quality detection 

with almost a 100% accuracy. The experimental results are shown below for the in-lab testing, as 

well as the patient’s test data. 
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4.4.1 In-lab Results 

 

The in-lab experiment is designed based on 4 in-lab data collection sessions from a 21-year-old 

male using a custom designed back brace designed for him. This protocol consists of the 6 activities: 

LIE, SIT, SND, WLK, RUN and STR, which are performed for 4 different days conducted in a 

semi-controlled setting. An analysis was performed to investigate whether data can be distinguished 

into 4 different levels. Figure 15 shows the separation between tightness levels after refining the 

data from artifacts and normalizing the data. Ultimately, a comparison was done to understand the 

force levels associated with each level. These results are depicted in Figure 16. 

 

 

Fig. 15 Data classification for the 4 different levels 
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Fig. 16 Six different activities performed over 4 days on different levels 
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4.4.2 Patient Results 

 

After collecting semi-supervised and unsupervised data from the patient, an anlayis was done on 

both experimental scenarios. Table I. shows force and compliance percentages. Compliance 

percentage represents how well the patient is complying to the duration for which they wear the 

brace, as prescribed by the physician. It was observed that initially, after the first 4 days, the patient 

begins to become accustomed to the brace. On day 1, they wear the brace for 2 hours. It was also 

observed that there was a gradual reduction in the force exerted by the brace, which indicates that 

the brace was getting looser, which could be due to the patients wearing TLSO loosely or due to 

patient's curvature reducing while wearing the TLSO. This information is important to the physician 

as a loose brace may not be able to adequately control the spinal curvature. Figure 17 depicts a 

relation between the number of hours of brace wear and the force exerted by the brace. The remote 

sensor system was able to detect 1) Compliance of brace treatment by evaluating the duration of 

brace wear by the process of segmentation and, 2) The quality of brace-fit by estimating the duration 

of the activities as performed daily by the patient. 

 

 
 

Fig. 17 Relationship between Force and Compliance of brace wear 
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TABLE I. 
. 

Days Force on 
brace 

Compliance 
% 

1 469.8 7.91 
2 459.1 14.1 
3 444.5 18.3 
4 445.1 19.5 
5 420.4 19.5 
6 393.1 25.6 
7 428.9 16.2 
8 443.4 39.4 
9 373.2 86.5 
10 344.8 56.2 
11 356.1 58.6 
12 381.5 80.4 
13 357.1 84.7 

 

Force and Compliance Percentages 

 

I achieved an overall accuracy of activity recognition of a 100%. Patients were instructed to wear 

the brace for 2 hours a day initially, gradually increasing to 23 hours a day. This was proven by the 

analysis, as compliance was observed to increase from 20% to 80% after 4 weeks. Naturally, the 

brace is tightest when the patient begins treatment. As they continue wearing the brace daily, they 

start to “break-in”, making the brace more comfortable to wear. The results support this theory. A 

comparison was made with the accuracy of activity identification in this study with the previous 

research work, as shown in Table II. This methodology and analysis is the most accurate to date.  

TABLE II. 
 
 

 

 

 

 

Comparison of Accuracies of Activity Identification in previous research work

Activities Ernes et. al  
(Ermes et 
al., 2008) 

Pereira et. 
al (Périé et 
al., 2003) 

Morton et 
al. (Morton 
et al., 2008) 

My 
methodology 

Sitting 97% 90% 96% 99% 
Standing 90% 91% 87% 80% 
Walking 71% 87% 94% 99% 
Climbing - 80% 61% 99% 

Lying 98% 89% - 100% 
Running 91% 88% 98% 100% 

Total 89% 83% 92% 100% 
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