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Abstract 

Due to the high occupancy volume of smartphones in mode society, more and more developers 

join the smartphone app market and develop various mobile applications that could benefit out life 

in many ways. However, smartphone apps are often blamed for insecurities due to smartphone 

technologies as well as inexperienced app developers.  

In this thesis work, we study smartphone app security vulnerabilities due to either improper 

implementations or improper use of smartphone technologies. More specifically, we study 

potential security vulnerabilities in three categories of apps: apps which use the secure socket 

layer(SSL) protocol for secure communication, apps which use the WebView technology, and 

apps which are HTML5-based. For each category of apps, we analyze the underlying technologies 

to show the cause of vulnerabilities, and develop instruction materials for each of the three 

validation attacks we have implemented and turn them into security teaching labs. These security 

teaching labs aim to help students to understand the theoretical attack concepts in and accurate and 

understandable way and cultivate the hacking mindset. 
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Chapter 1 Introduction 

Nowadays smart phones play crucial roles in modern society where over a third of the world’s 

population is projected to own a smartphone by 2018[31]. Not only do the smartphone users 

extensively rely on the fundamental functions of their phones, but also, they download vast 

quantities of mobile applications to make their daily life more efficient and enjoyable. According 

to the May 2017 IDC Quarterly Mobile Phone Tracker [32] report about Smartphone OS Market 

Share in 2017 Q1, Android and iOS are the most popular operating systems for smart phones, 

capturing 99.7% worldwide smartphone volume, where more than 85% new shipped devices pre-

installed with Android. Based on the above background, the growing numbers of people begin to 

pay attention to this huge volume market and be aware that both platforms should be secured. 

However, vulnerable applications running on these platforms are making smart phones unsecure. 

This insecurity is largely caused by the 1) relatively open and unrestricted software development 

markets that allow anyone be a mobile software developer who may lack sense of security or 

ignore the security vulnerabilities in the mobile development technology; 2) lacking clear mobile 

security standards on mobile development technologies.  

Security issues in Android are always a big concern [33], especially for secure communication 

and the application security. To provide secure communication between an application and the app 

server, SSL technology is utilized to protect data through encryption, digital certificate, and other 

related technologies. However, a number of previous work demonstrate multiple security 

vulnerabilities due to improper SSL implementation. The work of [2] shows a number of SSL 

implementation vulnerabilities in None-Browser software, such as Amazon’s EC2 Java library and 

ZenCart, etc. Although it does not specifically focus on the Android platform, it suggests similar 

issues may exist in the mobile platforms. The work of [3] focuses on SSL implementation 

vulnerabilities on the Android applications. In order to break the limitation of native app, 

developers tend to use WebView, middleware and web technologies to develop applications. 

However, the inappropriate usage of WebView is still a major cause for application security [4][5]. 

New security vulnerabilities are also found in HTML-5 based apps [6][7]. The work of [4][5] 
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illustrates several potential attacks on WebView and explains the reasons for those attacks 

(fortunately there are no real attacks found in the Android application market yet). The work of 

[6][7] states systematic studies on the security risks in HTML5-based mobile apps, and the authors 

claim a new form of code injection attack for HTML5-based apps. 

All the research mentioned above contributes to the Android security fields significantly. 

However, there is an issue that these research works might be too complicated to be understood 

by most students. Especially, students who do not have the related background must take much 

time and effort to absorb the complex information. Also, those research papers cannot provide 

enough guidance for students, to implement and validate the attacks. It is reasonable that those 

excellent research results should be disseminated into students’ fundamental education in 

cybersecurity filed. 

In this thesis work, the main contributions of this thesis are three attack experiments. Those 

experiments designed to explore security vulnerabilities in three common technologies — SSL, 

WebView and HTML5-based application. These experiments along with instructions are used to 

help students learn smartphone application security concepts quickly, comprehensively and 

precisely, understand the security vulnerabilities in three common technologies, as well as educate 

them to acquaint security concerns and security vulnerabilities in practical applications through 

hands-on labs. These specially designed experiments are also expected to help those future 

developers equipped with sense of security and technology to deal with more tough problems. We 

implement these validation experiments for each category on the smartphone and on virtual 

machines, and we explain these three validation experiments step by step in Appendices section. 

In Section 2, a systematic analysis of SSL implementation vulnerability is provided. In normal 

situation, communication between the applications and servers is secure once SSL is applied. 

However, previous research has shown that a significant number of apps lacks the proper 

implementation of the SSL protocol, mostly due to the flawed public key certificate validation 

procedure [2][3]. 

The WebView attack is instructed in Section 3. As an “embedded browser” for applications, 

WebView helps the mobile applications to gain more flexible and user-friendly functions, in the 
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meantime, weakens the Web’s security infrastructure on the Trusted Computing Base (TCB) at 

the client side, and the sandbox protection on the browser side. Consequently, many attacks could 

be launched by attacking WebView [4][5].  

Security vulnerabilities in HTML5-based mobile applications is discussed in Section 4. 

HTML5-based mobile applications, by using middleware (such as, PhoneGap), take the portability 

advantage to obtain the convenience on cross-platform development conditions. However, there is 

a dangerous feature which allows data and code to be mixed together in HTML5-based 

applications [6][7]. 

In this thesis work, we study smartphone app security vulnerabilities from three categories 

caused by improper implementations or improper smartphone technologies utilization. Three 

categories of apps are apps using the secure socket layer(SSL) protocol for secure communication, 

apps using the WebView technology, and HTML5-based apps. We analyze the underlying 

technologies to show the cause of vulnerabilities, and develop three validation attacks instruction 

materials that we have implemented and turned them into security teaching labs. These security 

teaching labs aim to help students to understand the theoretical attack concepts in and accurate and 

understandable way and cultivate the hacking mindset. 
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Chapter 2 SSL Implementation Vulnerability 

2.1 Overview 

Secure Socket Layer (SSL) is developed by Netscape Communications originally as an 

accepted standard for Web security. It allows secure access of a website from a client browser in 

a secure way. It provides data confidentiality, message integrity, and user authentication through 

the use of basic cryptographic elements such as encryption, digital signatures, and certificates.  

The servicer of a smart phone app is mainly about communication with outside servers. As a 

standard for Web security, SSL is necessary to apply on Android apps. By the utilization of SSL 

Android platform provides a security interaction to connect with server. However, if developers 

use SSL in an incorrect or improper way, the app applied SSL may be subject to the Man-in-the-

Middle (MITM) attack caused by trusting all certificates, allowing all hostnames, trusting many 

CAs and mixed-mode or no SSL [3].  

This section focuses on SSL implementation vulnerability on Android platform, and it is 

composed of two parts: background and validation experiment. In 2.1, we provide a background 

of SSL and other related concepts. In 2.2, we conduct a validation experiment that is designed to 

explore SSL implementation vulnerability. More specifically, we build a lab experiment model, 

which run in two different environments: on a smartphone or on a smartphone emulator. The 

advantage of using an emulator instead of a real phone is reducing the budget and limitation of 

setting up the experiment environment. In this lab, we utilize a Man-in-the-Middle attack (MITM) 

proxy server to test the attack process. The conversation data between user and server are 

collectable and analyzable during this attack. This lab aims to help students have a better 

understanding of SSL implementation vulnerability. At the same time, it helps students to improve 

their self-learning and independent thinking ability and acquire the critical thinking ability for their 

future study.  



5 

 

2.2 Background 

2.2.1 Android and Secure Socket Layer 

Android is the name of the mobile operating system owned by American company-Google. As 

a mobile operating system, Android is based on the Linux kernel and designed primarily for 

touchscreen mobile devices such as smartphones and tablets. Android help users to look for 

information on the web, watch videos, send emails and navigate by using the smartphone or other 

smart devices. As a highly customizable operating system, Android could be customized to suit 

customer’s needs. For example, various kinds of applications are downloaded and installed on 

smartphone to help and improve users’ daily life. The users manage their bank account, social 

media account, payment and address account through mobile applications. As a user-friendly and 

powerful mobile operating system, Android plays a critical role in the mobile market. According 

to a research form IDC (Figure 2-1), Android is the most popular mobile platform in contemporary 

smartphone OS market. Because of the Android’s high proportion in mobile operating system 

market, the number of Android applications is huge comparing with other mobile platforms.  

Google Play market also provides a more freedom and open situation than Apple’s Apple Store.  

Since the Google Play market provides developers and customers a flexible atmosphere, the 

potential risks become more dangerous. 
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Figure 1 2016-2017 Worldwide Smartphone OS Market Sharing from IDC [32] 

SSL or TLS (Transport Layer Security) is a common building block for encrypted 

communications between clients and servers. TLS is an updated, more secure version of SSL. 

Generally, both of them are referred to SSL because it is a more commonly used term.  SSL is the 

de facto standard for secure communication. SSL protocol is an optional choice for the 

development of app. For security propose, Android applications take advantage of SSL for secure 

communication. Especially, the protection of sensitive data is very critical for some special mobile 

applications, including financial or banking app, email service app, and shopping app, etc.  SSL 

helps client and server to establish a security “tunnel” through the unsecure network. Namely, SSL 

protects the communication from tampering and eavesdropping.  

To setting up a secure connection between user and server, SSL offers an identification process 

called handshake shown as Figure 2-2. When the client and the server both agree to start 

communicating by using SSL, a SSL handshake occurs. The first step is that SSL client sends a 

requests message to SSL server; the second step is that SSL server sends back to SSL client a 

response with server’s certificate; then the client verifies the server’s certificate; the forth step is 

that server send “cipher” to the client. If the handshake process successfully, a safe communication 

channel is established. The SSL handshake process includes various parameters which are needed 

to be verified on both sides. That is, after SSL handshake, the client and the server both identify 

each other and confirm the encryption algorithm and several parameters. In common scenario, SSL 

protocols include a handshake with an asymmetric cipher to establish cipher settings and a shared 

key for a session. For the rest of the communication parts, a symmetric cipher and the session key 
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will be used for encryption. It is should be pointed out that SSL operates over some reliable 

transport layer. That means SSL is placed as application layer protocols in the TCP/IP reference 

model and as presentation layer protocols in the OSI model. To clarify the SSL implementation 

vulnerability, cryptographic encryption, digital signatures and certificates, as three important 

components of SSL, are discussed in the following. 

 

Figure 2 SSL Handshake [2] 

 

Cryptographic encryption 

Cryptography encryption is a critical part in SSL. This process guarantees that information can 

only be read after decrypting. Namely, the encoding messages or information could only be read 

by the authorized party who has the decryption key of the encryption method. Encryption prevent 

interception and decoding by an attacker. Generally, unauthorized users are excluded easily by 

encryption, because they do not have the required decryption keys. Usually, encryption is 

categorized to two types: symmetric key encryption or asymmetric key encryption. In symmetric 

key encryption schemes, both the encryption and decryption process use the same key. Thus, the 
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two communication parties (for example, the client and the server) must have the same key before 

they can send each other information in a secure way. In SSL, the symmetric key encryption is 

used to encrypt data after the handshake process. Asymmetric key encryption is also called public 

key encryption. In this kind of encryption, the encryption key is published for anyone to encrypt 

messages. It is the reason why this encryption key is called as public key. By using public key 

encryption, the decryption key is only accessed by the authenticated user who can decrypt the 

message. Thus, the decryption key is also called as private key. In SSL, public key encryption is 

used in the handshake process. 

Digital signatures 

A digital signature is a mathematical scheme for demonstrating the authenticity of a digital 

message or documents. A valid digital signature gives a recipient reason to believe that the message 

was created by the known sender. Since the sender cannot deny having sent the message which is 

not able to alter in transit process, authentication, non-repudiation and integrity are guaranteed. 

Therefore, digital signature is a standard element of cryptographic protocol suites and is commonly 

used for cases where it is important to detect forgery or tampering, such as software distribution, 

financial transactions, contract management software, etc.  

Digital signatures are based on public key cryptography which is able to generate two keys, 

such as RSA. They are mathematically linked: one private and one public. As shown in Figure 2-

3, to create a digital signature, signing software creates a one-way hash of the electronic data to be 

signed. The private key is used to encrypt the hash. The encrypted hash along with other 

information, such as the hashing algorithm, is the digital signature. The reason for encrypting the 

hash instead of the entire message or document is that a hash function converts an arbitrary input 

into a fixed length value, which is usually much shorter. The value of the hash is unique to the 

hashed data. Any change in the data, even changing or deleting a single character, results in a 

different value. When others use the signer’s public key to decrypt the hash, the data integrity is 

validated.  

https://en.wikipedia.org/wiki/Cryptographic_protocol
https://en.wikipedia.org/wiki/Contract_management_software
http://searchsecurity.techtarget.com/definition/private-key
http://searchsqlserver.techtarget.com/definition/hashing
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Figure 3 Generation/Verification of Digital Signature 

Certificates 

A digital certificate is an electronic document that helps entities to exchange information 

securely over the Internet by using the public key infrastructure. A digital certificate may also be 

referred to as a public key certificate. In general, the digital certificate contains two main 

components: a form of ID; and a public encryption key. The ID part is comparable to a passport 

or driver’s license. The public encryption key guarantees the encrypted data can only be decrypted 

by the owner of the certificate. That is, the digital certificate serves two purposes: identify the 

entity’s identity and secure the communications. A scheme in digital certificate system supports 

that one certificate can be used to sign other certificates. For example, there is an entity who is 

trustworthy. Therefore, any other certificates signed by this entity are also trustworthy. In this 

situation, this trusted entity is referred as a “certificate authority” (CA) which is a trusted third-

party organization or a trusted certificate authority.  CA issues the digital certificate that provides 

identifying information is forgery-resistant and can be verified because CA is a trusted authority. 

CA is also responsible for management digital certificate that contains the name of the certificate 

holder, a serial number, expiration dates, and a copy of the certificate holder's public key and the 

digital signature of the certificate-issuing authority. The recipient can use all the information listed 

above to check the certificate’s validity.  In SSL handshake process, clients need to identify 

server’s CA, signature information.  

http://searchsecurity.techtarget.com/definition/public-key
http://searchsecurity.techtarget.com/definition/public-key-certificate
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The implementation of SSL in Android is not complicated. However, according to an analysis 

from Sascha Fahl [3], 13,500 popular free apps downloaded from Google’s Play Market are 

vulnerable to Man-in-the-Middle (MITM) attack. The primary reason for those apps’ vulnerability 

is the improper implementation of SSL. Since the developers’ background are various, the 

incorrect implementation of the SSL/TLS protocol led to SSL implementation vulnerabilities. 

There are some misuse cases [3] can break the secure SSL channel and cause the SSL 

implementation vulnerabilities. They are 1) Trusting all certificates. By the misusing of 

TrustManager interface is easily implemented to accept and trust all certificates. 2) Allowing all 

hostname. The checks of certificate hostname are missing or skipping in some situation. 3) 

Trusting many or unknown Cas. Even this is not a real flaw, but it may bring poetical risk for SSL 

process 4) Mixed-mode or no SSL. Some apps are developed to working for both secure and 

insecure connection. This mixture mode is convenient for attacker to execute attacks based on SSL 

implementation. In the experiment implementation validation part, we conduct one of the SSL 

implementation vulnerability attacks. 

2.2.2 HTTP and HTTPS 

The Hypertext Transfer Protocol (HTTP) is the foundation of data communication for World 

Wide Web. The original design of HTTP is aiming to provide a method to send and receive HTML 

pages. In contemporary information society, HTTP is the most used communications protocol. In 

client-server model with HTTP, a client sends a HTTP request to a server’s port which is assigned 

by using a web tools, such as web browser. Then, the server responses to the client with several 

resources, such as HTML files or images.  

By adding the SSL technology to HTTP, a “secure” version of HTTP is created. That called 

Hypertext Transfer Protocol Secure (HTTPS, also called HTTP over TLS, HTTP over SSL, and 

HTTP Secure) provides the encrypted and secure connection channel between the server and the 

client. Figure 2-4 shows the structures of HTTP and HTTPS. HTTPS is a protocol which provides 

secure communication over the untrusted network situation. The main intentions of this protocol 

are: authentication of the visited website; protection of the integrity and the privacy of the 

exchanged data. In the HTTPS communication, HTTPS takes advantage of HTTP to communicate 
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and SSL to encrypt data exchanged between the client and server. The digital certificate signed by 

trusted third-party CA is used in HTTPS. Once the server’s certificate is verified and trusted, the 

secure communication between the client and the server is established. HTTPS protects the 

connection from Man-in-the-Middle attack and eavesdropping attack. 

 

Figure 4 HTTP vs HTTPS 

One the one hand, HTTPS is almost identical to HTTP, because HTTPS follows the same basic 

protocol. The HTTP and HTTPS clients, such as a browser, could establish a connection to the 

server on a standard port. And when a server receives a request, it returns status and message which 

contain the requested information or error information if there is an unexpected problem occurred. 

In addition, because both HTTP and HTTPS use Uniform Resource Identifier (URI) scheme, the 

resources information can be identified universally. For security propose, HTTPS is used for an 

encrypted connection in a URI scheme rather than HTTP. One the other hand, the primary 

differences between HTTP and HTTPS are distinct. HTTPS is a protocol which encrypts the data 

between client and the server. Therefore, the data could only be read by authorized entity. In the 

other word, the information cannot be accessed by any other third parties except the client and the 

server. However, all information is plain text in HTTP. That is, any other entities or third party are 

able to access the data in the client and the server conversation. It is a dangerous feature for 

sensitive content. That is the reason why HTTPS protocol are chosen to protect applications’ 

communication security.  
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2.2.3 Man-in-the-Middle Attack 

A man-in-the-middle (MITM) attack is a form of eavesdropping where communication 

between the server and client in monitored and may modified by an unauthorized party. The MITM 

attacker is in a position to intercept messages sent between communication entities. There are two 

types of MITM attacks: passive MITM attack; active MITM attack. In the passive MITM mode, 

the only thing attackers can do is eavesdropping the compunction information. In the active MITM 

attack, attackers are able to eavesdrop and modify the communication. MITM attacks cause serious 

threats because they allow the attackers to have the ability to capture or tamper sensitive 

information in real-time. Generally, the attacker actively eavesdrops by intercepting a public key 

message exchange and retransmits the message while replacing the requested key with his own. 

For two original users, they have no opportunity to recognize their connection under attack or not, 

they just send and receive the messages which may be modified by attackers as shown in Figure 

2-6. And Figure 2-5 describes a whole communication that is total controlled by the attacker. Since 

mobile devices are usually used in changing and untrusted environments, MITM attack against 

mobile devices are easier to execute comparing with the tradition devices, including laptop or 

desktop. In our following validation experiments, we choose the active MITM attack for the 

experiment part. The MITM attackers have the capability to eavesdrop and generate a fraud 

certificate signed by themselves to execute this attack. 

 

Figure 5 Man-in-the-middle Attack 
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Figure 6 Man-in-the-middle Attack-2 

2.3  Validation Experiment Design 

2.3.1 Motivation 

SSL is a standard for secure Internet communications. However, SSL certificate validation has 

been shown completely broken in many security-applications and libraries. Flawed certificate 

validation renders this software vulnerable to man-in-the-middle attack. In the smartphone 

application market, applications applied SSL are suspected to be flawed in certificate validation, 

because those applications’ developers have various level of security knowledge and the there is 

no clear standard guidance for the usage of this technology. For education propose, this lab aim to 

help students have hands-on experience on the Android SSL vulnerability caused by improper 

usage of SSL. In addition, this lab experiment can not only help students to learn the contents of 

SSL vulnerability but also inspire them use the knowledge to real project. In this experiment, we 

expect students conduct a serial of experiments to find flawed apps and analyze the causes. We 

list the example apps that is subject to MITM attack in experiment example result part. This 

experiment can also help students who learn from a lecture or by themselves understand the SSL 

implementation vulnerability. Furthermore, students can have a better understanding on SSL 

implementation vulnerability attack by doing this experiment. There are three design objectives: 

1) Enhancing the basic principles and concepts through learning the process, such as what is the 

SSL implementation vulnerability, methods to launch MITM attack, etc.; 2) Helping students to 
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gain first-hand experience of SSL implementation vulnerability by putting what they have learned 

about the vulnerability from class into real attack; 3) Inspiring students to explore more SSL 

security problems by guiding them implement this lab experiment step-by-step.  

2.3.2 Lab Design 

The lab design is establishing a MITM attack model and executing this attack. Three elements 

are involved: the client; the server; and the proxy. Since the server is the remote server identified 

by the victim client, we only need to modify the client and proxy side.  Figure 2-7 shows the 

architecture of this lab. The proxy executes the attack as an attacker. And CN means common 

name or hostname, SAN means subject alternative name. SAN filed in a certificate is optional that 

allows an arbitrary number of alternative domains to be specified. If the attacker extract both CN 

and SAN, the attacker is capable to generate a fake certificate. SNI means server name indication 

which allows the client specify the server’ name at the beginning of SSL handshake. When a 

MITM attack launched, a normal SSL handshake changes to the following process: 1) The victim 

client sends a connection request to mitmproxy by using HTTP; 2) mitmproxy sends back a “200 

Connection Established” response; 3) The client trusts the proxy as the remote server and initiates 

the SSL connection with SNI; 4) The proxy sets up a connection between the server by using the 

client’s SNI; 5)The server responses with the corresponding certificate containing CN and SAN 

information; 6) MITM generates a fraud certificate and sends back to client; 7) The attacker 

initiates the MITM attack successfully. The client communicates with the attack over the 

established SSL connection. In this experiment, the server is the mobile app’s server that is no 

need to modify.  
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Figure 7 Lab Architecture 

2.3.3 Tools for the Experiment 

2.3.3.1 Client Side 

In this lab, the client side could work on a real mobile device or a virtual machine. Both can 

provide the same result. The Android virtual machine option reduces the device limitation for this 

experiment and provides more flexibility for the students. Table 2-1 illustrates the detail version 

information of Android device and android virtual machine. 

2.3.3.2 Proxy server 

In MITM attack, the attacker inserts in the communication between the client and the server. 

To setting up a proxy as a MITM attacker, mitmproxy is chosen for this lab. mitmproxy is an open 

source proxy software which developed by Python and C.  As a man-in-the-middle proxy, 

mitmproxy allows user to intercept HTTP and HTTPS traffic - the latter by forging SSL 

certificates. It also can be used to intercept, modify, replay and save HTTP/HTTPS connection. 

This is incredibly useful for debugging pywPikibot network issues, especially because tools such 



16 

 

as ethereal are incapable of sniffing the HTTPS traffic. In addition, mitmproxy allows tampering 

with the traffic, allowing user to fake network errors. 

PROXY 

Mode Virtual Box Machine 

Operating system Lubuntu 

Version 16.04.3 LTS 

Network mode Bridged and wired 

Mitmproxy version 3.0.4 

ANDROID DEVICE 

Operating system Android 

Version 7.0  

Application market Google Play 

Proxy mitmproxy 

ANDROID VIRTUAL MACHINE 

Operating system Android 

Version 7.1.1 

Application market Google Play 

Proxy mitmproxy 

OTHER SOFTWARE 

Name  Wireshark  

Version  2.2.10 

Description  Traffic monitoring  

Table 2-1 Configuration of Lab Tools 

In terms of the usage and the objective, four mitmproxy’s operating modes are provided. They 

are Explicit HTTP, Explicit HTTPS, Transparent HTTP and Transparent HTTPS. According to 

the lab design and the motivation, only Explicit HTTP and Explicit HTTPS are discussed in the 

following paragraph. The reference [34] shows how to use the other modes. And the version 

information of mitmproxy is listed in Table 2-1. 

Explicit HTTP 

The process of an explicit HTTP connection is the easiest and most reliable method to 

eavesdrop the combination of MITM attacker. Because this proxy uses the same protocol as the 
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client and server, the mitmproxy is capable to insert the conversion between the client and the 

server directly. The following image shows the process of explicit HTTP. 

 

 

Figure 8 Process of Explicit HTTP 

Explicit HTTPS 

Since the HTTPS adds the security parts--Certificate Authority system, the process of an 

explicit HTTPS connection (Figure 2-7) is difficult comparing with explicit HTTP. As a Man-in-

the-Middle proxy, mitmproxy pretends to be the client to the server, pretends to be the server to 

the client. However, the basic design idea for the CA is that protect the connection from this MITM 

attack. The CA system allows a trusted third-party to cryptographically sign an SSL certificate for 

verification. When the signature from an untrusted party or do not match, the secure connection 

between client and server will be closed. However, there are still many disadvantages which will 

help MITM attack launch successfully. In this case, as a MITM attacker, mitmproxy receives the 

server’s certificate after the client’s request, then the proxy sends back its own certificate instead 

of server’s certificate. Generally, an application without SSL implementation vulnerabilities will 

reject the fake certificate and end the connection immediately. Otherwise, if an application accepts 
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the certificate from the proxy, that means the application has the SSL vulnerabilities, at the same 

time, it may leak sensitive and confidential information to the attacker.  

2.3.4 Experiment Implementation  

Experiment Setup 

• Set up the malicious proxy server 

Because mitmproxy run on Linux platforms usually, Windows operating system user is 

required to create and run a Lubuntu Linux virtual machine (VM) on VirtualBox (or other virtual 

machine tools) on Windows.  After creating a new virtual machine, change the network settings 

for this VM to Bridged Adapter (shows in Figure 2-10). Then, the installation of mitmproxy is 

done on this well-built Lubuntu platform. 

 

Figure 9 Lubuntu Platform Setting 



19 

 

In order to establish a connection between the Android and mitmproxy, the following steps are 

needed for the Android side.  Figure 2-11 shows the first step that long-pressing on connected 

network on the Wi-Fi setting section. Figure 2-12 demonstrates that next step is checking the 

“Modify network config”. Figure 2-13 presents the last step, choosing “Show advanced options”, 

then “Manual”, filling in the IP address which is the Lubuntu’s IP address in the Proxy hostname 

and 8080 for Proxy port. 

 

Figure 10 Setting up Proxy-1 

 

Figure 11 Setting up Proxy-2 
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Figure 12 Setting up Proxy-3 

 

• Set up the Android device 

Since a real smartphone or an Android emulator can work as same as each other, the Android 

device setting up process is also same. For both of method, the preparation work is installing the 

targeted test application on Android. We describe this process on Android emulator as an example. 

The Android emulator requests Eclipse (or other tools, such as Android Studio) to lunch the 

Android emulator. The Figure 2-14 shows the interface of the emulator powered by Eclipse. The 

details are provided in the Appendices section with a whole instruction for this SSL 

implementation vulnerabilities validation experiment.  
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Figure 13 Android Emulator 

Experiment Result 

The Figure 2-15 shows the example result by testing an application called Skout which is a 

popular social media application in the Android application market. According to our validation 

experiment, Skout applies SSL to get secure communication. However, Skout do not check the 

source of certificate and accept the fraud certificate signed by mitmproxy. This result shows the 

Skout application is compromised by the MITM attack. As the attacker, the mitmproxy is able to 

get the secretive customer information directly.  The red circled area presented in Figure 2-15 
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shows the login information (account name and the password). This experiment validates one of 

the SSL implementation vulnerabilities claimed in the previous research work [2][3].  

 

Figure 14 Account and Password Caught by mitmproxy
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Chapter 3 WebView Attacks  

3.1  Overview  

WebView is a system component for the mobile operating system that allows apps to display 

content from the web directly inside an application.  There are two ways to view web content on a 

device: through a traditional web browser or through an application includes WebView in the 

layout. If an application is designed to have browser functionality powered by the WebView 

library, an instance of a WebView class is created to run the browser function. After this step, a 

browser is embedded within the app.  As a browser, it supports the application for loading web 

pages and executing JavaScript, etc. Moreover, WebView allows the app to interact with web 

pages and other web apps. As a powerful technology, WebView is used for two most popular 

smartphone platforms: Android and iOS. It is should be pointed out that WebView is called 

UIWebView in iOS and WebView in Android. And they have totally same features. As [5] 

mentioned, the similar attacks and risks are achieved successfully on iOS. For simplification, we 

focus on the discussion about the Android WebView. 

This section is composed of two parts: background and validation experiment. In 3.2, we 

explain WebView’s security issues and attacks caused by vulnerabilities of WebView. In 3.3, we 

implement a validation experiment for the JavaScript injection attack. We conduct the lab 

experiment model for two different environments: smartphone or smartphone emulator. Those two 

options offer more flexibility for students.  In this lab, we develop a third-party Facebook app with 

WebView to execute the JavaScript code injection attack. During this attack, the victim’s 

Facebook account and password are collectable directly. This lab aims to help students have a 

better understanding of SSL implementation vulnerability, improve their self-learning and 

independent thinking ability, and acquire the critical thinking ability for their future study.  

3.2 Background 

http://whatis.techtarget.com/definition/component
http://searchenterpriselinux.techtarget.com/definition/Android
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3.2.1 WebView  

WebView is a component that allows applications to render web content. As a part of the 

mobile platform, WebView is able to display web pages directly inside the application as an 

“embedded browser” that shows the information written in Web technology, including HTML5, 

JavaScript and CSS. As an essential component in the mobile system, it provides a simple but 

powerful browser to mobile or tablet applications. WebView was designed to display or process 

web contents on native apps. The web-browsing functionalities are packaged into a class, and they 

can be embedded into an app. By using this class, the app can have its own web browser. Due to 

the unknown safety issue of web content from an external source, WebView has a sandbox which 

was implemented inside like a traditional browser. That is, JavaScript code inside can only run in 

an isolated environment, and JavaScript code has no permission to access the devices sensors, 

cameras, files and another system resources, etc. However, the usage of WebView weaken web’s 

security infrastructure: trusted computing base and sandbox protect. For instance, one of the 

WebView’s API – addjavascriptInterface enables web application’s JavaScript code to invoke 

Android application’s Java code; loadUrl allows Java code invoke JavaScript code. By using 

WebView, the application has the capability to interact with web content through WebView’s APIs 

in two ways: from app to web page, from web page to app. 

3.2.2 Trusted Computing Base and Sandbox Protection 

The trusted computing base (TCB) plays a critical role in a mobile system. In general, the 

trusted computing base means everything that can provide a secure environment, such as the 

operating system and security mechanism, hardware, network hardware, and software, etc. In this 

section, to simplification, we use this concept to clarify the potential risk when WebView is used 

as an embedded browser. Because the “embedded browser” is customized for mobile applications, 

those applications are able to provide more user-friendly and powerful experience than the normal 

web browser. For example, the Facebook, Twitter, Instagram and Chase Bank and so on. Thanks 

to WebView, many apps have significant advantages comparing with the web page. For instance, 

the customers of certain bank can deposit checks through a corresponding mobile application by 

taking the photos checks through mobile device’s camera. WebView provides many APIs to create 
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the bridge between the apps and the inside browser. However, the utility of WebView makes the 

TCB on the user side weak or even vulnerable. In a common situation, a typical web browser is a 

TCB for the client, such as Chrome, Firefox, Opera, etc. The reason why those browsers are TCBs 

is that they are tested comprehensively for a long time before they release, especially on the 

security side. Nevertheless, the embedded browser powered by WebView could not be concerned 

as a TCB. Because the developer may use WebView in an inappropriate or incorrect way when 

the developer has not enough time to take a security test or has incomprehensive knowledge 

background of mobile security. Therefore, TCB of the Web infrastructure weakened by WebView 

that could cause some security problems. The inappropriate utilization of WebView transform the 

interaction between web application and installed app into the interaction between web application 

and malicious browser.  

Another security issue is sandbox protection model that applied by all browsers. It mitigates 

the security vulnerabilities which caused by running unknown risky JavaScript code in browsers. 

The sandbox model contains two parts: isolating webpages from system and enhancing Same-

Origin Policy (SOP). The isolation guarantees that the web pages isolate from the system 

resources; SOP means that a web browser ensures only scripts in a first web page from same origin 

condition. That is, SOP aims to isolate one origins webpage from other origins webpages. 

However, WebView changes the security condition. For example, an API called 

addjavascriptInterface make it possible for web pages form one origin to affect other origins 

webpages. By this API, an interface become a global interface and creates holes for the sandboxes. 

Because it permits JavaScript code to access system resource by any pages loaded in the WebView. 

Above all, the app’s developer who uses WebView in an inappropriate way may case critical 

vulnerability. Attackers take advantage of WebView vulnerabilities and design many attacks. 

3.2.3 Two Type of Attacks 

The attacks caused by WebView vulnerabilities are categorized into two types. The first one 

is the attacks from malicious Web pages. This attack relies on the WebView’s mechanism that 

JavaScript codes invoke Android application’s native java code (JavaScript-to-Java interaction). 

Namely, a Java object could be registered by WebView API, and then the JavaScript code can 
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invoke all the public functions or methods in this Java object in an Android application with 

WebView. For example, the attacker launches an attack by using a malicious web page and steals 

the victims’ sensitive information in their mobile device, including contact information, SMS 

information, photos, GPS information, and files, etc. Another type of attacks is triggered by 

malicious applications. These attacks executed by invoking JavaScript from Java (Java-to-

JavaScript interaction). One of this attack’s mechanisms is supported by the loadUrl API. In 

common scenario, the apps using this feature provide a more plentiful experience than a normal 

web application. The validation experiment design for WebView attack topic aims to realize the 

second type attack in Section 3.3. It is should be pointed out that SQL injection attack, cross-site 

forgery attack, and cross-site scripting attack do not belong to either of two attacks shows in the 

figure. Because those attacks also happen in other situations. And the usage of WebView do not 

aggravate or mitigate those attacks’ conditions. Therefore, those attacks are not discussed in this 

section. 

Java-to-JavaScript Attacks 

The Figure 3-4 shows how malicious apps attack webpage. In the Java-to-JavaScript attack, 

the attacker executes the malicious native Java code to the victim webpage directly. A prerequisite 

for launching attack is that the attacker must develop or control a malicious application designed 

for a specific web application, such as Facebook, Twitter and so on. Namely, Java-to-JavaScript 

attack could only be launched when the victim users using third-party mobile applications. 

According to the statement of [4], there are a number of third-party applications for an intended 

web application, such as Facebook, Twitter and Instagram, etc. in the Android applications market. 

For instance, there is a great third-party app for Facebook called FriendCaster developed by 

Handmark. Even though there is no malicious third-party app be found in the application market 

yet, it is possible that attackers still are working on launching this type attack in the near future.   
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Figure 15 Java-to-JavaScript Attack 

JavaScript-to-Java Attacks 

The Figure 3-5 shows malicious web pages attacks Android applications. The assumption for 

this attack is that the mobile apps are designed to serve a specific web application without any 

malicious purpose. The goal of the attack is compromising the apps and their intended web 

application. Generally, the victim applications are developed from the owner of the intended web 

applications or some independent entity. Namely, the first-party apps and the third-party apps may 

under the attack from malicious web pages. The first step to realize this attack is that allure the 

victim users run the malicious web code into the applications by some methods, such as social 

networks, advertisements, contact information and so on. 
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Figure 16 JavaScript-to-Java Attack 

3.2.4 JavaScript Injection Attack 

JavaScript injection attack is a typical Java-to-JavaScript attack on WebView. Through this 

attack, the attacker injects malicious JavaScript code to any targeted web application or websites 

rendered by WebView. One of the WebView’s API—loadUrl plays an important role in JavaScript 

Injection attack. loadUrl are used to load specified URL in WebView component. The specific 

URL can be any string defined by the attacker. Since those certain URL and target website have 

the same privilege, those certain JavaScript code can access and operate the webpage’s DOM tree, 

cookies, etc. The following example code shows a JavaScript injection attack. The contents in the 

sb string are injected into WebView as JavaScript injection code. 

 

3.3 Validation Experiments Design 

3.3.1 Motivation 
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WebView is a subclass of View, and it is used to display web pages. WebView enables 

smartphone and tablet (both in Android & iOS) apps to embed a simple but powerful browser 

inside them. It allows apps to interact with the Web content through its APIs by two directions: 

from apps to web pages-invoke Java from JavaScript; from web pages to apps-invoke JavaScript 

from Java. Since WebView weakens Web’s security infrastructures, the improper usage of 

WebView by the app’s developer can cause many vulnerabilities. In order to demo and validate 

the WebView vulnerabilities, we design and develop this experiment. This experiment can also 

help students who learn from a lecture or by themselves understand the WebView vulnerability. 

Furthermore, by doing this experiment, students can have a better understanding on WebView 

attack. There are three design objectives: 1) Enhancing the basic principles and concepts through 

learning the process, such as WebView’s API that causes vulnerabilities, methods to launch attack 

from malicious apps, etc.; 2) Helping students to gain first-hand experience of WebView 

vulnerability by putting what they have learned about the vulnerability from class into real attack; 

3) Inspiring students to explore more WebView related security problems by guiding them 

implement this lab experiment step-by-step.  

3.3.2 Lab Design 

The object of this section is the validation experiment for JavaScript injection attack in detail. 

We conduct this lab to implement one of the Java-to-JavaScript attack – JavaScript code injection 

attack. In order to implement this experiment, we develop a malicious Android application which 

inject malicious JavaScript code to target victim website and extract information. The Figure 3-6 

shows our experiment structure and components. Since the malicious Android application contains 

malicious Java code, the attacker who owns this malicious Android application can execute attack 

to extract victim’s sensitive information through the WebView’s vulnerability. Because of the 

mixture of code and data in WebView, the injected malicious code has the capability to be loaded 

in WebView. After executer the malicious code, the attacker launch attack successfully and get 

the victim’s sensitive information. Specifically, we design the malicious apps as a third-party 

Facebook app, attacker is able to extract the user’s account and password information.  
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Figure 17 JavaScript Injection Attack 

3.3.3 Tools for the experiment 

In this lab, an Android platform and an Android development software are needed. Since this 

experiment can work on both Android device and Android simulator, there is no solid device 

requirement that provides more flexibility to implement this validation experiment. Both provide 

the same result. Table 3-1 illustrates the detail version information of Android device, Android 

virtual machine and Android development software. Note that the Android development software 

information listed in Table 3-1 is a reference. Any other tools for Android development are 

acceptable. 

ANDROID DEVICE 

Operating system Android 

Version 8.0  

ANDROID VIRTUAL MACHINE 

Operating system Android 

Version 8.0  

DEVELOPMENT SOFTWARE 

Name  Eclipse 

Version  4.7 

Description  Develop and debug the Android 

application; Provide the Android 

Virtual Machine 

Table 3-1 Configuration of Lab Tools 
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3.3.4 Experiment Implementation 

Experiment Setup 

This lab is divided into two parts. 1) The first part is that development of a normal WebView 

application which can log in to Facebook like a common third-party application. 2) The second 

part is filling the malicious code to the application that developed in the first step to execute 

JavaScript code injection attack. After importing project into Eclipse, the code this application is 

readable and changeable. The following example code showed below is the malicious code which 

lunches the injection attack by using WebView’s API loadUrl. The detailed experiment instruction 

is attached in the Appendix section. 

 

In the above example code, the sb strings is used to execute attacks on the targeted web 

application as JavaScript code within the web page. In the meantime, those codes are capable to 

extract the user’s sensitive information on the targeted web application, such as user’s Facebook 

account and password information.   

Experiment Result 

The following figures show that the malicious app launching an attack to extract user’s 

Facebook account and password information. It is should be pointed out that we did not let the 
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malicious app send that information to anyone but show a warning window for education purpose. 

In a real attack, it may be sent to the attacker or used other ways. 

 

Figure 18 Interface of the Malicious App 

1) User type in the personal information 
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7 

Figure 19 Filling in User’s Information 

2) Capture the information 
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Figure 20 User’s Information Caught by Attacker 
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Chapter 4  HTML5-Based Application 

4.1 Overview 

It is a noticeable tendency that smart phones have become more and more popular in the 

worldwide.  In the meantime, there are abundant kinds of applications which are implemented to 

run on the different mobile platforms. As a hybrid app, a HTML5-based mobile app is easily 

developed for different mobile systems comparing with the native app. HTML5-based mobile app 

is getting very prevalent. HTML5-based mobile apps are easily developed by using standard web 

technologies, including HTML5, JavaScript, and CSS, combining with middleware, such as 

PhoneGap, Appcelerator amd RhoMobile. However, HTML5-based apps are suffering from the 

attacks that are inherited by using web technologies. According to the prior research [48], Cross-

Site Scripting(XSS) attack is a typical attack method for the situation using HTML5. 

Unfortunately, HTML5-based mobile apps inherit this shortage. Namely, due to the usage of Web 

technologies and the particularity of mobile applications, HTML5-based mobile apps allow data 

and code to mixed together. It is should be pointed out that there are many other attacks for 

HTLM5-based applications. In this section, we introduce a novel code injection attack. Comparing 

with traditional XSS attack, this code injection attack can initiate attacks through many injection 

channels, such as Barcode, MP3, SMS, Contact, etc. That means this code injection attack for 

HTML5-based app have the possibility to cause more damages and affect all major mobile 

platforms, including Android, iOS, Windows Phone, etc.  

This section is composed of two parts: background and validation experiment. In 4.2, we 

provide the background and discussion covering from WebView, PhoneGap to the code injection 

attacks analysis [6][7]. In 4.3, we conduct a validation experiment for the code injection attacks 

through MP3 attack channel. More specifically, a lab experiment model is built to run in two 

different environments: smartphone or smartphone emulator. By using an emulator instead of a 
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real phone, the requirement of building experiment environment is reduced. In this lab, we develop 

a MP3 HTML5-based application to test the attack process. The attacker is able to achieve victim’s 

contact information during this attack. This lab aims to help students have a better understanding 

of HTML5-based app vulnerability. Moreover, it helps students to improve their self-learning and 

independent thinking ability and acquire the critical thinking ability for their future study. 

4.2 Background 

4.2.1 HTML5 and Hybrid App 

Mobile phones, particularly Internet-enabled smartphones, are in widespread use. Mobile 

phones are prevalent among multiple consumers. A report from [49] in 2016, 87 percent of the 

U.S. population ages 18 and above owned or had regular access to a mobile phone. And Seventy-

seven percent of mobile phones are smartphones(Internet-abled), up from 71 percent in 2015 and 

61 percent in 2013. All of those are reasons why there are plenty of developer start to mobile 

application development. Obviously, different versions of the application may be developed 

because of the various mobile platforms. For instance, the mobile applications for Android and 

iOS are developed by Java and Object C respectively.  Fortunately, HTML5-based techniques 

break the limitation of the various system. Because the standard web technology could be 

supported by all mainstream mobile platforms, it is possible that developers just needs one-time 

development for HLML5-based applications for all smartphone platforms by using middleware. 

Essentially, the applications developed by HTML5-based techniques have the advantage to be 

simply transformed from one platform to another. Since HTML5-based applications built by 

HTML5, JavaScript, and CSS or another stand web technologies, HTML5-based apps are quite 

different from native applications. Even though HTML5-based application could overcome the 

limitation of cross mobile platform problem, it may lead to the code injection attacks through 

different channels, for example, QR code, SMS, MP3 file and so on. According to a survey by 

Evans Fata shows that among the 1,200 surveyed developers,75% are using HTML5 for 

application development. [35] This code injection attack for HTML5-based apps are needed to pay 

more attention. 
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As HTML5-based app developers, they have two missions: web code part and native code part. 

The developers need to use JavaScript and other web technologies to develop the web part.  For 

the native code part, developers have two choices. The first one is writing native code by 

themselves. Another is using middleware provided by the third party. In general, developers 

choose the second method. Because the third-party middleware provider is responsible for 

portability which is higher than the native code written by certain developer. By using those 

middleware, a variety of mobile platforms are supported.  Moreover, middleware makes the 

application turn to a “Hybrid” application. The native app, web app, and hybrid app are three main 

types of apps in the mobile application market. The hybrid app means that it has 

both characteristics of the native app and web app.  

• Native app is coded in a specific programming language for a certain operating system, 

such as Objective-C for iOS and Java for Android. Namely, a completed native app 

could not work cross-platform. Figure 3-1 illustrates the relationship between native 

app, device and operating system. Since the native app interacts with the mobile device 

and operating system directly, it provides the fastest, most responsive and most reliable 

user experience compare with the other two types apps. And the disadvantages of this 

native app are higher costing during the developing process, poor compatibility ability 

for different platform.  

• Web app relies on the web browser. As a “mobile version” of a specific website, a web 

app is developed by JavaScript, CSS, HTML5 or other languages even need not access 

to software development kit (SDK). The development budget is also reduced in this 

web app condition. Figure 3-2 shows the relationship between web app, web browser, 

device and operating system. The weakness of web applications is obvious: the user 

experience poorer than the native apps; they have no ability to connect with the mobile 

hardware directly.  

• Hybrid app is a combination of native app and web app. It combines the advantages of 

both type apps and discards the shortcomings. For example, a hybrid app is easier to 

develop and maintain on different platforms than native app; it can interact with mobile 

device hardware through the native parts of the app, etc. A hybrid app comprises 
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WebView, native UI code and native hardware access code. Figure 3-3 indicates the 

relationship between hybrid app, device and operating system. As an essential part of 

“Hybrid” app, WebView provides great performance for the hybrid app.  

 

Figure 21 Naive App 

 

Figure 22 Web App 
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Figure 23 Naive App 

 For HTML5-based application’s developers, they can use the middleware to reduce the 

development process instead of development for each platform. There are serval third party 

middleware which are well established, such as PhoneGap Appcelerator and RhoMobile [36] [37] 

[38]. In this section, we focus on PhoneGap which is the most popular third-party middleware in 

the current mobile application market. 

4.2.2 PhoneGap 

PhoneGap is a software development framework for Adobe System that is used to develop 

mobile applications for various mainstream mobile operating systems. The advantage of 

PhoneGap is obvious. The developer who use PhoneGap to develop applications does not require 

to have the knowledge of mobile programming native languages, such as Java and Objective-C, 

instead of web development languages, including HTML, CSS, and JavaScript. Many well-

recognized mobile operating systems are available in the market, regardless it is open-source and 

proprietary. The market [39] is shared by Android, iOS, BlackBerry, Windows, and others, and 

the percentage of occupancy is 52%, 40%, 3%, 2% and 3% respectively. Because each mobile 

platform provides their special tools and environments for developers, once the developers tend to 

cover all major mobile operating systems for the high reachability for their users, they need to 

develop their application for different platforms multiple times. Expect the tedious develop process 

for each mobile operating system, the developer must understand platforms, tools and background 
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knowledge for each of operating system. As a third party and open source middleware, PhoneGap 

is a great solution for the problem which mentioned before. 

As a middleware framework, PhoneGap can be used to developed mobile applications through 

web technologies, such as HTML5, JavaScript, and CSS. By using PhoneGap, an application could 

be easily transformed from one platform to another, as long as the second platform is supported 

by PhoneGap. By the utilization of PhoneGap, the developer of application only need to use 

standard web APIs. The other parts of the application will be finished by PhoneGap, such as the 

interface of the app and portability for various mobile operating systems. There is a WebView 

instance embedded in the PhoneGap framework by default. And the HTML5 pages or JavaScript 

code will depend on the WebView to execute.  

 

Figure 24 The Usage of PhoneGap 

PhoneGap Framework is built in two parts as shown in Figure 4-2. One is the bridge part; 

another is the plugin part including camera, contact, SMS, media and Wi-Fi, etc. The bridge part 

is in charge of the connection between JavaScript code and Java code. The function of this bridge 

part is achieved by “Cordova” which allows the JavaScript code inside WebView to interact with 

the Java code outside. For the plug-in part, those plugins give the permission to allow HTML5-

based applications to access the mobile device’s resources directly, including Contacts, SMS, 
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Camera, etc. Because those plugins are written in native code, the developer have the option to 

customize their own plugins depending on demands. It is should be noted that the portability of 

those plugins is lower than plugins provided by middleware. For example, PhoneGap offers 16 

official plugins for applications to use directly [6]. By using those official plugins, the portability 

issues and other related issues including maintaining are handled by PhoneGap.  

 

Figure 25 Structure of PhoneGap 

4.2.3 The Code Injection Attack  

Due to the emerging of the high occupation of a smartphone, there are a large amount of 

developers for the smartphone’s applications. The more developers lead to more diversity and 

more possibilities for the application’s market, however, the quality and security of applications 

are hard to guarantee. Those developers who may only have the programming training or learned 

by themselves are easy to use this technology careless, then led to explore under risks and 

malicious attacks. According to the research on resent years [41] [42], a dangerous feature of web 

theologies is the permission for a mixture of data and code. The designers of this feature aim to 

build an interaction between the native code and JavaScript code, and then allow JavaScript code 

adding or embedding to HTML pages. Namely, this feature allows the code processed by the web 

technologies together with data. In this situation, the code part in the mixture is able to be identified 

and executed in the JavaScript engine inside of the application.  Attackers can take advantage of 
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this feature to execute attacks, such as code injection attack. It is obvious that the web technologies 

applied to mobile applications developments lead to many advantages, such as lower budget, high 

portability on cross-platforms, etc.  However, like a coin has two sides, for the HTML5-based 

applications which based on web technologies, those applications are subjected to a new form of 

code injection attack through many channels. It is should be pointed out that XSS is a typical code 

injection attack but not new. The OWASP top-ten list [40] provides the information that, XSS is 

the third most common security risk in mobile applications. For typical XSS attack, the channels 

are the Internet, Wi-Fi, and Bluetooth, etc. Comparing with those channels, code injection attack 

for HTML5-based app is a new division method [6]. Since HTML5-based applications must 

connect with the outside resources, such as users, environment and other devices, the data used to 

interact with HTML5-based applications can be used to launch the attack.  For example, RFID 

tags, media files, 2D barcode, the ID field of Bluetooth devices and Wi-Fi access points are the 

new unique channels for this code injection attack. Namely, the attacker has the opportunity to 

execute an attack by injecting malicious code through those smartphone unique channels. For the 

HTML5-based apps’ users, some normal behavior on the mobile device in daily become risky and 

dangerous. For instance, listening to music from a MP3 player that displays the name, album and 

lyric of the songs; scanning a QR code to make a payment; searching and connecting a new Wi-Fi 

provider, receiving a SMS message, etc. The behaviors mentioned above can be used to launch 

code injection through new channels provided by middleware, including contacts, camera, Wi-Fi, 

NFC and media. 
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Figure 26 XSS attack and Code Injection Attack 

XSS attack needs attacker to inject malicious code to web content and initiate the attack 

through the web browser channel. As shown in Figure 4-3, after the attack, the victim’s web 

browser executes malicious code in JavaScript engine instead of displaying the normal data 

launched in render engine. Comparing with XSS, this code injection attack cause more damages 

for victims through more channels. The attacker has multiple choice provided by PhoneGap to 

inject malicious code, includes Wi-Fi, Bluetooth, SMS, barcode, MP3 file. And the victim 

HTML5-based application executes the injected malicious code instead of normal web data in 

JavaScript engine. Obviously, this code injection attack could not be launched on the native mobile 
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application which written in any native language, including Java, Objective-C, etc. Because there 

are no opportunities for the mixture of code and data. Essentially, once the web technologies are 

utilized in a mobile application, this application may have the vulnerability caused by code 

injection attack.  In the following section, to explain the code injection attack idea clearly, we 

illustrate the new channels for code injection attack on the HTML5-based application.  After that 

part, the worse damages caused by this code injection attack will be discussed. 

The Code Injection Attack Channels 

Even through HTML5-based technology provides high portability on cross-platforms and 

lower budget for HTML5-based application’s developments, the feature of a mixture of data and 

code together cause vulnerabilities for those apps. It is noticed that this threat caused by the design, 

namely, the JavaScript code are able to add and execute inside HTML web pages.  For example, 

in the typical cross-site scripting (XSS) attack, the malicious code is able to inject and execute the 

victim application. The damage of this XSS attack is that the privilege of the victim application 

can be stolen by the attacker. Moreover, all the malicious (XSS) attack actions are launched in a 

web browser through web technologies.  However, except the web channel, this code injection 

attack for the HTML5-based application can be executed through many other channels.  

Generally, the code injection channels belong to three categories [7][8]- ID channels, data 

channels unique to mobile devices and metadata channels in media. A number of channels can be 

used to execute this attack in those categories. For example, ID channels can detail to the Wi-Fi 

access point, Bluetooth, Barcode, NFC, and Text Extraction belongs to data channels unique to 

mobile devices category; the metadata channels category contains two main types- one is for MP3, 

MP4 and images, another is FM Radio. Due to the limitation of this thesis, we only pick one 

channel for descript and validation. 

The Code Injection Attack Damage 

Due to the uniqueness of the HTML5-based application, more privileges are given comparing 

with the web applications, including contact, camera, and Wi-Fi, etc. THE code injection attack 
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on HTML5-based application cause worse damages. There are three potential damages [7]. The 

first one is that malicious code is able to attack the device directly by using the “Bridges”. That is, 

after the installation of the PhoneGap plugins and HTML5 APIs in the application, the “Bridges” 

is established for JavaScript code interact with device resource directly.  The attacker takes the 

opportunities to add malicious code to plugins to launch an attack. Secondly, the malicious code 

can be injected into other vulnerable PhoneGap apps on the same device. Thirdly, the injected 

malicious code can turn the compromised device into an attacking device. 

4.3  Validation Experiment Design 

4.3.1  Motivation 

Many app applications are required to support different mobile platforms. Comparing with the 

native apps, the HTML5-based mobile apps are developed by the HTML5 technology, which is 

platform agnostic. It is understandable that all mobile operating systems access the Web by 

supporting Web technology. Therefore, due to this advantage of HTML5-based mobile apps, 

HTML5-based mobile applications is getting very prevalent. HTML5-based mobile apps could be 

easily developed by using the standard web technologies, such as HTML5, JavaScript and CSS, 

and native code, such as Java. For the better portability of apps, the majority of developers use 

middleware as native code container to developer HTML5-baed apps. A number of middleware 

have been developed, including PhoneGap, Appcelerator, RhoMobile and so on. By using this web 

technologies and middleware, the developers can develop an app one time for multiple mobile 

operating systems. However, the inappropriate usage of middleware leads to vulnerabilities. As 

the most used one, PhoneGap is discussed and utilized in this lab.  Moreover, comparing with XSS 

attack, the code injection attack for HTML5-based mobile apps are damaged worse through more 

channels, such as MP3, WIFI, 2D barcode, and SMS, etc. We design a malicious application (MP3 

Player) which could steal the contact information which stored in the smartphone, such as, name 

and phone number by code injection attack. This experiment can guide students who learn from a 

lecture or by themselves understand the HTML5-based app vulnerability. There are three design 

objectives: 1) Enhancing the basic principles and concepts through learning the process, such as 

HTML5-based app vulnerability, methods and channels to launch code injection attack, etc.; 2) 

Helping students to gain first-hand experience of  HTML5-based app vulnerability by putting what 
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they have learned about the vulnerability from class into real attack; 3) Inspiring students to 

explore more HTML5-based apps security problems by guiding them implement this lab 

experiment step-by-step.  

4.3.2 Lab Design 

The design of this lab is that launching a code injection attack for HTML5-based apps 

developed by PhoneGap. We develop an example HTML5-based MP3 player app to validate the 

HTML5-based app’s vulnerability through one the attack channels. In a normal situation, the MP3 

player is not able to get the contact information when it plays the MP3 files. However, in the case 

of malicious apps, it can get user’s contact information which stored on the mobile device. By 

injecting malicious code to the MP3 player, the injecting malicious code can execute attack in 

JavaScript Engine to get victim’s contact information or other sensitive information. In this lab, 

we offer the whole project with code to students. And we require students extract victim’s other 

information based on example, including GPS, other files, and photos, etc. 

 

Figure 27 Code Injection Attack for HTML5-based App 

4.3.3 Tools for the experiment 
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In this lab, the requirement of tools are an Android platform and an Android development 

software. There is no solid device requirement for the Android platform that provides more 

flexibility to implement this validation experiment. Because this experiment can work on Android 

device as well as Android simulator. Table 4-1 identifies the detail version information of Android 

device, Android virtual machine and Android development software. It is noted that the Android 

development software information listed below is only for reference. Any other tools for Android 

development are optional. 

ANDROID DEVICE 

Operating system Android 

Version 7.0 (or lower) 

ANDROID VIRTUAL MACHINE 

Operating system Android 

Version 7.1.1 

DEVELOPMENT SOFTWARE 

Name PhoneGap 

Version 5.1.1 

Description Native Container 

Name  Eclipse 

Version  4.7 

Description  Develop and debug the Android 

application; Provide the Android 

Virtual Machine 

Table 4-1 Configuration of Lab Tools 

4.3.4 Experiment Implementation 

Experiment Setup 

This experiment consists of two parts. 1)The first part is that execute the attack by launching 

the provided HTML5-based MP3 player. 2) The second part is modifying the malicious code to 

get more victim’s critical information. After installing the example .apk file on Android system, 

the MP3 player are able to execute attack by playing MP3 file. The Figure 4-6 illustrates the contact 

information in the test mobile device. And the Figure 4-7 is the detail property information for the 

MP3 file which will be used to launch an attack in this validation experiment part. The album artist 



48 

 

information is the malicious code which will trigger the code injection attack on HTML5-based 

mobile application through MP3 file channel. 

Experiment Result 

The following images demonstrate the malicious application execute an attack by playing 

an MP3 file to extract victim’s contact information in the mobile device.  Figure 4-8 shows the 

attack launched successfully. The victim’s contact information is caught by popping an alarm 

window. It is noted that we did not allow the attacker send or share that sensitive information to 

Figure 29 Example Contact Information 

 

Figure 28 MP3 File Properties 
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anyone. However, the victim’s sensitive information caught by attacker might be used in many 

ways.

Figure 30 Example MP3 Player Interface 

 

Figure 31 Attack Result 
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Chapter 5 CONCLUSION AND FUTURE WORK 

Smartphone, as handhelds devices which have started a new revolution in software 

engineering, almost involved in everyone’s daily life. The applications which installed on the 

mobile phone help and improve every day’s life and work of the users. For example, the financial 

bank applications help the user to access bank account through smartphone directly; the third-party 

shopping applications support the user sharing shopping experience to Facebook accounts. 

However, security of smartphone has become a significant problem. The attackers focus on 

smartphone mobile application because of three main reasons: 1) lacking good standards for 

mobile; 2) developers have limited knowledge on application development in security way; 3) 

attacker can access more valuable resources stored in mobile phone compare with traditional 

devices, including GPS geographic location information, SMS messages, contacts, calendars, etc. 

In this dissertation, we divide three topics: SSL; WebView; and HTML5-based applications to 

clarify those attacks with three validation experiments, respectively.  

We hope the work that presented in this dissertation will not only provide the research effort 

but also a contribution to computer science and security education. In this thesis, we provide the 

systematic and comprehensive concepts explanation and related attacks analysis. For the chapter 

2, we provide the full background of SSL implementation vulnerabilities with various related 

concepts, such as HTTP and HTTPS, digital certificate, etc. The analysis of SSL implementation 

vulnerabilities illustrates that the inappropriate utilization of SSL for the mobile applications can 

cause a number of risks. Even through SSL is a security technology that provides the encrypted 

and secured communication, it is not able to guarantee the security of  connection. For those require 

high-security level applications, including bank applications, social applications, developers 

should pay more attention to the usage of SSL. For the WebView attack in chapter 3, we state the 

risks caused by the utilization of WebView. And the reasons why those attacks could be launched 

are discussed in detail. For chapter 4, we illustrate the HTML5-based applications’ vulnerabilities. 
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Because the middleware allows the native code from the application to interact with JavaScript 

code which runs inside of the WebView, the code injection attack can damage much more than a 

traditional XSS attack. Besides, we provide three validation experiments to demonstrate the SSL 

validation attack, WebView code injection attack and HTML5-based application vulnerabilities in 

an accurate and explicit way. 

There are several works could be done to improve our current work. The first one is the proxy 

for the SSL implementation vulnerabilities validation experiments. We only use mitmproxy’s one 

function – fake a self-signed certificate to the lunch the MITM attack. We can extend and analysis 

SSL implementation vulnerabilities in a more comprehensive way. The second one is that 

conducting more types of WebView attacks as the validation implementation experiments. For 

example, the WebView attack launch from the malicious web page. And the third one is that we 

consider adding more channels attacks validation experiments for HTML5-based applications’ 

analysis, including camera, SMS, etc. Moreover, the countermeasures for each vulnerability need 

to be discussed and analyzed in the future. 
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Appendix A: SSL implantation Vulnerability Lab 

1. Objectives 

SSL (Secure Sockets Layer) is the de facto standard for secure Internet communications. 

However, SSL certificate validation has been shown completely broken in many security-

applications and libraries. Flawed certificate validation renders software vulnerable to man-in-the-

middle attack.  

On the smartphone app market, apps are developed by developers with various levels of 

security knowledge, and many of them are suspected to be flawed in certificate validation. In this 

lab, students are expected to conduct a serial of experiments to find flawed apps and further analyze 

the cause. They will learn how to set up the proxy, monitor the HTTPS packages, identify the 

sensitive information in the packages and distinguish malicious applications. 

2. Pre-lab Reading 

There are two excellent articles on SSL implantation Vulnerabilities on the mobile operating 

system. “The Most Dangerous Code in the World: Validating SSL Certificates in Non-Browser 

Software” by Georgiev et al. [1] demonstrated that even the standard SSL libraries such as JSSE, 

OpenSSL, GnuTLS, etc. which are used in applications might have the certificate validation 

incorrectly problem. The authors of this paper presented that using SSL in no-browser software is 

a surprisingly challenging task. 

The other one is “Why Eve and Mallory Love Android: An Analysis of Android SSL 

(in)Security” by Fahl et al. [2] focusing on SSL problem in Android platform. The authors 

demonstrated an investigation of the current usage and the security threats on SSL/TLS in Android. 
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3.  Experiment 

This experiment is designed to find whether an app is flawed in certificate verification process. 

A malicious proxy server is used to issue a fake certificate when an app tries to set an SSL-

connection with a legitimate server. In a normal situation, the verification process should fail, and 

the secure connection cannot be set up. However, in the case of flawed app, a fake certificate can 

pass a flawed verification process. In either case, a secure channel is established between the app 

and the malicious proxy server --- hence all further communications between the app and the 

legitimate server will be monitored by the malicious proxy server. 

There are three components in this experiment. They are the applications’ server; the malicious 

proxy server and the client part. This experiment focuses on the proxy server and the client side. 

And the remote applications’ server is not discussed here. It should be pointed out that the mobile 

device installed app is not the only client type. It can be any device which installed application 

with SSL. For students’ convenience, the client type could be a smartphone (Android), iOS phone, 

or Android emulator. 

In the following, brief instructions are given on: 

1. how to set up the malicious proxy server (Mitmproxy) 

2. how to set the malicious proxy server as your smartphone’s proxy server  

1) Android phone 

2) iOS phone 

3) Android virtual device  

3. how to test whether an app is flawed or not.  

3.1 Set up the malicious proxy server  

A. The malicious proxy server MITMProxy runs in the Linux environment. So, the first 

step is to set up a virtual Linux environment. (Ignore this step if you use Linux as 

your primary OS.) 

a) Download VirtualBox from https://www.virtualbox.org/ and install it. 
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b) Download a distribution of Linux. Recommend Lubuntu, which has low 

hardware requirements. Download Lubuntu from http://www.lubuntu.net/. 

c) Create a new Virtual Machine in VirtualBox like this. You can use defaults for 

all following settings (Figure 1). 

 
Figure 1. New Virtual Machine 

d) Create a new Virtual Machine in VirtualBox like this. You can use defaults for 

all following settings (Figure 1). 

 
Figure 2. Select start-up disk 

http://www.lubuntu.net/
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e) Finish Lubuntu installation. You can use defaults for most settings. 

f) Set Network adapter of your VM works on as Bridged Adapter. Make sure your 

smartphone could reach it (Figure 3). 

 
Figure 3. Setting network 

B. Install MITMProxy proxy on your virtual Linux machine 

a) First, install pip on your Linux. pip is a tool for installing and managing Python 

packages. On Debian and Ubuntu, use commands: (as http://www.pip-

installer.org)  

 $ sudo apt-get install python-pip 

b) Install MITMProxy. If pip is installed, use commands: (for detailed 

instructions, please check http://mitmproxy.org/) 

 pip install MITMProxy 

If an error occurs, please check all packages used by MITMProxy have been 

installed. 

c) Strat mitmproxy in Terminal by commands: 

 $ mitmproxy 

Detailed usages, please follow http://mitmproxy.org. (For testing purpose, DO 

NOT add the root certificate to trust list on a smartphone.) 
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d) Use the following command to get the VM’s IP address (or the proxy’s IP 

address) which is to be used by the smartphone  

 $ ifconfig 

C. Optional malicious proxy (this part is optional if you do not want to use 

MITMProxy) 

 Besides MITMProxy, “Charles” and “Fiddler” could also be used as a 

malicious proxy. Please be aware that different proxies use different ways to 

generate fake certificates. For more information, please check those on the related 

reference. 

3.2 Setup your Smartphone proxy 

A. Android smartphone setup 

a) Setup proxy in the advanced Wi-Fi settings. (If the UMD-Wireless or UMD-

Secure cannot work, please do this experiment in other Wi-Fi environments.) 

b) Connect to the desired network (access point) if not already. Select “Modify 

network” config: 

 

  Figure 4. Modify network 

c) In the opened dialog, mark “Show advanced options” checkbox: 
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  Figure 5. Advanced options 

d) Scroll to proxy settings, select Manual, proxy options will appear. Set Proxy 

hostname as your VM’s IP address. Proxy port: as 8080. 

 

Figure 6. Manual setting 

e) Alternatively, you can set proxy by ProxyDroid. If your smartphone has been 

‘rooted’, you can download an app named ProxyDroid. This app would help 

you manage your proxy settings.  

 

B. iOS smartphone setup 

a) Setup proxy in the WLAN settings. (If the UMD-Wireless or UMD-Secure 

cannot work, please do this experiment in the other Wi-Fi environment.) 
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Figure 7: WLAN setting  

b) Scroll to HTTP PROXY settings, select Manual, proxy options will appear. Set 

Server as your VM’s IP address. Proxy port: as 8080. 

C. Android emulator 

In this lab, the Android emulator is Android Virtual Devices (AVDs) which based 

on Android Software Development Kit (Android SDK) and Eclipse IDE. The brief 

steps are described in the following (For more detail, check the reference at the end 

of this instruction or google online). If eclipse is already installed on your computer, 

you could skip this part directly. Besides this Android virtual machine, other Android 

emulators are also can be used, such as Android Studio. For more information, please 

check those on the related reference.  

a) Download the Android Software Development Kit (SDK)  

The SDK starter package is not a completed development environment which 

just included the core SDK tools. http://developer.android.com/sdk/index.html, 

download the latest version of SDK starter. 

b) Download Eclipse IDE for Java Developers 
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This link is the Eclipse downloads. http://www.eclipse.org/downloads/, Fine 

the Eclipse IDE for Java Developers. Noted: the correct version for your 

operating system should be guaranteed. After your Eclipse IDE download is 

complete, unzip and move to a permanent folder 

c) Install the Android Development Tools (ADT) plugin 

Open Eclipse to install the Android Development Tools (ADT) by using 

Eclipse’s built-in plug-in system. Here are the basic steps. 

i. Choose “Help” > “Install New Software….” 

ii. Click the “Add…” button and create a new entry: 

• Name: “Android ADT” (this space is for your own personal use, so 

name it whatever you want) 

• Location: “https://dl-ssl.google.com/android/eclipse/” (try just http:// if 

the https:// does not work) 

iii. Check all the boxes to install all the tools 

iv. Just keep clicking “I agree”, “Next”, “Yes”, etc. until it asks you to restart 

v. Go ahead and restart Eclipse when prompted to 

d) Install Android SDK Components 

Download the Software Development Kits(SDKs). This step could be done by 

Eclipse IDE and the Android ADT. Here are the basic steps. 

i. Open Eclipse, click “Window” > “Android SDK and AVD Manager” 

ii. In “Available packages”, select the platforms you want to support. You 

can either choose all, or pick-and-choose what you want to develop for. 

iii. In the “Third party Add-ons”, decide what you are interested in. The 

Google APIs must be installed. 

iv. Choose “Install Selected”, then the “Accept All” radio button, then 

“Install”.  

e) Setup proxy in the Mobile networks setting. (If the UMD-Wireless or UMD-

Secure cannot work, please do this experiment in the other Wi-Fi environment.) 

i. Create New AVD, select Window > AVD Manager > New. The new 

Android Virtual Device should set the Android Virtual Device (AVD) as 

shown below. (Noted: the AVD showed just for reference, you could 

create different if the experiment could run.) 
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Figure 8. Example AVD setting 

ii. Then launch the ADV, the interface shows as below: 

 
Figure 9. ADV interface 
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iii. Choose the setting icon. Choose the More. 

 
Figure 10. Android setting  

iv. Choose the Mobile networks. 

 

Figure 11. Mobile networks 

v. Choose the Access Point Names 
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Figure 12. Access point names 

vi. Then change the item T-Mobile US 

 
Figure 13. Choose APNs 
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Figure 14. Set proxy and port 

vii. Change the proxy to the proxy server’s IP address and change the port 

number to 8080. 

f) Install the Android application on the emulator. 

i. Put the. apk files in the platform-tools folder. (the default path: 

C:\Program Files\Android\android-sdk-windows\platform-tools) and for 

example, named. apk file is game.apk 

ii. Install the application. 

• open the cmd windows, enter the command： 

       cd C:\Program Files\Android\android-sdk-

windows\platform-tools 

• After entering the folder, enter the command: 

                 adb install game.apk 
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Figure 15 Install application 

1. Open the emulator, the .apk file installs successfully.    

3.3 Testing procedure 

A. Download apps from Google Play 

a) You should choose the apps which come with potential risks, such as those which 

have a login page for username and password.  

b) The following are some example categories that could be used in this project (you 

are allowed to choose a different category other than the list below). Please select 

two categories and test the top 50~100 apps in each category: 

• SOCIAL 

• COMMUNICATION 

• FINANCE 

• BUSINESS 

• TRAVEL AND LOCAL 

• SHOPPING 

B. Test the app with malicious proxy 

After your devices connected to the malicious proxy, you can monitor all 

traffics transmitted between your phone and the proxy. Figure 16 shows the 

example attack result. 

a) Perform “login in” in your app. 

b) If the app is secure, if you use ProxyDroid, you will be given a connection 

error message. If you set up your proxy in the Advanced Wi-Fi Settings, your 

app will skip the proxy and connect to the legitimate server without the use of 

the proxy server. In both cases, you wouldn’t find a request with username and 

password form the monitor. 
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c) If the app is insecure, you will find your username and password on the 

monitor. 

You can install packet sniffer software such as Wireshark to monitor the traffic. 

 

Figure 16. Example attack 
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Appendix B: WebView Attack Lab 

1. Objectives 

Web browser provides the World Wide Web information for users. It plays an important role 

in daily life. Smartphone users can use applications to get web information. WebView is the part 

of the smartphone OS responsible for rendering web pages in most mobile applications. WebView 

helps developers integrate browser’s function easily, such as web page navigation, and JavaScript 

execution. However, apps are developed by developers with various level of security knowledge. 

The applications developed by careless developers not only have some potential risks but also can 

be used to wiretap sensitive information.  

This lab designed for students who have the computer science background and want to explore 

computer security issues. After the lab, students will have a better understanding of WebView 

attack. The JavaScript Code Injection is realized in this experiment. We provide a malicious app 

called Capture.akp and the corresponding project package to students. It should be pointed out that 

this project package is not completed version. Students need to add the malicious code by 

themselves and let the app run the same function as the example Capture.apk. They could learn 

how to execute the JavaScript Code injection attack and add the malicious code to the application. 

2. Pre-lab Reading 

There are two excellent articles on WebView security problems in mobile operating system. 

“Touchjacking Attacks on Web in Android, iOS, and Windows Phone” by Luo et al. [4] 

demonstrates that the APIs for WebView are secured, but WebView is still dangerous. The authors 

of this paper describe several attacks and show that attackers can compromise the integrity and 

confidentiality of the web contents inside WebView. 
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Another is “Attacks on WebView in the Android System” by Luo et al. [5] illustrates a number 

of attacks on WebView. In those attacks, two attacks types are discussed in detail. One is the attack 

from malicious apps; another is the attack from web pages. This lab design is based on the first 

one. This paper’s section 2 (Short Tutorial on WebView) indicates the knowledge which students 

need to learn to finish this lab. The examples in this lab are derived from this paper. 

3. Experiment 

The basic experiment is designed to launch a malicious application which could steal the 

Facebook user’s name and password by WebView attack. Normally, the application could not get 

the user’s information which is loaded in WebView. However, in the case of malicious apps, the 

attacker can get user’s information or ever change the user’s account information. 

In the following, brief instructions are given on  

1. how to execute the attack; 

2. how to set up project into Eclipse;  

3. add malicious code to the “uncompleted” project; 

4. how to test an attack success or not. 

3.1 Execute the attack 

There are two choices in this part: Using Android virtual machine which is provided by 

Eclipse; using a real mobile device. Two options do not affect the results. Students could choose 

either one depending on the environment. Besides this Android virtual machine, other Android 

emulators could also be used, such as Android Studio. For more information, please check those 

on the related reference.  

A. Android virtual machine 

The Android emulator is Android Virtual Devices (AVDs) which is based on 

Android Software Development Kit (Android SDK) and Eclipse IDE. The brief steps are 

described in the following (For more detail, check the reference at the end of this 
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instruction or google online). If the computer is installed eclipse in advance, please skip 

this part directly. 

a. Download the Android Software Development Kit (SDK) 

The SDK starter package which only includes the core SDK tools is not a 

completed development environment. http://developer.android.com/sdk/index.html, 

download the latest version of SDK starter. 

b. Download Eclipse IDE for Java Developers 

This link is the Eclipse downloads. http://www.eclipse.org/downloads/, find 

the Eclipse IDE for Java Developers. Noted: the correct version for your 

operating system should be guaranteed. After your Eclipse IDE download is 

complete, unzip and move to a permanent folder 

c. Install the Android Development Tools (ADT) plugin 

Open Eclipse to install the Android Development Tools (ADT) by using 

Eclipse’s built-in plug-in system. Here are the brief steps. 

i. Choose “Help” > “Install New Software….” 

ii. Click the “Add…” button and create a new entry: 

• Name: “Android ADT” (this space is for your own personal use, so 

name it whatever you want) 

• Location: “https://dl-ssl.google.com/android/eclipse/” (try just http:// if 

the https:// does not work) 

iii. Check all the boxes to install all the tools 

iv. Just keep clicking “I agree”, “Next”, “Yes”, etc. until it asks you to restart 

v. Go ahead and restart Eclipse  

d. Install Android SDK Components 

Download the Software Development Kits(SDKs). This step could be done 

by Eclipse IDE and the Android ADT. Here are the basic steps. 

i. Open Eclipse, click “Window” > “Android SDK and AVD Manager”. 
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ii. In “Available packages”, select the platforms you want to support. You can 

either choose all, or pick-and-choose what you want to develop for. 

iii. In the “Third party Add-ons”, decide what you are interested in. The Google 

APIs must be installed. 

iv. Choose “Install Selected”, then the “Accept All” radio button, then “Install”.  

 

e. Setup proxy in the Mobile networks setting. (If the UMD-Wireless or UMD-

Secure cannot work, please do this experiment in the other Wi-Fi environment.) 

Create New AVD, select Window > AVD Manager > New. The new 

Android Virtual Device should set the Android Virtual Device (AVD) as shown 

below. (Noted: the AVD showed just for reference, you can create different ones 

as long as the experiment run successfully.) 

 

           Figure 1. AVD setting details 

B. Use real mobile device 

a. Find the file Capture.apk in bin folder 
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Figure 2. Capture.apk location 

b. Copy this. apk file to the Android device, for example, pause in Downloads folder. 

Then open Downloads, tap on the APK file, and tap Yes when prompted. The app 

will begin installing on device. 

3.2 Set up project into Eclipse 

Import the project package to Eclipse (Figure 3). 

Open Eclipse>Choose File>Imported 

 

 
Figure 3. Import projects 

 

1) Select import the project package, choose “Existing Android Code Into 

Workspace”. 
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Figure 4. Import projects setting 

Choose Browse>Select the project package which provided>Finish 

Success import in the Android projects. 
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If the Android project is imported successful, the Project should have those files. 

 
Figure 5. Project files 

3.3  Add malicious code 

The following “uncompleted” code in MainActivity.java shows the malicious part. 

Students should add the rest malicious code in the blank area. The sb.append() is the key 

part. Those three blue lines showed below are the hints for students to easy to find the 

direction of this part. 

 

                               

                               

                                     … 

                                     … 
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3.4  Test an attack success or not 

After the part 3.3, students should test whether their attack success or not. The 

following is one successful attack examples for reference. 

a. The Login interfaces 

 

Figure 6. App Interface 

b. User type in the personal information 
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Figure 7. Fill in account and password 

3) Capture the information 

 

Figure 8. App result 

Noted: For education purpose, we did not let the malicious app sends that information to anyone 

but shows alarm. In a real attack, it may be sent back to attacker. 
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Appendix C: Code Injection Attacks on HTML5-based Mobile Apps Lab 

 

1. Objectives 

Smartphones have become more and more popular in the worldwide.  In the meantime, 

abundant of applications are implemented to run on the mobile platforms. Compare with the 

native apps which developed by native language; the HTML5-based mobile apps take 

advantage of web technologies. HTML5-based mobile apps are easily developed by using the 

standard web technologies, such as HTML5, JavaScript and CSS, and middleware, such as 

PhoneGap, Appcelerator, RhoMobile, etc. The middleware is in charge of connection between 

the web content and mobile device resources, including camera, GPS, etc. It is understandable 

that all mobile operating systems access the Web by supporting web technology. Therefore, 

the HTML5-based mobile applications are used cross-platform and getting prevalent. 

However, Web technology has a dangerous feature that allows the mixture of data and code. 

For example, a traditional web application has the XSS vulnerability. Because HTML5-based 

mobile apps built upon the same technology as web applications, it inherited the XSS 

vulnerability. Moreover, due to the usage of middleware, HTML5-based mobile apps have a 

much broader attack surface than that for web applications. For example, MP3 files, WIFI, 2D 

barcode, and SMS, could be attack channels for HTML5-based application. 

This lab designed for students who have the computer science background and want to 

explore this computer security problem. After the lab, students should have a better 

understanding of code injection attacks on HTML5-based mobile apps. The Code Injection 

attack through MP3 file is realized in this experiment. We provide a malicious app’s .apk file 

which called example.apk and the corresponding project package for students. After this 

example attack, the contact information is extracted by the attacker. We provide this project 
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package code only for reference. Students should launch an attack by using this MP3 file 

method to get victim’s other credentials information, including GPS, files, etc.  

2. Pre-lab Reading 

There are two excellent articles on code injection attacks on HTML5-based apps. One is 

“Injection Attacks on HTML5-based Mobile Apps” by Jin et al. [7] demonstrated how 

HTML5-based apps become vulnerable, and how attackers exploit their vulnerabilities through 

a variety of channels, and what damage can be achieved by the attackers. The examples in this 

lab are derived from this paper. 

Another one is “Code Injection Attacks on HTML5-based Mobile Apps: Characterization, 

Detection, and Mitigation” by Jin et al. [6] discussed a systematic study on the risk in HTML5-

based mobile apps. And the authors develop a vulnerability detection tool to analyze 15,510 

PhoneGap Apps from Google Play. Those attacks are divided into two types: attack from 

malicious apps; attack from web pages. This lab design based on the first one.  

3. Experiment 

This experiment is designed to launch a malicious application (MP3 Player) which could 

steal the contact information and other information that stored in the smartphone by code 

injection attack. An example HTML5-based application developed by using PhoneGap is 

provided. Normally, this type of application is not able to get the contact information when it 

plays the MP3 file. However, in the case of malicious apps, it can get user’s contact information 

by launching this code injection attack. Students are required to execute the example code 

injection attack and extract the other information. 

In the following, brief instructions are given on  

1. How execute the attack;  

2. How to set up project into Eclipse; 

3. Add malicious code to the example project; 

4. Test the attack success or not. 
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3.1 Execute the attack 

The lab provides an example app to demonstrate the attack. You can install the app on 

either an Android virtual machine (if you do not have an Android device) or a real Android 

device. Both could get the same result. Students could choose either one depends on the 

situation. Besides the Android virtual machine suggested in this document, other Android 

emulators could also be used, such as Android Studio [7]. For more information, please 

check those on the related reference.  

A. Setup the environment 

Choose either  

(a) using Android virtual machine or (b) using an Android phone: 

(a) Using Android virtual machine 

The Android emulator is Android Virtual Devices (AVDs) which based on 

Android Software Development Kit (Android SDK) and Eclipse IDE. The brief 

steps are provided in the following (For more detail, check the reference at the 

end of this instruction or google online). If your computer installed eclipse 

before, you could skip this part directly. 

i. Download the Android Software Development Kit (SDK) 

The SDK starter package is not a completed development environment which 

only included the core SDK tools. http://developer.android.com/sdk/index.html, 

download the latest version of SDK starter. 

ii. Download Eclipse IDE for Java Developers 

This link is the Eclipse downloads. http://www.eclipse.org/downloads/, Fine 

the Eclipse IDE for Java Developers. Noted: You should guarantee the correct 

version for your operating system. After your Eclipse IDE download is 

complete, unzip and move to a permanent folder 

iii. Install the Android Development Tools (ADT) plugin 
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Open Eclipse to install the Android Development Tools (ADT) by using 

Eclipse’s built-in plug-in system. Here are the basic steps. 

Choose “Help” > “Install New Software….” 

Click the “Add…” button and create a new entry: 

• Name: “Android ADT” (this space is for your personal use, so 

name it whatever you want) 

• Location: “https://dl-ssl.google.com/android/eclipse/” (try just 

http:// if the https:// does not work) 

Check all the boxes to install all the tools 

Just keep clicking “I agree”, “Next”, “Yes”, etc. until it asks you to restart  

Choose “Install Selected”, then the “Accept All” radio button, then “Install”.  

iv. Install Android SDK Components 

Download the Software Development Kits(SDKs). This step could be done by 

Eclipse IDE and the Android ADT. Here are the basic steps. 

Open Eclipse, click “Window” > “Android SDK and AVD Manager” 

In “Available packages”, select the platforms you want to support. You 

can either choose all or pick-and-choose what you want to develop for. 

In the “Third party Add-ons”, decide what you are interested in. The 

Google APIs must be installed. 

Choose “Install Selected”, then the “Accept All” radio button, then 

“Install”.  

v. Setup proxy in the Mobile networks setting. (If the UMD-Wireless or 

UMD-Secure cannot work, please do this experiment in the other Wi-Fi 

environment.) 

Create New AVD, select Window > AVD Manager > New. The new Android 

Virtual Device should set the Android Virtual Device (AVD) as shown below. 
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(Noted: the AVD showed below only for reference, you could create different 

as long as the experiment could be run.) 

 

Figure 1. AVD setting details 

vi. Find the file example.apk in bin folder. 

 

Figure 2. example.apk location 

vii. Install example.apk on the emulator.  

1. Put the .apk files in the platform-tools folder. (the default path: 

C:\Program Files\Android\android-sdk-windows\platform-tools) and for 

example, named .apk file is game.apk 

2. Install the application. 
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               open the cmd windows, enter the command： 

                  cd C:\Program Files\Android\android-sdk-windows\platform-

tools 

        After entering the folder, enter the command: 

                 adb install game.apk 

 

Figure 3. Install apk file 

viii. 3. Open the emulator, the installed application will be shown on the 

interface.    

Use real mobile device 

i. Find the file example.apk in bin folder (Figure 2)   

ii. Copy this. apk file to the Android device, for example, pause in the 

Downloads folder. Then open Downloads, tap on the APK file 

and tap Yes when prompted. The app will begin installing on the device. 

B. Execute the attack 

1) Import the malicious MP3 file piano.mp3 to the virtual machine or the mobile 

device.  

• For the virtual machine, (for other emulators, the processes may different) 

o Go to Window->AVD Manager-> (select AVD)->Edit (in Right panel) 

->New (in Hardware) ->SD Card support ->Edit AVD 

o Through DDMS put mp3 in a folder (if not create) in sdcard folder of 

mnt folder 

o relaunch your AVD and play mp3 file 
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• For the mobile device, copy this MP3 file to the Android device, for example, 

store in the Downloads folder.   

2) Try to run the example.apk with the piano.mp3 file. Before running the 

example app, you should save at least one contact information if there is no 

contact information on your Android device. The following figure (Figure 4) 

shows the saved contact information.  

 

Figure 4. Example Contact information 

Then, open the installed example.apk app (Figure 5). 
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Figure 5. example.apk app interface 

Next, click “Load Music” button, the attack will launch. The attacks through 

the MP3 file can get contact information. Figure 6 shows the successful 

result for reference. 
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Figure 6. Attack result 

3.2 Set up project into Eclipse 

Import the project package to Eclipse. (Figure 7) 

Open Eclipse>Choose File>Imported 
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Figure 7. Import a project 

2) Setting for import the project package, choose “Existing Android Code Into 

Workspace” 
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Figure 8. Import projects interface 

 

Choose Browse>Select the project package which provided>Finish 

3) Review the project’s code, and try to find the malicious part. 

 

3.3  Add malicious code to the project 

The following image shows the provided MP3 file’s properties (Figure 9). The artist 

name and album name are filled with JavaScript codes. When the MP3 player runs and 

plays this MP3 file, the code and data will mix up. That is the reason why the attack could 

be launched. Students should find the vulnerable code in project package provided. After 

the seeking process, try to edit the vulnerable code to get other sensitive information. 
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• (Noted: check the Album artist part of this MP3 file.) 

 

 

Figure 9. Piano.mp3 details 

3.4  Test the attack success or not 

After adding the malicious part of example app, Students should try to extract other 

credentials information, such as storage, camera, and location information, etc.           

Noted: For education purpose, we did not let the malicious app send that 

information to anyone but show it on screen. In a real attack, that information may be sent 

to the attacker. 

 


