
UNIT 9.1Theoretical Principles of In Vitro Selection
Using Combinatorial Nucleic Acid Libraries

Over the past decade, a new paradigm for
drug discovery (Gold, 1995) and biological
research (Gold et al., 1995) has been developed
from technologies that integrate combinatorial
chemistry with rounds of selection and ampli-
fication, a technique that is called in vitro se-
lection. Systematic Evolution of Ligands by
EXponential enrichment, or SELEX (Ellington
and Szostak, 1990; Tuerk and Gold, 1990) is a
flexible and extremely successful form of this
technology that uses combinatorial libraries of
oligonucleotides containing regions of ran-
domized sequence as potential ligands. Oli-
gonucleotide libraries (containing randomized
regions) provide, after selection, compounds
that bind tightly to the intended target. The
process of in vitro selection was called SELEX
by Tuerk and Gold (1990), while the selected
compounds were called aptamers by Ellington
and Szostak (1990). SELEX and in vitro selec-
tion (from oligonucleotide libraries) are iden-
tical. The selected and amplified bonding site
(SAAB) technology (Blackwell and Wein-
traub, 1990) is a specialized form of SELEX
directed toward finding naturally occurring se-
quences that bind proteins in vivo; however, the
number of unique sequences used for SAAB
analysis is usually much smaller than that used
in most SELEX experiments, since the size of
the binding area is usually well defined and thus
the number of mutagenized nucleotides is
small. SELEX and other adaptive molecular
evolution techniques, such as phage display
(Cwirla et al., 1990; Scott and Smith, 1990;
Kay, 1994; Winter et al., 1994), gain much of
their power from their ability to isolate individ-
ual molecules from vast molecular pools with-
out resorting to cumbersome deconvolution or
tagging methods commonly used in combina-
torial chemistry schemes. Rather, these meth-
ods utilize iterative rounds consisting of ligand
selection from combinatorial libraries followed
by amplification of these selected ligands to
form new libraries enriched for the particular
function of interest, e.g., affinity binding or
catalytic function. Such techniques enable
quite rapid searches of enormous libraries
(typically greater than 1015 potential ligands in
the case of SELEX). SELEX has been used to
discover high-affinity ligands to a wide variety
of different molecular targets, including nu-
cleic acid binding proteins, non–nucleic acid

binding proteins, peptides, and small organic
molecules (reviewed in Klug and Famulok,
1994; Gold, 1995; Gold et al., 1995). This unit
presents a theoretical overview of in vitro af-
finity selection using SELEX technology.

A schematic representation of the SELEX
process is shown in Figure 9.1.1 and may be
used to describe SELEX performed with librar-
ies of RNA, RNA derivatives, or DNA. For the
purposes of developing a mathematical model,
the SELEX process for affinity binding may be
summarized in four steps: (1) generation of a
library of potential ligands, (2) binding of the
library to the target molecule, (3) partitioning
of the bound ligands from the unbound ligands,
and (4) amplification of the partitioned ligands
to generate a new, enriched library, leading
again to step 1. Repeated application of steps 2
to 4 results in an enriched pool composed of
the sequences of interest. For selection of sin-
gle-stranded DNA (UNIT 9.2), the two strands of
the PCR-amplified pool of dsDNA must be
denatured, and one of the strands isolated be-
fore binding with the target. For selection of
RNA and RNA derivatives (UNIT 9.3), the PCR-
amplified pool of dsDNA must be transcribed
to form a pool of RNA before binding with the
target. The partitioned RNA must then be re-
verse-transcribed into DNA before PCR ampli-
fication. For the present analysis, these enzy-
matic transformations—reverse transcription
(RT), PCR, and transcription—are all assumed
to be perfect, meaning that they do not affect
the relative concentrations of the ligands. How-
ever, see Mathieu-Daudé et al., (1996) regard-
ing imperfect amplification due to concentra-
tion differences, and Sun et al. (1996) for
mathematical modeling of the amplification
process taking stochastic effects into account. 

SELEX is a very forgiving technology.
High-affinity ligands to nearly any desired tar-
get may be found even when the selection
conditions (protein and RNA concentrations,
for example) are far from optimal. However,
great savings in time and material, or perhaps
even success with difficult targets, may be
achieved by working at the optimal conditions.
Determining what these conditions are de-
mands a deeper understanding of the mecha-
nisms of SELEX. We present such a theoretical
model here. We first describe the characteristics
of a ligand library, comprised of oligonu-
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cleotide sequences, that are relevant to the
model. We then describe the equilibrium selec-
tion model central to SELEX, incorporating
these library characteristics. A demonstration
of the model applied to experimental data is
then presented. Analytical expressions for the
optimal nucleic acid and protein concentrations
are derived, these being two parameters easily
varied during SELEX experiments. However,
the formulas for optimal concentrations unfor-
tunately depend on parameters that cannot eas-
ily be determined experimentally. We therefore
introduce a new parameter, the signal-to-noise
ratio, which allows the determination of near-
optimal conditions based only on parameters
that are easily determined experimentally.

NUCLEIC ACID LIBRARIES
In vitro selection is performed with nucleic

acid libraries containing vast numbers of
unique molecules, typically ∼1015 sequences.
Such large libraries are desirable in order to
saturate the sequence space of longer random-
ized regions—a useful goal, as SELEX is often
directed toward non–nucleic acid–binding pro-
teins that are unlikely to have sites with high
affinity and specificity to short sequence re-
gions. Even with known nucleic acid–binding
proteins, longer randomized regions may pro-

vide a larger contact surface, often making it
possible to find sequences that bind with higher
affinity than the wild-type binding sequences.
The only practical limitation on library size is
imposed by the volumes of material manipu-
lated experimentally; 1015 random sequences
are easily synthesized and readily processed.
Each sequence in the library is composed of a
random region of variable length sandwiched
between two regions of fixed sequence used for
primer binding sites during enzymatic process-
ing. The length of the random region varies
considerably among selection experiments. For
affinity binding, most studies use between 20
and 60 nucleotides (Gold et al., 1995), while
researchers performing catalytic selections
typically use much larger random regions, the
largest comprising >200 nucleotides (Hager et
al., 1996; Breaker, 1997). The motivation for
the difference in sequence length is that binding
interactions with proteins and small molecules
may require smaller molecular arrangements
than those needed to carry out enzymatic activ-
ity. It is commonly believed that typical cata-
lytic oligonucleotides have multiple secondary
structural domains that may be required for
activity, but this hypothesis still awaits rigorous
proof.

Figure 9.1.1 Schematic representation of the SELEX in vitro selection methodology. The initial
random pool is derived from synthesized DNA oligonucleotides that are used directly for DNA
SELEX or converted to double-stranded templates for transcription for RNA SELEX. Once the initial
pool is created, the steps for a round of affinity binding SELEX are presented in the squares; (1)
pool generation, (2) incubation with target, (3) partitioning, and (4) enzymatic amplification.
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A basic tenet of in vitro selection experi-
ments is that the selected function of oligonu-
cleotide molecules is conferred through their
three-dimensional structures. These structures,
usually supported by stacking interactions be-
tween adjacent base pairs, are a consequence
of the individual sequences. The identification
of conserved primary structural units (residues)
and secondary structural units (e.g., helices and
loops) from those sequences sharing a selected
function allows one to define a motif required
for the function. Once a motif is defined, it is
easy to compute its frequency of occurrence in
the initial pool. For example, SELEX-isolated
sequences that bind with high affinity to the E.
coli rho factor, displayed in Figure 9.1.2a, de-
fine the hairpin motif shown in Figure 9.1.2b.
There are 44 combinations of base pairs form-
ing the central stem (N-N′) and 2 bases (C/U)
tolerated at position 15 out of 20 contiguous
nucleotides defining the motif. Since the motif
can start at 11 different positions within the
30-nucleotide random region used in this ex-
periment, the sequence for such a motif occurs
in the initial pool with a frequency of (44 × 2 ×
11)/420 = 5 × 10–9. As discussed below, such an
estimate is always an upper limit on the fre-
quency of actual high-affinity ligands. In addi-

tion, the actual frequency of high-affinity li-
gands is likely to be different than that calcu-
lated from the consensus motif, since this motif
is usually defined from a sampling of relatively
few sequences and is thus underdetermined. We
show below that the frequency of selected mo-
tifs within the initial pool plays a central role
in the progress of SELEX experiments.

For a continuous motif of length m, increas-
ing the random region by n bases results in an
n-fold increase for representation of that motif
in the random sequence library. However, cal-
culating the frequency of occurrence of a par-
ticular motif within the original sequence pool
is certainly an upper limit on the number of
active molecules with that motif, since this
estimate does not take into account the likeli-
hood that a particular sequence will fold into
the motif of interest. As the length of the ran-
dom region increases, the number of possible
secondary and three-dimensional structures
formed increases, decreasing the likelihood
that the motif of interest is thermodynamically
accessible in any particular sequence in which
it occurs (Sabeti et al., 1997). It is difficult to
estimate the loss of activity due to alternative
folds, but, clearly, as the length of a sequence

Figure 9.1.2 Consensus sequences and motif obtained from E. coli rho SELEX (Schneider et al.,
1993). The sequences (a) are aligned to reveal the consensus motif (b), a hairpin loop. Primer
binding sites are denoted by lower case letters in (a) and N-N′ denote any Watson-Crick or G-U
base pair in (b).
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increases, these losses become more signifi-
cant.

Complete coverage of all sequences for a
given-size random region can only be achieved
with relatively small random regions. Since the
number of unique molecules in the starting pool
is practically limited to 1015 molecules and
there are 4N sequences for a random region
containing N positions, the set of all possible
sequences (commonly called the sequence
space) for libraries with N > 25 is not fully
represented at the outset of the experiment
(Ciesiolka et al., 1996). Further, most in vitro
selection experiments do not rely on mutation
to alter the makeup of sequences after selection;
therefore the molecules possessing the desired
functional activity must be present in the start-
ing pool. As the size of the random region
grows, coverage of the full sequence space
diminishes exponentially, compounding the
problem of culling rare sequences from a lim-
ited initial pool.

To help overcome this problem of limited
sequence space coverage for libraries with large
random regions, optimization of “lead” se-
quences isolated with in vitro selection is com-
monly performed with further rounds of selec-
tion, starting with a biased pool. Typically, the
best sequence resulting from a selection is iso-
lated from the enriched pool. A second pool of
molecules is then constructed from this lead
sequence by biasing the nucleotide content at
each position to contain, for example, 70%
original sequence and 10% the remaining three
bases. This is a common strategy employed in
catalytic RNA selection schemes; a rare se-
quence isolated from pools with >100 random
bases is usually not optimal but is a good
starting point for further selection experiments.
Such strategies have resulted in increased ac-
tivities more than several-fold over that of the
starting sequence (Hager et al., 1996; Breaker,
1997). Of course, such a tactic never guarantees
that the best sequence within the overall se-
quence space has been isolated.

The primary focus of the theoretical devel-
opment to follow will be on in vitro affinity
selection experiments—so-called SELEX.
Mutation and recombination events are not de-
liberately included in most SELEX methodolo-
gies, although lack of perfect enzymatic fidelity
during transcription, reverse transcription, and
PCR amplification certainly introduces a small
number of mutation events. The effects of these
mutations will be ignored in the present analy-
sis, and are expected to be small in any event.
SELEX experiments are usually performed to

isolate those sequences present in the initial
pool that have the highest binding affinities to
the target of interest. Restricting our discussion
to these in vitro selection schemes allows for
an enormous reduction in complexity of repre-
sentation; the vast library of sequences can be
formally mapped onto affinity distributions
with no loss in generality. Coupling this reduc-
tion with an equilibrium model for binding, that
is easily achieved experimentally, we can accu-
rately model in vitro selection experiments and,
therefore, identify those features of the process
most critical to experimental success.

AFFINITY PROBABILITY
DISTRIBUTIONS

It is now commonly accepted that nucleic
acid sequences can fold into complex three-
dimensional shapes bolstered by their secon-
dary structures. It is the three-dimensional dis-
play of functional groups on nucleic acid oli-
gomers that is responsible for their differential
binding affinities to wide-ranging target mole-
cules. This is true for small-molecule targets,
where the oligonucleotides typically fold to
engulf the target, as well as protein targets,
where extensive surfaces of the macromole-
cules are in direct contact. Regardless of the
particular target, the three-dimensional struc-
tures adopted by the sequences, in both their
free and bound states, can in principle be
mapped to free energies of binding for the target
of interest. This is our basis for mapping linear
sequences onto a probability distribution of
binding affinities. For an equilibrium model of in
vitro selection, all those sequences with the same
binding affinities will partition in precisely the
same way between target-bound and free in
solution. In other words, averages computed
over distinct sequences are mathematically iden-
tical to averages over the binding affinity distri-
bution constructed from the vast (1015) sequence
library. This formally exact reduction in com-
plexity is key to our theoretical development
presented below. In the following discussion, we
will denote an average over an affinity distribu-
tion p(Ka) by <. . .> , i.e., <f(Ka)> = ∫dKa p(Ka)
f(Ka), where f(Ka) is some function of affinity
and ∫dKa p(Ka) has been normalized to one.

In order to construct an equilibrium model
for in vitro selection, it is necessary to explicitly
define the affinity distribution of the library for
the target of interest. Clearly, the details of such
distributions will change depending on the tar-
get of interest. We show below that certain
features of this distribution are key for assess-
ing the progress of selection experiments. This
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probability distribution is most conveniently
cast in terms of association constants, p(Ka), but
can also be cast in terms of binding free ener-
gies, since ∆G = −kBT ln(Ka), where kB is the
Boltzmann constant and T is the absolute tem-
perature. An experimental determination of
p(Ka) is quite difficult and there exist very little
data on which to base estimates. For a model
of double-stranded DNA-protein interactions
based upon independent base-pair contribu-
tions to affinity, the correlation between nucleic
acid information content and protein binding
affinity leads to a binding free energies that are
normally distributed (Berg and von Hippel,
1987; Stormo and Yoshioka, 1991). Conse-
quently, the probability distribution of Ka val-
ues for this model are log-normal. Such a pro-
file clusters the majority of sequences around
<∆G> (<ln(Ka)>), while those sequences with
most favorable ∆G of binding [ln(Ka)] occur
relatively rarely. The frequency of the highest-
affinity molecules, the so-called “winners,” in
the pool depends on the width of the distribu-
tion and the difference in affinity between the
majority of the sequences and the rare winners.
Whether the true affinity distributions are log-
normal or skewed in some fashion, we expect
the general profiles to be consistent with these
features.

Although direct experimental determination
of p(Ka) is not practical, some useful data can
be extracted from binding curves of the se-
quence pool. A pool binding curve obtained
with a constant, small nucleic acid concentra-
tion and varying protein concentrations yields
some limited data for the distribution of affini-
ties. Specifically, the affinity measured using a
standard binding curve analysis for bimolecu-
lar association yields a value for Kbulk =
e<ln(Ka)>; that is, the measured affinity reflects
the ln(Ka) averaged over the distribution. The
initial asymptotic behavior of the pool binding
curve, corresponding to low total protein con-
centration, is best described by <Ka>, the aver-
age of Ka over the distribution, and this may be
quite different from the Kbulk. Similarly, the
behavior of the binding curve where protein is
in excess follows <Ka

−1>, whose inverse may
differ considerably from <Ka> and Kbulk. Figure
9.1.3 illustrates this for two distributions of
p(Ka). We show in the next section that progress
of SELEX during initial rounds is relatively
insensitive to the shape of the distribution
p(Ka), but depends on the following three key
aspects of p(Ka): (1) the <Ka> of the pool, (2)
the association constant Kw of the highest-af-
finity sequences in the pool (winners), and (3)

the frequency fw of these winners. We show
below that for a round of SELEX <Ka> and Kw

are the critical features of p(Ka) that determine
the increase in the population of the winners,
whereas the frequency of winners in the initial
pool sets the scale for the number of rounds
required for completion. In general, Kw is a
measure of the amount of winning molecules
bound to protein, while <Ka> is a measure of
the amount of total molecules bound. Therefore
a ratio of these affinities reflects the possible
enrichment during a round of SELEX. In gen-
eral, we believe that the average affinity <Ka>
can be from two to twenty times higher than
Kbulk for affinity distributions p(Ka) of initial
pools.

For the purpose of testing the mathemati-
cal model of SELEX (described below) against
completed experiments, we must define the key
features of p(Ka). There is currently no good
way of experimentally determining <Ka> di-
rectly without knowing the affinity distribu-
tion, for which there is little data. We can,
however, rely on assumptions to fill this gap
and make reasonable choices for parameters
describing p(Ka). Kbulk may be easily measured
experimentally and used to establish a lower
limit for <Ka>. Since the binding curve of a pool
of nucleic acids usually closely approximates
that of a single defined ligand (see, e.g.,
Schneider et al., 1993), we assume that the vast
majority of ligands cluster around a “bulk”
affinity. The affinities of the winning ligands,
Kw, however, are usually several orders of mag-
nitude greater than this bulk affinity. Kw is
easily obtained at the completion of SELEX by
cloning and sequencing the enriched pool and
measuring the affinity of individual clones for
the target. As previously described, further se-
quence analysis of the enriched pool often leads
to the identity of a winning motif, which then
allows for an estimation of the winner’s fre-
quency in the initial pool. These frequencies are
typically on the order of 10−9 to 10−13 (Gold et
al., 1995) and provide some information about
the affinity distribution. Assuming that bind-
ing affinities are distributed log-normally, and
having determined Kbulk, Kw, and fw, a value
for the width of the distribution, and therefore
p(Ka), can be determined. Though there are
many possible distributions, for the purposes
of this discussion, we will consider the log-
normal distribution.

The log-normal affinity distribution of li-
gands for the target protein has the probability
density function:
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p(lnKa) = 
1

√2πσ
 e−(lnKa − <lnKa>)2

/(2σ2)

Equation 9.1.1

where lnKbulk = <lnKa> is related to the bulk
affinity of the initial pool, σ is the standard
deviation of the log-normal distribution, and
p(lnKa) dlnKa is the fraction of ligands with
affinities having logarithms equal to lnKa ±
(1/2)dlnKa. In Equation 9.1.1), Kbulk = e<ln(Ka)>

is the affinity corresponding to the peak (and
the midpoint) of the log-normal distribution.
Since <lnKa> can be determined experimen-
tally, σ in Equation 9.1.1 is determined to match
fw at Kw.

A log-normal distribution for p(Ka) allows
an analytical calculation of the difference be-
tween <Ka> and Kbulk, given by the following
expression:

〈Ka〉 = Kbulke(σ2
/ 2)

Equation 9.1.2

For instance, if a random pool of RNA has a
measured bulk affinity of 106 M−1, and has a
winning motif with an affinity of 109 M−1 in the
pool at a frequency of 10−10 (integrating the
affinity distribution from ln Kw to infinity), then
the average pool affinity <Ka> will be approxi-
mately three times greater than the measured
bulk affinity.

Figure 9.1.3 Affinity distributions and their resulting binding curves. A log-normal distribution of
binding affinities is presented in (a) and a Poisson distribution in <lnKa> is presented in (c).
Calculated binding curves for these distributions are displayed in (b) and (d) and denoted by open
circles. The one-component binding curves corresponding to affinities e<lnKa>, <Ka>, and <Ka

−1>
computed from the distributions are displayed as solid lines. Note that the binding curve derived
from <lnKa> best fits the overall binding curve generated from the distributions, while the low and
high protein asymptotes are best fit by <Ka> and <Ka

−1>, respectively.
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AN EQUILIBRIUM MODEL FOR
SELEX

For most SELEX applications, we have
found the equilibrium model of Irvine et al.
(1991) to be a good description of the in vitro
selection process. This model assumes that
there are no interactions among the different
nucleic acid molecules in the pool and that no
multiprotein aggregates form. Further, we re-
place the impractical summation over distinct
sequences (on the order of 1015) with an integral
over the affinity probability distribution p(Ka)
for a particular protein, P. It is important to note
that once p(Ka) has been defined, there are no
adjustable parameters in the model; the remain-
der of the variables are determined by the ex-
perimental conditions or are evaluated explic-
itly.

The total concentration of sequences with
an affinity Ka is given by:

Lt(Ka) = p(Ka)Lt

Equation 9.1.3

where Lt is the total concentration of nucleic
acid ligands. Concentrations of the ligand:pro-
tein complexes for a particular affinity Ka are
given by:

[P : L(Ka)] = Ka[P][L(Ka)]

Equation 9.1.4

By applying mass conservation:

Pt = [P] + ∫[P: L(Ka)]dKa      (a)

Lt(Ka) = [L(Ka)] + [P: L(Ka)]     (b)

Equation 9.1.5

along with the equilibrium condition expressed
in Equation 9.1.4, it is easily shown that the free
protein concentration is given by:

[P] = 
Pt

1 + ∫  
(n)

KaLt(Ka)
1 + Ka[P]

 dKa

 = 
Pt

1 + 〈
KaLt

1 + Ka[P]
〉

Equation 9.1.6

where Pt is the total concentration of protein,
both free and bound in complexes. Note that
the integrated term in Equation 9.1.5a denotes
the total amount of complex formed for all
affinity species obtained by summing over the
affinity distribution; a similar interpretation
holds for the integrated term in Equation 9.1.6.
Application of Equation 9.1.3 allows the inte-
gral in Equation 9.1.6 to be replaced with angle
brackets (<...>). The only unknown in Equation
9.1.6 is [P] and may be conveniently solved for

iteratively to self-consistency by choosing an
initial free protein concentration of zero. Once
[P] is determined, concentrations of all other
species are easily determined with Equation
9.1.4 and Equation 9.1.5.

In the ideal case, all ligands that are com-
plexed with protein would be carried into the
next round of SELEX and all noncomplexed
ligands would be lost. The optimal strategy for
such an ideal partitioning would then be trivial:
smaller concentrations of protein would always
lead to better selection of the highest-affinity
ligands over all other ligands.

Unfortunately, no partitioning method is
ideal. Only a fraction of the protein:ligand com-
plexes are recovered, and some portion of the
noncomplexed ligands is partitioned along with
the complexed ones. We call the fraction of
correctly partitioning complexes the partition-
ing efficiency, eff. In the case of using nitrocel-
lulose filters as a partitioning method, for ex-
ample, the efficiency for different proteins may
vary from closely approaching unity to as low
as 0.1, where only 10% of the input protein (and
complexes) is captured. For a given protein, the
partitioning efficiency can be measured. We
usually assume that this efficiency is the same
for all protein:nucleic acid complexes for a
particular protein. We define the background
partitioning, bg, as that fraction of noncom-
plexed ligands which are recovered by the par-
titioning method. For nitrocellulose filters, the
background is easily determined and is found
to be typically on the order of 1% to 0.01%. We
usually assume that this background value is
the same for all ligands (however, see Conclud-
ing Remarks regarding ligands to nitrocellulose
filters). We will show below that these deviations
from ideality make the question of finding opti-
mal conditions for SELEX an interesting one.

Application of the above considerations
leads directly to an equation for determining
the frequency, or probability p(n+1)(Ka), at
which ligands L(Ka) with an affinity Ka will
exist in the sequence pool at round n+1 follow-
ing a cycle of SELEX with a pool composition
of p(n)(Ka) (Irvine et al., 1991):

p(n+1)(Ka) = 
eff Ka[P][L(Ka)] + bg[L(Ka)]

∫ {
(n)

eff Ka[P][L(Ka)] + bg[L(Ka)]}dKa

Equation 9.1.7

where ∫(n) ... dKa indicates a summation over the
affinity distribution at round n, and thus repre-
sents the total amount of nucleic acid parti-
tioned at round n. Note that Equation 9.1.7 is

Current Protocols in Nucleic Acid Chemistry

9.1.7

Combinatorial
Methods in
Nucleic Acid
Chemistry



cast in terms of [P], determined from Equation
9.1.6, and [L(Ka)], determined from Equations
9.1.4 to 9.1.6, both evaluated with the pool at
round n, and affinity distribution p(n)(Ka). The
repeated application of this equation, with cho-
sen concentrations of total protein and nucleic
acid for each round, allows the initial affinity
distribution to be propagated through multiple
rounds of SELEX. The exponential enrichment
is a consequence of equilibrium binding, i.e.,
Ka = e–∆G/kBT, and is reflected in the changes in
the affinity distributions from one round
p(n)(Ka) to the next p(n+1)(Ka).

Equation 9.1.7 assumes that all partitioned
sequences will be enzymatically processed
with the same efficiency and with complete
fidelity. In order to incorporate the effects of
mutations during the RT, PCR, and transcrip-
tion steps, a model for computing affinity as a
function of sequence is required. As previously
discussed, affinity selection using SELEX is
designed to isolate those high-affinity se-
quences that exist in the initial pools, so treat-
ment of mutations is not included here. To
accurately model in vitro evolution, however,
where mutations are a key characteristic of the
technique, such a mapping is essential (Kauff-
man and Macready, 1995; Schuster, 1995). In
our mathematical description here, however,
we are concerned with selection and not evolu-
tion.

This completes our description of the mathe-
matical model for SELEX. To assess the utility
of this model, we present a comparison of
simulated results to SELEX experimental re-
sults to find high-affinity oligonucleotides
binding to E. coli Rho factor (Fig. 9.1.2), a
transcription terminator (Schneider et al.,
1993). For the simulated data, a log-normal
distribution for p(Ka) is assumed and parame-
terized with experimental data as described
above. The remaining parameters, bg, eff, and
the protein and RNA concentrations were taken
from the SELEX experimental work. Progress
of the enrichment during rounds of SELEX is
monitored by pool affinity measured with bind-
ing curves. The simulated results compare quite
well with the experiment (Fig. 9.1.4); the es-
sential features of in vitro selection are quanti-
tatively captured in the equilibrium model de-
veloped by (Irvine et al., 1991) and presented
here in terms of affinity distribution functions.

We now address the issue of how a particular
distribution affects the progress of SELEX ex-
periments. We have constructed three distinct
affinity distributions that have identical values
for <Ka>, Kw, and fw, and yet different overall
distributions p(Ka). We compare a two-point
distribution consisting of the affinities <Ka>
and Kw, a log-normal distribution discussed in
detail above (Fig. 9.1.3a), and a Poisson distri-
bution p(lnKa) = α2xe−αx, where x = lnKa

−

Figure 9.1.4 Comparison of enrichment obtained with experiment and theory. Enrichment, as
measured by pool affinities determined during a SELEX experiment against E. coli rho factor (open
circles) is compared to that calculated with the equilibrium model (filled diamonds). All parameters
for this simulation, with no adjustable parameters, were obtained from Schneider et al. (1993). A
log-normal initial distribution, parameterized as described in the text, was used in the simulation.
The initial winner frequency is the parameter with the highest uncertainty in determination, and thus
this parameter was varied as described below. Closed diamonds represent the simulation per-
formed at an initial winner frequency of 10−10. Bars above and below represent simulations using
initial winner frequencies of 10−9 and 10−11, respectively. The error bars on the experimental data
are 95% confidence intervals found by fitting binding curves to the data of Schneider et al. (1993).
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<lnKa> (Fig. 9.1.3c). The log-normal distribu-
tion spans the largest range of Ka values, fol-
lowed by the Poisson distribution, and finally
the two-point distribution. These initial distri-
butions are used to initiate 12 rounds of SELEX
performed in the absence of background and
with identical conditions throughout. The re-
sults are displayed in Figure 9.1.5 for three
different values of fw. Sensibly, the in vitro
selection is completed most rapidly for the case
where the winning frequency is highest in the
starting pool. In all cases of fw, the enrichment
for the first round, where the <Ka>, Kw, and fw
are well matched, is essentially the same for all
three distributions, illustrating the importance
that these features of the distribution have for
enrichment. As the SELEX progresses, how-
ever, the distributions begin to differ in <Ka>
and fw, and some differences in enrichment
progress begin to emerge. The two-point distri-
bution moves towards full enrichment (100%
Kw) fastest, followed by the Poisson, and finally
the log-normal distribution. This is due to in-
creased competition for binding reflected in the
width of the distributions. Fewer species compet-
ing for limited binding helps drive the two-point
distribution to completion, while the normal dis-
tribution takes many more rounds, on average, to
completely saturate the high-affinity binders.

A simulation of SELEX requires that the
affinity profile for the initial random pool of
nucleic acids be defined. Although little is
known about fw and Kw at the outset of an

experiment, there is, fortunately, a great deal of
useful theory to help guide the design of in vitro
selection experiments. In the next section, we
present theoretical guides for SELEX that have
been derived from the equilibrium model of
SELEX presented here, even without a detailed
knowledge of the affinity distribution. This set
of analytical, theoretical results is, at least to
first appearances, independent of the shape of
the affinity profile.

OPTIMAL CONDITIONS FOR IN
VITRO SELECTION

A variety of useful predictions may be de-
rived from the SELEX theory as presented thus
far without having to resort to computer simu-
lations. The more useful of these predictions
have to do with the conditions for optimal
enrichment of the highest-affinity ligands.
These conditions depend on the background,
bg, the partitioning efficiency, eff, the affinity
of the winning ligands, Kw, and the average pool
affinity, <Ka>. It is important to remember that
the pool affinity <Ka> used below is not neces-
sarily the same as the affinity that is measured
experimentally (see Fig. 9.1.3). This is espe-
cially true of the earliest rounds of SELEX.

There are two dimensionless terms that oc-
cur often in SELEX theory. We define these as:

ε = eff
bg

Equation 9.1.8

Figure 9.1.5 Comparison of three different initial affinity distributions versus progress of enrich-
ment. The enrichment is measured here by the frequency of the winning ligands in the pool at each
round for a two-point distribution (marked with x’s) a log-normal distribution (marked with open
circles) and a Poisson distribution (marked with triangles) of binding affinities.
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and

k = 
Kw

Kpool

Equation 9.1.9

As defined, both the partitioning effectiveness
ε and the affinity ratio k should be much greater
than unity in most cases. The pool affinity is
defined by the total complexed [P:L(Ka)] and
un-complexed [L(Ka)] molecules summed over
p(Ka): 

Kpool = ∫ [P:L(Ka)] dKa/{[P] ∫ [L(Ka)]dKa}. 

In other words, Kpool is the affinity for the pool
as a whole that would result from a measure-
ment of the total amount of ligand bound for
the given protein and ligand concentration and
distribution of affinities embodied in p(Ka). It
is important to note, however, that Kpool is not
a true equilibrium constant since its value
changes with total protein and ligand concen-
tration. As the total amount of free protein goes
to zero (excess nucleic acid), Kpool approaches
<Ka>. Approximating Kpool by <Ka> is actually
quite good for most SELEX conditions since
these conditions usually correspond to excess
ligand concentrations.

The enrichment is defined as the factor by
which the frequency of the “winner” in the
affinity distribution changes between rounds of
SELEX. Clearly, choosing experimental con-
ditions to optimize enrichment leads to the
greatest progress during a round of SELEX.
Most of the discussion that follows focuses on
guidelines to experimental conditions that
maximize enrichment and therefore lead to
most efficient in vitro selection schemes. It can
be shown (Irvine et al., 1991) that the overall
maximum enrichment is given by:

E 
opt = 





1 = √εk

√ε  + √k





2

Equation 9.1.10

This optimum may be achieved at any given
total nucleic acid concentration by adjusting the
total protein concentration, whereas the con-
verse is not true. There are total protein concen-
trations whose corresponding optimal nucleic
acid concentrations do not achieve the maximal
enrichment possible; this behavior is discussed
in detail below.

Optimal Concentrations
The effect of protein concentration on en-

richment at several different background levels
is shown in Figure 9.1.6a. At high protein con-

centrations (above <Ka
−1>) nearly all ligands

are bound to an equal extent, and no selection
takes place. At low concentrations, the amount
of nucleic acid partitioned in the background
overwhelms the complexed nucleic acid mole-
cules, and again there is no selection. Clearly,
in the absence of background, the optimal strat-
egy is simply to use the lowest reasonable
concentration of protein. However, even in the
case of no background, it is important to note
that the maximum enrichment is fixed at k, or
the ratio of Kw to Kpool. As selection proceeds,
this ratio decreases since Kpool approaches Kw

and enrichment slows.
The effect of protein concentration on en-

richment at several different values of k is
shown in Figure 9.1.6b. The bold curve in this
plot (and in all plots in these two sets) is for
conditions identical to the bold curve in Figure
9.1.6a. The above argument for the effect of
protein concentration on enrichment holds here
as well. What is startling is the similarity between
the effects of k and the effects of ε on enrichment.
It is clear from Equation 9.1.10 that the effects of
k and ε are interchangeable for optimal enrich-
ment. In fact, it can be shown that, in the general
expression for enrichment as a function of total
protein and nucleic acid concentration, the di-
mensionless quantities k and ε are mathemati-
cally interchangeable as well.

At a given total ligand concentration, the
total protein concentration that leads to optimal
enrichment is closely approximated by:

Popt = (Lt + K pool
−1 ) / √εk

Equation 9.1.11

where Popt is the optimal total protein concen-
tration, and Lt is the total concentration of
ligand (Irvine et al., 1991). As Kw increases
compared to Kpool (increasing k) the optimal
protein concentration can be reduced, increas-
ing the so-called stringency of selection. This
reduction in protein concentration favors the
high-affinity molecules in their competition for
binding over lower-affinity species, thereby in-
creasing enrichment. In general, the protein
concentration that maximizes enrichment is
calculated with respect to either Lt or Kpool

−1 . For
typical nucleic acid concentrations ∼10−6 M
and high-affinity pools (>106 M−1), the total
ligand concentration Lt dominates the choice of
protein concentration, whereas for low-affinity
pools (<106 M–1) the affinity of the pool Kpool

−1

sets the concentration range for total protein. For
targets with little measurable binding to nucleic
acid pools, high protein concentrations should be
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employed; in extreme cases, protein can even
be in excess with respect to nucleic acid!

The open symbols in Figures 9.1.6a and
9.1.6b represent the optimal enrichment and
protein concentrations, calculated from Equa-
tion 9.1.10 and Equation 9.1.11, respectively.

Even though Equation 9.1.11 is approximate,
Figure 9.1.6 illustrates that it is clearly quite
good. It is important to note that at high protein
concentrations, the enrichment is reduced to
one (i.e., no enrichment); all nucleic acid is
bound by the protein whose concentration is

Figure 9.1.6 Enrichment as a function of key parameters for SELEX. The effects of protein
concentration on enrichment are displayed for various values of the partitioning effectiveness ε (a)
and the affinity ratio k (b) with fixed nucleic acid concentration. Similar plots for enrichment as a
function of nucleic acid concentration are displayed in (c) and (d) and as a function of signal-to-noise
ratio in (e) and (f). The optimal enrichments for each curve calculated with the approximations
discussed in the text are denoted by the open diamonds. The bold solid line in each plot represents
identical selection conditions (Pt = 10−8 M, Lt = 10−6 M, Kpool = 106 M−1, Kw = 109 M−1, bg = 0.1%,
eff = 1), aside from the independently varied parameter for each plot.
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in excess of even the highest dissociation con-
stants (lowest affinity binders) and no enrich-
ment occurs. At low protein concentration, the
background overwhelms the correctly parti-
tioned species, and again no enrichment occurs.
In the absence of background, as noted above,
the enrichment plateau at E = k is observed for
low protein concentration.

The effect of nucleic acid concentration on
enrichment at several different values of ε and
k are shown in Figure 9.1.6c and d. As in
Figures 9.1.6a and b, the effects of k and ε on
enrichment are identical. For conditions in
which nucleic acid is in excess, enrichment is
dominated by the competition of high-affin-
ity binders to the limited protein molecules;
the same behavior is observed here for fixed
protein concentration as for fixed nucleic
acid previously discussed, although excess
ligand appears to the right of center in Figures
9.1.6c and d, whereas it is to the left of center
in Figures 9.1.6a and b. As seen in the fixed
nucleic acid case, for zero background the
limiting enrichment approaches k, as nucleic
acid concentration far exceeds that of protein.
As total nucleic acid concentration decreases
and protein is in excess, enrichment is qualita-
tively different than that observed above for
fixed nucleic acid concentration. Here, enrich-
ment is seen to plateau at protein excess, the
plateau value depending on the fixed protein
concentration. The enrichment plateau is gov-
erned by Equation 9.1.12:

E(Lt → 0) = 
(1 + εkp)(1 + p)
(1 + εp)(1 + kp)

Equation 9.1.12

where p = PtKpool. At concentrations where
Equation 9.1.12 is valid, protein is in excess
over nucleic acid and there is no competition
for binding among the ligands. Selection is
driven purely by differences in affinity. It is
important to note that, even under these condi-
tions, enrichment occurs; these may be condi-
tions necessary for early rounds of SELEX
against targets with low overall pool affinity to
nucleic acids and in situations of high back-
ground.

The optimal total nucleic acid concentra-
tion, Lopt, at a given total protein concentration
is closely approximated by:

Lopt = Pt√εk − Kpool
−1

Equation 9.1.13

Equation 9.1.13 has an interesting symmetry
with respect to Equation 9.1.11 for optimal

protein concentration. For a given Pt, only one
concentration Lt exists which maximizes en-
richment as given by Equation 9.1.10. Simi-
larly, that concentration Lt determines the same
corresponding concentration Pt in order to
maximize enrichment. It is important to note
that the expression for optimal enrichment con-
tains no dependence on either Pt or Lt, and yet
there exist pairs of Popt and Lopt that achieve this
global enrichment maximum. In fact, for any
given Lt, there always exists a Pt that allows for
global enrichment. The converse, however, is
not true. When k or ε are small, Lopt becomes
negative for certain Pt values, indicating that
there is no local optimal, as seen in Figures
9.1.6c and d, for k or ε = 10; maximal global
enrichment can never be achieved for those
values of Pt.

The Signal-to-Noise Ratio
A quantity that is routinely (and easily)

measured at the bench is the signal-to-noise
ratio, S, which is defined as the amount of
oligonucleotide recovered during partitioning
in the presence of protein, divided by the
amount recovered in the absence of protein,
which is due to background. The effect of sig-
nal-to-noise on enrichment at several different
values of ε and k is shown in Figure 9.1.6,
panels e and f. The signal-to-noise ratio that
gives optimal enrichment is closely approxi-
mated by:

Sopt = 1 + √ε
k

Equation 9.1.14

which has the pleasing characteristic of being
independent of either protein or ligand concen-
tration. Indeed, S promises to be the reduced
variable of choice for guiding SELEX experi-
ments, as the enrichment E may be expressed
as a function of S independent of protein or
ligand concentration:

E = 
εk(S − 1) + (ε − S)

Sk(S − 1) + S(ε − S)

Equation 9.1.15

It is obvious from inspection of Equation
9.1.15 that the enrichment is sensibly reduced
to 1, either when S = 1 (representing no parti-
tioned complex), or when S = ε (when all
nucleic acid is partitioned). Equation 9.1.14
may be derived by setting the derivative of E
with respect to S in Equation 9.1.15 equal to
zero and solving for S, and assuming that ε,
k >> 1. As suggested by Equation 9.1.14 and
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Equation 9.1.15, and by Figures 9.1.6, panels
e and f, the effects of k and ε on enrichment as
a function of signal-to-noise are not identical,
as contrasted with protein and nucleic acid
concentrations discussed above. Decreasing
the background by a certain factor effectively
shifts the enrichment curve up by this factor for
large values of S. Decreasing k (decreasing the
difference between Kpool and Kw) causes the
enrichment curve to asymptotically approach a
straight line (on a log/log plot) with intercepts
on both the enrichment and signal-to-noise axes
equal to ε. This suggests a simple geometric
argument for choosing a near optimal signal-
to-noise. A signal-to-noise ratio may be picked
which is one-tenth of the way from the y axis
(signal-to-noise = 1) to the x intercept (signal-

to-noise = ε). To this, 1 is added to avoid the
sudden drop-off in enrichment near the y axis.
Formally, this is expressed as:

S 
∗ = 1 + 10√ε

Equation 9.1.16

which has a form somewhat similar to Equation
9.1.14. A key feature of Equation 9.1.16 is that
it is independent of k; no information about the
winning affinity is required to find the optimal
signal-to-noise. This information, however, is
implicitly accounted for in the determination
of S. A plot of the enrichment achieved using
Equation 9.1.16, divided by the maximum en-
richment as a function of ε and k, is shown in
Figure 9.1.7a. Even in the worst-case sce-
nario, an enrichment that is at least one third

Figure 9.1.7 Comparison of optimal enrichment to signal-to-noise guidelines. The enrichments
obtained using conditions that give signal-to-noise specified by Equation 9.1.16 are compared to
the optimal enrichments as a function of the partitioning effectiveness ε for various values of the
affinity ratio k in (a) while those obtained using conditions that fix S at two are displayed in (b). Note
that enrichment is usually better than 50% of the optimal for these two approximations.
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of the maximum possible enrichment is
achieved by picking conditions based only on
easily measured quantities (signal-to-noise and
background). In later rounds of SELEX, as k
decreases (i.e., as the affinity of the pool ap-
proaches that of the winner), this strategy
promises an enrichment at least 80% of the
maximum.

Yet the signal-to-noise ratio allows an even
simpler strategy. Setting the signal-to-noise ra-
tio to 2 guarantees an enrichment that is at least
50% of the maximum value (Fig. 9.1.7b).
Together, these plots suggest the following
strategy. Initially, conditions are used that
yield S close to 2 in the early rounds, and, as
movement is seen in the bulk affinity of the
pool, S is increased to values determined by
Equation 9.1.16. This strategy can be realized by
evaluating S for different ratios of Pt and Lt at
each round of SELEX and carrying forward
those conditions that closely match the desired
value of S.

The relative insensitivity of enrichment to
the signal-to-noise ratio at S >2 is this parame-
ter’s most exciting property. There is no effect
of protein or nucleic acid concentration on these
plots. Although one or both of these concentra-
tions would have to be varied in order to obtain
the desired signal-to-noise, it does not matter
how this is done (a higher signal-to-noise could
be obtained by lowering nucleic acid concen-
tration or raising protein concentration, or a
combination of both), and it is not necessary to
know what these concentrations actually are.

The range of signal-to-noise ratios that give
near-optimal enrichment is also relatively in-
sensitive to either background or the ratio of the
winner affinity to the pool affinity. In nearly all
cases, enrichment close to the optimal may be
achieved by using signal-to-noise ratios be-
tween 2 and 4. Amazingly enough, the signal-
to-noise ratio provides a way to optimize SE-
LEX even while thrashing around in the dark,
so to speak. That is, based on the signal-to-noise
ratio, an experimenter may select conditions
that lead to enrichment of the highest-affinity
ligand that is within a factor of two of the best
enrichment achievable, and this is possible
without the benefit of any affinity data whatso-
ever!

To illustrate this point, we present a com-
parison of three simulated SELEX experi-
ments. In each simulation, we begin with the
same initial distribution chosen to be a log-nor-
mal affinity profile. For each profile, the SELEX
experiments are performed as follows. The first
SELEX simulation follows a set of conditions
that optimize pool enrichment at each round,
while the second two simulations utilize the
signal-to-noise prescriptions outlined above.
For the first signal-to-noise simulation, condi-
tions are selected to yield S of 2, while the
second signal-to-noise simulation employs
Equation 9.1.16 to select appropriate condi-
tions at each round. Results from these simu-
lations are displayed in Figure 9.1.8. The
signal-to-noise procedure performs remark-
ably well, tracking the optimal-condition SELEX

Figure 9.1.8 Progress of SELEX by different guidelines. The progress for rounds of SELEX
performed under optimal conditions (filled diamonds) is compared to two signal-to-noise S guide-
lines, choosing conditions with fixed S of 2 (open squares) and choosing conditions that yield S
given by Equation 9.1.16 (open diamonds). Both S guidelines yield progress remarkably close to
optimal.
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throughout the simulation. Even though we
expect the signal-to-noise optimal to average
only 75% maximal enrichment, the results in
Figure 9.1.8 demonstrate significantly better
performance. This is presumably due to the
fact that enrichment that is less than optimal
in one round leads to a potentially greater
enrichment maximum in the next round
compared to the corresponding round of
fully optimized SELEX. Even though the
near-optimal falls behind, it is able to keep up
with the optimal conditions. We are currently
working to further validate these simulation
results with experimental verification for a
number of protein targets.

As noted above, it is easy to experimentally
evaluate the signal-to-noise for a particular set
of conditions for a round of SELEX. Since we
have shown that signal-to-noise can be used to
adjust conditions to achieve near-maximal
global enrichment, guiding automated SELEX
is an obvious application of signal-to-noise
theory; indeed, this was the motivation for
exploring enrichment as a function of signal-
to-noise. An automated system might easily be
programmed to evaluate the signal-to-noise ra-
tio and adjust protein or nucleic acid concen-
trations (or both) appropriately to achieve near-
optimal enrichment. As all the other manipula-
tions in SELEX follow standard protocols, the
addition of a protocol for choosing selection
conditions should allow for efficient automat-
ion of the entire SELEX process with perform-
ance close to the theoretical optimal.

CONCLUDING REMARKS
We have presented a powerful mathematical

model for equilibrium in vitro selection experi-
ments that allows for the identification of con-
ditions leading to optimal enrichment for each
round of the iterative SELEX procedure. We
have cast the astronomical problem of sum-
ming over distinct sequences into a tractable
integration over affinity distributions. Al-
though a detailed knowledge of such distribu-
tions is currently unavailable, we have demon-
strated the utility of our approach by both com-
paring simulations to experiment and by
deriving an optimization guide that is inde-
pendent of the details of the affinity distribu-
tions. We have demonstrated that optimization
of SELEX conditions may be easily achieved
by monitoring experimental signal-to-noise, a
readily measured quantity. This approach
promises to be quite powerful for choosing
near-optimal conditions for equilibrium in vitro
selection experiments.

Recent focus on the automation of SELEX
has led to the development of microtiter plate
formats for affinity partitioning. In addition to
being a convenient format for automation,
plate-SELEX offers the possibility of adding a
kinetic-selection step to the process, less en-
cumbered by rebinding events as compared to
column formats. Ligands could therefore be
subjected to selection pressures for kinetic
characteristics, such as long off-rates, in addi-
tion to the usual high-affinity selection pres-
sures. This is easily achieved through washing
after high-affinity ligands have been captured
by immobilized targets on the plates. The ef-
fects of such kinetic pressures can easily be
included in the mathematical model for SE-
LEX; dramatic enrichment for such kinetic
characteristics is theoretically possible (Levi-
tan, 1998). There is some experimental evi-
dence to support this theory and more experi-
ments are currently underway.

At this point, it is worth emphasizing that
the above theory is predicated on the assump-
tion that the background consists of nonspecific
(not affinity-related) partitioning of the input
oligonucleotides. Although this is a reasonable
assumption, there are at least two other possible
sources of background. Background could in-
clude outside contamination or artifactual,
nonamplifiable signal (such as unbound radio-
active label). In these cases, the actual back-
ground would be lower than what is measured,
and the above strategies would have to be ad-
justed accordingly. Background could also,
however, consist of sequences selected for their
binding affinity to targets other than the target
of interest. For example, sequences that bind to
nitrocellulose, or sequences that bind to con-
taminants in the target preparation, may be
partitioned along with specifically bound se-
quences. In this case, the behavior of the SELEX
experiment is better described by a generaliza-
tion of the SELEX theory to encompass multi-
ple targets (Vant-Hull et al., 1998). Such a
theory suggests that high-affinity ligands will
evolve independently to each of the various
targets in proportion to the concentrations of
the respective targets. The SELEX experiment
is still likely to be successful, however, as long
as: (1) the concentration of the undesired target
is not so great that ligands to the desired target
cannot be found, (2) the partitioning of the
undesired ligands does not preclude partition-
ing of the desired ligands (as may be the case
when binders to the partitioning matrix are
being evolved), or (3) the partitioning effi-
ciency for the desired target is not low com-
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pared to the undesired targets. In this final case,
ligands to the desired target may only be se-
lected after a great many rounds (however, low
partitioning efficiency has little effect in the
case of a single target). In any case, the best
overall strategy for in vitro selection is to make
background as low as possible.
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