
APPENDIX 3HAnalyzing Radioligand Binding Data
A radioligand is a radioactively labeled drug that can associate with a receptor, transporter,
enzyme, or any protein of interest. The term ligand derives from the Latin word ligo,
which means to bind or tie. Measuring the rate and extent of binding provides information
on the number of binding sites, and their affinity and accessibility for various drugs. While
physiological or biochemical measurements of tissue responses to drugs can prove the
existence of receptors, only ligand binding studies (or possibly quantitative immuno-
chemical studies) can determine the actual receptor concentration. Radioligand binding
experiments are easy to perform, and provide useful data in many fields. For example,
radioligand binding studies are used to:

1. Study receptor regulation, for example during development, in diseases, or in re-
sponse to a drug treatment.

2. Discover new drugs by screening for compounds that compete with high affinity for
radioligand binding to a particular receptor.

3. Investigate receptor localization in different organs or regions using autoradiography.

4. Categorize receptor subtypes.

5. Probe mechanisms of receptor signaling, via measurements of agonist binding and
its regulation by ions, nucleotides, and other allosteric modulators.

This unit reviews the theory of receptor binding and explains how to analyze experimental
data. Since binding data are usually best analyzed using nonlinear regression, this unit
also explains the principles of curve fitting with nonlinear regression. For more general
information on analyses of receptor data, see books by Limbird (1996) and Kenakin
(1993).

BINDING THEORY

The Law of Mass Action
Binding of a ligand to a receptor is a complex process involving conformational changes
and multiple noncovalent bonds. The details aren’t known in most cases. Despite this
complexity, most analyses of radioligand binding experiments successfully use a simple
model, called the law of mass action:

The model is based on these simple ideas:

1. Binding occurs when ligand and receptor collide (due to diffusion) with the correct
orientation and sufficient energy. The rate of association (number of binding events
per unit of time) equals [ligand] × [receptor] × kon, where kon is the association rate
constant in units of M−1 min−1.

2. Once binding has occurred, the ligand and receptor remain bound together for a
random amount of time. The rate of dissociation (number of dissociation events per
unit time) equals [ligand ⋅ receptor] × koff, where koff is the dissociation rate constant
expressed in units of min−1.

3. After dissociation, the ligand and receptor are the same as they were before binding.

ligand receptor ligand receptor→+ ⋅←
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The equilibrium dissociation constant Kd
Equilibrium is reached when the rate at which new ligand⋅receptor complexes are formed
equals the rate at which they dissociate:

Rearrange to define the equilibrium dissociation constant Kd.

The Kd, expressed in units of moles/liter or molar (M), is the concentration of ligand that
occupies half of the receptors at equilibrium. To see this, set [ligand] equal to Kd in the
equation above. In this case, [receptor] must equal ligand⋅receptor, which means that half
the receptors are occupied by ligand.

Affinity
The term affinity is often used loosely. If the Kd is low (e.g., pM or nM), that means that
only a low concentration of ligand is required to occupy the receptors, so the affinity is
high. If the Kd is larger (e.g., µM or mM), a high concentration of ligand is required to
occupy receptors, so the affinity is low. The term equilibrium association constant (Ka) is
less commonly used, but is directly related to the affinity of a compound. The Ka is defined
to be the reciprocal of the Kd, so it is expressed in units of liters/mole. A high Ka (e.g., >
108 M−1) would represent high affinity.

Because the names sound familiar, it is easy to confuse the equilibrium dissociation
constant (Kd, in molar units) with this dissociation rate constant (Koff, in min −1 units), and
to confuse the equilibrium association constant (Ka, in liter/mole units) with the associa-
tion rate constant (Kon, in M−1 min−1 units). To help avoid such confusion, equilibrium
constants are written as capital “K” and the rate constants with a lower case “k.”

A wide range of Kd values are seen with different ligands. Since the Kd equals the ratio
koff/kon, compounds can have different Kd values for a receptor either because the
association rate constants are different, the dissociation rate constants are different, or
both. In fact, association rate constants are all pretty similar (usually 108 to 109 M−1 min−1,
which is about two orders of magnitude slower than diffusion), while dissociation rate
constants are quite variable (with half-times ranging from seconds to days).

Fractional occupancy at equilibrium
Fractional occupancy is defined as the fraction of all receptors that are bound to ligand.
The law of mass action predicts the fractional receptor occupancy at equilibrium as a
function of ligand concentration.

A bit of algebra creates a useful equation. Multiply both numerator and denominator by
[ligand] and divide both by [ligand ⋅ receptor]. Then substitute the definition of Kd.

The approach to saturation as [ligand] increases is slower than one might imagine (see
Fig. A.3H.1). Even using radioligand at a concentration equal to nine times its Kd will
only lead to its binding to 90% of the receptors.
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Assumptions of the law of mass action
Although termed a “law,” the law of mass action is simply a model. It is based on these
assumptions:

1. All receptors are equally accessible to ligands.

2. All receptors are either free or bound to ligand. The model ignores any states of partial
binding.

3. Neither ligand nor receptor are altered by binding.

4. Binding is reversible.

If these assumptions are not met, there are two choices. One choice is to develop a more
complicated model, which is beyond the scope of this unit. The other choice is to analyze
the data in the usual way, but interpret the result as an empirical description of the system
without attributing rigorous meanings to the Kd and rate constants.

Nonspecific Binding

In addition to binding to the receptors of physiological interest, radioligands also bind to
other (nonreceptor) sites. Binding to the receptor of interest is termed specific binding.
Binding to other sites is called nonspecific binding. Because of this operational definition,
nonspecific binding can represent several phenomena:

1. The bulk of nonspecific binding represents some sort of interaction of the ligand with
membranes. The molecular details are unclear, but nonspecific binding depends on
the charge and hydrophobicity of a ligand—but not its exact structure.

2. Nonspecific binding can also result from binding to receptor transporters, or to
enzymes not of interest to the investigator (e.g., binding of epinephrine to serotonin
receptors).

3. In addition, nonspecific binding can represent binding to the filters used to separate
bound from free ligand.

In many systems, nonspecific binding is linear with radioligand concentration. This means
that it is possible to account for nonspecific binding mathematically, without ever
measuring nonspecific binding directly. To do this, measure only total binding experi-
mentally, and fit the data to models that include both specific and nonspecific components
(see More Complicated Situations, below).
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Figure A.3H.1 Occupancy at equilibrium. The fraction of receptors occupied by a ligand at
equilibrium depends on the concentration of the ligand compared to its Kd.
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Most investigators, however, prefer to measure nonspecific binding experimentally. To
measure nonspecific binding, first block almost all specific binding sites with an unlabeled
drug. Under these conditions, the radioligand only binds nonspecifically. This raises two
questions: which unlabeled drug should be used and at what concentration?

The most obvious choice of drug to use is the same compound as the radioligand, but
unlabeled. In many cases, this is necessary as no other drug is known to bind to the
receptors. Most investigators avoid using the same compound as the hot and cold ligand
for routine work because both the labeled and unlabeled forms of the drug will bind to
the same specific and nonspecific sites. This means that the unlabeled drug will reduce
binding purely by isotopic dilution. When possible, it is better to define nonspecific
binding with a drug chemically distinct from the radioligand.

The concentration of unlabeled drug should be high enough to block virtually all the
specific radioligand binding, but not so much that it will cause more general physical
changes to the membrane that might alter specific binding. If studying a well-charac-
terized receptor, a useful rule of thumb is to use the unlabeled compound at a concentration
equal to 100 times its Kd for the receptors, or 100 times the highest concentration of
radioligand, whichever is higher.

The same results should be obtained from defining nonspecific binding with a range of
concentrations of several drugs. Ideally, nonspecific binding is only 10% to 20% of the
total radioligand binding. If the nonspecific binding makes up more than half of the total
binding, it will be hard to get quality data. If the system exhibits a great deal of nonspecific
binding, use a different kind of filter, wash with a larger volume of buffer or a different
temperature buffer, or use a different radioligand.

Ligand Depletion

The equations that describe the law of mass action include the variable [ligand], which is
the free concentration of ligand. All the analyses presented later in this unit assume that
a very small fraction of the ligand binds to receptors (or to nonspecific sites), so that the
free concentration of ligand is approximately equal to the concentration added.

In some experimental situations, the receptors are present in high concentration and have
a high affinity for the ligand. A large fraction of the radioligand binds to receptors (or
nonspecific sites), depleting the amount of ligand remaining free in solution. The
discrepancy is not the same in all tubes or at all times. Many investigators use this rule of
thumb: if <10% of the ligand binds, don’t worry about ligand depletion.

If possible, design the experimental protocol to avoid situations where >10% of the ligand
binds. This can be done by using less tissue in the assays; however, this will also decrease
the number of counts. An alternative is to increase the volume of the assay without
changing the amount of tissue. In this case, more radioligand will be needed.

If radioligand depletion cannot be avoided, the depletion must be accounted for in the
analyses. There are several approaches.

1. Measure the free concentration of ligand in every tube.

2. Calculate the free concentration in each tube by subtracting the number of cpm
(counts per minute) of total binding from the cpm of added ligand. This method works
only for saturation binding experiments, and cannot be extended to analysis of
competition or kinetic experiments. One problem with this approach is that experi-
mental error in determining specific binding also affects the calculated value of free
ligand concentration. When fitting curves, both x and y would include experimental
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error, and the errors will be related. This violates the assumptions of nonlinear
regression. Using simulated data, Swillens (1995) has shown that this can be a
substantial problem. Another problem is that the free concentration of radioligand
will not be the same in tubes used for determining total and nonspecific binding.
Therefore specific binding cannot be calculated as the difference between the total
binding and nonspecific binding.

3. Fit total binding as a function of added ligand using an equation that accounts both
for nonspecific binding and for ligand depletion (Swillens, 1995). By analyzing
simulated experiments, more reliable results are obtained than those obtained from
calculating free ligand by subtraction.

SATURATION BINDING EXPERIMENTS

Saturation binding experiments determine receptor number and affinity by determining
specific binding at various concentrations of the radioligand. Because this kind of
experiment can be graphed as a Scatchard plot (more accurately attributed to Rosenthal,
1967), they are sometimes called “Scatchard experiments.”

The analyses depend on the assumption that the incubation has reached equilibrium. This
can take anywhere from a few minutes to many hours, depending on the ligand, receptor,
temperature, and other experimental conditions. Since lower concentrations of radioli-
gand take longer to equilibrate, use a low concentration of radioligand (perhaps 10% to
20% of the estimated Kd) when measuring how long it takes the incubation to reach
equilibrium. Experimenters typically use 6 to 12 concentrations of radioligand.

Theory of Saturation Binding

Nonspecific binding
Analysis of saturation binding curves requires accounting for nonspecific binding.
Although it is possible to account for nonspecific binding mathematically by analyzing
total binding (see More Complicated Situations, below), most investigators assess non-
specific binding experimentally by measuring radioligand binding in the presence of a
concentration of an unlabeled compound that binds to essentially all the receptors. Since
all the receptors are occupied by the unlabeled drug, the radioligand only binds nonspe-
cifically.

Once the nonspecific binding has been determined, subtract it from total binding to
calculate specific binding. There are two ways to do this.

1. Experimentally measure nonspecific binding at each concentration of radioligand.
Calculate specific binding as total binding minus nonspecific binding at each con-
centration.

2. An alternative approach relies on the observation that nonspecific binding is generally
proportional to the concentration of radioligand (within the concentration range used
in the experiment). This means that a graph of nonspecific binding as a function of
radioligand binding is generally linear, as shown in Figure A.3H.2. Once nonspecific
binding is observed to be linear with radioligand concentration in the system, linear
regression can be used to find the best-fit line through the nonspecific binding data.
Specific binding is calculated by subtracting the nonspecific binding predicted by
that line from the total binding measured at each concentration of radioligand. The
major advantage of this approach is that measurements of nonspecific binding at each
concentration of radioligand are not needed. For example, one can measure total
binding at eight concentrations of radioligand, and nonspecific binding at only four
concentrations.
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Panel A of Figure A.3H.2 shows data from a nearly ideal system, where nonspecific
binding is less than 25% of total binding. Panel B shows a less ideal system where
nonspecific binding is over 50% of total binding at high ligand concentrations. If
nonspecific binding were much higher than this, it would be very difficult to get reliable
results.

Equations used to calculate binding
Specific binding at equilibrium equals fractional occupancy times the total receptor
number (Bmax), and depends on the concentration of radioligand ([L]):

This equation describes a rectangular hyperbola or a binding isotherm. [L] is the
concentration of free radioligand, the value plotted on the x axis (see Fig. A.3H.3). Bmax

is the total number of receptors and is expressed in the same units as the y values (i.e.,
cpm, sites/cell, or fmol/mg protein). Kd is the equilibrium dissociation constant (expressed
in the same units as [L], usually nM). Figure A.3H.3 shows the total binding, specific
binding, and nonspecific binding for a hypothetical experiment.
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Figure A.3H.2 Examples of nonspecific binding. (A) [3H]Mesulergine binding to serotonin receptors has low
nonspecific binding (<25% of total binding at the highest concentrations). (B) [3H]Meproadifen binding to the ion
channel of nicotinic receptors has high nonspecific binding (>50%).
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Figure A.3H.3 Total binding, specific binding, and nonspecific binding for a saturation binding
experiment.
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Analysis of Saturation Binding Curves

Using nonlinear regression to determine Bmax and Kd
Follow these steps to analyze the data with nonlinear regression:

1. Calculate specific binding at each concentration of ligand (or, in rare cases, decide
to analyze only total binding; see More Complicated Situations, below).

2. Convert the specific binding data from counts per minute to more useful units such
as fmol/mg protein or sites per cell.

3. Define x as the radioligand concentrations in nM or pM. Define y as the specific
binding in fmol/mg or sites per cell.

4. Fit the data to this equation.

5. If the curve fitting program does not provide initial values (sometimes called
estimated values) automatically, estimate Bmax as the largest value of y and estimate
Kd as 0.2 times the largest value of x.

Are the results reasonable?
Before accepting the results of the curve fit, ask the questions listed in Table A.3H.1 to
determine whether the results are reasonable.

If the results are not reasonable, the experimental protocol may need revision. Also check
that the data are being analyzed correctly. In addition, it’s possible that the system is more
complex than the simple one-site binding model. To determine whether the system follows
the assumptions of the simple model, consider the points in Table A.3H.2.

Displaying results as a Scatchard plot
Before nonlinear regression programs were widely available, scientists transformed data
to make a linear graph and then analyzed the transformed data with linear regression.
There are several ways to linearize binding data, but Scatchard plots (more accurately
attributed to Rosenthal, 1967) are used most often. As shown in Figure A.3H.4, the x axis
of the Scatchard plot represents specific binding (usually labeled “bound”) and the y axis
is the ratio of specific binding to concentration of free radioligand (usually labeled
“bound/free”). Bmax is the x intercept; Kd is the negative reciprocal of the slope.
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Figure A.3H.4 Displaying results as a Scatchard plot. (A) Specific binding as a function of free
radioligand. (B) Transformation of Scatchard data to a plot.
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Table A.3H.1 Evaluating the Results of Saturation Binding Curve Analysis

Question Comment

Does the calculated curve go near the
data points?

If the curve doesn’t go near the data, then
something went wrong with the curve fit, and the
“best-fit” values of Bmax and Kd should be ignored.

Were sufficient concentrations of
radioligand used?

Ideally, the highest concentration should be at least
10 times the Kd. Calculate the ratio of the highest
radioligand concentration used divided by the Kd
reported by the program (both in nM or pM). The
ratio should be greater than 10.

Is the Bmax reasonable? Typical values for Bmax are 10 to 1000 fmol binding
sites per milligram of membrane protein, 1000 sites
per cell, or 1 receptor per square micron of
membrane. If using cells transfected with receptor
genes, then the Bmax may be 10 to 100 times larger
than these values.

Is the Kd reasonable? Typical values for Kd of useful radioligands range
between 10 pM and 100 nM. If the Kd is much
lower than 10 pM, the dissociation rate is probably
very slow and it will be difficult to achieve
equilibrium. If the Kd is much higher than 100 nM,
the dissociation rate will probably be fast, and may
result in the loss of binding sites during separation
of bound from free radioligand.

Are the standard errors too large? Are
the confidence intervals too wide?

Nonlinear regression programs report the
uncertainty of the best-fit values for Bmax and Kd as
standard errors and 95% confidence intervals.
Divide the SE of the Bmax by the Bmax, and divide
the SE of the Kd by the Kd. If either ratio is much
larger than ∼20%, look further to determine why.

Is the nonspecific binding too high? Divide the nonspecific binding at the highest
concentration of radioligand by the total binding at
that concentration. Nonspecific binding should
usually be less than 50% of the total binding.

Table A.3H.2 Evaluating the Assumptions of Saturation Binding Analysis

Assumption Comment

Binding has reached equilibrium. It takes longest for the lower concentrations to
equilibrate, so test equilibration time with the
lowest concentration of radioligand.

There is only one population of
receptors.

See Theory: Comparing One- and Two-Site Models,
below.

Only a small fraction of the radioligand
binds, therefore the free concentration
is essentially identical to the
concentration added.

Compare the cpm obtained for total binding to the
amount of ligand. If the ratio is greater than 10% at
any concentration, this assumption has been
violated. Increase the volume of the reaction but use
the same amount of tissue.

There is no cooperativity. Binding of a
ligand to one binding site does not alter
the affinity of another binding site.

See Cooperativity, below.
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When making a Scatchard plot, there are two ways to express the y axis.

1. One choice is to express both free ligand and specific binding in cpm so the ratio
bound/free is a unitless fraction. The advantage of this choice is that you can interpret
y values as the fraction of radioligand bound to receptors. If the highest y value is
large (>0.10), then the free concentration of radioligand will be substantially less than
the added concentration, and the standard analyses will yield inaccurate values for
Bmax and Kd. In this situation, either revise the experimental protocol or use special
analysis methods that deal with ligand, as discussed previously. The disadvantage of
this choice of units is that the slope of the line cannot be interpreted without
performing unit conversions.

2. An alternative is to express the y axis as the ratio of units used to display bound and
free on the saturation binding graph (i.e., sites/cell/nM or fmol/mg/nM). While these
values are hard to interpret, they simplify calculation of the Kd, which equals the
negative reciprocal of the slope. The specific binding units cancel when calculating
the slope. The negative reciprocal of the slope is expressed in units of concentration
(nM) which equals the Kd.

The problem with using Scatchard plots to analyze saturation binding experiments
While Scatchard plots are very useful for visualizing data, they are not the most accurate
way to analyze data. The problem is that the linear transformation distorts the experimen-
tal error. Linear regression assumes that the scatter of points around the line follows a
Gaussian distribution and that the standard deviation is the same at every value of x. These
assumptions are not true with the transformed data. A second problem is that the Scatchard
transformation alters the relationship between x and y. The value of x (bound) is used to
calculate y (bound/free), and this violates the assumptions of linear regression.

Since these assumptions are violated, the Bmax and Kd values determined by linear
regression of Scatchard-transformed data are likely to be further from the actual values
than the Bmax and Kd determined by nonlinear regression. Nonlinear regression produces
the most accurate results, whereas a Scatchard plot produces only approximate results.

Figure A.3H.5 illustrates the problem of transforming data. The left panel shows data that
follows a rectangular hyperbola (binding isotherm). The solid curve was determined by
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Figure A.3H.5 Why Scatchard plots (though useful for displaying data) should not be used for analyzing
data. (A) Experimental data with best-fit curve determined by nonlinear regression. (B) Scatchard plot of
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nonlinear regression. The right panel is a Scatchard plot of the same data. The solid line
shows how that same curve would look after a Scatchard transformation. The dotted line
shows the linear regression fit of the transformed data. The transformation amplified and
distorted the scatter, and thus the linear regression fit does not yield the most accurate
values for Bmax and Kd. In this example, the Bmax determined by the Scatchard plot is ∼25%
too large and the Kd determined by the Scatchard plot is too high. The errors could just
as easily have gone in the other direction.

The experiment in Figure A.3H.5 was designed to determine the Bmax with little concern
for the value of Kd. Therefore, it was appropriate to obtain only a few data points at the
beginning of the curve and many in the plateau region. Note however how the Scatchard
transformation gives undo weight to the data point collected at the lowest concentration
of radioligand (the lower left point in panel A, the upper left point in panel B). This point
dominates the linear regression calculations on the Scatchard graph. It has “pulled” the
regression line to become shallower, resulting in an overestimate of the Bmax.

Again, although it is inappropriate to analyze data by performing linear regression on a
Scatchard plot, it is often helpful to display data as a Scatchard plot. Many people find it
easier to visually interpret Scatchard plots than binding curves, especially when compar-
ing results from different experimental treatments.

Example of a Saturation Binding Experiment

Raw data
Figure A.3H.6 shows duplicate values for total binding of six concentrations of a
radioligand to angiotensin receptors on membranes of cells transfected with an angioten-
sin gene (R. Neubig, unpub. observ.). The figure also shows nonspecific binding (assessed
with 10 µM unlabeled angiotensin II) at three concentrations of radioligand.

Calculating specific binding
Since nonspecific binding was only determined at three concentrations of radioligand,
the standard method of subtracting each nonspecific value from the corresponding total
value cannot be used. Instead, the fact (confirmed in other experiments) that nonspecific
binding is proportional to radioligand concentration is relied upon, and the best-fit value
of nonspecific binding is subtracted from each total binding value. This can be done in
one step by choosing “remove baseline analysis” in GraphPad Prism software. Alterna-
tively:
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Figure A.3H.6 Sample saturation binding experiment. The ligand binding to angiotensin receptors in a
membrane preparation was measured. Total and nonspecific binding are shown.
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1. Use linear regression. The best fit line through the nonspecific binding data is:

2. Use this equation to calculate nonspecific binding at each of the six radioligand
concentrations.

3. Subtract that calculated value from the observed total binding to compute specific
binding (Table A.3H.3).

Converting units
Convert from cpm to fmol/mg using the amount of protein in each tube (0.01 mg), the
efficiency of the counting (90%), and the specific radioactivity of the ligand (2190
Ci/mmole).

NOTE:
1. Receptors in membrane preparations are often expressed as fmol of receptor per

milligram of membrane protein. One fmol is 10−15 moles.

2. Counting efficiency is the fraction of the radioactive disintegrations that are detected
by the counter. This example uses a radioligand labeled with 125I, so the efficiency
(90%) is very high.

3. The Curie (C:) is a unit of radioactivity and equals 2.22 × 1012 radioactive disintegra-
tions per minute.

4. The value 2190 Ci/mmole is worth remembering. It is the specific activity of ligands
iodinated with 125I, when every molecule is labeled with one iodine.

5. Simplifying the equation, simply divide the cpm by 43.756 (see Table A.3H.3).

Fitting a curve to determine Bmax and Kd
When fitting the example data to a curve, one must decide whether to enter the data as
six points or twelve. Entering each replicate individually is better, as it provides more
data to the curve fitting procedure. This should be avoided only when the replicates are
not independent (i.e., when experimental error in one value is likely to affect the other
value as well). In this case each replicate was determined in a separate tube poured over
a separate filter, and all the data were obtained from one membrane preparation. Except

[ ]( )nonspecific binding in cpm 15.25 390.5 radioligand  in nM= − +

12 12

cpm
fmol mg

2.22 10 dpm Ci 0.90cpm dpm 2190Ci mmol 10 mmol fmol 0.01mg−=
× × × × ×

Table A.3H.3 Calculating Specific Binding

[Radio-
ligand] 
(nM)

Total binding (cpm) Computed
nonspecific

binding (cpm)

Calculated specific
binding (cpm)

Specific binding
(fmol/mg)

Duplicate 1 Duplicate 2 Duplicate 1 Duplicate 2 Duplicate 1 Duplicate 2

0.125   818   826   34   784   792  17.9  18.1

0.25  1856  1727   82  1774  1645  40.5  37.6

0.5  3452  3349  180  3272  3169  74.8  72.4

1.0  6681  6055  375  6306  5680 144.1 129.8

2.0 10077  9333  766  9311  8567 212.8 195.8

4.0 13715 13277 1547 12168 11730 278.1 268.1
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for errors in preparing the radioligand dilutions, experimental errors will affect each value
independently.

Follow these steps to fit the data.

1. If the data-fitting program understands the concept of duplicates, then enter the data
with radioligand concentration as six x values and the duplicate values of specific
binding at each concentration. If the program does not understand how to deal with
duplicates, enter each concentration value twice in the x column, to fill twelve rows.
Enter the specific binding data as a column of twelve y values.

2. Choose nonlinear regression and choose or enter the one-site binding equation.
Expressed in the format of most curve fitting systems, it is:

3. If the chosen nonlinear regression program does not provide initial values automat-
ically, estimate values for Bmax and Kd. For Bmax, enter a value a bit higher than the
highest value in the data, perhaps 300 for this example. For Kd, estimate the
concentration of radioligand that binds to half the sites, perhaps 0.5 nM. These
estimated values do not have to be very accurate.

4. Start the curve fit, and note the results. The best-fit value of Bmax is 429. It is expressed
in the same units as the y values entered (fmol/mg). The best-fit value of Kd is 2.27.
It is expressed in the same units as the x values entered (nM).

5. Graph the specific binding with the best-fit curve as shown in Figure A.3H.7.

Creating a Scatchard plot
A Scatchard plot is a graph of specific binding vs. the ratio of specific binding to free
radioligand. For specific binding, the two replicates are averaged (individual replicates
could have been shown). For the example in Figure A.3H.8, bound/free is expressed as
fmol/mg divided by nM.

Figure A.3H.8 shows the Scatchard transformation of the specific binding data. Since it
is not appropriate to determine the Kd and Bmax from linear regression of a Scatchard plot,
derive the solid line on the graph from the best-fit values using nonlinear regression:
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Figure A.3H.7 Specific binding with the best-fit curve determined by nonlinear regression. These
data are the same as those shown in Figure A.3H.6 and Table A.3H.3.
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1. The x intercept of the Scatchard plot is Bmax, which equals 429 by nonlinear
regression, so one end of the line is at x = 429, y = 0.

2. The slope of the line is the negative reciprocal of the Kd. Since the Kd is 2.27 nM, the
slope must be −1/2.27, which equals −0.4405 nM−1.

3. The y intercept divided by the x intercept equals the negative slope. We know the
slope and the x intercept, so can derive the y intercept. It equals −slope × x intercept
= 0.4405 × 429 = 188.1.

4. Draw the line from x = 0, y = 188.1 to x = 429, y = 0, as in Figure A.3H.8.

Figure A.3H.8 also shows the dotted line derived by linear regression of the Scatchard
transformed data. This is shown only to emphasize the difference between it and the
best-fit line derived from nonlinear regression. The linear regression line should not be
used for data analysis and does not aid data presentation.

Critiquing the experiment
This example is not an ideal experiment. Consider these points:

The highest concentration of radioligand used (4 nM) is not even twice the Kd (2.27 nM).
Ideally the highest concentration of radioligand should be ten times the Kd. In addition,
the specific binding of the first few points lies below the best fit curve. There are many
possible explanations for this, including chance, but it may be because the system is not
at equilibrium. The lowest concentrations take the longest to equilibrate, so it is possible
that the first few concentrations had not equilibrated, resulting in an underestimate of
specific binding at equilibrium.

More Complicated Situations

Measuring total binding only
Rather than measure both total and nonspecific binding at each concentration of ligand,
measure only total binding. Then fit the data to the equation below, which defines total
binding as a function of ligand concentration. Total binding is the sum of specific binding
and nonspecific binding. Fit the data to this equation to find best-fit values of Bmax, Kd,
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Figure A.3H.8 Scatchard transformation of the data from Figure A.3H.7. The solid line was
created (as explained in the text) from the best-fit values of Bmax and Kd determined from nonlinear
regression. This is the correct line to show on a Scatchard plot. The dashed line was determined
by linear regression of the Scatchard transformed data. It is shown here for comparison only; it is
not informative or helpful.
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and NS (the slope of the graph of nonspecific binding as a function of radioligand
concentration):

This approach assumes that nonspecific binding is proportional to [ligand]. This assump-
tion is reasonable if the nonspecific binding is due to general binding to membranes, but
may not be reasonable if some of the nonspecific binding represents binding to receptors
or transporters other than the one being studied.

To get useful results with this approach requires high-quality data and at least ten data
points, including some well above the ligand Kd.

Two classes of binding sites
If the radioligand binds to two classes of binding sites, the specific binding data can be
fit to this equation:

This equation assumes that the radioligand binds to two independent noninteracting
binding sites, and that the binding to each site follows the law of mass action. A
comparison of the one-site and two-site fits will be addressed later in this unit (see Theory:
Comparing One- and Two-Site Models, below).

Meaningful results will be obtained from a two-site fit only if you have ten or more data
points spaced over a wide range of radioligand concentrations. Binding should be
measured at radioligand concentrations below the high-affinity Kd and above the low-af-
finity Kd.

Homologous competitive binding curves
Some investigators determine the Kd and Bmax of a ligand by holding the concentration of
the radioligand constant and competing with various concentrations of the unlabeled
ligand. This approach will be discussed below.

COMPETITIVE BINDING EXPERIMENTS

Theory of Competitive Binding

Using competitive binding curves
Competitive binding experiments measure the binding of a single concentration of labeled
ligand in the presence of various concentrations (often twelve to sixteen) of unlabeled
ligand. Competitive binding experiments are used to:

1. Validate an assay. Perform competitive binding experiments with a series of drugs
whose potencies at the receptor of interest are known from functional experiments.
Demonstrating that these drugs bind with the expected potencies, or at least the
expected order of potency, helps prove that the radioligand has identified the correct
receptor. This kind of experiment is crucial, because there is usually no point studying
a binding site unless it has physiological significance.

2. Determine whether a drug binds to the receptor. Thousands of compounds can be
screened to find drugs that bind to the receptor. This can be faster and easier than
other screening methods.
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3. Investigate the interaction of low affinity drugs with receptors. Binding assays are
only useful when the radioligand has a high affinity (Kd <100 nM or so). A radioligand
with low affinity generally has a fast dissociation rate constant, and so won’t stay
bound to the receptor while washing the filters. To study the binding of a low affinity
drug, use it as an unlabeled competitor.

4. Determine receptor number and affinity by using the same compound as the labeled
and unlabeled ligand (see Homologous Competitive Binding Curves, below).

Performing the experiment
Competitive binding experiments use a single concentration of radioligand and require
incubation until equilibrium is reached. That raises two questions: how much radioligand
should be used, and how long does it take to equilibrate?

There is no clear answer to the first question. Higher concentrations of radioligand result
in higher counts and thus lower counting error, but these experiments are more expensive
and have higher nonspecific binding. Lower concentrations save money and reduce
nonspecific binding but result in fewer counts from specific binding and thus more
counting error. Many investigators choose a concentration approximately equal to the Kd

of the radioligand for binding to the receptor, but this is not universal. In general, you
should aim for a minimum of 1000 cpm from specific binding in the absence of competitor.

Many investigators’ first thoughts are that binding will reach equilibration in the time it
takes the radioligand to reach equilibrium in the absence of competitor. It turns out that
this may not be long enough. Incubations should last four to five times the half-life for
receptor dissociation as determined in a dissociation experiment.

Equations for competitive binding
Competitive binding curves are described by this equation:

The x axis of Figure A.3H.9 shows varying concentrations of unlabeled drug on a log
scale. The y axis can be expressed as cpm or converted to more useful units like fmol
bound per milligram protein or number of binding sites per cell. Some investigators like
to normalize the data from 100% (no competitor) to 0% (nonspecific binding at maximal
concentrations of competitor).

The top of the curve shows a plateau at the amount of radioligand bound in the absence
of the competing unlabeled drug. This equals the parameter total in the equation. The
bottom of the curve is a plateau equal to nonspecific binding; this is nonspecific (NS) in
the equation. These values are expressed in the units of the y axis. The difference between
the top and bottom plateaus is the specific binding. Note that this not the same as Bmax.
When using a low concentration of radioligand (to save money and avoid nonspecific
binding), only a fraction of receptors will be bound (even in the absence of competitor),
so specific binding will be much lower than the Bmax.

The concentration of unlabeled drug that results in radioligand binding halfway between
the upper and lower plateaus is called the IC50 (inhibitory concentration 50%), also called
the EC50 (effective concentration 50%). The IC50 is the concentration of unlabeled drug
that blocks half the specific binding, and it is determined by three factors:

1. The Ki of the receptor for the competing drug. This is what is to be determined. It is
the equilibrium dissociation constant for binding of the unlabeled drug—the concen-
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tration of the unlabeled drug that will bind to half the binding sites at equilibrium in
the absence of radioligand or other competitors. The Ki is proportional to the IC50. If
the Ki is low (i.e., the affinity is high), the IC50 will also be low.

2. The concentration of the radioligand. If a higher concentration of radioligand is used,
it will take a larger concentration of unlabeled drug to compete for the binding.
Therefore, increasing the concentration of radioligand will increase the IC50 without
changing the Ki.

3. The affinity of the radioligand for the receptor (Kd). It takes more unlabeled drug to
compete for a tightly bound radioligand (small Kd) than for a loosely bound radioli-
gand (high Kd). Using a radioligand with a smaller Kd (higher affinity) will increase
the IC50.

Calculate the Ki from the IC50, using the equation of Cheng and Prusoff (1973).

Remember that Ki is a property of the receptor and unlabeled drug, while IC50 is a property
of the experiment. By changing experimental conditions (changing the radioligand used
or changing its concentration), the IC50 will change without affecting the Ki.

This equation is based on the following assumptions:

1. Only a small fraction of either the labeled or unlabeled ligand has bound. This means
that the free concentration is virtually the same as the added concentration.

2. The receptors are homogeneous and all have the same affinity for the ligands.

3. There is no cooperativity—binding to one binding site does not alter affinity at
another site.

4. The experiment has reached equilibrium.

5. Binding is reversible and follows the law of mass action.

6. The Kd of the radioligand is known from an experiment performed under similar
conditions.
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Figure A.3H.9 Schematic of a competitive binding experiment.
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If the labeled and unlabeled ligand compete for a single binding site, the steepness of the
competitive binding curve is determined by the law of mass action (see Fig. A.3H.10).
The curve descends from 90% specific binding to 10% specific binding with an 81-fold
increase in the concentration of the unlabeled drug. More simply, nearly the entire curve
will cover two log units (100-fold change in concentration).

Analyzing Competitive Binding Data

Using nonlinear regression to determine the Ki
Follow these steps to determine the Ki with nonlinear regression.

1. Enter the x values as the logarithm of the concentration of unlabeled compound, or
enter the concentrations, and use the program to convert to logarithms. Since log(0)
is undefined, the log scale cannot accommodate a concentration of zero. Instead enter
a very low concentration. For example, if the lowest concentration of unlabeled
compound is 10−10 M, then enter −12 for the zero concentration.

2. Enter the y values as cpm total binding. There is little advantage to converting to units
such as fmol/mg or sites/cell. There is also little advantage to converting to percent
specific binding.

3. Select the competitive binding equation (TOP is binding in the absence of competitor,
BOTTOM is binding at maximal concentrations of competitor, logIC50 is the loga-
rithm base 10 of the IC50):

4. If the chosen nonlinear regression program doesn’t provide initial estimates automat-
ically, enter these values. For NS, enter the smallest y value. For TOTAL, enter the
largest y value. For log(IC50), enter the average of the smallest and largest x values.

5. If the data do not form clear plateaus at the top and bottom of the curve, consider
fixing top or bottom to constant values. TOTAL can be fixed to the binding measured
in the absence of competitor and NS to binding measured in the presence of a large
concentration of a standard drug known to block radioligand binding to essentially
all receptors.
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Figure A.3H.10 Steepness of a competitive binding curve. This graph shows the results at
equilibrium  when radioligand and competitor bind to the same binding site. The curve will descend
from 90% binding to 10% binding over an 81-fold increase in competitor concentration.

Current Protocols in Protein Science Supplement 21

A.3H.17

Commonly Used
Techniques



6. Start the curve fitting to determine TOTAL, NS, and log(IC50).

7. Calculate the IC50 as the antilog of log(IC50).

8. Calculate the Ki using this equation:

When to set total and NS constant
In order to determine the best-fit value of IC50, the nonlinear regression program must be
able to determine the 100% (total) and 0% (nonspecific) plateaus. If there is data over a
wide range of concentrations of unlabeled drug, the curve will have clearly defined bottom
and top plateaus and the program should have no trouble fitting all three values (both
plateaus and the IC50).

With some experiments, the competition data may not define a clear bottom plateau. If
data are fit in the usual way, the program might stop with an error message, or it might
find a nonsense value for the nonspecific plateau (it might even be negative). If the bottom
plateau is incorrect, the IC50 will also be incorrect. To solve this problem, define the
nonspecific binding from other data. All drugs that bind to the same receptor should
compete for all specific radioligand binding and reach the same bottom plateau value.
When running the curve fitting program, set the bottom plateau of the curve (NS) to a
constant equal to binding in the presence of a standard drug known to block all specific
binding.

Similarly, if the curve doesn’t have a clear top plateau, set the total binding to be a constant
equal to binding in the absence of any competitor.

Interpreting the Results of Competitive Binding Curves

Are the results reasonable?
Table A.3H.4 presents some questions to consider when determining if the results are
reasonable and logical.

Do the data follow the assumptions of the analysis?
Table A.3H.5 lists the assumptions.
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Table A.3H.4 Evaluating the Results of Competitive Binding Curve Analyses

Question Comment

Is the log(IC50) reasonable? The IC50 should be near the middle of the curve,
with at least several concentrations of unlabeled
competitor on either side of it.

Are the standard errors too large? Are
the confidence intervals too wide?

The SE of the log(IC50) should be <0.5 log unit
(ideally much less).

Are the values of TOTAL and NS rea-
sonable?

TOTAL should be near the binding observed in the
absence of competitor. NS should be near the
binding observed in the presence of a maximal
concentration of competitor. If the best-fit value of
NS is negative, consider fixing it to a constant value
equal to nonspecific binding.
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Why determine log(IC50) rather than IC50?
The equation for a competitive binding curve (see Theory of Competitive Binding,
Equations for competitive binding, above) looks a bit strange since it combines logarithms
and antilogarithms (10 to the power). A bit of algebra simplifies it:

Fitting data to this equation results in the same best-fit curve and the same IC50. However,
the confidence interval for the IC50 will be different.

Which confidence interval is correct? With nonlinear regression, the standard errors of
the variables are only approximately correct. Since the confidence intervals are calculated
from the standard errors, they too are only approximately correct. The problem is that the
real confidence interval may not be symmetrical around the best-fit value. It may extend
further in one direction than the other. However, nonlinear regression programs always
calculate symmetrical confidence intervals (unless you use advanced techniques). There-
fore, when writing the equation for nonlinear regression, choose variables so the uncer-
tainty is as symmetrical as possible. Because data are collected at concentrations of
unlabeled drug equally spaced on a log axis, the uncertainty is symmetrical when the
equation is written in terms of the log(IC50), but is not symmetrical when written in terms
of IC50. Confidence intervals are more accurate when the equation is written in terms of
the log(IC50).

Figure A.3H.11 (R. Neubig, unpub. observ.) shows competition of unlabeled yohimbine
for labeled UK14341 (an α2 adrenergic agonist).

1. Enter the data into a nonlinear regression program. Enter the logarithm of concentra-
tion of the unlabeled ligand in the x column, and the triplicate values of total binding
in the x columns. If the selected program does not allow entry of triplicate values,
enter each log of concentration three times.

2. Fit the data to a one-site competitive binding curve. If necessary, enter it in this format:
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Table A.3H.5 Evaluating the Assumptions of Competitive Binding Analyses

Assumption Comment

Binding has reached equilibrium. Competitive binding incubations take longer to
incubate than saturation binding incubations.
Incubate for 4 to 5 times the half life for radioligand
dissociation.

There is only one population of
receptors

See Theory: Comparing One- and Two-Site Models.

Only a small fraction of the radioligand
binds, therefore the free concentration
is essentially identical to the
concentration added.

Compare the total binding in the absence of
competitor in cpm, to the amount of ligand added in
cpm. If the ratio is >10% at any concentration, then
you’ve violated this assumption.

There is no cooperativity. Binding of a
ligand to one binding site does not alter
the affinity of another binding site.

See Cooperativity.
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3. If the nonlinear regression program does not provide initial values automatically,
estimate the values of the variables. TOTAL is the top plateau of the curve, so estimate
its value from the highest data values, perhaps 4500. NS is the bottom plateau, so
estimate its value from the lowest data values, perhaps 500. Log(IC50) is the x value
in the middle of the curve. From looking at the data, estimate its value as −7. None
of these estimates has to be very accurate, and the nonlinear regression will probably
work fine even if the estimates are fairly different than the values listed here.

4. Note the best-fit results: NS = 530.3, TOTAL = 4418, and log(IC50) = −A.3H32.

5. Convert the log(IC50) to the IC50 by taking the antilog. IC50 = 29.4 nM.

6. Convert the IC50 to Ki. To do this, the concentration of radioligand used (2.0 nM) and
its Kd for the receptors (0.88 nM, determined in a separate saturation binding
experiment not shown here) must be known.

Homologous Competitive Binding Curves
A competitive binding experiment is termed homologous when the same compound is
used as the hot and cold ligand. The term heterologous is used when the hot and cold
ligands differ. Homologous competitive binding experiments can be used to determine
the affinity of a ligand for the receptor and the receptor number. In other words, the
experiment has the same goals as a saturation binding curve. Because homologous
competitive binding experiments use a single concentration of radioligand (which can be
low), they consume less radioligand and thus are more practical when radioligands are
expensive or difficult to synthesize.

To analyze a homologous competitive binding curve, the following assumptions must be
made:
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Figure A.3H.11 Example of a competitive binding experiment. Yohimbine competes for radioli-
gand binding to α2 receptors on membranes.
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1. The receptor has identical affinity for the labeled and unlabeled ligand. If you choose
an iodinated radioligand, you should also use an iodinated unlabeled compound
(using nonradioactive iodine), because iodination often changes the binding proper-
ties of ligands.

2. There is no cooperativity.

3. There is no ligand depletion. The methods in this section assume that only a small
fraction of ligand binds. In other words, the method assumes that free concentration
equals the concentration added.

4. There is only one class of binding sites. It is difficult to detect a second class of binding
sites unless the number of lower affinity sites vastly exceeds the number of higher
affinity receptors (because the single low concentration of radioligand used in the
experiment will bind to only a small fraction of low affinity receptors).

Analyze a homologous competitive binding curve using the same equation used for a
one-site heterologous competitive binding to determine the top and bottom plateaus and
the IC50.

The Cheng and Prusoff equation (see Theory of Competitive Binding, above) can be used
to calculate the Ki from the IC50. In the case of a homologous competitive binding
experiment, assume that the hot and cold ligand have identical affinities so that Kd and Ki

are the same. An algebraic rearrangement yields:

Set the concentration of radioligand in the experimental design, and determine the IC50

from nonlinear regression. The difference between the two is the Kd of the ligand
(assuming hot and cold ligands bind the same).

The difference between the top and bottom plateaus of the curve represents the specific
binding of radioligand at the concentration used. Depending on how much radioligand is
used, this value may be close to the Bmax or far from it. To determine the Bmax, divide the
specific binding by the fractional occupancy, calculated from the Kd and the concentration
of radioligand.

Example of homologous competitive binding
Figure A.3H.12 shows data from a binding experiment using [3H]yohimbine to quantify
α2 adrenergic receptors to compete with unlabeled yohimbine. Since there is no reason
to think that the tritium label will alter yohimbine’s affinity for the receptor, the method
from the previous section can be used to quantify receptor number and affinity.

1. Enter the data into a nonlinear regression program. Enter the logarithm of concentra-
tion as x and cpm bound as y. The first point represents a control with no yohimbine.
Since the log of zero is undefined, this cannot be shown on a log scale. Instead enter
this value as −12 (the exact value is a bit arbitrary).

2. Fit the data using nonlinear regression to a sigmoidal equation; or, for manual entry,
enter it like this:
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3. Note the best-fit results: BOTTOM = 350.6; TOP= 11,510; log(IC50) = −7.370; and
IC50 = 42.6 nM.

4. Compute the Ki as the difference between the IC50 and the amount of radioligand
added to all tubes. Ki = 42.6 nM − 5.0 nM = 37.6 nM.

5. Calculate the fraction of the receptors occupied by the 5 nM [3H]yohimbine used in
the experiment. Fractional occupancy = [ligand]/([ligand] + Kd) = 5/(5.0 + 37.6)=
11.73%.

6. Calculate the specific binding of 5 nM radioligand as the difference between the top
and bottom plateaus. Specific binding = 11,510 − 350 = 11,160 cpm.

7. Divide the specific binding by the fractional occupancy to determine the total number
of binding sites, Bmax. It equals 11,160/0.1173 = 95,140 cpm.

8. Finally convert to more useful units. In this example there were 6 × 104 cells per well,
the specific activity of the [3H]yohimbine was 78 Ci/mmole, and the scintillation
counting efficiency was 33%. Calculate receptors/cell using the equation:

The Slope Factor or Hill Slope
Many competitive binding curves are shallower than predicted by the law of mass action
for binding to a single site. The steepness of a binding curve can be quantified with a slope
factor, often called a Hill slope. A one-site competitive binding curve that follows the law
of mass action has a slope of −1.0. If the curve is more shallow, the slope factor will be a
negative fraction (i.e., −0.85 or −0.60; see Fig. A.3H.13). The slope factor is negative
because the curve goes downhill.

To quantify the steepness of a competitive binding curve (or a dose-response curve), fit
the data to this equation:
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Figure A.3H.12 Example of homologous competitive binding experiment. The hot and cold
ligands are identical.
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The slope factor is a number that describes the steepness of the curve. In most situations,
there is no way to interpret the value in terms of chemistry or biology. If the slope factor
differs significantly from −1.0, then the binding does not follow the law of mass action
with a single site.

Explanations for shallow binding curves include:

1. Heterogeneous receptors. The receptors do not all bind the unlabeled drug with the
same affinity. This can be due to the presence of different receptor subtypes, or due
to heterogeneity in receptor coupling to other molecules such as G proteins. In Fig.
A.3H.12, the slope factor equals −0.78.

2. Negative cooperativity. Binding sites are clustered (perhaps several binding sites per
molecule) and binding of the unlabeled ligand to one site causes the remaining site(s)
to bind the unlabeled ligand with lower affinity.

3. Curve fitting problems. If the top and bottom plateaus are not correct, then the slope
factor is not meaningful. Don’t try to interpret the slope factor unless the curve has
clear top and bottom plateaus.

KINETIC BINDING EXPERIMENTS

Theory of Binding, Kinetic

Dissociation experiments
A dissociation binding experiment measures the “off rate” of radioligand dissociating
from the receptor. Perform dissociation experiments to fully characterize the interaction
of ligand and receptor and confirm that the law of mass action applies. They may also be
used to help design the experimental protocol. If the dissociation is fast, filter and wash
the samples quickly so that negligible dissociation occurs. It may also require lowering
the temperature of the buffer used to wash the filters, or switching to a centrifugation or
dialysis assay. If the dissociation is slow, then the samples can be filtered at a more
leisurely pace, because the dissociation will be negligible during the wash.
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Figure A.3H.13 Examples of slope factors. The slope factor quantifies the steepness of the curve,
and is determined by nonlinear regression of competitive binding data. It is not the same as the
slope of the curves at the midpoints.
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To perform a dissociation experiment, first allow ligand and receptor to bind, perhaps to
equilibrium. At that point, block further binding of radioligand to receptor using one of
these methods:

1. If the tissue is attached to a surface, remove the buffer containing radioligand and
replace with fresh buffer without radioligand.

2. Spin the suspension and resuspend in fresh buffer.

3. Add a very high concentration of an unlabeled ligand (perhaps 100 times its Ki for
that receptor). It will instantly bind to nearly all the unoccupied receptors and block
binding of the radioligand.

4. Dilute the incubation by a large factor, perhaps a 20- to 100-fold dilution. This will
reduce the concentration of radioligand by that factor. At such a low concentration,
new binding of radioligand will be negligible. This method is only practical when
using a fairly low radioligand concentration so its concentration after dilution is far
below its Kd for binding.

5. After initiating dissociation, measure binding over time (typically 10 to 20 measure-
ments) to determine how rapidly the ligand dissociates from the receptors.

The law of mass action predicts that dissociation of radioligands from receptors follows
this equation:

Total binding and nonspecific binding (NS) are expressed in cpm, fmol/mg protein, or
sites/cell. Time (t) is usually expressed in minutes. The dissociation rate constant (koff) is
expressed in units of inverse time, usually min−1. Since it is hard to think in those units,
it helps to calculate the half-life for dissociation, which equals ln(2)/koff or 0.6931/koff. In
one half-life, half the radioligand will have dissociated (see Fig. A.3H.14). In two
half-lives, three quarters of the radioligand will have dissociated, etc.

Typically the dissociation rate constant of useful radioligands is between 0.001 and 0.1
min−1. If the dissociation rate constant is any faster, it would be difficult to perform
radioligand binding experiments as the radioligand would dissociate from the receptors
while you wash the filters. If the dissociation rate constant is any slower, it would be hard
to reach equilibrium.

( ) offtotal binding NS Total NS k te−= + − ×
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Figure A.3H.14 Schematic of a dissociation kinetic experiment.
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Association binding experiments
Association binding experiments are used to determine the association rate constant. This
value is useful to characterize the interaction of the ligand with the receptor. It also is
important as it permits the determination of how long it takes to reach equilibrium in
saturation and competition experiments.

To perform an association experiment, add a single concentration of radioligand and
measure specific binding at various times thereafter.

Association of ligand to receptors (according to the law of mass action) follows this
equation:

In Figure A.3H.15, note that the maximum binding (Max) is not the same as Bmax. The
maximum (equilibrium) binding achieved in an association experiment depends on the
concentration of radioligand. Low to moderate concentrations of radioligand will bind to
only a small fraction of all the receptors no matter how long binding is allowed to proceed.

Note that the equation used for fitting does not include the association rate constant, kon,
but rather contains the observed rate constant, kob, which is expressed in units of inverse
time (usually min−1). The kob is a measure of how quickly the incubation reaches
equilibrium, and in the case of a simple bimolecular binding reaction is defined by this
equation:

The equation defines kob as a function of three factors:

1. The association rate constant, kon. This is what is to be determined. If kon is larger
(faster), kob will be larger as well.

2. The concentration of radioligand. When using more radioligand, the system will
equilibrate faster and kob will be larger.

3. The dissociation rate constant, koff. It may be surprising to discover that the observed
rate of association depends in part on the dissociation rate constant. This makes sense
because an association experiment doesn’t directly measure how long it takes
radioligand to bind, but rather measures how long it takes the binding to reach
equilibrium. Equilibrium is reached when the rate of the forward binding reaction

( )obspecific binding Max 1 k te− ×= × −

[ ]ob off on radioligandk k k= + ×
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Figure A.3H.15 Schematic of an association kinetic experiment.
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equals the rate of the reverse dissociation reaction. If the radioligand dissociates
quickly from the receptor, equilibrium will be reached faster, but there will be less
binding at equilibrium. If the radioligand dissociates slowly, equilibrium will be
reached more slowly and there will be more binding at equilibrium.

To calculate the association rate constant, usually expressed in units of M−1 min−1, use the
following equation. Typically ligands have association rate constants of ∼108 M−1 min−1.

Analyzing Association Binding Data

Using nonlinear regression to determine koff
1. Enter the x data as time in minutes.

2. Enter the y data as total binding in cpm.

3. Choose the exponential dissociation equation. It may be expressed as:

4. If the chosen nonlinear regression program does not provide initial estimates of the
variables, enter these values. Span is the specific binding at time zero and is estimated
as the first y value minus the last y value. Plateau is the binding after a long time, and
reflects nonspecific binding, which does not change with time. Estimate it as the last
y value. K is the dissociation rate constant (koff). Estimate it by dividing 0.69 by an
estimate of the half-time of dissociation.

5. Start the nonlinear regression procedure.

6. Calculate the half-life of dissociation from the rate constant.

Using nonlinear regression to determine kon
1. Enter the x data as time in minutes.

2. Enter the y data as specific binding in cpm.

3. Choose the exponential association equation. It may be expressed as:

4. If the nonlinear regression program does not provide initial estimates of the variables,
enter these values. ymax is the specific binding at equilibrium, which is estimated as
the last y value. K is the observed rate of association (kob). Estimate it by dividing
0.69 by an estimate of the time it takes to achieve half-maximal binding.

5. Start the nonlinear regression procedure to determine k and ymax. Note that k is the
observed rate constant (kob) in units of inverse time (min−1) if you entered x in minutes.
This is not the same as the association rate constant.

6. Calculate the association rate constant from the observed rate constant and the
dissociation rate constant. Use the following equation, where [radioligand] is ex-
pressed in molar and kob and koff are expressed in min−1.

[ ]
ob off

on radioligand

k k
k

−=

( )y Span exp K Plateaux= × − × +

( ) offhalf-life ln 2 0.693 Kk= =

( ){ }max 1 exp Ky y x= × − − ×

( ) [ ]on ob off radioligandk k k= −
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Displaying dissociation data on a log plot
Figure A.3H.16 shows a plot of ln(Bt/B0) versus time. The graph of a dissociation
experiment will be linear if the system follows the law of mass action with a single affinity
state. Bt is the specific binding at time t; B0 is specific binding at time zero. The slope of
this line will equal −koff.

The log plot will only be linear when taking the logarithm of specific binding as a fraction
of binding at time zero. Don’t use total binding.

Use the natural logarithm, not the base ten log in order for the slope to equal −koff. If you
use the base 10 log, then the slope will equal −2.303 times koff.

Use the log plot only to display data, not to analyze data. A more accurate rate constant
will be obtained by fitting the raw data using nonlinear regression.

Interpreting the Results

Are the results reasonable?
Table A.3H.6 presents some questions that should be addressed when determining if the
results are reasonable.

Using Kinetic Data to Test the Law of Mass Action

Standard binding experiments are usually fit to equations derived from the law of mass
action. Kinetic experiments provide a more sensitive test than equilibrium experiments
to determine whether the law of mass action actually applies for the system of interest.
To test the law of mass action, ask these questions:

Does the Kd calculated from kinetic data match the Kd calculated from saturation
binding?
According to the law of mass action, the ratio of koff to kon is the Kd of receptor binding:

The units are consistent: koff is in units of min−1 and kon is in units of M−1min−1, so Kd is
in units of M.
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Figure A.3H.16 Schematic of a dissociation kinetic experiment shown on a log scale. The y axis
plots the natural log of specific binding.
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If binding follows the law of mass action, the Kd calculated in this way should be the same
as the Kd calculated from a saturation binding curve.

Does kob increase linearly with the concentration of radioligand?
The observed association rate constant, kob, is defined by this equation:

Therefore, association rate experiments performed at various concentrations of radioli-
gand should look like Figure A.3H.17. As the concentration of radioligand is increased,
the observed rate constant increases linearly. If the binding is more complex than a simple
mass action model (such as a binding step followed by a conformational change) the plot
of kob vs. [radioligand] may plateau at higher radioligand concentrations. The y intercept
of the line equals koff. If the law of mass action applies to the system, the koff determined
in this way should correspond to the koff determined from a dissociation experiment.
Finally, this kind of experiment provides a more rigorous determination of kon than the
value obtained with a single concentration of radioligand.

Is specific binding 100% reversible, and is the dissociated ligand chemically intact?
Nonspecific binding at “time zero” should equal total binding at the end (plateau) of the
dissociation. In other words, all of the specific binding should dissociate after a suffi-
ciently long period of time. Use chromatography to analyze the radioligand that dissoci-
ates to prove that it has not been altered.

[ ]ob off on radioligandk k k= + ×

Table A.3H.6 Evaluating the Results of Association Binding Analyses

Question Comment

Was data collected over a long enough
period of time?

Dissociation and association data should plateau, so
the data obtained at the last few time points should
be indistinguishable.

Is the value of kon reasonable? The association rate constant, kon, depends largely
on diffusion, so the value is similar for many
ligands. Expect a result of ∼108 M−1 min−1.

Is the value of koff reasonable? If the koff is >1 min−1, the ligand has a low affinity
for the receptor. Most likely, dissociation will occur
during separation of bound and free ligands. If koff
is <0.001 min−1, attaining equilibrium will be
difficult as the half-time of dissociation will be
greater than 10 hr! Even if one waits that long,
other reactions may occur that ruin the experiment.

Are the standard errors too large? Are
the confidence intervals too wide?

Examine the SE and the confidence intervals to
gauge the level of confidence to give the rate
constants.

Does only a tiny fraction of radioligand
bind to the receptors?

The standard analyses of association experiments
assume that the concentration of free radioligand is
constant during the experiment. This will be
approximately true only if a tiny fraction of the
added radioligand binds to the receptors. Compare
the maximum total binding in cpm to the amount of
added radioligand in cpm. If that ratio exceeds
∼10%, revise the experimental protocol.
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Is the dissociation rate the same when dissociation is initiated from different
amounts or times of receptor occupation?
If the ligand binds to a single site and obeys the law of mass action, the dissociation rate
constant is independent of the amount of radioligand used or the time before initiating
dissociation.

Is there cooperativity?
If the law of mass action applies, binding of a ligand to one binding site does not alter the
affinity of another binding site. This also means that dissociation of a ligand from one
site should not change the dissociation of ligand from other sites. To test this assumption,
compare dissociation initiated by adding an unlabeled ligand with dissociation initiated
by infinite dilution. The two rate constants should be identical (see Competitive Binding
with Two Sites, below).

Kinetics of Competitive Binding

The standard methods of kinetic binding determine the kon and koff for a labeled ligand.
Competitive binding can be used to determine the kon and koff of an unlabeled ligand. Add
the two ligands at the same time, and measure radioligand binding over time. Use the
following information to set up the equation (Motulsky and Mahan, 1984).

Define the following variables.

k1 association rate constant of radioligand (M−1 min−1)

k2 dissociation rate constant of radioligand (min−1)

k3 association rate constant of unlabeled ligand (M−1 min−1)

k4 dissociation rate constant of unlabeled ligand (min−1)

[radioligand] concentration of labeled drug (M)

[unlabeled drug] concentration of unlabeled drug (M)

S an arbitrary designation of an intermediate variable

Bmax total number of binding sites (same units as specific binding,
usually cpm)

k o
b (m

in
− 1
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slope = k on

[Radioligand]

koff

Figure A.3H.17 Schematic of observed association rate constants as a function of radioligand
concentration. Higher concentrations of radioligand equilibrate more quickly. The slope of the line
equals the association rate constant (kon); the y intercept is the dissociation rate constant (koff).
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t time (min)

Many data points are needed at early time points for this method to work. When fitting
the data, set k1 and k2 to constant values determined from standard kinetic experiments.
Set Bmax to a constant value determined in a saturation binding experiment. The concen-
trations of labeled and unlabeled compound are also constants, set by your experimental
design. Fit the data to determine k3 and k4.

TWO BINDING SITES

Several receptor molecules frequently evolve for a single hormone or neurotransmitter.
Also, many ligands bind to more than one receptor subtype.

Saturation Binding Experiments with Two Sites

When the radioligand binds to two classes of receptors, analyze the data by using this
equation.

Panel A of Figure A.3H.18 shows specific binding to two classes of receptors present in
equal quantities, whose Kd values differ by a factor of ten. Panel B shows the transforma-
tion to a Scatchard plot. In both graphs the dotted and dashed lines show binding to the
two individual receptors; the sum in each graph is represented by a solid curve.

Note that the graph of specific binding is not obviously biphasic. It is very hard to see the
presence of two binding affinities by just looking. The best way to detect the second site
is to fit data to one- and two-site curves, and let the nonlinear regression program compare
the two fits (see Theory: Comparing One- and Two-Site Models, below). The curvature
of the Scatchard plot is not dramatic and can easily be obscured by experimental scatter.
Note the location of the solid and dashed line in the Scatchard plot. The two components
of a biphasic Scatchard are not the asymptotes of the curve.

Competitive Binding with Two Sites

Competitive binding experiments are often used in systems where the tissue contains two
classes of binding sites (e.g., two subtypes of a receptor). Analysis of these data are
straightforward if the following assumptions are met:

1. There are two distinct classes of receptors. For example, a tissue could contain a
mixture of β1 and β2 adrenergic receptors.

[ ]A 1 2radioligandK k k= × +

[ ]B 3 4unlabeled ligandK k k= × +

( ) [ ] [ ]2
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2. The unlabeled ligand has distinct affinities for the two sites.

3. The labeled ligand has equal affinity for both sites.

4. Binding has reached equilibrium.

5. A small fraction of both labeled and unlabeled ligand bind. This means that the
concentration of labeled and unlabeled ligand added is very close to the free
concentration in all tubes.

Based on these assumptions, binding follows the equation:

This equation has five variables: the total and nonspecific binding (the top and bottom
binding plateaus), the fraction of binding to receptors of the first type of receptor (F), and
the IC50 of the unlabeled ligand for each type of receptor. If the Kd and concentration of
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Figure A.3H.18 Saturation binding to two classes of receptors. The two receptor types are present
in equal quantities, but have Kd values that differ by a factor of ten. (A) Binding to the two individual
receptor types are shown as dashed curves. The sum (observed experimentally) is shown as a
solid curve. It is not obviously biphasic. (B) Scatchard transformation. The curvature of the overall
Scatchard plot (solid) is subtle, and it would be easy to miss the curvature if the data were scattered.
Note that the Scatchard plots for the individual receptors (dashed) are not asymptotes of the two-site
Scatchard plot (solid).
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the labeled ligand is known, the IC50 values can be converted to Ki values (see Analyzing
Competitive Binding Data, above).

Since there are two different kinds of receptors with different affinities, a biphasic
competitive binding curve might be expected. In fact, a biphasic curve is seen only in
unusual cases where the affinities are extremely different. More often, the two components
are blurred together into a shallow curve. For example, Figure A.3H.19 shows competition
for two equally abundant sites with a tenfold (one log unit) difference in IC50. Careful
observation will reveal that the curve is shallow (it takes more than two log units to go
from 90% to 10% competition), but two distinct components are not visible.

Cooperativity

In the standard mass action model, each binding site is independent. The standard mass
action assumes that there is no cooperativity. Cooperativity occurs when binding of a
ligand to one binding site affects binding to adjacent sites. Usually these binding sites are
on the same molecule. If binding of one ligand increases the affinity of an adjacent site,
this is positive cooperativity. If binding of one ligand decreases the affinity of an adjacent
site, this is negative cooperativity. It is impossible to distinguish negative cooperativity
from multiple independent binding sites (with different affinities) from data collected at
equilibrium. Kinetic experiments are needed.

To distinguish between multiple independent binding sites and negative cooperativity,
compare the dissociation rate after initiating dissociation by infinite dilution with the
dissociation rate when initiated by addition of a large concentration of unlabeled drug. If
the radioligand is bound to multiple noninteracting binding sites, the dissociation will be
identical in both experimental protocols as shown in panel A of Figure A.3H.20. Note that
the y axis is shown using a log scale. If there were a single binding site, the dissociation
data would be expected to appear linear on this graph. With two binding sites, the graph
is curved, even on a log axis (assuming the radioligand is present at high enough
concentration to bind appreciably to both sites).

Panel B shows ideal dissociation data when radioligand is bound to interacting binding
sites with negative cooperativity. The data are different depending on how dissociation
was initiated. If dissociation is initiated by infinite dilution, the dissociation rate will
change over time. The dissociation of some radioligand will leave the remaining ligand
bound more tightly. When dissociation is initiated by addition of cold drug, all the
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Figure A.3H.19 Two site competitive binding curve. The radioligand binds identically to two kinds
of receptors, but these two receptors have a tenfold difference in affinity for the competitor. The
curve is shallow, but not obviously biphasic.
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receptors are always occupied by ligand (some hot, some cold) and dissociation occurs
at its maximal unchanging rate.

Theory: Comparing One- and Two-Site Models

Why not just compare sum of squares or R2?
In a least squares analysis of data (either linear or nonlinear), the computer program will
give an R2 value and the sum of the squared deviations from the theoretical fit in the
experimental result. The smaller the sum-of-squares value and the higher the R2, the better
the theory fits the data. However, a two-site model will almost always fit the data better
than a one-site model. A three-site model fits even better, and a four-site model better yet!
As more variables (sites) are added to the equation, more inflection points are added to
the curve, so it gets closer to the points. The sum of squares gets smaller; R2 gets higher.
Statistical calculations (such as the F test described below) should be used to see whether
these changes are larger than expected by chance.

Reality check
Before performing statistical comparisons, however, look at whether the results make
sense. Sometimes the two-site fit gives results that are clearly nonsense. Disregard a
two-site fit when: (1) the two IC50 or Kd values are almost identical—the data are probably
fit quite well by a single-site model; (2) one of the IC50 or Kd values is outside the range
of data; (3) one of the sites has a very small fraction of the receptors—if there are too few
sites, the IC50 or Kd cannot be determined reliably. (4) The best-fit values for the bottom
and top plateaus are far from the range of y values observed in the experiment (applies to
competitive binding curves only).
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Figure A.3H.20 Discriminating between binding to two (or more) binding sites (top) and negative
cooperativity. With negative cooperativity, dissociation will be faster when initiated by adding excess
unlabeled ligand than when initiated by infinite dilution.
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If the two-site fit seems reasonable, test whether the difference between the one- and
two-site fit is statistically significant.

Using the F test to compare one- and two-site fits
Even if the simpler one-site model is correct, the fit is expected to be worse (have the
higher sum of squares) because it has fewer inflection points (more degrees of freedom).
In fact, statisticians have proven that the relative increase in the sum of squares (SS) is
expected to equal the relative increase in degrees of freedom (DF). In other words, if the
one-site model is correct it would be expected that:

If the more complicated two-site model is correct, then the relative increase in sum of
squares (going from two-site to one-site) is expected to be greater than the relative increase
in degrees of freedom:

Follow these steps to compare the two models:

1. Fit the data to the simpler (one-site) model and record the sum of squares (SS1) and
degrees of freedom (DF1).

2. Fit the data to the more complicated (two-site) model and record the sum of squares
(SS2) and degrees of freedom (DF2).

3. Look at whether the two-site model makes sense. If the best-fit values don’t make
sense (or the values for the two sites are almost the same), then discard the two-site
model and accept the one-site model.

4. Compare SS2 with SS1. If for some reason SS2 is larger than SS1, then the two-site
fit is worse than the one-site fit and should be discarded. Accept the one-site fit. In
most cases SS1 is larger, and further calculations will be needed.

5. Calculate the F ratio, which quantifies the relationship between the relative increase
in sum of squares and the relative increase in degrees of freedom.

The equation for calculating F is usually presented in this equivalent form (see Table
A.3H.7 for corresponding ANOVA table).

( ) ( )SS1 SS2 SS2 DF1 DF2 DF2− ≈ −

( ) ( )SS1 SS2 SS2 DF1 DF2 DF2− > −

( )
( )

SS1 SS2 SS2

DF1 DF2 DF2
F

−
=

−

( ) ( ) ( )n d

SS1 SS2 DF1 DF2
DF DF1 DF2 , DF DF2

SS2 DF2
F

− −
= = − =

Table A.3H.7 ANOVA Table for Comparison of One- and Two-Site
Fitsa

Source of variation Sum of squares DF Mean
square

Difference SS1 − SS2 DF1 − DF2 SSI − SS2
DF1 - DF2

Model 2 (complicated) SS2 DF2 SS2/DF2

Model 1 (simple) SS1 DF1

aANOVA, analysis of variance.
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6. Use a table or program to determine the P value. When doing so, degrees of freedom
should be entered for both the numerator (DFn) and denominator (DFd). The numera-
tor has (DF1 − DF2) degrees of freedom. The denominator has DF2 degrees of
freedom.

If the one-site model is correct, an F ratio near one and a large P value are expected. If
the two-site fit is correct, a large F ratio and a small P value would be seen. The P value
can be small for two reasons. One possibility is that the two-site model is correct. The
other possibility is that the one-site model is correct, but random scatter led the two-site
model to fit better by chance. The P value tells how rarely this coincidence would occur.
More precisely, the P value answers this question: If the one-site model is really correct,
what is the chance that data would randomly fit the two-site model so much better?

If the P value is smaller than a preset threshold (set to the arbitrary value of 0.05 by
tradition), conclude that the two-site model is significantly better than the one-site model.

Figure A.3H.21 compares a one-site and two-site competitive binding curve. The results
are shown in Table A.3H.8.

In going from the two-site to the one-site model, two degrees of freedom are gained,
because the one-site model has two fewer variables. Since the two-site model has 10
degrees of freedom (15 data points minus 5 variables), the degrees of freedom increased
20%. If the one-site model were correct, the sum of squares would be expected to increase
∼20% just by chance. In fact, the sum of squares increased 91%. The percent increase
was 4.56 times higher than expected (91.1/20.0 = 4.56). This is the F ratio (F = 4.56), and
it corresponds to a P value of 0.039. If the one-site model is correct, there is only a 3.9%
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Figure A.3H.21 The solid curve shows the fit to an equation describing competition for a single
class of receptors. The dashed curve shows the fit to an equation describing competition for binding
to two classes of receptors.

Table A.3H.8 Comparison of One-Site and Two-Site
Competitive Binding Curve

Two-site One-site % increase

Degrees of freedom 10 12 20.00
Sum of squares 129,800 248,100 91.14
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chance that randomly obtained data would fit the two-site model so much better. Since
this is below the traditional threshold of 5%, conclude that the two-site model fits
significantly better than the one-site model.

AGONIST BINDING

Receptors Linked to G Proteins
The most studied example of agonist binding is the interaction of agonists with receptors
that are linked to G proteins. This is studied by comparing the competition of agonists
with radiolabeled antagonist binding in the presence and absence of GTP (or its analogs).
These experiments are done in membrane preparations to wash away endogenous intra-
cellular GTP. Without added GTP, the competitive binding curves tend to be shallow.
When GTP or an analog is added, the competitive binding curve is of normal steepness.
Figure A.3H.22 shows the results of an idealized experiment.

The extended ternary complex model can partially account for these findings (and others).
In this model, receptors can exist in two states, R and R*. The R* state has a high affinity
for agonist and preferentially associates with G proteins to form an R*G complex.
Although some receptors may exist in the R* state in the absence of agonist, the binding
of agonist fosters the transition from R to R*, and thus promotes interaction of the receptor
with G protein to form the ternary complex HR*G. The extended ternary complex model
is shown in Figure A.3H.23.

The agonist binding curve is shallow (showing high and low affinity components) in the
absence of GTP because some receptors interact with G proteins and others do not. The
receptors that do interact with G proteins bind agonist with high affinity, while those that
do not interact bind with low affinity. Not all receptors can bind to G proteins because
either the receptors are heterogeneous, the G proteins are limiting, or the membrane
compartmentation prevents some receptors from interacting with G proteins. If all the
receptors could interact with G proteins, the expectation would be a high affinity,
competitive binding curve in the absence of GTP. In the presence of GTP (or an analog),
the HR*G complex is not stable, so the G protein dissociates into its αGTP and βγ subunits,
and is uncoupled from the receptor. With GTP present, only a tiny fraction of receptors
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Figure A.3H.22 Schematic of agonist competition for binding to a receptor linked to a G protein.
In the absence of GTP (left) the curve is shallow (and in this extreme case, biphasic). In the presence
of GTP (or an analog) the curve is shifted to the right and is steeper.
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are coupled to G at any given time, so the agonist competition curves are of low affinity
and normal steepness as if only R was present and not RG.

Although the extended ternary complex model is very useful conceptually, it is not very
useful when analyzing data. There are simply too many variables. The simpler ternary
complex model shown in Figure A.3H.23 has fewer variables, but still too many to reliably
fit with nonlinear regression. For routine analyses, most investigators fit data to the much
simpler two-state model shown in the figure. This model allows for receptors to exist in
two affinity states (R and RG), but does not allow conversion between them. It is easy to
fit data to this simpler model using a two-site competition curve model. Since the model
is too simple, the high and low affinity dissociation constants derived from the model
should be treated merely as empirical descriptions of the data and should not be thought
of as true molecular equilibrium constants.

Other Kinds of Receptors

By definition, the binding of agonists to receptors makes something happen. So it is not
surprising that agonist binding is often more complicated than the simple mass action
model. For example, binding of agonists to nicotinic acetylcholine receptor causes a
conformational change characterized by a high affinity binding of the agonist and
desensitized receptors, and insulin binding to its receptor shows negative cooperativity
due to dimerization of the receptors.

ANALYZING DATA USING NONLINEAR REGRESSION

Radioligand binding data are best analyzed using nonlinear regression to fit curves
through the data.

The Problem with Using Linear Regression on Transformed Data

Before the age of microcomputers, scientists transformed their data to make a linear graph,
and then analyzed the transformed data with linear regression. Examples include
Lineweaver-Burke plots of enzyme kinetic data, Scatchard plots of binding data, and
logarithmic plots of kinetic data.

These methods are outdated, and should not be used to analyze data. The problem is that
the linear transformation distorts the experimental error. Linear regression assumes that
the scatter of points around the line follows a Gaussian distribution and that the standard

H+R*+G HR*+G

H+R+G HR+G

H+R*G HR*G

H+R+G HR+G

H+RG HRG

H+R+G HR+G

H+RG HRG

Simple model Ternary complex model Extended ternary
complex model

Figure A.3H.23 Models for agonist binding to receptors linked to G proteins. H, hormone or
agonist; R, receptor; G, G protein.
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deviation is the same at every value of x. These assumptions are usually not true with
transformed data. A second problem is that some transformations alter the relationship
between x and y. For example, in a Scatchard plot the value of x (bound) is used to calculate
y (bound/free), and this violates the assumptions of linear regression. For an example of
this, see Analysis of Saturation Binding  Curves, The Problem with Using Scatchard Plots.

Since the assumptions of linear regression are violated, the results of linear regression are
incorrect. The values derived from the slope and intercept of the regression line are not
the most accurate determinations of the receptor number, rate constants, or dissociation
constants. Considering all the time and effort put into collecting data, the best possible
analysis technique should be used, and nonlinear regression produces the most accurate
results.

Although linear regression is usually inappropriate for analyzing transformed data, it is
often helpful for displaying transformed data because many people find it easier to
visually interpret linear data. This makes sense because the human eye and brain evolved
to detect edges (lines), not to detect rectangular hyperbolas or exponential decay curves.

Comparison of Linear and Nonlinear Regression

A line is described by a simple equation that calculates y from x, slope, and intercept. The
purpose of linear regression is to find values for the slope and intercept that define the
line that best fits the data. More precisely, it finds the line that minimizes the sum of the
squares of the vertical distances of the points from the line.

The goal of minimizing the sum of squares in linear regression can be achieved quite
simply. A bit of algebra (shown in many statistics books) derives equations that define the
best-fit slope and intercept. Put the data in, do a few calculations, and the answers come
out. There is no chance for ambiguity.

Nonlinear regression fits data to any equation that defines y as a function of x and one or
more variables. Like linear regression, it finds the values of those variables that minimize
the sum of the squares of the vertical distances of the points from the curve. With the
exception of a few special cases (like linear regression), it is not possible to solve the
equations directly to find the best-fit values of the variables. Instead nonlinear regression
requires an iterative approach that requires use of a computer.

To analyze data with nonlinear regression, the program will require an equation (model)
that defines y as a function of x and one or more variables (i.e., Kd, Bmax, or rate constants).
It will also require an estimate (or guess) for the best-fit value for each variable in the
equation (some programs provide the initial estimates automatically).

Every nonlinear regression program follows these steps:

1. Using the initial values provided, the program calculates a predicted value of y for
each value of x. It then compares the actual y values with the predicted y values, and
calculates the sum of the squares of the differences between observed and predicted
y values.

2. The program then adjusts the variables to improve the fit and reduce the sum of
squares. There are several algorithms for adjusting the variables. The most commonly
used method was derived by Levenberg and Marquardt (often called simply the
Marquardt method), but the details of how this method works cannot be understood
without first mastering matrix algebra. However, nonlinear regression can be used to
analyze data without knowing anything about these algorithms.
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3. Step 2 is repeated several times. Each time the variables are adjusted by a smaller
amount. Stop when the adjustments make virtually no difference in the sum of
squares. This typically requires 5 to 20 iterations.

4. Best-fit results are reported. The precise values obtained will depend in part on the
initial values and the stopping criteria. This means that repeat analyses of the same
data will not always give exactly the same results.

Picking a Nonlinear Regression Program

When choosing a program to analyze binding data, beware of these three traps:

1. Rather than requesting an equation, some programs automatically fit data to hundreds
or thousands of equations and then present the equation(s) that fit the data best. Using
such a program is appealing because it frees the user from the need to choose an
equation. The problem is that the program has no scientific understanding of the
experiment and uses equations that do not correspond to any model of binding. It will
not be possible to interpret the best-fit values of the variables in terms of rate constants
or affinities.

2. Many so-called curve fitting programs actually fit data to a polynomial equation: y
= A + Bx + Cx2 + Dx3…. Since the binding of ligands to receptors cannot be expressed
as a polynomial equation, polynomial regression is not useful for analyzing binding
data.

3. Some programs fit curves by drawing a cubic spline curve—a smooth curve that goes
through every data point. In some cases, a cubic spline curve can look attractive on
a graph and it may work well as a standard curve for interpolation. However, the curve
does not correspond to any model, so cubic spline is not useful in data analysis.

Once the search is narrowed to programs that perform nonlinear regression to fit data to
a selected equation, ask the following questions:

1. Can common binding equations be selected from a menu, or must the equations be
entered into a file?

2. Does the program provide initial values automatically (see below), or will they have
to be entered for each analysis?

3. Can the program automatically compare two models with the F test?

4. Does the program prepare publication-quality graphs of the data and curves?

5. When the data are saved to file, are the analysis choices and results saved as well?
This is important to retrace the analysis steps in the future.

6. Is the program designed specifically for analyses of binding data? The program
Ligand (Munson and Rodbard, 1980) was designed just for analyses of binding
studies, and can handle situations that many other programs cannot (i.e., simultaneous
analyses of several experiments; correcting for ligand depletion), although its inter-
face is no longer state-of-the-art.

One nonlinear regression program, GraphPad Prism (designed by the authors of this
chapter), is particularly well suited for analyses of radioligand binding data (see Analyz-
ing Data with GraphPad Prism, below).
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Decisions That Need to be Made When Fitting Curves with Nonlinear Regression

When using a program for nonlinear regression, the following decisions must be made.

Which equation?
An equation must be chosen that defines y as a function of x and one or more variables.
This equation should represent a model, usually the law of mass action. Later sections of
this unit show equations that describe the law of mass action in various kinds of binding
experiments.

Which units?
In pure mathematics, it doesn’t matter whether data is entered as 1 picomolar or 10−12

molar, as 100 fmol/mg or 60,000,000,000 receptors/mg. When computers do the calcu-
lating, however, it can matter. Calculation problems such as round off errors are far more
likely when the values are very high or very low. Scale data to avoid values <10−4 or >104.

Estimate initial values
Nonlinear regression is an iterative procedure. The program must start with estimated
values for each variable that are in the right “ball park”—usually within a factor of five
of the actual value. It then adjusts these initial values to improve the fit. It repeats the
adjustments until the improvement is no longer significant.

Later sections of this unit explain how to choose initial values for various kinds of
experiments. The estimates don’t need to be extremely accurate. Nonlinear regression
will usually work fine as long as the estimates are within 3 to 5 times their actual values.

Some programs (including GraphPad Prism) automatically choose initial values for you.

Fix one or more variables to a constant value?
In some situations it makes sense to fix some of the variables to constant values. For
example, when analyzing specific (rather than total) binding, the bottom plateau of a
dissociation experiment should be defined as a constant equal to zero.

Weighting
In general, the goal of nonlinear regression is to find the values of the variables in the
model that make the curve come as close as possible to the data points. Usually this is
done by minimizing the sum of the squares of the vertical distances of the data points
from the curve. This is appropriate when the scatter of points around the curve is expected
to be Gaussian and unrelated to the y values of the points.

With many experimental protocols, the experimental scatter is not expected to be the same
for all points. Instead, the experimental scatter is expected to be a constant percentage of
the y value. If this is the case, points with high y values will have more scatter than points
with low y values. When the program minimizes the sum of squares, points with high y
values will have a larger influence while points with smaller y values will be relatively
ignored. This problem may be avoided by minimizing the sum of the square of the relative
distances. This procedure is termed weighting the values by 1/y2. Because it prevents large
points from being over-weighted, the term unweighting seems more intuitive.

Data may be weighted in other ways. The goal is to obtain a measure of goodness-of-fit
that weights all the data points equally.

With binding data, scatter is often proportional to the amount of binding, so relative
weighting may be appropriate. Results are usually very similar whether or not you choose
to use relative weighting.
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Average replicates?
If replicate y values are collected at every value of x, there are two ways to analyze the
data: (1) treat each replicate as a separate point, or (2) average the replicate y values and
treat the mean as a single point.

With radioligand binding data, the first approach is usually best, because all the data are
obtained from one tissue preparation and the sources of experimental error are inde-
pendent for each tube. If one value happens to be a bit high, there is no reason to expect
the other replicates to be high as well. Each replicate can be considered an independent
data point.

Do not treat each replicate as a separate point when the experimental error of the replicates
are related. Instead, average the replicates and analyze the averages. This situation doesn’t
come up often with radioligand binding data, but here is one example. Assume that you
perform an experiment with only a single replicate at each value of y (concentration or
time) but count each tube three times. It is not fair to enter the three counts as triplicates,
and then analyze each triplicate as a separate value. As the replicates are not independent,
any experimental error would appear in all the replicates.

Assumptions of Nonlinear Regression

The results of nonlinear regression are meaningful only if the following assumptions are
true (or nearly true):

1. The model is correct. Nonlinear regression adjusts the variables in the equation you
chose to minimize the sum of squares. It does not attempt to find a better equation.

2. The variability of values around the curve follow a Gaussian distribution. Even though
no biological variable follows a Gaussian distribution exactly, it is sufficient that the
variation be approximately Gaussian.

3. The standard deviation (SD) of the residuals is the same everywhere, regardless of
the value of x. In other words, the average scatter of the points around the curve is
the same at all parts of the curve. The assumption is termed homoscedasticity. If the
SD is not constant but rather is proportional to the value of y, weight the data to
minimize the sum of squares of the relative distances.

4. The model assumes that x is known exactly. This is rarely the case, but it is sufficient
to assume that any imprecision in measuring x is very small compared to the
variability in y.

5. The errors are independent. The deviation of each value from the curve should be
random, and should not be correlated with the deviation of the previous or next point.
If there is any carryover from one sample to the next, this assumption will be violated.

EVALUATING RESULTS OF NONLINEAR REGRESSION

Before accepting the results of nonlinear regression, the following questions should be
asked:

Did the Program Converge on a Solution?

A nonlinear regression program will stop its iterations when it can’t improve the fit by
adjusting to the values of any of the variables. At that point, the program is said to have
converged on the best fit. In some cases, the program gets stuck. It doesn’t know whether
the fit would improve by increasing or decreasing the value of a variable. When this
happens, the program stops. The exact wording of the error message is unlikely to be
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helpful. In this situation, some programs may still apparently show results, but these
“results” do not represent a best-fit curve.

Are the Results Scientifically Plausible?

The mathematics of curve fitting sometimes yields results that make no scientific sense.
For example, noisy or incomplete data can lead to negative rate constants, fractions greater
than 1.0, and negative Kd values.

If the results make no scientific sense, they are unacceptable, regardless of R2 and of how
close the curve comes to the points. Try a simpler equation, or try fixing some variables
to constant values.

Also check that the best-fit values of the variables are reasonable compared to the range
of the data. Don’t trust the results if the top plateau of a sigmoid curve is far higher than
the highest data point. Don’t trust the results if an EC50 value is not within the range of
the y values.

Does the Curve Come Close to the Points?

In rare cases, the fit may be far from the data points. This may happen, for example, if the
wrong equation is chosen. Look at the graph to make sure this didn’t happen.

Goodness of fit can also be evaluated by looking at the value of R2 (known by statisticians
as the coefficient of determination). R2 is the fraction of the total variance of y that is
explained by the model (equation). Mathematically, it is defined by the equation: R2 = 1.0
− SS/sy

2, where sy
2 is the variance (standard deviation squared) of y values. The value of

R2 is always between 0.0 and 1.0, and it has no units.

When R2 equals 0.0, the best-fit curve fits the data no better than a horizontal line going
through the mean of all y values. In this case, knowing x does not help you predict y. When
R2 = 1.0, all points lie exactly on the curve with no scatter; if x is known, y may be
calculated exactly.

If R2 is high, the curve comes closer to the points than would a horizontal line through
the mean y value, but a high R2 should not be overinterpreted. It does not mean that the
chosen equation is the best to describe the data. It also does not mean that the fit is
unique—other values of the variables may generate a curve that fits just as well.

When comparing one- and two-site models, it is not sufficient to simply compare R2

values.

Do the Data Systematically Deviate from the Curve?

If the data really follow the model described by the chosen equation, the data points should
be randomly scattered above and below the curve. The distance of the points from the
curve should also be random, and not be related to the value of x.

The best way to look for systematic deviations of the points from the curve is to inspect
a graph of the residuals and to look at the runs test.

Residuals
A residual is the distance of a point from the curve. A residual is positive when the point
is above the curve, and is negative when the point is below the curve. The residual table
has the same x values as the original data, but each y value is replaced by the vertical
distance of the point from the curve. An example is shown in Figure A.3H.24. As shown
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in panel A, the data points are not randomly distributed above and below the curve. There
are clusters of points all above or all below. This is much easier to see on the graph of the
in panel B. The points are not randomly scattered above and below the x axis.

The runs test
The runs test determines whether the data deviate systematically from the equation you
selected. A run is a series of consecutive points that are either all above or all below the
regression curve. Another way of saying this is that a run is a series of points whose
residuals are either all positive or all negative.

If the data points are randomly distributed above and below the regression curve, it is
possible to calculate the expected number of runs. If there are fewer runs than expected,
it may mean that the regression model is wrong. If the data really follow the equation
used to create the curve, the P value from the runs test may be used to determine the
chance of obtaining as few (or fewer) runs as observed in the experiment. If the P value
is small, it indicates that the data really don’t follow the model.

In the example in Fig. A.3H.24, the equation does not adequately match the data. There
are only six runs, and the P value for the runs test is very small. This means that the data
systematically deviate from the curve, and the data were fit to the wrong equation.
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Figure A.3H.24 Residuals. The top panel graphs dissociation kinetic data. The bottom panel
shows the residuals (i.e., the y axis plots the distance between the point and the curve from the top
panel).
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Are the Confidence Intervals Wide?

In addition to reporting the values of the variables that make the equation fit the data best,
nonlinear regression programs also express the uncertainty as a standard error for each
variable. Use the standard error to calculate a 95% confidence interval (CI), if the
nonlinear regression program doesn’t calculate one. The 95% confidence interval extends
from approximately two standard errors below the best-fit value to approximately two
standard errors above the best-fit value. (The number 2.0 is approximate. The exact
multiplier comes from the t distribution and depends on the number of degrees of freedom
which equals the number of data points minus the number of variables fit by the program.)

The CI means that if all the assumptions of nonlinear regression are true, there is a 95%
chance that the interval contains the true value. More precisely, if a nonlinear regression
is performed many times (on different data sets) the expected confidence interval will
include the true value 95% of the time, but exclude the true value the other 5% of the time.

Three factors can make the confidence interval too narrow:

1. The CI is based only on the scatter of data points around the curve within this one
experiment. If the experiment is repeated many times, the scatter between the results
is likely to be greater than predicted from the CI determined in one experiment.

2. If any of the assumptions of nonlinear regression are violated, the confidence intervals
will probably be too narrow.

3. The confidence intervals from nonlinear regression are calculated using mathematical
shortcuts and so are referred to as asymptotic confidence intervals or approximate
confidence intervals. In some cases these intervals can be too narrow (too optimistic).

Because of these problems, the confidence intervals should not be interpreted too
rigorously. Rather than focusing on the CI reported from analysis of a single experiment,
repeat the experiment several times.

If the confidence interval is extremely wide, do not trust the results. Confidence intervals
are wide when the data are very scattered or data have not been collected over a wide
enough range of x values.

The data in Figure A.3H.25 were fit to a dose-response curve, and the 95% CI for the EC50

extends over six orders of magnitude. The explanation is simple. Since the data do not
define plateaus at either the top or the bottom, zero and one hundred are not defined. This
makes it impossible to determine the EC50 with precision.

In this example, it might make scientific sense to set the bottom plateau to 0% and the
top plateau to 100% (if the plateaus were defined by other controls not shown on the
graph). If this were done, the equation would fit fine and the confidence interval would
be narrow.

Note that the problem with the fit is not obvious by inspecting a graph, because the curve
goes very close to the points. The value of R2 (0.9999) is also not helpful. That value also
indicates that the curve comes close to the points, but does not indicate whether the fit is
unique.

The CI is also wide when data in an important part of the curve has not been collected.
The dose-response curve in Figure A.3H.26 has wide confidence intervals. Even when
constraining the bottom to be zero and the top to be 100 and the slope to equal 1.0, the
95% CI for the EC50 extends over almost an order of magnitude. The problem is simple.
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The EC50 is the concentration at which the response is half-maximal, and this example
has no data near that point.

Finally, the CI is wide if one tries to fit data to a two-site model when the data really
follow a one-site model. In this case, the program might report very wide confidence
intervals, as it will report that the two sites are very similar.

Is the Fit a Local Minimum?

The nonlinear regression procedure adjusts the variables in small steps in order to improve
the goodness-of-fit. If Prism converges on an answer, altering any of the variables a little
bit will make the fit worse. But it is theoretically possible that large changes in the
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Figure A.3H.25 A dose-response curve with data collected over a narrow range of concentrations.
When a nonlinear regression program tries to fit the top and bottom plateaus as well as the EC50
and slope, the resulting confidence intervals are very wide. Since there is no data to define zero
and one hundred, the program will be very uncertain about the EC50. If the nonlinear regression
program is told to set the top and bottom plateaus to constant values (from controls), then it can
determine the EC50 with precision.
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Figure A.3H.26 A dose response curve with no data in the middle of the curve. Since there are
no data points in the middle of the curve, the best-fit value of the EC50 will be uncertain with a wide
confidence interval.
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variables might lead to much better goodness-of-fit. Thus, the curve that Prism decides
is the “best” may really not be the best.

Think of latitude and longitude as representing two variables Prism is trying to fit. Now
think of altitude as the sum of squares. Nonlinear regression works iteratively to reduce
the sum of squares. This is like walking downhill to find the bottom of the valley. When
nonlinear regression has converged, changing any variable increases the sum of squares.
When at the bottom of the valley, every direction leads uphill. But there may be a much
deeper valley over the ridge that is unknown (see Fig. A.3H.27). In nonlinear regression,
large changes in variables might decrease the sum of squares.

This problem (called finding a local minimum) is intrinsic to nonlinear regression, no
matter what program is used. A local minimum will rarely be encountered if the data have
little scatter, data is collected over an appropriate range of x values, and an appropriate
equation is chosen.

To continue the analogy, the confidence intervals for the variables are very wide when the
bottom of the valley is very flat. A great distance can be traveled without changing
elevation. The values of the variables can be changed a great deal without changing the
goodness-of-fit.

To test for the presence of a false minimum:

1. Note the values of the variables and the sum of squares from the first fit.

2. Make a large change to the initial values of one or more variables and run the fit again.
Repeat several times.

3. Ideally, Prism will report nearly the same sum of squares and same variables
regardless of the initial values. If the values are different, accept the ones with the
lowest sum of squares.
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Figure A.3H.27 What is a false minimum? A nonlinear regression program stops when making
any small change to a variable will worsen the fit and thus raise the sum of squares. In rare cases,
this may happen at a false minimum rather than the true best fit value.
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What to Do When the Fit Is No Good?

The previous sections explained how to identify a bad fit. If any of these situations are
encountered, Table A.3H.9 describes some things to try.

COMPARING TREATMENT GROUPS

The results of radioligand binding experiments will often be compared between treatment
groups. There are three ways to do this.

Compare the Results of Repeated Experiments (Method 1)

After repeating the experiment several times, compare the best-fit value of a variable in
control and treated preparations using a paired t test (or the analogous Wilcoxon nonpara-
metric test).

For example, in Table A.3H.10, the log(Ki) values of results from a competitive binding
curve performed in two groups of cells are shown. Compare the results using a paired t
test. The t ratio is 16.7, and the P value is 0.0036 (two-tail). If the treatment did not alter
the log(Ki), there is only a 0.36% chance that such a large difference (or larger) between
log(Ki) is by chance. Since the P value is so low, conclude that the change in Ki was
statistically significant.

Note that we compare log(Ki) values rather than Ki values. When doing a paired t test, a
key assumption is that the distribution of differences (treated vs. control) follow a
Gaussian distribution. Since a competitive binding curve (similar to a dose response
curve) is conducted with x values (concentration) equally spaced on a log scale, the
uncertainty of the EC50 is reasonably symmetrical (and perhaps Gaussian) when expressed
on a log scale. It is equally likely that the best-fit value of the log (Ki) is 0.1 log units too
high or 0.1 log units too low. In contrast, the uncertainty in Ki is not symmetrical.

Table A.3H.9 Troubleshooting Guide to Evaluating Results of Nonlinear Regression

Potential problem Solution

The equation simply does not describe
the data.

Try a different equation.

The initial values are too far from their
correct values.

Enter different initial values. If using a user-defined
equation, check the rules for initial values.

The range of x values is too narrow to
define the curve completely.

If possible, collect more data. Otherwise, hold one
of the variables to a constant value.

There is not enough data collected in a
critical range of x values.

Collect more data in the important regions.

The data are very scattered and don’t
really define a curve.

Try to collect less scattered data. If combining
several experiments, normalize the data for each
experiment to an internal control.

The equation includes more than one
component, but the data don’t follow a
multicomponent model.

Use a simpler equation.

The numbers are too large. If the y values are very large, change the units. Do
not use values greater than ∼104.

The numbers are too small. If your y values are very small, change the units. Do
not use values less than ∼10−4.
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Compare the Results within One Experiment: Simple Approach (Method 2)

Use a t test to determine whether the difference between best-fit values is greater than
would be expected by chance, given the standard errors of the variables.

For example, competitive binding curves of control and treated data were compared in an
experiment performed once. Nonlinear regression fit three variables, Top, Bottom, and
log(EC50). Only the log(EC50) values are of interest. In this example, the control log(EC50)
was −6.08 with a standard error of 0.3667. The treated log(EC50) was −6.20 with a standard
error of 0.0617.

Compare the two groups with an unpaired t test.

1. Calculate the t ratio as the difference between log(EC50) values divided by the
standard error of that difference (calculated from the two standard errors). Since the
sample size is the same in the two groups, use the equation:

2. Calculate the number of degrees of freedom (DF), which equals the sum of the number
of degrees of freedom in each group. This equals the number of data points minus
the number of variables fit by the nonlinear regression procedure. In this example,
there were 15 data points, and three variables were fit. So there are 12 DF in each
group, and 24 DF altogether.

3. Use a table or program to determine a P value that corresponds to the values of t and
DF. For this example, the P value is 0.0309. If the treatment really didn’t alter the
EC50, there is only a 3.09% chance that this large of a difference (or more) is by
coincidence. Since the P value is so low, it is concluded that the two EC50 values are
statistically significantly different.

GraphPad Prism, GraphPad InStat and many other programs can compute t and the P
value from data entered as mean, SEM, and N. Enter the best-fit value of the log(EC50)
(or any other fit variable) instead of the mean, and the SE of that variable instead of the
SEM. The trick is figuring out what value to enter as “N” (sample size). Remember that:

1. For nonlinear regression, the number of degrees of freedom equals the number of
data points minus the number of variables fit.

2. For an ordinary t test, the number of degrees of freedom for each sample equals one
less than the number of data points.

3. The t test calculations are based on the numbers of degrees of freedom. However,
most programs ask for N instead and then compute DF as N − 1. When comparing
the results of nonlinear regression, enter N as the number of degrees of freedom plus
1. The program will subtract 1 to determine the DF. All the other calculations are

( ) ( )50 50A B

2 2
A B

log EC log EC
2.292

SEM SEM
t

−
= =

+

Table A.3H.10 Log(Ki) Values for a Sample
Competitive Binding Experiment

Experiment Control Treated

1 −6.13 −6.53
2 −6.39 −6.86
3 −5.92 −6.31
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based on the value of DF, and N is ignored. In this example, enter N = 12 + 1 = 13
for each group.

This method only uses data from one experiment. The SE value is a measure of how
precisely the log(EC50) has been determined in this one experiment. It is not a measure
of how reproducible the experiment is. Despite the impressive P value, these results should
not be trusted until the experiment is repeated.

The t test assumes that the uncertainty in the values of the variables follows a Gaussian
distribution. This assumption is not necessarily true with the SE values that emerge from
nonlinear regression. The only way to assess the validity of this assumption is to simulate
many sets of data, fit each with nonlinear regression, and examine the distribution of
best-fit values. This has been done with many commonly used equations, and it seems
that the assumption is reasonable in many cases.

Compare log(EC50), not EC50. You want to express the variables in a form that makes the
uncertainty as symmetrical and Gaussian as possible. Since a competitive binding curve
(similar to a dose response curve) is conducted with x values (concentration) equally
spaced on a log scale, the uncertainty of log(EC50) is reasonably symmetrical (and perhaps
Gaussian). It is equally likely that the observed log(Ki) is 0.1 log units too high or 0.1 log
units too low. In contrast, the uncertainty in Ki is not symmetrical.

Compare the Results Within One Experiment: More Complicated Approach
(Method 3)

The method of the previous section only compared the value of the log(EC50). This section
describes a more general method to compare entire curves to ask whether the data sets
differ at all. The idea is to first fit the two curves separately, and then combine the values
and fit one curve to all the data.

Follow these steps:

1. Fit the two data sets separately as in the previous section.

2. Total the sum of squares and DF from the two fits. For this example the total sum of
squares equals 19,560 + 29,320 = 48,880, and the total DF equals 12 + 12 = 24. Since
these are the results of fitting the two data sets separately, label these values SSseparate

and DFseparate.

3. Combine the two data sets into one. For this example, the combined data set has 30
xy pairs, with each x value appearing twice.

4. Fit the combined data set to the same equation. Note the SS and DF. For this example,
SS = 165,200, and DF = 27 (30 data points minus three variables). Call these values
SScombined and DFcombined.

5.  SSseparate is expected to be smaller than SScombined even if the curves are really identical,
simply because the separate fits have more degrees of freedom. The question is
whether the SS values are more different than expected by chance. To find out,
calculate the F ratio using the equation:

For this example, F = 19.03.

combined separate combined separate

combined separate

SS SS DF DF

SS DF
F

 − − 
=        
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6. Determine the P value from F. There are DFcombined − DFseparate degrees of freedom in
the numerator, and DFseparate degrees of freedom in the denominator. GraphPad
StatMate can calculate the P value (from F and the two DF values), or it may be found
in the back of most statistics books.

7. For this example, the P value is <0.0001. If the treatment were really ineffective, there
is less than a 0.01% chance that the two curves would differ as much (or more) as
they differed in this experiment. Since the P value is low, you’ll conclude that the
curves are really different.

This method only uses data from one experiment. Despite the impressive P value, these
results should not be trusted until the experiment is repeated. This method compares the
curves overall. It doesn’t determine which variable(s) are different. Differences might be
due to something trivial such as a different baseline, rather than something important such
as a different EC50.

Advantages and Disadvantages of the Three Approaches

If the experiment has been repeated several times, use the first method. There are two
advantages. The first is that compared to the other methods discussed below, this method
is far easier to understand and communicate to others. Second, the entire test is based on
the consistency of the results between repeat experiments. Since there are usually more
causes for variability between experiments than within experiments, it makes sense to
base the comparison on differences between experiments.

The disadvantage of the first method is that information is being discarded. The calcula-
tions are based only on the best-fit value from each experiment, and they ignore the SE
of those values presented by the curve fitting program.

If the experiment has been performed only once, the experiment should be repeated.
Regardless of what statistical results are obtained, results from a single experiment should
not be trusted. To compare results in a single experiment, use Method 2 or 3.

Generally only one variable is of interest (i.e., a rate constant or EC50); the others are less
important. Method 2 compares the variable of interest. Method 3 is more general. Since
the method compares the entire curve, it does not force a decision regarding which
variable(s) to compare. This is both its advantage and disadvantage.

CALCULATIONS WITH RADIOACTIVITY

Efficiency of Detecting Radioactivity

Efficiency is the fraction of radioactive disintegration that is detected by the counter.
Efficiency is determined by counting a standard sample under conditions identical to those
used in the experiment.

With 125I, the efficiency is usually >90%, depending on the geometry of the counter. The
efficiency is not 100% because the detector doesn’t entirely surround the tube, which
allows a few gamma rays (photons) to miss the detector.

With 3H, the efficiency of counting is much lower, and usually varies between 40% and
50%. The low efficiency is mostly a consequence of the physics of decay and cannot be
improved by better instrumentation or better scintillation fluid. When a tritium atom
decays, a neutron converts to a proton and the reaction emits an electron and neutrino.
The energy released is always the same, but it is randomly partitioned between the
neutrino (not detected) and an electron (detection attempted). When the electron has
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sufficient energy, it will travel far enough to encounter a fluor molecule in the scintillation
fluid. This fluid amplifies the signal and gives off a flash of light detected by the
scintillation counter. The intensity of the flash (number of photons) is proportional to the
energy of the electron. If the electron has insufficient energy, it is not captured by the fluor
and is not detected. If it has low energy, it is captured but the light flash has few photons
and is not detected by the instrument. Since the decay of many tritium atoms does not
lead to a detectable number of photons, the efficiency of counting is much less than 100%.

Efficiency of counting 3H is reduced by the presence of any color in the counting tubes,
if the mixture of water and scintillation fluid is not homogeneous, or if the radioactivity
is trapped in tissue (so emitted electrons don’t travel into the scintillation fluid).

Specific Radioactivity

Radioligand packaging usually states the specific radioactivity as Curies per millimole
(Ci/mmol). Because measurements are expressed in counts per minute (cpm), the specific
radioactivity is more useful when stated in cpm. Often the specific radioactivity is
expressed as cpm/fmol (1 fmol = 10−15 mole).

To convert from Ci/mmol to cpm/fmol, know that 1 Ci equals 2.22 × 1012 disintegrations
per minute (dpm). Use this equation to convert Z Ci/mmol to Y cpm/fmol when the counter
has an efficiency (expressed as a fraction) equal to E.

For example, the specific activity will be 2190 Ci/mmol if every molecule incorporates
exactly one 125I atom. If the counting efficiency is 85%, then the specific activity is 2190
× 2.22 × 0.85 = 4133 cpm/fmol.

In many countries, radioligand packaging states the specific radioactivity in GBq/mmol,
rather than Ci/mmol. To convert to cpm/fmol, you need to know that 1 Bq (Becquerel) is
one radioactive disintegration per second (1 GBq = 109 dps). To convert from GBq/mmol
to cpm/fmol, use this equation.

If every molecule is labeled with 125I, the specific activity is 81,030 GBq/mmol. If the
counting efficiency is 85%, then the specific activity can also be expressed as 81,030 ×
0.06 × 0.85 = 4133 cpm/fmol.

Calculating the Concentration of the Radioligand

Rather than trust dilutions, the concentration of radioligand in a stock solution can be
accurately calculated. Measure the cpm in a small volume of solution and use the
following equation, in which C is cpm counted, V is volume of the solution in ml, and Y
is the specific activity of the radioligand in cpm/fmol (calculated in the previous section).

12 12cpm Ci dpm mmol cpm
2.22 10 10

fmol mmol Ci fmol dpm
Y Z E−= × × × ×

( )2.22 in cpm fmolY Z E= × ×

cpm GBq dps sec mmol counts9 12

fmol mmol GBq min fmol disintegrations
10 60 10 0.06Y Z E Z E−= × × × × = × ×

cpm
cpm fmol 0.001pmol fmol

ml 0.001liter ml

concentration in pM C C Y
Y V

V
×

= =
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Radioactive Decay

Radioactive decay is entirely random. The probability of decay at any particular interval
is the same as the probability of decay during any other interval. Starting with N0

radioactive atoms, the number remaining at time t is:

The rate constant of decay (kdecay) is expressed in units of inverse time. Each radioactive
isotope has a different value of kdecay. The value e refers to the base of natural logarithms
(2.71828).

The half-life (t1⁄2) is the time it takes for half the isotope to decay. Half-life and the decay
rate constant are related by this equation:

Table A.3H.11 shows the half-lives and rate constants for commonly used radioisotopes.
The table also shows the specific activity assuming that each molecule is labeled with one
radioactive atom. (This is often the case with 125I and 32P. Tritiated molecules often
incorporate two or three tritium atoms, which increases the specific radioactivity.)

Radioactive decay can be calculated from a date where you knew the concentration and
specific radioactivity using this equation.

For example, after 125I decays for 20 days, the fraction remaining equals 79.5%. Although
data appear to be scanty, most scientists assume that the energy released during decay
destroys the ligand so it no longer binds to receptors. Therefore the specific radioactivity
does not change over time. What changes is the concentration of ligand. After 20 days,
the concentration of the iodinated ligand is 79.5% of what it was originally, but the specific
radioactivity remains 2190 Ci/mmol. This approach assumes that the unlabeled decay
product is not able to bind to receptors and has no effect on the binding. Rather than trust
this assumption, use newly synthesized or repurified radioligand for key experiments.

Calculations of radioactive decay are straightforward only when each molecule is labeled
with a single radioactive isotope, as is usually the case. If a molecule is labeled with several
radioactive isotopes, the effective half-life is shorter. If only a fraction of the molecules
are labeled with a radioactive isotope, then the decay formula only applies to the labeled
portion of the mixture, as the concentration of the unlabeled compound never changes.

decay
0t

k t
N N e

−= ×

1 2
decay decay

ln(2) 0.693
t

k k
= =

decayfraction remaining
k t

e
−=

Table A.3H.11 Half-Lives and Rate Constants for Commonly Used
Isotopes

Isotope Half-life kdecay
Specific
radioactivity

3H 12.43 years 0.056 year−1 28.7 Ci/mmol
125I 59.6 days 0.0116 day−1 2190 Ci/mmol
32P 14.3 days 0.0485 day−1 9128 Ci/mmol
35S 87.4 days 0.0079 day−1 1493 Ci/mmol
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Counting Error and the Poisson Distribution

The decay of a population of radioactive atoms is random, and therefore subject to a
sampling error. For example, the radioactive atoms in a tube containing 1000 cpm of
radioactivity won’t give off exactly 1000 counts in every minute. There will be more
counts in some minutes and fewer in others, with the distribution of counts following a
Poisson distribution. This variability is intrinsic to radioactive decay and cannot be
reduced by more careful experimental controls. There is no way to know the “real” number
of counts, but a range of counts can be calculated that is 95% certain to contain the true
average value. As long as the number of counts (C) is greater than ∼100, the confidence
interval can be calculated using this approximation:

Computer programs can calculate a more exact confidence interval, as becomes necessary
when C is less than ∼100. For example, if C = 100, the simple equation above calculates
a 95% confidence interval from approximately 80 to 120. A more exact equation calculates
an interval from 81.37 to 121.61.

When calculating the confidence interval, set C equal to the total number of counts you
measured experimentally, not the number of counts per minute.

For example, if a radioactive sample is placed into a scintillation counter for 10 min, the
counter detects 225 counts per minute. What is the 95% confidence interval? Since the
total time was 10 min, the instrument must have detected 2250 radioactive disintegrations.
The 95% confidence interval of this number extends from 2157 to 2343. This is the
confidence interval for the number of counts in 10 min, so the 95% confidence interval
for the average number of counts per minute extends from 216 to 234. That is, there is a
95% certainty that the average cpm value lies within this range.

The Poisson distribution explains why it is helpful to count samples longer when the
number of counts is small. For example, Table A.3H.12 shows the confidence interval for
100 cpm counted for various times. When longer times are used, the confidence interval
is narrower.

Figure A.3H.28 shows percent error as a function of C. Percent error is defined from the
width of the confidence interval divided by the number of counts. Of course this graph
only shows error due to the randomness of radioactive decay. This is only one source of
error in most experiments.

( ) ( )95% CI : 1.96 to 1.96C C C C− +

Table A.3H.12 Determination of Confidence Values

1 min 10 min 100 min

Counts per min (cpm) 100 100 100
Total counts 100 1000 10000
95% CI of counts 81.4 to 121.6 938 to 1062 9804 to 10196
95% CI of cpm 81.4 to 121.6 93.8 to 106.2 98.0 to 102.0
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ANALYZING DATA WITH GRAPHPAD PRISM

GraphPad Prism is a general purpose program for scientific graphics, statistics and
nonlinear regression, available for both Windows and Macintosh computers.

While Prism is not designed especially for analyses of binding data, it is very well suited
for analyses. It provides a menu of commonly used equations, including all equations
listed in this unit, and can automatically compare one- and two-site models with an F test.
When analyzing competitive binding curves, Prism calculates the Ki from the IC50. The
program can automatically create a residual plot and calculate the runs test. In addition,
Prism’s manual and help screens, like this unit, explain the principles of curve fitting.

A trial version of the Windows or Mac versions of Prism can be obtained from the
GraphPad web site at http://www.graphpad.com. The trial versions let you analyze data
for an unlimited period of time. For the first thirty days, the Windows version is fully
functional. After that, data may be analyzed, but the ability to to print, save, and export
will be disabled.

Contact GraphPad Software (SUPPLIERS APPENDIX) to obtain a brochure and trial disk, or to
ask questions.
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Figure A.3H.28 Counting error. With more counts, the fractional counting error decreases. The x axis
shows the number of radioactive decays actually counted (counts per minute times number of minutes).
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