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PREMISE OF THE STUDY: Discordant gene trees are commonly encountered when sequences 
from thousands of loci are applied to estimate phylogenetic relationships. Several processes 
contribute to this discord. Yet, we have no methods that jointly model different sources of 
conflict when estimating phylogenies. An alternative to analyzing entire genomes or all the 
sequenced loci is to identify a subset of loci for phylogenetic analysis. If we can identify data 
partitions that are most likely to reflect descent from a common ancestor (i.e., discordant loci 
that indeed reflect incomplete lineage sorting [ILS], as opposed to some other process, such 
as lateral gene transfer [LGT]), we can analyze this subset using powerful coalescent- based 
species- tree approaches.

METHODS: Test data sets were simulated where discord among loci could arise from ILS and 
LGT. Data sets where analyzed using the newly developed program CLASSIPHY (Huang et al., 
2018) to assess whether our ability to distinguish the cause of discord among loci varied 
when ILS and LGT occurred in the recent versus deep past and whether the accuracy of these 
inferences were affected by the mutational process.

KEY RESULTS: We show that accuracy of probabilistic classification of individual loci by the 
cause of discord differed when ILS and LGT events occurred more recently compared with the 
distant past and that the signal- to- noise ratio arising from the mutational process contributes 
to difficulties in inferring LGT data partitions.

CONCLUSIONS: We discuss our findings in terms of the promise and limitations of identifying 
subsets of loci for species- tree inference that will not violate the underlying coalescent model 
(i.e., data partitions in which ILS, and not LGT, contributes to discord). We also discuss the 
empirical implications of our work given the many recalcitrant nodes in the tree of life (e.g., 
origins of angiosperms, amniotes, or Neoaves), and recent arguments for concatenating loci.

  KEY WORDS   CLASSIPHY; coalescence; gene-tree discord; incomplete lineage sorting; lateral 
gene transfer; species tree.
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When phylogenetic relationships among species are examined us-
ing genomic or transcriptomic scale data sets, the discord (e.g., in-
congruent branching patterns) among individual gene trees is clear. 
There are various processes that can result in this discord, such as 
incomplete lineage sorting (ILS), lateral gene transfer (LGT), hy-
bridization (H), and gene duplication and loss (DL). In addition 
to these biological processes that generate discord, discord may be 
due to a lack of informative phylogenetic data or to errors in se-
quence assembly. Disagreement between gene trees has tradition-
ally posed a challenge for phylogenetic analysis, especially when the 
only strategy for combining data from different genes was simple 
concatenation, which effectively treats discord as noise, rather than 
fundamental structure of systems. However, significant advances 
for estimating phylogenetic relationships despite gene tree discord 
have been made with species- tree methods (Knowles, 2009), which 
explicitly model the coalescent process, turning one source of dis-
cord, ILS, into a source of information rather than noise (Edwards, 
2009; Knowles and Kubatko, 2010).

There have also been recent developments for modeling sources 
of discord other than ILS when estimating phylogenetic relation-
ships (e.g., gene duplication and loss: Boussau et al., 2013; hybrid or-
igin of taxa: Bilschak et al., 2017; Kubatko, 2009; Meng and Kubatko, 
2009; networks: Solís- Lemus and Ané, 2016; Solís- Lemus et  al., 
2017; Zhang et al., 2018; Wen and Nakleh, 2017). However, adequate 
methods do not exist that simultaneously estimate phylogenetic 
trees, model sources of conflict, model molecular substitution, and 
perform well when more than one cause of discord are considered 
(Boussau et al., 2013). As a result, slight changes to data set assembly 
and/or phylogenetic reconstruction methods often generate different 
species trees (Jarvis et al., 2014, Wickett et al., 2014; Xi et al., 2014).

These studies emphasize that the key to resolving relationships 
lies not just with more data, but also with decisions about which data 
to include and what analyses to apply (e.g., Smith et al., 2015; Brown 
and Thompson, 2017; Shen et al., 2017). Model misspecification, for 
example, of the model of molecular evolution (e.g., nonstationarity 
of composition, Foster, 2004; Morgan et al., 2013; Cox et al., 2014; 
Jarvis et al., 2014) or gene- tree evolution (e.g., ignoring coalescent- 
based variation among loci; Kubatko and Degnan, 2007), has been 
shown to dramatically reduce the accuracy of phylogenetic recon-
struction. However, models cannot currently, nor are they likely 
soon to be, capable of accommodating all the heterogeneity and 
complexity in full genomes and transcriptomes. Consequently, ap-
proaches that focus on identifying subsets of data that conform to 
the assumptions of, or are otherwise optimized for, the particular 
models used in a given phylogenetic analysis, have been expand-
ing (e.g., Huang et  al., 2016, 2018; Brown and Thompson, 2017; 
Richards et al., 2017).

Different criteria might be applied to identify which loci from 
a larger pool might be included in a phylogenetic analysis. For ex-
ample, loci may be chosen based on characterizations of their phy-
logenetic signal (Gori et al., 2016; Huang et al., 2016; Lewitus and 
Morlon, 2016). As an alternative to using a statistical criterion to 
reduce the heterogeneity in data that does not consider what pro-
cesses underlie the discord, the biological basis of the discord might 
be considered explicitly when identifying data partitions. For exam-
ple, data partitions might be based on whether discord is caused by 
ILS versus LGT using the recently developed program CLASSIPHY 
(see Huang et al., 2018). Such data partitions, like the characteriza-
tions based on statistical criteria that are agnostic to cause (see Gori 
et al., 2016), cannot only be used to avoid model misspecification 

(i.e., only loci for which discord arises from ILS might be included 
in a species- tree analysis of phylogenetic relationships), but they 
may also provide additional information that is of biological inter-
est—the proportion of loci evolving under different evolutionary 
processes (see Huang et  al., 2018). That is, discord among loci is 
more than just a statistical inconvenience, but can be usefully lever-
aged to inform and improve the analysis if the underlying process 
can correctly be identified and modeled.

A newly developed method (CLASSIPHY) provides for the 
identification of the processes that generate discord in a given locus 
(Huang et al., 2018), and apart from the fundamental utility of this 
(e.g., for phylogenetic inference as described above), this method 
also allows us to ask questions about the evolution of the discord 
itself. Here we use this method to ask two key questions about the 
utility of this concept in practice. First, how sensitive is the accu-
rate classification of loci to the diversification history itself? Second, 
how is the accuracy of data partitions (i.e., the inferred subsets of 
loci with discord due to ILS) influenced by the mutational process? 
We answer these questions using simulated test data, so that we 
have a priori knowledge of the identities of the particular loci that 
are discordant due to ILS versus LGT, as well as the timing of ILS 
and LGT events themselves.

By assessing the effects of the timing of divergence, as well as the 
mutational process, on our ability to distinguish ILS from LGT as 
the cause of discord among loci (see Fig. 1) in the present study, we 
provide a critical context for empirical applications of the program 
CLASSIPHY (Huang et  al., 2018) given that ILS and LGT events 
in practice may occur in the recent or more distant evolutionary 
past and that real data sets are comprised of DNA sequences. We 
discuss the relevance of our findings to strategies for resolving the 
recalcitrant nodes that have come to characterize many deep nodes 
in the history of divergence of different clades (e.g., birds and plants; 
Mirarab et al., 2014; Wickett et al., 2014), but also to debates on best 
practices (e.g., over concatenation versus species- tree estimation; de 
Queiroz and Gatesy, 2007; Kubatko and Degan, 2007; Zhong et al., 
2013; Gatesy and Springer, 2014; Liu et al., 2014; Xi et al., 2014).

MATERIALS AND METHODS

We use simulation- based testing to examine the robustness of in-
ferred data partitions to the timing of ILS and LGT events, as well 
as the mutational process (see Fig. 1), for which the contribution of 
ILS and LGT to discord and mutational effects on gene tree estima-
tion are known. Because we simulated our test data, we know which 
loci have discord arising from ILS versus LGT events, and thus, we 
can evaluate whether we can accurately distinguish between discord 
due to ILS versus LGT by comparing the known contribution of 
ILS and LGT with the probabilistically inferred contribution of ILS 
and LGT for each of the test data sets (details below), using the pro-
gram CLASSIPHY (Huang et al., 2018), which is freely available on 
GitHub (https://github.com/huatengh/Classiphy).

Simulated test data sets

Test data sets were simulated where discord among loci could arise 
from ILS and LGT. Only LGT events that induce a topological dis-
cord are considered, and hereafter are simply referred to as LGT loci 
(i.e., LGT events that do not alter the topology of a gene tree are not 
classified as LGT loci). The rest of the loci, which do not contain 
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LGT events, but could contain discord due 
to ILS, are referred to as ILS loci.

To generate the test data sets, three sep-
arate steps are involved to simulate LGT, 
lineage sorting, and mutation, respectively 
(Fig.  1A). Specifically, starting with a spe-
cies tree: (1) locus trees were simulated with 
random LGT events, (2) genealogies were 
simulated within the locus tree according to 
coalescent process (i.e., simulating random 
ILS events), and (3) nucleotide data sets were 
simulated on the genealogies with a substitu-
tion model (details see below). For isolating 
the effects of the timing of divergence on the 
ability to discriminate ILS from LGT loci, all 
test data sets were simulated under a single 
species tree in which the relative timing of 
divergence among taxa remained the same, 
but the total depth of the species tree was 
increased (Fig. 1B). Specifically, the test data 
were simulated under a 50 taxon species tree 
with either a total depth of 25N (and referred 
to as “shallow”), or one with a total depth of 
100N (and referred to as “deep”) with the 
additional branch length added to the tips of 
the tree (see Fig. 1B), rather than rescaling all 
the branches. However, to avoid introducing 
additional LGT events on these extended ter-
minal branches, the extra length was added 
to the simulated genealogies (i.e., after step 
2 from above), rather than changing the spe-
cies tree itself. As such, the distribution of 
ILS and LGT events was held constant; only 
the absolute timing of specific events shifted.

To examine the effect of mutation rates 
on our ability to distinguish ILS versus LGT 
loci, we compared the accuracy of the in-
ferred data partitions defined by loci with 
discord due to ILS, but not LGT, under two 
conditions: coalescent gene genealogies ver-
sus estimated gene trees from nucleotides of 
individual tests data sets were analyzed in 
CLASSIPHY (Fig. 1A). That is, the phyloge-
netic estimate for a locus (i.e., the gene tree 
inferred from nucleotide data) may differ 
from the actual genealogy of that locus (i.e., 
the coalescent history of the locus) because 
of limited phylogenetic signal (for more 
details on the mismatch between estimated 
gene trees and coalescent genealogies due to 
mutational variance see Huang et  al., 2010,  
2014; Lanier et  al., 2013). This potential 
mismatch between the gene genealogy and 
estimated gene tree on the accuracy of data 
partitions is relevant to classifying empirical 
data, and therefore is included here, given 
the distribution of homoplasy is dependent 
upon the diversity history, and its effects on 
the performance of CLASSIPHY have not 
yet been investigated.

FIGURE 1. (A) Schematic of the three steps to simulate lateral gene transfer (LGT), lineage sorting, 
and mutation, respectively, and (B) the topology of the species tree and different tree depths (i.e., 
shallow and deep) used to simulate test data sets. Specifically, starting with a species tree (Fig. 1B): 
(1) locus trees were simulated with random LGT events, (2) genealogies were simulated within the 
locus tree according to a coalescent process (i.e., simulating random incomplete lineage sorting 
[ILS] events), and (3) nucleotide data sets were simulated on the genealogies under a model of 
nucleotide substitution; note the subscripts identify the steps in the simulation process that were 
carried out for each independent locus, for example, for locus i to locus j. Either the gene geneal-
ogies or estimated gene trees from the nucleotide data sets were analyzed with CLASSIPHY to ex-
amine the impact of homoplasy on inferred data partitions (i.e., groups of ILS loci versus LGT loci).

A

B
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Choice of parameters in simulated test data

All test data sets were simulated under the same species tree 
(Fig. 1B). This species tree was chosen to be representative of a his-
tory with an average amount of discord due to ILS. Specifically, the 
species tree was identified from a set of 100 species trees simulated 
under Yule birth- and- death model (with speciation rate = 2 × ex-
tinction rate), for which 500 genealogies were simulated, and the 
average RF distance between species tree and its genealogies (i.e., 
ILS- caused distance) was calculated. The chosen tree (Fig. 1B) was 
then identified by ranking all 100 species trees according to the 
species- tree- genealogy distance, selecting the species tree closest 
to the mean distance. Hence, the species tree used in this study is 
a random 50- taxon tree at 25N depth with an average level of ex-
pected discord due to ILS.

Based on this species tree, we simulated 1000 different data sets. 
Each data set consisted of 800 locus trees (i.e., 800 independent 
loci; see Fig. 1), but the data sets differed in their respective rates of 
LGT, which ranged from 2e- 10 to 2e- 9 LGT events per generation. 
Since LGT events were introduced at random, in each data set of 
800 locus trees, there are locus trees that differ topologically with 
the species tree (i.e., LGT between nonsister lineage), those with the 
same topology but different branch lengths (i.e., LGT between sister 
lineages), and those having no LGT events. The range of LGT rate 
was chosen such that 90% of the locus- trees contain 2–15% LGT 
loci. Since estimating large numbers of gene trees is computationally 
intensive, only three data sets with different amounts of LGT loci 
were selected for simulating nucleotide sequences and estimating 
gene trees. These data sets were identified by ranking the data sets 
based on the proportion of LGT loci (i.e., ranking were established 
after step 2 of the simulation procedure; see Fig. 1A), and selecting 
the three data sets at the 25%, 50%, and 75% quantile. These test data 
sets, each comprising 800 loci, contained 4.9%, 7.5% and 11.5% LGT 
loci, respectively. Genealogies with one individual per species were 
simulated for each locus tree according to the coalescent model (i.e., 
a genealogy may differ from its locus tree because of ILS).

We used SimPhy (Mallo et al., 2016) for simulating the species 
trees, locus trees and genealogies above (a wrapper function to use 
Simphy is included in the CLASSIPHY R package), and used Seq- 
Gen (Rambaut and Grassly, 1997) to simulate nucleotide data sets 
on the genealogies. For each genealogy (under the shallow versus 
deep history of 25N versus 100N total depth, respectively), nucleo-
tide data sets of 1000 bp were simulated with the program Seq- Gen 
(Rambaut and Grassly, 1997) under an HKY85 model of nucleotide 
substitution with a transition–transversion ratio of 3.0, a gamma 
mutation rate distribution with shape parameter of 0.8, and nucle-
otide frequencies of A = 0.3, C = 0.2, T = 0.3, and G = 0.2 for the 
ancestral sequence. From the simulated DNA sequences, gene trees 
were estimated using RAxML (Stamatakis, 2014). These estimated 
gene trees may differ from the actual genealogy because of limited 
phylogenetic signal (for more details on the mismatch between esti-
mated gene trees and coalescent genealogies due to mutational var-
iance see Huang et al., 2010, 2014; Lanier et al., 2013). An outgroup 
lineage (but with no LGT between the outgroup and in- group line-
ages) was used to root estimated gene tree (Fig. 1B). The outgroup 
is not included in any of the calculated summary statistics used in 
the CLASSIPHY analyses (i.e., the outgroup does not contribute to 
the classification of loci as ILS versus LGT loci).

In total, there were 12 test data sets: test data sets for each of 
3 different LGT quantiles for a shallow versus deep divergence 

history, based on either the estimated gene trees or the genealogies 
themselves (after excluding them from the training data set). Each 
test data set was analyzed separately using CLASSIPHY (Huang 
et al., 2018), as described below. The test data sets, and the para-
meter file for the simulated training sets, are freely available from 
GitHub (https://github.com/huatengh/Classiphy).

Classification of loci by the cause of discord

CLASSIPHY is a simulation- trained (supervised) machine learning 
approach (Huang et  al., 2018). Unlike traditional machine learn-
ing approaches, which typically use empirical data for both train-
ing and evaluation, in the CLASSIPHY approach, training data 
are generated under known processes of ILS and LGT, following 
Sukuumaran et al. (2016), and the entire process is described in de-
tail below. The machine learning algorithm used in CLASSIPHY 
is discriminant analysis of principal components (DAPC) and has 
been described comprehensively (Jombart, 2008; Jombart et  al., 
2010). Briefly, this algorithm involves calculating a set of summary 
statistics on the training data, projecting these statistics onto princi-
pal component axes, and using the principal component axes scores 
as input to construct a discriminant analysis classifier, which in turn 
is applied to the target data to classify them with respect to the gen-
erating model. While there are many machine learning algorithms 
available, we have found that the DAPC performs well enough for 
applications such as this (Sukumaran et al, 2016) to base our anal-
yses on it and has been borne out through our own assessments 
(Huateng et al., 2018).

The basic steps involved in this simulation- trained DAPC proce-
dure are (1) simulation of gene trees under regimes corresponding 
to different processes that might contribute to discord—in this case, 
ILS and LGT, (2) calculation of summary statistics on simulated data 
sets to train a classification function, (3) construction of a discri-
minant analysis function based on principal components extracted 
from the training data set, (4) assessment of the performance of 
the summary statistics by inspection of posterior prediction of the 
training data set, and (5) application of the discriminant analysis 
function to the original data to classify it with respect to whether 
ILS or LGT underlie observed gene tree discord. The summary sta-
tistics are not used directly, but rather the principal components 
extracted from the summary statistics are used to construct the 
DAPC function in this machine learning approach. For a detailed 
description of CLASSIPHY, see Huang et al. (2018), which describes 
the concept of identifying data partitions by the biological cause of 
discord and demonstrates the validity of the statistical approach ap-
plied in CLASSIPHY. Here, we limit our focus to questions that can 
be answered statistically by application of this method to data sets 
that differ with respect to the timing of ILS and LGT events, and the 
effects of the mutational process on the accuracy of identifying data 
partitions (i.e., data subsets with ILS, but no LGT).

The training set applied in the CLASSIPHY analyses here com-
prised 1000 data sets with different LGT rates, each with 800 loci, 
where the rate of LGT was drawn from the distribution described 
above, simulated under the one species tree (Fig. 1B). For each of 
the 800 loci of each test data set (i.e., a total of 800 loci × 12 data 
sets), a probabilistic classification was generated using a standard 
posterior probabilities >0.5 threshold to classify a locus as either an 
ILS locus or LGT locus (see Huang et al., 2018 for other thresholds 
that might be applied using CLASSIPHY).

https://github.com/huatengh/Classiphy
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Assessing accuracy of data partitions

The inferred classification of individual loci from the CLASSIPHY 
analysis was compared to the actual history of each locus to evaluate 
the accuracy of distinguishing ILS and LGT loci. Accuracy of the 
data partitions are summarized separately for (1) each of the three 
LGT rates (i.e., a low, medium, and high LGT rate), and (2) the dif-
ferent depths of divergence (i.e., shallow versus deep divergence 
histories). For each of these separate scenarios, a receiver operating 
characteristic (ROC) curve analysis was performed using the pROC 
R package (Robin et al., 2011). Such analyses are commonly used 
to characterize and compare the results from machine learning ap-
proaches. ROC plots provide a visualization for assessing the per-
formance of the classifier over its entire operating range, as opposed 
to relying just on the area under the curve (the AUC) to evaluate the 
classifier. In addition, linear regressions were used to test whether 
or not the posterior probability of LGT correlated with the degree 
of discord between a gene tree and the species tree (i.e., the species- 
to- locus Robinson- Fould’s distance; Robinson and Foulds, 1981).

To examine the effect of mutation on the ability to accurately 
distinguish ILS and LGT loci, the classification accuracy of data 
partitions was compared when the genealogy versus the estimated 
gene tree was analyzed with CLASSIPHY. These results are pre-
sented after standardizing by the overall accuracy of classification 
for each of the three LGT rates (i.e., a low, medium, and high LGT 
rate), and the different divergence depths (i.e., shallow versus deep 
divergence histories), to establish the effect of mutation on accurate 
classification (as opposed to inherent differences in the accurate 
classification of individual loci). Specifically, the differences in the 
percentage correct classification when based on genealogies versus 
estimated gene trees were calculated and presented.

RESULTS

There are two important observations about the performance as 
measured in terms of posterior probabilities for the true versus 
false model (Fig. 2). First, as visualized in the ROC curves (Fig. 2), 

for loci with high posterior probabilities, the method is sensitive 
to both (1) the rate of LGT and (2) whether these events occur in 
the recent versus distant past (see Fig. 1 for simulation design). For 
example, in all cases, irrespective of the rate of LGT, the accuracy 
of data partitions (i.e., classification of ILS and LGT loci) decreases 
when those events are in the more distant past, (Fig. 2). In these 
curves, the true positive rate (TP, representing sensitivity) is plotted 
against the false positive rate (FP, representing 1 – specificity) for 
the p > 0.5 threshold used here to classify ILS and LGT loci. This 
sensitivity to whether the events causing discord occurred in the 
recent versus distant past is also reflected in the difference in the 
summary provided by the AUC scores for each test data set with 
either low, medium, or high proportions of discord cause by LGT 
(see Fig. 2). More specifically, there is a drop in classification per-
formance (i.e., lower AUC scores) with higher proportions of LGT 
events and when the events occur in the distant past. Note that be-
cause the additional branch lengths were added to the tips of the 
tree (see Fig. 1B), rather than rescaling all the branches, and these 
were added to the simulated genealogies after step 2 as described 
in the methods (Fig. 1A), the difference in performance can only 
arise from shifts in the absolute timing of specific events (i.e., no 
additional LGT events were introduced by the extended terminal 
branches of the deep history of species divergence; Fig. 1B).

We can see that the largest decrease in the percentage of loci clas-
sified accurately ranges from about 8% to 15% and is associated with 
the deep divergence histories (Table 1). Moreover, this analysis also 
shows how the drop in the accuracy of CLASSIPHY with the depth 
of the divergence events observed in the ROC analyses (Fig. 2) pri-
marily reflects the decreased accurate classification of LGT loci, not 
ILS loci. This result highlights that, while phylogenetic scale matters 
(that is, whether the processes generating discord occurred in the 
recent versus deep past), the data partitions representing ILS loci 
tend to be more accurate relative to identifying data partitions of 
LGT loci (Table 1). This sensitivity in identifying data partitions of 
LGT loci when the events occurred in the more distant past can be 
visualized by the relationship between the posterior probability of 
LGT and the degree of discord between a gene tree and the species 

FIGURE 2. Classification performance when species divergence is relatively recent (i.e., shallow; shown in the solid line) compared to deeper diver-
gence times (show in the dotted line) for different contributions of lateral gene transfer (LGT) to gene tree discord, ranging from low, medium, and 
high relative proportions of LGT loci, as characterized by the receiver operating characteristic (ROC) curve. A classifier with no power will sit on the 
diagonal (i.e., essentially random guessing, 0.5, whether a locus is a incomplete lineage sorting [ILS] versus LGT locus). The area under the curve (AUC) 
scores (with a maximum value of 1) are also shown for comparison of the accuracy of the classifier in distinguishing ILS versus LGT loci (presented next 
to the solid and dashed lines) for shallow versus deep histories.
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tree (i.e., the species- to- locus Robinson- Fould’s distance). This re-
lationship is clear when the LGT events occurred in the recent past, 
but it becomes degraded when those LGT events occur in the more 
distant past (Fig. 3).

DISCUSSION

Our examination into how the accuracy of distinguishing ILS and 
LGT depends on the timing of these events has immediate impli-
cations for applications using the program CLASSIPHY. However, 
our work also points to more general issues surrounding the deci-
sions that researchers make about how to handle topological dis-
cordance across loci, as well as the lack of phylogenetic signal. We 
also acknowledge that much more work needs to be done before in-
formed decisions about best practices might be made. Nevertheless, 
our work is an example of how the field can take steps toward char-
acterizing the relative contributions of different sources of discord, 
and by doing so, potentially improve phylogenetic estimates.

Identifying the cause of discord and implications for what  
to do about discordant trees

The approach implemented in CLASSIPHY (Huang et  al., 2018) 
and the analyses discussed here are important not only for recon-
structing species trees, but also for exploring the processes that lead 
to discord in phylogenies. We are still in the early stages of ana-
lyzing and understanding large genomic and transcriptomic data 
sets. Significant technological and methodological challenges have 
already been overcome but more continue to arise.

Despite the relative newness of large genomic data sets, some 
major patterns are emerging. For example, it has become clear that 
simply adding more data is not going to confidently resolve all the 
recalcitrant nodes across the tree of life. As recent studies have 
demonstrated, gene tree discord is very common and can show 
diverse patterns (Jarvis et al., 2014; Smith et al., 2015; Brown and 
Thompson, 2017; Shen et al., 2017). Furthermore, these studies have 
demonstrated that a relatively small number of genes can dramat-
ically alter species tree estimates and the probability of including 
“outlier” genes (i.e., genes contributing to model misspecification in 
phylogenetic inference) increases as we increase the amount of data 

because the inherent heterogeneity of sequence data can only in-
crease with additional taxa and loci. This additional data complexity 
necessarily complicates our ability to reconstruct phylogenies.

Our results suggest that there is the potential to filter data sets 
for genes in which the conflict is due to evolutionary processes that 
can be correctly modeled so as to inform, rather than distort, the 
phylogeny—specifically, identifying data partitions of ILS loci (see 
Fig. 2 and Table 1). However, our results also suggest that the ability 
to accurately classify loci by the cause of discord depends on the 
diversification history itself. More specifically, the accuracy of the 
CLASSIPHY approach (Huang et al., 2018) is not strictly a func-
tion of the rate of LGT, but instead depends upon the timing of 
those LGT events, with events in the distant past being classified 
less accurately than those in the recent past (even for the same rate 
of LGT) (Fig. 2). This behavior presents challenges for studying the 
process and patterns of LGT and relates to our ability to test hy-
potheses about the role of LGT in the diversification of some groups 
(e.g., Xi et al., 2012).

Nevertheless, one of the most compelling aspects of our results is 
that discord due to ILS tends to be accurately identified, irrespective 
of whether the events took place in the recent or more distant past 
(Table 1). Moreover, this result is generally fairly robust to muta-
tional variance (i.e., there is not much of a difference in the classifi-
cation accuracy of ILS loci based an estimated gene tree versus the 
actual genealogy; Table 1). Limited phylogenetic signal that might 
contribute to differences between estimated gene trees and the ac-
tual genealogies, at least for the parameter space considered here, is 
not a significant problem. This finding has important implications 
for decisions researchers might make about phylogenetic analysis 
and, in particular, estimating species trees (Knowles and Kubatko, 
2010). First, it dispels a common misconception that species tree 
approaches may not be appropriate when divergence occurs in the 
more distant past because, within any species, individuals will have 
coalesced to a common ancestor. As our results clearly show, ILS, 
whether it happens in the recent past or more distant past, can be 
detected, though with somewhat lower accuracy (Table  1), even 
with a single individual sequenced per species. In other words, the 
discord arising from the random sorting of gene lineages, which 
occurs irrespective of whether divergence is recent or in the distant 
past, should not be confused with the distinct concept of optimal 
sample design, and how sampling more individuals might or might 
not be useful to phylogenetic inference (e.g., when diversification 
occurs in the more distant past, sampling more individuals will 
not improve phylogenetic estimates; see McCormack et  al., 2009; 
Knowles, 2010).

The second important implication of these results on the classifi-
cation of ILS loci bears on whether the lack of phylogenetic signal of 
individual genes is necessarily a legitimate reason to concatenate data 
(e.g., Jarvis et  al., 2014). Unlike the detection of LGT trees, where 
there is a fairly substantial effect of mutational variance for deeper 
histories (Table 1; see also Fig. 3), the detection of ILS trees is con-
sistent through time (Table 1). Again, this suggests that at least for 
the parameter space studied here, the ability to detect ILS is generally 
robust even when those events occur in the recent or distant past. As 
such, the results bolster arguments that with improved model fit (i.e., 
accurate modeling of the nucleotide substitution process such that es-
timated gene trees match the underlying genealogies), and when ILS 
is the primary source of discord among the gene trees analyzed, spe-
cies tree analyses can be accurate for phylogenetic inference. Whole 
genomes or transcriptomes likely have many processes that shape 

TABLE 1. Comparison between the classification accuracy of incomplete 
lineage sorting (ILS) and lateral gene transfer (LGT) loci based on the genealogy 
versus estimated gene trees highlights the impact of mutational variance (i.e., the 
mismatch between the actual genealogical history of a locus and the estimated 
gene tree of a particular locus; see Huang et al., 2010). Because the results are 
standardized (i.e., the difference in the percentage of correct classification of 
ILS and LGT loci when based on the genealogy versus the estimated gene tree), 
the effect of mutation separate from any inherent differences in the accuracy of 
classification of a locus is clear.

LGT rate

% Decrease in classification accuracy due to 
mutation 

Shallow divergence 
history

Deep divergence  
history

ILS LGT ILS LGT

Low 0 8% 0 15%
Medium 3% 0 2% 18%
High 8% 0 0 31%
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FIGURE 3. Variation in the classification performance among gene trees as a function of the Robinson- Fould’s distance between each gene tree and 
the species tree (i.e., each dot shows the posterior probability of lateral gene transfer [LGT]) when species divergence is relatively recent (shown on the 
left) compared to deeper divergence times (show on the right), for (A) low, (B) medium, and (C) high relative proportions of LGT loci.
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gene tree evolution and so instead of presuming that all the discord 
is the result of ILS, we may be able to identify and use those ILS loci 
for species tree construction. However, the difference between the 
classification accuracy of LGT loci based on the actual genealogical 
histories versus the gene trees themselves, as well as reduced accu-
racy of LGT loci for deeper species divergence times relative to more 
shallow histories (Table 1), suggests that limited phylogenetic signal 
may become problematic (see also Richards et al., 2017).

Accurately estimating species’ phylogenies and moving  
beyond the species tree

Detailed interrogation of genomic data sets (e.g., Fontaine et  al., 
2015; Smith et  al., 2015; Shen et  al., 2017) has provided clear ev-
idence that processes other than the coalescent (reviewed by 
Maddison, 1997) contribute significantly to gene- tree discord. The 
importance of proper modeling of data (e.g., Kubatko and Degnan, 
2007; Ruprecht et al., 2017), and the impact of the different sources of 
discord on phylogenomic analyses, highlights that data abundance 
alone will not be sufficient to infer accurate inference of species re-
lationships. Debates on best practices (e.g., over concatenation and 
coalescence, de Queiroz and Gatesy, 2007; Kubatko and Degnan, 
2007; Edwards, 2009; Zhong et al., 2013; Gatesy and Springer, 2014; 
Liu et al., 2014; Xi et al., 2014) typically do not address the many 
sources of discord that contribute to conflict. Perhaps more impor-
tantly, these discussions often do not consider that, in addition to 
the better construction of species trees, analyses of the patterns of 
conflict also lead to a better understanding of the evolutionary pro-
cesses and events that occurred within the lineages being analyzed. 
As such, our study represents an important step toward characteriz-
ing the relative contributions of different sources of discord. Instead 
of simply concatenating all the data, which violates our models of 
evolution, we might examine the data in more detail, and if we can 
identify those genes where discord is the result of ILS, we may have 
an opportunity to better resolve species relationships. However, even 
though we demonstrate that the identification of ILS genes is pos-
sible under the parameter space explored here, empirical data are 
more complex. For example, as the scope of a particular phyloge-
netic analysis increases, the probability of having multiple processes 
influence the evolution of a single gene tree also increases. And so 
our results, along with those of other genomic studies over the last 
few years, suggest that decisions about phylogenetic analyses will be 
more nuanced, contrary to debating which one method might be 
best (i.e., simply assuming that concatenation will avoid unwanted 
problems is not a justifiable position). As data sets continue to ex-
pand in taxonomic and genomic coverage, how we might achieve 
the most accurate phylogenetic estimates, while at the same time, ex-
tract information about the evolutionary processes structuring phy-
logenomic data, is a pressing question that deserves more attention.

What approach might researchers take to reach a balance be-
tween data content and model fit to achieve accurate phylogenetic 
inference? Despite compelling arguments for improved model fit to 
increase the accuracy of phylogenetic inference, and given the dif-
ficulties in analyzing big data, some researchers have shifted back 
to the use of concatenated data sets with only nucleotide evolution 
modeled in the inference procedure (e.g., Jarvis et al., 2014; Wickett 
et al., 2014; Prum et al., 2015; Yang et al., 2015), prompting others 
to attempt to argue for the superiority of concatenation specifically 
(e.g., Gatesy and Springer, 2014). Without arguing for or against 
the specific application of these methods to particular data sets, the 

lessons from genomics and transcriptomics over the last few years 
have demonstrated that this practice masks significant discord un-
derlying the data. This underlying discord can result in researchers 
finding strong support for conflicting relationships with only minor 
modifications to which subset of genes are included between analy-
ses. As such, the field of phylogenetics is at an interesting juncture. 
Big data are providing unprecedented opportunities to conduct 
phylogenetic analyses at a scale that encompasses entire genomes. 
However, such analyses face computational challenges and pose 
new challenges from their increased heterogeneity (i.e., larger data 
sets have a greater number of processes that might contribute to dis-
cordant gene trees).

We hope that our work here will draw attention to one poten-
tial avenue for potentially improving phylogenetic estimates by 
minimizing some model misspecification (in this case, excluding 
LGT trees from a set of discordant trees), while we learn something 
about the processes underlying the discord observed in phylog-
enomics, two goals that are certainly out of reach when researchers 
decide to concatenate. By embracing the heterogeneity in gene trees 
and exploring the sources of discord, we stand to gain a better un-
derstanding of how the resulting phylogenies may or may not be 
distorted by gene tree discord (e.g., Huang et al., 2014). Moreover, 
even if we do not currently have methods that can infer phylog-
enies under models that account for multiple discord- generating 
processes, identifying the processes informing the data is still use-
ful for applications beyond a focus on species tree inference per 
se (e.g., how does the contribution of LGT vary across clades or 
whether LGT is associated with ecological shifts). In the future, un-
derstanding which model features are important to provide a real-
istic framework for inferring species phylogenies when these data 
sets contain multiple discord- generating processes will be mutually 
beneficial to both endeavors, and it is in this spirit of exploration 
that we present our results.
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