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ABSTRACT

Measuring the rate and extent of radioligand binding provides information on the number
of binding sites, and their afÞnity and accessibility of these binding sites for various drugs.
This unit explains how to design and analyze such experiments. Curr. Protoc. Neurosci.
52:7.5.1-7.5.65. C© 2010 by John Wiley & Sons, Inc.
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INTRODUCTION

A radioligand is a radioactively labeled drug that can associate with a receptor, trans-
porter, enzyme, or any protein of interest. The term ligand derives from the Latin word
ligo, which means to bind or tie. Measuring the rate and extent of binding provides
information on the number, afÞnity, and accessibility of these binding sites for various
drugs. While physiological or biochemical measurements of tissue responses to drugs
can prove the existence of receptors, only ligand binding studies (or possibly quantitative
immunochemical studies) can determine the actual receptor concentration. Radioligand
binding experiments are easy to perform, and provide useful data in many Þelds. For
example, radioligand binding studies are used to:

1. Study receptor regulation, for example during development, in diseases, or in response
to a drug treatment.

2. Discover new drugs by screening for compounds that compete with high afÞnity for
radioligand binding to a particular receptor.

3. Investigate receptor localization in different organs or regions using autoradiography
(UNITS 1.2 & 1.3).

4. Categorize receptor subtypes.

5. Probe mechanisms of receptor signaling, via measurements of agonist binding and its
regulation by ions, nucleotides, and other allosteric modulators.

This unit reviews the theory of receptor binding and explains how to analyze experimental
data. Since binding data are usually best analyzed using nonlinear regression, this unit
also explains the principles of curve Þtting with nonlinear regression. For more general
information on receptor theory and analyses of receptor data, see books by Limbird
(2004) and Kenakin (2006).

BINDING THEORY

The Law of Mass Action

Binding of a ligand to a receptor is a complex process involving conformational changes
and multiple noncovalent bonds. The details are not known in most cases. Despite this
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complexity, most analyses of radioligand binding experiments successfully use a simple
model called the law of mass action:

ligand receptor ligand receptor+ ⎯ →⎯← ⎯⎯ ⋅

Equation 7.5.1

The model is based on these simple ideas:

1. Binding occurs when ligand and receptor collide (due to diffusion) with the correct
orientation and sufÞcient energy. The rate of association (number of binding events
per unit of time) equals [ligand] × [receptor] × kon, where kon is the association rate
constant in units of M−1 min−1.

2. Once binding has occurred, the ligand and receptor remain bound together for a
random amount of time. The rate of dissociation (number of dissociation events per
unit time) equals [ligand · receptor] × koff, where koff is the dissociation rate constant
expressed in units of min−1.

3. After dissociation, the ligand and receptor are the same as they were before binding.

The equilibrium dissociation constant Kd
Equilibrium is reached when the rate at which new ligand·receptor complexes form
equals the rate at which they dissociate:

ligand receptor ligand receptoron off[ ]× [ ]× = ⋅[ ]×k k

Equation 7.5.2

Rearrange to deÞne the equilibrium dissociation constant Kd.

ligand receptor

ligand receptor
off

on
d

[ ]× [ ]
⋅[ ] = =k

k
K

Equation 7.5.3

The Kd, expressed in units of mol/liter or molar (M), is the concentration of ligand that
occupies half of the receptors at equilibrium. To see this, set [ligand] equal to Kd in the
equation above. In this case, [receptor] must equal [ligand·receptor], which means that
half the receptors are occupied by ligand.

AfÞnity

The term afÞnity is often used loosely. If the Kd is low (e.g., pM or nM), that means that
only a low concentration of ligand is required to occupy the receptors, so the afÞnity is
high. If the Kd is larger (e.g., μM or mM), a high concentration of ligand is required to
occupy receptors, so the afÞnity is low. The term equilibrium association constant (Ka)
is less commonly used, but is directly related to the afÞnity of a compound. The Ka is
deÞned to be the reciprocal of the Kd, so it is expressed in units of liters/mol. A high Ka
(e.g., >108 M−1) would represent high afÞnity.

Because the names sound familiar, it is easy to confuse the equilibrium dissociation
constant (Kd, in molar units) with the dissociation rate constant (koff, in min

−1 units), and
to confuse the equilibrium association constant (Ka, in liter/mol units) with the association
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rate constant (kon, in M
−1 min−1 units). To help avoid such confusion, equilibrium

constants are written with a capital �K� and the rate constants with a lowercase �k.�

A wide range of Kd values are seen with different ligands. Since the Kd equals the
ratio koff/kon, compounds can have different Kd values for a receptor either because the
association rate constants are different, the dissociation rate constants are different, or
both. In fact, association rate constants are all pretty similar (usually 107 to 109 M−1
min−1, which is about two orders of magnitude slower than diffusion), while dissociation
rate constants are quite variable (with half-times ranging from seconds to days).

Fractional occupancy at equilibrium

Fractional occupancy is deÞned as the fraction of all receptors that are bound to ligand.
The law of mass action predicts the fractional receptor occupancy at equilibrium as a
function of ligand concentration.

fractional occupancy
ligand receptor

receptor

ligand receptor

receptor ligand receptor
total

=
⋅[ ]

[ ] =
⋅[ ]

[ ] + ⋅[ ]

Equation 7.5.4

A bit of algebra creates a useful equation. Multiply both numerator and denominator by
[ligand] and divide both by [ligand receptor]. Then substitute the deÞnition of Kd.

fractional occupancy =
ligand

ligand d

[ ]
[ ] + K

Equation 7.5.5

The approach to saturation as [ligand] increases is slower than one might imagine (see
Fig. 7.5.1). Even using radioligand at a concentration equal to nine times its Kd will only
lead to its binding to 90% of the receptors.

Assumptions of the law of mass action

Although termed a �law,� the law of mass action is simply a model. It is based on these
assumptions:

1. All receptors are equally accessible to ligands.
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Figure 7.5.1 Occupancy at equilibrium. The fraction of receptors occupied by a ligand at equi-

librium depends on the concentration of the ligand compared to its Kd.
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2. All receptors are either free or bound to ligand. The model ignores any states of partial
binding.

3. Binding alters neither ligand nor receptor.

4. Binding is reversible.

NonspeciÞc Binding

In addition to binding to the receptors of physiological interest, radioligands also bind to
other (nonreceptor) sites. Binding to the receptor of interest is termed speciÞc binding.
Binding to other sites is called nonspeciÞc binding. Because of this operational deÞnition,
nonspeciÞc binding can represent several phenomena:

1. The bulk of nonspeciÞc binding represents some sort of interaction of the ligand with
membranes. The molecular details are unclear, but nonspeciÞc binding depends on
the charge and hydrophobicity of a ligand�but not its exact structure.

2. NonspeciÞc binding can also result from binding to receptor transporters, or to en-
zymes not of interest to the investigator (e.g., binding of epinephrine to serotonin
receptors).

3. In addition, nonspeciÞc binding can represent binding to the Þlters, tubes, or other
materials used to separate bound from free ligand.

In many systems, nonspeciÞc binding is linear with radioligand concentration. This
means that it is possible to account for nonspeciÞc binding mathematically, without
ever measuring nonspeciÞc binding directly. To do this, measure only total binding
experimentally, and Þt the data to models that include both speciÞc and nonspeciÞc
components (see More Complicated Situations, below).

Most investigators, however, prefer to measure nonspeciÞc binding experimentally. To
measure nonspeciÞc binding,Þrst block almost all speciÞc binding siteswith an unlabeled
drug. Under these conditions, the radioligand only binds nonspeciÞcally. This raises two
questions: which unlabeled drug should be used and at what concentration?

The most obvious choice of drug to use is the same compound as the radioligand, but
unlabeled. This is necessary in many cases, as no other drug is known to bind to the
receptors. Most investigators, however, avoid using the same compound as the hot and
cold ligand for routine work because both the labeled and unlabeled forms of the drug
will bind to the same speciÞc and nonspeciÞc sites. This means that the unlabeled drug
will reduce binding purely by isotopic dilution. When possible, it is better to deÞne
nonspeciÞc binding with a drug chemically distinct from the radioligand.

The concentration of unlabeled drug should be high enough to block virtually all the
speciÞc radioligand binding, but not so much that it will cause more general physical
changes to themembrane thatmight alter speciÞc binding. If studying awell characterized
receptor, a useful rule of thumb is to use the unlabeled compound at a concentration at
least 100 times its Kd for the receptors.

The same results should be obtained from deÞning nonspeciÞc binding with a range
of concentrations of several drugs. Ideally, nonspeciÞc binding is only 10% to 20% of
the total radioligand binding. If the nonspeciÞc binding makes up more than half of the
total binding, it will be hard to get quality data. If the system exhibits a great deal of
nonspeciÞc binding, use a different kind of Þlter, wash with a larger volume of buffer or
a different temperature buffer, or use a different radioligand.
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Ligand Depletion

The equations that describe the law of mass action include the variable [ligand], which is
the free concentration of ligand. Unless speciÞcally stated, all of the analyses presented
later in this unit assume that a very small fraction of the ligand binds to receptors (or to
nonspeciÞc sites), so that the free concentration of ligand is approximately equal to the
concentration added.

In some experimental situations, the receptors are present in high concentration and
have a high afÞnity for the ligand. A large fraction of the radioligand binds to receptors
(or nonspeciÞc sites), depleting the amount of ligand remaining free in solution. The
discrepancy is not the same in all tubes or at all times. Many investigators use this rule
of thumb: if <10% of the ligand binds, don�t worry about ligand depletion.

If possible, design the experimental protocol to avoid situations where >10% of the
ligand binds. This can be done by using less tissue in the assays; however, this will also
decrease the number of counts. An alternative is to increase the volume of the assay
without changing the amount of tissue. In this case, more radioligand will be needed.

If radioligand depletion cannot be avoided, the depletion must be accounted for in the
analyses. There are several approaches.

1. Measure the free concentration of ligand in every tube.

2. Calculate the free concentration in each tube by subtracting the number of cpm (counts
per minute) of total binding from the cpm of added ligand. This method works only
for saturation binding experiments, and cannot be extended to analysis of competition
or kinetic experiments. One problem with this approach is that experimental error in
determining speciÞc binding also affects the calculated value of free ligand concen-
tration. When Þtting curves, both x and y would include experimental error, and the
errors will be related. This violates the assumptions of nonlinear regression. Using
simulated data, Swillens (1995) has shown that this can be a substantial problem.
Another problem is that the free concentration of radioligand will not be the same
in tubes used for determining total and nonspeciÞc binding. Therefore speciÞc bind-
ing cannot be calculated as the difference between the total binding and nonspeciÞc
binding.

3. Fit total binding as a function of added ligand to a model (equation) that accounts
both for nonspeciÞc binding and for ligand depletion.

SATURATION BINDING EXPERIMENTS

Saturation binding experiments determine receptor number and afÞnity by determining
binding at various concentrations of the radioligand. Because this kind of experiment can
be graphed as a Scatchard plot (more accurately attributed to Rosenthal, 1967), they are
sometimes called �Scatchard experiments.�

The analyses depend on the assumption that the incubation has reached equilibrium.
This can take anywhere from a few minutes to many hours, depending on the ligand,
receptor, temperature, and other experimental conditions. Since lower concentrations of
radioligand take longer to equilibrate, use a low concentration of radioligand (perhaps
10% to 20% of the estimated Kd) when measuring how long it takes the incubation to
reach equilibrium. Experimenters typically use 6 to 12 concentrations of radioligand,
since data with fewer than 6 concentrations are usually insufÞcient to provide accurate
estimates of the binding parameters.
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Figure 7.5.2 Examples of nonspecific binding. (A) [3H]Mesulergine binding to serotonin re-

ceptors has low nonspecific binding (<25% of total binding at the highest concentrations). (B)

[3H]Meproadifen binding to the ion channel of nicotinic receptors has high nonspecific binding

(>50%).

Theory of Saturation Binding

NonspeciÞc binding

Analysis of saturation binding curves requires accounting for nonspeciÞc binding. The
left panel of Figure 7.5.2 shows data from a nearly ideal system, where nonspeciÞc
binding is less than 25% of total binding. The right panel shows a less ideal system
where nonspeciÞc binding is over 50% of total binding at high ligand concentrations. If
nonspeciÞc binding were much higher than this, it would be very difÞcult to get reliable
results.

The best approaches to accounting for nonspeciÞc binding take advantage of the fact that
nonspeciÞc binding is generally proportional to the concentration of radioligand (within
the concentration range used in the experiment). This means that a graph of nonspeciÞc
binding as a function of radioligand binding is generally linear, as shown in Figure 7.5.2.
This assumption is reasonable if the nonspeciÞc binding is due to general binding to
membranes, but may not be reasonable if some of the nonspeciÞc binding represents
binding to receptors or transporters other than the one being studied.

SpeciÞc binding

SpeciÞc binding at equilibrium equals fractional occupancy times the total receptor
number (Bmax), and depends on the concentration of free radioligand ([L]):

specific binding fractional occupancy
L

L
max

d

= × =
×[ ]

+ [ ]
B

B

K
max

Equation 7.5.6

This equation describes a rectangular hyperbola or a binding isotherm. [L] is the con-
centration of free radioligand, the value plotted on the x axis (see Fig. 7.5.3). Bmax is the
total number of binding sites and is expressed in the same units as the y values (i.e., cpm,
sites/cell, or fmol/mg protein). Kd is the equilibrium dissociation constant (expressed in
the same units as [L], usually nM). Figure 7.5.3 shows the total binding, speciÞc binding,
and nonspeciÞc binding for a hypothetical experiment.

Total binding

Total binding is the sum of speciÞc and nonspeciÞc binding.
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Figure 7.5.3 Total binding, specific binding, and nonspecific binding for a saturation binding

experiment.

Analysis of Saturation Binding Curves

Before Þtting the data to a model, transform the data to convenient units. Convert the
total and nonspeciÞc binding data from counts per minute to more useful units such as
fmol/mg protein or sites per cell.

Fitting the data to determine Bmax and Kd can use three different strategies as follows.

Strategy 1: Fit speciÞc binding only

Before Þtting a model with nonlinear regression, calculate speciÞc binding at each con-
centration of ligand. If you have measured nonspeciÞc binding at each concentration of
ligand, simply subtract nonspeciÞc from total. If you are willing to accept the assumption
that nonspeciÞc binding is linear with radioligand concentration, use linear regression to
Þnd the best-Þt line through the nonspeciÞc binding data. SpeciÞc binding is calculated
by subtracting the nonspeciÞc binding predicted by that line from the total binding mea-
sured at each concentration of radioligand. With this approach, it is only necessary to
experimentally measure nonspeciÞc binding experimentally at a few concentrations of
radioligand.

Fit the data to this equation:

[ ] [ ]( )max dL Ly B K= × +

Equation 7.5.7

If the curve-Þtting program does not provide initial values (sometimes called estimated
values) automatically, estimate Bmax as the largest value of y and estimate Kd as 0.2 times
the largest value of [L].

Strategy 2. Fit total binding only

For systems where nonspeciÞc binding is linear with ligand concentration, one can Þt
total binding only. NonspeciÞc binding is imputed from the shape of the total binding
curve, but not actually measured experimentally. Use this model, where NS is the slope
of the nonspeciÞc binding line:

total binding specific binding nonspecific binding
L

+ L
NS L

d

= + =
×[ ]
[ ]

+ ×[ ]B

K
max

Equation 7.5.8
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The strategy of Þtting total binding only is also used when a high fraction of ligand
binds to receptors, so one cannot assume that the free concentration of ligand equals the
concentration of ligand added. In this case, it is necessary that [L] and y both be expressed
in the same concentration units. Then, Þt to the model derived by Swillens (1995).

Strategy 3. Globally Þt total and nonspeciÞc binding

Assuming that nonspeciÞc binding is linear with radioligand concentration, the best way
to analyze saturation binding data is to globally Þt total and nonspeciÞc binding at once.
Fit total binding to the same model used in Strategy 2, above.

Fit nonspeciÞc binding using the model: y = NS × [L], where NS is the slope of the
nonspeciÞc binding line.

Fit the two data sets globally (simultaneously), sharing the value of NS between the two
data sets, so there is only one best-Þt value for that parameter.

This approach takes full advantage of all the information in your data, and gives the most
accurate values of Bmax and Kd.

Are the results reasonable?

Before accepting the results of the curve Þt, ask the questions listed in Table 7.5.1 to
determine whether the results are reasonable.

Table 7.5.1 Evaluating the Results of Saturation Binding Curve Analysis

Question Comment

Does the calculated curve
go near the data points?

If the curve doesn�t go near the data, then something went wrong
with the curve Þt, and the �best-Þt� values of Bmax and Kd should
be ignored.

Were sufÞcient
concentrations of
radioligand used?

Ideally, the highest concentration should be at least 10 times the
Kd. Calculate the ratio of the highest radioligand concentration
used divided by the Kd reported by the program (both in nM or
pM). The ratio should be greater than 10.

Is the Bmax reasonable? Typical values for Bmax are 10 to 1000 fmol binding sites per
milligram of membrane protein, 1000 sites per cell, or 1 receptor
per square micron of membrane. If using cells transfected with
receptor genes, then the Bmax may be 10 to 100 times larger than
these values.

Is the Kd reasonable? Typical values for Kd of useful radioligands range between 10 pM
and 100 nM. If the Kd is much lower than 10 pM, the dissociation
rate is probably very slow and it will be difÞcult to achieve
equilibrium. If the Kd is much higher than 100 nM, the
dissociation rate will probably be fast, and may result in the loss of
binding sites during separation of bound from free radioligand.

Are the standard errors too
large? Are the conÞdence
intervals too wide?

Nonlinear regression programs report the uncertainty of the best-Þt
values for Bmax and Kd as standard errors and 95% conÞdence
intervals. Divide the SE of the Bmax by the Bmax, and divide the SE
of the Kd by the Kd. If either ratio is much larger than ∼20%, look
further to determine why.

Is the nonspeciÞc binding
too high?

Divide the nonspeciÞc binding at the highest concentration of
radioligand by the total binding at that concentration. NonspeciÞc
binding should usually be less than 50% of the total binding.
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Table 7.5.2 Evaluating the Assumptions of Saturation Binding Analysis

Assumption Comment

Binding has reached equilibrium. It takes longest for the lower concentrations to
equilibrate, so test equilibration time with the
lowest concentration of radioligand.

There is only one population of receptors. See Theory: Comparing One- and Two-Site
Models, below.

Only a small fraction of the radioligand
binds, therefore the free concentration is
essentially identical to the concentration
added.

Compare the cpm obtained for total binding to the
amount of ligand. If the ratio is greater than 10%
at any concentration, this assumption has been
violated. Increase the volume of the reaction but
use the same amount of tissue.

There is no cooperativity. Binding of a
ligand to one binding site does not alter
the afÞnity of another binding site.

See Cooperativity, below.
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Figure 7.5.4 Displaying results as a Scatchard plot. (A) Specific binding as a function of free

radioligand. (B) Transformation of Scatchard data to a plot.

If the results are not reasonable, the experimental protocol may need revision. Also check
that the data are being analyzed correctly. In addition, it is possible that the system is
more complex than the simple one-site binding model. To determine whether the system
follows the assumptions of the simple model, consider the points in Table 7.5.2.

Displaying results as a Scatchard plot

Before nonlinear regression programs were widely available, scientists transformed data
to make a linear graph and then analyzed the transformed data with linear regression.
There are several ways to linearize binding data, but Scatchard plots (more accurately
attributed to Rosenthal, 1967) are used most often. As shown in Figure 7.5.4, the x axis
of the Scatchard plot represents speciÞc binding (usually labeled �bound�) and the y
axis is the ratio of speciÞc binding to concentration of free radioligand (usually labeled
�bound/free�). Bmax is the x intercept; Kd is the negative reciprocal of the slope.

When making a Scatchard plot, there are two ways to express the y axis. One choice is to
express both free ligand and speciÞc binding in cpm so the ratio bound/free is a unitless
fraction. The advantage of this choice is that you can interpret y values as the fraction
of radioligand bound to receptors. If the highest y value is large (>0.10), then the free
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concentration of radioligand will be substantially less than the added concentration, and
(as discussed earlier) the standard analyses will yield inaccurate values for Bmax and Kd.

An alternative is to express the y axis as the ratio of units used to display bound and free
on the saturation binding graph (i.e., sites/cell/nM or fmol/mg/nM). While these values
are hard to interpret, they simplify calculation of the Kd, which equals the negative
reciprocal of the slope. The speciÞc binding units cancel when calculating the slope. The
negative reciprocal of the slope is expressed in units of concentration (nM), which equals
the Kd.

The problem with using Scatchard plots to analyze saturation binding experiments

While Scatchard plots are very useful for visualizing data, they are not the most accurate
way to analyze data. The problem is that the linear transformation distorts the experi-
mental error. Linear regression assumes that the scatter of points around the line follows
a Gaussian distribution and that the standard deviation is the same at every value of x.
These assumptions are not true with the transformed data. A second problem is that the
Scatchard transformation alters the relationship between x and y. The value of x (bound)
is used to calculate y (bound/free), and this violates the assumptions of linear regression.

Since these assumptions are violated, the Bmax and Kd values determined by linear
regression of Scatchard-transformed data are likely to be far from the actual values than
the Bmax and Kd determined by nonlinear regression. Nonlinear regression produces the
most accurate results, whereas a Scatchard plot produces only approximate results.

Figure 7.5.5 illustrates the problem of transforming data. The left panel shows data that
follow a rectangular hyperbola (binding isotherm). The solid curve was determined by
nonlinear regression. The right panel is a Scatchard plot of the same data. The solid line
shows how that same curve would look after a Scatchard transformation. The dotted line
shows the linear regression Þt of the transformed data. The transformation ampliÞed and
distorted the scatter, and thus the linear regression Þt does not yield the most accurate
values for Bmax and Kd. In this example, the Bmax determined by the Scatchard plot is
∼25% too large and theKd determined by the Scatchard plot is too high. The errors could
just as easily have gone in the other direction.

S
p
e
ci

fic
 b

in
d
in

g

B
o
u
nd

/f
re

e

2

B

1

0

50 100 150 0 20 40 60

Bound

A

0

[Ligand]

40

20

0
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The experiment in Figure 7.5.5 was designed to determine the Bmax with little concern
for the value of Kd. Therefore, it was appropriate to obtain only a few data points at the
beginning of the curve and many in the plateau region. Note, however, how the Scatchard
transformation gives undue weight to the data point collected at the lowest concentration
of radioligand (the lower left point in panel A, the upper left point in panel B). This point
dominates the linear regression calculations on the Scatchard graph. It has �pulled� the
regression line to become shallower, resulting in an overestimate of the Bmax.

Again, although it is inappropriate to analyze data by performing linear regression on
a Scatchard plot, it is often helpful to display data as a Scatchard plot. Many people
Þnd it easier to visually interpret Scatchard plots than binding curves, especially when
comparing results from different experimental treatments or trying to detect complex
binding behavior.

Example of a Saturation Binding Experiment

Raw data

Figure 7.5.6 shows duplicate values for total binding of six concentrations of a radioligand
to angiotensin receptors on membranes of cells transfected with an angiotensin receptor
gene (R. Neubig, unpub. observ.). The Þgure also shows nonspeciÞc binding (assessed
with 10 μM unlabeled angiotensin II) at three concentrations of radioligand.

Converting units

Convert from cpm to fmol/mg using the amount of protein in each tube (0.01 mg),
the efÞciency of the counting (90%), and the speciÞc radioactivity of the ligand (2190
Ci/mmol).

fmol mg
cpm

2.22 10 dpm Ci cpm dpm Ci mmol mmol fmol mg12
=

× × × × ×−0 90 2190 10 0.0112. .

Equation 7.5.9

For this example, the equation simpliÞes by dividing the cpm by 43.756 (see Table 7.5.3).

Notes to help understand the equation:

1. Receptors in membrane preparations are often expressed as fmol of receptor per
milligram of membrane protein. One fmol is 10−15 mol.
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Figure 7.5.6 Sample saturation binding experiment. The ligand binding to angiotensin receptors

in a membrane preparation was measured. Total and nonspecific binding are shown.
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Table 7.5.3 Calculating Specific Binding

Total binding (cpm)
Calculated speciÞc
binding (cpm)

SpeciÞc binding
(fmol/mg)

[Radio-ligand]
(nM)

Duplicate 1 Duplicate 2
Computed
nonspeciÞc
binding (cpm)

Duplicate 1 Duplicate 2 Duplicate 1 Duplicate 2

0.125 818 826 34 784 792 17.9 18.1

0.25 1856 1727 82 1774 1645 40.5 37.6

0.5 3452 3349 180 3272 3169 74.8 72.4

1.0 6681 6055 375 6306 5680 144.1 129.8

2.0 10,077 9333 766 9311 8567 212.8 195.8

4.0 13,715 13,277 1547 12,168 11,730 278.1 268.1

2. Counting efÞciency is the fraction of the radioactive disintegrations that are detected
by the counter. This example uses a radioligand labeled with 125I, so the efÞciency
(90%) is very high.

3. The Curie (Ci) is a unit of radioactivity and equals 2.22 × 1012 radioactive disinte-
grations per minute.

4. The value 2190 Ci/mmol is worth remembering. It is the speciÞc activity of ligands
iodinated with 125I, when every molecule is labeled with one atom of iodine.

Calculate and Þt speciÞc binding

If you want to use Strategy 1 (Þt speciÞc binding), Þrst compute speciÞc binding. Since
nonspeciÞc binding was only determined at three concentrations of radioligand, the
standard method of subtracting each nonspeciÞc value from the corresponding total
value cannot be used. Instead, the fact (conÞrmed in other experiments) that nonspeciÞc
binding is proportional to radioligand concentration is relied upon, and the best-Þt value
of nonspeciÞc binding is subtracted from each total binding value. This can be done
in one step by choosing �remove baseline analysis� in GraphPad Prism software (see
below). Alternatively:

1. Use linear regression. The best Þt line through the nonspeciÞc binding data is:

nonspecific binding in cpm radioligand  in nM= − + [ ]( )15 25 390 5. .

Equation 7.5.10

2. Use this equation to calculate nonspeciÞc binding at each of the six radioligand
concentrations.

3. Subtract that calculated value from the observed total binding to compute speciÞc
binding (Table 7.5.3).

Fitting with nonlinear regression

When Þtting the example data to a curve, one must decide whether to enter the data as
six points or twelve. Entering each replicate individually is better, as it provides more
data to the curve Þtting procedure, and helps you spot any outliers. This should be
avoided only when the replicates are not independent (i.e., when experimental error in
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Table 7.5.4 Fitted Parameters Determined from Data in Table 7.5.3

Strategy Bmax (fmol/mg) 95% CI Kd (nM) 95% CI

1. SpeciÞc 430.7 388.4 to 473.0 2.265 1.821 to 2.709

2. Total only 464.6 −256.8 to 1845 3.812 −0.1953 to 7.819
3. Global 433.2 394.3 to 472.1 2.289 1.922 to 2.656

one value is likely to affect the other value as well). In this case, each replicate was
determined in a separate tube poured over a separate Þlter, and all the data were obtained
from one membrane preparation. Except for errors in preparing the radioligand dilutions,
experimental errors will affect each value independently.

If you are using GraphPad Prism (http://www.graphpad.com) or some other program that
understands the concept of duplicates, then enter the data with radioligand concentration
as six x values and the duplicate values of speciÞc binding at each concentration. If the
program does not understand how to deal with duplicates, enter each concentration value
twice in the x column, to Þll twelve rows. Enter the speciÞc binding data as a column of
twelve y values.

If the chosen nonlinear regression program does not provide initial values automatically,
estimate values for Bmax andKd. For Bmax, enter a value a bit higher than the highest value
in the data, perhaps 300 fmol/mg for this example. For Kd, estimate the concentration
of radioligand that binds to half the sites, perhaps 2 nM. These estimated values do not
have to be very accurate. Results are shown in Table 7.5.4.

For this example, Strategy 2 (Þt total binding only) does not work well. The 95%
conÞdence intervals for both Bmax and Kd are very wide, and even include negative
values. With so few data points, it is impossible to reliably determine the Bmax and Kd
from analyzing only total binding data. With more data points, including some at higher
concentrations, this strategy would be more useful.

For this example, the results of Strategy 1 (compute, then Þt, speciÞc binding) are almost
the same as those of Strategy 3 (globally Þt total and nonspeciÞc binding). Strategy 1
requires more work from you, as you must compute the speciÞc binding. Strategy 3
requires that you learn how to use a program that can do global Þtting, but then makes
analysis much quicker.

Figure 7.5.7 shows the best-Þt curves from strategy I (left panel) and Strategy 3 (right
panel).

Scatchard plot

As described above, a Scatchard plot is a graph of speciÞc binding versus the ratio of
speciÞc binding to free radioligand. For speciÞc binding, the two replicates are aver-
aged (individual replicates could have been shown). For the example in Figure 7.5.8,
bound/free is expressed as fmol/mg divided by nM.

Figure 7.5.8 shows the Scatchard transformation of the speciÞc binding data. Since it is
not appropriate to determine the Kd and Bmax from linear regression of a Scatchard plot,
derive the solid line on the graph from the best-Þt values using nonlinear regression:

1. The x intercept of the Scatchard plot isBmax, which equals 431 by nonlinear regression,
so one end of the line is at x = 431, y = 0.
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Figure 7.5.7 These data are the same as those shown in Figure 7.5.6. The left panel (A) fits

a curve through the specific binding data (Strategy 1). The right panel (B) globally fits total and

nonspecific binding data (Strategy 3).
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Figure 7.5.8 Scatchard transformation of the data from Figure 7.5.7. The solid line was created

(as explained in the text) from the best-fit values of Bmax and Kd determined from nonlinear

regression. This is the correct line to show on a Scatchard plot. The dashed line was determined

by linear regression of the Scatchard-transformed data. It is shown here for comparison only; it is

not informative or helpful.

2. The slope of the line is the negative reciprocal of the Kd. Since the Kd is 2.27 nM, the
slope must be −1/2.27, which equals −0.4405 nM−1.

3. The y intercept divided by the x intercept equals the negative slope. We know the
slope and the x intercept, so can derive the y intercept. It equals −slope × x intercept
= 0.4405 × 431 = 189.8.

4. Draw the line from x = 0, y = 189.8 to x = 431, y = 0, as in Figure 7.5.8.

Figure 7.5.8 also shows the dotted line derived by linear regression of the Scatchard
transformed data. This is shown only to emphasize the difference between the curve
derived by linear regression of the Scatchard transformed data and the best-Þt line
derived from nonlinear regression. The linear regression line should not be used for data
analysis and does not aid data presentation.

Critiquing the experiment

This example is not an ideal experiment. Consider these points:

The highest concentration of radioligand used (4 nM) is not even twice the Kd (2.27 nM).
Ideally the highest concentration of radioligand should be ten times the Kd. In addition,
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the speciÞc binding of the Þrst few points lies below the best Þt curve. There are many
possible explanations for this, including chance, but it may be because the system is
not at equilibrium or because a large fraction of ligand is bound (depleted) at those low
concentrations. The lowest concentrations take the longest to equilibrate, so it is possible
that the Þrst few concentrations had not equilibrated, resulting in an underestimate of
speciÞc binding at equilibrium.

Two Classes of Binding Sites

If the radioligand binds to two classes of binding sites, use this equation:

specific binding
L

L

L

Ld d

=
×[ ]

+ [ ]
+

×[ ]
+ [ ]

B

K

B

K
max max1

1

2

2

Equation 7.5.11

This equation assumes that the radioligand binds to two independent noninteracting bind-
ing sites, and that the binding to each site follows the law of mass action. A comparison of
the one-site and two-site Þts will be addressed later in this unit (see Theory: Comparing
One- and Two-Site Models, below).

Meaningful results will be obtained from a two-site Þt only if you have ten or more
data points spaced over a wide range of radioligand concentrations. Binding should
be measured at radioligand concentrations below the high-afÞnity Kd and above the
low-afÞnity Kd.

Homologous Competitive Binding Curves

Some investigators determine the Kd and Bmax of a ligand by holding the concentration
of the radioligand constant and competing with various concentrations of the unlabeled
ligand. This approach will be discussed below.

COMPETITIVE BINDING EXPERIMENTS

Theory of Competitive Binding

Using competitive binding curves

Competitive binding experimentsmeasure the binding of a single concentration of labeled
ligand in the presence of various concentrations (often twelve to sixteen) of unlabeled
ligand. Competitive binding experiments are used to:

1. Pharmacologically identify a binding site. Perform competitive binding experiments
with a series of drugs whose potencies at potential receptors of interest are known
from functional experiments. Demonstrating that these drugs bind with the expected
potencies, or at least the expected order of potency, helps prove that the radioligand
has identiÞed the correct receptor. This kind of experiment is crucial, because there is
usually no point studying a binding site unless it has physiological signiÞcance.

2. Determine whether a drug binds to the receptor. Thousands of compounds can be
screened to Þnd drugs that bind to the receptor. This can be faster and easier than
other screening methods.

3. Investigate the interaction of low-afÞnity drugs with receptors. Binding assays are
usually only useful when the radioligand has a high afÞnity (Kd <100 nM or so). A
radioligand with low afÞnity generally has a fast dissociation rate constant, and so
will not stay bound to the receptor while washing the Þlters. To study the binding of
a low-afÞnity drug, use it as an unlabeled competitor.
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4. Determine receptor number and afÞnity by using the same compound as the labeled
and unlabeled ligand (see Homologous Competitive Binding Curves, below).

Performing the experiment

Competitive binding experiments use a single concentration of radioligand and require
incubation until equilibrium is reached. That raises two questions: howmuch radioligand
should be used, and how long does it take to equilibrate?

There is no clear answer to the Þrst question. Higher concentrations of radioligand
result in higher counts and thus lower counting error, but these experiments are more
expensive and have higher nonspeciÞc binding. Lower concentrations save money and
reduce nonspeciÞc binding, but result in fewer counts from speciÞc binding and thus
more counting error. Many investigators choose a concentration approximately equal to
the Kd of the radioligand for binding to the receptor, but this is not universal. In general,
you should aim for a minimum of 1000 cpm from speciÞc binding in the absence of
competitor.

Many investigators� Þrst thoughts are that binding will reach equilibration in the time it
takes the radioligand to reach equilibrium in the absence of competitor. It turns out that
this may not be long enough. Incubations should last four to Þve times the half-life for
receptor dissociation as determined in a dissociation experiment.

Equations for competitive binding

Competitive binding curves are described by this equation:

( )
( )50log log IC

total NS
total radioligand binding NS

1+10
x−

−
= +

Equation 7.5.12

The x axis of Figure 7.5.9 shows varying concentrations of unlabeled drug (x in
Equation 7.5.12) on a log scale. The y axis can be expressed as cpm or converted to
more useful units like fmol bound per milligram protein or number of binding sites per
cell. Some investigators like to normalize the data from 100% (no competitor) to 0%
(nonspeciÞc binding at maximal concentrations of competitor).

Log(IC50)

Total

NST
o
ta

l 
ra

d
io

lig
a
n
d
 b

in
d
in

g

Log[unlabeled drug]

Figure 7.5.9 Schematic of a competitive binding experiment.
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The top of the curve shows a plateau at the amount of radioligand bound in the absence
of the competing unlabeled drug. This equals the parameter total in the equation. The
bottom of the curve is a plateau equal to nonspeciÞc binding; this is nonspeciÞc (NS) in
the equation. These values are expressed in the units of the y axis. The difference between
the top and bottom plateaus is the speciÞc binding. Note that this not the same as Bmax.
When using a low concentration of radioligand (to save money and avoid nonspeciÞc
binding), only a fraction of receptors will be bound (even in the absence of competitor),
so speciÞc binding will be lower than the Bmax.

The concentration of unlabeled drug that results in radioligand binding halfway between
the upper and lower plateaus is called the IC50 (inhibitory concentration 50%), also called
the EC50 (effective concentration 50%). The IC50 is the concentration of unlabeled drug
that blocks half the speciÞc binding, and it is determined by three factors:

1. TheKi of the receptor for the competing drug. This is what is to be determined. It is the
equilibriumdissociation constant for binding of the unlabeled drug�the concentration
of the unlabeled drug that will bind to half the binding sites at equilibrium in the
absence of radioligand or other competitors. The Ki is proportional to the IC50. If the
Ki is low (i.e., the afÞnity is high), the IC50 will also be low.

2. The concentration of the radioligand. If a higher concentration of radioligand is used,
it will take a larger concentration of unlabeled drug to compete for the binding.
Therefore, increasing the concentration of radioligand will increase the IC50 without
changing the Ki.

3. The afÞnity of the radioligand for the receptor (Kd). It takes more unlabeled drug to
compete for a tightly bound radioligand (smallKd) than for a loosely bound radioligand
(high Kd). Using a radioligand with a smaller Kd (higher afÞnity) will increase the
IC50.

Calculate the Ki from the IC50, using the equation of Cheng and Prusoff (1973).

K

K

i
50

d

IC

1+
radioligand

=
[                  ]

Equation 7.5.13

Remember thatKi is a property of the receptor and unlabeled drug,while IC50 is a property
of the experiment. By changing experimental conditions (changing the radioligand used
or changing its concentration), the IC50 will change without affecting the Ki.

This equation is based on the following assumptions:

1. Only a small fraction of either the labeled or unlabeled ligand has bound. This means
that the free concentration is virtually the same as the added concentration.

2. The receptors are homogeneous and all have the same afÞnity for the ligands.

3. There is no cooperativity�binding to one binding site does not alter afÞnity at another
site.

4. The experiment has reached equilibrium.

5. Binding is reversible and follows the law of mass action.

6. The Kd of the radioligand is known from an experiment performed under similar
conditions.
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Figure 7.5.10 Steepness of a competitive binding curve. This graph shows the results at equilib-

rium when radioligand and competitor bind to the same binding site. The curve will descend from

90% binding to 10% binding over an 81-fold increase in competitor concentration.

If the labeled and unlabeled ligands compete for a single binding site, the steepness of
the competitive binding curve is determined by the law of mass action (see Fig. 7.5.10).
The curve descends from 90% speciÞc binding to 10% speciÞc binding with an 81-fold
increase in the concentration of the unlabeled drug. More simply, nearly the entire curve
will cover two log units (100-fold change in concentration).

Analyzing Competitive Binding Data

Using nonlinear regression to determine the Ki
Follow these steps to determine the Ki with nonlinear regression.

1. Enter the x values as the logarithm of the concentration of unlabeled compound, or
enter the concentrations, and use the program to convert to logarithms. Since log(0)
is undeÞned, the log scale cannot accommodate a concentration of zero. Instead
enter a very low concentration. For example, if the lowest concentration of unlabeled
compound is 10−10 M, then enter −12 for the zero concentration.

2. Enter the y values as cpm total binding. There is little advantage to converting to units
such as fmol/mg or sites/cell. There is also little advantage to converting to percent
speciÞc binding.

3. Select the competitive binding equation (TOP is binding in the absence of competitor,
BOTTOMis binding atmaximal concentrations of competitor, logIC50 is the logarithm
base 10 of the IC50):

y x= + −
+ −NS
TOTAL NS

IC
1 10 50log

Equation 7.5.14

4. If the chosen nonlinear regression program doesn�t provide initial estimates automat-
ically, enter these values. For NS, enter the smallest y value. For TOTAL, enter the
largest y value. For log(IC50), enter the average of the smallest and largest x values.

5. If the data do not form clear plateaus at the top and bottom of the curve, consider
Þxing top or bottom to constant values. TOTAL can be Þxed to the binding measured
in the absence of competitor and NS to binding measured in the presence of a large
concentration of a standard drug known to block radioligand binding to essentially all
receptors.

6. Start the curve Þtting to determine TOTAL, NS, and log(IC50).
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7. Calculate the IC50 as the antilog of log(IC50).

8. Calculate the Ki using this equation:

K

K

i
50

d

IC

1+
radioligand

=
[ ]

Equation 7.5.15

When to set total and NS constant

In order to determine the best-Þt value of IC50, the nonlinear regression program must be
able to determine the 100% (total) and 0% (nonspeciÞc) plateaus. If there are data over
a wide range of concentrations of unlabeled drug, the curve will have clearly deÞned
bottom and top plateaus and the program should have no trouble Þtting all three values
(both plateaus and the IC50).

With some experiments, the competition data may not deÞne a clear bottom plateau. If
data are Þt in the usual way, the program might stop with an error message, or it might
Þnd a nonsense value for the nonspeciÞc plateau (it might even be negative). If the bottom
plateau is incorrect, the IC50 will also be incorrect. To solve this problem, determine the
nonspeciÞc binding from other data. All drugs that bind to the same receptor should
compete for all speciÞc radioligand binding and reach the same bottom plateau value.
When running the curve-Þtting program, set the bottom plateau of the curve (NS) to a
constant equal to binding in the presence of a standard drug known to block all speciÞc
binding.

Similarly, if the curve doesn�t have a clear top plateau, set the total binding to be a
constant equal to binding in the absence of any competitor.

Fitting the Ki directly

Rather than Þt the logIC50 and then compute the Ki, it is possible to Þt the Ki directly.
Simply replace the IC50 in the competitive binding equation, with this equation:

( )
i

d

[ ]
log log 1

total NS
Total radioligand binding NS

1 10

L
x K

K

⎡ ⎤⎛ ⎞
− ⋅ +⎢ ⎜ ⎟⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

−
= +

+

Equation 7.5.16

The parameters [L] and Kd represent the concentration of radioligand and its afÞnity
for the receptors. These parameters must be constrained to constant values based on
other experiments. The variable x represents the concentration of unlabeled drug. This
approach will give exactly the same results as Þtting the IC50 and then computing the Ki,
but it is a bit more convenient to Þt the Ki directly.

Interpreting the Results of Competitive Binding Curves

Are the results reasonable?

Table 7.5.5 presents some questions to consider when determining whether the results
are reasonable and logical.

Do the data follow the assumptions of the analysis?

Table 7.5.6 lists the assumptions.
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Table 7.5.5 Evaluating the Results of Competitive Binding Curve Analyses

Question Comment

Is the log(IC50) reasonable? The IC50 should be near the middle of the curve, with at
least several concentrations of unlabeled competitor on
either side of it.

Are the standard errors too large?
Are the conÞdence intervals too
wide?

The SE of the log(IC50) should be <0.5 log unit (ideally
much less).

Are the values of TOTAL and NS
reasonable?

TOTAL should be near the binding observed in the absence
of competitor. NS should be near the binding observed in
the presence of a maximal concentration of competitor. If
the best-Þt value of NS is negative, consider Þxing it to a
constant value equal to nonspeciÞc binding.

Table 7.5.6 Evaluating the Assumptions of Competitive Binding Analyses

Assumption Comment

Binding has reached equilibrium. Competitive binding incubations take longer to
incubate than saturation binding incubations.
Incubate for 4 to 5 times the half life for radioligand
dissociation.

There is only one population of receptors See Theory: Comparing One- and Two-Site Models

Only a small fraction of the radioligand
binds, therefore the free concentration is
essentially identical to the concentration
added.

Compare the total binding in the absence of
competitor in cpm, to the amount of ligand added in
cpm. If the ratio is >10% at any concentration, then
you�ve violated this assumption.

There is no cooperativity. Binding of a
ligand to one binding site does not alter
the afÞnity of another binding site.

See Cooperativity.

Why determine log(IC50) rather than IC50?

The equation for a competitive binding curve (Equation 7.5.12) looks a bit strange since
it combines logarithms and antilogarithms (10 to the power). A bit of algebra simpliÞes
it:

y = +
−( )

[ ]nonspecific
total nonspecific

1+
drug

IC50

Equation 7.5.17

Fitting data to this equation results in the same best-Þt curve and the same IC50. However,
the conÞdence interval for the IC50 will be different.

Which conÞdence interval is correct?With nonlinear regression, the standard errors of the
parameters are only approximately correct. Since the conÞdence intervals are calculated
from the standard errors, they too are only approximately correct. The problem is that
the real conÞdence interval may not be symmetrical around the best-Þt value. It may
extend further in one direction than the other. However, nonlinear regression programs
always calculate symmetrical conÞdence intervals (unless you use advanced techniques).
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Figure 7.5.11 Example of a competitive binding experiment. Yohimbine competes for radioligand

binding to α2 receptors on membranes.

Therefore, when writing the equation for nonlinear regression, choose parameters so the
uncertainty is as symmetrical as possible. Because data are collected at concentrations
of unlabeled drug equally spaced on a log axis, the uncertainty is symmetrical when
the equation is written in terms of the log(IC50), but is not symmetrical when written in
terms of IC50. Thus, conÞdence intervals are more accurate when the equation is written
in terms of the log(IC50).

Figure 7.5.11 (R. Neubig, unpub. observ.) shows competition of unlabeled yohimbine
for labeled UK14341 (an α2 adrenergic agonist).

1. Enter the data into a nonlinear regression program. Enter the logarithm of concentra-
tion of the unlabeled ligand in the x column, and the triplicate values of total binding
in the x columns. If the selected program does not allow entry of triplicate values,
enter each log of concentration three times.

2. Fit the data to a one-site competitive binding curve. If necessary, enter it in this format:

y
x

= + −
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥−( )NS Total

NS

IC
1 10 50log

Equation 7.5.18

3. If the nonlinear regression program does not provide initial values automatically,
estimate the values of the parameters. TOTAL is the top plateau of the curve, so
estimate its value from the highest data values, perhaps 4500. NS is the bottom
plateau, so estimate its value from the lowest data values, perhaps 500. Log(IC50) is
the x value in the middle of the curve. From looking at the data, estimate its value as
−7. None of these estimates has to be very accurate, and the nonlinear regression will
probably work Þne even if the estimates are fairly different than the values listed here.

4. Note the best-Þt results: NS = 530.3, TOTAL = 4418, and log(IC50) = −7.532.
5. Convert the log(IC50) to the IC50 by taking the antilog. IC50 = 29.4 nM.
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6. Convert the IC50 to Ki. To do this, the concentration of radioligand used (2.0 nM)
and its Kd for the receptors (0.88 nM, determined in a separate saturation binding
experiment not shown here) must be known:

K

K

i

d

IC

1+
radioligand

nM

nM

nM

nM= [ ] =
+

=50 29

1
2 0

0 88

8 98
.4

.

.

.

Equation 7.5.19

Homologous Competitive Binding Curves

A competitive binding experiment is termed homologous when the same compound is
used as the hot and cold ligand. The term heterologous is used when the hot and cold
ligands differ. Homologous competitive binding experiments can be used to determine
the afÞnity of a ligand for the receptor and the receptor number. In other words, the
experiment has the same goals as a saturation binding curve. Because homologous
competitive binding experiments use only one or two concentrations of radioligand
(which can be low), they consume less radioligand and thus are more practical than
saturation experiments when radioligands are expensive or difÞcult to synthesize.

Analyses of homologous competitive binding curves depend on the following assump-
tions:

1. The receptor has identical afÞnity for the labeled and unlabeled ligand. If you choose an
iodinated radioligand, you should also use an iodinated unlabeled compound (using
nonradioactive iodine), because iodination often changes the binding properties of
ligands.

2. There is no cooperativity.

3. There is no ligand depletion. The methods in this section assume that only a small
fraction of ligand binds. In other words, the method assumes that free concentration
equals the concentration added.

4. There is only one class of binding sites. It is difÞcult to detect a second class of
binding sites unless the number of lower-afÞnity sites vastly exceeds the number of
higher-afÞnity receptors (because the single low concentration of radioligand used in
the experiment will bind to only a small fraction of low afÞnity receptors).

Homologous competition follows this model, where Bmax is the total number of binding
sites (in the same units as y), H is the concentration of radioligand (hot), C is the
concentration of unlabeled (cold) ligand, Kd is the dissociation constant you are trying
to determine, and NS × H is the amount of nonspeciÞc binding in the same units as y.
H, C, and Kd must all be expressed in the same concentration units. Note that Bmax is the
total number of binding sites, which exceeds the number bound by radioligand in this
experiment.

y
B H

H C K
H= −

+ +
+ ⋅max

d

NS

Equation 7.5.20

To get reliable data, it is best to use two different concentrations of radioligand, and Þt
the two curves globally�sharing the values of Bmax, Kd, and NS so that there is only one
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Figure 7.5.12 Example of homologous competitive binding experiment. The hot and cold ligands

are identical.

best-Þt value for the entire experiment. Note that the amount of nonspeciÞc binding is
the product of the concentration of hot ligand, H, and the parameter NS. That product is
different for each concentration of ligand, even though NS is shared:

B

K

max = − = −
[ ]
+ [ ]( )

TOP BOTTOM

fractional occupancy

TOP BOTTOM

radioligand

radioligandd

Equation 7.5.21

Example of homologous competitive binding

Figure 7.5.12 shows data from a binding experiment using [3H]yohimbine to quantify α2
adrenergic receptors to compete with unlabeled yohimbine. There is no reason to think
that adding a tritium label will alter yohimbine�s afÞnity for the receptor, so it seems safe
to assume that hot and cold yohimbine bind with the same afÞnity.

1. Enter the data into a nonlinear regression program. Enter the logarithm of concentra-
tion as x and cpm bound as y. The Þrst point represents a control with no yohimbine.
Since the log of zero is undeÞned, this cannot be shown on a log scale. Instead enter
this value as −12 (the exact value is a bit arbitrary but any value much smaller than
the Kd will work.).

2. Fit the data using global nonlinear regression to this equation, sharing all three pa-
rameters and setting HotnM to a different constant value for each data set.

ColdNM=10ˆ (x+9); Cold concentration in nM
KdNM=10ˆ (logKD+9); Kd in nM
Bottom=NS*HotnM
Y=(Bmax*HotnM)/(HotnM + ColdNM + KdNM) + Bottom

The Þrst line converts the x values in log(molar) to concentrations in nM.

The next line converts the log of Kd (which the program will Þt) to the Kd in nM.

The third line calculates the bottom plateau of the curve.

The Þnal line matches Equation 7.5.20.

If you don�t have access to a program that can do global nonlinear regression, Þt each
data set individually.
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Table 7.5.7 Fitted Parameters Determined from Data in Figure 7.5.12

Parameter Global Þt Only Þt 5 nM data Only Þt 2 nM data

Best Þt 95% CI Best Þt 95% CI Best Þt 95% CI

Bmax (cpm) 11753 8812 to 14734 6820 4353 to 9286

Log Kd −8.67 −8.93 to −8.41 Did not converge −9.28 −10.02 to−8.545
Kd (nM) 2.14 1.19 to 3.87 0.54 0.009 to 2.84
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Figure 7.5.13 Examples of slope factors. The slope factor quantifies the steepness of the curve,

and is determined by nonlinear regression of competitive binding data. It is not the same as the

slope of the curves at the midpoints.

3. The best-Þt results are shown in Table 7.5.7.

It was not possible to Þt the 5 nM data. The Þt simply did not converge. The data do
not deÞne unique values for the Bmax and Kd. It was possible to Þt the 2 nM data, but
the Kd was poorly determined with wide conÞdence interval. The global Þt worked
much better, giving useful results.

4. Finally convert Bmax to more useful units. In this example there were 6 × 104

cells per well, the speciÞc activity of the [3H]yohimbine was 78 Ci/mmol, and
the scintillation counting efÞciency was 33%. Calculate receptors/cell using the
equation:

11,753 cpm receptors/mmol

dpm/Ci cpm/

× ×
× ×

6 02 10

2 22 10 0 33

20

12

.

. . ddpm Ci/mmol 60,000 cells
receptors/cell

× ×
= ×

78
2 06 106.

Equation 7.5.22

The Slope Factor or Hill Slope

Many competitive binding curves are shallower than predicted by the law of mass action
for binding to a single site. The steepness of a binding curve can be quantiÞed with a
slope factor, often called a Hill slope. A one-site competitive binding curve that follows
the law of mass action has a slope of−1.0. If the curve is shallower, the slope factor will
be a negative fraction (i.e.,−0.85 or−0.60; see Fig. 7.5.13). The slope factor is negative
because the curve goes downhill.
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To quantify the steepness of a competitive binding curve (or a dose-response curve), Þt
the data to this equation:

( )
( )50log IC log slope factor

total NS
total radioligand binding NS

1 10
x− ×

−
= +

+

Equation 7.5.23

The slope factor is a number that describes the steepness of the curve. In most situations,
there is no way to interpret the value in terms of chemistry or biology. If the slope factor
differs signiÞcantly from −1.0, then the binding does not follow the law of mass action
with a single site.

Explanations for shallow binding curves include:

1. Heterogeneous receptors. Not all receptors bind the unlabeled drug with the same
afÞnity. This can be due to the presence of different receptor subtypes, or due to
heterogeneity in receptor coupling to other molecules such as G proteins. In
Fig. 7.5.13, the slope factor equals −0.78.

2. Negative cooperativity. Binding sites are clustered (perhaps several binding sites per
molecule) and binding of the unlabeled ligand to one site causes the remaining site(s)
to bind the unlabeled ligand with lower afÞnity.

3. Curve Þtting problems. If the top and bottom plateaus are not correct, then the slope
factor is not meaningful. Don�t try to interpret the slope factor unless the curve has
clear top and bottom plateaus.

KINETIC BINDING EXPERIMENTS

Dissociation Experiments

A dissociation binding experiment measures the �off rate� of radioligand dissociating
from the receptor. Performdissociation experiments to fully characterize the interaction of
ligand and receptor and conÞrm that the lawofmass action applies. Such experimentsmay
also be used to help design the experimental protocol. If the dissociation is fast, Þlter and
wash the samples quickly so that negligible dissociation occurs. Lowering the temperature
of the buffer used to wash the Þlters, or switching to a centrifugation or dialysis assay,
may also be required. If the dissociation is slow, then the samples can be Þltered at a
more leisurely pace, because the dissociation will be negligible during the wash.

To perform a dissociation experiment, Þrst allow ligand and receptor to bind, perhaps to
equilibrium. At that point, block further binding of radioligand to receptor using one of
these methods:

1. If the tissue is attached to a surface, remove the buffer containing radioligand and
replace with fresh buffer without radioligand.

2. Centrifuge the suspension, decant supernatant, and resuspend pellet in fresh buffer.

3. Add a very high concentration of an unlabeled ligand (perhaps 100 times its Ki for
that receptor). It will instantly bind to nearly all the unoccupied receptors and block
binding of the radioligand.

4. Dilute the incubation by a large factor, perhaps a 20- to 100-fold dilution. This will
reduce the concentration of radioligand by that factor. At such a low concentration,
new binding of radioligand will be negligible. This method is only practical when
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using a fairly low radioligand concentration so its concentration after dilution is far
below its Kd for binding.

After initiating dissociation,measure binding over time (typically 10 to 20measurements)
to determine how rapidly the ligand dissociates from the receptors.

Using nonlinear regression to determine koff
1. Enter the x data as time in minutes.

2. Enter the y data as total binding in cpm.

3. Choose the exponential dissociation equation. Total binding and nonspeciÞc binding
(NS) are expressed in cpm, fmol/mg protein, or sites/cell. Time (t) is usually expressed
in minutes. The dissociation rate constant (koff) is expressed in units of inverse time,
usually min−1:

total binding NS total NS off= + −( ) × −e k t

Equation 7.5.24

4. If the chosen nonlinear regression program does not provide initial estimates of the
parameters, enter these values. Total is the total binding at time zero and is estimated
as the Þrst y value. NS is the binding after a long time, and reßects nonspeciÞc binding.
Estimate it as the last y value. K is the dissociation rate constant (koff). Estimate it by
dividing 0.69 by an estimate of the half-time of dissociation.

5. Start the nonlinear regression procedure.

6. Calculate the half-life of dissociation from the rate constant.

half-life l off= ( ) =n .2 0 693k K

Equation 7.5.25

In one half-life, half the radioligand will have dissociated (see Fig. 7.5.14). In two
half-lives, three quarters of the radioligand will have dissociated, etc.

Typically the dissociation rate constant of useful radioligands is between 0.001 and
0.1 min−1. If the dissociation rate constant is any faster, it will be difÞcult to perform
radioligand binding experiments, as the radioligand will dissociate from the receptors
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Figure 7.5.14 Schematic of a dissociation kinetic experiment.
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Figure 7.5.15 Schematic of a dissociation kinetic experiment shown on a log scale. The y axis

plots the natural log of specific binding.

while you wash the Þlters. If the dissociation rate constant is any slower, it will be hard
to reach equilibrium.

Displaying dissociation data on a log plot

Figure 7.5.15 shows a plot of ln(Bt/B0) versus time. The graph of a dissociation experiment
will be linear if the system follows the law of mass action with a single afÞnity state. Bt
is the speciÞc binding at time t; B0 is speciÞc binding at time zero. The slope of this line
will equal −koff.
The log plot will only be linear when taking the logarithm of speciÞc binding as a fraction
of binding at time zero. Don�t use total binding.

Use the natural logarithm, not the base ten log in order for the slope to equal −koff. If
you use the base 10 log, then the slope will equal −2.303 times koff.
Use the log plot only to display data, not to analyze data. A more accurate rate constant
will be obtained by Þtting the raw data using nonlinear regression.

Association Binding Experiments

Association binding experiments are used to determine the association rate constant.
This value is useful to characterize the interaction of the ligand with the receptor. It is
also important as it permits the determination of the time it takes to reach equilibrium in
saturation and competition experiments.

To perform an association experiment, add a single concentration of radioligand and
measure speciÞc binding at various times thereafter. You can also do the experiment with
several different concentrations of radioligand.

Association of ligand to receptors (according to the law of mass action) follows the
equation:

specific binding max ob= × −( )− ×1 e k t

Equation 7.5.26

In Figure 7.5.16, note that the maximum binding (max) is not the same as Bmax. The
maximum (equilibrium) binding achieved in an association experiment depends on the
concentration of radioligand. Low to moderate concentrations of radioligand will bind
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Figure 7.5.16 Schematic of an association kinetic experiment.

to only a small fraction of all the receptors no matter how long binding is allowed to
proceed.

Note that the equation used for Þtting does not include the association rate constant,
kon, but rather contains the observed rate constant, kob, which is expressed in units of
inverse time (usually min−1). The kob is a measure of how quickly the incubation reaches
equilibrium and in the case of a simple bimolecular binding reaction is deÞned by this
equation:

k k kob off on radioligand= + ×[ ]

Equation 7.5.27

The equation deÞnes kob as a function of three factors:

1. The association rate constant, kon. This is what is to be determined. If kon is larger
(faster), kob will be larger as well.

2. The concentration of radioligand. When using more radioligand, the system will
equilibrate faster and kob will be larger.

3. The dissociation rate constant, koff. It may be surprising to discover that the observed
rate of association depends in part on the dissociation rate constant. This makes sense
because an association experiment does not directly measure how long it takes radioli-
gand to bind, but rather measures how long it takes the binding to reach equilibrium.
Equilibrium is reached when the rate of the forward binding reaction equals the rate
of the reverse dissociation reaction. If the radioligand dissociates quickly from the
receptor, equilibrium will be reached faster, but there will be less binding at equilib-
rium. If the radioligand dissociates slowly, equilibrium will be reached more slowly
and there will be more binding at equilibrium.

To calculate the association rate constant, usually expressed in units of M−1 min−1, use
the following equation. Typically ligands have association rate constants of ∼108 M−1
min−1.

k
k k

on
ob off

radioligand
= −

[ ]

Equation 7.5.28
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Determining konwhen you already know koff
1. Enter the x data as time in minutes.

2. Enter the y data as total binding in cpm.

3. Fit to this equation, constraining koff to a constant value based on other experiments
and HotnM to the concentration of radioligand in nM.

Kd=koff/kon
L=Hotnm*1e-9
kob=kon*L+koff
Occupancy=L/(L+Kd)
Ymax=Occupancy*Bmax
Y=Ymax*(1 - exp(-1*kob*X)) + NS

4. Provide the nonlinear regression program with initial estimates of the parameters.
Bmax is the maximum speciÞc binding at equilibrium with high ligand concentration,
expressed in the same units as Y, so it can be estimated as 2 to 5 times the last y value.
NS is the nonspeciÞc binding in the same units as y, so is estimated by the smallest y
value. kon is the association rate constant. There is no straightforward rule to use for
its initial value, so use a standard value of 1E8 (the units are min−1 M−1).

5. Start the nonlinear regression procedure to determine kon, NS, and Bmax. Note that
Kd, L, kob, Occupancy, and Ymax are all intermediate variables used to make the
equation more clear. Their value is computed from the two constants (hotnm and koff)
and the two parameters you are Þtting (kon and Bmax).

Determining kon and koff in one experiment

After running an association experiment, add cold ligand to initiate dissociation. This
lets you Þt both the association and dissociation rate constants in one experiment.

1. Enter the x data as time in min.

2. Enter the y data as total binding in cpm.

3. Fit to this equation, constraining HotnM to the concentration of radioligand in nM
and Time0 to the time at which dissociation was initiated.

Radioligand=HotNM*1e-9
kob=[Radioligand]*kon+koff
Kd=koff/kon
Eq=Bmax*radioligand/(radioligand + Kd)
Association=Eq*(1-exp(-1*kob*X))
YatTime0 = Eq*(1-exp(-1*kob*Time0))
Dissociation= YatTime0*exp(-1*koff*(X-Time0))
Y=IF(X<Time0, Association, Dissociation) + NS

4. Provide the nonlinear regression program with initial estimates of the parameters.
Bmax is the maximum speciÞc binding at equilibrium with high ligand concentration,
expressed in the same units as Y, so can be estimated as a few times the largest y
value. kon is the association rate constant. There is no straightforward rule to use for
its initial value, so use a standard value of 1E8 (the units are min−1 M−1).

5. Start the nonlinear regression procedure to determine kon, koff, and Bmax . Note that
Kd, L, kob, Association, YatTime0, and Dissociation are all intermediate
variables used to make the equation more clear. Their value is computed from the two
constants (hotnm and koff) and the two parameters you are Þtting (kon and Bmax).
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Table 7.5.8 Evaluating the Results of Association Binding Analyses

Question Comment

Were data collected over a long
enough period of time?

Dissociation and association data should plateau, so the
data obtained at the last few time points should be
indistinguishable.

Is the value of kon reasonable? The association rate constant, kon, depends largely on
diffusion, so the value is similar for many ligands. Expect
a result of ∼108 M−1 min−1.

Is the value of koff reasonable? If the koff is >1 min−1, the ligand has a low afÞnity for the
receptor. Most likely, dissociation will occur during
separation of bound and free ligands. If koff is <0.001
min−1, attaining equilibrium will be difÞcult as the
half-time of dissociation will be greater than 10 hr! Even if
one waits that long, other reactions may occur that ruin the
experiment.

Are the standard errors too large?
Are the conÞdence intervals too
wide?

Examine the SE and the conÞdence intervals to gauge the
level of conÞdence to give the rate constants.

Does only a tiny fraction of
radioligand bind to the receptors?

The standard analyses of association experiments assume
that the concentration of free radioligand is constant
during the experiment. This will be approximately true
only if a tiny fraction of the added radioligand binds to the
receptors. Compare the maximum total binding in cpm to
the amount of added radioligand in cpm. If that ratio
exceeds ∼10%, revise the experimental protocol.

Interpreting Kinetic Results

Are the results reasonable?

Table 7.5.8 presents some questions that should be addressed when determining if the
results are reasonable.

Using Kinetic Data to Test the Law of Mass Action

Standard binding experiments are usually Þt to equations derived from the law of mass
action. Kinetic experiments provide a more sensitive test than equilibrium experiments
to determine whether the law of mass action actually applies for the system of interest.
To test the law of mass action, ask the following questions.

Does the Kd calculated from kinetic data match the Kd calculated from saturation
binding?

According to the law of mass action, the ratio of koff to kon is the Kd of receptor binding:

K
k

kd
off

on

=

Equation 7.5.29

The units are consistent: koff is in units of min
−1 and kon is in units of M−1min−1, so Kd

is in units of M.

If binding follows the law of mass action, the Kd calculated in this way should be the
same as the Kd calculated from a saturation binding curve.
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Figure 7.5.17 Schematic of observed association rate constants as a function of radioligand

concentration. Higher concentrations of radioligand equilibrate more quickly. The slope of the line

equals the association rate constant (kon); the y intercept is the dissociation rate constant (koff).

Does kob increase linearly with the concentration of radioligand?

The observed association rate constant, kob, is deÞned by this equation:

k k kob off on radioligand= + × [ ]

Equation 7.5.30

Therefore, association rate experiments performed at various concentrations of radioli-
gand should look like Figure 7.5.17. As the concentration of radioligand is increased, the
observed rate constant increases linearly. If the binding is more complex than a simple
mass action model (such as a binding step followed by a conformational change), the
plot of kob versus [radioligand] may plateau at higher radioligand concentrations. The
y intercept of the line equals koff. If the law of mass action applies to the system, the
koff determined in this way should correspond to the koff determined from a dissociation
experiment. Finally, this kind of experiment provides a more rigorous determination of
kon than the value obtained with a single concentration of radioligand.

Is speciÞc binding 100% reversible, and is the dissociated ligand chemically intact?

NonspeciÞc binding at �time zero� should equal total binding at the end (plateau) of
the dissociation. In other words, all of the speciÞc binding should dissociate after a
sufÞciently long period of time. Use chromatography to analyze the radioligand that
dissociates to prove that it has not been altered.

Is the dissociation rate the same when dissociation is initiated from different
amounts or times of receptor occupation?

If the ligand binds to a single site and obeys the law of mass action, the dissociation rate
constant is independent of the amount of radioligand used or the time before initiating
dissociation.

Is there cooperativity?

If the law of mass action applies, binding of a ligand to one binding site does not alter the
afÞnity of another binding site. This also means that dissociation of a ligand from one
site should not change the dissociation of ligand from other sites. To test this assumption,
compare dissociation initiated by adding an unlabeled ligand with dissociation initiated
by inÞnite dilution. The two rate constants should be identical (see Competitive Binding
with Two Sites, below).
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Kinetics of Competitive Binding

The standard methods of kinetic binding determine the kon and koff for a labeled ligand.
Competitive binding can be used to determine the kon and koff of an unlabeled ligand.
Add the two ligands at the same time, and measure radioligand binding over time. Use
the following information to set up the equation (Motulsky and Mahan, 1984).

DeÞne the following parameters:

k1 association rate constant of radioligand (M−1 min−1)
k2 dissociation rate constant of radioligand (min−1)
k3 association rate constant of unlabeled ligand (M−1 min−1)
k4 dissociation rate constant of unlabeled ligand (min−1)
[radioligand] concentration of labeled drug (M)
[unlabeled drug] concentration of unlabeled drug (M)
S an arbitrary designation of an intermediate variable
Bmax total number of binding sites (same units as speciÞc binding, usually cpm)
t time (min)

K k kA radioligand= × [ ] +1 2

Equation 7.5.31

K k kB unlabeled ligand= × [ ] +3 4

Equation 7.5.32

S radioligand unlabeled ligandA B= −( ) + × × × [ ] × [ ]K K k k
2

1 34

Equation 7.5.33
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Equation 7.5.35

Many data points are needed at early time points for this method to work. When Þtting
the data, set k1 and k2 to constant values determined from standard kinetic experiments
with the radioligand. Set Bmax to a constant value determined in a saturation binding
experiment. The concentrations of labeled and unlabeled compound are also constants,
set by your experimental design. Fit the data to determine k3 and k4.

To get reliable results, perform the experiment with two concentrations of radioligand,
and Þt both data sets globally, sharing all the parameters.
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TWO BINDING SITES

Several receptor molecules frequently evolve for a single hormone or neurotransmitter.
Also, many ligands bind to more than one receptor subtype. Consequently, it is often
necessary to Þt binding data with a model that includes two or more binding sites.

Saturation Binding Experiments with Two Sites

When the radioligand binds to two classes of receptors, analyze the data by using this
equation:

specific binding
L

L

L

Ld d

 = = × [ ]
+ [ ]

+ × [ ]
+ [ ]

y
B

K

B

K
max max1

1

2

2

Equation 7.5.36

Panel A of Figure 7.5.18 shows speciÞc binding to two classes of receptors present in
equal quantities, whose Kd values differ by a factor of ten. Panel B shows the transfor-
mation to a Scatchard plot. In both graphs the dotted and dashed lines show binding to
the two individual receptors; the sum in each graph is represented by a solid curve.
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Figure 7.5.18 Saturation binding to two classes of receptors. The two receptor types are present

in equal quantities, but have Kd values that differ by a factor of ten. (A) Binding to the two individual

receptor types are shown as dashed curves. The sum (observed experimentally) is shown as

a solid curve. It is not obviously biphasic. (B) Scatchard transformation. The curvature of the

overall Scatchard plot (solid) is subtle, and it would be easy to miss the curvature if the data were

scattered. Note that the Scatchard plots for the individual receptors (dashed) are not asymptotes

of the two-site Scatchard plot (solid).
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Note that the graph of speciÞc binding is not obviously biphasic. It is very hard to see the
presence of two binding afÞnities by just looking. The best way to detect the second site is
to Þt data to one- and two-site curves, and let the nonlinear regression program compare
the two Þts (see Theory: Comparing One- and Two-Site Models, below). The curvature
of the Scatchard plot is not dramatic and can easily be obscured by experimental scatter.
Note the location of the solid and dashed line in the Scatchard plot. The two components
of a biphasic Scatchard are not the asymptotes of the curve.

Competitive Binding with Two Sites

Competitive binding experiments are often used in systems where the tissue contains
two classes of binding sites (e.g., two subtypes of a receptor). Analysis of these data is
straightforward if the following assumptions are met:

1. There are two distinct classes of receptors. For example, a tissue could contain a
mixture of β1 and β2 adrenergic receptors.

2. The unlabeled ligand has distinct afÞnities for the two sites.

3. The labeled ligand has equal afÞnity for both sites or the afÞnity of the radiological
for the two sites is known from other experiments.

4. Binding has reached equilibrium.

5. A small fraction of both labeled and unlabeled ligand bind. This means that the con-
centration of labeled and unlabeled ligand added is very close to the free concentration
in all tubes.

Based on these assumptions, binding follows the equation:

( ) ( ) ( )50 50log log IC A log log IC B

1
NS Total NS

1 10 1 10
x x

F F
y

− −

−⎡ ⎤= + − +⎢ ⎥+ +⎣ ⎦

Equation 7.5.37

This equation has Þve parameters: the total and nonspeciÞc binding (the top and bottom
binding plateaus), the fraction of binding to receptors of the Þrst type of receptor (F), and
the IC50 of the unlabeled ligand for each type of receptor. If the Kd and concentration of
the labeled ligand is known, the IC50 values can be converted to Ki values (see Analyzing
Competitive Binding Data, above).

Since there are two different kinds of receptors with different afÞnities, a biphasic
competitive binding curve might be expected. In fact, a biphasic curve is seen only in
unusual caseswhere the afÞnities are extremely different.More often, the two components
are blurred together into a shallow curve. For example, Figure 7.5.19 shows competition
for two equally abundant sites with a ten-fold (one log unit) difference in IC50. Careful
observation will reveal that the curve is shallow (it takes more than two log units to go
from 90% to 10% competition), but two distinct components are not visible.

Cooperativity

In the standard mass action model, each binding site is independent. The standard mass
action model assumes that there is no cooperativity. Cooperativity occurs when binding
of a ligand to one binding site affects binding to adjacent sites. Usually these binding sites
are on the same molecule. If binding of one ligand increases the afÞnity of an adjacent
site, this is positive cooperativity. This results in a Hill slope with an absolute value
greater than 1. If binding of one ligand decreases the afÞnity of an adjacent site, this is
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Figure 7.5.19 Two-site competitive binding curve. The radioligand binds identically to two kinds

of receptors, but these two receptors have a ten-fold difference in affinity for the competitor. The

curve is shallow, but not obviously biphasic.

negative cooperativity. This results in a Hill slope with an absolute value less than 1. It
is impossible to distinguish negative cooperativity from multiple independent binding
sites (with different afÞnities) from data collected at equilibrium. Kinetic experiments
are needed.

To distinguish between multiple independent binding sites and negative cooperativity,
compare the dissociation rate after initiating dissociation by inÞnite dilution with the
dissociation rate when initiated by addition of a large concentration of unlabeled drug.
If the radioligand is bound to multiple noninteracting binding sites, the dissociation
will be identical in both experimental protocols as shown in panel A of Figure 7.5.20.
Note that the y axis is shown using a log scale. If there were a single binding site, the
dissociation data would be expected to appear linear on this graph. With two binding
sites, the graph is curved, even on a log axis (assuming the radioligand is present at high
enough concentration to bind appreciably to both sites).

Panel B shows ideal dissociation data when radioligand is bound to interacting binding
sites with negative cooperativity. The data are different depending on how dissociation
was initiated. If dissociation is initiated by inÞnite dilution, the dissociation rate will
change over time. The dissociation of some radioligand will leave the remaining ligand
bound more tightly. When dissociation is initiated by addition of cold drug, all the
receptors are always occupied by ligand (some hot, some cold) and dissociation occurs
at its maximal unchanging rate.

Theory: Comparing One- and Two-Site Models

Why not just compare sum of squares or R2?

In a least-squares analysis of data (either linear or nonlinear), the computer program will
give an R2 value and the sum of the squared deviations from the theoretical Þt in the
experimental result. The smaller the sum of squares (SS) value and the higher the R2, the
better the theory Þts the data. However, a two-site model will almost always Þt the data
better than a one-site model. A three-site model Þts even better, and a four-site model
better yet! As more parameters (sites) are added to the equation, more inßection points
are added to the curve, so it gets closer to the points. The sum of squares gets smaller
and R2 gets higher. Statistical calculations (such as the F test described below) should be
used to see whether these changes are larger than expected by chance.
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Figure 7.5.20 Discriminating between binding to two (or more) binding sites (A) and negative

cooperativity (B). With negative cooperativity, dissociation will be faster when initiated by adding

excess unlabeled ligand than when initiated by infinite dilution.

Reality check

Before performing statistical comparisons, however, look at whether the results make
sense. Sometimes the two-site Þt gives results that are clearly nonsense. Disregard a
two-site Þt when:

1. The two IC50 or Kd values are almost identical�the data probably Þt quite well by a
single-site model.

2. One of the IC50 or Kd values is outside the range of data.

3. One of the sites has a very small fraction of the receptors �if there are too few sites,
the IC50 or Kd cannot be determined reliably.

4. The best-Þt values for the bottom and top plateaus are far from the range of y values
observed in the experiment (applies to competitive binding curves only).

If the two-site Þt seems reasonable, test whether the difference between the one- and
two-site Þt is statistically signiÞcant.

Using the F test to compare one- and two-site Þts

Even if the simpler one-site model is correct, the Þt is expected to be worse (have the
higher sum of squares) because it has fewer inßection points (more degrees of freedom;
DF). In fact, statisticians have proven that the relative increase in the sum of squares
is expected to equal the relative increase in degrees of freedom. In other words, if the
one-site model is correct it would be expected that:

SS SS SS DF DF DF1 2 2 1 2 2−( ) ≈ −( )

Equation 7.5.38
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If the more complicated two-site model is correct, then the relative increase in sum
of squares (going from two-site to one-site) is expected to be greater than the relative
increase in degrees of freedom:

SS SS SS DF DF DF1 2 2 1 2 2−( ) > −( )

Equation 7.5.39

Follow these steps to compare the two models:

1. Fit the data to the simpler (one-site) model and record the sum of squares (SS1) and
degrees of freedom (DF1). Degrees of freedom equal the number of data points minus
the number of Þtted parameters.

2. Fit the data to the more complicated (two-site) model and record the sum of squares
(SS2) and degrees of freedom (DF2).

3. Look at whether the two-site model makes sense. If the best-Þt values don�t make
sense (or the values for the two sites are almost the same), then discard the two-site
model and accept the one-site model.

4. Compare SS2 with SS1. If for some reason SS2 is larger than SS1, then the two-site
Þt is worse than the one-site Þt and should be discarded. Accept the one-site Þt. In
most cases SS1 is larger, and further calculations will be needed.

5. Calculate the F ratio, which quantiÞes the relationship between the relative increase
in sum of squares and the relative increase in degrees of freedom.

F = −( )
−( )

SS SS SS

DF DF DF

1 2 2

1 2 2

Equation 7.5.40

The equation for calculating F is usually presented in this equivalent form (see
Table 7.5.9 for corresponding ANOVA table).

F = −( ) −( ) = −( ) =SS SS DF DF

SS DF
DF DF DF DF DFn

1 2 1 2

2 2
1 2 2, d

Equation 7.5.41

Table 7.5.9 ANOVA Table for Comparison of One- and Two-Site Fitsa

Source of variation Sum of squares DF Mean square

Difference SS1 - SS2 DF1 - DF2 SSI - SS2

DF1 - DF2

Model 2 (complicated) SS2 DF2 SS2/DF2

Model 1 (simple) SS1 DF1
aANOVA, analysis of variance.
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6. Use a table or program to determine the P value. When doing so, degrees of freedom
should be entered for both the numerator (DFn) and denominator (DFd). The numerator
has (DF1− DF2) degrees of freedom. The denominator has DF2 degrees of freedom.

If the one-site model is correct, an F ratio near one and a large P value are expected. If
the two-site Þt is correct, a large F ratio and a small P value would be seen. The P value
can be small for two reasons. One possibility is that the two-site model is correct. The
other possibility is that the one-site model is correct, but random scatter led the two-site
model to Þt better by chance. The P value tells how rarely this coincidence would occur.
More precisely, the P value answers the following question: if the one-site model is
really correct, what is the chance that data would randomly Þt the two-site model so
much better?

If the P value is smaller than a preset threshold (set to the arbitrary value of 0.05 by
tradition), conclude that the two-site model is signiÞcantly better than the one-site model.

Figure 7.5.21 compares a one-site and two-site competitive binding curve. The results
are shown in Table 7.5.10.

In going from the two-site to the one-site model, two degrees of freedom are gained,
because the one-site model has two fewer parameters. Since the two-site model has 10
degrees of freedom (15 data points minus 5 parameters), the degrees of freedom increased
20%. If the one-site model were correct, the sum of squares would be expected to increase
∼20% just by chance. In fact, the sum of squares increased 91%. The percent increase
was 4.56 times higher than expected (91.1/20.0 = 4.56). This is the F ratio (F = 4.56),
and it corresponds to a P value of 0.039. If the one-site model is correct, there is only a
3.9% chance that randomly obtained data would Þt the two-site model so much better.
Since this is below the traditional threshold of 5%, conclude that the two-site model Þts
signiÞcantly better than the one-site model.

Table 7.5.10 Comparison of One-Site and Two-Site Competitive

Binding Curve

Two-site One-site % increase

Degrees of freedom 10 12 20.00

Sum of squares 129,800 248,100 91.14
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Figure 7.5.21 The solid curve shows the fit to an equation describing competition for a single

class of receptors. The dashed curve shows the fit to an equation describing competition for

binding to two classes of receptors.
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AGONIST BINDING

Receptors Linked to G Proteins

The most studied example of agonist binding is the interaction of agonists with receptors
that are linked toGproteins. This is studied by comparing the competition of agonistswith
radiolabeled antagonist binding in the presence and absence ofGTP (or its analogs). These
experiments are done in membrane preparations to wash away endogenous intracellular
GTP. Without added GTP, the competitive binding curves tend to be shallow. When GTP
or an analog is added, the competitive binding curve is of normal steepness. Figure 7.5.22
shows the results of an idealized experiment.

The extended ternary complexmodel can partially account for these Þndings (and others).
In this model, receptors can exist in two states, R and R*. The R* state has a high afÞnity
for agonist and preferentially associates with G proteins to form an R*G complex.
Although some receptors may exist in the R* state in the absence of agonist, the binding
of agonist fosters the transition fromR toR*, and thus promotes interaction of the receptor
with G protein to form the ternary complex HR*G. The extended ternary complex model
is shown in Figure 7.5.23.

The agonist binding curve is shallow (showing high- and low-afÞnity components) in
the absence of GTP because some receptors interact with G proteins and others do not.

Log[agonist]

0

50

100

P
e
rc

e
n
t 
s
p
e
c
if
ic

 b
in

d
in

g

–GTP

+GTP

Figure 7.5.22 Schematic of agonist competition for binding to a receptor linked to a G protein. In

the absence of GTP (left) the curve is shallow (and in this extreme case, biphasic). In the presence

of GTP (or an analog) the curve is shifted to the right and is steeper.

H+R*+G HR*+G

H+R+G HR+G

H+R*G HR*G

H+R+G HR+G

H+RG HRG

H+R+G HR+G

H+RG HRG

Simple model Ternary complex model Extended ternary

complex model

Figure 7.5.23 Models for agonist binding to receptors linked to G proteins. H, hormone or agonist;

R, receptor; G, G protein.
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The receptors that do interact with G proteins bind agonist with high afÞnity, while
those that do not interact bind with low afÞnity. Not all receptors can bind to G proteins
because either the receptors are heterogeneous, the G proteins are limiting, or membrane
compartmentalization prevents some receptors from interacting with G proteins. If all
the receptors could interact with G proteins, the expectation would be a high afÞnity,
competitive binding curve in the absence of GTP. In the presence of GTP (or an analog),
the HR*G complex is not stable, so the G protein dissociates into its αGTP and βγ

subunits, and is uncoupled from the receptor. With GTP present, only a tiny fraction of
receptors are coupled to G at any given time, so the agonist competition curves are of
low afÞnity and normal steepness as if only R was present and not RG.

Although the extended ternary complex model is very useful conceptually, it is not very
useful when analyzing data. There are simply too many parameters. The simpler ternary
complexmodel shown in Figure 7.5.23 has fewer parameters, but still toomany to reliably
Þt with nonlinear regression. For routine analyses, most investigators Þt data to the much
simpler two-state model shown in the Þgure. This model allows for receptors to exist in
two afÞnity states (R and RG), but does not allow conversion between them. It is easy to
Þt data to this simpler model using a two-site competition curve model. Since the model
is too simple, the high- and low-afÞnity dissociation constants derived from the model
should be treated merely as empirical descriptions of the data and should not be thought
of as true molecular equilibrium constants.

Other Kinds of Receptors

By deÞnition, the binding of agonists to receptors makes something happen. So it is
not surprising that agonist binding is often more complicated than the simple mass
action model. For example, binding of agonists to nicotinic acetylcholine receptor causes
a conformational change characterized by a high-afÞnity binding of the agonist and
desensitized receptors, and insulin binding to its receptor shows negative cooperativity
due to dimerization of the receptors.

USE OF FLUORESCENCE OR OTHER SPECTROSCOPIC METHODS IN
BINDING EXPERIMENTS

Advantages of Fluorescent Ligands

Recently, many investigators have begun to use nonradioactive methods to detect ligand
binding to receptors or macromolecules. In most cases, these methods use ßuorescent
ligands.

An advantage of ßuorescent methods is elimination of both the dangers of radioactivity
and the expenses of radioactive waste disposal. Additionally, ßuorescent methods are
easier to perform and automate�a big plus for high throughput screening studies by the
pharmaceutical industry. Fluorescent studies work very well for kinetics, since binding
in a single sample can be measured at many time points.

Disadvantages of Fluorescent Ligands

One disadvantage (compared to radioligands) is that ßuorescence measurements are
expressed in arbitrary ßuorescence units.While one can compare values between samples
in a single experiment, it is rarely possible to convert the ßuorescent measurements into
the actual number of binding sites in the incubation. This problem, however, does not
affect determinations of equilibrium or kinetic constants.

Another disadvantage of ßuorescent methods is that the signal-to-noise ratio tends to be
low.
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Fluorescence methods rarely use a washing step to reduce nonspeciÞc binding (as radi-
oligand methods do). Instead, ßuorescence is measured in the experimental incubation.
The background signal includes not only binding to nonspeciÞc sites but primarily
ßuorescence from the free ligand. The signal-to-noise problem is reduced when the con-
centration of binding sites is high, as found in studies of puriÞed proteins or cell lines
genetically engineered to overexpress binding sites, and these are the kinds of systems
where ßuorescence methods are most useful.

In order to detect a change in ßuorescence on ligand binding without physical separation,
a signiÞcant fraction of the ligand often needs to be bound. This means that analyses of
ßuorescent binding need to account for ligand depletion, as discussed earlier.

How Fluorescence Binding Measurements Work

Fluorescent ligand binding studies measure some change in the spectral properties of a
ßuorescent ligand upon binding to the receptor. There are at least three different methods
used for ßuorescent ligand binding studies: ßuorescence intensity (FI), ßuorescence
polarization (FP), and ßuorescence resonance energy transfer (FRET). The methods of
analysis are similar for FI and FRET but because FP measures a ratio of two differently
polarized emission values, the analysis of FP results is signiÞcantly different (see below).

A less frequently used method is to use a ßuorescent receptor (either natural ßuorescence
such as tryptophan or a labeled protein) and detect changes in the spectral properties of
the receptor as the small molecule binds. Finally, some other approaches make use of a
change in localization of the ßuorescent ligand upon binding which concentrates it in the
vicinity of an excitation light source [e.g., total internal reßection ßuorescence (TIRF), or
bead-based methods such as ßow cytometry protein interaction assay (FCPIA) (Roman
et al., 2007)]. In some cases, standard separation methods like Þltration are used with
ßuorescence detection of a bound ligand, but thosemethods entail the same considerations
as standard radioligand methods, and will not be considered here.

Fluorescence Intensity

Fluorescent intensity changes when the ßuorophore moves to a different environment
on binding, for example moving from an aqueous environment for the free ligand to a
hydrophobic protein surface for the bound ligand. As increasing amounts of a ßuorescent
ligand are added to a biological preparation containing a receptor or binding site, ßuores-
cence is detected from both the free ligand L and the bound ligand LR. If the ßuorescence
of the bound ligand is higher (or lower) than the ßuorescence of the free ligand, then the
system can be used to measure binding. In general, however, a signiÞcant fraction of the
ligand must be bound (e.g., 2% to 50%) in order to detect a clear signal in FI studies.
Saturation binding experiments lead to results similar to those for a radioligand satura-
tion study (see Fig. 7.5.24), in which there is a linear component due primarily to the
ßuorescence from the free ligand and a saturable component due to the receptor binding.

Depending on the concentration of the receptor binding sites (Rtot) relative to the Kd for
the binding interaction, this may follow either a simple hyperbolic binding isotherm:

Fractional occupancy
ligand

ligand d

=
[ ]

[ ]+ K

Equation 7.5.42

or that for a saturation curve with ligand depletion. As a rule of thumb, if Rtot is < Kd/5
then it is appropriate to use the simple saturation isotherm with a linear nonspeciÞc
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Figure 7.5.24 Fluorescence intensity at various concentrations of receptor as a function of added ligand concen-

tration. The upper left panel shows the total fluorescence intensity. The upper right panel converts to nM bound. The

lower left panel normalizes the curve for each receptor concentration so they all plateau at the same maximum, and

compares the EC50 values. The lower right panel zooms in on the lowest ligand concentrations.

component. Regardless of whether the receptor concentration is much below the Kd or
not, an apparent Kd can be calculated and this will equal approximately Kd + Rtot/2
(Fig. 7.5.24, bottom left). When Rtot is much greater than the Kd the binding curve
becomes a titration curve with the ligand concentration at half-maximal binding equal
to Rtot/2 and a sharp transition from increasing binding to a plateau at Rtot. Indeed, this
has been used as a means of calculating the concentration of binding sites based on the
known concentrations of a ßuorescent ligand (Neubig and Cohen, 1979).

The Þrst study usually done to assess ßuorescent ligand binding is a time course. For
example, the binding of a ßuorescent guanine nucleotide (BODIPY FL-GTPγS) to a
binding site on the Gαo G protein was measured by McEwen et al. (2001) using a ßu-
orescence intensity readout. First, a near saturating amount of �receptor,� in this case
G protein, was added to a low concentration of ligand and the increase in ßuorescence
intensity was measured over time (see Fig. 4 in McEwen 2001). The increase in ßuo-
rescence intensity was between 3- and 6-fold depending on which G protein is used and
half-times varied from 2 to 10 min for Gαo, Gαs, and Gαi1.

BASIC
PROTOCOL

FLUORESCENCE SATURATION BINDING OF BODIPY FL-GTPγS TO GαO

QuantiÞcation of nucleotide binding to heterotrimeric G proteins has traditionally used
radioactive nucleotides such as [35S]GTPγS. With the development of BODIPY-labeled
nucleotides, including BODIPY-FL-GTPγS, it became possible to assess binding by
ßuorescence methods. In particular, the ßuorescence of BODIPY-FL-GTPγS free in
solution is quenched by intramolecular energy transfer. Upon binding to the G protein,
quenching is relieved and ßuorescence intensity is increased (McEwen et al., 2001).
This protocol illustrates the basic method to perform a saturation binding experiment
using 96-well plates and serial dilutions, with determination of both total and nonspeciÞc
ßuorescence.
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Materials

Ligand (BODIPY-FL-GTPγS; Invitrogen) stock solution: 10 μl of 100 μM frozen
in 1 mM DTT

G protein (Gαo) stock solution: 20 μM snap frozen in HED buffer
Binding buffer: HED buffer (see below) containing 10 mM MgCl2
HED buffer: 50 mM HEPES, pH 8, containing 1 mM EDTA and 1 mM DTT
Competing ligand (e.g., 100 μM GTPγS)

Costar 3915 black 96-well microplate
Fluorescence plate reader

1. Thaw ligand and G protein stocks on ice.

2. Prepare ligand dilutions on ice using serial dilutions.

a. Prepare aworking stock solution of BODIPY-FL-GTPγS (1μM)by adding 990μl
of binding buffer to the 10 μl stock tube on ice.

b. Prepare a solution with 60 nM BODIPY-FL-GTPγS (2× the maximum Þnal
ligand concentration) in binding buffer.

c. Add 100 μl to the top row of the desired number of replicate samples in a 96-well
plate (usually two to three samples per condition studied).

d. Add 50 μl of binding buffer to each of the lower wells.

e. Prepare serial dilutions by transferring 50 μl from the top wells using a multi-
channel pipettor to the next lower wells. Mix by pipetting up and down two to
three times, and again transfer 50 μl to the next lower well.

f. Stop before the last well to leave it as a blank, with no ßuorophore.

This will provide concentrations of 60, 30, 15, 7.5, 3.75, 1.88, 0.94, and 0 nM ßuorophore.
Final concentrations will be half of this.

3. Prepare 1 to 2 ml of a 2× stock solution (e.g., 40 nM Gαo) of G protein in binding
buffer, and store on ice.

4. Prepare nonspeciÞc binding samples�either leave G protein out of half of the
ßuorophore wells by adding 50 μl of binding buffer or add excess competing ligand
(e.g., 1 μM GTPγS, 1 μl of a 100 μl stock) to half of the wells.

5. Prewarm the plate with ligand for 3 min at room temperature.

6. Initiate binding by adding 50 μl of 2× Gα subunit to the appropriate wells with an
automatic pipettor.

7. Incubate at room temperature for 20 min (or the appropriate time determined in
previous time course studies).

8. Read ßuorescence intensity in a ßuorescence plate reader (excitation 490 nm, emis-
sion 510 nm)

9. Plot Total and NonspeciÞc ßuorescence as shown in Figure 7.5.25.

10. Subtract NonspeciÞc ßuorescence from Total to determine SpeciÞc ßuorescence

11. Fit SpeciÞc ßuorescence to a hyperbolic binding function to calculate an apparent
Kd (i.e., not corrected for depletion).

If apparent Kd is more than 3× greater than the protein concentration, it represents a
good estimate of the true Kd. If the apparent Kd is equal to the protein concentration (or
even less than 3× greater), Þt the data with a depletion equation as described above.
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Figure 7.5.25 Fluorescence saturation curves for binding of BODIPY-FL-GTPγS to three differ-

ent G protein alpha subunits. Binding was measured as described in the Basic Protocol with a 20

nM final concentration of Gαo and Gαs, incubated at room temperature for 20 min. For Gαi1, a final

concentration of 100 nM was used with incubations for 60 min at 30◦C (reprinted with permission

from McEwen et al., 2001).

Example data are shown (in Fig. 7.5.25) for Gαo as well as similar data for Gαs and Gαi1.
In this case, the �nonspeciÞc� ßuorescence was determined in the absence of G protein,
since the background signal is essentially all due to the presence of free ßuorophore.
Similar results were obtained when an excess of unlabeled GTPγS was used to determine
the �nonspeciÞc� binding. Thus, this type of study is analyzed in a manner that is virtually
identical to that used for a standard radioligand binding assay.

Fluorescence Polarization

Fluorescence polarization (FP) measures changes in the mobility of the ligand upon
binding.

The basis of themethod is that small ligands rotate or tumble rapidlywhen free in solution,
with a time scale similar to the lifetime of the ßuorescent excited state (Lakowicz, 2006).
When a ßuorophore is excited by polarized light, the emission will also be highly
polarized if the ßuorophore is immobile. But if the ßuorophore rotates quickly, the
polarization will be low.

An advantage of FP over FI is that it is easier to create ligands. Since there is no
need for the ßuorescence properties of the ßuorophore per se to change when it binds,
chemists have much more choice in how to design a ligand. For example, FP is often
used with peptide ligands where the ßuorophore is on the opposite end of the peptide
from the binding site. It is essential, of course, that the ßuorophore does not block ligand
binding.

FP measurements rely upon a substantial difference in molecular size between the ligand
and binding site. This limits the method to the use of small ligands (i.e., less than
∼5000 Da) and large binding sites (or binding sites attached to cells or membrane
fragments).
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The ßuorophore is excited with polarized light and the emission is measured with a po-
larizer parallel to the excitation polarization (F‖), and also with a polarizer perpendicular
to the excitation polarizer (F⊥). The difference between these twomeasurements, usually
calculated as a polarization (P) value, is a measure of how rapidly the ßuorophore is
tumbling.

( ) ( )– /P F F F F⊥ ⊥= +

Equation 7.5.43

Because polarization is computed as a ratio, its value does not vary directly with the con-
centration of ligand and it will not be affected by small variations in ligand concentration
or by the presence of compounds that might absorb the excitation or emission light. This
leads to excellent reproducibility of the signal.

In theory, polarization can run from −0.33 (rapidly tumbling ligand) to 0.5 (immobile
ligand) (Lakowicz, 2006). In practice, measured values of polarization tend to range from
0.02 to 0.30. This is usually expressed as milli-polarization units (mP = P/1000), with a
range of 20 to 300 mP.

Experimentally measured ßuorescent polarization is the sum of polarization from un-
bound ligand (PL) and polarization from the receptor-ligand complex (PRL). The relative
amounts of each depends on the fraction of ligand bound (F). Measured polarization (P),
therefore equals:

P F P F P= − )× + ×(1 L RL

Equation 7.5.44

When the ligand concentration is low, a high fraction of ligand is bound to receptors
(although a low fraction of receptors are bound to ligand). Thus F is greatest at low
ligand concentrations (i.e., well below the Kd). Fluorescence polarization is greatest
when ligands are immobile, so PRL is greater than PL. Therefore measured polarization,
P, is highest at low ligand and high receptor concentrations. As shown in Fig. 7.5.26,
P increases as the total receptor concentration, RT, is increased. At a Þxed receptor
concentration, as the ligand concentration (LT) increases, the free fraction of ligand
increases and P decreases (Fig. 7.5.27).
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Figure 7.5.26 Fluorescence polarization measurements of αMSH binding. Fluorescent ligand

(0.5 nM BODIPY-NDP-αMSH) was incubated with increasing amounts of membrane containing

the indicated concentrations of MC5 receptor. Fluorescence polarization was measured and plotted

versus concentration of added receptor. Data from Nosjean et al. (2006).
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Figure 7.5.27 Fluorescence polarization measurements of αMSH binding with varying ligand.

Membranes containing 1 nM MC5 receptor were incubated with increasing amounts of fluores-

cent ligand (BODIPY-NDP-αMSH). Fluorescence polarization was measured and plotted versus

concentration of added ligand. As indicated in the text, the fraction of bound ligand (and the polar-

ization) is highest at the low ligand concentrations. These data were fitted using NLLSQ analysis

with Equation 7.5.20, with a fixed value of RT = 1.0 nM (Nosjean et al., 2006). Although the

concentration of ligand at which the polarization falls to a half-maximal value is about 2 nM, the

calculated Kd is 0.43 nM due to ligand depletion that occurs because RT>Kd.

Analysis of FP measurements: Varying receptor

Given that the binding equation L+R� LR is symmetrical for ligand and receptor, one
can determine the Kd for a binding reaction by varying the concentration of either ligand
or receptor. In fact, FP binding experiments are often performed with a single low ligand
concentration (below the Kd) and various receptor concentrations (Fig 7.5.26). The half
maximal amount of ligand bound occurs when free R is equal to the Kd. Since free ligand
has low polarization and bound ligand has high polarization, the curve (Fig 7.5.26) looks
a lot like a standard saturation experiment. The added receptor binds the free ligand,
leading to increased polarization. In this type of study, the fraction of bound ligand is
linear with the value of P from PL (polarization of ligand alone i.e., zero ligand bound)
to PRL (polarization with all ligand bound at a saturating receptor concentration). Data
from Nosjean et al. (2006) were Þt to a standard one-site binding hyperbola to estimate
a Kd value of 0.16 nM (Fig 7.5.26). One difÞculty with this approach is that one needs
to know the receptor concentration from some other method (e.g., protein concentration
or radioligand binding) to get a Kd using these data alone. Also, the estimated Kd from
this study does not take ligand depletion into account. Thus, it is surprising that half-
saturation occurs at 0.16 nM, which is less than half of the concentration of the ligand
(LT = 0.5 nM so half saturation should not occur at less than 0.25 nM, since you need at
least that much receptor to bind half of the ligand).

Analysis of FP measurements: Varying ligand

An alternative approach is to vary ligand concentrations. To analyze this type of data,
Nosjean et al. (2006) developed an approach to Þt polarization values from the primary
experimental parameters (LT, RT, and Kd). The following equation can be used for this
purpose (either to Þt data from single experiments or to globally Þt data from a series to
determine Kd and RT).

P P P P L L R K L R K R L= + −( )⎡⎣ ⎤⎦ × + +( )− + +( ) − × ×( )⎡
⎣⎢L RL L T T T d T T d T T/

1

2
4

2 ⎤⎤
⎦⎥

Equation 7.5.45

This equation combines the polarization equations and ligand binding functions, taking
into account the ligand depletion which is often present in ßuorescence binding methods.
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With this equation, one can Þt raw polarization data obtained with variable LT with
several different amounts of receptor to deÞne both Kd and RT.

In Figure 7.5.27, this method is applied to FP measurements of a ßuorescent ligand for
the MC5 receptor similar to those shown in Figure 7.5.26. Since the concentration of
receptor (1 nM) is greater than the Kd, it is essential to account for depletion. So the
data were Þtted to the preceding equation using LT as the independent variable, keeping
RT constant at 1 nM, and permitting all other parameters (Kd, PL, PRL) to be optimized
by the nonlinear least-squares program. The importance of including ligand depletion is
clearly illustrated here. If depletion were ignored, the estimated Kd would be 1.6 nM,
while the true calculated Kd based on the depletion due to the 1 nMMC5 receptor present
is only 0.43 nM.

Analysis of FP measurements: Competition

Perhaps the most useful application of FP measurements is in determining the binding
of nonßuorescent competing ligands. Since polarization provides a direct measure of the
fraction of labeled ligand bound, the reduction in P by a competing ligand is directly
analogous to a radioligand competition study. Indeed, one of the most common uses
of FP is in high-throughput screening for compounds that can bind to a receptor. The
analysis is identical to that for a radioligand competition assay, as explained earlier. If
the Ki value estimated using standard competition equations is less than 2 to 3 times the
value of RT, one should include ligand depletion in the analysis.

FRET

Fluorescence resonance energy transfer (FRET) detects changes in the proximity of
the ligand to the receptor. It is widely used in detecting protein-protein interactions,
but it can also be used for measurements of ligand binding. The principle of FRET
involves nonradiative transfer of energy from an excited donor ßuorophore (on either
the ligand or receptor) to an acceptor ßuorophore within about 100

◦
A on the other

binding partner. Extensive information on the theory and analysis of FRET is available
(Gordon et al., 1998; Lakowicz, 2006), so that will not be repeated here. Measurements
typically involve three readings, Donor, FRET, and Acceptor, where the Þrst two use
excitation at the donor wavelength and measure emission at the donor and acceptor
wavelengths, respectively. The Acceptor signal is measured with both excitation and
emission at the acceptor wavelength. These three measurements are combined to
calculate �corrected FRET.� This corrected FRET signal is directly proportional to
the amount of ligand bound and can be analyzed using the standard ligand binding
equations described above for FI and for radioligand binding methods. Because the
initial analysis of the raw data (as described in Gordon et al., 1998) requires appropriate
corrections for the ßuorescence from free donor and acceptor, the nonspeciÞc binding is
essentially removed during that correction and Þtting can proceed as for speciÞc binding
measurements.

ANALYZING DATA USING NONLINEAR REGRESSION

Radioligand binding data are best analyzed using nonlinear regression to Þt curves
through the data.

The Problem with Using Linear Regression on Transformed Data

Before the age of microcomputers, scientists transformed their data to make a linear
graph, and then analyzed the transformed data with linear regression. Examples include
Lineweaver-Burke plots of enzyme kinetic data, Scatchard plots of binding data, and
logarithmic plots of kinetic data.
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These methods are outdated, and should not be used to analyze data. The problem is
that the linear transformation distorts the experimental error. Linear regression assumes
that the scatter of points around the line follows a Gaussian distribution and that the
standard deviation is the same at every value of x. These assumptions are usually not
true with transformed data. A second problem is that some transformations alter the
relationship between x and y. For example, in a Scatchard plot, the value of x (bound) is
used to calculate y (bound/free), and this violates the assumptions of linear regression.
For an example of this, see Saturation Binding Experiments, Analysis of Saturation
Binding Curves, The problem with using Scatchard plots to analyze saturation binding
experiments).

Since the assumptions of linear regression are violated, the results of linear regression are
incorrect. The values derived from the slope and intercept of the regression line are not
the most accurate determinations of the receptor number, rate constants, or dissociation
constants. Considering all the time and effort put into collecting data, the best possible
analysis technique should be used, and nonlinear regression produces the most accurate
results.

Although linear regression is usually inappropriate for analyzing transformed data, it
is often helpful for displaying transformed data because many people Þnd it easier
to visually interpret linear data. This makes sense because the human eye and brain
evolved to detect edges (lines), not to detect rectangular hyperbolas or exponential decay
curves.

Comparison of Linear and Nonlinear Regression

A line is described by a simple equation that calculates y from x, slope, and intercept.
The purpose of linear regression is to Þnd values for the slope and intercept that deÞne
the line that best Þts the data. More precisely, it Þnds the line that minimizes the sum of
the squares of the vertical distances of the points from the line.

The goal of minimizing the sum of squares in linear regression can be achieved quite
simply. A bit of algebra (shown in many statistics books) derives equations that deÞne the
best-Þt slope and intercept. Enter the data, perform a few calculations, and the answers
come out. There is no chance for ambiguity.

Nonlinear regression Þts data to any equation that deÞnes y as a function of x and one
or more parameters. Like linear regression, it Þnds the values of those parameters that
minimize the sum of the squares of the vertical distances of the points from the curve.
With the exception of a few special cases (like linear regression), it is not possible to
solve the equations directly to Þnd the best-Þt values of the parameters. Instead, nonlinear
regression requires an iterative approach that requires use of a computer.

To analyze data with nonlinear regression, the program will require an equation
(model) that deÞnes y as a function of x and one or more parameters (i.e., Kd,
Bmax, or rate constants). It will also require an estimate (or guess) for the best-Þt
value for each parameter in the equation (some programs provide the initial estimates
automatically).

Every nonlinear regression program follows these steps:

1. Using the initial values provided, the program calculates a predicted value of y for
each value of x. It then compares the actual y values with the predicted y values, and
calculates the sum of the squares of the differences between observed and predicted
y values.
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2. The program then adjusts the parameters to improve the Þt and reduce the sum
of squares. There are several algorithms for adjusting the parameters. The most
commonly usedmethodwas derived by Levenberg andMarquardt (often called simply
the Marquardt method), but the details of how this method works cannot be under-
stood without matrix algebra. However, nonlinear regression can be used to analyze
data without knowing anything about these algorithms.

3. Step 2 is repeated. Each time the parameters are adjusted by a smaller amount. The
Þtting stops when the adjustments make virtually no difference in the sum of squares.
This typically requires 5 to 20 iterations.

4. Best-Þt results are reported. The precise values obtained will depend in part on the
initial values and the stopping criteria. This means that repeat analyses of the same
data will not always give exactly the same results.

Decisions That Need to be Made When Fitting Curves with Nonlinear Regression

When using a program for nonlinear regression, the following decisions must be made.

Which equation?

An equation must be chosen that deÞnes y as a function of x and one or more parameters.
This equation should represent a model, usually the law of mass action.

In many cases, the best approach is to globally Þt several data sets (to the same, or
different, models) sharing some parameters. Global nonlinear regression Þnds one best-
Þt value for all shared parameters, and Þnds separate best-Þt values for each data set for
the other parameters.

Which units?

In pure mathematics, it does not matter whether data are entered as 1 pM or 10−12 M,
as 100 fmol/mg or 60,000,000,000 receptors/mg. When computers do the calculating,
however, it can matter. Calculation problems such as round off errors are far more
likely when the values are very high or very low. Scale data to avoid values <10−4
or >104.

Global nonlinear regression onlymakes sense if the y values for all data sets are expressed
in the same units.

Which estimated initial values?

Nonlinear regression is an iterative procedure. The program must start with estimated
values for each parameter that is in the right �ball park��usually within a factor of Þve
of the actual value. It then adjusts these initial values to improve the Þt and repeats the
adjustments until the improvement is no longer signiÞcant.

Later sections of this unit explain how to choose initial values for various kinds of
experiments. The estimates do not need to be extremely accurate. Nonlinear regression
will usually work Þne as long as the estimates are within 3 to 5 times their actual
values.

Some programs (including GraphPad Prism) automatically choose initial values for you.
This is a great convenience most of the time. But occasionally, the automatic initial
values are not appropriate for the situation. The Þrst step in troubleshooting problem Þts
is to plot the curve deÞned by the initial values and make sure it goes near the data. If
not, you can manually adjust the initial values to make the curve better approximate the
data.
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Fix one or more parameters to a constant value?

In some situations it makes sense to Þx some of the parameters to constant values. For
example, when analyzing speciÞc (rather than total) binding, the bottom plateau of a
dissociation experiment should be deÞned as a constant equal to zero.

Weighting

In general, the goal of nonlinear regression is to Þnd the values of the parameters in the
model that make the curve come as close as possible to the data points. Usually this is
done by minimizing the sum of the squares of the vertical distances of the data points
from the curve. This is appropriate when the scatter of points around the curve is expected
to be Gaussian and unrelated to the y values of the points.

Withmany experimental protocols, the experimental scatter is not expected to be the same
for all points. Instead, the experimental scatter is expected to be a constant percentage
of the y value. If this is the case, points with high y values will have more scatter than
points with low y values. When the program minimizes the sum of squares, points with
high y values will have a larger inßuence while points with smaller y values will be
relatively ignored. This problem may be avoided by minimizing the sum of the square
of the relative distances. This procedure is termed weighting the values by 1/y2. Because
it prevents large points from being over-weighted, the term unweighting seems more
intuitive but weighting is the usual term used.

Data may be weighted in other ways. The goal is to obtain a measure of goodness-of-Þt
that values all the data points equal to their reliability.

With binding data, scatter is often proportional to the amount of binding, so relative
weighting may be appropriate. With good-quality data, results are usually very similar
whether or not you choose to use relative weighting.

Average replicates?

If replicate y values are collected at every value of x, there are two ways to analyze the
data: (1) treat each replicate as a separate point, or (2) average the replicate y values and
treat the mean as a single point.

With radioligand binding data, the Þrst approach is usually best, because all the data
are obtained from one tissue preparation and the sources of experimental error are
independent for each tube. If one value happens to be a bit high, there is no reason
to expect the other replicates to be high as well. Each replicate can be considered an
independent data point.

Do not treat each replicate as a separate point when the experimental error of the replicates
is related. Instead, average the replicates and analyze the averages. This situation does not
come up often with radioligand binding data, but here is one example. Assume that you
perform an experiment with only a single replicate at each value of y (concentration or
time) but count each tube three times. It is not fair to enter the three counts as triplicates,
and then analyze each triplicate as a separate value. As the replicates are not independent,
any experimental error would appear in all the replicates.

Assumptions of Nonlinear Regression

The results of nonlinear regression are meaningful only if the following assumptions are
true (or nearly true):

1. The model is correct. Nonlinear regression adjusts the parameters in the equation you
chose to minimize the sum of squares. It does not attempt to Þnd a better equation.
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2. The variability of values around the curve follows a Gaussian distribution. Even
though no biological variable follows a Gaussian distribution exactly, it is sufÞcient
that the variation be approximately Gaussian.

3. The standard deviation (SD) of the residuals is the same everywhere, regardless of
the value of x. In other words, the average scatter of the points around the curve is the
same at all parts of the curve. The assumption is termed homoscedasticity. If the SD
is not constant but rather is proportional to the value of y, weight the data to minimize
the sum of squares of the relative distances.

4. The model assumes that x is known exactly. This is rarely the case, but it is sufÞcient to
assume that any imprecision in measuring x is very small compared to the variability
in y.

5. The errors are independent. The deviation of each value from the curve should be
random, and should not be correlated with the deviation of the previous or next point.
If there is any carryover from one sample to the next, this assumption will be violated.

EVALUATING RESULTS OF NONLINEAR REGRESSION

Before accepting the results of nonlinear regression, the following questions should be
asked.

Did the Program Converge on a Solution?

A nonlinear regression program will stop its iterations when it cannot improve the Þt
by adjusting values of any of the parameters. At that point, the program is said to have
converged on the best Þt. In some cases, the program gets stuck. It does not knowwhether
the Þt would improve by increasing or decreasing the value of a parameter. When this
happens, the program stops. The exact wording of the error message is unlikely to be
helpful. In this situation, some programs may still apparently show results, but these
�results� do not represent a best-Þt curve.

Are the Results ScientiÞcally Plausible?

The mathematics of curve Þtting sometimes yields results that make no scientiÞc sense.
For example, noisy or incomplete data can lead to negative rate constants, fractions
greater than 1.0, and negative Kd values.

If the results make no scientiÞc sense, they are unacceptable, regardless of R2 and of how
close the curve comes to the points. Try a simpler equation, or try Þxing some parameters
to constant values.

Also check that the best-Þt values of the parameters are reasonable compared to the range
of the data. Do not trust the results if the top plateau of a sigmoid curve is far higher than
the highest data point. Do not trust the results if an EC50 value is not within the range of
the x values.

HowWide are the ConÞdence Intervals?

In addition to reporting the values of the parameters that make the equation Þt the data
best, nonlinear regression programs also express the uncertainty as a 95% conÞdence
interval (CI) for each parameter. If all the assumptions of nonlinear regression are true,
there is a 95% chance that the interval contains the true value. More precisely, if a
nonlinear regression is performed many times (on different data sets), the conÞdence
intervals will include the true value 95% of the time, but exclude the true value the other
5% of the time (but you will not know when that happens).
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Three factors can make the conÞdence interval too narrow (i.e., narrower than the true
range of parameter values):

1. The CI is based only on the scatter of data points around the curve within this one
experiment. If the data points happen to fall right on a curve that agrees with the
model, the CI may be very small. If the experiment is repeated many times, the scatter
between the results is likely to be greater than predicted from the CI determined in
one experiment.

2. If any of the assumptions of nonlinear regression are violated, the conÞdence intervals
will probably be too narrow.

3. The conÞdence intervals from nonlinear regression are calculated using mathematical
shortcuts and so are referred to as asymptotic conÞdence intervals or approximate
conÞdence intervals. In some cases, these intervals can be too narrow (too optimistic).

Because of these problems, the conÞdence intervals should not be interpreted too rig-
orously. Rather than focusing on the CI reported from analysis of a single experiment,
repeat the experiment several times.

If the conÞdence interval is extremely wide (e.g., > 50% of the parameter value), do
not trust the results. ConÞdence intervals are wide when the data are very scattered, data
have not been collected over a wide enough range of x values, or you are Þtting too many
parameters and should constrain one or more parameters to a constant value.

The data in Figure 7.5.28 were Þt to a dose-response curve, and the 95% CI for the EC50
extends over six orders of magnitude. The explanation is simple. Since the data do not
deÞne plateaus at either the top or the bottom, zero and one hundred are not deÞned. This
makes it impossible to determine the EC50 with precision.

In this example, it might make scientiÞc sense to set the bottom plateau to 0% and the
top plateau to 100% (if the plateaus were deÞned by other controls not shown on the
graph). If this were done, the equation would Þt Þne and the conÞdence interval would
be narrow.
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Figure 7.5.28 A dose-response curve with data collected over a narrow range of concentrations.

When a nonlinear regression program tries to fit the top and bottom plateaus as well as the EC50

and slope, the resulting confidence intervals are very wide. Since there is no data to define zero

and one hundred, the program will be very uncertain about the EC50. If the nonlinear regression

program is told to set the top and bottom plateaus to constant values (from controls), then it can

determine the EC50 with precision.
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Figure 7.5.29 A dose response curve with no data in the middle of the curve. Since there are no

data points in the middle of the curve, the best-fit value of the EC50 will be uncertain with a wide

confidence interval.

Note that the problem with the Þt is not obvious by inspecting a graph, because the curve
goes very close to the points. The value of R2 (0.9999) is also not helpful. That value
also indicates that the curve comes close to the points, but does not indicate whether the
Þt is unique.

The CI is also wide when data in an important part of the curve has not been collected.
The dose-response curve in Figure 7.5.29 has wide conÞdence intervals. Even when
constraining the bottom to be zero, the top to be 100, and the slope to equal 1.0, the 95%
CI for the EC50 extends over almost an order of magnitude. The problem is simple. The
EC50 is the concentration at which the response is half-maximal, and this example has
no data near that point.

Finally, the CI is wide if one tries to Þt data to a two-site model when the data really
follow a one-site model. In this case, the program might report very wide conÞdence
intervals, as it will report that the two sites are very similar.

Some programs report the standard error of each parameter, instead of (or in addition
to) the conÞdence interval. It is not entirely straightforward to interpret the standard
error values. The best use of the standard error values is to calculate 95% conÞdence
intervals (CI), if the nonlinear regression program does not calculate one. The 95%
conÞdence interval extends from approximately two standard errors below the best-Þt
value to approximately two standard errors above the best-Þt value (the number 2.0
is approximate; the exact multiplier comes from the t distribution and depends on the
number of degrees of freedom, which equals the number of data points minus the number
of parameters Þt by the program).

Does the Curve Come Close to the Points?

In rare cases, the Þt may be far from the data points. This may happen, for example, if
the wrong equation is chosen. Look at the graph to make sure this did not happen.

Goodness of Þt can also be evaluated by looking at the value of R2 (known by statisticians
as the coefÞcient of determination). R2 is the fraction of the total variance of y that is
explained by the model (equation). Mathematically, it is deÞned by the equation: R2 =
1.0 − SS/sy

2, where sy
2 is the variance (standard deviation squared) of y values. The

value of R2 is always between 0.0 and 1.0, and it has no units.
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When R2 equals 0.0, the best-Þt curve Þts the data no better than a horizontal line going
through the mean of all y values. In this case, knowing x does not help you predict y.
When R2 = 1.0, all points lie exactly on the curve with no scatter; if x is known, y may
be calculated exactly.

If R2 is high, the curve comes closer to the points than would a horizontal line through
the mean y value, but a high R2 should not be overinterpreted. It does not mean that
the chosen equation is the best to describe the data. It also does not mean that the Þt is
unique�other values of the parameters may generate a curve that Þts just as well.

When comparing one- and two-site models, it is not sufÞcient to simply compare R2

values.

It is easy to put too much importance on the value of R2. It only quantiÞes how close
the curve comes to the points. Evaluating nonlinear regression results requires looking
at more than the R2.

Do the Data Systematically Deviate from the Curve?

If the data really follow the model described by the chosen equation, the data points
should be randomly scattered above and below the curve. The distance of the points from
the curve should also be random, and not be related to the value of x.

The best way to look for systematic deviations of the points from the curve is to inspect
a graph of the residuals and to look at the runs test.

Residuals

A residual is the distance of a point from the curve. A residual is positive when the point
is above the curve, and is negative when the point is below the curve. The residual table
has the same x values as the original data, but each y value is replaced by the vertical
distance of the point from the curve. An example is shown in Figure 7.5.30. As shown in
panel A, the data points are not randomly distributed above and below the curve. There
are clusters of points all above or all below. This is much easier to see on the graph in
panel B. The points are not randomly scattered above and below the x axis.

The runs test

The runs test determines whether the data deviate systematically from the equation you
selected. A run is a series of consecutive points that are either all above or all below the
regression curve. Another way of saying this is that a run is a series of points whose
residuals are either all positive or all negative.

If the data points are randomly distributed above and below the regression curve, it is
possible to calculate the expected number of runs. If there are fewer runs than expected,
it may mean that the regression model is wrong. If the data really follow the equation
used to create the curve, the P value from the runs test may be used to determine the
chance of obtaining as few (or fewer) runs as observed in the experiment. If the P value
is small, it indicates that the data really do not follow the model.

In the example in Figure 7.5.30, the equation does not adequately match the data. There
are only six runs, and the P value for the runs test is very small. This means that the data
systematically deviate from the curve, and the data were Þt to the wrong equation.

The replicates (or lack of Þt) test

When evaluating a nonlinear Þt, one question you might ask is whether the curve is �too
far� from the points. The answer, of course, is another question: too far compared to
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Figure 7.5.30 Residuals. The top panel (A) graphs dissociation kinetic data. The bottom panel

(B) shows the residuals (i.e., the y axis plots the distance between the point and the curve from

the top panel).

what? If you have collected one y value at each x value, you can�t really answer that
question (except by referring to other similar experiments). But if you have collected
replicate y values at each x, then you can ask whether the average distance of the points
from the curve is �too far� compared to the scatter among replicates.

If the P value is low, it means that the scatter of the points around the best-Þt curve is
much greater than predicted by the scatter among the replicates. This is evidence that the
data may actually follow a model that is different than the model that you chose (or that
the replicates are not fully independent from one another).

If the P value is high, it means the scatter of points from the curve is entirely consistent
with the scatter among the replicates. There is no reason (based on this test) to question
the validity of the model. You should not conclude that you have chosen the best pos-
sible model. But you can conclude that the Þt of the model is entirely consistent with
expectations from the scatter among replicates within the range of x values you chose to
use.

Is the Fit a Local Minimum?

The nonlinear regression procedure adjusts the parameters in small steps in order to
improve the goodness of Þt. If GraphPad Prism converges on an answer, altering any of
the parameters a little bit will make the Þt worse. But it is theoretically possible that large
changes in the parameters might lead to much better goodness of Þt. Thus, the curve that
Prism decides is the �best� may really not be the best.
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Figure 7.5.31 What is a false minimum? A nonlinear regression program stops when making

any small change to a parameter will worsen the fit and thus raise the sum of squares. In rare

cases, this may happen at a false minimum rather than the true best fit value.

Think of latitude and longitude as representing two parameters Prism is trying to Þt.
Now think of altitude as the sum of squares. Nonlinear regression works iteratively to
reduce the sum of squares. This is like walking downhill to Þnd the bottom of the valley.
When nonlinear regression has converged, changing any parameter increases the sum of
squares. When at the bottom of the valley, every direction leads uphill. But there may
be a much deeper valley over the ridge that is unknown (see Fig. 7.5.31). In nonlinear
regression, large changes in parameters might decrease the sum of squares.

This problem (called Þnding a local minimum) is intrinsic to nonlinear regression, no
matter what program is used. A local minimum will rarely be encountered if the data
have little scatter, the data are collected over an appropriate range of x values, and an
appropriate equation is chosen.

To continue the analogy, the conÞdence intervals for the parameters are very wide when
the bottom of the valley is very ßat. A great distance can be traveled without changing
elevation. The values of the parameters can be changed a great deal without changing
the goodness of Þt.

To test for the presence of a false minimum:

1. Look at the Þtted curve and see if it comes close to the data or if it deviates system-
atically (also check runs and replicates tests). Such systematic deviations may result
either from an incorrect model or from convergence to a local minimum.

2. Note the values of the parameters and the sum of squares from the Þrst Þt.

3. Make a large change to the initial values of one or more parameters and run the Þt
again. Repeat several times.

4. Ideally, nonlinear regression will report nearly the same sum of squares and same
parameters regardless of the initial values. If the values are different, accept the ones
with the lowest sum of squares.

What to Do When the Fit Is No Good?

The previous sections explained how to identify a bad Þt. If any of these situations are
encountered, Table 7.5.11 describes some things to try.
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Table 7.5.11 Troubleshooting Guide to Evaluating Results of Nonlinear Regression

Potential problem Solution

The equation simply does not describe the
data.

Try a different equation.

The initial values are too far from their correct
values.

Enter different initial values. If using a
user-deÞned equation, check the rules for initial
values.

The range of x values is too narrow to deÞne
the curve completely.

If possible, collect more data. Otherwise, hold
one of the variables to a constant value.

There is not enough data collected in a critical
range of x values.

Collect more data in the important regions.

The data are very scattered and don�t really
deÞne a curve.

Try to collect less scattered data. If combining
several experiments, normalize the data for each
experiment to an internal control.

The equation includes more than one
component, but the data don�t follow a
multicomponent model.

Use a simpler equation.

The numbers are too large. If the y values are very large, change the units.
Do not use values greater than ∼104.

The numbers are too small. If your y values are very small, change the
units. Do not use values less than ∼10−4.

Table 7.5.12 Log(Ki) Values for a Sample

Competitive Binding Experiment

Experiment Control Treated

1 −6.13 −6.53
2 −6.39 −6.86
3 −5.92 −6.31

COMPARING TREATMENT GROUPS

The results of radioligand binding experiments will often be compared between treatment
groups. There are three ways to do this.

Compare the Results of Repeated Experiments

After repeating the experiment several times, compare the best-Þt value of a parameter
for each Þt of control and treated preparations using a paired t test (or the analogous
Wilcoxon nonparametric test).

For example, in Table 7.5.12, the log(Ki) values of results from a competitive binding
curve performed with two groups of cells are shown. Compare the results using a paired
t test. The t ratio is 16.7, and the P value is 0.0036 (two-tail). If the treatment did not
alter the log(Ki), there is only a 0.36% chance that such a large difference (or larger)
between log(Ki) is by chance. Since the P value is so low, conclude that the change in Ki
was statistically signiÞcant.

Note that we compare log(Ki) values rather than Ki values. When doing a paired t
test, a key assumption is that the distribution of differences (treated versus control)
follow a Gaussian distribution. Since a competitive binding curve (similar to a dose
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response curve) is conducted with x values (concentration) equally spaced on a log scale,
the uncertainty of the EC50 is reasonably symmetrical (and perhaps Gaussian) when
expressed on a log scale. It is equally likely that the best-Þt value of the log (Ki) is
0.1 log units too high or 0.1 log units too low. In contrast, the uncertainty in Ki is not
symmetrical.

Compare the Results Within One Experiment: Extra Sum-of-Squares Approach

To compare two curves, Þrst Þt the two curves separately, and then Þt all the data
globally to Þt one curve to all the data. Comparing the sum of the sum of squares with
the independent Þt to the sum of squares for the global Þt can result in a P value that
compares the Þts (Munson and Robard, 1980).

For example, competitive binding curves of control and treated cells were compared in
an experiment performed once. Nonlinear regression Þt three parameters, Top, Bottom,
and log(EC50). Only the log(EC50) values are of interest. In this example, the control
log(EC50) was −6.08 with a standard error of 0.3667. The treated log(EC50) was −6.20
with a standard error of 0.0617.

GraphPad Prism can compare two Þts with the extra sum-of-squares F test by checking
an option. The instructions below assume that you are using a program that cannot do
the comparison automatically. It is also useful to follow these steps to understand how
the approach works.

1. Fit the two data sets separately as in the previous section.

2. Total the sum of squares and DF from the two Þts. For this example the total sum
of squares equals 19,560 + 29,320 = 48,880, and the total DF equals 12 + 12 = 24.
Since these are the results of Þtting the two data sets separately, label these values
SSseparate and DFseparate.

3. Combine the two data sets into one. For this example, the combined data set has 30
xy pairs, with each x value appearing twice.

4. Fit the combined data set to the same equation. Note the SS and DF. For this example,
SS= 165,200, and DF= 27 (30 data points minus three parameters). Call these values
SScombined and DFcombined.

5. SSseparate is expected to be smaller than SScombined even if the curves are really identical,
simply because the separate Þts have more degrees of freedom. Two separate curves
will always come closer to the points than one combined curve. The question iswhether
the SS values are more different than expected by chance. To Þnd out, calculate the F
ratio using the equation:

F =
−⎛

⎝⎜
⎞
⎠⎟

−SS SS

SS

DF DFcombined separate

combined

combined separatte

separateDF

⎛

⎝⎜
⎞

⎠⎟

Equation 7.5.46

For this example, F = 19.03.

6. Determine theP value fromF. There are 3 degrees of freedom (DFcombined−DFseparate)
in the numerator, and 24 degrees of freedom (DFseparate) in the denominator. Use the
free QuickCalc Web calculator at http://www.graphpad.com, or this Excel formula:

= FDIST(19.03, 3, 24)
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7. For this example, the P value is <0.0001. If the treatment is really ineffective, there
is less than 0.01% chance that the two curves would differ as much (or more) as they
differed in this experiment. Since the P value is low, you�ll conclude that the curves
are really different.

This method only uses data from one experiment. Despite the impressively low P value,
these results should not be trusted until the experiment is repeated. This method compares
the curves overall. It does not determine which parameter(s) are different. Differences
might be due to something trivial such as a different baseline, rather than something
important such as a different EC50.

Compare the Results Within One Experiment: t Test Approach

Since each best-Þt value of a parameter is reported with a conÞdence interval (CI) and
a standard error, a t test can determine whether the difference between best-Þt values is
greater than what would be expected by chance.

Compare the two groups with an unpaired t test.

1. Calculate the t ratio as the difference between log(EC50) values divided by the standard
error of that difference (calculated from the two standard errors). Since the sample
size is the same in the two groups, use the equation:

t =
− (        )(        )

+
=

log log
.

EC EC

SEM SEM

A B

A B

50 50

2 2
2 292

Equation 7.5.47

2. Calculate the number of degrees of freedom (DF), which equals the sum of the number
of degrees of freedom in each group. This equals the number of data points minus
the number of parameters Þt by the nonlinear regression procedure. In this example,
there were 15 data points, and three parameters were Þt. So there are 12 DF in each
group, and 24 DF altogether.

3. To determine the P value that corresponds to the values of t and DF, use the free
QuickCalc Web calculator at http://www.graphpad.com or this Excel formula (the
Þrst parameter is t, the second is DF, and the third is always 2, since you want a
two-tail P value):

=TDIST(2.292,24,2)

For this example, the P value is 0.0309. If the treatment really didn�t alter the EC50, there
is only a 3.09% chance that this large of a difference (or more) is by coincidence. Since
the P value is so low, it is concluded that the two EC50 values are statistically signiÞcantly
different.

You don�t need to do the calculations manually. GraphPad Prism, GraphPad InStat, and
many other programs can compute t and the P value from data entered as mean, standard
error of the mean (SEM), and N. Enter the best-Þt value of the log(EC50) (or any other Þt
parameter) instead of the mean, and the standard error (SE) of that parameter instead of
the SEM. The trick is Þguring out what value to enter as �N� (sample size). Remember
that:

1. For nonlinear regression, the number of degrees of freedom equals the number of data
points minus the number of parameters Þt.
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2. For an ordinary t test, the number of degrees of freedom for each sample equals one
less than the number of data points.

3. The t test calculations are based on the numbers of degrees of freedom. However,
most programs ask for N instead, and then compute DF as N − 1. When comparing
the results of nonlinear regression, enter N as the number of degrees of freedom plus
1. The program will subtract 1 to determine the DF. All the other calculations are
based on the value of DF, and N is ignored. In this example, enter N = 12 + 1 = 13
for each group.

This method only uses data from one experiment. The SE value is a measure of how
precisely the log(EC50) has been determined in this one experiment. It is not a measure of
how reproducible the experiment is. Despite the impressive P value, these results should
not be trusted until the experiment is repeated.

The t test assumes that the uncertainty in the values of the parameters follows a Gaussian
distribution. This assumption is not necessarily true with the SE values that emerge from
nonlinear regression. The only way to assess the validity of this assumption is to simulate
many sets of data, Þt each with nonlinear regression, and examine the distribution of
best-Þt values. This has been done with many commonly used equations, and it seems
that the assumption is reasonable in many cases.

To avoid this problem when Þtting binding data, compare log(EC50), not EC50. You
want to express the parameters in a form that makes the uncertainty as symmetrical and
Gaussian as possible. In general, the uncertainty of log(EC50), but not of EC50 itself, is
reasonably symmetrical (and perhaps Gaussian). It is equally likely that the observed
log(Ki) is 0.1 log units too high or 0.1 log units too low. In contrast, the uncertainty in Ki
is not symmetrical.

Advantages and Disadvantages of the Three Approaches

If the experiment has been repeated several times, use the Þrst method (Comparing the
Results of Repeated Experiments). There are two advantages. The Þrst is that compared
to the other methods discussed, this method is far easier to understand and communicate
to others. Second, the entire test is based on the consistency of the results between repeat
experiments. Since there are usually more causes for variability between experiments
than within experiments, it makes sense to base the comparison on differences between
experiments.

The disadvantage of the Þrst method is that information is being discarded. The calcula-
tions are based only on the best-Þt value from each experiment, and they ignore the SE
of those values presented by the curve Þtting program.

If the experiment has been performed only once, the experiment should be repeated.
Regardless of what statistical results are obtained, results from a single experiment should
not be trusted. To compare results in a single experiment, the extra sum-of-squares F test
is a better test (but a bit more work) than the t test.

Generally, only one parameter is of interest (i.e., a rate constant or EC50); the others
are less important. The t test compares only the parameter you care about. The extra
sum-of-squares F test is more general. Since that method compares the entire curve,
it does not force a decision regarding which parameter(s) to compare. This is both its
advantage and disadvantage.
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CALCULATIONS WITH RADIOACTIVITY

EfÞciency of Detecting Radioactivity

EfÞciency is the fraction of radioactive disintegration that is detected by the counter.
EfÞciency is determined by counting a standard sample under conditions identical to
those used in the experiment.

With 125I, the efÞciency is usually>90%, depending on the geometry of the counter. The
efÞciency is not 100% because the detector does not entirely surround the tube, which
allows a few gamma rays (photons) to miss the detector.

With tritium (3H), the efÞciency of counting is much lower, and usually varies between
30% and 50%. The low efÞciency is mostly a consequence of the physics of decay
and cannot be improved by better instrumentation or better scintillation ßuid. When a
tritium atom decays, a neutron converts to a proton and the reaction emits an electron
and neutrino. The energy released is always the same, but it is randomly partitioned
between the neutrino (not detected) and an electron (detection attempted). When the
electron has sufÞcient energy, it will travel far enough to encounter a ßuor molecule in
the scintillation ßuid. This ßuid ampliÞes the signal and gives off a ßash of light detected
by the scintillation counter. The intensity of the ßash (number of photons) is proportional
to the energy of the electron. If the electron has insufÞcient energy, it is not captured by
the ßuor and is not detected. If it has low energy, it is captured but the light ßash has few
photons and is not detected by the instrument. Since the decay of many tritium atoms
does not lead to a detectable number of photons, the efÞciency of counting is much less
than 100%.

The efÞciency of counting 3H is reduced by the presence of any color in the counting tubes,
if the mixture of water and scintillation ßuid is not homogeneous, or if the radioactivity
is trapped in the tissue (thus emitted electrons do not travel into the scintillation ßuid).

SpeciÞc Radioactivity

Radioligand packaging usually states the speciÞc radioactivity as Curies per millimole
(Ci/mmol). Because measurements are expressed in counts per minute (cpm), the speciÞc
radioactivity is more useful when stated in cpm. Often, for radioligand binding exper-
iments, it is useful to express the speciÞc radioactivity as cpm/fmol (1 fmol = 10−15
mol).

To convert from Ci/mmol to cpm/fmol, know that 1 Ci equals 2.22× 1012 disintegrations
perminute (dpm).Use this equation to convertZCi/mmol toY cpm/fmolwhen the counter
has an efÞciency (expressed as a fraction) equal to E.

Y Z E
cpm

fmol mmol

dpm

Ci

mmol

fmol

cpm

dpm
= × × × ×−Ci

.2 22 10 10
12 12

Equation 7.5.48

Y Z E= × × ( )2 22. in cpm fmol

Equation 7.5.49

For example, the speciÞc activity will be 2190 Ci/mmol if every molecule incorporates
exactly one 125I atom. If the counting efÞciency is 85%, then the speciÞc activity is 2190
× 2.22 × 0.85 = 4133 cpm/fmol.
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In many countries, radioligand packaging states the speciÞc radioactivity in GBq/mmol,
rather than Ci/mmol. To convert to cpm/fmol, you need to know that 1 Bq (Becquerel) is
one radioactive disintegration per second (1 GBq= 109 dps). To convert fromGBq/mmol
to cpm/fmol, use this equation:

Y Z Ecpm

fmol

GBq

mmol

dps

GBq

mmol

fmol

counts= × × × ×10 60 10
9 2sec

min ddisintegrations
= × ×Z E0 06.

1

Equation 7.5.50

If every molecule is labeled with 125I, the speciÞc activity is 81,030 GBq/mmol. If the
counting efÞciency is 85%, then the speciÞc activity can also be expressed as 81,030 ×
0.06 × 0.85 = 4133 cpm/fmol.

Calculating the Concentration of the Radioligand

Rather than trust dilutions, the concentration of radioligand in a stock solution can
be accurately calculated. Measure the cpm in a small volume of solution and use the
following equation, in which C is cpm counted, V is volume of the solution in ml, and Y
is the speciÞc activity of the radioligand in cpm/fmol (calculated in the previous section).

concentration in pM
cpm

cpm fmol

ml

pmol fmol

lite

=
×
C

Y

V

0 001

0 001

.

. rr ml

= C Y

V

Equation 7.5.51

Radioactive Decay

Radioactive decay is entirely random. The probability of decay at any particular interval is
the same as the probability of decay during any other interval. StartingwithN0 radioactive
atoms, the number remaining at time t is:

N N et

k t= × −
0

decay

Equation 7.5.52

The rate constant of decay (kdecay) is expressed in units of inverse time. Each radioactive
isotope has a different value of kdecay. The value e refers to the base of natural logarithms
(2.71828).

The half-life (t1 / 2) is the time it takes for half the isotope to decay. Half-life and the
decay rate constant are related by this equation:

t
k k1 2

2 0 693= =ln( ) .

decay decay

Equation 7.5.53

Table 7.5.13 shows the half-lives and rate constants for commonly used radioisotopes.
The table also shows the speciÞc activity assuming that each molecule is labeled with
one radioactive atom. This is often the case with 125I and 32P. Tritiated molecules often
incorporate two or three tritium atoms, which increases the speciÞc radioactivity.
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Table 7.5.13 Half-Lives and Rate Constants for Commonly Used Isotopes

Isotope Half-life kdecay SpeciÞc radioactivity

3H 12.43 years 0.056 year−1 28.7 Ci/mmol
125I 59.6 days 0.0116 day−1 2190 Ci/mmol
32P 14.3 days 0.0485 day−1 9128 Ci/mmol
35S 87.4 days 0.0079 day−1 1493 Ci/mmol

Radioactive decay can be calculated from a date where you knew the concentration and
speciÞc radioactivity using the equation:

fraction remaining decay= −
e

k t

Equation 7.5.54

For example, after 125I decays for 20 days, the fraction remaining equals 79.5%.Although
data appear to be scanty, most scientists assume that the energy released during decay
destroys the ligand so it no longer binds to receptors. Therefore, the speciÞc radioactivity
does not change over time.What changes is the concentration of ligand. After 20 days, the
concentration of the iodinated ligand is 79.5% of what it was originally, but the speciÞc
radioactivity remains 2190 Ci/mmol. This approach assumes that the unlabeled decay
product is not able to bind to receptors and has no effect on the binding. Rather than trust
this assumption, use newly synthesized or repuriÞed radioligand for key experiments.

Calculations of radioactive decay are straightforward only when each molecule is labeled
with a single radioactive isotope, as is usually the case. If a molecule is labeled with
several radioactive isotopes, the effective half-life is shorter. If only a fraction of the
molecules are labeled with a radioactive isotope, then the decay formula only applies to
the labeled portion of the mixture, as the concentration of the unlabeled compound never
changes.

Counting Error and the Poisson Distribution

The decay of a population of radioactive atoms is random, and therefore subject to a
sampling error. For example, the radioactive atoms in a tube containing 1000 cpm of
radioactivity will not give off exactly 1000 counts in every minute. There will be more
counts in some minutes and fewer in others, with the distribution of counts following a
Poisson distribution. This variability is intrinsic to radioactive decay (or any stochastic
process) and cannot be reduced bymore careful experimental controls (but can be reduced
by counting for a longer time to accumulate more events). There is no way to know the
�real� number of counts, but a range of counts can be calculated that is 95% certain to
contain the true average value. As long as the number of counts (C) is greater than∼100,
the conÞdence interval can be calculated using this approximation:

95 1 96 1 96% : . .CI toC C C C−( ) +( )

Equation 7.5.55

Computer programs can calculate amore exact conÞdence interval, as becomes necessary
whenC is less than∼100. For example, ifC= 100, the simple equation above calculates a
95% conÞdence interval from approximately 80 to 120. Amore exact equation calculates
an interval from 81.37 to 121.61.
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Table 7.5.14 Determination of Confidence Values

1 min 10 min 100 min

Counts per min (cpm) 100 100 100

Total counts 100 1000 10000

95% CI of counts 81.4 to 121.6 938 to 1062 9804 to 10196

95% CI of cpm 81.4 to 121.6 93.8 to 106.2 98.0 to 102.0

1.96 √C

C
Percent error = 100 x 
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Figure 7.5.32 Counting error. With more counts, the fractional counting error decreases. The x
axis shows the number of radioactive decays actually counted (counts per minute times number

of minutes).

When calculating the conÞdence interval, set C equal to the total number of counts you
measured experimentally, not the number of counts per minute.

For example, if a radioactive sample is placed into a scintillation counter for 10 min, the
counter detects 225 counts per minute. What is the 95% conÞdence interval? Since the
total timewas 10min, the instrumentmust have detected 2250 radioactive disintegrations.
The 95% conÞdence interval of this number extends from 2157 to 2343. This is the
conÞdence interval for the number of counts in 10 min, so the 95% conÞdence interval
for the average number of counts per minute extends from 216 to 234. That is, there is a
95% certainty that the average cpm value lies within this range.

The Poisson distribution explains why it is helpful to count samples longer when the
number of counts is small. For example, Table 7.5.14 shows the conÞdence interval for
100 cpm counted for various times. When longer times are used, the conÞdence interval
is narrower.

Figure 7.5.32 shows percent error as a function of C. Percent error is deÞned from the
width of the conÞdence interval divided by the number of counts. Of course this graph
only shows error due to the randomness of radioactive decay. This is only one source of
error in most experiments.
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ANALYZING DATAWITH GraphPad PRISM

GraphPad Prism is a general-purpose program for scientiÞc graphics, statistics and
nonlinear regression, available for both Windows and Macintosh computers.

While Prism is not designed especially for analyses of binding data, it is very well
suited for such analyses. It provides a menu of commonly used equations, including all
equations listed in this unit, and can automatically compare one- and two-site models
with an F test. When analyzing competitive binding curves, Prism calculates the Ki from
the IC50. It can globally Þt a family of curves at once, sharing speciÞed parameters
among the curves. The program can automatically create a residual plot and calculate the
runs test and replicates test. In addition, Prism�s manual and help screens, like this unit,
explain the principles of curve Þtting.

A trial version of the Windows or Mac versions of Prism can be obtained from the
GraphPad Web site at http://www.graphpad.com. The trial version is fully functional for
30 days.
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